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Abstract

An Application of the Sinc-Collocation Method in Oceanography

Yasaman Mohseniahouei

In this thesis, we explore the application of the Sinc-Collocation method to

an oceanography model. The model of interest describes a wind-driven cur-

rent with depth-dependent eddy viscosity and is formulated in two different

systems; a complex-velocity system and a real-value coupled system. In gen-

eral, the Sinc-based methods excel over other traditional numerical methods

due to their exponentially decaying errors, rapid convergence and handling

problems in the presence of singularities at end-points. In addition, the Sinc-

Collocation approach that we utilize exploits first derivative interpolation,

whose integration is less sensitive to numerical errors. We present several

model problems to demonstrate the accuracy, and stability of the method.

We compare the approximate solutions determined by the Sinc-Collocation

technique with exact solutions and also with those obtained by the Sinc-

Galerkin approach in earlier studies. Our findings indicate that the method

we utilized outperforms those used in past studies.

Keywords : Boundary Value Problems, Eddy Viscosity, Oceanography, Sinc

Numerical Methods, Wind-Driven Currents
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Chapter 1

Introduction

In many fields of study, modelling the governing phenomena leads to a specific

set of differential equations, called boundary value problems (BVPs). In most

cases, deriving analytical solutions of BVPs is extremely hard or completely

impossible. Therefore, various numerical methods were developed to attack

these problems. Some of the well-known numerical approximations to BVPs

are finite-difference methods [52], finite-element methods [7, 12], boundary

element methods [60], shooting methods [6], spline methods [58], and Sinc

methods.

Sinc methods reduce the governing differential or integral equations to a

system of algebraic equations, which makes the problems easier to solve. It is

well-known that the Sinc-based methods are dominant over other numerical

methods, especially in the presence of singularities and semi-infinite domains

[66]. They are also characterized by exponentially decaying errors and rapid

1



CHAPTER 1. INTRODUCTION 2

convergence [32]. Sinc-based methods have been applied to diverse scientific

and engineering problems comprising heat conduction [43, 49], population

growth [4], inverse problems [45, 65], astrophysics problems [18, 54], medical

imaging [68], elastoplastic problems [1], and oceanography models[36, 71].

Very recently, the application of the Sinc-Collocation approach to the tele-

graph equation [28] and the second type of the Painlevé equations [63] has

been studied.

In general, there are two equivalent but distinct Sinc approaches: Sinc-

Galerkin and Sinc-Collocation. In earlier studies, it has been shown that the

Sinc-Collocation approach is superior to the Sinc-Galerkin method due to its

simple implementation and possible extensions to more general BVPs [8].

In the past century, hydrodynamic models and their numerical solutions

have been receiving lots of attention. The first wind-driven current models

were one-dimensional systems based on the work of Ekman [17]. Eventually

two- and three-dimensional models were developed [26, 27]. To derive approx-

imate solutions to 3D models, several numerical methods employing spectral

methods [39], B-spline approach [14], Chebyshev and Legendre polynomials

[15] and eigenfunction approach [13] were developed. Recently, Sinc-Galerkin

approaches have been applied to a wind-driven current model [36, 71].

The intent of this thesis is to illustrate an application of the Sinc-Collocation

technique to a steady state model of wind-driven currents with a depth-

dependent eddy viscosity in coastal regions and semi-enclosed seas. The

model is found in the work of Winter et al. [71]. They formulated the model
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as a complex-valued ordinary differential equation (ODE) and applied the

original Sinc-Galerkin approach to solve it. Later, Koonprasert and Bow-

ers [36], developed a block matrix formulation for the Sinc-Galerkin tech-

nique and applied it to the same model formulated as a coupled system of

differential equations. Here we demonstrate the results by applying a Sinc-

Collocation approach to both the complex system and real-value coupled

system. Our goal is to show that the Sinc-Collocation method provides more

accurate approximations than the methods previously applied.

Following the introduction, we introduce boundary value problems (BVPs)

and some of their well-known analytical and numerical solutions, in section

2. Section 3 is devoted to a background on the Sinc methods along with

fundamentals and implementations. In section 4, we briefly explain the for-

mulation of the hydrodynamic model found in [71]. In Section 5, we provide

extensions of a Sinc-Collocation approach developed by Abdella [2] to ap-

ply to both complex velocity and coupled systems. Section 6, portrays the

results and comparisons we made between our results and those found in ear-

lier studies. Finally, in section 7 we discuss concluding remarks and future

works.



Chapter 2

Boundary Value Problems

In this chapter, we present an introduction to well-known boundary value

problems (BVPs) arising in science and engineering. As well, we provide a

summary of their analytical and numerical solutions discussed in past studies.

2.1 Ordinary Differential Equations

In many disciplines we face problems which require describing how quantities

change. To fulfill this requirement we need a mathematical formulation,

called ordinary differential equations (ODEs), to model the problems. This

is not the end of the work since we still need to solve the models. Studies

show that for a vast majority of ODEs, there is no way to find a closed-form

solution. This fact led us to rely on numerical methods to approximate the

solutions.

4



CHAPTER 2. BOUNDARY VALUE PROBLEMS 5

ODEs can always be reduced to sets of first-order differential equations.

As an example consider the following linear second-order ODE

d2f

dx2
+ α(x)

df

dx
= β(x). (2.1)

We can rewrite (2.1) as two first-order equations

df

dx
= g(x), (2.2)

dg

dx
= β(x)− α(x)g(x). (2.3)

where g(x) is a new variable.

Defining a new variable is not always as easy as this example. In some

cases we also need to include other factors in the equation or some exponents

of the independent variable to prevent increment of the round-off errors.

ODEs together with a set of additional constraints (boundary conditions)

are called boundary value problem (BVPs). BVPs are classified regarding

their equations characteristics and type of boundary conditions (BCs). To be

precise, boundary conditions are algebraic equations involving the values of

the unknown function, say f(x), and its derivatives. They may be as simple as

the value of the function at a certain point or as complex as a set of nonlinear

algebraic equations [56]. Boundary conditions are critical in determining

which numerical method is feasible to attack the BVPs. Regarding their

boundary conditions, BVPs are categorized into two major families: initial
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value problems (IVPs) and two-point boundary value problems (TPBVPs).

We will briefly introduce IVPs and TPBVPs in following sections.

2.2 Initial Value Problems

Indeed, IVPs are those BVPs whose boundary conditions are set at the initial-

point of the domain on which the problem is defined. To keep consistency in

our writing, here we consider a linear second-order IVP as an example. The

more general forms of IVPs together with related theorems and definitions

are provided in detail in [9].

The linear second-order ODE

f ′′ = p(x)f ′ + q(x)f + r(x), a ≤ x ≤ b. (2.4)

together with initial conditions

f(a) = α1, f ′(a) = α2.

is considered as an initial value problem.

There are some numerical methods in which the original BVP can be

transformed to an IVP to approximate the solutions. One of these methods

is the shooting method for linear BVPs which we introduce in section 2.5.2.
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2.3 Two-Point Bondary Value Problems

TPBVPs are those ODEs that are required to satisfy boundary conditions at

more than one point of the domain, usually at initial- and end-points of the

domain on which the problem is defined. As mentioned earlier, selecting a

proper numerical method to solve a BVP relies on its boundary conditions.

There are four main types of boundary conditions corresponding to TPBVPs.

Considering the linear second-order ODE given by

f ′′ = p(x)f ′ + q(x)f + r(x), a ≤ x ≤ b (2.5)

we have

Dirichlet BC : f(a) = γ1, f(b) = γ2

Neumann BC : f ′(a) = γ1, f
′(b) = γ2

Robin (or Mixed) BC : α1f(a) + α2f
′(a) = γ1, β1f(b) + β2f

′(b) = γ2

Periodic BC : f(a) = f(b), f ′(a) = f ′(b)

2.4 A Short Survey of Solutions to TPBVPs

TPBVPs occur frequently in a wide range of disciplines such as applied math-

ematics, engineering, several branches of physics including gas dynamics, nu-

clear physics, chemical reaction, studies of atomic structures, astrophysics,

and control and optimization theory.
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A solution to a TPBVP is a solution to the differential equation which

also satisfies the corresponding boundary conditions. In most cases obtaining

analytical solutions to TPBVPs is a hard or impossible task. Therefore, we

rely on numerical methods to approximate the solutions.

Some of the most common analytical methods for solving TPBVPs are;

Adomian decomposition method (ADM) [3], variational iteration method

(VIM) [25], homotopy analysis method (HAM) [41, 42], optimal homotopy

asymptotic method (OHAM) [46], differential transformation method (DTM)

[5, 10], and perturbation method [51].

Numerical solutions of TPBVPs fall into two major classes: direct meth-

ods and indirect methods. In the indirect methods, we reduce the higher

order TPBVPs to the equivalent system of first-order equations and then

apply any numerical method to approximate the solutions. By enlarging the

system, indirect approaches call for a huge calculation which is one of their

disadvantages. In contrast, the direct methods are those in which the original

order of the equations is not changed.

Frequent occurrence and significance of TPBVPs inspired many researchers

to develop some effective numerical solution procedures to them. Regardless

of direct and indirect numerical approaches, there are two main classes of nu-

merical methods for solving TPBVPs: The shooting method and relaxation

methods. In the next section, we will specifically introduce these two meth-

ods. Regardless of earlier classifications, some of the well-known numerical

solutions of TPBVPs are; finite difference methods [52], finite element meth-
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ods [7, 12], boundary element methods [60], shooting methods [29, 53], spline

approximation methods [58], the neural network approach [40] and spectral

methods.

2.5 The Shooting Method

2.5.1 Background

The shooting method is an iterative approach with a trial-and-error nature.

To be precise, in each iteration we guess the value of the slope at the initial

point of the desired interval and continue to solve the differential equation

until we arrive at the final point. The solution will not necessarily satisfy the

boundary conditions, but it helps us to get close to the exact one. In fact,

we must learn from each trial.

In general, two approaches of shooting methods are considered: simple

shooting method (SSM) and multiple shooting method (MSM). A simple

shooting algorithm for BVPs is proposed in [21, 34, 38, 64]. A modified

version of SSM is developed in [30]. The application of the shooting method

to nonlinear second-order BVPs is discussed in [23]. In [6], the shooting

method is combined with Adomian decomposition. In [50, 57], the shooting

technique is suggested to solve non-self-adjoint and self-adjoint singularly

perturbed BVPs subject to different types of boundary conditions. The work

in [24] is dedicated to the application of the SSM combined with the modified

Newton method to fibre Raman amplifier design. A SSM coupled with an
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iterative method in [20] is applied to a certain class of singular TPBVPS

arising in thermodynamics, electrostatics, physics, and statistics. A portrait

of The MSM can be found in [34, 48]. Those interested in shooting method

are referred to [69] in which both SSM and MSM are explored in great detail.

Finally, a comparison between the shooting method and the finite difference

method is outlined in [55]. Here we just listed some of the many studies

using the shooting method. In the following sections, we explain the shooting

method in brief.

2.5.2 The Shooting Method For linear BVPs

Consider the linear boundary value problem

y′′ = p(x)y′ + q(x)y + r(x), a ≤ x ≤ b, y(a) = γ1, y(b) = γ2 (2.6)

The shooting method for linear BVPs relies on replacing the BVP by two

initial value problems

y′′ = p(x)y′ + q(x)y + r(x), a ≤ x ≤ b, y(a) = γ1, y
′(a) = 0, (2.7)

and

y′′ = p(x)y′ + q(x)y, a ≤ x ≤ b, y(a) = 0, y′(a) = 1. (2.8)
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Assume that y1(x) and y2(x) are the solutions to (2.7) and (2.8) respectively.

Then let

y(x) = y1(x) +m y2(x). (2.9)

where m = γ2−y1(b)
y2(b)

and y2(b) 6= 0.

Regarding (2.9) we have

y′(x) = y′1(x) +m y′2(x),

and

y′′(x) = y′′1(x) +m y′′2(x).

Hence

y′′(x) = p(x)y′1 + q(x)y1 + r(x) +m(p(x)y′2 + q(x)y2)

= p(x) (y′1 +my′2) + q(x) (y1 +my2) + r(x)

= p(x)y′(x) + q(x)y(x) + r(x).

(2.10)

Similarly,

y(a) = y1(a) +m y2(a) = γ1 +m . 0 = γ1,

and

y(b) = y1(b) +m y2(b) = y1(b) + γ2 − y1(b) = γ2.

Therefore, we conclude that y(x) = y1(x) + m y2(x) is the unique solution

to (2.6). Various numerical methods such as the Euler’s method, the Taylor
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Figure 2.1: A schematic description of the linear shooting method

method, and the Runge-Kutta method exist to approximate the solutions

y1(x) and y2(x). After obtaining these approximations, the solution to (2.6)

will be approximated using equation (2.9). We illustrate the linear shooting

method in Figure 2.1.

Example 2.5.2. (An application of the linear shooting method)

Here we examine the application of the linear shooting method to the fol-

lowing BVP found in reference [9].

Consider the boundary value problem

y′′(x) = y′(x) + 2y(x) + cos(x), 0 ≤ x ≤ π/2,
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Table 2.1: Errors of Example 2.5.2 (an application of the linear shooting
method)

xi wi y(xi) |wi − y(xi)|
0. -0.3 -0.3
0.16 -0.311949732 -0.311949948 2.17× 10−7

0.31 -0.316218321 -0.316218654 3.34× 10−7

0.47 -0.312700639 -0.312701007 3.67× 10−7

0.63 -0.301483288 -0.301483623 3.35× 10−7

0.79 -0.282842457 -0.282842712 2.55× 10−7

0.94 -0.257237126 -0.257237275 1.49× 10−7

1.10 -0.225297762 -0.225297802 3.97× 10−8

1.26 -0.187810794 -0.187810749 4.42× 10−8

1.41 -0.145699244 -0.145699173 7.05× 10−8

1.57 -0.1 -0.1

with the boundary conditions

y(0) = −0.3, y(π/2) = −0.1.

and the exact solution y(x) = −0.1(sin(x) + 3 cos(x)).

To solve this BVP, we utilized algorithm 11.1 in reference [9], page 649.

We divided the interval [0, π/2] into 10 subintervals, resulting in 11 grid

points, xi = a + ih, where h = (b− a)/10, a=0 and b=π/2. The results are

listed in Table 2.1. wi is an approximate solution for y(xi).

2.5.3 The Shooting Method For Nonlinear BVPs

As mentioned earlier, the shooting method is an alternate numerical tech-

nique to approximate solutions to BVPs. To illustrate the idea behind the



CHAPTER 2. BOUNDARY VALUE PROBLEMS 14

shooting method, consider the general nonlinear, second-order TPBVP

g′′ = f(x, g, g′),

g(0) = γ1,

g(1) = γ2.

(2.11)

In first step, the shooting method considers the initial value problem

g′′ = f(x, g, g′),

g(0) = γ1,

g′(0) = β.

(2.12)

As discussed in section 2.1, we transform higher-order BVPs as systems of

two or more first-order equations. Therefore, we treat (2.12) as a system of

two first-order equations

g′ ≡ v,

v′ = f(x, g, v),

g(0) = γ1,

v(0) = β.

(2.13)

Next step is solving (2.13) for different values of β, with the desire of finding a

value of β giving us a solution satisfying g(1) = γ2. This is like trying different

shooting angles while shooting a cannon from the point (0,γ1), aiming at the
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point (1,γ2). Even though this method has a trial-and-error nature, we must

try to learn from our misses. Indeed, the shooting method is trying to find

the root of the nonlinear function

F (β) ≡ gβ(1)− γ2. (2.14)

where gβ(x) is the solution of the initial value problem (2.12). In this step,

the shooting method requires a root finding method. There are several root

finding methods such as the bisection method, the Newton’s method, the

fixed-point iteration, and the secant method. An appropriate method to find

the root of F(β) might be the secant iteration which converges rapidly and

requires no derivative of F(β). To use the secant method, we need to guess

initial approximations β0 and β1 and then generate subsequent approxima-

tions using

βn+1 = βn −
F (βn)(βn − βn−1)
F (βn)− F (βn−1)

. (2.15)

To generate the sequence {βi}, we may use the more powerful Newton’s

method. Here, the iteration is given by

βn+1 = βn −
F (βn)

F ′β(βn)
. (2.16)

To use the Newton’s method, we only need to guess the initial approximation

β0.

A schematic description of the nonlinear shooting method is provided in



CHAPTER 2. BOUNDARY VALUE PROBLEMS 16

Figure 2.2: A schematic description of the nonlinear shooting method

Figure 2.2.

2.6 Finite Difference Method

2.6.1 Background

To approximate the solution of differential equations, some numerical tech-

niques rely on transforming the differential equations to a system of algebraic

equations. The simplest way to generate such a system is by replacing the

derivatives in the equation by finite difference formulae. This is the key idea

behind finite difference methods. Even though finite difference approaches

generally require more computation than the linear and nonlinear shooting

methods, they exhibit better stability characteristics.

The term “finite differences” stems from this fact that the interpolation,

differentiation, or integration of a function is approximated using differences
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Table 2.2: Forward, backward and central differences

y0
∆y0

y1 ∆2y0
∆y1 ∆3y0

y2 ∆2y1
∆y2

y3

y0
∇y1

y1 ∇2y2
∇y2 ∇3y3

y2 ∇2y3
∇y3

y3

y0
δy 1

2

y1 δ2y1
δy 3

2
δ3y 3

2

y2 δ2y2
δy 5

2

y3

based on values of that function at a finite number of points. There are

three main notations for differences, called forward differences, backward

differences and central differences, respectively denoted by the symbols ∆,

∇ and δ. We illustrate these three notations in Table 2.2, assuming that we

have four mesh points, x0 = a, x1 = x0+h, x2 = x0+2h and x3 = x0+3h = b,

where h = (b−a)
n

. Here we have chosen n=3.

Indeed, the basic idea of any finite difference approach is inspired by the

standard definition of the derivative of a function:

right-handed approximation y′+(x) = lim
h→0

y(x+ h)− y(x)

h
(2.17)

left-handed approximation y′−(x) = lim
h→0

y(x)− y(x− h)

h
(2.18)

centered approximation y′0(x) = lim
h→0

y(x+ h)− y(x− h)

2h
(2.19)

As another advantage of the finite difference method, we can state the

possibility of maintaining a specified order of truncation error by choosing a
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particular difference quotient and mesh size h.

