# HORMONAL ALGAE: A SOURCE OF FUNCTIONAL FATTY ACIDS

A Thesis Submitted to the Committee on Graduate Studies in Partial Fulfillment of the Requirements for the Degree of Master of Science in the Faculty of Arts and Science

## TRENT UNIVERSITY

Peterborough, Ontario, Canada

© Copyright by Kira Ramphal 2015

Environmental and Life Sciences M.Sc. Graduate Program

May 2016

## Abstract

Hormonal Algae:

A Source of Functional Fatty Acids

### Kira Ramphal

Based on an endogenous hormone study, three cytokinin type phytohormones; benzyladenine (BA), trans-zeatin (tZ) and methylthiol trans-zeatin (MeSZ), as well as abscisic acid (ABA) were exogenously added at three concentrations (10<sup>-7</sup>, 10<sup>-6</sup> and 10<sup>-5</sup> M) to cultures of *Chlorella vulgaris* in an attempt to alter growth rate, total lipid and fatty acid yields and fatty acid profile. Growth stimulation was highest at 10<sup>-6</sup> M for BA, MeSZ and ABA and 10<sup>-5</sup> M for tZ. All treatments caused changes in total lipid and fatty acid profile was observed with the addition of MeSZ at 10<sup>-7</sup> and 10<sup>-6</sup> M causing increases of 204% and 457% in linolenic acid respectively above the control. These results are novel and potentially highly impactful, as MeSZ has never been added exogenously to algae and may be used to stimulate overproduction of linolenic acid for pharmaceutical or industrial purposes.

*Keywords: Chlorella vulgaris*, benzyladenine, *trans*-zeatin, methylthiol *trans*-zeatin, abscisic acid, fatty acid, linolenic acid

# Preface

All of the work presented henceforth was conducted in either the Plant Physiology Laboratory or the Trent Centre for Biomaterials Research Laboratory at Trent University, Peterborough Campus, Ontario, Canada. I was the lead investigator, responsible for all major areas of concept formation, data collection and analysis, as well as manuscript composition. All data presented in the Results Chapter is original and unpublished to date. Dr. Suresh Narine and Dr. Neil Emery were the supervisory authors on this project and were involved throughout the project in concept formation, methods development and manuscript edits, as was Dr. Eric Sager, as third committee member.

## Acknowledgements

Foremost, I would like to express my gratitude to my supervisors Dr. Suresh Narine and Dr. Neil Emery for allowing me the opportunity to work with them in my Master's program, and for being steadfast and consistent in their support of me throughout my time as their student. Dr. Narine's expertise in lipid biochemistry and Dr. Emery's expertise in plant physiology and phytohormones have been indispensible to the completion of this project and their guidance, motivation and enthusiasm has pushed me to become a better student. I would also like to thank my committee member, Dr. Eric Sager, for his encouragement, knowledge and insightful comments.

The gratitude I have for my labmates in both the Trent Centre for Biomaterials Research and in Dr. Neil Emery's lab could not be overstated. Peter Andreas, Anna Kisiala and Latchmi Singh have all been an immense support system and have counselled me both academically and personally. I am exceedingly grateful to call them my friends and could not have done this without them. I would also like to thank Madison Hodgson, my dear friend, for her unwavering support through these many years.

Most of all, I would like to thank my parents. Throughout my life they have always encouraged and supported me. My gratitude to them cannot be put into words, but I will continue to do my best to make them proud.

| v. Table of Contents |  |
|----------------------|--|
|                      |  |

| Abstractii                                                        |
|-------------------------------------------------------------------|
| Prefaceiii                                                        |
| Acknowledgementsiv                                                |
| List of Figuresix                                                 |
| List of Tablesxi                                                  |
| List of Abbreviations and Symbolsxii                              |
| 1. Literature Review1                                             |
| 1.1 Algae Classification, Evolution and Compounds1                |
| 1.2 Abiotic Manipulation of Algae                                 |
| 1.3 Phytohormones5                                                |
| 1.3.1 Cytokinins5                                                 |
| 1.3.1.1 Cytokinins in Algae6                                      |
| 1.3.1.2 Cytokinin Synthesis9                                      |
| 1.3.1.3 Cytokinin Effects on Algae12                              |
| 1.3.2 Abscisic Acid15                                             |
| 1.3.2.1 Abscisic Acid Synthesis15                                 |
| 1.3.3 Other Phytohormones18                                       |
| 1.4 Lipids21                                                      |
| 1.4.1 Lipid Manipulation in Algal Systems                         |
| 1.5 Fatty Acids24                                                 |
| 1.6 Abiotic Factors Affecting Lipid and Fatty Acid Compositions25 |

| 1.7 Effects of Phytohormones on Presence of Fatty Acids | 28 |
|---------------------------------------------------------|----|
| 1.8 Thesis Rationale                                    | 30 |
| 1.9 Objectives, Hypotheses and Predictions              | 32 |
| 2. Methods and Materials                                |    |
| 2.1 Culture Maintenance and Growth Conditions           | 34 |
| 2.2 Growth Curve                                        | 35 |
| 2.3 Endogenous Hormone Study                            | 37 |
| 2.3.1 Rationale for Exogenous Concentrations            |    |
| 2.4 Exogenous Hormone Study                             | 40 |
| 2.5 Lipid Extraction                                    | 41 |
| 2.6 Transesterification                                 | 41 |
| 2.7 Fatty Acid Methyl Ester Analysis                    | 42 |
| 2.8 Statistical Analysis                                | 43 |
| 3. Results                                              |    |
| 3.1 Endogenous Hormone Content                          | 44 |
| 3.2 Exogenous Hormone Effect on Growth                  | 47 |
| 3.2.1 Hormone Effect by Concentration                   | 47 |
| 3.2.2 Hormone Effect by Timepoint                       | 50 |
| 3.3 Exogenous Hormone Effect on Lipid Content           | 53 |
| 3.4 Exogenous Hormone Effect on Fatty Acid Content      | 54 |
| 3.5 Exogenous Hormone Effect on FAME Profile            | 56 |
| 4. Discussion                                           | 59 |
| 4.1 Chlorella vulgaris Endogenous Hormone Content       | 59 |
| 4.1.1 Abscisic Acid Content                             | 59 |

| 4.1.2 Cytokinin Content                                           | 60 |
|-------------------------------------------------------------------|----|
| 4.1.2.1 Methylthiols                                              | 60 |
| 4.1.2.2 Free Bases, Ribosides and Nucleotides                     | 61 |
| 4.1.2.3 Active Cytokinin Synthesis Pathway                        | 62 |
| 4.2 Exogenous Hormone Treatments and Effect on Growth             | 64 |
| 4.2.1 Cytokinin/ ABA Antagonism                                   | 67 |
| 4.3 Exogenous Hormone Treatments and Effect on Lipid Content      | 68 |
| 4.4 Exogenous Hormone Treatments and Effect on Fatty Acid Profile | 70 |
| 4.5 Future Research                                               | 73 |
| 5. Conclusions                                                    | 74 |
| 6. References                                                     | 75 |
| 7. Appendices                                                     | 81 |
| 7.1 Endogenous Hormone Study Raw Data                             | 81 |
| 7.1.1 Abscisic Acid                                               | 81 |
| 7.1.2 Free Bases                                                  | 81 |
| 7.1.3 Ribosides                                                   | 82 |
| 7.1.4 Nucleotides                                                 | 83 |
| 7.1.5 Methylthiols                                                | 83 |
| 7.2 Exogenous Hormone Study Raw Data                              | 85 |
| 7.2.1 Hormone Addition OD Values                                  | 85 |
| 7.2.2 Lipid Sample Weights                                        | 86 |
| 7.2.3 FAME Sample Weights                                         | 87 |
| 7.2.4 FAME Profile                                                | 88 |

| 7.3 Nuclear Magnetic Resonance (NMR) | 89 |
|--------------------------------------|----|
| 7.4 Thin Layer Chromatography (TLC)  | 90 |
| 7.5 ANOVA Statistical Reports        | 91 |

# **List of Figures**

Figure 1: Sigmoidal growth of typical closed system algae culture showing growth phases and media changes associated with phases

Figure 2: Lipid composition of *Chlorella vulgaris* after A) 20 days in nitrogen sufficient media and B) 12 days in nitrogen deficient media (Stephenson *et al.*, 2010)

Figure 3: Diagrams of Isoprenoid and Aromatic cytokinin types (Sakakibara, 2006)

Figure 4: Diagram of freebase, riboside and nucleotide cytokinin types and methylthiol conjugates (adapted from Morrison *et al.*, 2015)

Figure 5: Cytokinin biosynthesis, interconversion and degradation scheme in plants showing action of "Lonely Guy" conversion enzyme (Modified from earlier review of Sakakibara, 2006)

Figure 6: Diagram showing attachment sites of side chains for different CK types (Sakakibara, 2006)

Figure 7: *C. vulgaris* cell counts in response to cytokinin additions highlighting optimal concentrations (Piotrowska and Czerpak, 2009)

Figure 8: Growth response of *E. gracilis* to single hormone addition at multiple concentrations (Noble et al., 2014)

Figure 9: Diagram showing the biosynthesis pathway of ABA (Nambara and Marion-Poll, 2005)

Figure 10: Chemical structures of major algal lipids (Goss and Wilhelm, 2010)

Figure 11: Differences in *C. reinhartii* cell density and FAME yield in response to ABA treatments (Park *et al.*, 2013)

Figure 12: A) *Chlorella vulgaris* average growth curve (3 reps) measured by spectrophotometer at 680 nm, B) Change in number of cells per week of *Chlorella vulgaris* cultures during growth curve

Figure 13: Hormone profiles represented as percentage of endogenous cytokinin forms (Free base - FB, Riboside - RB, Nucleotide - NT, Methylthiol - Methyl) and Abscisic acid (ABA) found in A) Algae pellet and B) Algae culture supernatant

Figure 14: Average endogenous content of A) abscisic acid (ABA) and cytokinin B) free base (DZ, tZ, cisZ, iP) C) riboside (DZR, tZR, cisZR, iPR) D) nucleotide (DZNT, tZNT, cisZNT, iPNT) and E) methylthiol (MeSZ, MeSiP, MeSZR, MeSiPA) and in *Chlorella vulgaris*. Error bars represent standard error (n=7-8)

Figure 15: Growth response of *Chlorella vulgaris* measured by change in OD @680 nm to exogenous hormones treatments at A)  $10^{-7}$  M, B)  $10^{-6}$  M and C)  $10^{-5}$  M. All R<sup>2</sup> values  $\ge 0.9$ . \* indicates statistical significance (*P*=0.05) from control.

Figure 16: Percent change in OD from control of *Chlorella vulgaris* across concentrations at A) Day 2, B) Day 4 and C) Day 6 of treatment. \* indicates statistical significance (P=0.05) from control. Error bars represent standard error (n=3-4). Data converted to percentage to show trends more clearly.

Figure 17: Lipid content shown as percentage of dry algal weight of *Chlorella vulgaris* in response to exogenous hormone treatments. \* indicates statistical significance (P=0.05) from control. Due to expected variation within samples percent dry weight was chosen for figures to highlight trends. See Appendix for raw data. Error bars represent standard error (Control n=12, all other n=3-4)

Figure 18: Total fatty acid methyl ester content of *Chlorella vulgaris* (mg) in response to exogenous hormone treatments. \* indicates statistical significance (P=0.05) from control. Reduced variation between samples allowed for trends to be visible using raw data. Error bars represent standard error (Control n=12, all other n=3-4).

Figure 19: Fatty acid methyl ester profile of control *Chlorella vulgaris* shown as averaged percentage of total. Heptadecanoic acid standard recovery for all samples was calculated to be 68.9% +/- 15.4% with a standard error of 2.6 (n=49).

Figure 20: Percent change from control of A) palmitic acid, B) stearic acid, C) oleic acid, D) linoleic acid and E) linolenic acid in *Chlorella vulgaris* with hormone treatments. \* indicates significance from control ( $\alpha$ =0.05). Error bars represent standard error (Control n=12, all other n=3-4). Raw data was converted to percentages to reveal trends more clearly.

Figure 21: Lipid NMR spectrum (Appendix)

Figure 22: FAME NMR spectrum (Appendix)

Figure 23: TLC of FAME sample (Appendix)

# **List of Tables**

Table 1: Table showing effects of other phytohormones (not covered in this thesis) on both higher plants and algae

 Table 2: Recipe for Bold 3N Medium (Table adapted from UTEX Culture Collection of Algae)

Table 3: Recipe for P-IV metal solution (Table adapted from UTEX Culture Collection of Algae)

Table 4: Summary table of percent change in lipid content from the control (n=12) with hormone additions

Table 5: Summary of percent change in fatty acid methyl ester content from control showing number of replicates, statistical significance and standard error values. \* indicates significance from control (P=0.05).

 Table 6: Endogenous ABA content of Chlorella vulgaris (Appendix)

 Table 7: Endogenous cytokinin free base content of Chlorella vulgaris (Appendix)

Table 8: Endogenous cytokinin riboside content of *Chlorella vulgaris* (Appendix)

Table 9: Endogenous cytokinin nucleotide content of *Chlorella vulgaris* (Appendix)

Table 10: Endogenous cytokinin methylthiol content of *Chlorella vulgaris* (Appendix)

Table 11: Optical densities of MeSZ, tZ, BA, ABA and Control cultures across all concentrations (Appendix)

Table 12: Algae pellet dry weight/g and lipid sample weight/g calculations (Appendix)

Table 13: FAME sample weight/g calculations (Appendix)

Table 14: Peak to mass conversion of FAME's (samples in 500µl, injection volume 1µl) (Appendix)

# List of Abbreviations and Symbols

AA - Arachidonic acid ABA - Abscisic acid ADP - Adenosine diphosphate ALA - Alpha-linolenic acid AMP- Adenosine monophosphate ATP - Adenosine triphosphate BA - Benzyladenine **BAP** - Benzylaminopurine C. vulgaris- Chlorella vulgaris CK - Cytokinin CKX - Cytokinin oxidase-dehydrogenase CPPU - N-(2-chloro-4-pyridyl)-N'-phenylurea cZ - cis-Zeatin DGDG - Digalactosyldiacylglycerol DGTS - Diacylglyceryltrimethylhomoserine DHA - Docosahexaenoic acid DPU - Diphenylurea DZ - Dihydrozeatin EPA - Eicosapentaenoic acid FA - Fatty acid FAE - Fatty acid elongase FAME - Fatty acid methyl ester FAS - Fatty acid synthase FB - Free base GA - Gibberellin GC-FID - Gas Chromatography Flame Ionization detection HGT - Horizontal gene transfer HPLC-(ESI) MS/MS - Electrospray-ionization, liquid chromatography-tandem mass spectrometry IAA - Indole-3-acetic acid iP - Isopentenyladenine IPT - Isopentenyltransferase LA - Linoleic acid LOG - "Lonely Guy" enzyme M - Moles/ Litre

MemT - Meta-methoxytopolin

MeoT - Ortho-methoxytopolin

MEP - Methylerythritol phosphate pathway

MeS - Methylthiol

MeSiP - Methylthiol isopentenyladenine

MeSZ - Methylthiol trans-zeatin

MeSZR - Methylthiol trans-zeatin riboside

MGDG - monogalacto-syldiacylglycerol

mT - Meta-topolin

MVA - Mevalonate pathway

MW - Molecular weight

NMR - Nuclear Magnetic Resonance

NT - Nucleotide

OD - Optical Density

oT - Ortho-topolin

PA - Phaesic acid

- PC Phosphatidylcholine
- PE -Phosphatidylethanolamine

PG - Phosphatidylglycerol

Ppm - Parts per million

PS - Phosphatidylserine

PUFA - Polyunsaturated fatty acid

R - Riboside

RR - Response regulators

SQDG - Sulfoquinovosyldiacylglycerol

TAG - Triacylglycerides

TCS - Two-component system

TDZ - Thidiazuron

TLC - Thin Layer Chromatography

tZ - trans-Zeatin

UTEX - University of Texas

## **1. Literature Review**

#### **1.1 Algae Classification, Evolution and Compounds:**

Algae are defined as eukaryotic, usually autotrophic/photosynthetic organisms, not including higher plants (Bhattacharya and Medlin, 1998; Lee, 2008). The term "microalgae" refers solely to unicellular algae (Tarakhovskaya *et al.*, 2007). According to Bhattacharya and Medlin (1998), the main lineages of algae break down into: Dinoflagellates, Glaucophyta, Heterokonta, Haptophyta, Euglenophyta, Cryptophyta, Chlorarachniophyta, Rhodophyta and Chlorophyta. The lineage Chlorophyta encompasses all green algae, of which we shall be focusing on the class *Chlorophyceae* (Bhattacharya and Medlin, 1998).

