
Automated Grading of UML Class Diagrams

A Thesis Submitted to the Committee on Graduate Studies

in Partial Fulfillment of the Requirements for the Degree of Master of Science

in the Faculty of Arts and Science

TRENT UNIVERSITY

Peterborough, Ontario, Canada

© Copyright by Weiyi Bian 2020

Applied Modelling and Quantitative Methods

M.Sc. Graduate Program

September 2020

Abstract

Automated Grading of UML Class Diagrams

Weiyi Bian

Learning how to model the structural properties of a problem domain or

an object-oriented design in form of a class diagram is an essential learning

task in many software engineering courses. Since grading UML assignments

is a cumbersome and time-consuming task, there is a need for an automated

grading approach that can assist the instructors by speeding up the grading

process, as well as ensuring consistency and fairness for large classrooms.

This thesis presents an approach for automated grading of UML class dia-

grams. A metamodel is proposed to establish mappings between the instruc-

tor solution and all the solutions for a class, which allows the instructor to

easily adjust the grading scheme. The approach uses a grading algorithm

that uses syntactic, semantic and structural matching to match a student’s

solutions with the instructor’s solution. The efficiency of this automated

grading approach has been empirically evaluated when applied in two real

world settings: a beginner undergraduate class of 103 students required to

create a object-oriented design model, and an advanced undergraduate class

of 89 students elaborating a domain model. The experiment result shows that

the grading approach should be configurable so that the grading approach

ii

can adapt the grading strategy and strictness to the level of the students

and the grading styles of the different instructors. Also it is important to

considering multiple solution variants in the grading process. The grading

algorithm and tool are proposed and validated experimentally.

Keywords : automated grading, class diagrams, model comparison

iii

Co-Authorship and Related

Publication

This thesis is based on two conference papers co-authored with my su-

pervisor Professor Omar Alam and Professor Jörg Kienzle. Here is the list of

papers included in this thesis (in both two papers, I was the primary author):

• Automated Grading of Class Diagrams. Bian, W., Alam, O., Kienzle,

J. (2019, September). In 2019 ACM/IEEE 22nd International Confer-

ence on Model Driven Engineering Languages and Systems Companion

(MODELS-C) (pp. 700-709). IEEE. (Parts of Chapter 3, Chapter 4

and Chapter 5 are based on this paper). In this paper, I proposed the

approach for automated grading of UML class diagrams, including the

algorithm and the metamodel. Prof. Alam and Prof. Kienzle partici-

pated in the discussions and manuscript preparations. I presented the

paper in the conference.

• Is Automated Grading of Models Effective? Assessing Automated

Grading of Class Diagrams. Bian, W., Alam, O., Kienzle, J. (Parts

of Chapter 6 and Chapter 8 are based on this paper). In this paper,

I worked with Prof. Alam and Prof. Kienzle on empirically evaluat-

ing the efficacy of the automated grading approach. I worked on the

iv

case study and result analysis. The co-authors participated in the dis-

cussions and manuscript preparations. This paper has been submit to

2020 ACM/IEEE 23rd International Conference on Model Driven En-

gineering Languages and Systems Companion (MODELS) and is under

review.

v

Acknowledgements

I wish to thank various people for their contributions to this thesis.

Without you all, it would not be possible for me to finish this thesis.

First of all, my parents, who gave me a precious chance to study in

Canada and have always respected my choice and supported me without

hesitation. Thank you for everything.

The TouchRam group in McGill University - the best team I have been

lucky enough to join. I could not conduct the research smoothly without

your great effort on TouchCore tool. Meng and Daniel - working with you

was fun and thanks for helping for my research and daily life.

I would like to thank my supervisor Dr.Omar Alam and Dr.Jörg Kienzle

from McGill University. Thank you for providing me such valuable oppor-

tunity to work alongside both of you. Your suggestions and encouragement

supported me throughout the thesis study. Without your assistance, I could

not finish two conference papers in my master study. Also, thank you to my

supervisor committee for your time and advice.

Finally, thank you to Trent University for financial support. The two

years of studying at Trent University will be the most precious time in my

life.

vi

Contents

Abstract ii

Co-Authorship and Related Publication iv

Acknowledgements vi

1 Introduction 1

1.1 Problem Summary . 4

1.2 Thesis Contributions . 5

1.3 Thesis Organization . 7

2 Background and Related Work 9

2.1 Automated Grading Tools . 9

2.2 Automated Grading Tools for Models 10

2.3 Automated Grading Tools for UML Class Diagram 11

2.4 Conclusion . 13

vii

3 Motivating Examples 15

3.1 University Models . 15

3.2 Conclusion . 21

4 Grading Algorithm 23

4.1 Matching Classes . 23

4.2 Matching Class Contents . 26

4.3 Matching Split Class . 28

4.4 Matching Merged Class . 28

4.5 Matching Association . 29

4.6 Matching Enumeration . 30

4.7 Conclusion . 31

5 Grading Metamodels and Tool Support 37

5.1 Metamodels . 38

5.2 Grading Tool Support . 40

5.3 Conclusion . 49

6 Case Study 50

6.1 Case Study 1: Animal Design Model 51

6.2 Case Study 2: Hotel Domain Model 53

6.3 First Automated Grading Result 55

viii

6.4 Limitations and Threats to Validity 58

6.5 Conclusion . 60

7 Exploring Grading Strategies 61

7.1 Grading Strategies Assessment 62

7.2 RQ1: Are there different grading criteria for class diagrams? . 63

7.3 Automated Grading Configuration Settings 64

7.3.1 Points . 64

7.3.2 Unnecessary . 65

7.3.3 Deductions . 65

7.3.4 Options . 66

7.3.5 Algorithm Configuration Assessment 69

7.4 RQ2: Does the use of configuration settings improve the ac-

curacy of automated grading? 70

7.4.1 Case Study 1: Animal Design Model 71

7.4.2 Case Study 2: Hotel Domain Model 72

7.5 Conclusion . 73

8 Assessing Automated Grading 75

8.1 Dealing with Multiple Solutions 76

8.1.1 RQ3: Does the accuracy of automated grading improve

when multiple solutions are matched against? 78

ix

8.2 Assessing Automated Grading Effectiveness 81

8.2.1 RQ4: Does automated grading save time? 81

8.2.2 RQ5: Does automated grading help to ensure fairness? 84

8.3 Conclusion . 92

9 Conclusion and Future Work 94

9.1 Conclusion . 94

9.2 Future Work . 96

x

List of Figures

3.2 Student Solution Model 1 . 16

3.1 Instructor Solution for University Model 16

3.3 Student Solution Model 2 . 18

3.4 Student Solution Model 3 . 19

3.5 Student Solution Model 4 . 20

5.1 Grade Metamodel . 38

5.2 Classroom Metamodel . 39

5.3 TouchCORE Main Graphical User Interface 40

5.4 Student Models in TouchCORE File Browser 41

5.5 Student Models Display in TouchCORE 42

5.6 Give Mark for Model Element 42

5.7 Instructor’s Model with Grades in TouchCORE GUI 43

5.8 Grading Configuration Panel in TouchCORE GUI 44

5.9 Compare Button in TouchCORE GUI 46

xi

5.10 Student Model Grading Result in TouchCORE GUI 47

6.1 Animal Design Model of Instructor 51

6.2 Hotel Domain Model of Instructor 53

6.3 Auto vs. Manual for Animal Case Study 57

6.4 Auto vs. Manual for Animal Case Study 58

7.1 Grading Configuration Panel 63

7.2 Class Multiple Match Example Model 67

7.3 Association With Subclass Example Model 68

7.4 Original vs. Tailored for Animal Case Study 70

7.5 Original vs. Tailored for Animal Case Study 72

8.1 Alternative Solution for Hotel Domain Model 76

8.2 File Browser for Loading Alternative Model 78

8.3 1 vs 2 vs 3 Solutions for Hotel Case Study 80

8.4 Student 12 Solution Model for Case Study 1 86

8.5 Student 8 Solution Model for Case Study 1 88

8.6 Student 2 Solution Model for Case Study 2 90

8.7 Student 21 Solution Model for Case Study 2 91

xii

List of Tables

5.1 Feedback for One Student’s Model for Hotel Reservation System 48

8.1 Grades Difference for Animal Class Diagram 84

8.2 Grades Differences for Hotel Domain Model 89

xiii

Chapter 1

Introduction

Software engineering education is high in demand driven by the fast-

changing job market. This created a supply-demand imbalance between

computing college graduates and the available technology jobs. Motivated by

projections of US employment [1], computing schools experience an increase

in enrolment as students rush into computer science programs in record num-

bers [2]. The increasing number of computing students increases the workload

on instructors as they have to grade large number of assignments. Besides

the increased workload, instructors struggle to grade assignments and exams

fairly, which is not an easy task. It is difficult for human graders to pre-

cisely follow the grading formulae when grading each individual assignment,

especially when grading subjective topics. As a result, automated grading

is increasingly popular in Computer Science. Many approaches to automati-

1

cally assess programming assignments have been proposed and are currently

being used in the classroom [3; 4]. As the class sizes also increase in ad-

vanced undergraduate software engineering classes, we now face the need to

determine effective algorithms for automating the grading of models.

In addition, automated grading is crucial for e-learning and Massive On-

line Open Courses (MOOCs) [5; 6]. Large numbers of students, sometimes

thousands, enrol in these online courses. Therefore, it becomes difficult to

manually grade their assignments and exams. Furthermore, in MOOCs, stu-

dents need tools to self-assess their knowledge to decide whether they want to

move to the next topic in the course. Such self-assessment methods have been

implemented in popular online learning platforms, e.g. Khan Academy [7],

Udemy [8], and Coursera [9]. Automated assessment can also be used to

calibrate a learner’s prior knowledge [10], i.e., to assess their prior knowledge

on the subject when starting a new course. In addition, in the context of

online courses, automatic grading can be used to provide timely feedback to

the learner [11]. Finally, online learning has become a subject of heightened

focus during the COVID-19 crisis [12–18]. Schools and universities quickly

moved their courses online across the world. Different strategies have been

proposed and discussed to support this transition to online delivery, including

automatic grading and personalized intelligent learning [19; 20].

Grading of models is difficult. This is partially due to the fact that mod-

2

elling problems are often ill-defined problems, where multiple solutions may

exist for a particular problem [21; 22]. Unlike well-defined problems, where a

solution can be either correct or incorrect, a diagram design problem involv-

ing class diagrams can have a large solution space. For example, solutions can

vary based on the class names, i.e., a student’s solution can use a synonym

for a class name instead of the exact name used in the teacher’s solution.

Solutions also can vary based on the structure, e.g., adding attributes to the

subclasses instead to the superclass. These variations create an additional

overhead on the instructors when grading assignments, as they have to spend

longer time to evaluate a student’s answer. Furthermore, instructors often

revise their marking scheme after grading several student papers. For ex-

ample, an instructor may want redistribute the grades when the instructor

discovers that students had trouble with a particular part of the model, which

is an indication that the problem description was maybe not clear. In such

cases, the instructor might want to adjust the grading weights for parts of

the model to compensate. Unfortunately this means that the instructor has

to manually update the grades for the students that already graded by re-

visiting the students solutions again using the new marking scheme. Finally,

after receiving their grades, many students may request that their copies be

reevaluated, often because the instructor may not have been consistent when

grading, for example, a large class over a longer period of time. Nevertheless,

3

several approaches for automating the grading of models have been defined

in recent years, most of them targeting and tailored to specific modelling

notations, e.g. [23–25]. However, despite these efforts, little work has been

done to automated grade the UML class diagram and evaluate the grading

result.

1.1 Problem Summary

This thesis attempts to solve the problem raised in the introduction. The

problem this thesis tries to solve can be summarized as follows: “Is automated

grading effective in helping the instructors grade UML class diagrams?”

In order to solve this problem, this thesis proposes an automated grad-

ing approach for UML class diagrams. This thesis presents an algorithm that

establish mappings between model elements in the instructor’s solutions to

elements in the student solutions, exploiting syntactic, semantic and struc-

tural matching strategies. The student gets full mark for each element that

is perfectly matched. Partial marks are given to solutions that are partially

correct, e.g. an attribute that is placed in a wrong class. Two metamodels

have been proposed to support the automted grading approach in this thesis.

One metamodel is used to store grades for each model element, e.g. classes,

attributes, and associations. The mappings between the student’s model

4

elements and the instructor’s model elements are stored by using another

metamodel, which makes it possible to update the grading scheme later on.

The grading algorithm and metamodels are implemented in the TouchCORE

tool [26], which visually shows the grades for the class diagram and prints

out feedback to the student.

To evaluate the efficiency of the proposed automated grading approach,

we conduct a case study of using automated grading for two assignments, one

was given to 103 students of an introductory course in software modeling,

and another was given to 89 students of an advanced course in software

engineering.

1.2 Thesis Contributions

The contributions of thesis are organized into there parts:

Part I Algorithm (Chapter 3, Chapter 4):

• The thesis introduces and defines several matching strategies when

grading the UML class diagram. The process is illustrated by pre-

senting motivated model examples.

• The thesis demonstrates the algorithm for automated grading of UML

class diagrams.

5

Part II Tool (Chapter 5):

The thesis introduces two metamodels to support the automated grading

algorithm. Moreover, the thesis illustrates the grading tool that implements

the automated grading algorithm and the metamodels.

Part III Validation (Chapter 6, chapter 7 and Chapter 8):

The thesis applies the grading approach to a case study of two modeling

assignments. By comparing the results of automated grading with manual

grading conducted by the instructors, the following research questions can

be answered:

• RQ1 Are there different grading criteria for class diagrams?