2.6.2 Finite Difference Methods for Linear BVPs

This section is dedicated to a brief explanation of the finite difference method

for linear BVPs. Consider the linear second-order BVP

f ′′ = p(x)f ′ + q(x)f + r(x), a ≤ x ≤ b, f(a) = γ1, f(b) = γ2. (2.20)

The finite difference method replaces the f ′ and f ′′ in (2.20) by difference-

quotient approximations. To generate proper difference-quotients, we first

need to select a positive integer N and evenly divide the interval [a, b] into

(N + 1) subintervals. Endpoints of these subintervals can be obtained by

xi = a+ ih, for i = 0, 1,..., N+1, where h = (b−a)
N+1

.

At the interior mesh points, i.e. xi where i=1, 2,..., N, we have

f ′′(xi) = p(xi)f
′(xi) + q(xi)f(xi) + r(xi), (2.21)

Assuming the unknown function f ∈ C4[xi−1, xi+1], and approximating it by

Taylor polynomial we have

f(xi+1) = f(xi + h) = f(xi) + hf ′(xi) +
h2

2
f ′′(xi) +

h3

6
f ′′′(xi) +

h4

24
f (4)(ξi

+),

(2.22)
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for some ξi
+ ∈ (xi, xi+1). Similarly,

f(xi−1) = f(xi − h) = f(xi)− hf ′(xi) +
h2

2
f ′′(xi)−

h3

6
f ′′′(xi) +

h4

24
f (4)(ξi

−),

(2.23)

for some ξi
− ∈ (xi, xi+1). Adding (2.22) and (2.23) leads to

f(xi−1) + f(xi+1) = 2f(xi) + h2f ′′(xi) +
h4

24
[f (4)(ξi

+) + f (4)(ξi
−)], (2.24)

Solving (2.24) for f ′′(xi) gives

f ′′(xi) =
1

h2
[f(xi+1)− 2f(xi) + f(xi−1)]−

h2

24
[f (4)(ξi

+) + f (4)(ξi
−)]. (2.25)

Then we can utilize the intermediate value theorem to simplify (2.25) to

f ′′(xi) =
1

h2
[f(xi+1)− 2f(xi) + f(xi−1)]−

h2

12
f (4)(ξi). (2.26)

Equation (2.26) is called the centered-difference approximation for f ′′(xi)

with truncation error of O(h2). To obtain a centered-difference formula for

y′(xi), we first need to subtract (2.23) from (2.22). The rest of the process

is similar to what we have done to obtain (2.26), resulting in

f ′(xi) =
1

2h
[f(xi+1)− f(xi−1)]−

h2

6
f ′′′(ηi), (2.27)

for some ηi ∈ (xi−1, xi+1).
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Replacing f ′(xi) and f ′′(xi) in (2.21) by centered-difference formulas (2.26)

and (2.27) results in

f(xi+1)− 2f(xi) + f(xi−1)

h2
= p(xi)

[
f(xi+1)− f(xi−1)

2h

]
+q(xi)f(xi) (2.28)

+r(xi)−
h2

12
[2p(xi)f

′′′(ηi)− f (4)(ξi)].

Now we rewrite (2.28) and boundary conditions f(a) = γ1 and f(b) = γ2 as

w0 = γ1, wN+1 = γ2,

and

(
−wi+1 + 2wi − wi−1

h2

)
+ p(xi)

(
wi+1 − wi−1

2h

)
+ q(xi)wi = −r(xi), (2.29)

for i=1,2,...,N.

Equation (2.29) can be rearranged as

−
(

1 +
h

2
p(xi)

)
wi−1 + (2 + h2q(xi))wi −

(
1− h

2
p(xi)

)
wi+1 = −h2r(xi).

(2.30)

The latter system of equations can be expressed in the tridiagonal N × N

matrix form

AW = B, (2.31)
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where

A =



2 + h2q(x1) −1 + h
2
p(x1)

−1− h
2
p(x2) 2 + h2q(x2) −1 + h

2
p(x2) 0

. . . . . . . . .

0 −1 + h
2
p(xN−1)

−1− h
2
p(xN) 2 + h2q(xN)


,

W =



w1

w2

...

wN−1

wN


,

and

B =



−h2r(x1) +
(
1 + h

2
p(x1)

)
w0

−h2r(x2)
...

−h2r(xN−1)

−h2r(xN) +
(
1− h

2
p(xN)

)
wN+1


.

Theorem 2.6.1

Suppose that p(x), q(x), and r(x) are continuous on [a, b]. If q(x) ≥ 0 on

the interval [a, b], then the tridiagonal linear system (2.31), has a unique

solution provided that h < 2/L, where L = maxa≤x≤b|p(x)|.
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Example 2.6.2. (An application of the linear finite difference method)

Here we examine the application of the linear finite difference method to the

same BVP discussed in Example 2.5.2.

Consider the boundary value problem

y′′(x) = y′(x) + 2y(x) + cos(x), 0 ≤ x ≤ π/2,

with the boundary conditions

y(0) = −0.3, y(π/2) = −0.1.

and the exact solution y(x) = −0.1[sin(x) + 3 cos(x)].

To solve this BVP, we utilize the algorithm 11.3 in reference [9], page

662. We divide the interval [0, π/2] into 10 subintervals, resulting in 11 grid

points, xi = a+ ih, where h = (b− a)/10, a=0, and b=π/2. The results are

depicted in Table 2.3. wi is an approximate solution for y(xi).

2.6.3 Finite Difference Methods for Nonlinear BVPs

Consider the general nonlinear BVP

y′′ = f(x, y, y′), a ≤ x ≤ b, y(a) = γ1, y(b) = γ2. (2.32)
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Table 2.3: Errors of Example 2.6.2 (an application of the linear finite differ-
ence method)

xi wi y(xi) |wi − y(xi)|
0. -0.3 -0.3
0.16 -0.311979 -0.311950 2.9× 10−5

0.31 -0.316260 -0.316219 4.1× 10−5

0.47 -0.312742 -0.312701 4.1× 10−5

0.63 -0.301513 -0.301484 2.9× 10−5

0.79 -0.282855 -0.282843 1.2× 10−5

0.94 -0.257231 -0.257237 6.0× 10−6

1.10 -0.225274 -0.225298 2.4× 10−5

1.26 -0.187778 -0.187811 3.3× 10−5

1.41 -0.145672 -0.145699 2.7× 10−5

1.57 -0.1 -0.1

The difference method for nonlinear problems given by (2.32) is similar to

the method for linear problems discussed in the previous section. However,

the method for nonlinear problems results in a nonlinear system of equations

requiring an iterative method to be used.

Similar to the linear case, we first divide the domain [a, b] into N + 1

subintervals whose endpoints are xi = a + ih, for i = 0, 1, ..., N + 1 where

h = (b − a)/(N + 1). Therefore, the ODE given by (2.32) at the interior

points, xi, is given by

y′′(xi) = f(xi, y(xi), y
′(xi)),

Then we replace y′(xi) and y′′(xi) by centered-difference formulas (2.26) and
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(2.27) resulting in

y(xi+1)− 2y(xi) + y(xi−1)

h2
= f

(
xi, y(xi),

y(xi+1)− y(xi−1)

2h
− h2

6
y′′′(ηi)

)
+
h2

12
y(4)(ξi),

(2.33)

for some ξi ∈ (xi−1, xi+1).

As in the linear case, employing the boundary conditions and neglecting

the error terms results in

w0 = γ1, wN+1 = γ2,

and

−wi+1 − 2wi + wi−1
h2

+ f

(
xi, wi,

wi+1 − wi−1
2h

)
= 0.

for i= 1, 2,..., N.

Finally to find approximate solutions, wi, we need to solve the (N ×N)

nonlinear system given by

0 = 2w1 − w2 + h2f

(
x1, w1,

w2 − γ1
2h

)
− γ1,

0 = −w1 + 2w2 − w3 + h2f

(
x2, w2,

w3 − w1

2h

)
,

...

0 = −wN−2 + 2wN−1 − wN + h2f

(
xN−1, wN−1,

wN − wN−2
2h

)
,

0 = −wN−1 + 2wN + h2f

(
xN , wN ,

γ2 − wN−1
2h

)
− γ2,

(2.34)
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It is evidenced in reference [34] that the system given by (2.34) has a unique

solution if h < 2/L. The solution to this nonlinear system is approximated by

the Newton’s method in section 11.4 of reference [9]. We skip repeating these

details here. Therefore, we refer interested readers to the latter reference.



Chapter 3

Sinc Numerical Methods

3.1 Background

Sinc methods reduce the governing differential or integral equations to a

system of algebraic equations, which makes the problem easier to solve. It is

well-known that Sinc methods, developed by Frank Stenger and his colleagues

[67], are dominant over other numerical methods, especially in the presence

of singularities and semi-infinite domains [66]. They are also characterized

by exponentially decaying errors and rapid convergence [32].

In general, there are two equivalent but distinct Sinc approaches: Sinc-

Galerkin and Sinc-Collocation. A comprehensive description of these two

approaches can be found in sections 3.7 and 3.8.

Sinc-based methods have been applied to diverse scientific and engineer-

ing problems comprising heat conduction [43, 49], population growth [4], in-

26
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verse problems [45, 65], astrophysics problems [18, 54], medical imaging [68],

elastoplastic problems [1], and oceanography models [36, 71]. Very recently,

the application of the Sinc-Collocation approach to the telegraph equation

[28] and the second type of the Painlevé equations [63] has been studied.

Sinc-methods have also been applied to systems of second-, third-, and

fourth-order BVPs [16, 19, 61], fifth- and sixth-order BVPs arising in as-

trophysics [54], TPBVPs [8], Hallens integral equation [62], and integro-

differential equations [47, 59].

The main goal of the current chapter is to describe Sinc methods funda-

mentals, approaches and their important properties in detail. We refer the

interested readers to four references [37, 44, 66, 67], which cover the sinc

methods in great detail.

3.2 The Sinc Function Fundamentals

The function defined by

sinc(z) ≡


sin(πz)
πz

if z 6= 0

1 if z = 0
(3.1)

for all z ∈ C, where C = {x + iy; x, y ∈ R, i2 = −1} is called the Sinc

function. Even though the original Sinc function is defined on complex space,

most of the time the translated Sinc function defined on the real line is
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Figure 3.1: Sinc function

considered. The translated Sinc function is defined by;

S(k, h)(x) ≡ sinc

(
x− kh
h

)
(3.2)

where h > 0, k ∈ Z and x ∈ R.

From (3.2), it follows that sinc(x) = S(0, 1)(x). Figure 3.1 portrays the plot

of Sinc(x). As shown in Figure 3.1, sinc(0) = 1 and for all other integers

sinc(x) is equal to zero.

Since

S(k, h)(x) ≡ sinc

(
x− kh
h

)
≡

 1 if x = kh

sin(π(x−kh)/h)
π(x−kh)/h if x 6= kh

(3.3)

for k = 0,±1,±2,±3, ..., we can conclude that the translated Sinc function

is similar to the standard Sinc function but shifted by a constant step size h

[22].
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Figure 3.2: The translated Sinc function S(k, π/4)(x) for k= -1, 0, 1.

For different values of k, the translated Sinc function S(k, π/4)(x) on the

whole real line is depicted in Figure 3.2. As well, for different values of step

size, h, the central function S(0, h)(x) is shown in Figure 3.3.

3.3 The Sinc Function Properties

This section is devoted to some of the most important properties of the Sinc

function. The interested reader may refer to the reference [44] for the proofs.

1. sinc(z) is an entire function.

2. If f(z) = sinc(z) then f ∈ L2(R), but f /∈ L1(R).

3. For h > 0, consider the 2π
h

-periodic function given by f(t) = e−izt,
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Figure 3.3: The central function S(0, h)(x) for h = π/2, π/4, π/8.

when −π
h
≤ t ≤ π

h
. Then the Fourier series of f(t) is given by

f(t) =
∞∑

k=−∞

eikht sinc

(
z + hk

h

)
. (3.4)

4. The set { 1√
h

sinc( t−kh
h

)}∞k=−∞ is orthogonal in L2, that is

∞∫
−∞

sinc

(
t− kh
h

)
sinc

(
t− jh
h

)
dt = h δ

(0)
kj . (3.5)

where

δ0kj =

 0 if k 6= j

1 if k = j
. (3.6)

5. ∞∫
−∞

sinc

(
z − kh
h

)
dz = h. (3.7)



CHAPTER 3. SINC NUMERICAL METHODS 31

6. For x ∈ R, j ∈ Z, and h > 0 we have the identity

S(j, h)(x) =
h

2π

π
h∫

−π
h

e−ixteijhtdt. (3.8)

3.4 Exact Interpolation and Quadrature

The main idea of this section stems from the fact that for the appropriate

class of functions f , a function which interpolates f at a finite countable

number of points on the real line, can be exact for all z ∈ C. Now we start

this section with a fundamental definition.

Definition 3.4.1

Assuming that function f is defined on the whole real line R and constant

h > 0, the series (3.9) is called the Whittaker cardinal expansion of f , when

it converges.

C(f, h)(x) ≡
∞∑

k=−∞

f(kh) sinc

(
x− kh
h

)
. (3.9)

The properties of this series is extensively discussed in [70].

Now we introduce a class of functions where the cardinal function of f

converges to f .

Definition 3.4.2

The Paley-Wiener class of functions B(h), is the family of entire functions

f such that on the real line f ∈ L2(R) and in the complex plane f is of
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exponential type π
h
, i.e.,

|f(z)|≤ Kexp

(
π|z|
h

)
(3.10)

for h > 0, z ∈ C and some K > 0.

Theorem 3.4.1 (The Paley-Wiener Theorem)

Consider an entire function f ∈ L2(R). If for all z ∈ C, there are positive

constants k and π/h such that

|f(z)|≤ Kexp

(
π|z|
h

)
(3.11)

then F(f) ∈ L2(−π/h, π/h) and

f(z) =
1

2π

∫ π/h

−π/h
F(f)(x)exp(−ixz)dx. (3.12)

Note that the notation F(f)(x) in (3.12) is the Fourier transform of f . If

f ∈ L1(R), then the Fourier transform of f is everywhere defined by the

integral

F(f) =

∫ ∞
−∞

f(t) exp(ixt)dt. (3.13)

If f ∈ L2(R), then in general the integral has to be replaced by a limit and

the Fourier transform is determined almost everywhere (a.e.).
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Theorem 3.4.2

If f ∈ B(h), then for all z ∈ C,

f(z) =
1

h

∫ ∞
−∞

f(t) sinc

(
t− z
h

)
dt. (3.14)

Theorem 3.4.3

If g ∈ L2(R), then k ∈ B(h), where

k(z) ≡ 1

h

∫ ∞
−∞

g(t) sinc

(
t− z
h

)
dt. (3.15)

Theorem 3.4.4

If f ∈ B(h), then for all z ∈ C,

f(z) =
∞∑
−∞

f(kh) sinc

(
z − kh
h

)
, (3.16)

and

f(kh) =
1

h

∫ ∞
−∞

f(t) sinc

(
t− kh
h

)
dt. (3.17)

Theorem 3.4.5 (Interpolation Rule)

If f ∈ B(h), then for all z ∈ C

f(z) = C(f, h)(z) =
∞∑

k=−∞

f(kh)S(k, h)(z), (3.18)
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where

S(k, h)(z) ≡ sinc

(
z − kh
h

)
. (3.19)

Proof: According to the third property of the sinc function, stated in section

3.3, the Fourier expansion of f(t) = e−izt is:

e−izt =
∞∑

k=−∞

eikhtsinc

(
z + kh

h

)
, (3.20)

From the Paley-Wiener Theorem, we know that the inverse Fourier transform

of f(z) is:

f(z) =
1

2π

∫ π
h

−π
h

F (f)(x)e−ixzdx, (3.21)

where

e−ixz =
∞∑

k=−∞

eikhxsinc

(
z + kh

h

)
. (3.22)

so

f(z) =
1

2π

∞∑
k=−∞

sinc

(
z + kh

h

)∫ π
h

−π
h

F (f)(x)e−ikhxdx

=
∞∑

k=−∞

sinc

(
z + kh

h

)
f(−kh)

=
∞∑

k=−∞

f(kh)sinc

(
z − kh
h

)
.

(3.23)

Theorem 3.4.6 (Quadrature Rule)

If f ∈ L1(R), then ∫ ∞
−∞

f(z)dz = h

∞∑
k=−∞

f(kh). (3.24)
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Proof: By Integrating both sides of the interpolation formula given by (3.18),

we have ∫ ∞
−∞

f(z)dz =

∫ ∞
−∞

∞∑
k=−∞

f(kh)sinc

(
z − kh
h

)
dz. (3.25)

Since f ∈ L1(R),

∫ ∞
−∞

f(z)dz =
∞∑

k=−∞

f(kh)

∫ ∞
−∞

sinc

(
z − kh
h

)
dz (3.26)

Regarding the fifth property of the sinc function, stated in section 3.3,

∫ ∞
−∞

sinc

(
z − kh
h

)
dz = h,

Hence, ∫ ∞
−∞

f(z)dz = h
∞∑

k=−∞

f(kh). (3.27)

3.5 Approximate Interpolation and Quadra-

ture

In section 3.4, we introduced the Paley-Wiener class of functions for which

the interpolation and quadrature formulas are exact and their approximation

by cardinal series has errors which decrease exponentially. In this section, we

define another less restrictive class of functions for which the interpolation

and quadrature formulas are not exact but their approximation by cardinal

functions still possess exponentially decaying errors. We begin this section



CHAPTER 3. SINC NUMERICAL METHODS 36

with the definition of the desired class of functions and continue with some

related definitions and theorems.

Definition 3.5.1

Consider the infinite strip domain of width 2d, d > 0 denoted by DS (shown

in Figure 3.4), and given by

DS ≡ {w ∈ C : w = u+ iv, |v|< d}. (3.28)

Let Bp(DS) be the set of functions analytic in DS that satisfy

d∫
−d

|f(t+ iv)| dv = O(|t|a), t→ ±∞, 0 ≤ a < 1 (3.29)

and

Np(f,DS) ≡ lim
v→d−

{(∫ ∞
−∞
|f(t+ iv)|pdt

)1/p

+

(∫ ∞
−∞
|f(t− iv)|pdt

)1/p
}
<∞.

(3.30)

for p = 1, let N(f,DS) ≡ N1(f,DS) and B(DS) ≡ B1(DS).