Chlorophyta emerged in the Precambrian period in the Proterozoic era, approximately 3000 million years ago (Lee, 2008). Green algae share features such as the inclusion of chlorophyll a and b as well as some pigments like xanthophylls and carotenes. The most common polysaccharide found is starch, commonly inside the chloroplast, and the cell walls are composed of a cellulose fibre matrix while the cell membrane is composed of a lipid bilayer (Leliaert *et al.*, 2012).

Algae have been used in many ways and for many different purposes by humans throughout history. Today components from algae are commonly integrated into human foods as a supplement or a colorant (Gong *et al.*, 2011) and are used widely as a feedstock in aquaculture (Spolaore *et al.*, 2006). However, we have learned that algae are not only healthy in the diet but are also ideal organisms for the production of high value compounds for pharmaceutical or industrial uses (Gong *et al.*, 2011). This is because their metabolisms can be easily manipulated by changes in abiotic factors to overproduce a wide range of substances (Gong *et al.*, 2011).

There are a few species of algae which are currently being used to produce pharmaceutical products on an industrial scale for the fatty acids (FA's) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), various proteins (Gong *et al.*, 2011), carotenoids such as  $\beta$ -carotene, lutein, xanthins, polyphenols, tocopherols, vitamins and minerals (Priyadarshani and Rath, 2012). Other useful compounds include certain toxins, sterols, amino acids, anti-microbial, anti-fungal and anti-viral agents (Priyadarshani and Rath, 2012).

It has also been found that most microalgae have the ability to produce large quantities of lipids, especially triacylglycerols (TAG's), under suboptimal growth conditions, particularly nitrogen deprivation (Fuentes-Grunewald *et al.*, 2012; Gardner *et al.*, 2011). Under abiotic stress, growth slows and the algal cell switches to a metabolism that enhances carbon storage in lipid bodies instead of synthesising proteins and carbohydrates (Xin *et al.*, 2010). This TAG accumulation makes algae attractive as a source of biofuel in addition to other advantages over other plant based biofuel sources such as: their ability to be grown on marginal lands, use of untreated water, rapid growth rate, and the ability for year-round harvest (Gouveia and Oliveira, 2009). Moreover, algae are extremely efficient fixers of carbon dioxide, making them good candidates for the removal of flue gases released from industrial operations (Lopes da Silva *et al.*, 2009).

Although the phenomenon of lipid accumulation occurs under stressful conditions, it is important to note that during favorable growth conditions with high nutrient availability, lipid accumulation is low (Šoštarič *et al.*, 2009). In a study to determine the optimal growth media for the microalgae *Chlorella vulgaris*, it was determined that when grown in nutrient-rich media the extractible lipid yield only reached a maximum of 1.69% of the algae dry weight (Šoštarič *et al.*,

2009). Another study using the same species under nitrogen deprived conditions produced a lipid yield of ~53% (Widjaja *et al.*, 2009).

Algae grown under favourable conditions follow a sigmoidal growth pattern characterised by three major phases: the lag, exponential and stationary phases. Each phase has characteristic effects on the nutrient level left in the media, cell reproduction rate and the production of different cellular compounds including carbohydrates, proteins and lipids. These phases and culture changes are depicted in Figure 1.



- Decreasing nutrient concentration
- Increasing storage compounds

Figure 1: Sigmoidal growth of typical closed system algae culture showing growth phases and media changes associated with phases

#### **1.2 Abiotic Manipulation of Algae:**

Different combinations of growth conditions can trigger significant changes in the production of compounds such as pigments, carbohydrates, proteins and lipids within algae cells.

For example, with increasing photoperiod (light: dark; 16:8 hr) in combination with a light intensity of 100 µmol m<sup>-2</sup> s<sup>-1</sup> the highest growth rate for *Chlorella vulgaris*, along with a decrease in chlorophyll *a* content, was observed, concomitant with an increase in  $\beta$ -carotene and protein content (Seyfabadi *et al.*, 2011). With decreasing photoperiod and light intensity the opposite was observed for chlorophyll *a*,  $\beta$ -carotene and protein content (Seyfabadi *et al.*, 2011). An increase in chlorophyll *a*, total carbohydrates and protein content per cell can also be obtained by growing cultures of *C. vulgaris* in nitrogen deprived media and with a 10<sup>-7</sup> M input of cadmium (Chia *et al.*, 2015). These conditions produced the highest lipid content, and, notably, the greatest increase in TAG's with a corresponding decrease in polar lipids. Interestingly, these conditions also produced the lowest cell density but the highest dry weight when compared to sufficient nitrogen and decreased cadmium concentrations (Chia *et al.*, 2015). In terms of lipid content, high nitrogen conditions produced a significantly reduced lipid content as well as a very low TAG accumulation of only 3% of the total lipid (Stephenson *et al.*, 2010; Figure 2).



Figure 2: Lipid composition of *Chlorella vulgaris* after A) 20 days in nitrogen sufficient media and B) 12 days in nitrogen deficient media (Stephenson *et al.*, 2010)

#### **1.3 Phytohormones:**

Algae, like any other living organism, rely on hormones to regulate biochemical processes within the cell (Tarakhovskaya *et al.*, 2007). A hormone is generally defined as a compound of low molecular weight (~225 MW), which is excreted by organelles in the cell in low concentrations (usually <1nm) over time. The effects of hormones are far reaching within the organism and can dictate anything from metabolic reactions to gene transcription. Hormones found within plants are specifically termed phytohormones (Tarakhovskaya *et al.*, 2007), although the same compounds are now known to be frequently found in many other organisms (Spichal 2012).

Microalgae have been known to naturally produce, and react to, the exogenous application of a mixture of cytokinins (CK's) (Piotrowska and Czerpak, 2009; Noble *et al.*, 2014) as well as abscisic acid (ABA) (Noble *et al.*, 2014) and were the two hormone groups studied in this thesis. Therefore most of the following discussion will be focused on CK's and ABA synthesis and degradation and their effects on microalgae. A brief summary of the effects of some other known phytohormones on both higher plants and algae can be viewed in Table 1.

**1.3.1 Cytokinins -** Most CK's are synthesised from adenine (Davies, 2004) by the replacement of the  $N^6$ -side chains (Spíchal, 2012), in developing seeds and roots and are transported through the xylem vessels (Davies, 2004). It is known that the enzyme isopentenyltransferase (IPT) is responsible for the initiation of CK synthesis, while cytokinin oxidase-dehydrogenase (CKX) is responsible for CK degradation (Spíchal, 2012). In between there are many interconversions among free base (FB), riboside (R), nucleotide (NT), glucosides (GLUC) and other forms (see Figure 5). These hormones are involved in many plant processes including cell division, the

delay of leaf senescence, cell enlargement and therefore leaf broadening, chloroplast formation, opening of the stomata, plant morphogenesis (differentiation of parts), growth of lateral buds (Davies, 2004) and response to abiotic and biotic stressors (Spíchal, 2012).

**1.3.1.1** *Cytokinins in Algae* – Although now considered plant hormones, one theory of how CK's were obtained by plants of all types is through horizontal gene transfer (HGT) from bacteria during the endosymbiotic event which gave rise to chloroplasts from cyanobacteria (Spíchal, 2012). The genes involved in the synthesis of the CK enzymes isopentenyltransferase (IPT) and CKX have been identified in several species of cyanobacteria, along with corresponding CK's (Spíchal, 2012). Some studies have also found genes which code for proteins used in a "two-component system" (TCS) signal transduction pathway employed by prokaryotes and lower eukaryotes (Pils and Heyl, 2009). It was also found that algae contain Type B Response Regulator (RR) genes, which create essential members of the TCS, as well as Type C RR's, which are mostly shared by all plants (Pils and Heyl, 2009).

Though these RR genes were found in algae, it is interesting to note that no conventional CK receptors were found in some studies of algae (Frébort *et al.*, 2011; Pils and Heyl, 2009) though CK's are known to be synthesised in brown (*Phaeophyta*), red (*Rhodophyta*), and green (*Chlorophyta*) algae (Tarakhovskaya *et al.*, 2007). However, Blanc *et al* (2010) found orthologs of *Arabidopsis* genes coding for phytohormone receptors for CK's, ABA, auxins, brassinosteroids, jasmonic acid and polyamines in the genome of *Chlorella variabilis* NC64 A which is a very close relative of the green unicellular algae *Chlorella vulgaris* (Blanc *et al.*, 2010). It is, therefore, likely that lower eukaryotes such as algae do, in fact, possess CK receptors though they may be of a more primitive form which would function with a TCS.

Cytokinins are common to almost all organisms, and can be split into two groups: adenine type and phenylurea type CK's (Spíchal, 2012). Adenine type CK's either have saturated or unsaturated side chains with two or more units of hydrocarbons. These types of adenine CK's are called isoprenoid adenine CK's (Figure 3) and include the hormones  $N^6$ -isopentenyladenine (iP), dihydrozeatin (DZ), *trans*-zeatin (tZ) and *cis*-zeatin (cZ). The second type of adenine CK's are the aromatic adenine CK's, named because of the substitution of the side chains for aromatic rings (Figure 3). These hormones include  $N^6$ - benzyladenine (BA), *meta*-topolin (mT) and *ortho*topolin (oT). The phenylurea type CK's are synthesised from phenylurea and include nitrogen in their rings. These include compounds such as *N*-(2-chloro-4-pyridyl)-*N*'-phenylurea (CPPU) (C<sub>12</sub>H<sub>10</sub>ClN<sub>3</sub>O) and thidiazuron (TDZ) (C<sub>9</sub>H<sub>8</sub>N<sub>4</sub>OS) (Spíchal, 2012).



Figure 3: Diagrams of Isoprenoid and Aromatic CK types (Sakakibara, 2006)



Figure 4: Diagram of freebase, riboside and nucleotide CK types and methylthiol conjugates (adapted from Morrison *et al.*, 2015)

Another group of adenine type CK's, termed heterocyclic CK's, have recently been accepted which include the CK kinetin (Piotrowska and Czerpak, 2009). These hormones have long been considered to be synthetic; however, kinetin was isolated from both fresh human and plant tissue confirming its natural occurrence in both plants and animals (Piotrowska and Czerpak, 2009).



Figure 5: Cytokinin biosynthesis, interconversion and degradation scheme in plants showing action of "Lonely Guy" conversion enzyme (Kamada-Nobusada & Sakakibara, 2009)

**1.3.1.2** *Cytokinin Synthesis* - Isoprenoid CK's are synthesised by one of two main pathways, the methylerythritol phosphate pathway (MEP) or the mevalonate pathway (MVA) (Sakakibara, 2006; Figure 5). These two pathways are responsible for the formation of the isoprenoid side chain CK's (ie. iP and tZ) and the cis isomer form (cZ) respectively (see Figure 5). In the MEP pathway adenosine phosphate-isopentyltransferases (IPT) uses either ATP, ADP or AMP to form iPRTP, iPRDP and iPRMP respectively. These molecules form the bases of the CK iP. To form the isoprenoid CK tZ, these three molecules can be hydroxylated, but only iPRMP can be further altered by the loss of a double bond to produce DZRMP (precursor for the CK DZ). Collectively

these tri-, di-, and monophosphate molecules are termed nucleotides (suffix NT) and are thought to be the least active forms, or storage forms, of the isoprenoid CK's. From there they can then be converted to riboside forms (suffix R) by the cleavage of the phosphate group to create iPR, tZR and DZR which are thought to be slightly more biologically active than the corresponding NT forms. These ribosides can then be converted to free base forms (no suffix) which are the most biologically active forms by the loss of the ribose attachment to create iP, tZ and DZ (Sakakibara, 2006). A shorter conversion has also been discovered whereby the inactive NT form can be directly converted to its fully active FB form by the action of a conversion enzyme encoded by the "Lonely Guy" (LOG) gene which is depicted in Figure 5 (Kamada-Nobusada & Sakakibara, 2009).

The MVA begins with the degradation of tRNA by tRNA IPT to produce cis-prenyl-tRNA which is then converted to cZNT (the structural isomer of tZNT). It is then converted to its R and FB forms by the same mechanisms as in the MEP pathway (Sakakibara, 2006).

Two other prevalent CK forms with slightly more elusive functions are glucosides (GLUC's) and methylthiols (MeSCK's). Glucosides are free base forms conjugated with glucose and are thought to be inactive storage forms of the different CK's, whereas MeSCK's are conjugated with a sulphur and methyl group whose function, until recently, was largely unknown (see Figure 4, 6) (Sakakibara, 2006).

A study by Morrison *et al.*, (2015) on *Ustilago maydis* corn cob infected tissue saw low but accumulating amounts of methylthiol trans-zeatin FB (MeSZ) and R forms (MeSZR) in the later stages of infection with both the dikaryon and solopathogen form of *Ustilago maydis*, although none was found in uninfected cob tissue. It was suggested that these MeSCK forms may be an

accumulation based on the decreased ability for CKX degradation by the plant, and may have originated from *U. maydis* allowing for continued proliferation of cells and tumour formation. The CK GLUC storage forms remained relatively abundant with time in the control tissue, however in both infected tissue types GLUC's decreased significantly. This indicated that perhaps the fungus was liberating these forms for its own use, as infected tissue also showed increasing levels of FB, R and NT forms (Morrison *et al.*, 2015).

Methylthiol type CK's were found to be abundantly produced by the bacteria *Sinorhizobium meliloti, S. fredii, S. medicae* and *Mesorhizobium loti* (Kisiala *et al.*, 2013) as well as in the pathogen *Rhodococcus fasciens* (Pertry *et al.*, 2009) and the photosynthetic protist *Euglena gracilis* (Noble *et al.*, 2014)



Figure 6: Diagram showing attachment sites of side chains for different CK types (Sakakibara, 2006)

Cytokinins have been shown to be sensitive to nitrogen levels, and their responses vary with changes in nitrogen sources (Sakakibara, 2006). Arabidopsis thaliana adenosine phosphatesisopentenyltransferase genes, specifically AtIPT3 and AtIPT5, responded differently in their rates of CK synthesis depending on the nitrogen source available; AtIPT3 responds well to  $NO_3^-$  under nitrogen limitation, while AtIPT5 responds to both  $NO_3^-$  and  $NH_4^+$ . This indicates that the synthesis of CK's is nitrogen sensitive, and therefore the growth and differentiation of cells which occurs with high CK concentrations would not occur in nitrogen depleted conditions (Sakakibara, 2006).

*1.3.1.3 Cytokinin Effects on Algae* - Piotrowska and Czerpak (2009) conducted an exogenous hormone addition experiment on *Chlorella vulgaris* to examine the effects on growth rate and photoperiod as well as chlorophyll and carotenoid content. It was found that the highest growth rate was achieved with 10<sup>-6</sup> M of diphenylurea (DPU), followed by tZ at 10<sup>-8</sup> M, kinetin at 10<sup>-7</sup> M and finally BA at 10<sup>-7</sup> M, though all additions at 10<sup>-3</sup> M had a cytotoxic effect on the cultures. All four CK's at these optimal concentrations also caused significant increases in chlorophyll (up to 226%) and carotenoids (up to 89%). It was found that DPU and tZ had positive effects on the cell division cycle during dark periods as their addition kept the light dependant enzyme NADH-hydroxypyruvate reductase active (Piotrowska and Czerpak, 2009).



Figure 7: *C. vulgaris* cell counts in response to CK additions highlighting optimal concentrations (Piotrowska and Czerpak, 2009)

Contrary to the previous study's results, the optimal exogenous tZ concentrations for *Euglena gracilis* was found to be slightly more at  $10^{-7}$  M, with  $10^{-8}$  M having less of an effect on growth rate (Noble *et al.*, 2014). However,  $10^{-9}$  M was found to be the optimal concentration for all other hormones added exogenously (ABA, iP, BAP, IAA and GA<sub>3</sub>) with concentrations of  $10^{-5}$  M of tZ, ABA, IAA and iP being cytotoxic to the culture as shown by the dramatic decrease in cell concentration (Noble *et al.*, 2014).



Figure 8: Growth response of *E. gracilis* to single hormone addition at multiple concentrations (Noble et al., 2014)

Twenty six different combinations of these five hormones at multiple concentrations were also tested and it was found that the combination of tZ at  $10^{-7}$  M with ABA at  $10^{-9}$  M produced the greatest increase in cell number by 140% above the control (Noble *et al.*, 2014). This discovery partially informed the decision to use tZ and ABA as exogenous additions to *Chlorella vulgaris* in the present study. The combination with the least effect on the growth rate

was all five hormones at their optimum concentration as determined by the single hormone additions shown in Figure 8. Both single hormone treatments and multiple hormone treatments had significant effects on cell diameter as well, notably the cultures treated with optimal concentrations were larger while inhibitory concentrations caused reduced cell size. The cultures treated with combinations of hormones produced the largest cell diameter of any other treatment (Noble *et al.*, 2014).