It is true that while the instructors use a common base strategy for

grading, they deal differently with missing model elements, unnecessary

model elements and modelling alternatives.

• RQ2 Does the use of configuration settings improve the ac-

curacy of automated grading? A configurable grading algorithm

can produce grades that are closer to the instructor’s manual grading

scores. Overall, in one case study, the difference is reduced from 6.53%

to 4.8%, while in another case study, the difference is reduced from

24.6% to 13%.

• RQ3 Does the accuracy of automated grading improve when

6

multiple solutions are matched against? A class diagram mod-

eling problem can have more than one correct solution. It is possible

to support multiple correct solutions in automated grading. In one

case study, when this feature is incorporated, 40 out of 89 students

that have used an alternative solution in their models received higher

grades, reducing the gap between the automated and manually deter-

mined grades.

• RQ4 Does automated grading save time? Automated grading has

the potential to save a significant amount of time. While with manual

grading it takes hours to grade a class of 80-100 students, a properly

configured algorithm that is given all relevant modelling solutions can

accomplish the grading in a matter of seconds.

• RQ5 Does automated grading help to ensure fairness? Manual

grading is prone to inconsistencies. Automated grading is able to point

out the inconsistencies in manual grading.

1.3 Thesis Organization

This thesis is divided into nine chapters. We discuss the related work

about automated grading in Chapter 2. Then, we provide examples that mo-

7

tivate our matching strategies in Chapter 3. Based on the matching strate-

gies, Chapter 4 details the algorithms that compare the student’s model with

the instructor’s model. Chapter 5 demonstrates the metamodels and grading

tool that support the automated grading. Chapter 6 outlines the case study

setup. We present some first results and discuss the limitations threats to

validity. In Chapter 7, we elaborate the configuration options for automated

grading and discuss our configuration panel. Chapter 8 discusses how we

deal with the multiple correct solutions and analyses the effectiveness of au-

tomated grading. Chapter 9 concludes this thesis and discuss directions for

future work.

8

Chapter 2

Background and Related Work

2.1 Automated Grading Tools

Automated grading has been researched for many years, a lot of auto-

mated grading tools have been developed, e.g. to grade mathematical ques-

tions [27; 28], automated short answer grading (ASAG) [29–31], and grading

simple essays [32; 33]. Particularly in the field of computer science, a num-

ber of automated grading tools and systems have been designed to evaluate

programming assignments, e.g. AutoGrader for Java [34], CourseMarker for

Java and C++ [35], and Marmoset for Java, C, and Ruby assignments [36].

Empirical assessments have been conducted to understand the efficacy

of automated grading programming assignments [35–37]. For example, Gao

et. al. [38] created a framework for grading C++ programming assignment

9

by generating testing cases automatically. They used it on five different

assignments for 173 students in an introductory level programming course.

The Online Judge tool [39], which supports grading C/C++ and Java as-

signments, runs the student’s program with strict memory and time limits

and compares the output with predefined answers to grade the program.

This tool was used to evaluate 2 first year programming assignments, on 712

and 795 students, and on an introductory high school course of 40 students.

Spacco et. al surveyed 70 students on efficacy of their Marmoset tool [36].

CourseMarker [35] grades the students by checking typographical layout and

running test cases. A survey found that by using the CourseMarker, 94% of

students found that the tool helped improve their programming skills.

2.2 Automated Grading Tools for Models

Several automated grading approaches have been proposed for grad-

ing specific models, such as deterministic finite automatons (DFA) [23] and

Entity-Relationship (ER) diagrams [24; 40; 41]. For UML models, such as

Use Case Specifications, there are approaches that proposed automated as-

sessment of UML models. Jayal and Shepperd [42] proposed a method for

label matching for UML diagrams and using different levels of decomposi-

tion and syntactical matching. They evaluate their approach using a case

10

study on matching activity diagrams. Striewe et al. [43] present an approach

to grade the activity diagram based on a reference about trace information.

Tselonis et. al. [44] introduced a diagram marking technique based on graph

matching. Thomas et. al. [45] introduced a framework that used synonyms

and an edit distance algorithm to mark graph-based models. Vachharajani

et al. [46] introduced a framework for automatic assessment of Use Case

Diagrams using syntactic and semantic matching. Sousa and Paulo [47] in-

troduced a structural approach for graphs that establishes mappings from

a teacher’s solution to elements in the student solution that maximizes a

student’s grade.

2.3 Automated Grading Tools for UML Class

Diagram

A number of approaches have been proposed that compare UML class

diagrams. Haggarth and Lockyer [25] proposed a framework that compares

the symbols within a student’s model with the instructor model and gives

feedback. Ali et. al. [48] proposed an assessment tool to compare a class di-

agram drawn by a student with the instructor’s diagram. Their approaches

only can return feedback rather than numerical grade. Soler et. al. [49]

11

developed a web-based tool for correcting UML class diagrams. They con-

ducted a comparative experiment on 24 students and found that students

who used the tool did better in solving modeling problems. However, their

approach relies only on string matching. Our matching algorithm uses syn-

tax, semantic and structural matching to compare models. Hasker [50] ap-

plied the UMLGrader, which only provided a binary pass-fail grade, to a

course which had 37 students with 38% sophomores, 38% juniors, and 24%

seniors. Chaudron et al. [51] applied machine learning to automated grad-

ing the class diagrams. They extracted features from the UML models and

implemented classification and regression experiments with machine learn-

ing algorithms, e.g., random forest algorithm. In a case study of 99 student

pairs, three experts conducted manual grading on a 10-point scale. Then the

grades were converted to a 5-point and 3-point scale. The results showed that

the classification and regression models were not reliable to grade students

class diagrams on a 10-point scale, since the highest accuracy was 42.76%.

However, they received higher accuracy when classifying in a 3-points (fail,

pass, good) or 2-points (fail, pass) scale, i.e., their approach can give a rough

assessment of a student’s performance. But our approach can return a nu-

merical grade with detailed feedback as human instructor does in the grading

process.

12

2.4 Conclusion

A number of researches have been conducted to automatically grading

assignments in many fields, especially grading programming assignments.

However, grading UML class diagram has received little attention. There

are three main differences between our approach and the existing approaches

discussed above: (1) our approach combines syntactic, semantic and struc-

tural matching for grading class diagrams. In addition to using Levenshtein

distance for syntactical matching, our approach uses three algorithms for se-

mantic matching and performs structural matching between two diagrams.

Based on the matching results, the approach assigns marks to the model el-

ements. Most of the above approaches are limited to syntactic matching of

names. (2) Our approach proposes a non-invasive grading metamodel that

stores the determined grades alongside the model as feedback to the stu-

dents. As a result, our grading algorithm can return a determined numerical

grade with feedback to student, while most of the above approaches can only

return feedback or a rough grade (fail, pass). (3) Our approach proposes a

new classroom metamodel that allows for saving and automatic updating the

grades of a group of students in case the teacher changes the grading scheme.

Also the aforementioned work did not conduct a detailed assessment of

automated grading of class diagrams. Motivated by the luck of such assess-

13

ment, we conduct a study on 192 students of two different undergraduate

grades to study the efficacy of automated grading. In addition, we study

whether automated grading can support different grading styles, and whether

automated grading is more fair and consistent than manual grading. To con-

duct our experiment, we added a feature (called configuration panel) to the

tool to allows the grading criteria be customized for a particular instructor

style. This feature is discussed in more detail in RQ1. To the best of our

knowledge, customizing the grading criteria for class diagrams has never been

explored before.

14

Chapter 3

Motivating Examples

In this chapter, we motivate our approach using a simple class diagram

modeling a university. The approach motivated here will be implemented

in our automated grading algorithm, which will be detailed discussed in the

chapter 4.

3.1 University Models

The model description as follows:

Each person in a university should have name and age. For each person,

the system should be able to print the basic information and get his/her

age. Teachers and students are persons. A teacher has an attribute for

department and is assigned to courses. A student has year and can select

15

Figure 3.2: Student Solution Model 1

the course. Each course has a name, a credit and a class location. A

teacher can teach multiple courses. Each course selection will contain

the final grade for the course.

Figure 3.1: Instructor Solution for University Model

Fig. 3.1 shows the instructor solution. The first student solution, shown

16

in Fig. 3.2 uses as a name for the Teacher class the word Instructor, uses

the wrong spelling form for Studemt, and uses Select instead of Selection.

Although the student uses different names for classes, we want our matching

algorithm to determine that Instructor is a synonym for Teacher, which

we call a semantic match. The class Student should be matched with the

class Studemt syntactically, even though there is a spelling difference. In

a similar way, the class Select should be matched with Selection and the

operation printinfo matched with printinformation. We also notice that the

attribute location is misplaced, i.e., it is added to the class Select, which is

wrong. Although location is misplaced, one can argue that the student should

receive partial marks for including it to the model. Finally, two elements,

the attribute department and the operation selectCourse are missing in the

student solution, i.e. they can not be matched syntactically or semantically

with any element.

Fig. 3.3 shows a solution by a different student. There are three impor-

tant comparison checkpoints in this model: (1) Class Subject has the same

attributes as the class Course in the instructor’s solution in Fig. 3.1. It is

reasonable to consider that these two classes should match due to their simi-

lar structure. (2) The class Register has associations with class Student and

Subject (Subject is matched with Course using semantic match). Therefore,

we can consider that class Register is matched with Selection, although their

17

Figure 3.3: Student Solution Model 2

names do not match, neither syntactically nor semantically. Again, this is a

structural match based on the similarity of the associations with other classes

in the respective models. (3) In the instructor’s model, the attribute age be-

longs to the superclass Person. In the solution model in Fig. 3.3, the student

added two age attributes to the subclasses, Teacher and Student. We should

give these two attributes partial marks.

18

Figure 3.4: Student Solution Model 3

The third student solution shown in Fig. 3.4 illustrates two interesting

cases, class splitting and class merging. (1) Class Classroom does not syn-

tactically or semantically match any class. Furthermore, its content does

not provide enough information to match with any class structurally. How-

ever, based on attribute matching, the attribute location, which belongs to

the class Course in the instructor’s model has been misplaced in the class

Classroom by the student. Together, Class Course and class Classroom in

the student’s model have the same attributes of the class Course in the in-

structor’s model. Also, there is a 1-to-multiple association between class

Classroom and class Course in student’s model, allowing a particular value

19

for location to be associated with multiple courses. We can therefore con-

sider that the student has split the class Course into two classes, Course and

Classroom. (2) Class Selection seems to be missing from the student’s model

because it fails to match with any element using the matching methods that

we discussed before. Based on the attribute and operation matching results,

we detect that all properties of class Selection, i.e. attribute mark, have been

misplaced to class Student in the student’s model. Also in the instructor’s

model, class Selection has an association with class Student. Therefore, we

consider that the class Student in the student’s model is a combination of

class Student and class Selection in the instructor’s model, and might want

to give partial marks.

Figure 3.5: Student Solution Model 4

The fourth solution, shown in Fig. 3.5, illustrates how associations are

matched. In this model, the association Teacher-Course in the student’s

model can not be matched with the association between the class Teacher-

20

Course in the instructor’s model only by the name of the association ends,

since the name of association end teach can not be matched with the name

of association end courses, neither syntactically nor semantically. But we

detect that these two associations connect two pairs of matched classes, i.e.,

the class Course in the student’s model matches with the class Course in

the instructor’s model and the class Teacher in the student’s model matches

with the class Teacher in the instructor’s model. As a result, we consider

that when we match the associations, we should focus on the classes that an

association connected with. Furthermore, in this model, the student forgot

the class Selection. There is no association between the class Student and

Course in the instructor’s model, but the class Selection has two associations,

with class Student and Course with multiplicities 1 on both ends. Therefore,

the student’s association between Student and Course can be considered a

derivative association and should receive partial marks.

3.2 Conclusion

From examples above, we identified four matching strategies which should

be taken into account by the algorithm. First, strict string matching is not

sufficient for grading. It is essential to combine syntactic matching (elimi-

nating spelling mistakes) and semantic matching (considering synonyms and

21

words with related meaning) for strings in the algorithm. Second, structural

matching strategies should be incorporated, e.g. matching by comparing the

contents of a class, similarity based on the associations with other classes,

and considering classes that are split or merged. Third, the grading algo-

rithm should handle class inheritance properly, i.e. handle the class elements

that are misplaced within the inheritance hierarchy. Fourth, the algorithm

should be able to match associations based on the connected classes, includ-

ing finding potential derivative associations.

22

Chapter 4

Grading Algorithm

In this chapter, we discuss the algorithm for automated grading of class

diagrams. The overall algorithm is divided into six parts: matching classes,

match split classes, merged classes, attributes and operations, associations

and enumerations. In the following, the six parts are explained in detail.

4.1 Matching Classes

Algorithm 1 illustrates this process in detail. The algorithm takes as in-

put the instructor model, InstructorModel, and the student model, StudentModel.

Two different strategies are used to compare the names of the classes.