The following theorem gives an interpolation result in Bp(DS).
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Figure 3.4: The strip domain DS.

Theorem 3.5.1 (Interpolation Rule)

If f ∈ Bp(DS) (p = 1 or 2) and h > 0, then

f(x)− C(f, h)(x) = f(x)−
∞∑

k=−∞

f(kh) sinc

(
x− kh
h

)
≡ ε(x) = Sh(x) I(f, h)(x).

where

Sh(x) ≡ sin(πx/h)

2πi
, (3.31)

I(f, h)(x) ≡
∫ ∞
−∞

{
F (x, t− id−)

sin(π(t− id−)/h)
− F (x, t+ id−)

sin(π(t+ id−)/h)

}
dt, (3.32)
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and

F (s, u± iv) =
f(u± iv)

(u− s± iv)
. (3.33)

Theorem 3.5.2 (Quadrature Rule)

If f ∈ Bp(DS), p = 1 or 2, then

‖f − C(f, h)‖∞ ≤
Np(f,DS)

2(πd)1/p sinh(πd/h)
= O(e−πd/h). (3.34)

The proofs of these theorems can be found in reference [44], pages 35-38.

3.6 Numerical Methods on an Arc Γ

Earlier we talked about numerical methods on the real line. Encountering

problems with semi-infinite or finite domains, we require to map the domains

to the infinite domain DS, defined in (3.28). To fulfill this requirement we

need to define a proper conformal map, denoted by ϕ. In this section, we

introduce some of the most common conformal maps utilized in other studies.

For the semi-infinite domain (0, ∞), we may utilize;

z = ϕ(w) = ln(w),

or

z = ϕ(w) = ln(sinh(w)).

as well as the wedge-shaped domain, DW , depicted in Figure 3.5, and given
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Figure 3.5: The wedge domain DW .

by

DW ≡ {w ∈ C : w = t+ is, |argw|< d}. (3.35)

For the finite domain (0, 1), we may apply;

z = ϕ(w) = ln

(
w

1− w

)

and the eye-shaped domain, DE, plotted in Figure 3.6, and given by

DE = {w ∈ C : w = x+ iy,

∣∣∣∣arg( w

1− w

)∣∣∣∣ < d}. (3.36)

Note that for any arbitrary finite interval (a, b) we can easily define the

conformal map

z = ϕ(w) = ln

(
w − a
b− w

)
and the corresponding eye-shaped domain DE.
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Figure 3.6: The eye-shaped domain DE.

The relationship between the eye-shaped domain, DE, and the infinite

strip, DS, is shown in Figure 3.7. As well, we have shown the relationship

between the wedge-shaped domain, DW , and the infinite strip, DS, in Figure

3.8.

3.7 The Sinc Collocation Method

Consider the boundary value problem

Lu(x) = −u′′(x) + p(x)u′(x) + q(x)u(x) = f(x), a < x < b (3.37)

with boundary conditions

u(a) = u(b) = 0.



CHAPTER 3. SINC NUMERICAL METHODS 41

Figure 3.7: The relationship between the eye-shaped domain DE and the
infinite strip domain DS.

Figure 3.8: The relationship between the wedge-shaped domain DW and the
infinite strip domain DS.
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A collocation scheme for (3.37) is defined by

Lu(xj) = f(xj), a < xj < b, j = 1, 2, ...,m. (3.38)

and has two main requirements. The first requirement is selecting the m

points {x1 = a, ..., xj, ..., xm = b}, and the second is specifying the approxi-

mations to the derivatives u′(xj) and u′′(xj) on the left-hand side of (3.38).

We assume that u(x) is the exact solution of (3.37). According to the

truncated interpolation rule, we can approximate the solution via

u(x) ' um(x) =
N∑

k=−M

ukS(k, h) ◦ φ(x), m = M +N + 1 (3.39)

where

S(k, h) ◦ φ(x) = sinc

(
φ(x)− kh

h

)
, k = −M, ..., N. (3.40)

Equation (3.39) provides an accurate approximation to the exact solution of

equation (3.37). Even though the most direct approach to approximate u′(x)

and u′′(x) in equation (3.37) is by obtaining the derivatives of um(x), it is

not advised here. Indeed, differentiation of the sinc expansion of u(x) on the

entire real line possesses less restrictive assumptions than does differentiation

of u(x) on a subset of the real line [44]. Therefore, a variable transformation
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of u(x) to the whole real line will be applied as

v(t) = (φ′(ψ(t)))lu(ψ(t)). (3.41)

Where φ and ψ are inverses of each other and φ is a one-to-one conformal map

transferring the interval (a, b) into (-∞, ∞) such that φ(a)=-∞, φ(b)=∞

and l is a nonnegative real number [44]. Then using the chain rule and

x=ψ(t) we have

u(x) = (φ′(x))−lv(x),

du

dx
=

d

dx
(φ′(x)−lv(x))

= (φ′(x))−l
dv

dx
+ ((φ′(x))−l)′v(x),

d2u

dx2
= (φ′(x))−l

d2v

dx2
+ 2(φ′(x)−l)′

dv

dx
+ (φ′(x)−l)′′v(x)

= (φ′(x))−l
d2v

dx2 − 2l(φ′(x)−l−1)′φ′′(x)
dv

dx
+ (φ′(x)−l)′′v(x).

(3.42)

Substituting preceding equalities in (3.37) and multiplying it by (φ′(x))l leads

to

−d
2v

dx2
+ {2lφ′′(x)

φ′(x)
+ p(x)}dv

dx

+{−(φ′(x))l((φ′(x))−l)′′ − lφ′′(x)p(x)

φ′(x)
+ q(x)}v(x)

= (φ′(x))lf(x).
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Afterwards, the x-derivatives of the variable v are replaced by

dv

dx
=
dv

dt

dt

dx
= φ′(x)

dv

dt
,

d2v

dx2
=

d

dx
(φ′(x)

dv

dt
) = φ′′(x)

dv

dt
+ (φ′(x))2

d2v

dt2
.

(3.43)

Dividing the entire equation by (φ′(x))2 leads to

−d
2v

dt2
+ {(2l − 1)

φ′′(x)

φ′(x)2
+
p(x)

φ′(x)
}dv
dt

(3.44)

+{−(φ′(x))l−2((φ′(x))−l)′′ − lφ
′′(x)p(x)

(φ′(x))3
+

q(x)

(φ′(x))2
}v

= (φ′(x))l−2f(x).

To generate the various coefficients of equation (3.44) in terms of variable t,

one needs the repeated use of

φ′(x) = (ψ′(t))−1,

and

dt

dx
= φ′(x) =

1

ψ′(t)
,

leading to the transformed boundary value problem

−v′′(t) + ξp(t)v
′(t) + γq(t)v(t) = (ψ′(t))2−lf(ψ(t)), −∞ < t <∞ (3.45)

lim
x→±∞

v(t) = 0.
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where the coefficients of v′(t) and v(t) are given by

ξp(t) = ξp(φ(x)) = (2l − 1)
φ′′(x)

φ′(x)2
+
p(x)

φ′(x)
, (3.46)

and

γq(t) = γ(φ(x)) = −(φ′(x))l−2((φ′(x))−l)′′ − lφ
′′(x)p(x)

(φ′(x))3
+

q(x)

(φ′(x))2
, (3.47)

noting that x = ψ(t).

Now that our transformed BVP is defined on the whole real line, the sinc

approximation and its derivatives

v(t) ' vm(t) =
N∑

k=−M

vkS(k, h)(t), m = M +N + 1, (3.48)

and

dn

dtn
v(t) =

N∑
k=−M

vk
dn

dtn
S(k, h)(t), n = 1, 2, (3.49)

guarantee accurate approximations to v(t), v′(t), and v′′(t) as long as v(t)

satisfies the hypotheses of Theorem 3.7.1.

Substituting (3.48) and (3.49) in (3.45) and evaluating these approxima-

tions at t = jh, −M ≤ j ≤ N , yields the equation

−
N∑

k=−M

v(kh)
d2

dt2
S(k, h)(jh) + ξp(jh)

N∑
k=−M

v(kh)
d

dt
S(k, h)(jh) (3.50)
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+γq(jh)
N∑

k=−M

v(kh)S(k, h)(jh) = (ψ′(jh))2−lf(ψ(jh)), j = 1, ...,m.

Defining the derivatives of the translated sinc function evaluated at the

sinc nodes by

δ
(n)
jk ≡ hn

dn

dtn
[S(j, h)(t)]

∣∣∣∣
t=jh

, n = 0, 1, 2, ...

which for n=0, 1, 2 yields

δ
(0)
jk =

 1, j = k

0, j 6= k
,

δ
(1)
jk =

 0, j = k

(−1)k−j
k−j , j 6= k

,

and

δ
(2)
jk =

 −
π2

3
, j = k

−2(−1)k−j
(k−j)2 , j 6= k

.

equation (3.50) can be simplified as

−
N∑

k=−M

1

h2
δ
(2)
kj v(kh) +

N∑
k=−M

ξp(jh)

h
δ
(1)
kj v(kh) +

N∑
k=−M

γq(jh)v(kh) (3.51)

= (ψ′(jh))2−lf(ψ(jh)), j = 1, ...,m.
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Therefore, the compact form of equation (3.51) is given by

N∑
k=−M

{
− 1

h2
δ
(2)
jk −

1

h
ξp(jh)δ

(1)
jk + γq(jh)

}
v(kh) = (ψ′(jh))2−lf(ψ(jh)).

(3.52)

If we define the square matrix I(n) by

I(n) = [δ
(n)
jk ], n = 0, 1, 2

and diagonal matrix as

D(g) ≡



g(x−M)

. . .

g(x0)

. . .

g(xN)


then we can show that the algebraic form of the transformed BVP is give by

{− 1

h2
I(2) − 1

h
D(ξ(t))I(1) +D(γ(t))}−→v = D((ψ′)2−l)

−→
f . (3.53)

Utilizing the transformation −→v = D((φ′(x))l)−→u , the value of the coefficients

uk is obtainable by solving

{− 1

h2
I(2)− 1

h
D(ξ(t))I(1)+D(γ(t))}D((φ′(x))l)−→u = D((φ′(x))l−2)

−→
f . (3.54)
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In general, the development of the collocation scheme is valid for each choice

of l. However, the choices l = 0, 1
2
, and 1 have particular capabilities.

Theorem 3.7.1

Consider D as a region in the complex w-plane containing the boundary

points a, and b (a 6= b), and z = φ(w) as a one-to-one conformal map of the

domain D onto the infinite strip DS, such that

lim
w→a

φ(w) =∞, and lim
w→b

φ(w) =∞.

Suppose φ′f
g
∈ B(D) and

∣∣∣∣∣ dldsl
[

g(s) sin(πφ(s)
h

)

2πi(φ(w)− φ(s))

]∣∣∣∣∣
w∈∂D

≤ Kh−l, (3.55)

∣∣∣∣ dldsl
[
g(s)sinc

(
φ(s)− kh

h

)]∣∣∣∣ ≤ Lh−l,

for all l = 0,1,...,n. Assume that

∣∣∣∣f(s)

g(s)

∣∣∣∣ ≤ K

 eαs s ∈ ψ((−∞, 0))

e−βs s ∈ ψ([0,∞))
,

where α, β,K are positive constants and w = ψ(z) is the inverse of the

conformal mapping z = φ(x). If N = ceil(α
β
M) and 0 < h =

√
( πd
αM

) ≤ 2πd
ln 2

,
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then

dlf

dsl
=

N∑
k=−M

f(wk)

g(wk)

dl

dsl

[
g(s)sinc

(
φ(s)− kh

h

)]
+ εM , (3.56)

where wk = φ(kh) and |εM |= O(M
l+1
2 e−

√
πdαM).

3.8 The Sinc Galerkin Method

Consider the boundary value problem

Lu(x) ≡ −u′′(x) + p(x)u′(x) + q(x)u(x) = f(x), a < x < b (3.57)

with the boundary conditions

u(a) = u(b) = 0.

Similar to the Sinc-Collocation approach, the Sinc-Galerkin scheme approx-

imates the exact solution of u(x) by the truncated sinc approximation given

by

u(x) ' um(x) =
N∑

k=−M

ukS(k, h) ◦ φ(x), m = M +N + 1, (3.58)
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where

S(k, h) ◦ φ(x) = sinc

(
φ(x)− kh

h

)
, k = −M, ..., N. (3.59)

The function φ(x) in (3.59), transforms the interval (a, b) to the whole real

line R = (−∞,∞) and can be given by

φ(x) = ln

(
x− a
b− x

)
.

Consequently, we can define

xk = φ−1(kh) =
bekh + a

ekh + 1
.

In the Galerkin approach the residual (Lum − f) must be orthogonal to

S(j, h) ◦ φ in the weighted inner product defined by

(F,G) =

b∫
a

F (x)G(x)w(x)dx. (3.60)

Choosing a proper weight function, w(x), is dependent on the boundary

conditions, the domain and the differential equation itself.

In the other words, the Sinc-Galerkin approach evaluates the unknown

coefficients {uk} by orthogonalizing the residual (Lum − f) to S(j, h) ◦ φ.
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Therefore, we must have

(Lum − f, S(j, h) ◦ φ) = 0, j = −M, ..., N (3.61)

Regarding (3.57) and (3.60), we can rewrite (3.61) as

−
∫ b

a

u′′(x)[S(j, h) ◦ φ]w(x)dx+

∫ b

a

p(x)u′(x)[S(j, h) ◦ φ]w(x)dx (3.62)

+

∫ b

a

q(x)u(x)[S(j, h) ◦ φ]w(x)dx =

∫ b

a

f(x)w(x)dx.

Perhaps the most direct approach to solve equation (3.62) is by utilizing

the quadrature rule. However, the existence of u′(x) and u′′(x) may not

yield quadrature formula that have the desired exponential convergence. To

prevent this the Sinc-Galerkin approach uses integration by parts to eliminate

the derivatives of u(x) from the integrations in equation (3.62). Afterwards,

the quadrature rule can be applied.

As discussed, each integral in (3.62) will be treated separately as follows.

(pu′, S(j, h) ◦ φ) =

∫ b

a

p(x)u′(x)[S(j, h) ◦ φ(x)]w(x)dx

= BT1 −
∫ b

a

u(x)(p[S(j, h) ◦ φ]w)′(x)dx

= BT1 −
∫ b

a

u(x)

[
[S(j, h) ◦ φ]′pw(x) + [S(j, h) ◦ φ](pw)′(x)

]
dx,

(3.63)
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where

BT1 = (up[S(j, h) ◦ φ]w)(x)

∣∣∣∣b
a

. (3.64)

Similarly,

(u′′, S(j, h) ◦ φ) =

∫ b

a

u′′(x)[S(j, h) ◦ φ(x)]w(x)dx

= BT2 +

∫ b

a

u(x)([S(j, h) ◦ φ]w)′′(x)

= BT2 +

∫ b

a

{
u(x)[S(j, h) ◦ φ(x)]′′w(x) + 2u(x)[S(j, h) ◦ φ]′w′(x)

(3.65)

+u(x)[S(j, h) ◦ φ(x)]w′′(x)

}
dx,

where

BT2 = (u′[S(j, h) ◦ φ]w)(x)

∣∣∣∣b
a

− (u([S(j, h) ◦ φ]w)′)(x)

∣∣∣∣b
a

. (3.66)

And finally

(qu, S(j, h) ◦ φ) =

∫ b

a

q(x)u(x)[S(j, h) ◦ φ]w(x)dx. (3.67)

Now we exploit the quadrature rule in Theorem 3.8.2, to approximate the

integrals in (3.63), (3.65) and (3.67). To make the presentation of theses

approximations more convenient and readable we define the notation

δ
(n)
jk ≡ hn

dn

dφn
[S(j, h) ◦ φ(x)]

∣∣∣∣
x=xk

, n = 0, 1, 2, ... (3.68)
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where xk = φ−1(kh). The following theorem, explicitly evaluate these quan-

tities for n = 0, 1, 2.

Theorem 3.8.1

If φ is a conformal one-to-one map of the domain D onto DS, then

δ
(0)
jk =

 1, j = k

0, j 6= k
,

δ
(1)
jk =

 0, j = k

(−1)k−j
k−j , j 6= k

,

and

δ
(2)
jk =

 −
π2

3
, j = k

−2(−1)k−j
(k−j)2 , j 6= k

.

Therefore, the inner products given by (3.63), (3.65) and (3.67) can be rewrit-

ten as

(pu′, S(j, h) ◦ φ) = BT1 − h
N∑

k=−M

u(xk)w(xk)
δ
(1)
jk

h
− hu(xj)(pw)′(xj)

φ′(xj)
, (3.69)

Similarly,

(u′′, S(j, h) ◦ φ) = BT2 + h
N∑

k=−M

u(xk)

[
1

h2
δ
(2)
jk φ

′(xk)w(xk)+ (3.70)
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δ
(1)
jk

h

(
φ′′(xk)w(xk)

φ′(xk)
+ 2w′(xk)

)
+ δ

(0)
jk

w′′(xk)

φ′(xk)

]
,

and finally,

(qu, S(j, h) ◦ φ) = h
u(xj)q(xj)

φ′(xj)
. (3.71)

In addition we have,

(f, S(j, h) ◦ φ) = h
f(xj)

φ′(xj)
. (3.72)

Substituting (3.69)-(3.72) in (3.57) leads to

BT2 +
N∑

k=−M

[
−1

h2
δ
(2)
jk φ

′(xk)w(xk)−
1

h
δ
(1)
jk (

φ′′(xk)w(xk)

φ′(xk)
+ 2w′(xk))

]
(3.73)

−w
′′(xj)

φ′(xj)
uj +BT1 −

N∑
k=−M

1

h
δ
(1)
jk p(xk)w(xk)uk −

(pw)′(xj)

φ′(xj)
uj

+
q(xj)w(xj)

φ′(xj)
uj =

f(xj)w(xj)

φ′(xj)
.

Here we difine the weight function w(x) by

w(x) =
1

φ′(x)

which makes BT1 and BT2 vanish.

To present an algebraic format of the system in (3.73), we define the

vectors

~u ≡ (u−M , ..., u0, ..., uN)T ,
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and

~f ≡ (f(xM), ..., f(x0), ..., f(xN))T ,

the m×m (m = M +N + 1) matrices

I(n) ≡ [δ
(n)
jk ], n = 0, 1, 2

and the diagonal matrix

D(g) ≡



g(x−M)

. . .

g(x0)

. . .

g(xN)


.