An endogenous hormone profile was also established which revealed that *E. gracilis* produced large amounts of cZR (39.43 pmol/g) and smaller amounts of MeSiP (2.37 pmol/g) which was retained in the pellet along with smaller concentrations of iP, tZNT, cZNT and iPNT and the aromatic benzylaminopurine (BAP). Larger amounts of MeSiP (3.52 pmol/ml) were secreted into the supernatant along with small amounts of tZ and iP, cZR, tZNT, cZNT, DZNT and iPNT, MeSZ, MeSZR, MeSiP and MeSiPA and BAP. Taken together these results indicate that the tRNA degradation pathway (cis/MVA pathway) is the predominant CK pathway used by *E. gracilis* (Noble *et al.*, 2014).

Although much has been studied in terms of the effects of CK's on both algae growth rate and the production of different pigments and carbohydrates, surprisingly little has been studied on their effects on the fatty acid (FA) profile of the cells. As FA's are essential lipid molecules involved in many cellular functions and CK's have been shown to alter the production of similar lipid molecules, for example carotenoids (Piotrowska and Czerpak, 2009), it follows that they may have an effect on FA's as well. This link will be discussed further in a later section. **1.3.2 Abscisic Acid** - Unlike the other phytohormones, ABA is not a group, but is a single compound (Davies, 2004). It is synthesised from glyceraldehyde-3-phosphate in mature leaves and roots and is transported in the xylem and phloem in higher plants. ABA is made usually in response to water shortage, and with its build up causes closing of the stomata in higher plants. It also triggers the synthesis of storage proteins, inhibits shoot growth, antagonises gibberellin in germinating grains and affects dormancy (Davies, 2004). It was originally thought that algae did not contain ABA, but instead a hormone called lunularic acid, which carried out the same roles as ABA in higher plants, triggering the stress response (Tarakhovskaya *et al.*, 2007). This theory however has been debunked by recent and growing evidence to the contrary, as ABA has been recognized in several green microalgal species as well as some brown algae. It is now accepted that algae do in fact contain ABA (Tarakhovskaya *et al.*, 2007; Noble *et al.*, 2014).

**1.3.2.1** Abscisic Acid Synthesis - The specific pathway which leads to ABA synthesis starts with the formation of glyceraldehyde-3-phosphate from 2-C-methyl-D-erythritol-4-phosphate (Nambara and Marion-Poll, 2005; Figure 9). This pathway is abbreviated by MEP, and is the pathway used by green algae and eubacteria, whereas another pathway is used in tandem with MEP in higher plants. The enzyme which has been shown to trigger ABA synthesis is zeaxanthin epoxidase (ZEP) in the plastid.

The second part of the synthesis, starting with xanthoxin, occurs in the cytosol, though the transport mechanism to the cytosol remains unknown. During this phase of synthesis, xanthoxin is converted to abscisic aldehyde by an alcohol dehydrogenase (ABA2) which in turns forms abscisic acid through oxidisation by abscisic aldehyde oxidase (AAO3) (Nambara and Marion-Poll, 2005).



Figure 9: Diagram showing the biosynthesis pathway of ABA (Nambara and Marion-Poll, 2005)

ABA catabolism is caused by two pathways: hydroxylation and conjugation (Nambara and Marion-Poll, 2005). During hydroxylation, one of the methyl groups (usually at the C-8' position) is oxidised by cytochrome P450 monooxygenase which breaks ABA down into phaseic acid (PA) which is further catabolised to dihydrophaseic acid (DPA) by a reductase enzyme. During conjugation, the second pathway, the carboxyl and hydroxyl groups of ABA conjugate with glucose to form ABA glucosyl ester (ABA-GE) (Nambara and Marion-Poll, 2005).

The effects of abiotic stressors, especially increased salinity and decreased nitrogen, on ABA concentration has been fairly well documented (Cowan *et al.*, 1997; Tarakhovskaya *et al.*, 2007; Yoshida *et al.*, 2003). This is why, recently, ABA has become known as a stress phytohormone, because of its involvement in the stress response (Tarakhovskaya *et al.*, 2007). With an increase in salinity in some microalgal species, endogenous ABA concentrations have increased (Tarakhovskaya *et al.*, 2007). This was exemplified when algal species from *Dunaliella* and *Chlorella* were subjected to salt stress and an increase in ABA concentration was observed (Cowan *et al.*, 1997; Hartung, 2010). Increases in ABA concentration have also been noted during nitrogen deficiency in *Dunaliella*, as well as alkaline shock, heat stress, light stress, drought, oxidative stress and acid stress in several other algal species (Hartung, 2010).

Kobayashi *et al.* (1997) conducted a study on the effect of ABA on morphogenesis and carotenoid production in *Haematococcus pluvialis*, and found that ABA caused the cells to mature faster and caused an increase in carotenoid production (Kobayashi *et al.*, 1997). Therefore it can be seen that the addition of exogenous ABA can also create significant effects on algal development, as well as internal production of endogenous ABA.

Noble *et al.* (2014) found that the addition of ABA at  $10^{-9}$  M to *Euglena gracilis* increased growth rate the most above the control when compared to other hormones from the auxin, gibberellin and CK families, especially when added in combination with tZ, as previously noted. It was also found that the addition of ABA at this optimal concentration produced an average cell diameter increase of 0.79 µm above the control (Noble *et al.*, 2014).

As is the case with CK's, very little has been published on the link between FA's and ABA, though ABA is known to produce multiple effects on microalgae when added exogenously, as discussed. This specific hormone is known to be especially active when microalgae are subjected to sub-optimal growth conditions such as osmotic stress and nutrient deficiency (Hartung, 2010), which are also known to produce changes in membrane lipid composition (Kobayashi *et al.*, 2006) and therefore likely have an effect on the FA composition of the cell. This link will be discussed further in a later section.

#### 1.3.3 Other Phytohormones

It is known that hormones other than CK's and ABA are likely to play a role in lipid content, TAG accumulation and changes in fatty acid profiles. Therefore, I have summarized potential linkages with in Table 1. For pragmatic reasons I had to focus on two hormone groups, but perhaps future work may involve the study of more hormone groups.

| Phytohormone       | Effects In Higher Plants                                                                                                                                           | Effects in Algae                                                                                                                                                                                                                           |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Jasmonic<br>Acid   | <ul> <li>important in defense</li> <li>from parasites and insects</li> </ul>                                                                                       | <ul> <li>stimulates cell division and increases</li> <li>pigment production</li> </ul>                                                                                                                                                     |
|                    | <ul> <li>promotes senescence</li> <li>inhibits growth (Davies, 2004)</li> </ul>                                                                                    | <ul> <li>increases monosaccharides and protein<br/>secretion in <i>Chlorella vulgaris</i> (Czerpak<br/><i>et al.</i>, 2006)</li> </ul>                                                                                                     |
| Salicylic<br>Acid  | <ul> <li>pathogen resistance</li> <li>inhibits ethylene<br/>synthesis</li> <li>inhibits effects of ABA<br/>(Davies, 2004)</li> </ul>                               | <ul> <li>increased growth, protein content, RNA,<br/>sugars, chlorophylls, carotenoids and<br/>increased overall photosynthetic rate in<br/><i>Chlorella vulgaris</i> (Czerpak <i>et al.</i>, 2002)</li> </ul>                             |
| Ethylene           | <ul> <li>fruit and leaf abscission</li> <li>release from dormancy<br/>(Davies, 2004)</li> </ul>                                                                    | <ul> <li>Unknown - effect is difficult to examine<br/>as ethylene is in gaseous form</li> </ul>                                                                                                                                            |
| Polyamines         | <ul> <li>involved in normal<br/>morphology</li> <li>regulates cell division<br/>(Davies, 2004)</li> </ul>                                                          | <ul> <li>exogenous addition caused decreased<br/>synthesis of ornithine decarboxylase<br/>which causes increase in polyamine<br/>production in cells in <i>Chlamydomonas</i><br/><i>reinhartii</i> (Theiss <i>et al.</i>, 2004)</li> </ul> |
| Signal<br>Peptides | <ul> <li>defence from parasitic<br/>attack or herbivory</li> <li>increase jasmonic acid</li> <li>cell division, and<br/>reproduction (Davies,<br/>2004)</li> </ul> | • Not Found                                                                                                                                                                                                                                |

Table 1: Table showing effects of other phytohormones (not covered in this thesis) on both higher plants and algae

| Auxins       | • delay of senescence and         | • induce cell division and elongation,                 |
|--------------|-----------------------------------|--------------------------------------------------------|
|              | ripening                          | suppression of branching in some red                   |
|              | • promotion of flowering          | algae (Kiseleva et al., 2012)                          |
|              | (Davies, 2004).                   | • stimulate production of carotenoids in               |
|              | ○ seed development and            | Chlorella pyrenoidosa (Czerpak and                     |
|              | growth                            | Bajguz, 1997)                                          |
|              | $\circ$ cell division, elongation | $\circ$ increase biomass, chlorophyll and              |
|              | and differentiation               | protein content (Czerpak et al., 1994).                |
|              | $\circ$ apical dominance and      | <ul> <li>increase production of proteins,</li> </ul>   |
|              | tropism in response to            | pigments, phosphates, some                             |
|              | light and gravity (Teale          | carbohydrates, and glycolic acid                       |
|              | et al., 2006)                     | (Piotrowska et al., 2008).                             |
|              |                                   | <ul> <li>increased lipid content by ~12% in</li> </ul> |
|              |                                   | Chlorella sorokiniana with tZ (Hunt et                 |
|              |                                   | <i>al.</i> , 2010).                                    |
|              |                                   |                                                        |
| Gibberellins | • control seed germination,       | • increased biomass and chlorophyll <i>a</i>           |
|              | flower and seed                   | production in Chlorella sorokiniana                    |
|              | development                       | • increased protein content by ~50%, lipid             |
|              | • promote stem elongation         | content by $\sim 8\%$ (with auxin) (Hunt <i>et</i>     |
|              | and leaf expansion                | <i>al.</i> , 2010).                                    |
|              | (Yamaguchi, 2008)                 | <ul> <li>break dormancy and increase</li> </ul>        |
|              | • improve salt tolerance          | germination of Chara vulgaris oospores                 |
|              | with nitrogen in Brassica         | (Sederias and Colman, 2007)                            |
|              | juncea (Siddiqui et al.,          |                                                        |
|              | 2008).                            |                                                        |
| Brassino-    | ◦ essential for                   | <ul> <li>increased growth rate</li> </ul>              |
| steroids     | photomorphogenesis and            | • increased protein and nucleic acids                  |
|              | cell elongation                   | 5 mereased protein and nucleic acids                   |
|              | $\circ$ seed germination,         | synthesis in Chlorella vulgaris                        |
|              | flowering, senescence,            |                                                        |
|              |                                   |                                                        |

|   | vascular differentiation,  | (Tarakhovskaya et al., 2007) |
|---|----------------------------|------------------------------|
|   | stomata formation, plant   |                              |
|   | morphology and male        |                              |
|   | fertility (Wang et al.,    |                              |
|   | 2012)                      |                              |
| 0 | heat stress tolerance by   |                              |
|   | rapeseed (Brassica         |                              |
|   | napus) and tomatoes        |                              |
|   | seedlings (Dhaubhadel et   |                              |
|   | al., 1999)                 |                              |
| 0 | salt stress tolerance in   |                              |
|   | wheat (Ali et al., 2006)   |                              |
| 0 | fungicide for potato crops |                              |
|   | (Khripach et al., 2000)    |                              |

## 1.4 Lipids:

Lipids in algae serve multiple purposes, including being the foundation for cell structures such as the cell membrane, as well as acting as a source of energy (Fuentes-Grünewald *et al.*, 2012). The major lipid classes generally found in algae are the phospholipids, galactolipids and sulfolipids (Goss and Wilhelm, 2010). Some phospholipids commonly encountered in algal cells are phosphatidylglycerol (PG), phosphatidylcholine (PC), phosphatidylserine (PS) and phosphatidylethanolamine (PE) (Goss and Wilhelm, 2010). Common galactolipids include digalactosyldiacylglycerol (DGDG) and monogalacto-syldiacylglycerol (MGDG) while the most common sulpholipid is sulfoquinovosyldiacylglycerol (SQDG) (Flaim *et al.*, 2012).

In terms of percentages, the galactolipid MGDG accounts for approximately 50% of the lipids in the cell, followed by DGDG at ~30%, and SQDG and PG at ~5-12% (Flaim *et al.*, 2012). In green algae, another lipid class has been identified called betaine lipids, mainly diacylglyceryltrimethylhomoserine (DGTS), which sometimes replaces PC in green marine algae (Goss and Wilhelm, 2010).

All algal lipids have specific roles within the cell and perform specific functions based on their physical and chemical properties. The thylakoid membrane of the chloroplast is generally composed of SQDG and the phospholipid PG, which both carry a negative charge (Flaim *et al.*, 2012). The galactolipids DGDG and MGDG have no charge and fill the spaces between membrane proteins as well as provide added stability for the membrane, because of their linear acyl chains and therefore tight packing abilities (Flaim *et al.*, 2012). Chemical structures of some of the main structural lipids found in algae are depicted in Figure 10.



Figure 10: Chemical structures of major algal lipids (Goss and Wilhelm, 2010)

**1.4.1 Lipid Manipulation in Algal Systems -** When subjected to suboptimal or stressful conditions such as very high light intensity or nitrogen starvation, algae tend to accumulate lipids as a store of energy (Chen *et al.*, 2011). These lipid stores can accumulate between 1-85% of the cells dry weight (Chen *et al.*, 2011). The storage lipids are usually composed mainly of neutral lipids, including TAG's, which contain large amounts of carbon (eg. ~55 carbons per molecule) (Fuentes-Grünewald *et al.*, 2012). This high carbon content is what makes these algal oils especially good candidates for use as biofuel (Fuentes-Grünewald *et al.*, 2012). However this poses a problem, as high growth rates only occur when environmental conditions are favourable, and TAG accumulation only reaches a substantial amount when conditions are poor (Chen *et al.*, 2011). These remarkable increases in lipid accumulation also occur in conjunction with significantly lowered biomass during nitrogen starvation (Gouveia *et al.*, 2009).

Studies specifically conducted on the algae *Dunaliella tertiolecta* (Chen *et al.*, 2011), *Coelastrella saipanensis*, *Scenedesmus obliquus* (Gardner *et al.*, 2011), *Alexandrium minutum*, *Heterosigma akashiwo* (Fuentes-Grünewald *et al.*, 2012) and *Neochloris oleoabundans* (Beal *et al.*, 2010; Gouveia *et al.*, 2009; Li *et al.*, 2008) have all concluded that suboptimal growth conditions positively affect lipid accumulation in algal cells. Most of these studies have emphasised nitrogen limitation/starvation as being the main cause of lipid accumulation, including TAG's (Beal *et al.*, 2010; Chen *et al.*, 2011; Fuentes-Grünewald *et al.*, 2012; Gardner *et al.*, 2011; Gouveia *et al.*, 2009; Li *et al.*, 2008). It is also important to note that TAG accumulation increases significantly during the stationary growth phase when compared to the exponential growth phase (Fuentes-Grünewald *et al.*, 2012).
### **1.5 Fatty Acids:**

Fatty acids are aliphatic lipid compounds which are produced by eukaryotes mainly in the plastid, however the endoplasmic reticulum also plays a role in synthesis and chain elongation (Sato *et al.*, 2003). The end result of plastid FA synthesis is the formation of phosphatidates, which are converted into the major chloroplast lipids (Sato *et al.*, 2003). The first part of synthesis occurs in the plastid (termed the plastidial pathway), where malonyl-CoA is synthesised from acetyl-CoA via the action of acetyl-CoA carboxylase (ACCase) (Ohlrogge and Jaworski, 1997). The action of ACCase, and therefore the synthesis of malonyl-CoA, is thought to be a light dependant process. Following this, the malonyl moiety is transferred by fatty acid synthase (FAS) to an acyl carrier protein (ACP), where FAS causes acyl chain extension with malonyl-ACP. Stearoyl-ACP desaturase then inserts a *cis* double bond at the C9 position of C18:0 ACP, the saturated stearic acid. Fatty acid synthesis is terminated either by transfer of the acyl chain from the ACP or by hydrolysis, catalyzed by acyl-ACP thioesterases. Some of these synthesised FA's then leave the plastid and enter the eukaryotic lipid pathway in the endoplasmic reticulum, where they are generally esterified into glycerolipids (Ohlrogge and Jaworski, 1997).

Unsaturated FA's are distinguished by the presence of one or more double bonds between the carbon atoms (Simopoulos, 1991). This group can be split into two categories: mono and polyunsaturated FA's. Monounsaturated FA's are represented by oleic acid, which has a single double bond between the 9<sup>th</sup> and 10<sup>th</sup> carbon atom from the methyl end. Polyunsaturated FA's (PUFA's) have multiple double bonds and can be further divided into two more groups depending on the location of the first double bond:  $\omega_3$  (eg.  $\alpha$ -linolenic) and  $\omega_6$  (linoleic) FA's. These two FA's can be metabolised into 20 and 22 carbon chains, for example, linolenic acid (LA) can be metabolised into arachidonic acid (AA), while  $\alpha$ -linolenic (ALA) can be converted into eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). These long chain FA's are very important, as they cannot be synthesised without LA and ALA precursors in the body (Simopoulos, 1991).