To perform a syntactic match (line 5), the Levenshtein distance [52] is used

to measure the similarity between the two names. The Levenshtein distance

23

Algorithm 1 Compare Classes
1: procedure COMPARECLASS(InstructorModel, StudentModel)
2: instList← InstructorModel.getClass()
3: studList← StudentModel.getClass()
4: for all Class Ci in instList, Cs in studList do
5: if syntacticMatch(Cs.name, Ci.name) or
6: semanticMatch(Cs.name, Ci.name)) or
7: contentMatch(Cs.content, Ci.content) then
8: storePossibleMatch(Ci, Cs)

9: for all Class Ci in instList do
10: if ∃ matched classes for Ci then
11: find among the matches of Ci the Cbest

12: that obtains the highest mark among the matches
13: classMatchMap.put(Ci, Cbest)

14: for all Class Ci in missClassList do
15: for all Class Cs in studList do
16: if no match exists for Cs then
17: ListI← Ci.getAssociationEnds()
18: ListS← Cs.getAssociationEnds()
19: if assocMatch(ListS,ListI) then
20: classMatchMap.put(Ci, Cs)

21: if no match exists for Ci then
22: missClassList.add(Ci)

return classMatchMap, missClassList

calculates the minimum number of single-character edits required to change

one word into another. Two classes are matched when their Levenshtein

distance is smaller than 40 percentage of the longest name string length.

The second strategy involves a semantic match (line 6). We use a simi-

larity metric based on SEMILAR [53], which all calculate a similarity metric

between two words based on the WordNet database: Hirst and St-Onge Mea-

sure (HSO) [54], Wu and Palmer (WUP) [55] and LIN [56]. The combined

use of three measures presents a better performance than using only a single

24

measure. If the determined score is satisfactory, then the match is stored.

• HSO: This measure compares two concepts based on the path distances

between them in the WordNet database. It measures the similarity by

the number of directions change which should be needed to connect

one concepts to another.

• WUP: Given two concepts, WUP measures their similarity by the num-

ber of common concepts from the root concepts to these two concepts.

• LIN: Lin is an improvement of the Resnik measure [57] and uses In-

formation Content (IC) of two concepts to calculate their semantic

similarity. IC of a term is calculated by measuring its frequency in a

collection of documents.

The class structural similarity match strategy (named contentMatch in

line 7) includes property similarity match which compares the properties of

two classes. Two properties, e.g., two attributes, with matched names would

be regarded as similar. The number of properties that are needed to be

edited to change one class to another is key to determine whether two classes

could be regarded as structurally similar.

After we find all potential matched classes, we calculate the grades for

each potential match (lines 9 - 13). If Cs (in the student solution) is a

25

potential match for class Ci (in the instructor’s solution), we calculate the

points that Cs would give the student based on the grades attributed to Ci

and its content. The matched class that gets the highest grade in the student

solution is then retained as the final match for Ci.

After finding possible matching classes based on their names and con-

tent, we additionally search for classes that could be matched based on their

associations to other classes. Lines 14 - 20 illustrate this process. For each

pair of classes that is not yet matched, we look at their association ends, and

if two classes have similar association ends, we consider them matched.

4.2 Matching Class Contents

While Algorithm 1 matches the classes, there could be attributes or op-

erations that are misplaced, i.e., are placed in the wrong class in the student

model. Let Ai be one property (attribute or operation) in the instructor

model and As one property in the student model. There are four scenar-

ios: (1) the names of Ai and As match and their containing classes also

match. (2) the names of Ai and As match while their containing classes do

not match. In this case As is considered misplaced. Based on the grading

policy, misplaced properties should score fewer points. For example, for the

case study presented in the next section, we deducted 0.5 points for each

26

misplaced property. (3) the names of Ai and As match, however, Ai belongs

to a super class and As belongs to one of the subclasses. If Ai is not private,

then Ai and As are considered as matched. However, in this case, the student

could also only get partial marks because the scope of the property is too

limited. (4) Ai and As could not match with each other at all. Algorithm 2

finds the matched attributes and operations in two models. In addition to

the instructor and student models, this algorithm takes as input the matched

class map which was populated by Algorithm 1, classMatchMap. The al-

gorithm starts by finding the matched attributes in the same classes, i.e.,

same matched classes (line 4-10), if it does not find a corresponding matched

attribute in the same class, it will look for it in the super class (line 11-12).

It is not shown in Algorithm 2, but we traverse the inheritance hierarchy all

the way up. If it does not find the attribute in the super class, it will look for

it in other classes in the model that are not matched with the class. If the

attribute exists in an unmatched class, then it is considered to be misplaced

and should be given a partial grade. Operations are matched in a similar

way (line 19-32). After finding all the matches, the algorithm returns a map

of matched attributes, matchedAttrMap, a map of misplaced attributes,

misplaceAttrMap, a map of matched operations, matchedOperMap and a

map of misplaced operations, misplaceOperMap.

27

4.3 Matching Split Class

Algorithm 3 checks whether the student splits one class into two classes.

Let be Cs0 and Cs1 be two classes in the student model. The algorithm first

checks if there is a 1-to-multiple association between Cs0 and Cs1 (line 6).

If an attribute is extracted from a class A and placed in a different class B,

then, there should be 1-to-multiple association from the B to A. This allows

a value for the attribute in B to be associated with multiple instances of

A, as discussed previously in the example of Fig. 3.4. Then if there exists

one class Ci in the instructor model that has the similar properties in both

Cs0 and Cs1, we consider that class Ci has been split into Cs0 and Cs1 by

student. The algorithm returns a map of split classes, splitClassMap.

4.4 Matching Merged Class

Algorithm 4 checks whether two class in the instructor model could

be matched with one class in the student model, which means the student

merged the two classes into one class in the student’s solution model. Let

be Ci1 and Ci2 two classes in the instructor model, where all properties of

Ci1 have been misplaced into class Cs in the solution model. If Cs is already

matched with Ci2 based on the class matching algorithm and Ci1 and Ci2

have an association between them (line 3), we can consider that the student

28

used Cs to combine both Ci1 and Ci2. We only give points to two classes

that are merged into one class. We do not give points to more than two

classes that are merged into one classes. In that case, the merged class will

become quite complex and with less cohesive. After finding all the merged

classes, the algorithm returns a map of merged classes, mergeClassMap.

4.5 Matching Association

Algorithm 5 matches the associations in two models. Contrary to other

matching algorithms mentioned before, this algorithm does not focus on com-

paring associations based on their names, rather it compares them based on

the classes that an association is connected with. Let C0 and C1 be two

classes connected by association Ai in the instructor model, and C2 and C3

be two classes connected by association As in the student model. If C0 and

C1 in the instructor model, and C2 and C3 in the student model could be

matched as two pairs of classes, As and Ai should be also matched. Moreover,

The association from the student model that contains association class pref-

erentially matches with the association that also contains association class

from the instructor model. Then, if some classes are missing in the student

model, we try to find potential derived associations that could go through

the missing class. For each missing class, we first find the classes that it

29

is connected with (line 8-9). We do this process recursively, although, it is

not shown in the algorithm. This means that we also find classes that the

missing class is connected with indirectly, i.e., through other classes. Then,

we search if there is an association in the student model which has one end

connected to the missing class (line 10-16). The algorithm returns a map

of matched associations, associationMatchMap and a list of derived asso-

ciation, derivationList. It is important to note that a grader may want to

give grades for any derivative association, i.e., not necessarily derived from

a missing class in the student solution. In that case, we have to relax the

condition check for missing classes in this algorithm. In the case study dis-

cussed in the next section, the instructor opted to give grades for any derived

association.

4.6 Matching Enumeration

An enumeration is a type that has a defined number of possible values.

Algorithm 6 matches enumerations of two models. The straightforward way

to match enumerations is to compare their names and their literal values.

Let be Ei be an enumeration in instructor model and Es be an enumeration

in the solution model. If the entries of Ei and Es could be matched by

their names, Ei and Es would be considered as matched. It is possible that

30

student does not model the enumeration perfectly, in which case there will

entries in Ei that are not matched with entries in Es. The algorithm returns

a map of matched enumerations, enumMatchMap.

For the missing literals in the enumeration, it is possible that the student

used other model elements, such as an attribute or a class, to represent a

missing entry in the enumeration. If a literal e in Ei could not be matched

with any entry in enumeration Es, we search whether there is a class or

attribute in the student solution which name matches with e. Depending on

the grading scheme, the instructor can opt for giving a full point or partial

point when a student use an attribute or a class to represent an enum literal.

4.7 Conclusion

Comparing class diagram models should consider different kinds of vari-

ations. This chapter outlines the grading algorithm, which is divided into six

comparison parts. For comparing classes, not only we compare the names

of the classes, including syntactic match and semantic matches, but also

structural match and match classes based on their associations with other

classes. This strategy can match as many classes as possible. Next, matching

attributes and operations are mainly based on the their names and contain-

ing classes. Misplaced attributes and operations should also be matched.

31

Moreover, based on the misplaced attributes and operations matching re-

sult, merged classes and split classes should be checked. This algorithm

compares associations based on the classes that an association is connected

with. Also the derived associations that are related to the missing classes

should be found and given partial points. Finally, matching enumerations is

based on their names and literal values. The other model elements can be

used to represent a missing entry in the enumeration. In the next chapters,

we will introduce the tool where we implement the grading algorithm and

metamodel. Then we will apply the algorithm to two case studies to verify

the effectiveness of the algorithm.

32

Algorithm 2 Compare attributes and operations in InstructorModel with
StudentModel
1: procedure COMPARECONTENT(InstructorModel, StudentModel,

classMatchMap)
2: instList← InstructorModel.getAttribute()
3: studList← StudentModel.getAttribute()
4: for all Attribute Ai in instList, As in studList do
5: Ci ← Ai.eContainer()
6: Cs ← As.eContainer()
7: if Ai is synatax or semtantic match for As then
8: if classMatchMap.get(Cs).equals(Ci) then
9: matchedAttrMap.put(As, Ai)

10: else if Ci is superClass of classMatchMap.get(Cs) and Ai is not
private then

11: matchedAttrMap.put(As, Ai)

12: for all Attribute Ai in instAttrList, As in studAttrList do
13: if As not matched And Ai is synatax or semtantic match for As then
14: misplaceAttrMap.put(As, Ai)

15: instList← InstructorModel.getOperation()
16: studList← StudentModel.getOperation()
17: for all Operation Oi in instList, Os in studList do
18: Ci ← Oi.eContainer()
19: Cs ← Os.eContainer()
20: if Oi.synMatch(Os) or Oi.semanticMatch(Os) then
21: if classMatchMap.get(Cs) equals Ci then
22: matchedOperMap.put(Os, Oi)
23: else if Oi is superClass of classMatchMap.get(Cs) and Oi is not

private then
24: matchedOperMap.put(Os, Oi)

25: for all Operation Oi in instOperList, Os in studOperList do
26: if Os is not matched And Oi.synlMatch(Os) or Oi.semanticMatch(Os)

then
27: misplaceOperMap.put(Os, Oi)
28: instOperList.put(Oi, true)

29: return matchedAttrMap,misplaceAttrMap,

matchedOperMap,misplaceOperMap

33

Algorithm 3 Check whether a class is split into two classes
1: procedure CLASSSPLITMATCH(InstructorModel, StudentModel)
2: instList← InstructorModel.getClass()
3: studList← StudentModel.getClass()
4: for all Class Cs0 in studList, zhuzhuCs1 in studList do
5: if Cs0 and Cs1 has 1-to-multiple association then
6: for all Class Ci in instList do
7: if Ci has same properties with Cs0 and Cs1 then
8: splitClassMap.put(Ci, <Cs0,Cs1>)
9: break

10: return splitClassMap

Algorithm 4 Check whether a class is merged into another class
1: procedure CLASSMERGEMATCH(InstructorModel, StudentModel)
2: for all Class Ci1 in InstructorModel matched with Cs in StudentModel

do
3: for all Class Ci2 in InstructorModel which content is misplaced in Cs

do
4: if Ci1 has association with Ci2 then
5: mergeClassMap.put(Cs,<Ci1Ci2>)
6: break
7: return mergeClassMap

34

Algorithm 5 Compare association in InstructorModel and StudentModel

1: procedure COMPAREASSOC(InstructorModel,StudentModel,
missClassList)

2: instAssocList ← InstructorModel.getAssociation()
3: studAssocList ← StudentModel.getAssociation()
4: for all Association Ai in instAssocList, As in studAssocList do
5: if Ai and As connect two pairs of matched classes then
6: associationMatchMap.put(As, Ai)

7: for all class C in missClassList do
8: for all Class Ci in InstructorModel is connected with C do
9: possibleAssocMap.get(C).add(Ci)

10: for all Association As in studAssocList do
11: endClass1 ← As.getEnd1()
12: endClass2 ← As.getEnd2()
13: for all Key Class C in possibleAssocMap do
14: possibleClassList←possibleAssocMap.get(C)
15: if endClass1 in possibleClassList and endClass2 in

possibleClassList then
16: derivationList.add(As)

17: return associationMatchMap, derivationList

35

Algorithm 6 Compare ENUM in InstructorModel and StudentModel

1: procedure COMPAREENUM(InstructorModel, StudentModel)
2: instENUMList ← InstructorModel.getENUM()
3: studENUMList ← StudentModel.getENUM()
4: for all ENUM Ei in instENUMList, Es in studENUMList do
5: if syntacticMatch(Es.name, Ei.name) or
6: semanticMatch(Es.name, Ei.name)) then
7: enumMatchMap.put(Es, Ei)
8: else if Es and Ei have similar literal values then
9: enumMatchMap.put(Es, Ei)

10: studClassList ← StudentModel.getClass()
11: studAttrList ← StudentModel.getAttribute()
12: for all ENUM Ei in instENUMList do
13: for all literal L in Ei.literal do
14: for all Attribute As in studClassList do
15: if As.Name.syntacticMatch(L.Name) or

As.Name.semanticMatch(L.Name) then
16: consider As represent L

17: for all class Cs in studClassList do
18: if Cs.Name.syntacticMatch(L.Name) or

Cs.Name.semanticMatch(L.Name) then
19: consider Cs represent L

20: return enumMatchMap

36

Chapter 5

Grading Metamodels and Tool

Support

This chapter discusses the metamodels and grading tool that supports

the automated grading approach. We introduce the details of the metamodels

that are defined to store the grade of a model and mappings between the

student’s model elements and the instructor’s model elements. The grading

approach and metamodels are implemented in the TouchCORE tool [26].