The matrix I(0) is the identity matrix. The matrices I(1) and I(2) are given

by

I(1) =



0 −1 1
2
· · · (−1)m−1

m−1

1
...

−1
2

. . . 1
2

... −1

(−1)m
m−1 · · · −1

2
1 0


,
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and

I(2) =



−π2

3
2 − 2

22
· · · −2(−1)m−1

(m−1)2

2
...

− 2
22

. . . − 2
22

... 2

−2(−1)m−1

(m−1)2 · · · − 2
22

2 −π2

3


.

Therefore, the system in (3.73) takes the form

{
− 1

h2
I(2)D(φ′w)− 1

h
I(1)D

(
φ′′w

φ′
+ 2w′ + pw

)
−D

(
w′′ + (pw)′ − qw

φ′

)}
~u

(3.74)

= D

(
w

φ′

)
~f.

By solving the latter system, we obtain approximations to the exact solution

u(x).

Theorem 3.8.2

Consider D as a region in the complex w-plane containing the boundary

points a, and b (a 6= b), and z = φ(w) as a one-to-one conformal map of the

domain D onto the infinite strip DS, such that

lim
w→a

φ(w) =∞, and lim
w→b

φ(w) =∞.
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Suppose f ∈ B(D), and

|f(s)|≤ K

 e−α|φ(s)|, s ∈ ψ((−∞, 0))

e−β|φ(s)|, s ∈ ψ([0,∞))
, (3.75)

where α, β, and K are positive constants and w = ψ(z) is the inverse of the

conformal mapping z = φ(w). If N = ceil(α
β
M) and 0 < h =

√
πd
αM
≤ 2πd

ln 2
,

then for all s ∈ ψ(R)

∫
ψ(R)

f(s)ds = h
N∑

k=−M

f(wk)

φ′(wk)
+ ηM . (3.76)

where wk = φ and |ηM |= O(e−
√
2πdαM).



Chapter 4

Problem Formulation

In this section, the applications of predicted current patterns are shortly

studied. A brief explanation of the model of interest is also added. We would

refer interested readers to the reference [71], where the model originated.

In addition, the readers who are interested in oceanography modelling are

referred to the reference [31].

Almost 71% of the surface of the Earth is covered by water. Oceans play

a significant role in regulating the weather and climate of the world. Coastal

regions around the world are home to approximately three billion people,

which is about half of the world’s population. It is anticipated that by 2025

this population is likely to double [11].

As detailed on the website of the U.S. Department of National Ocean

and Atmospheric Administration (NOAA)1, predicted current patterns are

1http://www.noaa.gov

58
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important to shipping, commercial fishing, recreational boating, and safety.

Search-and-rescue personnel can also use this information to determine where

the water may carry a missing person or floating object. This information is

also critical to run hazardous material cleanup operations. Hazardous mate-

rials such as oil and fuel from tankers, typically remain on or near the waters

surface, and travel with surface currents and winds. Finally, currents affect

swimmers and fishers. Therefore, we can realize how important studying

oceanographic patterns is.

Over the last century, physical oceanography has developed from a de-

scriptive to an explanatory and predictive science. The oceanographic model

presented here is found in the work of Winter et al. [71], and describes

wind-driven currents in coastal regions and semi-enclosed seas when the eddy

viscosity is a continuously differentiable fuction of depth.

For a better understanding of the model, some related physical concepts

are defined in the next section.

4.1 Governing Physical Concepts

4.1.1 Tides

“Tides” are driven by the gravitational force of the moon and sun, and are

characterized by water moving up and down over a long period of time.
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4.1.2 Currents

The term “current” describes the motion of water. Oceanic currents are

driven by several factors and are usually named by their source.

One of the sources of currents is the rise and fall of the tides. The cur-

rents created by tides occur near the shore and in bays and are called “tidal

currents”. Tidal currents change in a very regular pattern and can be easily

predicted in the future.

The second source of ocean currents is wind. Winds drive currents that

are at or near the ocean’s surface, these currents are called “wind-driven

currents”. Wind-driven currents are generally measured in centimeters per

second (cm/s).

The ocean’s water density differences due to temperature (thermo) and

salinity (haline) in different parts of the ocean drives currents at both deep

and shallow ocean depths. These currents move much slower than tidal or

surface currents. This process is called the “thermohaline” circulation.

4.1.3 Eddy Viscosity

The viscosity of a fluid is a measure of its resistance to gradual deformation

by stresses. For liquids, it corresponds to the informal notion of “thickness”.

For example, honey has a higher viscosity than does water. Eddy viscosity

behaves like molecular viscosity but on a large scale.
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4.1.4 Coriollis Effect

If the Earth did not rotate and remained stationary, the atmosphere would

circulate between the poles (high pressure areas) and the equator (a low

pressure area) in a simple circulatory pattern. But because the Earth rotates,

circulating air is deflected. Instead of circulating in a closed loop, the air

deflects toward the right in the Northern Hemisphere and toward the left in

the Southern Hemisphere, resulting in curved paths. This deflection is called

the Coriolis effect.

4.1.5 Ekman Spiral

The Ekman spiral occurs as a consequence of the Coriolis effect. Wind blow-

ing on the surface of the ocean has the greatest effect on the surface. However,

for the lower layers of the ocean to move they must be pushed by the friction

between the layers of water above. The lower layer moves slower than the

layer above. Like surface water, the deeper water is deflected by the Coriolis

effect to the right in the Northern Hemisphere and to the left in the Southern

Hemisphere. This results in a spiral shown in Figure 4.1.

4.2 Model Creation

In this section we provide a brief explanation of an oceanography model,

found in the work of [71]. We would refer interested readers to the latter

reference for detailed information.
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Figure 4.1: Ekman Spiral

To develop this model one needs to construct a right-handed coordinate

system with the vertical coordinate z∗ directed positive downward from the

free surface, and with x∗ and y∗ directed positive northward and eastward,

respectively. It is supposed that z∗ changes from 0 to D0 = 100 m, and the

plane at z∗ = D0 = 100 m is an impermeable boundary at the seabed [71].

This model is simplified by several assumptions. The ocean depth, D0, and

ocean mass density, ρ, are assumed constant, and the effects of tides, inertial

terms, free surface slope, and variations in atmospheric pressure are neglected

[71]. For a better understanding, a schematic form of the model is provided

in Figure 4.2. The currents at the surface are driven by a tangential wind

stress represented by τ(0) = τw(cos(χ)x̂∗ + sin(χ)ŷ∗), where χ is the angle

between the positive x∗-axis and the wind direction and x̂∗ and ŷ∗ are unit
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Figure 4.2: A schematic description of the oceanography model with depth-
dependent eddy viscosity

vectors in the positive direction of x∗-axis and y∗-axis, respectively. The hor-

izontal wind-drift current, q∗(z∗), is given by q∗(z∗) = U∗(z∗)x̂∗ + V ∗(z∗)ŷ∗.

Internal frictional stresses are parameterized as τ(z∗) = −ρA∗v(z∗) dq
dz∗

, where

the vertical eddy viscosity coefficient Av
∗(z∗) is a continuously differentiable

function of z∗ ∈ (0, D0) [71].

With all these assumptions and considering the second Newton’s law

of motion the steady wind-drift current, q∗, will be driven by solving the

boundary-value problem

d

dz∗
(A∗v(z

∗)
dq∗

dz∗
) = −f ẑ∗ × q∗, 0 < z∗ < D0, (4.1)
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where the stress condition at the sea surface, z∗ = 0, is given by

−ρAv∗(0)
dq∗(0)

dz∗
= τw (cos(χ)x̂∗ + sin(χ)ŷ∗) , (4.2)

and the condition at the seabed, z∗ = D0, is provided by

−ρAv∗(D0)
dq∗(D0)

dz∗
= kf ρ q

∗(D0). (4.3)

The Coriollis parameter at latitude θ is given by f ≡ 2Ω sin(θ), where

Ω = 7.29× 10−5 rad s−1 is the angular speed of rotation of the earth. Since

the Coriollis force acts oppositely in the north and south hemisphere, it is

assumed we are in northern hemisphere (0 < θ < π
2
). The parameter kf in

(4.3) is the linear slip bottom stress coefficient.

By the definition of q∗(z∗), the boundary-value problem in (4.1) could be

simplified as

d

dz∗

(
A∗v(z

∗)
dq∗

dz∗

)
=

d

dz∗

(
A∗v(z

∗)
dU∗(z∗)

dz∗

)
x̂∗ +

d

dz∗

(
A∗v(z

∗)
dV ∗(z∗)

dz∗

)
ŷ∗

= −f ẑ∗ × q∗

= −f ẑ∗ × [U∗(z∗)x̂∗ + V ∗(z∗)ŷ∗]

= −f (U∗(z∗)ŷ∗ − V ∗(z∗)x̂∗) , 0 < z∗ < D0.

(4.4)
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The equation (4.4) can be separated into components

− d

dz∗

(
A∗v(z

∗)
dU∗(z∗)

dz∗

)
= −fV ∗(z∗), 0 < z∗ < D0, (4.5)

and

− d

dz∗

(
A∗v(z

∗)
dV ∗(z∗)

dz∗

)
= −fU∗(z∗), 0 < z∗ < D0. (4.6)

As well, the boundary conditions at the sea surface, z∗ = 0, and at the

seabed, z∗ = D0, can be separated into

−ρA∗v(0)
dU∗(0)

dz∗
= τw cos(χ), −ρA∗v(0)

dV ∗(0)

dz∗
= τw sin(χ), (4.7)

and

−ρA∗v(D0)
dU∗(D0)

dz∗
= kfρU

∗(D0), −ρA∗v(D0)
dV ∗(D0)

dz∗
= kfρV

∗(D0).

(4.8)

The equations of this model are nondimensionalized with the aid of a

measure of near surface turbulent eddy viscosity, A0 ≡ A∗v(0), and defining

a nominal “upper-layer” Ekman depth by DE ≡
√

2A0

f
. In addition, the

current speed in units of U0 = τwDE
(ρA0)

=
√
2τw

(ρ
√
A0f)

is defined. Here U0 is the

natural velocity scale in an infinitely deep sea with uniform eddy viscosity

at steady state. With the help of the nondimensional variables

z ≡ z∗

D0

, Av(z) ≡ A∗v(z
∗)

A∗v(0)
, q(z) ≡ q∗(z∗)

U0

≡ U(z)x̂+ V (z)ŷ, (4.9)
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and nondimensional constants, κ (depth ratio) and σ (bottom friction pa-

rameter)

κ ≡ D0

DE

= D0

√
f

2A0

, σ ≡ A0Av(1)

kfD0

=
A∗v(D0)

kfD0

, (4.10)

equations (4.5), and (4.6) are transformed to nondimensional equations, given

by

− d

dz

(
Av(z)

dU(z)

dz

)
= −2κ2V (z), 0 < z < 1, (4.11)

and

− d

dz

(
Av(z)

dV (z)

dz

)
= 2κ2U(z), 0 < z < 1. (4.12)

In addition, the nondimensionalizing procedure applied to the boundary

conditions leads to

dU(0)

dz
= −κ cos(χ),

dV (0)

dz
= −κ sin(χ), (4.13)

and

U(1) + σ
dU(1)

dz
= 0, V (1) + σ

dV (1)

dz
= 0. (4.14)

The no-slip bottom condition can easily be driven by setting σ = 0 in

equation (4.14).

To transform the nonhomogeneous boundary conditions to homogeneous
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ones, the following linear transformations are applied,

U(z) = u(z)+κ(1+σ−z) cos(χ), V (z) = v(z)+κ(1+σ−z) sin(χ). (4.15)

The first derivatives of the transformations in (4.15) are given by

dU(z)

dz
=
du(z)

dz
− κ cos(χ),

dV (z)

dz
=
dv(z)

dz
− κ sin(χ). (4.16)

Hence the “reduced velocity” components u(z) and v(z) satisfy

− d

dz

(
Av(z)

du

dz

)
+κ cos(χ)A′v(z) = −2κ2v(z)−2κ3(1+σ−z) sin(χ), 0 < z < 1,

(4.17)

and

− d

dz

(
Av(z)

dv

dz

)
+κ sin(χ)A′v(z) = 2κ2u(z)+2κ3(1+σ−z) cos(χ), 0 < z < 1.

(4.18)

where the boundary conditions at the surface and seabed become

du(0)

dz
= 0,

dv(0)

dz
= 0, (4.19)

and

u(1) + σ
du(1)

dz
= 0, v(1) + σ

dv(1)

dz
= 0. (4.20)

The above system can be shown in two formats; the coupled u and v

equation system and complex velocity system. For constructing the coupled
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system, we define

Lu(z) ≡ − d

dz

(
Av(z)

du

dz

)
, Lv(z) ≡ − d

dz

(
Av(z)

dv

dz

)
. (4.21)

Therefore, (4.17) and (4.18) can be rewritten as

Lu(z) + 2κ2v(z) = F1(z), 0 < z < 1 (4.22)

and

Lv(z)− 2κ2u(z) = F2(z), 0 < z < 1 (4.23)

where

F1(z) = −2κ3(1 + σ − z) sin(χ)− κ cos(χ)A′v(z), (4.24)

and

F2(z) = 2κ3(1 + σ − z) cos(χ)− κ sin(χ)A′v(z), (4.25)

and boundary conditions at the surface and seabed are given respectively by

du(0)

dz
= 0,

dv(0)

dz
= 0, (4.26)

and

u(1) + σ
du(1)

dz
= 0, v(1) + σ

dv(1)

dz
= 0. (4.27)

To construct the complex velocity formulation, one needs to multiply

equation (4.18) by i, and add the result to equation (4.17). Then by defining
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a complex velocity w(z) = u(z) + iv(z), we have

Lw(z) ≡ Lu(z) + iLv(z)

≡ − d

dz

(
Av(z)

du(z)

dz

)
− i d

dz

(
Av(z)

dv(z)

dz

)
≡ − d

dz

(
Av(z)

dw(z)

dz

)
.

Hence, the coupled problem can be transformed to the complex velocity form

Lw(z)− i2κ2w(z) = F (z), 0 < z < 1, (4.28)

where

F (z) ≡ 2κ3[i(1 + σ − z) cos(χ)− (1 + σ − z) sin(χ)]− κA′v(z)[cos(χ) + i sin(χ)]

= [−κA′v(z) + i2κ3(1 + σ − z)]eiχ.

Performing the same procedure to the boundary conditions leads to the

surface condition

w′(0) = 0, (4.29)

and the seabed condition

w(1) + σw′(1) = 0. (4.30)



Chapter 5

Our Sinc-Collocation Approach

In this section, we provide extensions of a new Sinc-Collocation approach

found in the work of Abdella [2], and apply it to the oceanography model we

discussed earlier in both complex and coupled systems.

5.1 Sinc-Collocation Solution of the Complex

Velocity System

Assume the complex velocity problem given by:

Lw(z)− i2κ2w(z) = F (z), 0 < z < 1. (5.1)

with boundry conditions

w′(0) = 0, (5.2)

70
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and

w(1) + σw′(1) = 0. (5.3)

where

Lw(z) ≡ Lu(z) + iLv(z)

≡ − d

dz

(
Av(z)

du(z)

dz

)
− i d

dz

(
Av(z)

dv(z)

dz

)
≡ − d

dz

(
Av(z)

dw(z)

dz

)
,

and

F (z) ≡ 2κ3[i(1 + σ − z) cos(χ)− (1 + σ − z) sin(χ)]− κA′v(z)[cos(χ) + i sin(χ)]

= [−κA′v(z) + i2κ3(1 + σ − z)]eiχ.

To follow the desired Sinc-Collocation approach found in [2], we transform

the boundary value problem as follows:

η(z) = w(z)− P (z), (5.4)

where

P (z) = w′(a)H1 + w(a)H2 + w(b)H3 + w′(b)H4, (5.5)
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is the univariate Hermite interpolation with the cardinal functions given by:

H1 =
(z − a)(z − b)2

(b− a)2
, H2 =

(z − b)2(2z − 3a+ b)

(b− a)3
,

H3 =
(z − a)2(2z − 3b+ a)

(a− b)3
, H4 =

(z − b)(z − a)2

(b− a)2
.

Employing (5.4) and considering P (a) = w(a), P ′(a) = w′(a), P (b) =

w(b), P ′(b) = w′(b), leads to a new BVP given by:

a(z)η′′(z) + b(z)η′(z) + c(z)η(z) + Λ(z) = F (z), z ∈ (a, b), (5.6)

η(a) = η(b) = 0,

η′(a) = η′(b) = 0,

where

Λ(z) = w′(a)λ1(z) + w(a)λ2(z) + w(b)λ3(z) + w′(b)λ4(z),

in which

λ1(z) = a(z)H ′′1 + b(z)H ′1 + c(z)H1,

λ2(z) = a(z)H ′′2 + b(z)H ′2 + c(z)H2,

λ3(z) = a(z)H ′′3 + b(z)H ′3 + c(z)H3,

λ4(z) = a(z)H ′′4 + b(z)H ′4 + c(z)H4,
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and

a(z) = −Av(z), b(z) = −A′v(z), and c(z) = −2κ2i.

Here is the point that our method changes from the original sinc-collocation

technique. We first approximate η′(x) at sinc points zi by:

η′(zi) =
N∑

k=−N

S(k, h)(ϕ(zi))η
′(zk) =

N∑
k=−N

δ
(0)
i,k η

′(zk). (5.7)

Afterwards, η(z) is approximated by

η(zi) =
N∑

k=−N

hk(zi)η
′(zk) =

N∑
k=−N

hδ
(−1)
i,k

η′(zk)

ϕ′(zk)
. (5.8)

Finally, we approximate η′′(z) via

η′′(zi) =
N∑

k=−N

gk(zi)η
′(zk) =

N∑
k=−N

δ
(1)
i,kϕ

′(zi)
η′(zk)

h
(5.9)

where ϕ(z) is given by

ξ = ϕ(z) =
1

π
log

(
z − a
b− z

)
, (5.10)

with inverse

z = ψ(ξ) =
b+ a

2
+
b− a

2
tanh

(π
2

sinh(ξ)
)
, (5.11)
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and zk = ψ(kh). Coefficients δ
(n)
i,k for n=0, 1, and 2 are defined by

δ
(0)
i,k =


0, i 6= k

1, i = k,

, (5.12)

δ
(1)
i,k =


(−1)i−k
i−k , k 6= i

0, k = i,

, (5.13)

and

δ
(−1)
i,k =


1
2

+
∫ i−k
0

sin(πt)
πt

, i 6= k

1
2
, k = i.