It has been found that abiotic factors can cause significant effects on the FA profile of some microalgal species, such as photoperiod and light intensity. Both increasing photoperiod and increasing light intensity from 37.5 to 100 µmol photons m-2 s-1 increased the amount of saturated FA's to 28.67% while simultaneously decreasing the amount of mono and polyunsaturated FA's in *Chlorella vulgaris* (Seyfabadi *et al.*, 2011). It has also been found that the addition of cadmium in combination with low nitrogen media increased saturated FA and monounsaturated FA content while decreasing PUFA's (Chia *et al.*, 2013).

### **1.6 Abiotic Factors Affecting Lipid and Fatty Acid Compositions:**

Several abiotic/ environmental factors have been shown to produce a variety of changes in lipid composition as well as FA composition in almost all classes of algae. Changes to the FA profiles and lipid composition are now accepted as being a consequence of maintaining cell structure during adverse environmental conditions (Goss and Wilhelm, 2010). For example, during sulphate starvation, the negatively charged structural membrane lipid SQDG is being consumed and not being produced; therefore, an increase of PG is observed in the membrane to balance the charges and provide structural support. A similar phenomenon occurs with phosphorus limitation, whereby, under these conditions, a decrease in phospholipids occurs with an increase in betaine lipids and glycolipids. Furthermore, the FA profile of the algae generally shifts towards more unsaturation with nutrient starvation (Goss and Wilhelm, 2010).

A study focusing on iron concentration and lipid accumulation showed that high concentrations of iron increased lipid content in *Chlorella vulgaris* to up to 56% of its total biomass (Liu *et al.*, 2008). Interestingly, in another study of lipid accumulation by *Scenedesmus* sp. phosphate limitation caused an increase in lipids of 53% whereas nitrogen limitation only caused 30% (Xin *et al.*, 2010). Unfortunately no FA analysis was conducted on these lipids, however this shows that results of nutrient limitation can vary widely between species.

A study by Fuentes-Grünewald *et al.* (2012) was conducted to determine the effects of aeration, temperature and nitrogen deficiency on the accumulation of TAG's in algae (Fuentes-Grünewald *et al.*, 2012). Treatment conditions of high temperature and low nitrogen causing an increase in both TAG's and free FA's. However, other than a slight increase in arachidonic acid in the treatment samples, no significant changes to the FA profile were observed (Fuentes-Grünewald *et al.*, 2012).

The combined effect of nitrogen deprivation and high media pH on lipid accumulation was investigated in *Coelastrella saipanensis* and *Scenedesmus obliquus* and though it was found that independently both conditions increased TAG accumulation significantly, in combination the effects were amplified (Gardner *et al.*, 2011). This was likewise found to a certain extent by Widjaja *et al.*, (2009) who subjected *Chlorella vulgaris* to low CO<sub>2</sub> concentrations and nitrogen deprivation. It was realised that under insufficient CO<sub>2</sub>, the algae would use carbonate to meet carbon dioxide requirements, therefore increasing the pH of the media. Conversely, under high CO<sub>2</sub>, pH would decrease because excess CO<sub>2</sub> would dissolve and become H<sub>2</sub>CO<sub>3</sub> in the media. In this study, both CO<sub>2</sub> and nitrogen deprivation yielded an increase in TAG accumulation (Widjaja *et al.*, 2009). Interestingly, Carvalho and Malcata (2005) also found that excess CO<sub>2</sub> concentrations caused an increase in total lipid content, however, a decrease in PUFA's was also detected at high CO<sub>2</sub> concentrations (Carvalho and Malcata, 2005).

Variation in light intensity was shown to cause changes to algal lipids including FA profiles. Growth under low light tends to produce an increase in polar membrane lipids such as DGDG and MGDG as well as an increase in PUFA's, while high light intensity tends to cause an accumulation of saturated FA's in the form of TAG's (Goss and Wilhelm, 2010). Contrary to this trend, a different study found that exposure to high light intensities caused a large increase in TAG's, while low light caused an increase in structural thylakoid lipids (Khotimchenko and Yakovleva, 2005). However, no significant change in the FA profile was observed (Khotimchenko and Yakovleva, 2005). Another study was conducted to determine the effects of different wavelengths on lipid accumulation, using red and blue LED lights at 1000 lux (Shu *et al.*, 2012). It was found that red LED light caused an increase in biomass, while blue LED light caused an increase in lipid production (Shu *et al.*, 2012).

A decrease in temperature generally leads to more FA unsaturation, whereas an increase in temperature causes a decrease in PUFA's (Goss and Wilhelm, 2010). However, the effects of temperature can be quite variable (Goss and Wilhelm, 2010). In a study by Kalacheva *et al.* (2002), above optimal temperatures increased TAG accumulation in *Botryococcus*, and decreased the trienoic FA content (Kalacheva *et al.*, 2002). Higher temperatures were also found to inhibit the synthesis of most other cellular lipids (Kalacheva *et al.*, 2002). Almost the opposite results were discovered in another study, where it was found that increased temperatures caused an increase in trienoic FA's, and a decrease of unsaturated FA's (Sushchik *et al.*, 2003). An earlier study showed an increase in betaine lipids and PUFA's with a decrease in temperature (Tatsuzawa and Takizawa, 1995).

#### **1.7 Effects of Plant Hormones on Presence of Fatty Acids:**

Research into how phytohormones affect FA profiles of higher plants started very early on, following the discovery of phytohormones and adequate ways to isolate and detect them. However, this interest seems to have gone dormant and only recently resurfaced in the last decade or so. It emerged with more of a focus on algae and phytohormones, because of their wide range of FA synthesis capabilities and the ability to produce higher yields of pharmaceutically and industrially important FA's per capita than higher plants. Although this interest has re-emerged, published research on this topic remains relatively scarce.

Most of what is known about interactions of CK and FA comes from the study of higher plants. For example Kull *et al.*, (1978) sought to determine whether exogenously applied CK's had an effect on both the lipid and FA profiles of *Coleus blumei* and *Impatiens sultani* leaves and shoots. In *C. blumei* leaves it was found that in the phospholipid portion linolenic and linoleic acid both decreased by 8.5 and 4% respectively, but increased in the glycolipid portion by 6.5 and 7.1% respectively with the addition of 100  $\mu$ g/ml of tZ. A similar trend was seen when shoots were exposed to the same concentration of tZ; however, a decrease in palmitic acid by 9% was also identified. The results were similar when the same experiment was conducted on the shoots and leaves of *I. sultani* (Kull *et al.*,1978).

Wang and Faust (1988) investigated the effects of thidiazuron (a synthetic cytokinin) application on the FA and sterol content of golden delicious apple buds and found it caused an increase in unsaturated FA's, namely linoleic and linolenic. It produced an overall decrease in free sterol content especially sitosterol and an increase in both campesterol and stigmasterol (Wang and Faust, 1988).

In more recent studies among phytohormones, lipids, and FA's, overall lipid yield is commonly one of the first measured responses. In a study conducted on *Hibiscus sabdariffa* seeds, it was found that, the application of 100mg/L of both the gibberellin GA<sub>3</sub> and the aromatic CK benzyladenine (BA), caused an increase in oil yield by 22.3% above the control plant leaves (Mostafa *et al.*, 2005). With this concentration, marked increases in unsaturated FA's especially oleic and linoleic were detected as well as corresponding decreases in saturated FA's, especially palmitic acid (Mostafa *et al.*, 2005).

Jadhav *et al.*, (2008) investigated the effect of ABA and some of its hydroxylated metabolites (7' and 9'-hydroxy ABA) and a catabolite (8'-hydroxy ABA) on the total oil yield, lipid profile, FA profile and gene induction in *Brassica napus* seeds. It was found that 8'-hydroxy ABA increased total oil content by 18% over the control, while ABA itself increased TAG content significantly. Both ABA and its metabolites doubled the amount of very long chain unsaturated FA's such as erucic (22:1) and eicosenoic (20:1) acid by inducing the expression of olein and the fatty acid elongase (*FAE1*) genes (Jadhav *et al.*, 2008).

More recently, combinations and single hormones were added exogenously to the green algae *Chlamydomonas reinhartii* in order to increase biomass and lipid yield (Park *et al.*, 2013). It was found that the addition of IAA, GA<sub>3</sub>, kinetin and 1-triacontanol (TRIA) all had stimulatory effects on biomass with a maximum increase of 68% by kinetin (1 ppm). Although ABA was the only hormone which did not stimulate growth it had the most significant effect on the FA profile, causing a 13% increase in FAME content at 5 ppm (Park *et al.*, 2013; Figure 11).



Figure 11: Differences in *C. reinhartii* cell density and FAME yield in response to ABA treatments (Park *et al.*, 2013)

### **1.8 Thesis Rationale:**

There are some minor discrepancies in the hormonal profiles of most phytohormones in algae, as their numerous forms and partially unknown pathways make the undertaking complex. However, many more clarifications and breakthroughs have been made in recent research projects which are helping to answer these questions. While there has also been an increase in published research involving exogenous hormone addition to microalgae which is helping to clarify their role in these organisms (Noble *et al.*, 2014; Pitrowska *et al.*, 2008; Tarakhovskaya *et al.*, 2007), existing studies have not taken much care towards matching endogenous hormone profiles with exogenous application experiments. This thesis will concentrate on two groups of hormones, CK's and ABA, their endogenous profiles in *Chlorella vulgaris* and how their exogenous application affects FA presence.

The most significant gap in knowledge in published works to date on the topic of phytohormones in algae is the lack of information on MeSCK's. This group was recently

discovered and seems to be present in a diverse array of tissues, yet still has an unknown function. The forms MeSZ, MeSZR, MeSiP and MeSiPA have been positively identified in the motile algae *Euglena gracilis* in significant amounts in the media (supernatant); however no speculation on their possible function was discussed (Noble *et al.*, 2014). Previously, studies on *Rhizobium* bacteria and the fungi *Ustilago maydis* also found that MeSCK's were produced and released in large quantities (Kisiala *et al.*, 2013; Morrison *et al.*, 2015). It should also be noted that no works on exogenous applications of MeSCK's on higher plants or algae have been attempted and published to the best knowledge of the author.

Given these challenges it is perhaps not surprising that so little has been published regarding the exogenous addition of phytohormones to microalgae to investigate the effects on the lipid and FA profiles. As it has been well documented that hormones play an integral role in all aspects of microalgae metabolism and it is also known that algae have the capacity to produce high value oils and FA's. Thus a critical scientific gap remains since so few papers have been published to ascertain if this group of phytohormones can be used as a tool to alter these oils and FA's.

A second oversight in the research to date is the lack of investigation on lipid and FA profiles of microalgae grown in resource rich conditions. As the focus recently has been the optimization of maximum lipid and FA yield from algae and as this only tends to occur under poor growth conditions, very little has been mentioned about the levels under ideal growth conditions with the exception of a few papers. However, under favourable conditions algae may provide a FA profile that is more conducive to scaffolding higher value FA for the engineering of compounds for commercial use.

### **1.9 Objectives, Hypotheses and Predictions:**

The goal of this thesis is twofold. First, I will determine the endogenous CK and ABA content of the unicellular, non motile, freshwater green algae species *Chlorella vulgaris*. Second, I will examine the effects of their exogenous applications at three different physiologically relevant concentrations on the growth rate, total lipid production and FA profile of this microalgae.

The endogenous hormone content was determined at the beginning of the exponential growth phase of the culture using a modified version of the extraction method described by Farrow and Emery (2012) with identification of up to 25 hormones by electrospray-ionization, liquid chromatography-tandem mass spectrometry (HPLC-(ESI) MS/MS). Based on the literature and the endogenous hormone profile acquired, four prominent hormones were chosen for the exogenous additions which were added at the beginning of the exponential phase of the culture in a single dose. The cultures were harvested at the end of the exponential phase and the total lipids extracted in hexane using a Soxlhet apparatus. Total lipids were transesterified to fatty acid methyl esters (FAME's) and identified using gas chromatography flame ionization detection.

It was hypothesized that the addition of different phytohormones at different concentrations would produce changes in growth rate, lipid yield and the FA profile of the microalgae *Chlorella vulgaris*. Based on the available published literature, it was predicted that with increasing concentrations of ABA, there would be a decrease in growth rate, an increase in the total lipid yield, and an increase in the ratio of unsaturated to saturated FA's. As ABA is generally used as a stress signalling hormone, the culture was expected to react as if conditions

were unfavourable, and therefore would begin accumulating lipid stores. With respect to CK's, increasing concentrations of tZ, BA and MeSZ were expected to increase growth rate, with a decrease in overall lipid yield. The FA ratio of unsaturation to saturation was also predicted to increase. These three hormones are considered growth promoting hormones, including MeSZ by the conclusions of Morrison *et al.* (2015); therefore, the culture was expected to favour rapid growth over lipid accumulation.

# 2. Methods and Materials:

### 2.1 Culture Maintenance and Growth Conditions:

The freshwater algae species *Chlorella vulgaris* (UTEX #265) was obtained in 500ml bulk culture from the UTEX Culture Collection of Algae. The culture was maintained in autoclaved Bold 3N medium (see Table 2) containing a trace metal solution (see Table 3), and was allowed to grow until an optical density (OD) of approximately 1.5 measured at 680 nm was reached (Genesys 20 Visible Spectrophotometer, Thermo Scientific). The culture was then split and maintained as 500 ml cultures in 1L autoclaved glass bottles in a growth chamber (Conviron, Model PGR15) on an 18 hr photoperiod at 24°C/20°C in the light/dark. Full spectrum Sunblaster CFL bulbs (Sunblaster, ESP 26W, 6400K E26) and fluorescent lighting (Phillips Alto, FT2T8, 65W, C9) with a total output of 200  $\mu$ mol photons m<sup>-2</sup> s<sup>-1</sup>, were used to simulate partial sun conditions and cultures were constantly bubbled from the base of the culture with filtered atmospheric air (Millipore, PTFF 0.22) using air pumps (Marina 200, 2x110 L/h). Each culture bottle was also covered with an air filter membrane (3M, Filtrete Microparticle and Allergen Reducer).

| Component                                           | Amount  | Stock Solution<br>Concentration | Final<br>Concentration |
|-----------------------------------------------------|---------|---------------------------------|------------------------|
| NaNO <sub>3</sub> (Fisher BP360-500)                | 30 mL/L | 10 g/400mL dH2O                 | 8.82 mM                |
| CaCl <sub>2</sub> ·2H <sub>2</sub> O (Sigma C-3881) | 10 mL/L | 1 g/400mL dH2O                  | 0.17 mM                |
| MgSO <sub>4</sub> ·7H <sub>2</sub> O (Sigma 230391) | 10 mL/L | 3 g/400mL dH2O                  | 0.3 mM                 |
| K <sub>2</sub> HPO <sub>4</sub> (Sigma P 3786)      | 10 mL/L | 3 g/400mL dH2O                  | 0.43 mM                |
| KH <sub>2</sub> PO <sub>4</sub> (Sigma P 0662)      | 10 mL/L | 7 g/400mL dH2O                  | 1.29 mM                |
| NaCl (Fisher S271-500)                              | 10 mL/L | 1 g/400mL dH2O                  | 0.43 mM                |

 Table 2: Recipe for Bold 3N Medium (Table adapted from UTEX Culture Collection of Algae)

| P-IV Metal Solution | 6 mL/L |  |
|---------------------|--------|--|
|---------------------|--------|--|

| Component                                            | Amount    | Stock Solution<br>Concentration |
|------------------------------------------------------|-----------|---------------------------------|
| Na <sub>2</sub> EDTA·2H <sub>2</sub> O (Sigma ED255) | 0.75 g/L  | 2 mM                            |
| FeCl <sub>3</sub> ·6H <sub>2</sub> O (Sigma F-1513)  | 0.097 g/L | 0.36 mM                         |
| MnCl <sub>2</sub> ·4H <sub>2</sub> O (Baker 2540)    | 0.041 g/L | 0.21 mM                         |
| ZnCl <sub>2</sub> (Sigma Z-0152)                     | 0.005 g/L | 0.037 mM                        |
| CoCl <sub>2</sub> ·6H <sub>2</sub> O (Sigma C-3169)  | 0.002 g/L | 0.0084 mM                       |
| $Na_2MoO_4 \cdot 2H_2O$ (J.T. Baker 3764)            | 0.004 g/L | 0.017 mM                        |

Table 3: Recipe for P-IV metal solution (Table adapted from UTEX Culture Collection of Algae)

# 2.2 Growth Curve:

Three randomly selected 500ml healthy cultures were combined in an autoclaved 3L conical flask and mixed thoroughly. The cultures were split into 6 new 500ml cultures containing an equal ratio of algae culture to fresh autoclaved media (250 ml: 250 ml). Three of these new cultures were used to construct a growth curve using  $OD_{680}$  measured daily on a desktop spectrophotometer (see Figure 12A). Each culture had an approximate starting OD of 0.900. When an OD of 1.5 was reached, spectrophotometer samples were diluted by half so as to ensure OD values were within the linear response of the detector, then the values obtained were multiplied by two.