By presenting the graphical user interface(GUI) of the TouchCORE tool, we

discuss the automated grading process in our tool and some key features in

more details.

37

5.1 Metamodels

This thesis defines two metamodels to support the automated grading

approach which is discussed in Chapter 4. Rather than augmenting the

class diagram metamodel to support the definition of grades and matchings

for model elements, this thesis defines separate metamodels. This is less

invasive, as it leaves the class diagram metamodel unchanged, and hence

all existing modelling tools can continue to work. Furthermore, we avoid

referring to class diagram metaclasses directly, but instead use the generic

EClass, EAttribute and EReference (as this thesis assumes metamodels

expressed in the metametamodelling language ECore provided by the Eclipse

Modelling Framework). As a result, the grading metamodels can be applied

to any modelling language with a metamodel expressed in ECore.

GradeModel

points: EDouble
EObjectGradegrade

1
EObject

points: EDouble
EStructuralFeatureGradegrade

1
EStructuralFeature

Figure 5.1: Grade Metamodel

Figure 5.1 shows the metamodel that augments any model expressed

in ECore with grades. The GradeModel maps EObject to EObjectGrade,

which contains a points attribute. That way any modelling element in a

language that is modelled with a metaclass can be given points to. In or-

der to give points for properties of modelling elements, EObjectGrade maps

38

ClassroomModel

EObjectmatched

0..*
EObject

Figure 5.2: Classroom Metamodel

EStructuralFeature, the ECore superclass of EAttribute and EReference, to

EStructuralFeatureGrade, which contains again a points attribute.

To illustrate the use of the grade metamodel, imagine a metamodel for

class diagrams where attributes are modelled with a metaclass CDAttribute

that has a type EReference that stores the type of the attribute. Now imagine

the case where we want to give 2 points for the age attribute of the Person

class in Figure 3.1, and an additional point if the type of the attribute is int.

In this case one would create a EObjectGrade and insert it into the grade map

using as a key CDAttribute, and assign the points value 2.0. Additionally,

one would create a EStructuralFeatureGrade, insert it into the grade map

using as a key the EReference type of CDAttribute.

Figure 5.2 depicts the Classroom metamodel which is used after the

automated grading algorithm is run to store the mappings that were discov-

ered. It simply associates with each model element in the instructor solution

(EObject key) a list of EObjects in the student solutions that were matched

by the algorithm. After the algorithm has been run, the matchings in this

data structure can be updated by the grader if necessary. The information

39

Figure 5.3: TouchCORE Main Graphical User Interface

can also be used to automatically update the grades of the students in case

the instructor decides to change the point weights in the instructor solution.

5.2 Grading Tool Support

This section discusses the grading tool that we developed to support the

automated grading approach. To use the grading metamodels described ear-

lier and implement the matching algorithm, We extend a tool called Touch-

CORE [26].

TouchCORE is a multitouch-enabled tool for agile concern-oriented soft-

ware design modeling aimed at developing scalable and reusable software

40

Figure 5.4: Student Models in TouchCORE File Browser

design models. TouchCORE is built on top of the Eclipse Modeling Frame-

work (EMF)[58] and MT4J (multi-touch library for Java)[59]. Therefore,

the TouchCORE tool supports different kinds of gestures, such as tap, drag

and zooming. Fig. 5.3 shows the main graphical user interface (GUI) of the

TouchCORE. A user can press the “New Concern” button on the main menu

(the icon showing a “+” in Fig. 5.3) to select a folder to create models.

By pressing the “Load Concer” button, the user can also load the exist-

ing models from a file browser. The Fig. 5.4 shows the some student models

in case study 2. Each student’s model is placed in its own folder, which make

the instructor easy to check and grade. Fig. 5.5 shows a student’s domain

model for hotel reservation system.

41

Figure 5.5: Student Models Display in TouchCORE

Figure 5.6: Give Mark for Model Element

42

Figure 5.7: Instructor’s Model with Grades in TouchCORE GUI

Fig. 5.6 shows the procedure for assigning grades to the model elements.

By pressing on the “Mark” button on the top, the user can get into the

marking mode. In the marking mode, the user can press on any model

element, such as the class Stay in Fig. 5.6, and hold few seconds, then the

grade will be successfully assigned to the model element. The grade is shown

in a circle beside the model element and there is a dotted line which connects

the model element with the grade. The default value of each grade is zero,

but the teacher can double-click the grade to open the keyboard to change

43

the grade value. The user also can drag the grade in the tool to put it

anywhere. Finally by tapping the “Mark” button again, the color of the

button will become black, which means the user turns off the mark mode

and can modify the model itself. Fig. 5.7 shows the instructor’s model for

hotel reservation system with grades.

Figure 5.8: Grading Configuration Panel in TouchCORE GUI

After giving grades to all the model elements, the user can press on the

“Configuration” button on the upper-right corner to get into the configura-

tion panel, which is shown in Fig. 5.8. The details of the configuration panel

will be discussed in the Chapter 7. After adjusting the configuration options,

the user can press the “set” button to set this model to be the instructor

model. If there are alternative solution models, the user can use the “Load

Another Solution Model” to load alternative solution models. The details

44

about how to load alternative solution models will be discussed in Chapter

8.

45

Figure 5.9: Compare Button in TouchCORE GUI

After setting the instructor’s model and opening a student’s model, there

will be a new button named “Compare”, which is highlighted by a red circle

in Fig. 5.9. The user can press this button to compare the student model

with the instructor’s models by using the automated grading algorithms.

Fig. 5.10 displays the grading result for a student. The student’s original

model is shown in Fig. 5.5. When student makes any mistakes, the grade for

the model element will be highlighted in yellow in the model. For example,

in Fig. 5.10, the class Quality is match with class RoomType which has

maxDailyRate as an attribute in the instructor model. However, the class

name Quality can not be syntactically or semantically matched with the

class name RoomType. So for the class Quality in the student model, half

46

Figure 5.10: Student Model Grading Result in TouchCORE GUI

of the points are deducted. The tool also prints a feedback sheet for the

student listing the points that she received and points that she missed. The

student also receives a feedback sheet explaining where they received or lost

marks. An excerpt of this sheet is shown in Table 5.1. Finally, our tool

implementation allows the instructor to change the grading scheme in the

instructor’s solution model, such the model in Fig. 5.7. Since we keep a map

to the students using the metamodels that were discussed earlier, it is easy

to update the grades of the students based on the new grading scheme.

47

Table 5.1: Feedback for One Student’s Model for Hotel Reservation System

Final Grade: 26.5/42

Classes:

Guest: 1.0/2.0, matches with Class Person(Different Class Name)

Room: 4.0, merge Class for Class Bed and Room

Creditcard: 1.0, class represents attribute creditcard in Class Person

...

Attributes:

roomNumber in Class Room: 1.0/1.0, matches with roomNumber in Class Room

dailyRate in Class Stay : 0.0/1.0, missing attribute

bedType in Class Room: 0.5/1.0, misplaced attribute

...

Associations:

Room-Room: 2.0/2.0, matches with association between Room and Room

Room-Quality: 2.0/2.0, match association between Room and RoomType

Reservation-Guest: 2.0/2.0, match association between booking and Person

...

Enumeration:

Quality: 0.0/1.0, missing enumeration

48

BedType: 1.0/1.0, match with enumeration BedType

...

5.3 Conclusion

In this chapter, we focus on the two metamodels and grading tool that

support the automated grading. One metamodel stores grades for model

elements, as well as the grades for the element’s structure features. The other

metamodel stores the mappings between student model elements with the

instructor’s model elements. By using these two metamodels, we can show

the grades for model elements in our grading tool and allow the instructor

easily changes the grading scheme since the tool can automatically update

the grades for all students. Next, we present the TouchCORE tool where we

implement our grading approach and metamodels. By showing the GUI of

the TouchCORE tool, we demonstrate the automatic grading process in the

TouchCORE tool and display the feedback information to the students.

49

Chapter 6

Case Study

To investigate the effectiveness of automated grading, this thesis ana-

lyzes models handed in by students as assignments of two undergraduate

courses. Each course was offered at a different university, and each instruc-

tor has a PhD degree in Computer Science and several years of experience

teaching university-level software engineering courses. The students and the

instructors did not use the tool that is used in this case study. The instruc-

tors took note of the time they needed to grade each student model on paper.

After they finished grading the assignments, the instructors gave us access to

the paper copies of the student hand-ins, as well as the model solution that

they used for grading, and their grading scheme that detailed the number of

points they had assigned to each relevant model element. We then manually

reproduced all models in the tool.

50

In this chapter, we start by discussing the set-up for the case studies.

Then we show the first grading result and discusses the limitations threats

to validity. The further assessment of automated grading will be discussed

in the following chapters.

6.1 Case Study 1: Animal Design Model

Figure 6.1: Animal Design Model of Instructor

The first assignment (case study 1) was performed in the context of a

beginner software design and modeling course. This is the first course in

software modeling in the curriculum of the students, and students took only

one prior programming course before enrolling in this course. The problem

51

description was as follows:

An animal can eat and move. A bird is an animal that can fly,

and chicken and eagle are birds. Cow, rabbit, and tiger are animals too.

Tigers and eagles can eat any animal. A chicken can eat a pea, a cow

can eat any plant, and a rabbit can eat a carrot. Cow, chicken and plant

are edible.

The students were asked to create a design class diagram that includes

operations to model behaviour, and that uses association and inheritance

to express structural dependencies and relationships. Fig. 6.1 depicts the

instructor’s solution model and grading scheme for the animal question. In

this model, there are 5 kinds of animals (Cow, Tiger, Rabbit, Eagle and

Chicken), 2 kinds of plants (Pea and Carrot), and multiple relationships

between the classes. Subclassing and inheritance is used to express that, e.g,

a Chicken can only eat Peas, and a Tiger can eat any animal. The points for

a model element are shown in small circles next to the model element, e.g.

the class Animal yields 2.5 points. We collected 103 student assignments for

this case study.

52

Figure 6.2: Hotel Domain Model of Instructor

6.2 Case Study 2: Hotel Domain Model

The second experiment (case study 2) was performed on advanced under-

graduate students that are enrolled in a software engineering project course

that runs over 2 semesters. Most students were in their final year of Com-

puter Science or Software Engineering studies. As such, these students have

advanced programming skills, considerable knowledge of data structures, and

important software development and modeling experience. The students were

tasked to create a domain model for the following problem statement:

You have been asked to create a system to manage the front-desk

activities of a hotel. The system will be used to enter reservations as

53

well as to check people in and out of the hotel.

The hotel contains 30 rooms in which guests can stay. Some hotel

rooms adjoin others, i.e., there are internal doors between them, so a

guest can stay either in an individual room or a suite (multiple rooms).

Each hotel room is assigned a quality level (e.g., a larger room or a room

with a view would be better than a smaller room without a view). Each

room also has a certain number and type of beds, a room number, and

a smoking/non-smoking status. Each quality level has a maximum daily

rate, although the rate that a guest pays may be less.

When a hotel guest wishes to make a reservation, the hotel clerk

asks him or her what nights he or she wants to stay and the type of room

he or she wants. The system must verify if room(s) are available on

those nights before allowing a reservation to be made.

The hotel needs to record basic information about each guest, e.g.,

his/her name, address, telephone number, credit card, etc. A reservation

can be cancelled at any time.

When a guest checks in, a room is allocated to him/her until s/he

checks out. The system must keep track of the guest’s account, and print

his or her bill.

Fig. 6.2 shows the instructor’s solution and grading scheme for the Hotel

54

domain model. The class Person is associated with Room via an association

class called Stay to keep track of the guests staying at the hotel. The class

Booking is related to both Room and Person. Room has a reflexive asso-

ciation to capture which rooms are adjoined. Rooms also have associated

Beds and a RoomType. The model declares three enumeration types, Qual-

ity, SmokingStatus and BedType. We collected 89 student models for case

study 2.

6.3 First Automated Grading Result

To measure the effectiveness of the automated grading algorithm, after

the first round automated grading, we compared the total score of each stu-

dent obtained by the automated grading algorithm with the score determined

manually by the instructor. Here is a summary of the deduction policy that

we adopted at first:

• Class use the different name: deduct half of point.

• Misplaced attribute/operation: deduct half of point.

• Derived association: give half of the point of the correct derived asso-

ciation.

• Missing element: deduct whole point.

55

• Wrong inheritance/realization relationship: deduct whole point.

56

0

5

10

15

20

25

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100 103

|(
Au

to
m

at
ed

 -
M

an
ua

l)
|

/ M
au

ni
al

 (%
)

students(sorted by increasing difference)

Figure 6.3: Auto vs. Manual for Animal Case Study

After the first round automated grading, the grading results have been

collected and compared with the instructor’s manual grading result. The

blue line in Fig. 6.3 shows the difference between the instructor’s manual

grades and the automated grading for case study 1. We notice that for 24

students the score of the automated grading algorithm is identical to the

instructor’s score. For 73 students the difference is less than 10%, and only

for 3 models the difference is above 20%. The average difference for the 103

models is 6.5%.