. (5.14)

Hence, the discretized version of the equation (5.6) is given by

N∑
k=−N

Mi,kη
′(zk) + Λ(zi) = F (zi), i = −N, ..., N (5.15)

where

Mi,k = a(zi)δ
(1)
k,i

ϕ′(zi)

h
+ b(zi)δ

(0)
k,i + c(zi)h

δ
(−1)
k,i

ϕ′(zk)
. (5.16)

Note that (5.15) leads to a system of (n = 2N+1) equations for (m = 2N+5)

unknowns including w′(a), w(a), w′(b), w(b) and η′(zi), i = −N, ..., N.
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We define the (2N + 5)× 1 vector C by:

C = [C−N−2, C−N−1, C−N , ..., C0, ..., CN , CN+1, CN+2]
T

= [w(a), w′(a), η′(z−N), ..., η′(z0), ..., η
′(zN), w′(b), w(b)]T.

The four conditions required to close the system are given by:

αaC−N−2 + βaC−N−1 = γa, (5.17)

αbCN+2 + βbCN+1 = γb, (5.18)

N∑
k=−N

hδ
(−1)
−N−1,k

Ck
φ′(zk)

= 0, (5.19)

N∑
k=−N

hδ
(−1)
N+1,k

Ck
φ′(zk)

= 0. (5.20)

The matrix representation of the (2N + 5)× (2N + 5) system corresponding

to equations (5.15) and (5.17)-(5.20) is given by

AC = F (5.21)

where F, a (2N + 5) × 1 vector, and A, a (2N + 5) × (2N + 5) matrix are

given by

F = [γa, γb, F (z−N), ..., F (z0), ..., F (zN), 0, 0]T,
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A =



B1

B2

B

B3

B4


, (5.22)

where B1, B2, B3 and B4 are 1× (2N + 5) matrices given by

B1 = [αa, βa, 0, ..., 0],

B2 = [0, 0, ..., βb, αb],

B3 = [0, 0,
hδ

(−1)
−N−1,−N

φ′(zk)
, ...,

hδ
(−1)
−N−1,N

φ′(zk)
, 0, 0],

B4 = [0, 0,
hδ

(−1)
N+1,−N

φ′(zk)
, ...,

hδ
(−1)
N+1,N

φ′(zk)
, 0, 0],

and B as a (2N + 1)× (2N + 5) matrix is given by

B = [λT2 , λ
T
1 ,M, λT4 , λ

T
3 ],

where M is the (2N + 1) × (2N + 1) matrix format of (5.16). Please note

that λTi , is the transpose of λi.

Once equation (5.21) is solved, the coefficients are used to determine the

unknown function η(z) and its first and second derivatives at the Sinc nodes

using equations (5.7)-(5.9). The original unknown, w(z) is then determined
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from equation (5.4). Note that the values of w(z) and w′(z) at the two end-

points are also determined directly from the system solutions. The unknowns

u(z) and v(z) are the real and imaginary parts of w(z) respectively, obtained

via

u(z) = Re[w(z)],

and

v(z) = Im[w(z)].

u(z) and v(z) are reduced velocities of the current in north and east directions.

To obtain U(z) and V(z), we need to apply the equations given in (4.15).

5.2 Sinc-Collocation Solution of the Coupled

Differential Equation System

The model of interest is given by the following coupled system of differential

equations

Lu(z) + 2κ2v(z) = F1(z), 0 < z < 1, (5.23)

Lv(z)− 2κ2u(z) = F2(z), 0 < z < 1, (5.24)
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with boundary conditions

du(0)

dz
= 0,

dv(0)

dz
= 0, (5.25)

u(1) + σ
du(1)

dz
= 0, v(1) + σ

dv(1)

dz
= 0. (5.26)

where

Lu(z) ≡ − d

dz

(
Av(z)

du

dz

)
, (5.27)

Lv(z) ≡ − d

dz

(
Av(z)

dv

dz

)
, (5.28)

F1(z) = −2κ3(1 + σ − z) sin(χ)− κ cos(χ)A′v(z), (5.29)

F2(z) = 2κ3(1 + σ − z) cos(χ)− κ sin(χ)A′v(z). (5.30)

To follow the desired Sinc-Collocation approach found in [2], we transform

the boundary value problem as follows:

yu(z) = u(z)− Pu(z), (5.31)

yv(z) = v(z)− Pv(z), (5.32)

where

Pu(z) = u′(a)H1 + u(a)H2 + u(b)H3 + u′(b)H4, (5.33)

Pv(z) = v′(a)H1 + v(a)H2 + v(b)H3 + v′(b)H4, (5.34)
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are the univariate Hermite interpolations with the cardinal functions given

by:

H1 =
(z − a)(z − b)2

(b− a)2
, H2 =

(z − b)2(2z − 3a+ b)

(b− a)3
,

H3 =
(z − a)2(2z − 3b+ a)

(a− b)3
, H4 =

(z − b)(z − a)2

(b− a)2
.

Regarding Pu(a) = u(a), P ′u(a) = u′(a), Pu(b) = u(b), P ′u(b) = u′(b), and

Pv(a) = v(a), P ′v(a) = v′(a), Pv(b) = v(b), P ′v(b) = v′(b), the above BVP is

transformed into the following problem

a(z)y′′u(z) + b(z)y′u(z) + c1(z)yv(z) + Λ1(z) = F1(z), (5.35)

a(z)y′′v (z) + b(z)y′v(z) + c2(z)yu(z) + Λ2(z) = F2(z), (5.36)

yu(a) = yu(b) = 0, yv(a) = yv(b) = 0,

y′u(a) = y′u(b) = 0, y′v(a) = y′v(b) = 0,

where

Λ1(z) = η1u
′(a)+η2u(a)+η3u(b)+η4u

′(b)+ζ1v
′(a)+ζ2v(a)+ζ3v(b)+ζ4v

′(b),

Λ2(z) = η1v
′(a)+η2v(a)+η3v(b)+η4v

′(b)+ζ ′1u
′(a)+ζ ′2u(a)+ζ ′3u(b)+ζ ′4u

′(b),

in which

η1 = a(z)H ′′1 + b(z)H ′1, η2 = a(z)H ′′2 + b(z)H ′2,
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η3 = a(z)H ′′3 + b(z)H ′3, η4 = a(z)H ′′4 + b(z)H ′4,

ζ1 = c1(z)H1, ζ2 = c1(z)H2,

ζ3 = c1(z)H3, ζ4 = c1(z)H4,

ζ ′1 = c2(z)H1, ζ ′2 = c2(z)H2,

ζ ′3 = c2(z)H3, ζ ′4 = c2(z)H4.

and

a(z) = −Av(z), b(z) = −A′v(z), c1(z) = 2κ2, c2(z) = −2κ2,

In this Sinc-Collocation approach we first approximate y′u(z) and y′v(z) by:

y′u(z) ≈
N∑

k=−N

S(k, h)(ϕ(z))y′u(zk), a ≤ z ≤ b, (5.37)

and

y′v(z) ≈
N∑

k=−N

S(k, h)(ϕ(z))y′v(zk), a ≤ z ≤ b, (5.38)

where ϕ(z) is the double exponential transformation

ξ = ϕ(z) = log(G) +
√
G2 + 1, G =

1

π
log

(
z − a
b− z

)
(5.39)
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with inverse

z = ψ(ξ) =
b+ a

2
+
b− a

2
tanh

(π
2

sinh(ξ)
)

(5.40)

and zk = ψ(kh). Hence the unknown variables yu(z) and yv(z) can be ap-

proximated by:

yu(z) =

∫ z

a

y′u(z) + yu(a) =
N∑

k=−N

hk(z)y′u(zk), a ≤ z ≤ b, (5.41)

yv(z) =

∫ z

a

y′v(z) + yv(a) =
N∑

k=−N

hk(z)y′v(zk), a ≤ z ≤ b,

where

hk(z) =

∫ z

a

S(k, h)(ϕ(z))dz. (5.42)

Similarly, we can approximate y′′u(z) and y′′v (z) by differentiation:

y′′u(z) =
N∑

k=−N

gk(z)y′u(zk), a ≤ z ≤ b, (5.43)

and

y′′v (z) =
N∑

k=−N

gk(z)y′v(zk), a ≤ z ≤ b.

where

gk(z) =
dS(k, h)(ϕ(z))

dz
. (5.44)
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Therefore, at the Sinc points zi we have:

y′u(zi) =
N∑

k=−N

S(k, h)(ϕ(zi))y
′
u(zk) =

N∑
k=−N

δ
(0)
i,k y

′
u(zk), (5.45)

yu(zi) =
N∑

k=−N

hk(zi)y
′
u(zk) =

N∑
k=−N

hδ
(−1)
i,k

y′u(zk)

ϕ′(zk)
, (5.46)

and

y′′u(zi) =
N∑

k=−N

gk(zi)y
′
u(zk) =

N∑
k=−N

δ
(1)
i,kϕ

′(zi)
y′u(zk)

h
, (5.47)

where

δ
(0)
i,k =


0, i 6= k

1, i = k

, (5.48)

δ
(1)
i,k =


(−1)i−k
i−k , k 6= i

0, k = i

, (5.49)

and

δ
(−1)
i,k =


1
2

+
∫ i−k
0

sin(πt)
πt

, i 6= k

1
2
, k = i

. (5.50)
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Similarly,

y′v(zi) =
N∑

k=−N

S(k, h)(ϕ(zi))y
′
v(zk) =

N∑
k=−N

δ
(0)
i,k y

′
v(zk), (5.51)

yv(zi) =
N∑

k=−N

hk(zi)y
′
v(zk) =

N∑
k=−N

hδ
(−1)
i,k

y′v(zk)

ϕ′(zk)
, (5.52)

and

y′′v (zi) =
N∑

k=−N

gk(zi)y
′
v(zk) =

N∑
k=−N

δ
(1)
i,kϕ

′(zi)
y′v(zk)

h
. (5.53)

Thereafter, the discretized version of equations (5.35) and (5.36) will be

N∑
k=−N

(
Mi,k y

′
u(zk) +N1

i,k y
′
v(zk)

)
+ Λ1(zi) = F1(zi), (5.54)

N∑
k=−N

(
Mi,k y

′
v(zk) +N2

i,k y
′
u(zk)

)
+ Λ2(zi) = F2(zi), (5.55)

where

Mi,k = a(zi)δ
(1)
k,i

ϕ′(zi)

h
+ b(zi)δ

(0)
k,i , (5.56)

N1
i,k = c1(zi)h

δ
(−1)
k,i

ϕ′(zk)
, (5.57)

N2
i,k = c2(zi)h

δ
(−1)
k,i

ϕ′(zk)
. (5.58)

Note that equations (5.54) and (5.55) lead to a system of (n = 4N + 2)

equations for (m = 4N + 10) unknowns including the unknowns u(a), u′(a),
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u′(b), u(b), v(a), v′(a), v′(b), v(b), y′u(zi) and y′v(zi), i = −N, ..., N .

We define the (4N + 10) × 1 vector C, the union of two (2N + 5) × 1

vectors called C1 and C2:

C1 = [C1
−N−2, C

1
−N−1, C

1
−N , ...C

1
0 , ..., C

1
N , C

1
N+1, C

1
N+2]

T

= [u(a), u′(a), y′u(x−N), ..., y′u(x0), ...y
′
u(xN), u′(b), u(b)]T.

and

C2 = [C2
−N−2, C

2
−N−1, C

2
−N , ...C

2
0 , ..., C

2
N , C

2
N+1, C

2
N+2]

T

= [v(a), v′(a), y′v(x−N), ..., y′v(x0), ...y
′
v(xN), v′(b), v(b)]T.

The eight conditions required to close the system consist of

α1
aC

1
−N−2 + β1

aC
1
−N−1 = γ1a, (5.59)

α1
bC

1
N+2 + β1

bC
1
N+1 = γ1b , (5.60)

N∑
k=−N

hδ
(−1)
−N−1,k

C1
k

φ′(zk)
= 0, (5.61)

N∑
k=N

hδ
(−1)
N+1,k

C1
k

φ′(zk)
= 0, (5.62)

and

α2
aC

2
−N−2 + β2

aC
2
−N−1 = γ2a, (5.63)

α2
bC

2
N+2 + β2

bC
2
N+1 = γ2b , (5.64)
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N∑
k=−N

hδ
(−1)
−N−1,k

C2
k

φ′(zk)
= 0, (5.65)

N∑
k=N

hδ
(−1)
N+1,k

C2
k

φ′(zk)
= 0. (5.66)

Therefore, equations (5.54), (5.55), (5.59)-(5.66) constitute (4N + 10) equa-

tions for the (4N + 10) unknowns and can be represented by the matrix

equation

AC = F, (5.67)

where F is a (4N + 10) × 1 vector given by the union of two (2N + 5) × 1

vectors given by

F1 = [γ1a, γ
1
b , F1(z−N), ..., F1(z0), ..., F1(zN), 0, 0]T, (5.68)

and

F2 = [γ2a, γ
2
b , F2(z−N), ..., F2(z0), ..., F2(zN), 0, 0]T, (5.69)

and A is a (4N + 10)× (4N + 10) matrix given by

A =

 A1

∣∣∣∣ A2

A3

∣∣∣∣ A4

 ,
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where

A1 =



B1

B2

B

B3

B4


, (5.70)

and B1, B2, B3 and B4 are 1× (2N + 5) matrices given by

B1 = [α1
a, β

1
a, 0, ..., 0],

B2 = [0, 0, ..., β1
b , α

1
b ],

B3 = [0, 0,
hδ

(−1)
−N−1,−N

φ′(zk)
, ...,

hδ
(−1)
−N−1,N

φ′(zk)
, 0, 0],

B4 = [0, 0,
hδ

(−1)
N+1,−N

φ′(zk)
, ...,

hδ
(−1)
N+1,N

φ′(zk)
, 0, 0],

and B is an (2N + 1)× (2N + 5) matrix given by

B = [ηT2 , η
T
1 ,M, ηT4 , η

T
3 ],

where M is the (2N + 1)× (2N + 1) matrix represented by equation (5.56).

Please note that ηTi , is the transpose of ηi.

Matrix A4 is equal to matrix A1. Matrix A2 is a (2N + 5) × (2N + 5)
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matrix given by

A2 =



0

0

B*

0

0


, (5.71)

where

B* = [ζT2 , ζ
T
1 ,N

1, ζT4 , ζ
T
3 ],

and 0=[0, ..., 0] is a (1) × (2N + 5) vector of zeros. Please note that ζTi , is

the transpose of ζi. Since c2(z) = −c1(z),

A3 = −A2.

Once equation (5.67) is solved, the coefficients are used to determine the

unknown functions yu(z) and yv(z) and their first and second derivatives

at the sinc nodes using equations and (5.45)-(5.47) and (5.51)-(5.53). The

original unknowns, u(z) and v(z) are then determined from the equations

given in (5.31) and (5.32). To calculate U(z) and V (z) we need to apply

equations given in (4.15).



Chapter 6

Numerical Illustrations

6.1 Constant Eddy Viscosity

In this section we investigate the accuracy of our Sinc-Collocation method

in both complex velocity and coupled systems with constant eddy viscosity.

To provide reliable comparisons, all the examples, parameters and variables

are set exactly the same as those used in [71], [35], and [36].

Since the governing equations and variables were nondimensionalized, the

only operative constants in (4.28)-(4.30) are κ = D0

DE
= 100

20
= 5, σ = A∗v(D0)

(kfD0)
=

0.1, and χ = 45◦ [71]. As well, the following nominal values: f = 0.0001 s−1

(appropriate to mid-northern latitudes), sea water density ρ = 1×103 kgm−3,

and air density ρair = 1.25 kgm−3 are considered. The surface wind stress

(in ms−1) is given by

τw = CDρairWw
2 (6.1)

88
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where the dimensionless parameter CD ≈ 0.0012 for Ww < 12 ms−1,

thereafter increasing linearly to about 0.0025 at gale force winds (Ww ≈ 30

ms−1) [71]. The linear slip bottom stress coefficient kf is set at 0.002 ms−1.

If the wind is not fetch-limited and the sea state is fully developed, A∗v(0)

in units of m2s−1 is given by [71]

A∗v(0) ≈ 0.304× 10−4Ww
3 (6.2)

Together with the parameters and relationships above, the constant eddy

viscosity is chosen to be

A∗v(z
∗) ≡ 0.02 m2s−1 (6.3)

with τw =

√
(2)

10
= 0.1414 Nm−2.

To exhibit the accuracy of the Sinc-Collocation method we compare the

numerical results to the exact solutions whenever possible. Likewise, to show

the excellence of our Sinc-Collocation approach over Sinc-Galerkin approach

we provide a comparison between our method’s error and those in references

[71], [35], and [36].

In the case of constant eddy viscosity, the exact solution is available and

given by W ∗(z∗) = U0[U(z) + iV (z)] where U(z) and V (z) are respectively

represented by

U(z) = R(Wc(z)) cos(χ)− I(Wc(z)) sin(χ), (6.4)
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and

V (z) = R(Wc(z)) sin(χ) + I(Wc(z)) cos(χ). (6.5)

Here R(Wc(z)) and I(Wc(z)) refers to the real and imaginary parts of

Wc(z), respectively, while

Wc(z) =
κ(1− i)σ cosh(κ(1− i)(1− z)) + sinh(κ(1− i)(1− z))

(1− i)[cosh(κ(1− i)) + κ(1− i)σ sinh(κ(1− i))]
. (6.6)

The results of the Sinc-Collocation approach shown by Us(zj) and Vs(zj)

were compared with the exact solutions, U(zj) and V (zj), at the sinc grid

points S with the mesh size of

h =
log(πdγN/β)

γN

where d, γ, and β are equal to π
4
, 2, and π

2
respectively.

In order to provide dimensional representation of the velocities, we need

to multiply the results by the natural velocity scale U0.

To demonstrate the accuracy of the method, we define the maximum

absolute errors by

‖EU‖= max
−N−2≤j≤N+2

{U0|Us(zj)− U(zj)|},

‖EV ‖= max
−N−2≤j≤N+2

{U0|Vs(zj)− V (zj)|},
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and

‖EW‖= max{‖EU‖, ‖EV ‖}. (6.7)

where the units are ms−1.