As the cultures required vigorous bubbling to prevent settling as well as a large headspace, the rapid evaporation of water from the media contributed to the increasing concentration of cells in the culture, thereby continuing to increase OD. This was not considered as a source of stress as the nutrient level in the media was not affected however the increasing concentration of cells made it difficult to ascertain the period of exponential growth. Therefore, cell counts were also conducted each day giving change in number of cell per week (see Figure 12B) and correlated with OD, in order to clarify the length of the exponential phase.



Figure 12: A) *Chlorella vulgaris* average growth curve (3 reps) measured by spectrophotometer at 680 nm, B) Change in number of cells per week of *Chlorella vulgaris* cultures during growth curve

Cell counts were conducted using a light microscope (OMAX, V434 Series Stereoscopic Microscope, NO. 00164 at x100 magnification) with 1 ml of culture on a grid slide and the average cell counts of ten grid squares was used to give a concentration value of number of cells per milliliter. Figure 12B shows the change in the number of cells per week throughout the duration of the growth curve (see Figure 12A). The largest increase in cell number occurred between day 1 and day 7 of the growth curve indicating that the growth rate was highest during this period. The second week showed a smaller increase in cell number, indicating that the growth rate was slowing down, and though the third and fourth weeks still show an increase in cell number, they are not very different, indicating the culture was in the stationary growth

phase. Both Figures 12A and B indicated that culture growth slowed after week 1; therefore, further experiments were conducted during the first week of culture to ensure they occurred during the exponential growth phase.

### 2.3 Endogenous Hormone Study:

Four randomly selected healthy algal cultures were selected and combined, then split into 8 new cultures, as was done for the growth curve. These cultures were allowed to grow for 4 days, then 15 ml of each culture was harvested by centrifugation at 5000rpm for 5 min (Sorvall, ST 16) into 15 ml tubes. The supernatant was removed from the pellet, filtered and transferred to a new 15 ml tube. Endogenous ABA and CK's were extracted using a modified version the methods shown in Quesnelle and Emery (2007) and Farrow and Emery (2012).

Both the supernatant and pellet were dried in a speed vacuum concentrator at 35°C (Savant SPD111V, Thermo Scientific) until their weights were constant ensuring all moisture had been removed, then stored overnight at -20°C. All samples were extracted in Bieleski's extraction buffer (CH3OH:H2O:HCOOH [15:4:1, v/v/v]) over ice, then homogenised in a ball mill (Retsch, MM300) with zirconium oxide beads at -20°C. Both the pellet and supernatant samples were spiked with the following internal standards: 149.8 ng of <sup>2</sup>H<sub>4</sub>ABA (PBI, Saskatchewan, Canada) and 10 ng each of the following deuterated internal standard CK's: <sup>2</sup>H<sub>7</sub>BA, <sup>2</sup>H<sub>7</sub>BAR, <sup>2</sup>H<sub>5</sub>ZOG, <sup>2</sup>H<sub>7</sub>DHZOG, <sup>2</sup>H<sub>5</sub>ZROG, <sup>2</sup>H<sub>7</sub>DHZROG, <sup>2</sup>H<sub>6</sub>iP7G, <sup>2</sup>H<sub>5</sub>Z9G, <sup>2</sup>H<sub>5</sub>MeSZ, <sup>2</sup>H<sub>6</sub>MeSiP, <sup>2</sup>H<sub>5</sub>MeZR, <sup>2</sup>H<sub>6</sub>MeSiPR, <sup>2</sup>H<sub>6</sub>iPR, <sup>2</sup>H<sub>3</sub>DHZR, <sup>2</sup>H<sub>6</sub>iP, <sup>2</sup>H<sub>3</sub>DHZ, <sup>2</sup>H<sub>6</sub>iPRMP, and <sup>2</sup>H<sub>6</sub>DHZRMP (OlchemIm Ltd., Olomouc, CZ) and vortexed. After overnight passive extraction at -20°C, supernatants were transferred and dried down at 35°C.

Separation, purification and concentration of the different CK fractions was performed by solid phase extraction on a mixed mode, reverse-phase/ cation exchange cartridge (Oasis, MCX 6 cc; Waters, Mississauga, Canada) activated with methanol and equilibrated with 1 M formic acid. ABA was eluted first using 1 ml HPLC grade methanol, followed by the nucleotide CK fraction with 1 ml 0.35 M ammonium hydroxide. The free base and riboside fractions as well as methylthiol and glucoside conjugates were eluted together last using 1 ml 0.35M ammonium hydroxide in 60% methanol. Plates were then dried down at 35°C and stored at -20°C immediately to avoid CK degradation.

Dephosphorylation of the nucleotide CK fraction is necessary for detection of the fraction using this method and was carried out using bacterial alkaline phosphatase in 1 ml 0.1 M ethanolamine-HCl overnight at 37°C, then samples were dried down at 35°C under a vacuum. Samples were rehydrated in double distilled water, and were isolated on a reversed-phase  $C_{18}$ solid phase extraction column (Oasis  $C_{18}$  3cc; Waters, Mississauga, Canada) activated with methanol and equilibrated using double distilled water. Nucleotide samples were allowed to pass through the column by gravity and the sorbent was washed with double distilled water. Ribosides were then eluted with methanol, and both fractions were evaporated under a vacuum at 35°C, and stored at -20°C. Before LC-MS/MS analysis, all samples were reconstituted in 1.5 ml starting conditions (CH<sub>3</sub>COOH: C<sub>2</sub>H<sub>3</sub>N:ddH<sub>2</sub>O [0.08:5.0:94.92,vol/vol/vol] for CK, and CH<sub>3</sub>COOH:CH<sub>3</sub>OH:ddH<sub>2</sub>O [0.08:5.0:94.92, vol/vol/vol] for ABA)) and centrifuged.

Cytokinins and ABA were identified by electrospray ionization, liquid chromatographytandem mass spectrometry, HPLC-ESI MS/MS (Agilent 1100 HPLC connected to Sciex Applied Biosystem 5500 API Mass Spectrometer) using the method described by Noble *et al.* (2014) and Kisiala *et al.*, (2013) with a Luna reverse phase  $C_{18}$  HPLC column (3 µm, 150 × 2.1 µm; Phenomex, Torrance, California, USA). Cytokinins were eluted using an increasing gradient of 0.08% acetic acid in acetonitrile with 0.08% acetic acid in double distilled water at a flow rate of 0.2 ml per minute. ABA was eluted using an increasing gradient of 0.08% acetic acid in methanol with 0.08% acetic acid in double distilled water at a flow rate of 0.2 ml per minute.

Analysis was carried out using Analyst (v 1.5) software (AB Sciex, Framingham, Massachusetts, USA) to calculate peak area and concentration of analytes by comparison to the recovery of the deuterated internal standards which were listed earlier in this section (see Figure 14A-E). cZ isomers were identified and quantified based on the peak position of the corresponding tZ standards.

## 2.3.1 Rationale for Exogenous Concentrations:

The exogenous hormone additions in further experiments were based on both the endogenous hormone content of the culture and on published literature. The exogenous applications would be added to the supernatant of the culture therefore the concentrations of hormones in the supernatant were the values consulted. The endogenous ABA, tZ and MeSZ content in the supernatant were 1.15, 17.89 and 220.72 pmol/ml, which translated to  $10^{-9}$ ,  $10^{-8}$  and  $10^{-7}$  M, respectively. Because the exogenous applications were meant to shock the system in the hopes of creating a novel physiological response in lipid and fatty acid production, values of  $10^{-7}$ ,  $10^{-6}$  and  $10^{-5}$  M were chosen for exogenous application. These concentrations were equal to or higher than the endogenous production of each hormone, with the exception of BA which was not detected. All three chosen concentrations had also been added to algae previously in the literature (Noble *et al.*, 2014), with the exception of MeSZ, therefore comparisons of results could be made. BA is an aromatic CK which was also chosen as it has been widely used in the

literature in exogenous applications (Noble *et al.*, 2014; Piotrowska and Czerpak, 2009). Though it was not detected in this study, perhaps due to analytical differences or growth phase differences, it is known to be produced and released by *Chlorella vulgaris* (Ordog *et al.*, 2004).

## 2.4 Exogenous Hormone Treatments:

Twenty 500ml cultures at  $OD_{680} \sim 1.5$  were centrifuged into 50 ml tubes and the supernatant removed and discarded. Pellets were then re-suspended with 10 ml autoclaved media using a vortex mixer, combined into one container and mixed thoroughly. 8 ml of this stock were then used to inoculate each of 57 500 ml cultures, giving a starting  $OD_{680}$  of between 0.750-0.850 for all cultures. Four hormone treatments, BA (4 reps), MeSZ (3 reps), tZ (4 reps) and ABA (4 reps) plus a DI water control (12 reps) were added to give final concentrations in the cultures of  $10^{-7}$ ,  $10^{-6}$  and  $10^{-5}$  M. Cultures were then allowed to grow until they reached an  $OD_{680}$  of 1.5 (previously determined  $OD_{680}$  corresponding with the end of the exponential phase) at which point whole cultures were harvested by centrifugation for 10 minutes at 5000rpm into 50 ml tubes. The supernatant was discarded and pellets were washed 3 times with DI water before being frozen overnight at -80°C. Pellets were then individually ground for five minutes in a mortar and pestle under continuous liquid nitrogen addition, then freeze dried for two days in a bench top freeze drier (Labconco, FreeZone 4.5; Welch vacuum pump, M# 8912). Dry pellet weights were obtained using a microscale (Delta Range xP105, Mettler Toledo).

## 2.5 Lipid Extraction:

Total lipids were continuously extracted from the total freeze dried pellet in a soxhlet apparatus for 12 hours each in either 150 ml or 300ml reagent grade hexane at 120°C. Pellets were suspended in a thimble of filter paper (Whatman, 27cm, Grade 1). Round bottom flasks containing hexane and extracted lipids were allowed to cool to room temperature and hexane was removed using a rotary evaporator with a water bath at 40°C (Büchi, Rotovapor R-3000). Round bottom flasks were washed 5 times with 10 ml hexane to ensure all lipids were transferred into pre weighed 10 ml glass tubes. Total lipid weights were obtained by drying down 10 ml tubes in a vacuum concentrator for 12 hours.

### 2.6 Transesterification:

Transesterification of total lipids to FAME's was performed in the 10 ml glass tubes by first saponifying the dried lipid sample with 900µl methanolic KOH in a silicone oil bath at 120°C for 10-15 mins with the lids tightly sealed. During heating the tubes were shaken every 4-5 minutes. The tubes were removed from the oil bath and 100µl heptadecanoic acid was added as an internal standard. 1 ml methanolic BCl<sub>3</sub> was then added and the tubes were heated for an additional 10 minutes at 120°C and shaken every 4-5 minutes. The tubes were then allowed to cool to room temperature and 1 ml of saturated NaCl solution and 1 ml hexane were added. The tubes were tightly sealed, shaken vigorously for 5 minutes and centrifuged at 5000rpm for 10 minutes. The upper hexane layer was transferred to 5 ml tubes and 1 ml hexane was added to the 10 ml tubes once again. The tubes were shaken and centrifuged as in the previous step and the

hexane layer transferred. This was repeated 3 times. FAME samples in 5 ml tubes were then dried down in a vacuum concentrator for 2 hours.

FAME samples were redissolved in 1 ml hexane, and 1 ml DI water was added to remove any residual salts from the transesterification process. The samples were shaken vigorously in a vortex mixer for 10 minutes then centrifuged at 5000 rpm for 5 minutes. The hexane layer was transferred to new 5 ml tubes and another 1 ml hexane was added. This process was repeated for a total of 5 washes. A second wash with 0.1M HCl solution and a third with 0.5g of Na<sub>2</sub>SO<sub>4</sub> anhydrous with five washes each were also carried out to remove remnants of catalyst and any moisture in the samples respectively. FAME's were then transferred to pre weighed 5 ml tubes and dried down for 48 hours in a vacuum concentrator at 35°C and dry weights were obtained using a microscale.

## 2.7 Fatty Acid Methyl Ester Analysis:

Fatty acid methyl ester identification was carried out using a Gas Chromatograph equipped with a Flame Ionization detector (GC-FID) (Hewlett Packard, 5890 A) and a FFAP column (Zebron Capillary GC Column, 60m, 0.25µm, 233543) with helium as the carrier gas. Both the injector and detector were set at 230°C, with an initial oven temperature of 160°C and a split ratio of 1/80. Oven temperature was held at 160 for the first 5 minutes, then temperature was set to increase to 230 at a rate of 2°C per minute with a final time of 30 minutes. Samples were dissolved and injected using volumes of 1µl n-hexane and an n-hexane column wash was conducted between each sample.

# 2.8 Statistical Analysis:

Statistics tests were conducted using SigmaPlot (v 12.0) software on exogenous hormone treatment affect on growth rate, lipid content, FA content and FA profile. One way analysis of variance with a Duncan's multiple range test was used to determine significant differences from the control, indicated in figures by \* when significant differences were detected at the rejection level of P = 0.05.

# **3. Results**

# 3.1 Endogenous Hormone Content of Chlorella vulgaris:

In all hormones identified, the largest concentrations were found to be present in the supernatant of the culture, with only small amounts present on the algae pellet. However in both the supernatant and pellet, MeSCK's were by far the most prevalent, followed by nucleotide type CK's (see Figure 13A & B). By contrast, in the pellet low amounts of ABA and riboside type CK's were found and negligible amounts of free base type CK's. However, in the supernatant the opposite was true as it contained negligible amounts of ribosides and ABA and a significant amount of free bases.



Figure 13: Hormone profiles represented as percentage of endogenous CK forms (Free base - FB, Riboside - RB, Nucleotide - NT, Methylthiol - MeSCK) and Abscisic acid (ABA) found in A) Algae pellet and B) Algae culture supernatant

Abscisic acid was found mostly in the supernatant with an average of 1.15 pmol/ml, while only a small amount of 0.09 pmol/g was found in the pellet (see Figure 14A). No free base type CK's (ie. tZ, cZ, iP, DZ) were detected in the pellet, however a significant amount was found in the supernatant of the cultures (see Figure 14B). The free base type CK tZ was the dominant form found with 17.89 pmol/ml, followed by small amounts of iP 2.20 pmol/ml and a trace amount of cZ with 0.87 pmol/ml. No DZ free bases were detected (see Figure 14B).

Riboside type CK's were detected in both the supernatant and the pellet of *Chlorella vulgaris*. In the pellet the most prevalent type was cZ riboside (cZR) (0.04 pmol/g) followed by DZR 0.03 pmol/g and tZR 0.02 pmol/g. No iPR was detected in the pellet. In the supernatant, the most prevalent riboside was iPR at 0.16 pmol/ml followed by cZR (0.05 pmol/ml), DZR (0.04 pmol/ml) and tZR (0.01 pmol/ml) (see Figure 14C).



Figure 14: Average endogenous content of A) ABA and CK's B) free base (DZ, tZ, cZ, iP) C) riboside (DZR, tZR, cZR, iPR) D) nucleotide (DZNT, tZNT, cZNT, iPNT) and E) MeSCK's (MeSZ, MeSiP, MeSZR, MeSiPA) and in *Chlorella vulgaris*. Error bars represent standard error (n=7-8)

Almost all nucleotide type cytokinins were detected in the supernatant with only small amounts of cZNT (0.45 pmol/g), iPNT (0.25 pmol/g) and tZNT (0.09 pmol/g) detected in the pellet. iPNT was the most prevalent nucleotide found in the supernatant with an average concentration of 73.97 pmol/ml, followed by cZNT (10.29 pmol/ml) and a small amount of tZNT (0.38 pmol/ml) (see Figure 14D).

As mentioned previously, MeSCK's were present in the highest concentration in both the supernatant and pellet of *Chlorella vulgaris* when compared to all other detected cytokinin forms. MeSZ was the most common in the pellet (4.70 pmol/g) followed by MeSiP (1.11 pmol/g), MeSiPA (0.14 pmol/g) and MeSZR (0.12 pmol/g). Very high concentrations of MeSZ were detected in the supernatant with an average of 220.72 pmol/ml, followed by MeSiP (16.31 pmol/ml), MeSZR (0.97) and MeSiPA (0.69 pmol/ml) (see Figure 14E).