The blue line in Fig. 6.4 plots the difference in percentage between the

instructor’s manual grading and the automated grading for case study 2. We

note that for no model the algorithm obtained the exact same score as the

instructor. Out of 89 models, only 6 models have a score with less than 10%

57

0

10

20

30

40

50

60

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 89

|(
Au

to
m

at
ed

 -
M

an
ua

l)|
 /

M
an

ua
l(%

)

Students(sorted by increasing difference)

Figure 6.4: Auto vs. Manual for Animal Case Study

difference, and 30 models have less than 20% difference. In other words,

for more than half of the models the score obtained by automated grading

differs significantly from the one obtained by manual grading. The average

difference for 89 models is 24.6%.

6.4 Limitations and Threats to Validity

Currently, the tool that is discussed in Chapter 5 in this thesis, does

not support assigning points to visibility, aggregation and compositions rela-

tionships, and role names in associations. However, in the case studies, the

instructors did not assign grades to those elements.

• Internal Validity threats related to biases when grading the assignments.

58

We mitigated this threat by automatically grading the assignments only after

they have been manually graded by the two instructors. Instructors did

not know about the automated grading results until after they have already

graded the assignments manually.

• External Validity threats relate to the generalizability of our findings.

We mitigated this concern by conducting two case studies of undergraduate

assignments done by students of two different universities covering introduc-

tory and advanced courses in software engineering. Our experiments have

been conducted on class diagrams, so it remains to be seen whether our

conclusions can be generalized to other models, e.g., behavioural models.

• Construct Validity threats relate to the difficulty in finding alterna-

tive grading criteria. We allowed the hard-coded algorithm parameters and

options in the tool to be configured. It is possible, tough, that there are com-

mon grading options that we did not consider. We mitigated this concern

by consulting two instructors with several years of teaching experience, and

as a result added two new configuration options to the original algorithm.

Furthermore, we extended the tool to be able to consider any number of

alternative solution models, which allows an instructor to cover any possible

alternative grading situation.

59

6.5 Conclusion

This chapter outlines the case studies that we conducted to evaluate

the effectiveness of the automated grading algorithm which is discussed in

Chapter 4. We apply the grading algorithm to two case studies. There are

103 student models in case study 1 and 89 student models in case study 2.

The details of two modeling questions are explained and we show the first re-

sult. Comparing the automated grading result of the grading algorithm with

instructor’s manual grading result, the average difference for case study 1 is

6.5%, while for case study 2, the average difference is 24.6%. The automated

grading result, especially the result of case study 2, indicates that the cur-

rent algorithm’s grading strategy and the deduction policy are different with

two instructors’ strategies, which results in large differences. Therefore, the

grading tool should be able to tailor different grading strategies to different

instructors, which will be detailed discussed in the next chapter.

60

Chapter 7

Exploring Grading Strategies

This chapter discusses the configuration panel that can tailor different

grading strategies to different instructors. At first we choose a sample of

assignments from the two case studies and discuss with respective instructor

about their grading strategies. Next, we make the automated grading tool

configurable and answer the research question 1. Finally, in order to answer

the research question 2, we use the configuration options to adjust the auto-

mated grading algorithm to match the grading strategies of the instructors

and re-grade all student models. The results show that by using the config-

uration panel, the automated grading result becomes closer to instructor’s

manual grading.

61

7.1 Grading Strategies Assessment

Research in psychology of education suggest that instructors are not

uniform in their grading styles [60; 61]. Personal and socio-cultural issues af-

fect how instructors choose their grading criteria [62; 63], and they consider

customized criteria that are suitable for different situations [64–67]. Even

when encountering the same problem, different instructors may choose dif-

ferent criteria that result in different scores [67]. Some instructors can be

lenient, while others can be strict. Also, instructors adjust their grading

criteria based on the level of expertise of the students in the class.

This was the case in our experiments, as the students in case study 1

were mostly first year undergraduates, whereas the students in case study 2

were in their last year. Similarly, the problem description in case study 1 is

clear and the resulting solution design model straight forward, whereas the

description in case study 2 is more complex and the solution domain model

non trivial.

The difference in efficiency of the automated grading algorithm in the

two case studies reported in the previous chapter motivated us to investi-

gate whether different grading styles and strategies are also employed when

grading models. If yes, an automated grading algorithm would have to be

extended with configuration options in order to be able to adapt the grading

62

style to different contexts.

7.2 RQ1: Are there different grading criteria

for class diagrams?

Figure 7.1: Grading Configuration Panel

To answer this question, we randomly chose about 20% of the assign-

ments (i.e, 21 assignments for case study 1 and 16 assignments for case

study 2) and showed the scores obtained with the original automated grad-

ing algorithm to the respective instructor. The original automated grading

algorithm means the algorithm that presented in the chapter 4. They com-

pared the automated grading scores with the manual grading scores for each

student. Whenever there was a difference, we asked the instructor to explain

63

why they gave the student additional points.

7.3 Automated Grading Configuration Set-

tings

We modified the grading tool to be configurable by means of a configu-

ration panel shown in Fig. 7.1, which is the same figure with the Fig. 5.8 in

chapter 5. For convenience, we show the figure again here. The Configuration

panel allows the instructor to tailor the algorithm to his/her specific needs.

The configuration panel has four parts: Points, Unnecessary, Deductions and

Options.

7.3.1 Points

lists the default points assigned to model elements in a class diagram.

The model elements with default point values are classes, attributes, opera-

tions, associations, association classes, enumeration types, inheritance and

realization relationships. Setting class to 2.0 means that, by default, ev-

ery class in the instructor’s solution model contributes 2 points to the total

score. Of course, the instructor can override this default value by assigning a

different points value to a model element in the instructor’s solution model.

64

7.3.2 Unnecessary

Students sometimes add irrelevant elements to their model. Although

these elements many not make the model incorrect, they may add unnec-

essary details. For example, a domain model should not contain platform-

specific structural details. Also, some students might try to optimize their

grade by adding everything they can possibly think of to their model to in-

crease the probability of not omitting what the instructor is looking for. To

deal with this situation, the instructor might want to deduct points for hav-

ing unnecessary elements in the model. This was, for example, the strategy

of the instructor of case study 1.

The Unnecessary list in the configuration panel allows instructors to

specify how much they want to deduct if students have unnecessary classes,

attributes, operations, association ends, association classes, enumerations,

inheritance or realization relationships in their model.

7.3.3 Deductions

The third group of configuration settings is Deductions, which lists

strategies for making deductions. The default deduction strategy for all

kinds of mistakes was initially hard-coded in the algorithms to 50%. Now we

allow instructors to specify a deduction percentage for each kind of mistake.

65

The four kind of mistakes currently handled are:

(1) Misplaced Element. A student may put an attribute or an operation into

the wrong class or association class.

(2) Wrong Class Name. A student might use a different class name than the

one chosen by the instructor. In some cases, although a class may have the

expected content or associations with other classes, the name chosen by the

student might be so misleading that it deserves a deduction.

(3) Wrong Inheritance/Realization. A student may use a wrong inheritance

or realization relationship between classes or interfaces.

(4) Not Using Association Classes. In cases where an association class is

necessary, a student might forget to use one or use a class instead.

(5) Wrong Multiplicity. A student may use the wrong association end mul-

tiplicity value, i.e., a wrong lower bound or upper bound.

7.3.4 Options

The fourth part in the grade configuration panel relates to optional

matching steps in the algorithm. In total, we identified 6 configuration op-

tions that can alter the grading process.

(1) Class Merge. In some cases it is reasonable that students may use one

class to represent two classes of the instructor’s solution model.

66

(2) Class Split. Students may choose to split the content of one class of the

instructor’s solution model into two separate classes.

(3) Class Content Similarity. The algorithm matches classes not only by their

names but also by examining their contents. The original algorithm already

performed structural matching, but the similarity threshold was hard-coded.

Now instructors can set how similar classes need to be, content-wise, to decide

whether they should form a match.

(4) Derived Association. A derived association is an association that can be

derived from the existing associations in the instructor’s solution model. The

point for a derived association is hard-cored in the original algorithm. Now

instructors can set how many points should be given to students for each

derived associations.

Figure 7.2: Class Multiple Match Example Model

(5) Multiple Matching of Classes and Attributes. In the original algorithm,

when a class C in the student’s model has been matched with a class in

the instructor’s solution model, the same class could not be used again for

another purpose, e.g., to represent an attribute of the instructor’s solution

model. Fig. 7.2 illustrates this case, which depicts a partial model for a

67

student. In this model, class QualityLevel in the student’s model could match

with class RoomType in the instructor’s solution model shown in Fig. 6.2

because both classes have similar contents and both are associated with the

class Room. However, the class name QualityLevel in Fig. 7.2 could also be

considered to represent the attribute qualityLevel in the instructor’s solution

model. With the original algorithm, the student would loose the points for

not having the attribute qualityLevel. Out of the 16 initial models from case

study 2, we discovered that in 8 cases the instructor used this strategy to

give the students additional points. After reviewing all 89 models for case

study 2, we found that the instructor used this strategy in 23 models.

Figure 7.3: Association With Subclass Example Model

(6) Association With Sub/Super Class. When it comes to associations and

inheritance, it is possible that students may associate with a subclass or a

superclass rather than the original class, especially when students have added

additional inheritance relationships to their model compared to the instruc-

68

tor’s solution. For instance, Fig. 7.3 shows a student’s partial model in case

study 2. The grading algorithm matches the class Person and Reservation

in the student model with the class Person and Booking in the instructor’s

solution model. However, the student adds two additional classes, Guest

and HotelClerk, and adds an association between Reservation and Guest

and, between Reservation and HotelClerk. We notice that the class Guest

and HotelClerk are subclasses of the class Person. Therefore, it is correct

to match the association between Reservation and Guest in the student’s

model with the association between Booking and Person in the instructor’s

solution model shown in Fig. 6.2. In case study 2, the models of 4 of the 16

students in our first random group and and 18 students out of all 89 students

had similar inheritance and association relationships to superclasses in their

model. This grading strategy was not supported in the original algorithm,

so we added it.

7.3.5 Algorithm Configuration Assessment

Using the configuration options discussed above, the instructor can now

configure the grading algorithm to adapt to the course level and to suit

his/her style. By adjusting the deduction percentage, the instructor can de-

termine how many points students loose when they make mistakes. Also,

69

the instructor can use the grading configuration options to adjust the sensi-

tivity of the similarity checks, as well as enable or disable optional matching

strategies.

7.4 RQ2: Does the use of configuration set-

tings improve the accuracy of automated

grading?

To answer this question, we used the discussions from the interviews with

the instructors to configure the algorithm to match their grading strategies,

and then applied the configured algorithm to re-grade all student models.

0

5

10

15

20

25

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 10
0

10
3

|(
Au

to
m

at
ed

 -
M

an
ua

l)
|

/ M
an

ua
l (

%
)

Students (sorted by increasing difference)

Original Algorithm Tailored Algorithm after Configuration

Figure 7.4: Original vs. Tailored for Animal Case Study

70

7.4.1 Case Study 1: Animal Design Model

For case study 1, the instructor suggested that deductions for Wrong

Inheritance/Realization should be set to 100%, because this exercise was de-

signed specifically to test their knowledge about inheritance relationships.

For example, in this assignment, class Cow, Rabbit and Tiger should inherit

from the class Animal. If a student fails to model these inheritance relation-

ships or misplaces them, they will loose 100% of the points. The instructor

also suggested to choose the option Association with Sub/Super Class, be-

cause for the association Tiger-Animal in the instructor’s solution model, it

is acceptable that a student replaces it with associations between the class

Tiger and all the subclasses of the class Animal.

Fig. 7.4 shows the difference between the instructor’s manual grades and

the automated grading for case study 1. The blue line shows the difference

for the original algorithm, whereas the orange line shows the difference for

the tailored algorithm. We notice that the tailored algorithm slightly out-

performs the original one. Thanks to the configuration settings, the number

of perfectly graded models increased from 24 to 29. With configuration, 86

students received grades with less than a 10% difference compared to manual

grading, and no model differed by more than %18. Out of a maximum of

19 points, the manual grade average was 16.36, whereas the average of the

71

grades of the tailored algorithm was 15.72, and the average of the original

algorithm 15.34. Configuration therefore reduced the average difference in

points from 1.02 to 0.75 (or from 6.52% to 4.80%).

0

10

20

30

40

50

60

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 89

(A
ut

om
at

ed
 -

M
an

ua
l)

/ M
an

ua
l(%

)

Students(sorted by increasing difference)

Original Algorithm Tailored Algorithm after Configuration

Figure 7.5: Original vs. Tailored for Animal Case Study

7.4.2 Case Study 2: Hotel Domain Model

For case study 2, the instructor declared that: (1) As long as a class in

the student’s model can be matched with a class in the instructor’s solution

model, the instructor did not deduct any points for making a mistake in the

class name. (2) Putting an attribute into a different class was not considered

wrong, as in most cases the student would already loose points for a missing

class. (3) No points were deducted for unnecessary inheritance or realization

relationships.

In addition, the instructor chose to (1) Match a class in the student

72

model multiple time with classes/attributes in the instructor’s solution model.

(2) Allowed the students to establish associations to superclasses/subclasses

without loosing points.

Fig. 7.5 plots the difference between the scores of the instructor and

the ones obtained with automated grading. The blue line represents the

original algorithm without configuration, whereas the orange line shows the

scores of the algorithm tailored according to the instructor’s declarations.