To illustrate the computation cost of our method, we report computa-

tion times by CPU (in seconds) which are calculated using the Mathematica

command “Timing”. We run our code in a SONY VAIO (model name: VGN-

Z690C) with a 64-bit operating system and an Intel(R) dual core processor.

The command “Timing” includes only CPU time spent in the evaluation of

an expression in the Mathematica kernel. It does not include the time spent

in formatting or printing of the result. The command “Timing” may give

different results on different occasions within a session which is due to inter-

nal system caches. To prevent this issue we cleared the system cache using

the command “ClearSystemCache”.

Example 1.a.(seabed linear stress condition in the complex velocity system)

For the purpose of keeping the parameters and variables identical to refer-

ences [71] and [35], we choose χ = 45◦ and the linear stress condition at the

seabed, σ = A∗v(D0)
(kfD0)

= 0.1. In this example we solve a discrete system of size

(2N + 5)× (2N + 5) given by (5.21). To demonstrate the numerical conver-

gence of the method we consider N = 4, 8, 16, 32, and 64. The errors and

CPU times are listed in Table 6.1. Figure 6.1 presents Ekman spiral of the

case discussed here. For N=64, we obviously see a close agreement between
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the exact solution and the approximate solution. Table 6.2, provides a com-

parison between the errors and CPU times of the Sinc-Collocation method

and those in [71] and [35] which are based on the Sinc-Galerkin scheme.

EW , E2 and E3 convey the maximum errors of our method, those in [71] and

[35], respectively. While the current method outperforms the other methods,

the CPU times taken for the simulated cases are similar to those in [71]. This

is expected since the sparsness of the matrix in the final linear system is very

similar to that of the other methods. Hence the current method is clearly

more efficient.

Figure 6.1: The Sinc-Collocation Ekman Spiral projection of Example 1.a
for different values of N against the exact solution with σ = 0.1, χ = 45, κ =
5, D0 = 100 m,DE = 20 m.

Example 1.b. (seabed linear stress condition in the coupled system)

We repeat Example 1.a using the coupled system to check if it gives us better

approximations than the complex system. In this example we solve a dis-
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Table 6.1: Errors of Example 1.a (constant eddy viscosity in the complex
system) with σ = 0.1, χ = 45◦, κ = 5, D0 = 100 m and DE = 20 m.

N m h CPU (s) ‖EU‖ ‖EV ‖ ‖EW‖
4 13 0.3163 0.015 2.9852× 10−3 3.4708× 10−3 3.4708× 10−3

8 21 0.2015 0.016 1.2634× 10−4 8.4080× 10−5 1.2634× 10−4

16 37 0.1224 0.016 2.4903× 10−6 1.2267× 10−6 2.4903× 10−6

32 69 0.0720 0.125 2.9558× 10−8 1.4260× 10−8 2.9558× 10−8

64 133 0.0414 0.156 1.2276× 10−10 1.817× 10−10 1.817× 10−10

Table 6.2: A comparison between the errors in Example 1.a (in the complex
system) and those in papers [35, 71], with σ = 0.1, χ = 45◦, κ = 5, D0 =
100 m and DE = 20 m.

N m h CPU (s) ‖EW‖ CPU (s) ‖E2‖ ‖E3‖
4 13 0.3163 0.015 3.4708× 10−3 0.01 1.10× 10−3 5.377× 10−2

8 21 0.2015 0.016 1.2634× 10−4 0.01 2.50× 10−4 4.571× 10−2

16 37 0.1224 0.016 2.4903× 10−6 0.03 2.76× 10−5 1.861× 10−2

32 69 0.0720 0.125 2.9558× 10−8 0.15 8.99× 10−7 8.189× 10−3

64 133 0.0414 0.156 1.817× 10−10 1.01 5.78× 10−9 7.13× 10−4
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Table 6.3: Errors of Example 1.b (constant eddy viscosity in the coupled
system) with σ = 0.1, χ = 45◦, κ = 5, D0 = 100 m and DE = 20 m.

N m h CPU (s) ‖EU‖ ‖EV ‖ ‖EW‖
4 13 0.3163 0.015 2.9852× 10−3 3.4708× 10−3 3.4708× 10−3

8 21 0.2015 0.016 1.2634× 10−4 8.4080× 10−5 1.2634× 10−4

16 37 0.1224 0.016 2.4903× 10−6 1.2268× 10−6 2.4903× 10−6

32 69 0.0720 0.078 2.9558× 10−8 1.4260× 10−8 2.9558× 10−8

64 133 0.0414 0.109 7.2213× 10−11 4.8278× 10−11 7.2213× 10−11

Table 6.4: A comparison between the errors in Example 1.b (in the coupled
system) and those in paper [36], with σ = 0.1, χ = 45◦, κ = 5, D0 = 100 m
and DE = 20 m.

N m h ‖EW‖ ‖E3‖
4 13 0.3163 3.4708× 10−3 5.377× 10−2

8 21 0.2015 1.2634× 10−4 4.571× 10−2

16 37 0.1224 2.4903× 10−6 1.861× 10−2

32 69 0.0720 2.9558× 10−8 8.189× 10−3

64 133 0.0414 7.2213× 10−11 7.13× 10−4

crete system of size (4N+10)× (4N+10) given by (5.67). Table 6.3 exhibits

the errors and CPU times of the Sinc-Collocation approach applied to the

coupled system. In addition, a comparison between the errors of our method

and those in [36] is provided in Table 6.4. The corresponding Ekman spiral

to Example 1.b is depicted in Figure 6.2. Comparing the errors in Tables 6.1

and 6.3, shows that the only difference between errors of the complex system

and the coupled system happens at N = 64. The Sinc-Collocation approach

in the coupled system provides more accurate approximation than that in

the complex system for N = 64.
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Figure 6.2: The Sinc-Collocation Ekman Spiral projection of Example 1.b
for different values of N against the exact solution with σ = 0.1, χ = 45, κ =
5, D0 = 100 m,DE = 20 m.

Example 2.a. (No-slip condition at the seabed in the complex system)

In this example we set σ = 0. All other parameters are similar to references

[71] and [35] and those carried out in Example 1.a. Here, we solve the discrete

system given by (5.21) for approximate solutions Us(z) and Vs(z). The errors

and CPU times for different values of N are listed in Table 6.5 and a close

agreement to those in Example 1.a is found. The horizontal projection of

the Ekman spiral for different values of N against the exact solution are

portrayed in Figure 6.3. Likewise, Table 6.6 provides a comparison between

the maximum errors and CPU times of our method, those in [71] and [35],

respectively. While the current method outperforms the other methods, the

CPU times taken for the simulated cases are similar to those in [71]. This is

expected since the sparsness of the matrix in the final linear system is very
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Table 6.5: Errors of Example 2.a (constant eddy viscosity in the complex
system) with σ = 0, χ = 45◦, κ = 5, D0 = 100 m and DE = 20 m.

N m h CPU (s) ‖EU‖ ‖EV ‖ ‖EW‖
4 13 0.3163 0.015 3.0613× 10−3 3.3831× 10−3 3.3831× 10−3

8 21 0.2015 0.016 1.25× 10−4 8.4230× 10−5 1.25× 10−4

16 37 0.1224 0.016 2.4824× 10−6 1.2312× 10−6 2.4824× 10−6

32 69 0.0720 0.125 2.9460× 10−8 1.4316× 10−8 2.9460× 10−8

64 133 0.0414 0.156 8.2568× 10−11 8.3657× 10−11 8.3657× 10−11

similar to that of the other methods. Hence the current method is clearly

more efficient.

Figure 6.3: The Sinc-Collocation Ekman Spiral projection of Example 2.a
(in the complex system) for different values of N against the exact solution
with σ = 0, χ = 45, κ = 5, D0 = 100 m,DE = 20 m.

Example 2.b.(No-slip condition at the seabed in the coupled system)

Here, we repeat Example 2.a in the coupled system. Therefore, we solve

the system given by (5.67). Table 6.7 exhibits the errors and CPU times of
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Table 6.6: A comparison between the errors in Example 2.a (in the complex
system) and those in [35, 71], with σ = 0, χ = 45◦, κ = 5, D0 = 100 m and
DE = 20 m.

N m h CPU (s) ‖EW‖ CPU (s) ‖E2‖ ‖E3‖
4 13 0.3163 0.015 3.3831× 10−3 0.01 1.10× 10−3 5.3322× 10−2

8 21 0.2015 0.016 1.25× 10−4 0.01 2.48× 10−4 4.5478× 10−2

16 37 0.1224 0.016 2.4824× 10−6 0.03 2.75× 10−5 1.8543× 10−2

32 69 0.0720 0.125 2.9460× 10−8 0.16 8.96× 10−7 8.1680× 10−3

64 133 0.0414 0.156 8.3657× 10−11 1.07 5.76× 10−9 7.1× 10−4

Table 6.7: Errors of Example 2.b (constant eddy viscosity in the coupled
system) with σ = 0, χ = 45◦, κ = 5, D0 = 100 m and DE = 20 m.

N m h CPU (s) ‖EU‖ ‖EV ‖ ‖EW‖
4 13 0.3163 0.015 3.0613× 10−3 3.3831× 10−3 3.3831× 10−3

8 21 0.2015 0.016 1.25× 10−4 8.4230× 10−5 1.25× 10−4

16 37 0.1224 0.016 2.4825× 10−6 1.2312× 10−6 2.4825× 10−6

32 69 0.0720 0.078 2.9460× 10−8 1.4316× 10−8 2.9460× 10−8

64 133 0.0414 0.109 9.1851× 10−11 4.4308× 10−11 9.1851× 10−11

the Sinc-Collocation approach applied to the coupled system. In addition, a

comparison between the errors of our method and those in [36] is provided

in Table 6.8. The corresponding Ekman spiral to Example 2.b is depicted

in Figure 6.4. Comparing the errors in Tables 6.5 and 6.7, shows that the

only difference between errors of the complex system and the coupled system

occurs at N = 64. The Sinc-Collocation approach in the coupled system

provides more accurate approximation than that in the complex system for

N = 64.
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Table 6.8: A comparison between the errors in Example 2.b (in the coupled
system) and those in [36], with σ = 0, χ = 45◦, κ = 5, D0 = 100 m and
DE = 20 m.

N m h ‖EW‖ ‖E3‖
4 13 0.3163 3.3831× 10−3 5.3322× 10−2

8 21 0.2015 1.25× 10−4 4.5478× 10−2

16 37 0.1224 2.4824× 10−6 1.8543× 10−2

32 69 0.0720 2.9460× 10−8 8.1680× 10−3

64 133 0.0414 9.1851× 10−11 7.1× 10−4

6.2 Variable Eddy Viscosity

In the real world the eddy viscosity is a depth- and time-dependent variable.

But the model we worked on, specifically does study the depth-dependent

eddy viscosity. There is a specific model problem in [35] containing the

time-dependent eddy viscosity where as t → ∞, the eddy viscosity can be

considered as a constant. Since the latter case is similar to those in Examples

1.a to 2.b, we consider it in our work.

In seas of shallow to intermediate depth, the eddy viscosity has the max-

imum values of A∗v(z
∗) at the intermediate depths and the minimum values

near the surface and seabed. But in deeper seas, it is expected that A∗v(z
∗)

has the maximum values near the surface and its value decreases going to-

wards the seabed. The latter case is illustrated by

A∗v(z
∗) = 0.02[1− (0.0075)z∗]2, 0 < z∗ < D0 = 100 m, (6.8)

which decreases quadratically from the value of A∗v(0) = 0.02 m2 s−1 to the
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Figure 6.4: The Sinc-Collocation Ekman Spiral projection of Example 2.b
(in the coupled system) for different values of N against the exact solution
with σ = 0, χ = 45, κ = 5, D0 = 100 m,DE = 20 m.

minimum value of A∗v(D0) = 0.00125 m2 s−1. In Figure 6.5 we portray the

decreasing eddy viscosity against the constant eddy viscosity.

The eddy viscosity in the first case follows a quadratic model given by

A∗v(z
∗) = 0.02[1 + (0.12)z∗(1− (0.01)z∗)], 0 < z∗ < D0 = 100 m. (6.9)

increasing from the initial value of A∗v(0) = 0.02 m2s−1 to the peak value of

0.08 and then decreasing to A∗v(D0) = 0.02 m2 s−1. Figure 6.6 compares the

quadratic eddy viscosity with the constant eddy viscosity.

In the following part, we solve the presented model in both cases of vari-

able eddy viscosity by the complex velocity and the coupled discrete systems.
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Figure 6.5: Decreasing eddy viscosity function A∗v(z
∗) = 0.02(1− 0.0075z∗)2

and constant eddy viscosity A∗v(z
∗) = 0.02 (m2/s).

Figure 6.6: Quadratic eddy viscosity function A∗v(z
∗) = 0.02[1 + (0.12)z∗(1−

(0.01)z∗)]2 and constant eddy viscosity A∗v(z
∗) = 0.02 (m2/s).
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Example 3.a.(The decreasing eddy viscosity in the complex velocity system)

In this example we find the approximate solutions Us(z) and Vs(z) via the

complex velocity discrete system (5.21), when the variable eddy viscosity is

given by (6.8). The parameters are chosen identical to those in references

[71] and [35]. Hence, D0 = 100 m, σ = 0.1, χ = 45◦, and κ = 5.

Since there is no closed form solution for the current case, we present the

Ekman spiral projection of decreasing eddy viscosity in the complex velocity

system against that of constant eddy viscosity for different values of N, in

Figure 6.7.

Figure 6.7: The Sinc-Collocation Ekman Spiral projection of Example 3.a
(in the complex system) for different values of N against the exact solution
with σ = 0.1, χ = 45, κ = 5, D0 = 100 m,DE = 20 m.

Example 3.b. (The decreasing eddy viscosity in the coupled system)

We applied our approach to the same model problem in Example 3.a but in
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the coupled system. Since there is no closed form solution of this case, we

present the results by the Ekman spiral projection of the decreasing eddy

viscosity in the coupled system against that of constant eddy viscosity for

different values of N, in Figure 6.8.

Figure 6.8: The Sinc-Collocation Ekman Spiral projection of Example 3.b
(in the coupled system) for different values of N against the exact solution
with σ = 0.1, χ = 45, κ = 5, D0 = 100 m,DE = 20 m.

Example 4.a. (The quadratic eddy viscosity in the complex velocity system)

In this example, the approximate solutions Us(z) and Vs(z) are demonstrated

by the complex velocity discrete system while the eddy viscosity is given by

(6.9). All the parameters are identical to those carried out in Example 1.a.

The exact solution of this model problem is not appropriate. Therefore to

discuss the results, we portray the Ekman spiral projection of quadratic eddy

viscosity in the complex system against that of constant eddy viscosity for
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Figure 6.9: The Sinc-Collocation Ekman Spiral projection of Example 4.a
(in the complex system) for different values of N against the exact solution
with σ = 0.1, χ = 45, κ = 5, D0 = 100 m,DE = 20 m.

different values of N by Figure 6.9.

Example 4.b. (The quadratic eddy viscosity in the coupled system)

The same model problem as Example 4.a is investigated in the coupled sys-

tem. Figure 6.10 shows the results by the help of the Ekman spiral projection

of quadratic eddy viscosity in the coupled system against that of constant

eddy viscosity for different values of N.

Example 5. (A steady-state problem in the complex system)

As discussed earlier, eddy viscosity is a time- and depth-dependent variable.

Realistic oceanography problems are those in which eddy viscosity is a func-

tion of depth and time. Field studies show that the value of the eddy viscosity
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Figure 6.10: The Sinc-Collocation Ekman Spiral projection of Example 4.b
(in the coupled system) for different values of N against the exact solution
with σ = 0.1, χ = 45, κ = 5, D0 = 100 m,DE = 20 m.

near the surface is dependent on the wind stress which relies on time. There-

fore, in shallow seas (D0 < 100 m), the eddy viscosity is assumed dependent

of time but independent of depth. Here, we study an interesting example of

this case found in [35].

Assume the nondimensional time-dependent eddy viscosity

Av(t) = 4− 3e−t.

At the steady-state condition (t → ∞), it will be equivalent to A∞ ≡ 4.

Then consider the steady-state boundary value problem

A∞
d2w(z)

dz2
+ 2κ2iw(z) = −2κ3i

(
1− z
A∞

)
eiχ (6.10)
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with time-independent boundary conditions

dw(0)

dz
= 0, (6.11)

w(1) = 0. (6.12)

and the no-slip boundary condition σ = 0.

The exact solution of this problem is W (z) = U0(U(z) + iV (z)), where

U(z) and V(z) are given by

U(z) = R(Wc(z)) cos(χ)− I(Wc(z)) sin(χ),

V (z) = R(Wc(z)) sin(χ)− I(Wc(z)) cos(χ),

and

Wc(z) =

(
1 + i

2

) sinh
(

(1− i)κ(1− z)
√

1
A∞

)
√
A∞ cosh

(
(1− i)κ

√
1
A∞

) . (6.13)

This example is similar to Example 2.a. So we solved the problem by

the complex dicrete system in (5.21). The results comparing to the exact

solution are depicted in Table 6.9. Figure 6.11, displays the Ekman spiral

projection of the steady-state problem for N = 4, 8, 16, 32, and 64 against

the exact solution. In Table 6.10, we compare our results with those in [35].

To illustrate that the errors of our method exponentially decay, we present

the logarithmic plots of the maximum errors of Examples 1.a, 2.a and 5. Ta-
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Table 6.9: Errors of Example 5 (the steady-state problem in the complex
system) with σ = 0, χ = 45◦, κ = 3.14, D0 = 60 m and DE = 19 m.

N m h CPU (s) ‖EU‖ ‖EV ‖ ‖EW‖
4 13 0.3163 0.015 9.6571× 10−6 3.4867× 10−6 9.6571× 10−6

8 21 0.2015 0.015 4.5835× 10−8 9.9910× 10−8 9.9910× 10−8

16 37 0.1224 0.016 5.833× 10−9 2.1325× 10−9 5.833× 10−9

32 69 0.0720 0.093 6.9410× 10−11 2.5413× 10−11 6.9410× 10−11

64 133 0.0414 0.141 2.4219× 10−13 3.0335× 10−13 3.0335× 10−13

Figure 6.11: The Sinc-Collocation Ekman Spiral projection of Example 5
for different values of N against the exact solution with σ = 0, χ = 45, κ =
3.14, D0 = 60 m,DE = 19 m.