### **3.2 Exogenous Hormone Treatment effect on Growth Rate:**

## 3.2.1 Hormone Effect By Concentration:

A one way analysis of variance coupled with Duncan's test (P = 0.05) was used to determine significance in all following results, and is denoted by an asterisk in all following figures. All error bars represent standard error based on Control replicates of n=12, ABA, BA and tZ replicates of n=4 each and MeSZ replicates of n=3. In this case, the slope values of each growth curve's trendlines were used to determine levels of significance for each hormone treatment on growth rate. As seen from Figure 15A, there does not appear to be any difference in growth rate between hormone treatments at  $10^{-7}$  M, which was confirmed by statistical tests (P <

0.05). The slope values at this concentration ranged from 0.0749 (ABA) to 0.0925 (tZ). Although tZ had a higher slope value than all other treatments, indicating a higher growth rate, this difference was not significant. All cultures at this low concentration took 9-10 days to reach the harvesting OD of 1.5 (see Figure 15A).

The mid-range hormone additions of  $10^{-6}$  M had a more obvious effect on the growth rate of the culture with slope values ranging from 0.0773 to 0.132. BA and MeSZ stimulated the greatest significant increase in growth rate (P < 0.05) of 0.132 and 0.126, respectively, from the control slope value of 0.0808. These treatments were also the first to reach harvesting OD on day 6. ABA caused a slight increase, while tZ caused a slight decrease in growth over the control (harvested on day 8 and 10 respectively) however these differences were not found to be significant (see Figure 15B).

The highest hormone concentration treatment of  $10^{-5}$  M produced both increases and slight decreases in growth rate from the control, which had a slope value of 0.0808. Slope values ranged from 0.0753 (ABA) to 0.107 (tZ). *trans*-Zeatin and BA at this high concentration had significant effects on growth rate with increases in slope values to 0.107 and 0.106 respectively, and both were harvested on day 8. Treatment with MeSZ and ABA at this concentration did not cause a significant deviation from the control (see Figure 15C).



Figure 15: Growth response of *Chlorella vulgaris* measured by change in OD @680 nm to exogenous hormones treatments at A)  $10^{-7}$  M, B)  $10^{-6}$  M and C)  $10^{-5}$  M. All R<sup>2</sup> values  $\ge 0.9$ . \* indicates statistical significance (*P*=0.05) from control. Control n=12, all others n=3-4

## 3.2.2 Hormone Effect By Timepoint:

The effect of the hormone additions on growth rate was observed mainly at medium concentration, and to a lesser extent at high concentration, and this appeared to be amplified over time, as seen from Figure 16A-C. The most obvious trend was a typical biphasic response that hormones often evoke (Davies, 2004), whereby additions at low  $(10^{-7} \text{ M})$  and high  $(10^{-5} \text{ M})$  concentrations both initially had negative effects on growth rate, while by day 6 after additions both tZ and BA at  $10^{-5}$  M had positive effects on the growth rate increasing it by 10.9% and 11.5% respectively, above the control. Another clear trend was the addition of all hormones at  $10^{-6}$  M had initial positive effects on growth which amplified over time, especially exemplified by the addition of BA and MeSZ which showed consistent significant increases in growth over time. The effect of each hormone on growth rate across concentrations over time will be individually discussed below.

BA caused the greatest significant (P < 0.05) increase in growth rate throughout the 6 days at  $10^{-6}$  M, increasing growth from 15.5% at day 2, to 18.36% at day 4, and finally to 28.4% at day 6 above the control. Additions at  $10^{-5}$  M also ultimately caused an increase in growth rate from -2.8% at day 2 to 11.5% at day 6. MeSZ caused significant increases in growth at  $10^{-6}$  M, similar to that of BA, with an increase of 13.3% on day 2, to 14.97% growing to 25.5% on day 6 above the control. However, unlike BA, MeSZ decreased growth rate by 7.5% at  $10^{-5}$  M on day 6, though this decrease was not significant.



Figure 16: Percent change in OD from control of *Chlorella vulgaris* across concentrations at A) Day 2, B) Day 4 and C) Day 6 of treatment. \* indicates statistical significance (P=0.05) from control. Error bars represent standard error (n=3-4). Data converted to percentage to show trends more clearly.

ABA also caused a significant increase in growth rate at  $10^{-6}$  M, with an increase of 7.11% at day 2, becoming statistically significant at day 4 with an increase of 8.83% and rising to 10.55% on day 6 (not significant). At the lowest concentration ABA caused decreases in the growth rate from 4% at day 2, to 7.4% on day 4, to a significant 11.6% at day 6. This clearly shows the amplified negative effect on the growth rate over time. When added at  $10^{-5}$  M ABA decreased growth by 6.1% on day 2 and 5.8% on day 4; however the growth rate was almost equal to the control by day 6 and no significant differences were found.

The only notable effects of tZ are seen on day 2 and day 6 when added at  $10^{-7}$  and  $10^{-5}$  M. At  $10^{-7}$  M, whereby on day 2 tZ caused a decrease in growth of 8%; however this decrease became negligible by day 4 and in day 6. A small initial decrease in growth rate at  $10^{-5}$  M on day 2 reversed to a small increase by day 4 and reached an increase of 10.9% on day 6. None of the effects of tZ were deemed significant when viewed as percentage increase/ decrease from the control. Because tZ continued to increase growth at the highest concentration of  $10^{-5}$  M it was the only hormone which did not elicit the inhibitory phase at higher concentrations, typical of a hormonal biphasic response. Presumably this would have happened if the experiment had continued at greater concentrations.

No other statistically significant differences were identified, although trends seemed to be apparent in the data. For this reason statistical tests were conducted not only across concentrations and days but also within concentrations on individual days. These tests confirmed a lack of statistically significant differences between the control and treatments.

## 3.4 Exogenous Hormone Treatment effect on Lipid Content:

Although several hormone treatments altered growth rates, the effects on lipid content was only apparent in select cases. The percentage of dry weight lipid content varied with individual hormone treatments when compared to the control, which contained 1.53% dry weight (see Figure 17). The only treatment which increased lipid content significantly (P < 0.05) above the control was BA at 10<sup>-6</sup> and 10<sup>-5</sup> M. All other treatments, with the exception of tZ at 10<sup>-5</sup> and MeSZ at 10<sup>-6</sup> M, caused a significant decrease in lipid content (see Table 4). BA at 10<sup>-7</sup> did not differ significantly from the control.



Figure 17: Lipid content shown as percentage of dry algal weight of *Chlorella vulgaris* in response to exogenous hormone treatments. \* indicates statistical significance (P=0.05) from control. Due to expected variation within samples percent dry weight was chosen for figures to highlight trends. See Appendix for raw data. Error bars represent standard error (Control n=12, all other n=3-4)

| Treatment             | Average Percent Change in Lipid<br>Content from Control (%) | Replicates | Significant Difference $(P < 0.05)$ |
|-----------------------|-------------------------------------------------------------|------------|-------------------------------------|
| ABA 10 <sup>-7</sup>  | $-36.6168 \pm 0.849$                                        | 4          | Yes                                 |
| ABA 10 <sup>-6</sup>  | $-34.0059 \pm 0.736$                                        | 4          | Yes                                 |
| ABA 10 <sup>-5</sup>  | $-31.4687 \pm 0.401$                                        | 4          | Yes                                 |
| BA 10 <sup>-7</sup>   | $12.32397 \pm 1.657$                                        | 4          | No                                  |
| BA 10 <sup>-6</sup>   | $25.43085 \pm 2.073$                                        | 4          | Yes                                 |
| BA 10 <sup>-5</sup>   | $39.72111 \pm 2.121$                                        | 4          | Yes                                 |
| tZ 10 <sup>-7</sup>   | $-40.6409 \pm 0.429$                                        | 4          | Yes                                 |
| tZ 10 <sup>-6</sup>   | $-38.8285 \pm 0.641$                                        | 4          | Yes                                 |
| tZ 10 <sup>-5</sup>   | $-7.89128 \pm 1.750$                                        | 4          | No                                  |
| MeSZ 10 <sup>-7</sup> | $-37.8099 \pm 1.167$                                        | 3          | Yes                                 |
| MeSZ 10 <sup>-6</sup> | $-9.92413 \pm 1.609$                                        | 3          | No                                  |
| MeSZ 10 <sup>-5</sup> | $-42.5619 \pm 0.355$                                        | 3          | Yes                                 |

Table 4: Summary table of percent change in lipid content from the control (n=12) with hormone additions

# 3.4 Exogenous Hormone Treatment effect on Fatty Acid Content:

Similar to the responses observed with the overall lipid content, ABA, tZ and MeSZ treatments, at all concentrations, caused a significant reduction in FAME content when compared to the control (see Figure 18). Only treatment with BA at  $10^{-5}$  M caused a very slight increase in FAME content from 10.8 mg to 11.2 mg; however this was not significant (P < 0.05). BA at  $10^{-7}$  and  $10^{-6}$  M caused a significant decrease in FAME content. All treatments with the exception of MeSZ show a subtle dose dependant response where increasing concentrations of hormones produced increases in FAME content, however in most cases the FAME content was still below that of the control. Standard deviations ranged from 2.8-23.9% with replicates ranging from 12 to 3 (see Figure 18).



Figure 18: Total FAME content of *Chlorella vulgaris* (mg) in response to exogenous hormone treatments. \* indicates statistical significance (P=0.05) from control. Reduced variation between samples allowed for trends to be visible using raw data. Error bars represent standard error (Control n=12, all other n=3-4).

The transesterification process also yielded unknown compounds which contributed to the mass of FAME's measured. This was due to both naturally found compounds within the lipids and due to excess salts and moisture from the transesterification process. As previously mentioned in the methods, the salts and moisture were removed by sample washes of dilute hydrochloric acid and anhydrous sodium sulphate. To determine the class of the unknown component of the FAME samples TLC separations followed by C-NMR analysis were conducted on two randomly selected FAME samples. These tests confirmed the presence of long chain alkane type molecules, as well as confirming successful transesterification of the FA's. The methods used and the results of these tests can be found in the Appendix. As this component was not present in the GC-FID spectra produced by the same samples, these compounds would not affect the concentration calculations for the FAME's we were analyzing, therefore no further testing was performed.

Unfortunately, after the transesterification process, all biological replicates of the treatments ABA at  $10^{-7}$  M and tZ at  $10^{-5}$  M were unintentionally destroyed, and thus not available for analyses of FA profiles. Those specific dosages have therefore been omitted from any further graphs and discussion.

# 3.6 Exogenous Hormone Treatment effect on Fatty Acid Profile:

The control FA profile of *Chlorella vulgaris* was composed mostly of the PUFA linoleic acid (38%), the saturated palmitic acid (32%) and the monounsaturated oleic acid (23%) (see Figure 19). The saturated stearic acid and PUFA linolenic acid were small components of the profile constituting 5% and 2% respectively.



Figure 19: FAME profile of control *Chlorella vulgaris* shown as averaged percentage of total. Heptadecanoic acid standard recovery for all samples was calculated to be 68.9% +/-15.4% with a standard error of 2.6 (n=49).

The hormone treatments produced variations in the FA profile of *Chlorella vulgaris* which included all five most common FA's found in the control cultures (see Figure 20A-E). All treatments at all concentrations caused an increase in stearic acid the highest of which was caused by the addition of ABA at 10<sup>-6</sup> M with an increase of 65.56% above the control. Treatment with ABA and MeSZ produced the most consistent changes throughout the profile across all concentrations while treatment with BA and tZ produced more variable results across concentrations (see Table 5; Figure 20A-E).

|                       |            | Saturated Fatty Acids |      |         | Unsaturated Fatty Acids |         |      |          |      |           |      |
|-----------------------|------------|-----------------------|------|---------|-------------------------|---------|------|----------|------|-----------|------|
| Treatment             | Replicates | Palmitic              | SE   | Stearic | SE                      | Oleic   | SE   | Linoleic | SE   | Linolenic | SE   |
| ABA 10 <sup>-6</sup>  | 4          | 16.48*                | 1.57 | 65.57*  | 0.62                    | -15.59  | 2.99 | -14.42   | 2.36 | 25.07     | 0.51 |
| ABA 10 <sup>-5</sup>  | 4          | 11.72*                | 1.10 | 13.48   | 0.85                    | -6.94   | 1.76 | -5.28    | 0.48 | -36.64    | 0.24 |
| BA 10 <sup>-7</sup>   | 4          | 12.57*                | 2.64 | 5.47    | 0.45                    | 23.06   | 2.48 | -23.00*  | 3.06 | -48.25    | 0.13 |
| BA 10 <sup>-6</sup>   | 4          | -5.33                 | 0.97 | 8.51    | 0.53                    | 0.27    | 1.50 | 3.96     | 1.47 | -13.66    | 0.20 |
| BA 10 <sup>-5</sup>   | 4          | -6.78                 | 0.76 | 14.01   | 0.38                    | -10.72  | 2.22 | 11.37    | 1.05 | -14.89    | 0.55 |
| tZ 10 <sup>-7</sup>   | 4          | -11.22                | 1.28 | 42.90*  | 0.63                    | 6.28    | 2.51 | -2.99    | 1.71 | 48.63     | 0.29 |
| tZ 10 <sup>-6</sup>   | 4          | -0.99                 | 1.12 | 31.61*  | 0.52                    | -14.76  | 2.57 | 8.17     | 2.65 | -41.77    | 0.29 |
| MeSZ 10 <sup>-7</sup> | 3          | -7.07                 | 1.14 | 18.40   | 0.23                    | -13.86  | 2.05 | 0.51     | 1.11 | 204.53*   | 0.56 |
| MeSZ 10 <sup>-6</sup> | 3          | -8.25                 | 0.38 | 17.94   | 0.54                    | -42.10* | 0.99 | 4.82     | 1.65 | 457.43*   | 1.34 |
| MeSZ 10 <sup>-5</sup> | 3          | -5.52                 | 0.37 | 41.06*  | 0.22                    | -6.37   | 1.11 | 6.07     | 0.88 | -51.98    | 0.32 |

Table 5: Summary of percent change in FAME content from control showing number of replicates, statistical significance and standard error values. \* indicates significance from control (P=0.05).



Figure 20: Percent change from control of A) palmitic acid, B) stearic acid, C) oleic acid, D) linoleic acid and E) linolenic acid in *Chlorella vulgaris* with hormone treatments. \* indicates significance from control ( $\alpha$ =0.05). Error bars represent standard error (Control n=12, all other n=3-4). Raw data was converted to percentages to reveal trends more clearly.

# 4. Discussion

### 4.1 Chlorella vulgaris Endogenous Hormone Content:

Phytohormones such as CK's and ABA act as signal molecules in plants, algae and bacteria (Sakakibara, 2006; Frebort *et al.*, 2011). In higher plants they are generally synthesised in one part of the plant and are transported to their target organ via the phloem where receptors perceive them and react according to their concentration (Davies, 2004). In media grown unicellular algae, these molecules are synthesised in each algal cell, then released into the media where they are perceived by the rest of the cells in the culture (Spichal, 2012). Again, these cells react according to the concentration of phytohormones in the media, either accelerating or decelerating growth, mounting a pathogen response or producing different metabolites (Piotrowska and Czerpak, 2009; Tate *et al.*, 2013). It is clear that this cycle is being exemplified in the results of the endogenous hormone study of *Chlorella vulgaris*. This study shows that this algal species can synthesise a mixture of CK's and ABA, as well as release them to the surrounding media. The vast majority of the detected CK's and ABA were found in the media and not in the pellet and were therefore actively signalling the rest of the cells in culture.

## 4.1.1 Abscisic Acid Content:

ABA is considered a "stress" hormone as it is synthesised and released in abundance when a plant is experiencing stressful or suboptimal growth conditions such as lack of nutrients (Nambara and Marion-Poll, 2005). Both the pellet and supernatant contained very low concentrations of ABA, 0.09 pmol/g and 1.15 pmol/ml respectively, when compared to the total CK content, indicating that the culture had abundant resources and was not experiencing abiotic stress. This low ABA content is representative of the exponential growth phase when the cultures
were harvested; because of the fresh input of nutrient rich media and the thinning of the cultures there was no obvious role for ABA signalling. By contrast, a study of the endogenous CK and ABA profile of *Euglena gracilis* revealed relatively high levels of ABA in both the pellet and supernatant (Noble *et al.*, 2014). However, the algal cultures in that study were re-suspended in DI water and grown for 2 days prior to harvesting; therefore they were experiencing severe nutrient and osmotic stress and would be producing much more ABA than a healthy algal culture.

#### 4.1.2 Cytokinin Content:

**4.1.2.1** *Methylthiols* - Of all CK types, MeSCK's were the most abundant in both the pellet and supernatant of the exponentially growing cultures. Methylthiols were recently discovered and seem to be present in a diverse array of tissues, yet still have an unknown function (Sakakibara, 2006). The forms MeSZ, MeSZR, MeSiP and MeSiPA have been positively identified in the motile unicellular algae *Euglena gracilis* in significant amounts in the supernatant, however no speculation on their possible function was discussed (Noble *et al.*, 2014). Previously, studies on *Rhizobium* bacteria found that MeSCK's were the predominant CK's found within the cell and were also present in the media (Kisiala *et al.*, 2013).