Whereas there were no models for which the original algorithm achieved a

score identical with the one given by the instructor, the tailored algorithm

scores perfectly for 8 of the 89 models. Furthermore, 32 models now have

a grade that deviates by less than 10% compared to only 6 models for the

original algorithm. With the tailored algorithm, 84% of the scores have a

difference of 20% or less, and the maximum difference is under 30%. For

the whole class of 89 students, the average difference between the manual

grading the automated grading using the adjusted configuration was 13%,

while with default configuration the difference was 24.6%.

7.5 Conclusion

Grading strategies can vary from instructor to instructor. Also, the level

of expertise of the students in the class also effect the instructor’s grading

73

criteria. Therefore, it is essential to make the automated grading tool con-

figurable. In this chapter, we present a configuration panel that is able to

tailor different grading criteria for instructors. In this configuration panel,

we identified 27 configurable settings, including basic ones, such as default

points for classes and attributes, and more complex options such as match-

ing a class with multiple classes or attributes. When automated grading is

configured to match the context and instructor’s style, it produces scores

that are close to instructor’s manual grading. In case study 1, the average

difference between manual and automated grading was less than 5%, while

in the case study 2 the average difference was 13%. Compared with the first

result, the configuration panel can reduce the difference between automated

grading result and the instructor’s manual grading result.

74

Chapter 8

Assessing Automated Grading

So far, this thesis has verified the automated grading tool through a

comparison between the configured automated grading result with the origi-

nal automated grading result. And the first two research questions has been

answered. This chapter discusses how to validate the automated grading

tool. The first section discusses the feature that the automated grading tool

can deal with multiple correct solutions and answers the research question 3.

The second part of this chapter is focused on the effectiveness of the auto-

mated grading. By answering the research question 4 and 5, we demonstrate

that the automated grading is able to improve efficiency and ensure fairness

in the grading process.

75

8.1 Dealing with Multiple Solutions

Modeling problems are considered to be ill-defined and open-ended [68;

69]. When it comes to modelling, more than one correct answer can exist

for a particular problem [70]. When we discussed the grading of models of

the Hotel case study, the instructor informed us about two cases where more

than one correct solution is possible.

Figure 8.1: Alternative Solution for Hotel Domain Model

The first case is about the reflexive association adjoinedRooms, which in-

structor’s solution uses to represent that more than one room can be grouped

together as a suite as shown in Fig. 6.2. In that case study, the description

76

states that a guest can stay in an individual room or a suite, which is com-

posed of several adjoined rooms. However, Fig. 8.1 shows an alternative way

to model this situation. In Fig. 8.1, adjoined rooms are reified in a class

named Suite. A Suite groups 2..* rooms together. The second case is related

to Stay association class in Fig. 6.2, which is used to ensure that a Person

that has a booking stays in the room. An alternative solution would not use

this association class. Instead, it would use an attribute (checkedIn) in the

Booking class as shown in Fig. 8.1. Therefore, we adjust our grading tool

to allow instructors to upload multiple solution models. In the configuration

panel, which is shown in Fig. 7.1, there is a “+” button on the upper-right

corner with the name “Load Another Solution Model”. After clicking that

button, the tool will show a file browser, which is shown in Fig. 8.2. Instruc-

tors can use the file browser to load a different solution model.

We added each of these two cases as an alternative instructor solution

model. As a result, for case study 2, we have 3 instructor solution models,

the model that was shown in Fig. 6.2, the model that uses the classSuite,

and the model that uses the attribute checkedIn.

77

Figure 8.2: File Browser for Loading Alternative Model

8.1.1 RQ3: Does the accuracy of automated grading

improve when multiple solutions are matched against?

In order to grade problems that have more than one correct solution, we

added the capability to load more than one instructor model in the configura-

tion panel. When the algorithm is running, the student’s model is compared

with each instructor model that is currently loaded. The highest mark is

taken as the student’s final grade.

In case study 2, where the average for manual grading is 31.19. When

only one instructor model was used for grading, i.e. the solution shown

previously in Fig. 6.2, the average grade for automated grading using the

78

configured algorithm was 26.97. When using an additional solution model

(i.e. the one with class Suite), the average increased to 27.32. We identified

17 out of 89 students who obtained higher grades with the this additional

case, 14 created the class Suite in their models and 3 students added an

attribute to represent the class Suite. When we used all three solution models,

the original solution shown in Fig. 6.2, the solution with the class Suite and

the solution with the attribute checkedIn, the average became even closer to

that of manual grading: 28.37. We identified 23 students who used the

attribute checkedIn. As a result, the average difference between manual

grading and automated grading for case study 2 improved to 9% when all

3 instructor solution models were used. The tool chooses the solution that

produces the highest grade for the student.

79

0

5

10

15

20

25

30

35

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 89(A
ut

om
at

ed
 -

M
an

ua
l)

/ M
an

ua
l(%

)

Students (sorted by increasing difference)

1 Solution 2 Solutions 3 Solutions

Figure 8.3: 1 vs 2 vs 3 Solutions for Hotel Case Study

Fig. 8.3 shows the percentage difference between automated grading and

manual grading when using 1 solution (orange line), 2 solutions (green line),

and 3 solutions (black line). The orange graph was discussed before in RQ2.

We notice that the percentage difference decreases when using 2 solutions,

and decreases further when using 3 solutions. When grading with 1 solution,

32 models had a grade difference that was less than 10%. With 2 solutions,

35 models had a grade difference less than 10%, and when considering 3

solutions, this number increased even to 46, i.e. more than half of the models.

Furthermore, the automated grading algorithm determined the same score

than the instructor for 16 students. In the end, with 3 solutions, the average

grade difference dropped from 13% to 9%.

80

8.2 Assessing Automated Grading Effective-

ness

This section sheds light on the potential of automated grading in the

classroom by reporting on the time saved in our two case studies, as well

as the fairness issues that we discovered in the manual grades thanks to

automated grading.

8.2.1 RQ4: Does automated grading save time?

Grading is a tedious and time consuming process [39; 71–73]. To study

whether automated grading saves time, we asked the instructors to record

the time that they needed to manually grade each student model. We also

measured the time that the tool needed to grade each model.

For case study 1, the instructor spent approximately 2 hours to grade

the entire class. On average 1 minute and 7 seconds was spent on manually

grading one student model. The tool spent 0.1 seconds to grade one model,

i.e., about 11 seconds to grade the entire class automatically.

For case study 2, it took the instructor 4 hours and 11 minutes to grade

the 89 students. On average the instructor spent 4 minutes and 10 seconds to

manually grade one student model. The automated tool takes 0.16 seconds

to finish grading one model, i.e., it took 14.24 seconds to grade the whole

81

class.

Of course this comparison is not fair. Both instructors explained that

typically they prepare one initial model with the grading scheme before they

start grading the first student. This step is also required for automated

grading.

As the instructors are grading the first students, they might encounter

a situation in which a student model contains an alternative solution that

the instructor had not considered in his initial model. In that case, the

instructors give the student full points. Ideally they would also write down

this alternative solution, because from now on, whenever they encounter that

alternative solution in another student’s model they should also give them

full points to be fair.

In our experiments we created all the alternative solutions in advance,

but in a real-world setting they would also have to be discovered somehow.

This incremental discovery of alternative solutions is not automated in our

current implementation. Currently an instructor would create one solution,

run the algorithm, and then look at the grades of the students that did not

get high scores to check whether they might have used an alternative solution.

If yes, the instructor would have to create another solution model and run

the grading again. This can be repeated until the instructor is confident that

all valid solutions have been considered.

82

To avoid this manual incremental discovery of alternative solutions, one

could imagine a strategy where the tool applies standard refactorings and

patterns to the initial solution to automatically create other solution variants,

but this is left for future work.

83

8.2.2 RQ5: Does automated grading help to ensure

fairness?

Fairness and consistency are in the mind of instructors when they grade

students [74–76]. Student comments about grading are most often fairness-

related [77; 78]. However, ensuring fairness is challenging for instructors

when there are several correct solutions and/or when grading large number

of students.

Table 8.1: Grades Difference for Animal Class Diagram

I T Reason for Difference
1 17 15.5 Missing Inheritance Animal (I: 1.5, T: 0.5),

Missing RealizationEdible (I: 1, T: 0.5)
2 17.5 17 Missing Realization Edible (I: 0.5 , T: 0)
3 17.5 18 Wrong Inheritance Animal (I: 1.5 , T: 2.0)
4 17 16.5 Wrong Inheritance Bird (I: 1 , T: 0.5)
5 14 12.5 Wrong Inheritance Animal : (I: 1.5, T: 0.5),

Bird :(I: 1, T: 0.5)
6 17 16 Wrong Inheritance Bird (I: 1 , T: 0.5), Edible (I: 1 , T: 0.5)
7 17 16.5 Wrong Inheritance Bird (I: 1 , T: 0.5)
8 13 13.5 Wrong Realization Edible (I: 1 , T: 1.5)
9 17 16.5 Wrong Inheritance Bird (I: 1 , T: 0.5)
10 15 14.5 Wrong Inheritance Bird (I: 1 , T: 0.5)
11 17.5 17 Missing Realization Edible (I: 0.5 , T: 0)
12 17.5 17 Missing Realization Edible (I: 0.5, T: 0)
13 18 17 Wrong Inheritance Bird I: 1, T: 0.5, Plant (I: 1, T: 0.5)
14 18 17.5 Wrong Inheritance Bird (I: 1 , T: 0.5)

When we showed the automated grading scores (using adjusted configu-

rations) to the instructor of case study 1, he re-examined some of the student

models where the grade difference between the manual and automated grade

84

was high. He then discovered that he was not fair to 14 students.

85

Figure 8.4: Student 12 Solution Model for Case Study 1

Table. 8.1 lists the details of 14 models on which the tool’s grades were

more reasonable than manual grading by instructor. For example, Stu-

dent 11, shown in Fig. 8.4, failed to add the interface Edible. Therefore,

class Cow, Chicken and Plant in the student’s model are missing the real-

ization from Edible. Based on the adjusted grading configuration for case

study 1, the student should lose 0.5 mark for missing the interface Edible

and lose 0.5 point for each missing class realization relationship (a total of

1.5 points). Therefore, the tool gave 0/2 for Edible and the realization re-

lationships. However, the instructor only deducted 1 point for missing the

86

realization relationships. As a result, the instructor gave 0.5/2 points.

87

Figure 8.5: Student 8 Solution Model for Case Study 1

For student 8, shown in Fig. 8.5, again, the instructor deducted 1 point

for the missing realization relationships, although the student is only missing

1 realization relationship, i.e. between Plant and Edible. The tool gave 1.5/2

and the instructor gave 1.0/2. For both examples, the instructor realized that

the tool gave the correct points, and he revised his grades accordingly. After

revising manual grading result, the average difference between manual and

automated grading has decreased to 4.32%, while previous difference was

4.8%.

88

Table 8.2: Grades Differences for Hotel Domain Model

I T Reason for Difference
1 30 24 Stay : (I: 3, T: 0), Reservation: (I: 10, T: 6), RoomType: (I: 2, T: 3)
2 39 34 RoomType: (I: 3, T: 4), Stay : (I: 6, T: 2) Duration: (I: 1, T: 0)
3 31 31 RoomType: (I: 4, T: 5), Reservation: (I: 8, T: 7)
4 24 21 Stay : (I:2, T:0), GuestInfo: (I:1, T:0)
5 33 26 Stay : (I: 2, T: 0), Reservation: (I: 11, T: 8) RoomType: (I: 3, T: 1)
6 30 27 Reservation: (I: 8, T: 5)
7 40 31 Stay : (I: 6, T: 4), Reservation: (I: 14, T: 7)
8 41 37 Reservation: (I: 13, T: 9)
9 32 24 RoomType: (I: 3, T: 1), Reservation: (I: 10, T: 4)
10 32 28 Stay : (I: 0, T: 4), Reservation: (I: 13, T: 5)
11 29 25 Reservation: (I: 9, T: 5)
12 35 30 Stay : (I: 1, T: 0), Reservation: (I: 12, T: 8)
13 34 30 Reservation: (I: 10, T: 6)
14 31 28 Reservation: (I: 10, T: 7)
15 29 25 Reservation: (I: 10, T: 6)
16 35 25 Reservation: (I: 13, T: 5), Stay : (I: 2, T: 0)
17 37 30 RoomType: (I: 3, T: 1), Stay : (I: 3, T: 0)

FirstNight : (I: 1, T: 0), LastNight : (I: 1, T: 0)
18 20 22 Reservation: (I: 3, T: 5)
19 28 23 Reservation: (I: 8, T: 3)
20 40 38 Reservation: (I: 14, T: 12)
21 37 32 Reservation: (I: 11, T: 6)
22 31 26 Stay : (I: 4, T: 0), tele: (I: 1, T: 0)
23 34 26 Reservation: (I: 11, T: 7), Tel : (I: 1, T: 0), Stay : (I: 5, T: 4)

When we showed the automated grading scores (using adjusted configu-

rations with 3 solutions) to the instructor of case study 2, he discovered that

he was not consistent in 23 student models, which are listed in Table. 8.2.

89

Figure 8.6: Student 2 Solution Model for Case Study 2

For students 1-3, the instructor gave less than what the student deserves

for the class RoomType. For example, in the model of Student 2, shown in

Fig. 8.6, the tool assigned 4 points for the class Quality, while the instructor

assigned 3 points. The tool matched Quality with the class RoomType and

the attribute qualityLevel in the instructor solution, shown in Fig. 8.1. This

gave the student 3 points, 2 points for RoomType and 1 point for qualityLevel.