Table 6.10: A comparison between the errors in Example 5 (in the complex
system) and those in [35], with σ = 0, χ = 45◦, κ = 3.14, D0 = 60 m and
DE = 19 m.

N m h ‖EW‖ ‖E3‖
4 13 0.3163 9.6571× 10−6 2.1261× 10−1

8 21 0.2015 9.9910× 10−8 2.7372× 10−1

16 37 0.1224 5.833× 10−9 8.6065× 10−2

32 69 0.0720 6.9410× 10−11 2.2573× 10−2
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bles 6.12 and 6.13 represent the log10(Ew) against the number of collocation

nodes regarding the maximum errors observed in Examples 1.a and 2.a. Ta-

ble 6.14 demonstrates the logarithmic plot of the errors observed in Example

5.

Figure 6.12: The logarithmic plot of the errors observed in Example 1.a
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Figure 6.13: The logarithmic plot of the errors observed in Example 2.a

Figure 6.14: The logarithmic plot of the errors observed in Example 5



Chapter 7

Conclusions

During the last century significant efforts have been made to create the

most elaborate oceanography models and find appropriate solutions for them.

Different methods have been applied in this area to obtain the most accu-

rate approximations. Since in most cases deriving an analytical solution is

computationally expensive or completely impossible, we rely on numerical

methods to approximate the solutions. Among all numerical methods, we

highly recommend Sinc-based methods because they are adaptable in han-

dling problems with singularities which frequently occur in fluid mechanics.

In addition, their errors have an exponential convergence rate tending to zero

when the number of collocation points increases. To the best of our knowl-

edge, the Sinc-Galerkin approaches have been applied in this area but the

Sinc-Collocation approach has not still been utilized. In this thesis, we ap-

plied a Sinc-Collocation technique to numerically approximate the solution

109
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of an oceanography model originated in [71]. The validity of our approach is

demonstrated by solving illustrative examples found in [35, 36, 71] and com-

paring the results with the exact solutions and those in prior studies. Our

results show that the presented Sinc-Collocation approach is computationally

less expensive than the Sinc-Galerkin approach presented in [71] and more

accurate than prior studies. Hence, we would claim that our Sinc-Collocation

approach is very promising in oceanographic problems. In closing, we pro-

pose the current method as an alternative to other methods which have been

used thus far.

Future research may include an investigation of the convergence rate and

detailed error analysis to obtain efficient and reliable error indicators. Since

the real world oceanography problems are given by partial differential equa-

tions, and time is an important factor specially when it comes to optimiza-

tion, one may investigate the model in which eddy viscosity is a depth- and

time-dependent variable and solve the problem utilizing the approach pre-

sented here.



Appendix A

The Mathematica Source Code

A.1 The Mathematica Source Code for the

Complex System

Here the code for solving Example 1.a in the complex system is attached.

This part is dedicated to the definition of essential functions and assignment

of the desired values to variables.

$MinPrecision = 16;

$MaxPrecision = 64;

NDEC:= 32;

Ns:= 64;

χ:= π/4;

κ:= 5;

DZ:= 100;

111
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DE:= 20;

σ:= 0;

ww:= 9;

CD:= 0.0012;

τw:= 0.1414;

ρ:= 1000;

Anull:= 0.02;

AVSZS[t ] := 0.02;

AV[t ]:= AVSZS[t]/Anull;

ca[t ]:= -AV[t];

cb[t ]:= -AV′ [t];

cc[t ]:= -I 2 κ2;

d0[t ] := ComplexExpand[(-κ AV′[t] + I 2 κ3 (1 + σ - t)) Exp[I χ]];

a0 := 0; b0 := 1; a1 := 1; b1 := σ; g0 := 0; g1 := 0;

dh := π/4; gh := 2; bh := π/2;

h := N[Log[π dh gh Ns/bh]/(gh Ns), NDEC];

In this part, we define function φ(x), its inverse function ψ(t), and the sinc

nodes xk.

Psit[t ] := N[1/2 Tanh[(π/2) Sinh[t]] + 1/2, NDEC];

Psipt[t ] := N[π/4 Cosh[t]/((Cosh[π/2 Sinh[t]])ˆ2), NDEC];

Phix[z ] := N[ArcSinh[2/π ArcTanh[2 z - 1]], NDEC];

Zk = N[Table[Psit[(i - Ns - 1) h], {i, 2 Ns + 1}], NDEC];
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zn = Zk[[2 Ns + 1]];

zn = 1;

Tk = Zk/zn;

In this section, we define the exact solution of the problem. Later, we com-

pare approximate solutions to the exact solution.

WC[t ] := ComplexExpand[(κ (1 - I) σ Cosh[κ (1 - I) (1 - t)] + Sinh[κ (1 -

I) (1 - t)])/((1 - I) (Cosh[κ (1 - I)] + κ (1 - I) σ Sinh[κ (1 - I)]))];

U[t ] := Re[WC[t]] Cos[χ] - Im[WC[t]] Sin[χ];

V[t ] := Re[WC[t]] Sin[χ] + Im[WC[t]] Cos[χ];

UP[t ] := Re[WC′[t]] Cos[χ] - Im[WC′[t]] Sin[χ];

VP[t ] := Re[WC′[t]] Sin[χ] + Im[WC′[t]] Cos[χ];

UPP[t ] := Re[WC′′[t]] Cos[χ] - Im[WC′′[t]] Sin[χ];

VPP[t ] := Re[WC′′[t]] Sin[χ] + Im[WC′′[t]] Cos[χ];

U0 := (τw DE)/(ρ Anull);

vexact[t ] := U0 (U[t] + I V[t]);

Here the matrices of coefficents a(x), b(x), c(x) and d(x) are defined.

CA = N[Table[znˆ2 ca[Zk[[i]]], {i, 2 Ns + 1}], NDEC];

CB = N[Table[zn cb[Zk[[i]]], {i, 2 Ns + 1}], NDEC];

CC = N[Table[cc[Zk[[i]]], {i, 2 Ns + 1}], NDEC];

CAD = N[DiagonalMatrix[CA], NDEC];
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CBD = N[DiagonalMatrix[CB], NDEC];

CCD = N[DiagonalMatrix[CC], NDEC];

D0 = N[Table[d0[Zk[[i]]], {i, 2 Ns + 1}], NDEC];

In this part, Hermit cardinal functions and their derivatives are defined.

H1[z ] = (-1 + z/zn)ˆ2 z;

H2[z ] = (-1 + z/zn)ˆ2 (1 + 2 z/zn);

H3[z ] = (z/zn)ˆ2 (3 - 2 z/zn);

H4[z ] = (-1 + z/zn) zˆ2/zn;

MH1 = Table[H1[Zk[[i]]], {i, 2 Ns + 1}];

MH2 = Table[H2[Zk[[i]]], {i, 2 Ns + 1}];

MH3 = Table[H3[Zk[[i]]], {i, 2 Ns + 1}];

MH4 = Table[H4[Zk[[i]]], {i, 2 Ns + 1}];

MH1p = Table[H1′[Zk[[i]]], {i, 2 Ns + 1}];

MH2p = Table[H2′[Zk[[i]]], {i, 2 Ns + 1}];

MH3p = Table[H3′[Zk[[i]]], {i, 2 Ns + 1}];

MH4p = Table[H4′[Zk[[i]]], {i, 2 Ns + 1}];

MH1pp = Table[H1′′[Zk[[i]]], {i, 2 Ns + 1}];

MH2pp = Table[H2′′[Zk[[i]]], {i, 2 Ns + 1}];

MH3pp = Table[H3′′[Zk[[i]]], {i, 2 Ns + 1}];

MH4pp = Table[H4′′[Zk[[i]]], {i, 2 Ns + 1}];



APPENDIX A. THE MATHEMATICA SOURCE CODE 115

Here, δ
(n)
j,k , for n = -1, 0, 1 and related coefficients to calculate the Mi,k are

defined.

PHIPINV = Table[Psipt[i h], {i, -Ns, Ns}];

DPPI = DiagonalMatrix[PHIPINV];

PHIP = Table[1/(Psipt[i h]), {i, -Ns, Ns}];

DP = DiagonalMatrix[PHIP];

E0 = Table[If[k == l, 1, 0], {k, -Ns, Ns}, {l, -Ns, Ns}];

I1 = Table[If[k == l, 0, (-1)ˆ(k - l)/(k - l)], {k, -Ns, Ns}, {l, -Ns, Ns}];

IM1 = N[Table[If[k == l, 1/2, 1/2 + SinIntegral[π (k - l)]/π], {k, -Ns, Ns},

{l, -Ns, Ns}], NDEC];

B0 = h IM1.DPPI;

A0 = (1/h) DP.I1;

Here, the matrix Mi,k is created.

LMH1 = CAD.MH1pp + CBD.MH1p + CCD.MH1;

LMH2 = CAD.MH2pp + CBD.MH2p + CCD.MH2;

LMH3 = CAD.MH3pp + CBD.MH3p + CCD.MH3;

LMH4 = CAD.MH4pp + CBD.MH4p + CCD.MH4;

VNM1 = CAD.A0 + CBD.E0 + CCD.B0;

VNM = ArrayFlatten[Table[{{Transpose[{LMH2}], Transpose[{LMH1}], VNM1,

Transpose[{LMH4}], Transpose[{LMH3}]}}]];

Z0 = Table[0, {i, 2 Ns + 1}];
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B1 = N[Join[{a0, b0 zn}, Z0, {0, 0}], NDEC];

B2 = N[Join[{0, 0}, Z0, {b1 zn, a1}], NDEC];

B3 = N[Join[{0, 0}, Ln1, {0, 0}], NDEC];

B4 = N[Join[{0, 0}, Ln01, {0, 0}], NDEC];

Ln01 = h Table[(1/2 + N[SinIntegral[π (Ns + 1 - l)]/π, NDEC]) Psipt[l h],

{l, -Ns, Ns}];

Ln1 = h Table[(1/2 + N[SinIntegral[π (-Ns - 1 - l)]/π, NDEC]) Psipt[l h], {l,

-Ns, Ns}];

VNMe = Flatten[Table[{{B1, B2}, VNM, {B3, B4}}], 1];

D0e = Join[{g0, g1}, D0, {0, 0}];

In this part, we solve the main problem to approximate w(x). Afterwards,

we derive u(x) and v(x) out of w(x).

vpne = N[LinearSolve[VNMe, D0e], NDEC];

vpns = Table[vpne[[i + 2]], {i, 2 Ns + 1}];

vpnsu = Table[vpns[[i]] + vpne[[1]] MH2p[[i]] + vpne[[2]] MH1p[[i]] + vpne[[2

Ns + 4]] MH4p[[i]] + vpne[[2 Ns + 5]] MH3p[[i]], {i, 2 Ns + 1}];

Rvpns = Table[Re[vpne[[i + 2]]], {i, 2 Ns + 1}];

Ivpns = Table[Im[vpne[[i + 2]]], {i, 2 Ns + 1}];

Rvpnsu = Table[Re[vpns[[i]]] + Re[vpne[[1]] MH2p[[i]]] + Re[vpne[[2]] MH1p[[i]]]

+ Re[vpne[[2 Ns + 4]] MH4p[[i]]] + Re[vpne[[2 Ns + 5]] MH3p[[i]]], {i, 2 Ns

+ 1}];

Ivpnsu = Table[Im[vpns[[i]]] + Im[vpne[[1]] MH2p[[i]]] + Im[vpne[[2]] MH1p[[i]]]
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+ Im[vpne[[2 Ns + 4]] MH4p[[i]]] + Im[vpne[[2 Ns + 5]] MH3p[[i]]], {i, 2 Ns

+ 1}];

In the following sections, we try to plot the approximate solution against the

exact solution.

coef1 = N[-κ Cos[χ], NDEC];

coef2 = N[-κ Sin[χ], NDEC];

Upexactplx = Table[{Zk[[i]], U0 UP[Zk[[i]]]}, {i, 2 Ns + 1}];

Rvpnsx = Table[{Zk[[i]], Rvpns[[i]]}, {i, 2 Ns + 1}];

Rvpnsux = Table[{Zk[[i]], U0 ( Rvpnsu[[i]] + coef1)}, {i, 2 Ns + 1}];

ListLinePlot[{Upexactplx, Rvpnsux}, PlotStyle → {Blue, Red}, PlotRange

→ {-0.5, 0.2}]

Vpexactplx = Table[{ Zk[[i]], U0 VP[Zk[[i]]]}, {i, 2 Ns + 1}];

Vvpnsx = Table[{Zk[[i]], Ivpns[[i]]}, {i, 2 Ns + 1}];

Vvpnsux = Table[{Zk[[i]], U0 (Ivpnsu[[i]] + coef2)}, {i, 2 Ns + 1}];

ListLinePlot[{Vpexactplx, Vvpnsux}, PlotStyle → {Blue, Red}]

vns = B0.vpns;

vnsu = Table[vns[[i]] + vpne[[1]] MH2[[i]] + vpne[[2]] MH1[[i]] + vpne[[2 Ns

+ 4]] MH4[[i]] + vpne[[2 Ns + 5]] MH3[[i]], {i, 2 Ns + 1}];

Rvns = Re[vns];



APPENDIX A. THE MATHEMATICA SOURCE CODE 118

Rvnsu = Table[Re[vns[[i]]] + Re[vpne[[1]] MH2[[i]]] + Re[vpne[[2]] MH1[[i]]]

+ Re[vpne[[2 Ns + 4]] MH4[[i]]] + Re[vpne[[2 Ns + 5]] MH3[[i]]], {i, 2 Ns +

1}];

Ivns = Im[vns];

Ivnsu = Table[Im[vns[[i]]] + Im[vpne[[1]] MH2[[i]]] + Im[vpne[[2]] MH1[[i]]]

+ Im[vpne[[2 Ns + 4]] MH4[[i]]] + Im[vpne[[2 Ns + 5]] MH3[[i]]], {i, 2 Ns +

1}];

Uexactplx = Table[{Zk[[i]], U0 U[Tk[[i]]]}, {i, 2 Ns + 1}];

Rvnsx = Table[{Zk[[i]], Rvns[[i]]}, {i, 2 Ns + 1}];

Rvnsux = Table[{Zk[[i]], U0 (Rvnsu[[i]] + N[κ (1 + σ - Zk[[i]]) Cos[χ],

NDEC])}, {i, 2 Ns + 1}];

ListLinePlot[{Uexactplx, Rvnsux}, PlotStyle → {Blue, Red}, PlotRange →

{-0.035, 0.002}]

Vexactplx = Table[{Zk[[i]], U0 V[Tk[[i]]]}, {i, 2 Ns + 1}];

Vvnsx = Table[{Zk[[i]], Ivns[[i]]}, {i, 2 Ns + 1}];

Vvnsux = Table[{Zk[[i]], U0 (Ivnsu[[i]] + N[κ (1 + σ - Zk[[i]]) Sin[χ], NDEC])},

{i, 2 Ns + 1}];

ListLinePlot[{Vexactplx, Vvnsux}, PlotStyle → {Blue, Red}, PlotRange →

{-0.01, 0.1}]

vppns = A0.vpns;
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vppnsu = Table[vppns[[i]] + vpne[[1]] MH2pp[[i]] + vpne[[2]] MH1pp[[i]] +

vpne[[2 Ns + 4]] MH4pp[[i]] + vpne[[2 Ns + 5]] MH3pp[[i]], {i, 2 Ns + 1}];

Rvppns = Re[vppns];

Rppnsu = Table[Re[vppns[[i]]] + Re[vpne[[1]] MH2pp[[i]]] + Re[vpne[[2]] MH1pp[[i]]]

+ Re[vpne[[2 Ns + 4]] MH4pp[[i]]] + Re[vpne[[2 Ns + 5]] MH3pp[[i]]], {i, 2

Ns + 1}];

Ivppns = Im[vppns];

Ippnsu = Table[Im[vppns[[i]] + vpne[[1]] MH2pp[[i]] + vpne[[2]] MH1pp[[i]]

+ vpne[[2 Ns + 4]] MH4pp[[i]] + vpne[[2 Ns + 5]] MH3pp[[i]]], {i, 2 Ns + 1}];

Uppexactplx = Table[{Zk[[i]], U0 UPP[Tk[[i]]]}, {i, 2 Ns + 1}];

Rvppnsx = Table[{Zk[[i]], Rvppns[[i]]}, {i, 2 Ns + 1}];

Rvppnsux = Table[{Zk[[i]], U0 Rppnsu[[i]]}, {i, 2 Ns + 1}];

ListLinePlot[{Uppexactplx, Rvppnsux}, PlotStyle → {Blue, Red}]

Vppexactplx = Table[{Zk[[i]], U0 VPP[Tk[[i]]]}, {i, 2 Ns + 1}];

Ivppnsx = Table[{Zk[[i]], Ivppns[[i]]}, {i, 2 Ns + 1}];

Ivppnsux = Table[{Zk[[i]], U0 Ippnsu[[i]]}, {i, 2 Ns + 1}];

ListLinePlot[{Vppexactplx, Ivppnsux}, PlotStyle→{Blue, Red}, PlotRange

→ {-0.01, 1.7}]

Finally, we calculate the maximum error of our method.
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RvppError = Table[{U0 Rppnsu[[i]] - U0 UPP[Tk[[i]]]}, {i, 2 Ns + 1}];

IvppError = Table[{U0 Ippnsu[[i]] - U0 VPP[Tk[[i]]]}, {i, 2 Ns + 1}];

RvpError = Table[{U0 (Rvpnsu[[i]] - N[κ Cos[χ], NDEC]) - U0 UP[Tk[[i]]]},

{i, 2 Ns + 1}];

IvpError = Table[{U0 (Ivpnsu[[i]] - N[κ Sin[χ], NDEC]) - U0 VP[Tk[[i]]]},

{i, 2 Ns + 1}];

RvError = Table[{U0 (Rvnsu[[i]] + N[κ (1 + σ - Zk[[i]]) Cos[χ], NDEC]) -

U0 U[Zk[[i]]]}, {i, 2 Ns + 1}];

IvError = Table[{U0 (Ivnsu[[i]] + N[κ (1 + σ - Zk[[i]]) Sin[χ], NDEC]) - U0

V[Zk[[i]]]}, {i, 2 Ns + 1}];

ErR1 = Max[Abs[RvError]];

ErI1 = Max[Abs[IvError]];

EdrR1 = Max[Abs[RvpError]];

EdrI1 = Max[Abs[IvpError]];

EddrR1 = Max[Abs[RvppError]];

EddrI1 = Max[Abs[IvppError]];

RvppErrorZk = Table[{Zk[[i]], U0 Rppnsu[[i]] - U0 UPP[Tk[[i]]]}, {i, 2 Ns +

1}];

IvppErrorZk = Table[{Zk[[i]], U0 Ippnsu[[i]] - U0 VPP[Tk[[i]]]}, {i, 2 Ns +

1}];

RvpErrorZk = Table[{Zk[[i]], U0 (Rvpnsu[[i]] - N[κ Cos[χ], NDEC]) - U0

UP[Tk[[i]]]}, {i, 2 Ns + 1}];

IvpErrorZk = Table[{Zk[[i]], U0 (Ivpnsu[[i]] - N[κ Sin[χ], NDEC]) - U0 VP[Tk[[i]]]},
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{i, 2 Ns + 1}];

RvErrorZk = Table[{Zk[[i]], U0 (Rvnsu[[i]] + N[κ (1 + σ - Zk[[i]]) Cos[χ],

NDEC]) - U0 U[Tk[[i]]]}, {i, 2 Ns + 1}];

IvErrorZk = Table[{Zk[[i]], U0 (Ivnsu[[i]] + N[κ (1 + σ - Zk[[i]]) Sin[χ],

NDEC]) - U0 V[Tk[[i]]]}, {i, 2 Ns + 1}];

ListLinePlot[{IvppErrorZk, IvpErrorZk, IvErrorZk, RvErrorZk, RvpErrorZk,

RvppErrorZk}, PlotRange → All]

A.2 The Mathematica Source Code for the

Coupled System

Here, the code written to solve the coupled system is shared. Since the steps

are similar to those of the complex system, no explanation is added.