Although the algae cultures in this study were not maintained in a flow hood, all equipment and media was thoroughly sterilized and the air supply filtered to prevent bacterial contamination. During the entirety of the culture maintenance as well as during experiments, regular microscopic examination of the cultures was also carried out in order to ensure that no contamination had occurred. It is therefore assumed that the MeSCK content is due to the algae cultures alone and not bacterial contamination. In this study, the most abundant form of MeSCK was MeSZ, with a smaller amount of MeSiP also being produced and released into the media. In the case of the parasitic fungus, *Ustilago maydis*, it was hypothesized that an accumulation of MeSZ in infected corn tissue may be due to its release by the fungus in order to stimulate further cell proliferation and thereby the development of tumours (Morrison *et al.*, 2015). This result and explanation suggests that MeSCK's may play a stimulatory role in cell growth and therefore would be abundant during the exponential growth phase of the algal cultures. The much larger quantities of the MeSCK's in comparison to the levels of CK's and ABA detected may also be due to the reduced ability of the CKX enzyme to break them down, therefore resulting in a build up in both the pellet and supernatant (Radhika *et al.*, 2015; Morrison *et al.*, 2015). It should also be noted that the riboside forms of MeSZ and MeSiP were low in both the supernatant and the pellet, indicating that conjugates were being readily converted into the presumably more active free base forms.

**4.1.2.2** *Free Bases, Ribosides and Nucleotides* - Free base cytokinin forms are generally considered the most biologically active forms (Sakakibara, 2006; Spichal *et al.*, 2004) and are synthesised from nucleotides and ribosides through either the direct action of the LOG gene (Sakakibara, 2006; Kurakawa *et al.*, 2007) or through a two-step process starting with phosphate group cleavage from nucleotide to riboside and then, secondly, to free base form. Riboside forms are considered less active and possible short-term storage forms while nucleotides are considered inactive precursors (Sakakibara, 2006). In this study it was found that there was an abundance of iPNT as well as a small amount of cZNT, both mostly in the supernatant of the exponentially growing *Chlorella vulgaris* cultures, with very small amounts in the pellet. There was also a very small amount of tZNT found in both the pellet and supernatant but no DZNT. Since the iP and cZ types were the most abundant nucleotide forms it suggests that these are mostly inactive at

this stage of exponential growth. This is further supported by the riboside content, which also contained high amounts of iPR, cZR and DZR with low amounts of tZR indicating that tZR is readily being converted to free base form for active signalling. In this study it was found that free base forms were the second most abundant form detected in the supernatant, and were composed mostly of the free bases tZ, with very low amounts of iP and cZ. This further supports the importance of tZ as the main signal molecule, as it is the most abundant active form.

These results mirror the results found in *Euglena gracilis*, where the highest concentrations of hormones were found in the supernatant (Noble *et al.*, 2014). The free base CK's most prevalent in the supernatant were also tZ and MeSZ, with the cis isomer and iP forms most abundant in the pellet as riboside and nucleotide forms. iP was also found to be at its highest concentration in nucleotide form (Noble *et al.*, 2014), as it was in this study. Although GLUC storage forms and aromatic CK's such as BA are known to be produced by Chlorella sp. (Ordog *et al.*, 2004), none were detected in the present study. The results of Noble *et al.*, (2014) as well as the results of the current study underscore the importance of production and release of hormones in algal systems rather than their retention and use within the cells.

**4.1.2.3** Active Cytokinin Synthesis Pathway - As stated previously in the literature review chapter, CK synthesis is divided into two active pathways, the MEP and MVA pathways, responsible for producing either the tZ derived CK's or the cis-isomers, respectively (Sakakibara, 2006). Previous research into the preferred CK synthesis pathways of higher plants have concluded that they tend to favour the MEP pathway and produce more tZ isomers, while lower plant organisms such as algae and other microorganisms favour the MVA pathway and produce more cis-isomers (Pertry *et al.*, 2009). This was supported by an endogenous hormone study

conducted on the green algae *Euglena gracilis*, which revealed that the main CK produced was cZ, which originated from the MVA pathway (Noble *et al.*, 2014).

The results of this study do not support those of previous work, as the main biologically active form being produced was tZ which originates from the MEP pathway. High free base levels of tZ were found with low amounts of cZ. As free base CK forms are believed to be the most biologically active (Sakakibara, 2006), this indicates that tZ was being synthesised at a higher rate, suggesting that it is the more active of the two isomers. High levels of cZ in the riboside and nucleotide storage forms with low levels of tZR and tZNT also support this claim. These low levels in storage indicate that tZR and tZNT is being converted to the active free base form for use in signalling, whereas the cis isomer is remaining as a storage form. Due to the presence of the cis isomer, though in low quantities, these results indicate that both the MEP and MVA pathways are active within *Chlorella vulgaris* during the exponential stage of growth. However, it is clear that the MEP pathway is the most active, due to the high levels of active tZ. For this reason, tZ was chosen for exogenous application in further experiments, as it appeared to be more active in the system than cZ.

It has been hypothesised that conversion between cis and trans isomers can occur due to the action of the cis-trans isomerase enzyme, resulting in both compounds being present (Frebort *et al.*, 2011), which may also explain the presence of both isomers. It is also possible that the tZ found may be of symbiotic bacterial origin acting within the *Chlorella vulgaris* cultures, as bacteria commonly produce and release the tZ isomer in free base form (Kisiala *et al.*, 2013). However, it is most likely that the MEP pathway is simply more active than the MVA pathway.

It was recently postulated that MeSZ, which was found in high quantities, is also a product of the MVA synthesis pathway (Morrison *et al.*, 2015). The high levels of MeSZ therefore indicate that the MVA pathway is being activated for the production of this abundant CK during the exponential growth phase of *Chlorella vulgaris*. Recent research has also discovered that MeSCK's, though they mimic the action of the other CK's, are more stable and persistent in the system because of the lowered ability of the degradation enzyme CKX to act upon them (Radhika *et al.*, 2015). This could result in elevated levels of MeSCK's, especially in closed systems such as the one examined in the current study.

### 4.2 Exogenous Hormone Treatments on Growth Rate:

The addition of hormones at varying concentrations to cultures of *Chlorella vulgaris* produced changes in growth rate compared to the control cultures. Therefore our hypothesis that the exogenous application of hormones would affect the growth rate is supported. Our predictions stated that the CK's BA, MeSZ and tZ would cause increases in the growth rate while the addition of the stress hormone ABA would cause decreases in growth rate compared to the control cultures. The addition of BA and MeSZ at 10<sup>-6</sup> M and tZ at 10<sup>-5</sup> M both caused increases in growth rate, thereby supporting the predictions. However, ABA caused no significant change in growth rate, therefore the prediction that ABA addition would decrease growth rate could not be supported.

The greatest significant increases were caused by the additions of BA and MeSZ at  $10^{-6}$  M, which were statistically different from the control on day 2, 4 and 6. BA and MeSZ were also found to be the most consistent in terms of their effects whereas treatment with other hormones

showed more variation and therefore less predictability. Treatments with BA and tZ at  $10^{-5}$  M also increased growth however only the increase caused by BA at  $10^{-5}$  M was found to be statistically significant, and only on day 4. ABA also caused a statistically significant increase at  $10^{-6}$  M on day 4 only. The only significant decrease in growth rate from the control at  $10^{-7}$  M was observed with ABA, however this did not become statistically significant until day 6. This indicated that  $10^{-7}$  M was generally too low of a concentration to overcome the natural metabolism of an exponentially growing culture of *Chlorella vulgaris* and only succeeded in disrupting the system enough to warrant a slight decrease in growth rate throughout the test period. It was also clear that treatment with most CK's and ABA did not have an immediate effect, as most significant changes in growth rate occurred between day 4 and 6.

All hormones tested, with the exception of tZ, showed a typical biphasic response whereby very low and very high concentrations inhibited the culture growth and the median concentration promoted growth (Noble *et al.*, 2014). This allowed us to ascertain optimum concentrations for the exogenous addition of BA, ABA and MeSZ, but not tZ. As the greatest increases in growth rate were observed for treatments with BA, MeSZ and ABA at 10<sup>-6</sup> M this is considered the optimum concentration for the addition of these hormones to *Chlorella vulgaris*. Although BA also caused an increase in growth above the control at 10<sup>-5</sup> M, it was not as notable as that cause by additions at 10<sup>-6</sup> M. Additions of tZ at 10<sup>-6</sup> M caused a greater increase in growth rate compared to the control. This indicates that the optimal concentration for tZ may be greater than 10<sup>-5</sup> M.

Interestingly,  $10^{-5}$  M was the same concentration found to be cytotoxic to *Euglena* gracilis in a previous study, where the optimum concentration for exogenous applications of tZ

was found to be  $10^{-7}$  M (Noble *et al.*, 2014). It was also revealed that ABA is cytotoxic at  $10^{-5}$  M and its optimum concentration was determined to be far less at  $10^{-9}$  M (Noble *et al.*, 2014). Conversely, the current study showed relatively high optimum concentration and a lack of obvious cytotoxicity at higher concentrations indicating that *Chlorella vulgaris* may be more resilient to treatments with ABA and certain CK's than *Euglena gracilis*. A study on *Chlorella vulgaris* recently showed large increases in cell number with the addition of both BA and tZ at optimum concentrations of  $10^{-7}$  and  $10^{-8}$  M respectively, which were also lower than the optimum concentrations found in the current study (Piotrowska and Czerpak, 2009). This may be due to slight differences in growth conditions or differences in harvesting time.

BA is a well known aromatic CK which has become widely used in hormone studies in algae and higher plants (Piotrowska and Czerpak, 2009; Mostafa *et al.*, 2005). Interestingly, this study has shown that MeSZ stimulates comparable increases in growth to BA at the same concentration when applied to *Chlorella vulgaris*. No studies on exogenously applied MeSCK's have been published to date, to the best knowledge of the author. As BA has become the standard CK used to increase growth rate this is a significant breakthrough. As previously stated, MeSCK's have been detected in several different organisms including algae, bacteria and fungi, however very little is known and a theory as to their precise purpose and function is mostly speculative. Morrison *et al.*, (2015) hypothesised that MeSCK's were released by the parasitic fungus *Ustilago maydis* into corn cob tissue, stimulating substantial cell proliferation which facilitated the formation of cob tissue tumours (Morrison *et al.*, 2015). The large increase in growth rate with the addition of MeSZ to *Chlorella vulgaris* supports the hypothesis that MeSCK introduction causes cell proliferation. This also verifies that MeSZ can be considered a growth

promoting hormone when added exogenously at  $10^{-6}$  M, which supports our predictions that its addition would increase the growth rate of *Chlorella vulgaris*.

### 4.2.1 Cytokinin/ ABA Antagonism:

Many studies have shown that there appears to be an antagonistic relationship between ABA and CK content within plant cells (Emery *et al.*, 1998; Cowan *et al.*, 1999). This relationship was observed during lupin growth, where decreases in ABA content coincided with large increases in CK and auxin, particularly in rapidly growing tissue (Emery *et al.*, 1998). This relationship was also shown in a study of ripening avocado mesocarp, where the addition of various adenine and isoprenoid CK's caused a corresponding reduction in the ABA content by increasing the deactivation of ABA into phaseic acid (Cowan *et al.*, 1999). The addition of synthetic CK's such as N-(2-chloro-4-pyridyl)-N-phenylurea (CPPU) also caused a reduction in ABA content by disrupting ABA biosynthesis (Cowan *et al.*, 1999). This antagonistic behaviour has also been noted in algae (Lu *et al.*, 2014).

The results from the endogenous portion of this study, although not a time course study, suggest that the same antagonism may be occurring in the rapidly proliferating *Chlorella vulgaris* culture, as ABA levels were significantly lower than total CK levels. This may also indicate the favouring of rapid cell proliferation while resources are high and therefore high levels of CK's, as opposed to slow growth and the favouring of storage accumulation which occurs with high levels of ABA. This relationship is similar to that found by Lu *et al.* (2014) where endogenous ABA levels increased in response to decreased nitrogen availability while the levels of active CK's decreased in the algae *Nannochloropsis oceanica* (Lu *et al.*, 2014).

The exogenous addition of ABA in our study also seemed to have the opposite effect on growth in general compared to the addition of the CK's BA and MeSZ. Although there was a slight increase in growth with the addition of ABA at 10<sup>-6</sup> M, this was small in comparison to the growth caused by BA and MeSZ additions, which may also indicate the antagonistic effects of CK addition and ABA addition. This is also in agreement with the results of previous studies on the exogenous addition of ABA and CK's to algae, where ABA slowed growth and stimulated the stress response while CK's accelerated growth (Lu *et al.*, 2014).

### **4.3 Exogenous Hormone Treatments and Effect on Lipid Content:**

Lipids are synthesised by algae to be used as a form of long term energy storage and are known to accumulate during times of unfavourable growth conditions in algal cultures (Chen *et al.*, 2011; Gouveia *et al.*, 2009; Gardener *et al.*, 2011). As the *Chlorella vulgaris* cultures in this study were grown in nutrient rich media to ensure culture growth was in exponential phase during hormone additions, maximizing lipid accumulation was not the main goal of this study. However, the addition of phytohormones was expected to cause changes in the total lipid content of the cultures, as hormones alter metabolism by signalling changes in growth conditions. For example, as ABA is considered a stress hormone which is usually synthesised more rapidly during unfavorable growth conditions (Cowan *et al.*, 1997; Hartung, 2010; Tarakhovskaya *et al.*, 2007), it was expected that high concentrations of ABA added to the cultures would cause them to react accordingly and therefore begin accumulating lipids.

The lipid content of the *Chlorella vulgaris* cultures in this study ranged from 0.88% to 2.14% dry weight which is within the typical range for an exponentially growing culture under

favourable growth conditions in nutrient rich media (Sostaric *et al.*, 2009). Sostaric *et al.*, (2009) found that the average lipid content of *Chlorella vulgaris* grown in nutrient rich media and harvested after 7 days of exponential growth was also very low at 1.69%. BA at all concentrations increased total lipid yield above the control with the highest being 39% caused by BA at  $10^{-5}$  M. This is mirrored by the results found by Mostafa *et al.*, (2005) where the addition of BA caused an increase in oil yield of 22% in *Hibiscus sabdariffa* (Mostafa *et al.*, 2005).

Our hypothesis that different hormones at different concentrations would cause changes in the overall lipid content of *Chlorella vulgaris* was supported. However, our prediction that BA, MeSZ and tZ would decrease while ABA would increase lipid content can only be partially supported. All hormone additions with the exception of BA caused decreases in the lipid content from the control, therefore the prediction is supported for the growth hormones MeSZ and tZ, but not for ABA. Some studies have shown that with exogenous applications of ABA, growth is in fact increased (Kobayashi *et al.*, 1997; Noble *et al.*, 2014). Kobayashi *et al.*, (1997) found that the addition of ABA to *Haematococcus pluvialis* increased cell growth rate as well as causing an increase in carotenoid production, while Noble *et al.*, (2014) found that ABA addition to *Euglena gracilis* increased cell growth rate the most out of all single hormone treatments. Interestingly, BA showed a dose dependant response producing a positive correlation between hormone concentration and lipid content, therefore the prediction was unsupported.

It is possible that the addition of the growth hormones MeSZ and tZ stimulated the cells to remain in exponential growth phase; therefore no accumulation of lipids occurred. This is supported by the increase in growth rates observed with the addition of MeSZ and tZ at certain concentrations which would cause the cell to metabolize more lipids when compared to the control. Research into lipid and FA production in pigs and rats has shown that growth hormones antagonise fatty acid synthase (*FAS*) transcription, therefore reducing the production of FA's and the structural lipids which are made from them (Sul and Wang, 1998). Although this relationship has not been proven in plants, it is possible that this may be occurring with the addition of the growth hormones MeSZ and tZ, as plants also contain *FAS* and fatty acid elongase (*FAE*) (Jadhav *et al.*, 2008). However, it is unusual that BA, which caused the greatest increase in growth rate, produced lipid yields above that of the control. As BA was the only aromatic CK exogenously applied, perhaps this has to do with the difference in structure compared to the other two CK's added. The addition of ABA was predicted to increase lipid yield, however the opposite occurred. This result when compared to the published literature may be due to differences in the test organism (Jadhav *et al.*, 2008), or differences in growth conditions and growth phase.

### 4.4 Exogenous Hormone Treatments and Effect on Fatty Acid Profile:

The FA profile of the control *Chlorella vulgaris* cultures tested proved to be typical for the species when grown in favourable conditions, marked by a ratio of ~1:3 saturated to unsaturated FA's (Stephenson *et al.*, 2010; Tsuzuki *et al.*, 1990). Treatment with phytohormones induced changes in the FA profile, therefore our hypothesis was supported.