The tool also matched the attribute maxRate in the student’s model with

the attribute maxDailyRate in the instructor model. Thus, the tool gave the

student an extra 1 point. After discussing with the instructor, he admitted

that he forgot to give one mark for this student.

90

Figure 8.7: Student 21 Solution Model for Case Study 2

For students 4-23, the instructor gave too many points to them. For

instance, Student 21, shown in Fig. 8.7, made Reservation to be an asso-

ciation class for the association Room-Guest. The instructor assigned 11

points for the class Reservation. He did not deduct points for making the

class Reservation an association class rather than a regular class. When we

discussed with the instructor, he admitted that making class Reservation

an association class was incorrect and student 22 should not receive the 11

points, but rather should receive 7 points (the tool assigned 6 as shown in Ta-

ble. 8.2). The 4 extra points that the instructor assigned were the following:

2 points for each of the associations between Room-Reservation and between

Reservation-Guest. The tool did not give these extra points. Also, the tool

91

did not give points for the attribute dateTo, but the instructor decided that

it matches with attribute plannedNumberOfNights and gave 1 points. Nev-

ertheless, the instructor revised his grading after looking at the automated

grading score. After revising manual grading results, the average difference

between manual and automated grading was 8.27%, while previous difference

was 9% (when using 3 solutions as discussed previously).

8.3 Conclusion

In this chapter, we discuss the assessment of the automated grading.

First, we focus on the feature that our tool can deal with the questions which

have multiple correct solutions. Our tool can load multiple correct solution

models and compare the student model with all correct solution models to

generate the final grading result. For situations in which alternative solutions

are possible, running the automated grading algorithm several times and

using the highest grade as the final grade brings the average automated

grading scores closer to the manual grade. The average difference in case

study 2 improved from 13% to 9%.

We also find that automated grading has the potential to save a sig-

nificant amount of time over manual grading. It takes hours to manually

grade the whole class of 80-100 students, while an automated tool once con-

92

figured with all acceptable solution variants grades the class in a few seconds.

Also, automated grading can ensure fairness in the grading process. Manual

grading is prone to unfairness. In our experiments, both instructors were

not consistent in the grading process. Grades determined with a determinis-

tic automated grading algorithm are more consistent. After the instructors

adjusted their grades, the average difference between manual grading and

automated grading improved from 4.8% to 4.32% for case study 1 and from

9% to 8.27% for case study 2.

93

Chapter 9

Conclusion and Future Work

9.1 Conclusion

UML diagrams in general, and class diagrams in particular, are widely

used in computer science and software engineering education. In many

courses, computer science students are required to solve assignments or an-

swer exam questions involving class diagrams. Instructors usually grade these

diagrams manually by comparing each student solution with the template

solution that they prepared for the assignment/exam. This could be a cum-

bersome task, especially when they have to grade large number of student

papers. Furthermore, a particular problem could have different possible de-

sign solutions using class diagrams. Solutions could vary based on the names

of the classes, their properties, or relationships between classes. Furthermore,

94

instructors are not uniform in their grading styles, and a modeling problem

itself can have multiple correct solutions. It is therefore essential to devise

effective automated grading approaches that can take this into account.

This thesis proposes an automated grading approach for class diagrams.

In particular, two metamodels have been proposed in this thesis, one to es-

tablish mappings between an instructor’s solution and student solutions, the

other metamodel assigns grades to model elements and stores them. We also

introduced a grading algorithm that matches model elements in the student

model with elements in the instructor model. Moreover, we assess the efficacy

of our automated approach for grading class diagrams in practice. In partic-

ular, we conduct two case studies in which we compare manual grading with

automated grading. We develop a configuration panel which contains 27 con-

figurable options, that allow the grading tool that we used to be tailored for a

particular instructor’s grading style. We find that configuring the algorithm

to an instructor’s style brings the automated grading scores closer to manual

grading scores. In the case study on an introductory modeling assignment

with 103 students, after adjusting the grading configuration to match with

the instructor’s style, the average difference between manual grading and our

tool’s grading is less than 5%. The second case study is with 89 students of

an advanced modelling course on a domain model for a Hotel Reservation

System. This study has more than one correct solution. Therefore, we add

95

a feature in the tool to allow instructors to upload multiple solution models.

We found that 40/89 students used an alternative correct solution in their

assignment. The average difference between manual grading and our tool’s

grading with multiple solutions is 9%.

We also find that automated grading has the potential to save time.

While it takes hours to grade a class of about 100 students, automated grad-

ing accomplishes the task in a matter of seconds once the algorithm has been

configured with the set of alternative solutions and to the desired grading

style. Finally, compared with manual grading, automated grading has shown

to be more consistent and able to ensure fairness in the grading process. In

our case studies, we identify 37 cases in which the automated grading is more

consistent than manual grading.

9.2 Future Work

Right now, when the instructor grades a modeling assignment with mul-

tiple correct solution models, we need the instructor to create the correct

alternative models, then load them manually. As a result, it is necessary for

the instructor to check the student models to find whether there are poten-

tial correct solution models, since instructor may not consider all the solution

models at the first time. Therefore, we plan to allow the tool able to select

96

the alternative solution models automatically, which can improve the grading

efficiency. Moreover, we plan to build a classroom platform, where the in-

structor can set the solution model and upload all the student models. After

grading, it can show some statistics, such as the average for the whole class

and the correctness rate of each element, e.g., for one class C, how many

students in the whole classroom represent the class C in their models. Also,

we plan to run more experiments with assignments obtained from different

instructors. This can help us obtain more configuration options to make the

automated grading tool suitable for a large number of instructors. Finally,

we plan to extend our approach to grade other UML models, e.g., sequence

diagrams and activity diagrams.

97

Bibliography

[1] J. Adams, Computing Is The Safe STEM Ca-

reer Choice Today, November 3, 2014. [On-

line]. Available: https://cacm.acm.org/blogs/blog-cacm/

180053-computing-is-the-safe-stem-career-choice-today/fulltext

[2] N. Singer, The Hard Part of Computer Science? Getting Into Class,

January 24, 2019. [Online]. Available: https://www.nytimes.com/2019/

01/24/technology/computer-science-courses-college.html

[3] P. Ihantola, T. Ahoniemi, V. Karavirta, and O. Seppälä, “Review of

recent systems for automatic assessment of programming assignments,”

in Proceedings of the 10th Koli Calling International Conference

on Computing Education Research, ser. Koli Calling ’10. New

York, NY, USA: ACM, 2010, pp. 86–93. [Online]. Available:

http://doi.acm.org/10.1145/1930464.1930480

[4] J. Caiza and J. Del Alamo, “Programming assignments automatic grad-

98

https://cacm.acm.org/blogs/blog-cacm/180053-computing-is-the-safe-stem-career-choice-today/fulltext
https://cacm.acm.org/blogs/blog-cacm/180053-computing-is-the-safe-stem-career-choice-today/fulltext
https://www.nytimes.com/2019/01/24/technology/computer-science-courses-college.html
https://www.nytimes.com/2019/01/24/technology/computer-science-courses-college.html
http://doi.acm.org/10.1145/1930464.1930480

ing: Review of tools and implementations,” in INTED2013 Proceedings,

ser. 7th International Technology, Education and Development Confer-

ence. IATED, 4-5 March, 2013 2013, pp. 5691–5700.

[5] T. Daradoumis, R. Bassi, F. Xhafa, and S. Caballé, “A review on mas-

sive e-learning (mooc) design, delivery and assessment,” in 2013 eighth

international conference on P2P, parallel, grid, cloud and internet com-

puting. IEEE, 2013, pp. 208–213.

[6] H. Correia, J. P. Leal, and J. C. Paiva, “Enhancing feedback to students

in automated diagram assessment,” in 6th Symposium on Languages,

Applications and Technologies, 2017, p. 11.

[7] khanacademy, https://https://www.khanacademy.org/, 2020.

[8] Udemy, https://https://www.udemy.org/, 2020.

[9] Coursera, https://https://www.coursera.org/, 2020.

[10] R. F. Kizilcec, C. Piech, and E. Schneider, “Deconstructing disengage-

ment: analyzing learner subpopulations in massive open online courses,”

in Proceedings of the third international conference on learning analytics

and knowledge, 2013, pp. 170–179.

[11] M. Kassop, “Ten ways online education matches, or surpasses, face-to-

face learning,” The Technology Source, vol. 3, 2003.

99

https://https://www.khanacademy.org/
https://https://www.udemy.org/
https://https://www.coursera.org/

[12] C. C. Leung, T. H. Lam, and K. K. Cheng, “Mass masking in the covid-

19 epidemic: people need guidance,” Lancet, vol. 395, no. 10228, p. 945,

2020.

[13] C. Wang, Z. Cheng, X.-G. Yue, and M. McAleer, “Risk management of

covid-19 by universities in china,” 2020.

[14] W. Van Lancker and Z. Parolin, “Covid-19, school closures, and child

poverty: a social crisis in the making,” The Lancet Public Health, vol. 5,

no. 5, pp. e243–e244, 2020.

[15] Nine Ways To Reimagine Higher Education, https:

//www.forbes.com/sites/annkirschner/2020/05/14/

nine-ways-to-reimagine-higher-education/#727f6c73767d, 2020.

[16] Coronavirus: Alberta universities look to mostly online

courses for fall semester, https://globalnews.ca/news/6947098/

coronavirus-alberta-universities-fall-semester/, 2020.

[17] Fall classes will mostly be done online amid COVID-19, some

Canadian universities say, https://globalnews.ca/news/6935364/

coronavirus-canadian-university-fall-classes/, 2020.

[18] How Online Learning Kept Higher Ed Open During the Coron-

avirus Crisis, https://spectrum.ieee.org/tech-talk/at-work/education/

100

https://www.forbes.com/sites/annkirschner/2020/05/14/nine-ways-to-reimagine-higher-education/#727f6c73767d
https://www.forbes.com/sites/annkirschner/2020/05/14/nine-ways-to-reimagine-higher-education/#727f6c73767d
https://www.forbes.com/sites/annkirschner/2020/05/14/nine-ways-to-reimagine-higher-education/#727f6c73767d
https://globalnews.ca/news/6947098/coronavirus-alberta-universities-fall-semester/
https://globalnews.ca/news/6947098/coronavirus-alberta-universities-fall-semester/
https://globalnews.ca/news/6935364/coronavirus-canadian-university-fall-classes/
https://globalnews.ca/news/6935364/coronavirus-canadian-university-fall-classes/
https://spectrum.ieee.org/tech-talk/at-work/education/how-online-learning-kept-higher-ed-open-during-the-coronavirus-crisis
https://spectrum.ieee.org/tech-talk/at-work/education/how-online-learning-kept-higher-ed-open-during-the-coronavirus-crisis

how-online-learning-kept-higher-ed-open-during-the-coronavirus-crisis,

2020.

[19] R. Huang, D. Liu, A. Tlili, J. Yang, H. Wang et al., “Handbook on

facilitating flexible learning during educational disruption: The chinese

experience in maintaining undisrupted learning in covid-19 outbreak,”

Beijing: Smart Learning Institute of Beijing Normal University, 2020.

[20] J. Sáenz, I. G. Gurtubay, Z. Izaola, and G. A. López, “pygiftgenerator:

A python module designed to prepare moodle-based quizzes,” arXiv

preprint arXiv:2005.00910, 2020.

[21] N.-T. Le, F. Loll, and N. Pinkwart, “Operationalizing the continuum be-

tween well-defined and ill-defined problems for educational technology,”

IEEE Trans. Learn. Technol., vol. 6, no. 3, pp. 258–270, Jul. 2013.

[22] P. Fournier-Viger, R. Nkambou, and E. M. Nguifo, Building Intelligent

Tutoring Systems for Ill-Defined Domains. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2010, pp. 81–101.

[23] R. Alur, L. D’Antoni, S. Gulwani, D. Kini, and M. Viswanathan, “Au-

tomated grading of dfa constructions,” in Twenty-Third International

Joint Conference on Artificial Intelligence, 2013.

[24] H. Simanjuntak, “Proposed framework for automatic grading system

101

https://spectrum.ieee.org/tech-talk/at-work/education/how-online-learning-kept-higher-ed-open-during-the-coronavirus-crisis
https://spectrum.ieee.org/tech-talk/at-work/education/how-online-learning-kept-higher-ed-open-during-the-coronavirus-crisis

of er diagram,” in 2015 7th International Conference on Information

Technology and Electrical Engineering (ICITEE). IEEE, 2015, pp. 141–

146.

[25] G. Hoggarth and M. Lockyer, “An automated student diagram assess-

ment system,” SIGCSE Bull., vol. 30, no. 3, pp. 122–124, Aug. 1998.

[26] M. Schöttle, N. Thimmegowda, O. Alam, J. Kienzle, and G. Mussbacher,

“Feature modelling and traceability for concern-driven software devel-

opment with touchcore,” in Companion Proceedings of the 14th Inter-

national Conference on Modularity, MODULARITY 2015, Fort Collins,

CO, USA, March 16 - 19, 2015, 2015, pp. 11–14.

[27] A. S. Lan, D. Vats, A. E. Waters, and R. G. Baraniuk, “Mathemati-

cal language processing: Automatic grading and feedback for open re-

sponse mathematical questions,” in Proceedings of the Second (2015)

ACM Conference on Learning@ Scale, 2015, pp. 167–176.