$MinPrecision = 16;

$MaxPrecision = 64;

NDEC := 32;

Ns := 8;

χ := π/4;

κ := 5;

DZ := 100;

DE := 20;

σ := 0.1;

ww := 9;
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CD := 0.0012;

τw := 0.1414;

ρ := 1000;

Anull := 0.02;

AVS = 0.02;

AV[t ] := AVS/Anull;

ca1[t ] := -AV[t];

cb1[t ] := -AV′[t];

cc1[t ] := 2 κˆ2;

d01[t ] := -2 κˆ3 (1 + σ - t) Sin[χ] - κ Cos[χ] AV′[t];

a01 := 0; b01 := 1; a11 := 1; b11 := σ; g01 := 0; g11 := 0;

ca2[t ] := -AV[t];

cb2[t ] := -AV′[t];

cc2[t ] := -2 κˆ2;

d02[t ] := 2 κˆ3 (1 + σ - t) Cos[χ] - κ Sin[χ] AV′[t];

a02 := 0; b02 := 1; a12 := 1; b12 := σ; g02 := 0; g12 := 0;

dh := π/4; gh := 2; bh := π/2;

h := N[Log[π dh gh Ns/bh]/(gh Ns), NDEC];

Psit[t ] := N[1/2 Tanh[(π/2)*Sinh[t]] + 1/2, NDEC];

Psipt[t ] := N[π/4 Cosh[t]/((Cosh[π/2 Sinh[t]])ˆ2), NDEC];

Phix[z ] := N[ArcSinh[2/π ArcTanh[2 z - 1]], NDEC];

Zk = N[Table[Psit[(i - Ns - 1) h], {i, 2 Ns + 1}], NDEC];
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zn = Zk[[2 Ns + 1]];

zn = 1;

Tk = Zk/zn;

WC[t ] := ComplexExpand[(κ (1 - I) σ Cosh[κ (1 - I) (1 - t)] + Sinh[κ (1 -

I) (1 - t)])/((1 - I) (Cosh[κ (1 - I)] + κ (1 - I) σ Sinh[κ (1 - I)]))];

U[t ] := ComplexExpand[Re[WC[t]] Cos[χ] - Im[WC[t]] Sin[χ]];

V[t ] := ComplexExpand[Re[WC[t]] Sin[χ] + Im[WC[t]] Cos[χ]];

U0 := (τw DE)/(ρ Anull);

exactsol[t ] := U0 (U[t] + I V[t]);

CA = N[Table[znˆ2 ca1[Zk[[i]]], {i, 2 Ns + 1}], NDEC];

CB = N[Table[zn cb1[Zk[[i]]], {i, 2 Ns + 1}], NDEC];

CC1 = N[Table[cc1[Zk[[i]]], {i, 2 Ns + 1}], NDEC];

CC2 = N[Table[cc2[Zk[[i]]], {i, 2 Ns + 1}], NDEC];

CAD = N[DiagonalMatrix[CA], NDEC];

CBD = N[DiagonalMatrix[CB], NDEC];

CCD1 = N[DiagonalMatrix[CC1], NDEC];

CCD2 = N[DiagonalMatrix[CC2], NDEC];

D01 = N[Table[d01[Zk[[i]]], {i, 2 Ns + 1}], NDEC];

D02 = N[Table[d02[Zk[[i]]], {i, 2 Ns + 1}], NDEC];
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H1[z ] = (-1 + z/zn)ˆ2 z;

H2[z ] = (-1 + z/zn)ˆ2 (1 + 2 z/zn);

H3[z ] = (z/zn)ˆ2 (3 - 2 z/zn);

H4[z ] = (-1 + z/zn) zˆ2/zn;

MH1 = Table[H1[Zk[[i]]], {i, 2 Ns + 1}];

MH2 = Table[H2[Zk[[i]]], {i, 2 Ns + 1}];

MH3 = Table[H3[Zk[[i]]], {i, 2 Ns + 1}];

MH4 = Table[H4[Zk[[i]]], {i, 2 Ns + 1}];

MH1p = Table[H1′[Zk[[i]]], {i, 2 Ns + 1}];

MH2p = Table[H2′[Zk[[i]]], {i, 2 Ns + 1}];

MH3p = Table[H3′[Zk[[i]]], {i, 2 Ns + 1}];

MH4p = Table[H4′[Zk[[i]]], {i, 2 Ns + 1}];

MH1pp = Table[H1′′[Zk[[i]]], {i, 2 Ns + 1}];

MH2pp = Table[H2′′[Zk[[i]]], {i, 2 Ns + 1}];

MH3pp = Table[H3′′[Zk[[i]]], {i, 2 Ns + 1}];

MH4pp = Table[H4′′[Zk[[i]]], {i, 2 Ns + 1}];

PHIPINV = Table[Psipt[i h], {i, -Ns, Ns}];

DPPI = DiagonalMatrix[PHIPINV];

PHIP = Table[1/(Psipt[i h]), {i, -Ns, Ns}];

DP = DiagonalMatrix[PHIP];

E0 = Table[If[k == l, 1, 0], {k, -Ns, Ns}, {l, -Ns, Ns}];

IM1 = N[Table[If[k == l, 1/2, 1/2 + SinIntegral[π (k - l)]/π], {k, -Ns, Ns},
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{l, -Ns, Ns}], NDEC];

I1 = Table[If[k == l, 0, (-1)ˆ(k - l)/(k - l)], {k, -Ns, Ns}, {l, -Ns, Ns}];

B0 = h IM1 DPPI;

A0 = (1/h) DP I1;

L1MH1 = CAD.MH1pp + CBD.MH1p;

L1MH2 = CAD.MH2pp + CBD.MH2p;

L1MH3 = CAD.MH3pp + CBD.MH3p;

L1MH4 = CAD.MH4pp + CBD.MH4p;

L2MH1 = CAD.MH1pp + CBD.MH1p;

L2MH2 = CAD.MH2pp + CBD.MH2p;

L2MH3 = CAD.MH3pp + CBD.MH3p;

L2MH4 = CAD.MH4pp + CBD.MH4p;

LL1MH1 = CCD1.MH1;

LL1MH2 = CCD1.MH2;

LL1MH3 = CCD1.MH3;

LL1MH4 = CCD1.MH4;

LL2MH1 = CCD2.MH1;

LL2MH2 = CCD2.MH2;
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LL2MH3 = CCD2.MH3;

LL2MH4 = CCD2.MH4;

VNM11 = CAD.A0 + CBD.E0;

VNM12 = CAD.A0 + CBD.E0;

VNM13 = CCD1.B0;

VNM14 = CCD2.B0;

Z0 = N[Table[0, {i, 2 Ns + 1}], NDEC];

Z00 = N[Table[0, {i, 2 Ns + 5}], NDEC];

Ln01 = h Table[(1/2 + N[SinIntegral[π (Ns + 1 - l)]/π, NDEC]) Psipt[l h],

{l, -Ns, Ns}];

Ln1 = h Table[(1/2 + N[SinIntegral[π (-Ns - 1 - l)]/π, NDEC]) Psipt[l h], {l,

-Ns, Ns}];

B1 = N[Join[{a01, b01 zn}, Z0, {0, 0}], NDEC];

B2 = N[Join[{0, 0}, Z0, {b11 zn, a11}], NDEC];

B3 = N[Join[{0, 0}, Ln1, {0, 0}], NDEC];

B4 = N[Join[{0, 0}, Ln01, {0, 0}], NDEC];

VNM1 = ArrayFlatten[Table[{Transpose[{L1MH2}], Transpose[{L1MH1}],

VNM11, Transpose[{L1MH4}], Transpose[{L1MH3}]}]];

VNM2 = ArrayFlatten[Table[{Transpose[{LL1MH2}], Transpose[{LL1MH1}],

VNM13, Transpose[{LL1MH4}], Transpose[{LL1MH3}]}]];
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VNM3 = ArrayFlatten[Table[{Transpose[{LL2MH2}], Transpose[{LL2MH1}],

VNM14, Transpose[{LL2MH4}], Transpose[{LL2MH3}]}]];

VNM4 = ArrayFlatten[Table[{Transpose[{L2MH2}], Transpose[{L2MH1}],

VNM12, Transpose[{L2MH4}], Transpose[{L2MH3}]}]];

VNMe11 = Flatten[Table[{B1, B2}, VNM1, {B3, B4}], 1];

VNMe12 = Flatten[Table[{Z00, Z00}, VNM2, {Z00, Z00}], 1];

VNMe13 = Flatten[Table[{Z00, Z00}, VNM3, {Z00, Z00}], 1];

VNMe14 = Flatten[Table[{B1, B2}, VNM4, {B3, B4}], 1];

one = Join[VNMe11, VNMe12, 2];

two = Join[VNMe13, VNMe14, 2];

VNMe = Join[one, two, 1];

D0e1 = Join[{g01, g11}, D01, {0, 0}];

D0e2 = Join[{g02, g12}, D02, {0, 0}];

D0e = Join[D0e1, D0e2];

vpne = N[LinearSolve[VNMe, D0e], NDEC];

upns = Table[vpne[[i + 2]], {i, 2 Ns + 1}];

vpns = Table[vpne[[i + 2 Ns + 7]], {i, 2 Ns + 1}];

yupns = Table[upns[[i]] + vpne[[1]] MH2p[[i]] + vpne[[2]] MH1p[[i]] + vpne[[2

Ns + 4]] MH4p[[i]] + vpne[[2 Ns + 5]] MH3p[[i]], {i, 2 Ns + 1}];

yvpns = Table[vpns[[i]] + vpne[[2 Ns + 6]] MH2p[[i]] + vpne[[2 Ns + 7]]
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MH1p[[i]] + vpne[[4 Ns + 9]] MH4p[[i]] + vpne[[4 Ns + 10]] MH3p[[i]], {i, 2

Ns + 1}];

yupexactplx = Table[{Zk[[i]], U0 U’[Tk[[i]]]}, {i, 2 Ns + 1}];

upnsx = Table[{Zk[[i]], upns[[i]]}, {i, 2 Ns + 1}];

yupnsx = Table[{Zk[[i]], U0 (yupns[[i]] - κ Cos[χ])}, {i, 2 Ns + 1}];

ListLinePlot[{yupexactplx, yupnsx}, PlotStyle → {Blue, Red}]

yvpexactplx = Table[{Zk[[i]], U0 V’[Tk[[i]]]}, {i, 2 Ns + 1}];

vpnsx = Table[{Zk[[i]], vpns[[i]]}, {i, 2 Ns + 1}];

yvpnsx = Table[{Zk[[i]], U0 (yvpns[[i]] - κ Sin[χ])}, {i, 2 Ns + 1}];

ListLinePlot[{yvpexactplx, yvpnsx}, PlotStyle → {Blue, Red}]

uns = B0.upns;

vns = B0.vpns;

yuns = Table[uns[[i]] + vpne[[1]] MH2[[i]] + vpne[[2]] MH1[[i]] + vpne[[2 Ns

+ 4]] MH4[[i]] + vpne[[2 Ns + 5]] MH3[[i]], {i, 2 Ns + 1}];

yvns = Table[vns[[i]] + vpne[[2 Ns + 6]] MH2[[i]] + vpne[[2 Ns + 7]] MH1[[i]]

+ vpne[[4 Ns + 9]] MH4[[i]] + vpne[[4 Ns + 10]] MH3[[i]], {i, 2 Ns + 1}];

yuexactplx = Table[{Tk[[i]], U0 U[Tk[[i]]]}, {i, 1, 2 Ns + 1}];

unsx = Table[{Zk[[i]], uns[[i]]}, {i, 2 Ns + 1}];
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yunsx = Table[{Zk[[i]], U0 (yuns[[i]] + κ (1 + σ - Zk[[i]]) Cos[χ])}, {i, 1, 2

Ns + 1}];

ListLinePlot[{yuexactplx, yunsx}, PlotStyle → {Blue, Red}]

yvexactplx = Table[{Tk[[i]], U0 V[Tk[[i]]]}, {i, 1, 2 Ns + 1}];

vnsx = Table[{Zk[[i]], vns[[i]]}, {i, 2 Ns + 1}];

yvnsx = Table[{Zk[[i]], U0 (yvns[[i]] + κ (1 + σ - Zk[[i]]) Sin[χ])}, {i, 1, 2

Ns + 1}];

ListLinePlot[{yvexactplx, yvnsx}, PlotStyle → {Blue, Red}]

uppns = A0.upns;

vppns = A0.vpns;

yuppns = Table[uppns[[i]] + vpne[[1]] MH2pp[[i]] + vpne[[2]] MH1pp[[i]] +

vpne[[2 Ns + 4]] MH4pp[[i]] + vpne[[2 Ns + 5]] MH3pp[[i]], {i, 2 Ns + 1}];

yvppns = Table[vppns[[i]] + vpne[[2 Ns + 6]] MH2pp[[i]] + vpne[[2 Ns + 7]]

MH1pp[[i]] + vpne[[4 Ns + 9]] MH4pp[[i]] + vpne[[4 Ns + 10]] MH3pp[[i]],

{i, 2 Ns + 1}];

yuppexactplx = Table[{Zk[[i]], U0 U”[Tk[[i]]]}, {i, 1, 2 Ns + 1}];

uppnsx = Table[{Zk[[i]], uppns[[i]]}, {i, 2 Ns + 1}];

yuppnsx = Table[{Zk[[i]], U0 yuppns[[i]]}, {i, 1, 2 Ns + 1}];

ListLinePlot[{yuppexactplx, yuppnsx}, PlotStyle → {Blue, Red}]
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yvppexactplx = Table[{Zk[[i]], U0 V”[Tk[[i]]]}, {i, 1, 2 Ns + 1}];

vppnsx = Table[{Zk[[i]], vppns[[i]]}, {i, 2 Ns + 1}];

yvppnsx = Table[{Zk[[i]], U0 yvppns[[i]]}, {i, 1, 2 Ns + 1}];

ListLinePlot[{yvppexactplx, yvppnsx}, PlotStyle → {Blue, Red}]

UvppError = Table[{U0 yuppns[[i]] - U0 U”[Tk[[i]]]}, {i, 2 Ns + 1}];

VvppError = Table[{U0 yvppns[[i]] - U0 V”[Tk[[i]]]}, {i, 2 Ns + 1}];

UvpError = Table[{U0 (yupns[[i]] - κ Cos[χ]) - U0 U’[Tk[[i]]]}, {i, 2 Ns +

1}];

VvpError = Table[{U0 (yvpns[[i]] - κ Sin[χ]) - U0 V’[Tk[[i]]]}, {i, 2 Ns + 1}];

UvError = Table[{U0 (yuns[[i]] + κ (1 + σ - Zk[[i]]) Cos[χ]) - U0 U[Tk[[i]]]},

{i, 2 Ns + 1}];

VvError = Table[{U0 (yvns[[i]] + κ (1 + σ - Zk[[i]]) Sin[χ]) - U0 V[Tk[[i]]]},

{i, 2 Ns + 1}];

ErU1 = Max[Abs[UvError]] ErV1 = Max[Abs[VvError]] EdrU1 = Max[Abs[UvpError]]

EdrV1 = Max[Abs[VvpError]] EddrU1 = Max[Abs[UvppError]] EddrV1 =

Max[Abs[VvppError]] UvppErrorZk = Table[{Zk[[i]], U0 yuppns[[i]] - U0

U”[Tk[[i]]]}, {i, 2 Ns + 1}];

VvppErrorZk = Table[{Zk[[i]], U0 yvppns[[i]] - U0 V”[Tk[[i]]]}, {i, 2 Ns +

1}];

UvpErrorZk = Table[{Zk[[i]], U0 (yupns[[i]] - κ Cos[χ]) - U0 U’[Tk[[i]]]}, {i,

2 Ns + 1}];

VvpErrorZk = Table[{Zk[[i]], U0 (yvpns[[i]] - κ Sin[χ]) - U0 V’[Tk[[i]]]}, {i,
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2 Ns + 1}];

UvErrorZk = Table[{Zk[[i]], U0 (yuns[[i]] + κ (1 + σ - Zk[[i]]) Cos[χ]) - U0

U[Tk[[i]]]}, {i, 2 Ns + 1}];

VvErrorZk = Table[{Zk[[i]], U0 (yvns[[i]] + κ (1 + σ - Zk[[i]]) Sin[χ]) - U0

V[Tk[[i]]]}, {i, 2 Ns + 1}];

ListLinePlot[{UvppErrorZk, UvpErrorZk, UvErrorZk, VvErrorZk, VvpEr-

rorZk, VvppErrorZk}, PlotRange → All]
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