[28] J. Kadupitiya, S. Ranathunga, and G. Dias, “Automated assessment

of multi-step answers for mathematical word problems,” in 2016 Six-

teenth International Conference on Advances in ICT for Emerging Re-

gions (ICTer). IEEE, 2016, pp. 66–71.

[29] M. Mohler and R. Mihalcea, “Text-to-text semantic similarity for auto-

102

matic short answer grading,” in Proceedings of the 12th Conference of

the European Chapter of the ACL (EACL 2009), 2009, pp. 567–575.

[30] S. Jing, O. Santos, J. Boticario, C. Romero, M. Pechenizkiy, and

A. Merceron, “Automatic grading of short answers for mooc via semi-

supervised document clustering.” in EDM, 2015, pp. 554–555.

[31] S. Roy, S. Dandapat, A. Nagesh, and Y. Narahari, “Wisdom of students:

A consistent automatic short answer grading technique,” in Proceedings

of the 13th International Conference on Natural Language Processing,

2016, pp. 178–187.

[32] S. P. Balfour, “Assessing writing in moocs: Automated essay scoring and

calibrated peer review™.” Research & Practice in Assessment, vol. 8, pp.

40–48, 2013.

[33] Y. Attali and J. Burstein, “Automated essay scoring with e-rater® v.

2,” The Journal of Technology, Learning and Assessment, vol. 4, no. 3,

2006.

[34] M. T. Helmick, “Interface-based programming assignments and auto-

matic grading of java programs,” in Proceedings of the 12th annual

SIGCSE conference on Innovation and technology in computer science

education, 2007, pp. 63–67.

103

[35] C. A. Higgins, G. Gray, P. Symeonidis, and A. Tsintsifas, “Automated

assessment and experiences of teaching programming,” Journal on Edu-

cational Resources in Computing (JERIC), vol. 5, no. 3, pp. 5–es, 2005.

[36] J. Spacco, D. Hovemeyer, W. Pugh, F. Emad, J. K. Hollingsworth,

and N. Padua-Perez, “Experiences with marmoset: designing and using

an advanced submission and testing system for programming courses,”

ACM Sigcse Bulletin, vol. 38, no. 3, pp. 13–17, 2006.

[37] M. Amelung, P. Forbrig, and D. Rösner, “Towards generic and flexible

web services for e-assessment,” in Proceedings of the 13th annual confer-

ence on Innovation and technology in computer science education, 2008,

pp. 219–224.

[38] J. Gao, B. Pang, and S. S. Lumetta, “Automated feedback framework

for introductory programming courses,” in Proceedings of the 2016 ACM

Conference on Innovation and Technology in Computer Science Educa-

tion, 2016, pp. 53–58.

[39] B. Cheang, A. Kurnia, A. Lim, and W.-C. Oon, “On automated grading

of programming assignments in an academic institution,” Computers &

Education, vol. 41, no. 2, pp. 121–131, 2003.

[40] P. Thomas, K. Waugh, and N. Smith, “Using patterns in the automatic

104

marking of er-diagrams,” in Proceedings of the 11th annual SIGCSE

conference on Innovation and technology in computer science education,

2006, pp. 83–87.

[41] F. Batmaz and C. J. Hinde, “A diagram drawing tool for

semi–automatic assessment of conceptual database diagrams,” Jan

2006. [Online]. Available: https://hdl.handle.net/2134/4536

[42] A. Jayal and M. Shepperd, “The problem of labels in e-assessment of

diagrams,” J. Educ. Resour. Comput., vol. 8, no. 4, pp. 12:1–12:13, Jan.

2009.

[43] M. Striewe and M. Goedicke, “Automated assessment of uml activity

diagrams,” in Proceedings of the 2014 conference on Innovation & tech-

nology in computer science education, 2014, pp. 336–336.

[44] S. TSELONIS and W. MCGEE, “Diagram matching for human-

computer collaborative assessment,” in IN: Proceedings of the 9th CAA

Conference, Loughborough: Loughborough University. c Loughborough

University Please cite the published version., 2005.

[45] P. Thomas, K. Waugh, and N. Smith, “Learning and automatically as-

sessing graph-based diagrams,” in Beyond Control: learning technology

for the social network generation. Research Proceedings of the 14th As-

105

https://hdl.handle.net/2134/4536

sociation for Learning Technology Conference (ALT-C, 4—6 September,

Nottingham, UK, 2007), 2007, pp. 61–74.

[46] V. Vachharajani and J. Pareek, “Framework to approximate label

matching for automatic assessment of use-case diagram,” International

Journal of Distance Education Technologies (IJDET), vol. 17, no. 3, pp.

75–95, 2019.

[47] R. Sousa and J. P. Leal, “A structural approach to assess graph-based

exercises,” in International Symposium on Languages, Applications and

Technologies. Springer, 2015, pp. 182–193.

[48] N. Haji Ali, Z. Shukur, and S. Idris, “Assessment system for uml class

diagram using notations extraction,” International Journal of Computer

Science and Network Security, vol. 7, no. 8, pp. 181–187, 2007.

[49] J. Soler, I. Boada, F. Prados, J. Poch, and R. Fabregat, “A web-based

e-learning tool for uml class diagrams,” in IEEE EDUCON 2010 Con-

ference, April 2010, pp. 973–979.

[50] R. W. Hasker, “Umlgrader: An automated class diagram grader,” J.

Comput. Sci. Coll., vol. 27, no. 1, pp. 47–54, Oct. 2011.

[51] D. R. Stikkolorum, P. van der Putten, C. Sperandio, and M. Chaudron,

“Towards automated grading of UML class diagrams with machine

106

learning,” in Proceedings of the 31st Benelux Conference on Artificial

Intelligence (BNAIC 2019) and the 28th Belgian Dutch Conference

on Machine Learning (Benelearn 2019), Brussels, Belgium, November

6-8, 2019, ser. CEUR Workshop Proceedings, K. Beuls, B. Bogaerts,

G. Bontempi, P. Geurts, N. Harley, B. Lebichot, T. Lenaerts,

G. Louppe, and P. V. Eecke, Eds., vol. 2491. CEUR-WS.org, 2019.

[Online]. Available: http://ceur-ws.org/Vol-2491/paper80.pdf

[52] V. I. Levenshtein, “Binary codes capable of correcting deletions, inser-

tions, and reversals,” in Soviet physics doklady, vol. 10, no. 8, 1966, pp.

707–710.

[53] V. Rus, M. Lintean, R. Banjade, N. B. Niraula, and D. Stefanescu,

“Semilar: The semantic similarity toolkit,” in Proceedings of the 51st

Annual Meeting of the Association for Computational Linguistics: Sys-

tem Demonstrations, 2013, pp. 163–168.

[54] G. Hirst, D. St-Onge et al., “Lexical chains as representations of con-

text for the detection and correction of malapropisms,” WordNet: An

electronic lexical database, vol. 305, pp. 305–332, 1998.

[55] Z. Wu and M. Palmer, “Verbs semantics and lexical selection,” in Pro-

ceedings of the 32nd annual meeting on Association for Computational

107

http://ceur-ws.org/Vol-2491/paper80.pdf

Linguistics. Association for Computational Linguistics, 1994, pp. 133–

138.

[56] D. Lin, “An information-theoretic definition of similarity,” in

Proceedings of the Fifteenth International Conference on Machine

Learning, ser. ICML ’98. San Francisco, CA, USA: Morgan

Kaufmann Publishers Inc., 1998, pp. 296–304. [Online]. Available:

http://dl.acm.org/citation.cfm?id=645527.657297

[57] P. Resnik, “Semantic similarity in a taxonomy: An information-based

measure and its application to problems of ambiguity in natural lan-

guage,” J. Artif. Int. Res., vol. 11, no. 1, pp. 95–130, Jul. 1999.

[58] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro, EMF: eclipse

modeling framework. Pearson Education, 2008.

[59] U. Laufs, C. Ruff, and J. Zibuschka, “Mt4j-a cross-platform multi-touch

development framework,” arXiv preprint arXiv:1012.0467, 2010.

[60] B. V. DeBoer, D. M. Anderson, and A. M. Elfessi, “Grading styles and

instructor attitudes,” College Teaching, vol. 55, no. 2, pp. 57–64, 2007.

[61] N. Resh, “Justice in grades allocation: Teachers’ perspective,” Social

Psychology of Education, vol. 12, no. 3, pp. 315–325, 2009.

108

http://dl.acm.org/citation.cfm?id=645527.657297

[62] R. Doran, F. Lawrenz, and S. Helgeson, “Research on assessment in

science,” Handbook of research on science teaching and learning, pp.

388–442, 1994.

[63] L. Biberman-Shalev, C. Sabbagh, N. Resh, and B. Kramarski, “Grading

styles and disciplinary expertise: The mediating role of the teacher’s

perception of the subject matter,” Teaching and Teacher Education,

vol. 27, no. 5, pp. 831–840, 2011.

[64] W. Carbonaro, “Tracking, students’ effort, and academic achievement,”

Sociology of Education, vol. 78, no. 1, pp. 27–49, 2005.

[65] G. S. Leventhal, Fairness in social relationships. General Learning

Press Morristown, NJ, 1976.

[66] J. Randall and G. Engelhard, “Examining the grading practices of teach-

ers,” Teaching and Teacher Education, vol. 26, no. 7, pp. 1372–1380,

2010.

[67] S. Fitzgerald, B. Hanks, R. Lister, R. McCauley, and L. Murphy,

“What are we thinking when we grade programs?” in Proceeding

of the 44th ACM Technical Symposium on Computer Science

Education, ser. SIGCSE ’13. New York, NY, USA: Association

109

for Computing Machinery, 2013, p. 471–476. [Online]. Available:

https://doi.org/10.1145/2445196.2445339

[68] M. De Marsico, F. Sciarrone, A. Sterbini, and M. Temperini, “Support-

ing mediated peer-evaluation to grade answers to open-ended questions,”

EURASIA J. Math. Sci. Technol. Educ, vol. 13, no. 4, pp. 1085–1106,

2017.

[69] J. Evermann and Y. Wand, “Ontological modeling rules for uml: An em-

pirical assessment,” Journal of Computer Information Systems, vol. 46,

no. 5, pp. 14–29, 2006.

[70] V. L. Pavlov and A. Yatsenko, “Using pantomime in teaching ooa&ood

with uml,” in 18th Conference on Software Engineering Education &

Training (CSEET’05). IEEE, 2005, pp. 77–84.

[71] D. Jackson and M. Usher, “Grading student programs using assyst,” in

Proceedings of the twenty-eighth SIGCSE technical symposium on Com-

puter science education, 1997, pp. 335–339.

[72] C. Wilcox, “The role of automation in undergraduate computer science

education,” in Proceedings of the 46th ACM Technical Symposium on

Computer Science Education, 2015, pp. 90–95.

[73] J. Carter, K. Ala-Mutka, U. Fuller, M. Dick, J. English, W. Fone, and

110

https://doi.org/10.1145/2445196.2445339

J. Sheard, “How shall we assess this?” in Working group reports from

ITiCSE on Innovation and technology in computer science education,

2003, pp. 107–123.

[74] J. W. Howatt, “On criteria for grading student programs,” ACM

SIGCSE Bulletin, vol. 26, no. 3, pp. 3–7, 1994.

[75] R. D. Tierney, “Fairness in classroom assessment,” Sage, 2012.

[76] R. D. Tierney, M. Simon, and J. Charland, “Being fair: Teachers’ inter-

pretations of principles for standards-based grading,” in The Educational

Forum, vol. 75, no. 3. Taylor & Francis, 2011, pp. 210–227.

[77] K. Sambell, S. Brown, and L. McDowell, “” but is it fair?”: An ex-

ploratory study of student perceptions of the consequential validity of

assessment.” Studies in educational evaluation, vol. 23, no. 4, pp. 349–71,

1997.

[78] P. L. Nesbit and S. Burton, “Student justice perceptions following as-

signment feedback,” Assessment & Evaluation in Higher Education,

vol. 31, no. 6, pp. 655–670, 2006.

111

	Abstract
	Co-Authorship and Related Publication
	Acknowledgements
	Introduction
	Problem Summary
	Thesis Contributions
	Thesis Organization

	Background and Related Work
	Automated Grading Tools
	Automated Grading Tools for Models
	Automated Grading Tools for UML Class Diagram
	Conclusion

	Motivating Examples
	University Models
	Conclusion

	Grading Algorithm
	Matching Classes
	Matching Class Contents
	Matching Split Class
	Matching Merged Class
	Matching Association
	Matching Enumeration
	Conclusion

	Grading Metamodels and Tool Support
	Metamodels
	Grading Tool Support
	Conclusion

	Case Study
	Case Study 1: Animal Design Model
	Case Study 2: Hotel Domain Model
	First Automated Grading Result
	Limitations and Threats to Validity
	Conclusion

	Exploring Grading Strategies
	Grading Strategies Assessment
	RQ1: Are there different grading criteria for class diagrams?
	Automated Grading Configuration Settings
	Points
	Unnecessary
	Deductions
	Options
	Algorithm Configuration Assessment

	RQ2: Does the use of configuration settings improve the accuracy of automated grading?
	Case Study 1: Animal Design Model
	Case Study 2: Hotel Domain Model

	Conclusion

	Assessing Automated Grading
	Dealing with Multiple Solutions
	RQ3: Does the accuracy of automated grading improve when multiple solutions are matched against?

	Assessing Automated Grading Effectiveness
	RQ4: Does automated grading save time?
	RQ5: Does automated grading help to ensure fairness?

	Conclusion

	Conclusion and Future Work
	Conclusion
	Future Work