Based on the literature available, it was predicted that all four hormone additions would increase unsaturated FA's at the expense of saturated FA's. This however was not the case, as the hormone treatments produced much more diverse effects both among hormone treatments and among concentrations. ABA was the only hormone which produced a clear trend in the results but this went against the predictions. No other hormones produced the changes that were predicted. The only consistent change was an increase in stearic acid with the addition of all hormones at all concentrations, whereby the most dramatic was caused by ABA at  $10^{-6}$  M.

ABA produced a definite trend of increasing saturated palmitic and stearic acid while decreasing the unsaturated FA's with the exception of linolenic acid at  $10^{-6}$  M. This was a clear indication that treatment with ABA had the opposite effect than was predicted. This was also opposite to the findings of Jadhav *et al.*, (2008), where ABA additions caused a twofold increase in the very long chain monounsaturated FA's erucic (22:1) and eicosenoic (20:1) acid in *Brassica napus* seeds (Jadhav *et al.*, 2008). ABA also decreased total FA content at all three concentrations in this study whereas Park *et al.*, (2013) found it caused an increase of 13% from the control in *Chlamydomonas reinhartii* (Park *et al.*, 2013) and an 18% increase in *Brassica napus* (Jadhav *et al.*, 2008).

Treatment with BA specifically had almost the same pattern at  $10^{-6}$  and  $10^{-5}$  M where saturated palmitic acid and oleic acid were decreased slightly while linoleic increased. These results are mostly in agreement with the findings of a previous study conducted on hibiscus seeds (*Hibiscus sabdariffa*) where palmitic decreased while oleic and linoleic increased (Mostafa *et al.*, 2005). However, in this study, BA addition at  $10^{-7}$  M increased palmitic and oleic acid while decreasing linoleic acid, which conflicts with the findings of Mostafa *et al.*, (2005).

MeSZ and tZ increased overall unsaturation the most across treatments, with tZ increasing oleic acid and MeSZ increasing linoleic acid across concentrations and causing very large increases in linolenic acid, especially at 10<sup>-6</sup> M. A study conducted on *Coleus blumei* and *Impatiens sultani* shoots and leaves found that the addition of tZ caused a decrease in palmitic acid of approximately 9% (Kull et al., 1978), which was comparable to the findings of this study

where tZ at  $10^{-7}$  M caused a decrease in palmitic acid of 11.2% from the control. As stated previously, growth hormones in mammalian systems have been known to suppress the production of FA's (Sul and Wang, 1998), which may be why the growth hormones MeSZ and tZ had negative effects on total FA content. Again, as BA is an aromatic CK, perhaps its structural differences caused it to have a more positive effect on total FA content.

As was stated previously, no study on exogenous MeSZ application to Chlorella vulgaris has been published to date, therefore the effects of MeSZ on the FA profile of this species are completely unknown. The most interesting point to note is the very large increases in linolenic acid caused by this hormone at both  $10^{-7}$  and  $10^{-6}$  M. This effect was not seen with any other hormone at any other concentration to this extent. Linolenic acid is composed of an 18-carbon chain with three double bonds (18:3) which makes it incredibly useful and versatile as a feedstock for industrial applications. Through ozonolysis, one 1,3-propanediol molecule and a propanol molecule can be made from this long chain FA (Narine et al., 2007). 1,3-propandiol is a ubiquitous chemical usually synthesised from crude oil, and has applications in everything from adhesives to carpeting (Kraus, 2008). Due to the unique spiralling shape of 1,3-propanediol, products produced with it come with advantages such as greater stretching and recovery, stain resistance and better colour fastness including UV fade resistance, lower dyeing temperatures and the option of a more extensive colour range (Kraus, 2008). If optimized, MeSZ treatments may make *Chlorella vulgaris* a viable candidate for a sustainable source of this valuable chemical.

### 4.5 Future Research:

The study design used in this experiment was built around the addition of hormones during a certain phase of culture growth, so as to ensure the hormones were fully responsible for any changes observed. An exponentially growing culture is actively utilizing the media for nutrition and signalling during this phase therefore the hormones would have been readily perceived by the cells in culture. It would be very interesting to see if these hormones have the same effect when the culture is in the stationary phase of growth, which coincides with the lipid accumulation phase. This way perhaps hormone additions could be fine tuned to maximize lipid yield and potentially FA yield. It would also be useful to explore the relationship between hormone addition and the transcription rates of *FAS* and *FAE*. Given the relationship in animals (Sul and Wang, 1998), perhaps one may exist in plants which can be exploited for the maximization of lipid yield or specific FA's of value.

The addition of MeSCK's to the cultures had a significant effect on growth, comparable to the increases in growth caused by BA at the same concentrations. This is further evidence to suggest that MeSZ plays an important role in causing rapid cell proliferation in an algal culture, and may be applied to other organisms to see if the same effect occurs. This was also the only hormone which caused a very significant increase in linolenic acid, a FA which has multiple applications in the pharmaceutical and chemical industries. Perhaps this hormone can be used to produce other sustainable sources of this FA for example another algal species or canola in order to maximize yield.

### **5.** Conclusions

In summary, our endogenous study showed that *Chlorella vulgaris* is able to synthesise and release a mixture of CK's including cZ and tZ, iP and DZ, as well their corresponding riboside, nucleotide and methylthiolated counterparts. Our hypothesis that the exogenous application of the growth hormones BA, MeSZ and tZ and the stress hormone ABA would cause changes in the growth rate was supported. MeSZ was the most abundant CK detected endogenously, and was very successful at stimulating growth with exogenous application, which was comparable to that of BA application. The optimal concentrations for growth stimulation were discovered for BA, MeSZ and ABA at  $10^{-6}$  M but the optimal concentration for tZ is hypothesised to be  $10^{-5}$  M or more.

Hormone additions were successful at altering both the total lipid and total FA content which supported our hypothesis, however only BA was successful at increasing lipid content significantly above the control. All hormones at all concentrations caused changes in the FA profile from the control which also supported our hypothesis, the most significant of which was the large increase in linolenic acid by MeSZ. As research on the exogenous applications of BA, tZ, MeSZ and ABA and their effect on FA profile in *Chlorella vulgaris* has not been published to date, these results contribute a new piece of information to the existing pool of knowledge in both FA's and hormones in algal systems.

## **6.** References

- Ali, Q., H. Athar & M. Ashraf. (2006). Influence of exogenously applied brassinosteroids on the mineral nutrient status of two wheat cultivars grown under saline conditions. *Pakistan Journal of Botany*, 38: 1621-1632.
- Beal, C. M., M. E. Webber, R. S. Ruoff & R. E. Hebner. (2010). Lipid analysis of Neochloris oleoabundans by liquid state NMR. *Biotechnology and Bioengineering*, **106**: 573-583.
- Bhattacharya, D. & L. Medlin. (1998). Algal phylogeny and the origin of land plants. *Plant Physiology*, **116**: 9-15.
- Blanc, G., G. Duncan, I. Agarkova, M. Borodovsky, J. Gurnon, A. Kuo, E. Lindquist, S. Lucas, J. Pangilinan, J. Polle, A. Salamov, A. Terry, T. Yamada, D. D. Dunigan, I. V. Grigoriev, J. Claverie & J. L. Van Etten. (2010). The *Chlorella variabilis* NC64A genome reveals adaptation to photosymbiosis, coevolution with viruses and cryptic sex. *The Plant Cell*, 22: 2943-2955.
- Carvalho, A. P. & F. X. Malcata. (2005). Optimization of omega-3 fatty acid production by microalgae: crossover effects of CO<sub>2</sub> and light intensity under batch and continuous cultivation modes. *Marine Biotechnology*, **7**: 381-388.
- Chen, M., H. Tang, H. Ma, T. C. Holland, K. Y. S. Ng & S. O. Salley. (2011). Effect of nutrients on growth and lipid accumulation in the green algae *Dunaliella tertiolecta*. *Bioresource Technology*, **102**: 1649-1655.
- Chia, M. A., A. T. Lombardi, M. D. G. Melão & C. C. Parrish. (2013). Effects of cadmium and nitrogen on lipid composition of *Chlorella vulgaris* (Trebouxiophyceae, Chlorophyta). *European Journal of Phycology*, 48: 1-11.
- Chia, M. A., A. T. Lombardi, M. D. G. Melão & C. C. Parrish. (2015). Combined nitrogen limitation and cadmium stress stimulate total carbohydrates, lipids, protein and amino acid accumulation in *Chlorella vulgaris* (Trebouxiophyceae). *Aquatic Toxicology*, **160**: 87-95.
- Cowan, A. K., G. R. Richardson & J. C. G. Maurel. (1997). Stress-induced abscisic acid transients and stimulus-response-coupling. *Physiologia Plantarum*, **100**: 492-499.
- Cowan, A. K., A. Cairns & B. Bartels-Rahm. (1999). Regulation of abscisic acid metabolism: towards a metabolic basis for abscisic acid-cytokinin antagonism. *Journal of Experimental Botany*, **50**: 595-603.
- Czerpak, R. & A. Bajguz. (1997). Stimulatory effects of auxins and cytokinins on carotenes, with differential effects on xanthophylls in the green alga *Chlorella pyrenoidosa* chick. *Acta Societatis Botanicorum Poloniae*, **66**: 41-46.
- Czerpak, R., A. Bajguz, B. Białecka, L. E. Wierzchołowska & M. M. Wolańska. (1994). Effects of auxin precursors and chemical analogs on the growth and chemical composition in *Chlorella pyrenoidosa* chick. *Acta Societatis Botanicorum Poloniae*, **63**: 279-286.
- Czerpak, R., A. Bajguz, M. Gromek, G. Kozlowska & I. Nowak. (2002). Activity of salicylic acid on the growth and biochemistry of *Chlorella vulgaris* Beijerinck. *Acta Physiologiae Plantarum*, **24**: 45-52.
- Czerpak, R., A. Piotrowska & K. Szulecka. (2006). Jasmonic acid affects changes in the growth and some components content in alga *Chlorella vulgaris*. Acta Physiologiae Plantarum, 28: 195-203.
- Davies, P. J. Plant Hormones. Netherlands: Kluwer Academic Publishers, 2004.

- Dhaubhadel, S., S. Chaudhary, K. F. Dobinson & P. Krishna. (1999). Treatment with 24epibrassinolide, a brassinosteroid, increases the basic thermotolerance of *Brassica napus* and tomato seedlings. *Plant Molecular Biology*, **40**: 333-342.
- Emery, R. J. N., N. Longnecker & C. Atkins. (1998). Branch development in *Lupinus angustifolius* L. II. Relationship with endogenous ABA, IAA and cytokinins in axillary and main stem buds. *Journal of Experimental Botany*, **49**: 555-562.
- Flaim, G., U. Obertegger & G. Guella. (2012). Changes in galactolipid composition of the cold freshwater dinoflagellate *Borghiella dodgei* in response to temperature. *Hydrobiologia*, 698: 285-293.
- Frébort, I., M. Kowalska, T. Hluska, J. Frébortová & P. Galuszka. (2011). Evolution of cytokinin biosynthesis and degradation. *Journal of Experimental Botany*, **62**: 2431-2452.
- Fuentes-Grünewald, C., E. Garcés, E. Alacid, N. Sampedro, S. Rossi & J. Camp. (2012). Improvement of lipid production in the marine strains *Alexandrium minutum* and *Heterosigma akashiwo* by utilizing abiotic parameters. *Journal of Industrial Microbiology* and Biotechnology. **39**: 207-216.
- Gardner, R., P. Peters, B. Peyton & K. E Cooksey. (2011). Medium pH and nitrate concentration effects on accumulation of triacylglycerol in two members of the chlorophyta. *Journal of Applied Phycology*, **23**: 1005-1016.
- Gong, Y., H. Hu, Y. Gao, X. Xu & H. Gao. (2011). Microalgae as platforms for production of recombinant proteins and valuable compounds: progress and prospects. *Journal of Industrial Microbiology and Biotechnology*, 38: 1879-1890.
- Goss, R. & C. Wilhelm. (2010). Lipids in algae, lichens and mosses. *Lipids in Photosynthesis: Essential and Regulatory Functions*, pp. 117-135.
- Gouveia, L. & A. C. Oliveira. (2009). Microalgae as a raw material for biofuels production. *Journal of Industrial Microbiology and Biotechnology*, **36**: 269-274.
- Gouveia, L., A. E. Marques, T. Lopes da Silva & A. Reis. (2009). Neochloris oleoabundans UTEX #1185: a suitable renewable lipid source for biofuel production. Journal of Industrial Microbiology and Biotechnology, 36: 821-826.
- Hartung, W. (2010). The evolution of abscisic acid (ABA) and ABA function in lower plants, fungi and lichen. *Functional Plant Biology*, **37**: 806-812.
- Hunt, R. W., S. Chinnasamy, A. Bhatnagar & K. C. Das. (2010). Effects of biochemical stimulants on biomass productivity and metabolite content of the microalga, *Chlorella* sorokiniana. Applied Biochemistry and Biotechnology, 162: 2400-2414.
- Jadhav, A., D. Taylor, M. Giblin, A. Ferrie, S. Ambrose, A. Ross, K. Nelson, L. Zaharia, N. Sharma, M. Anderson, P. Fobert & S. Abrams. (2008). Hormonal regulation of oil accumulation in *Brassica* seeds: metabolism and biological activity of ABA, 7'-, 8'- and 9'- hydroxy ABA in microspore derived embryos of *B. napus. Phytochemistry*, 69: 2678-2688.
- Kalacheva, G. S., N. O. Zhila, T. G. Volova & M. I. Gladyshev. (2002). The effect of temperature on the lipid composition of the green alga *Botryococcus*. *Microbiology*, **71**: 286-293.
- Kamada-Nobusada, T. & H. Sakakibara. (2009). Molecular basis for cytokinin biosynthesis. *Phytochemisty*, **70**: 444-449.
- Khotimchenko, S. V. & I. M. Yakovleva. (2005). Lipid composition of the red alga *Tichocarpus crinitus* exposed to different levels of photon irradiance. *Phytochemistry*, **66**: 73-79.
- Khripach, V., V. Zhabinskii & A, De Groot. (2000). Twenty years of brassinosteroids: steroidal plant hormones warrant better crops for the XXI century. *Annals of Botany*, **86**: 441-447.

- Kiseleva, A. A., E. R. Tarachovskaya & M. F. Shishova. (2012). Biosynthesis of phytohormones in algae. *Russian Journal of Plant Physiology*, **59**: 595-610.
- Kisiala, A., C. Laffont, R. J. N. Emery & F. Frugier. (2013). Bioactive cytokinins and selectively secreted by *Sinorhizobium meliloti* nodulating and nonnodulating strains. *Molecular Plant-Microbe Interactions*, 26: 1225-1231.
- Kobayashi, M., N. Hirai, Y. Kurimura, H. Ohigashi & Y. Tsuji. (1997). Abscisic acid-dependent algal morphogenesis in the unicellular green alga *Haematococcus pluvialis*. *Plant Growth Regulation*, 22: 79-85.
- Kraus, G. (2008). Synthetic methods for the preparation of 1,3-propanediol. *CLEAN Soil, Air, Water*, **36**: 648-651.
- Kull, U., B. Kuhn, J. Schweizer & H. Weiser. (1978). Short-term effects of cytokinins on the lipid fatty acids of green leaves. *Plant Cell Physiology*, **19**: 801-810.
- Kurakawa, T., N. Ueda, M. Maekawa, K. Kobayashi, M. Kojima, Y. Nagato, H. Sakakibara & J. Kyozuka. (2007). Direct control of shoot meristem activity by a cytokinin-activating enzyme. *Nature: Letters*, 445: 652-655.
- Lee, R. E. Phycology. New York: Cambridge University Press, 2008.
- Leliaert, F., D. R. Smith, H. Moreau, M. D. Herron, H. Verbruggen, C. F. Delwiche & O. De Clerck. (2012). Phylogeny and molecular evolution of the green algae. *Critical Reviews* in Plant Sciences, **31**: 1-46.
- Li, Y., M. Horsman, B. Wang, N. Wu & C. Q. Lan. (2008). Effects of nitrogen sources on cell growth and lipid accumulation of green alga *Neochloris oleoabundans*. *Applied Microbiology and Biotechnology*, 81: 629-636.
- Liu, Z., G. Wang & B. Zhou. (2008). Effect of iron on growth and lipid accumulation in *Chlorella vulgaris. Bioresource Technology*, **99**: 4717-4722.
- Lopes da Silva, T., A. Reis, R. Medeiros, A. C. Oliveira & L. Gouveia. (2009). Oil production towards biofuel from autotrophic microalgae semicontinuous cultivations monitorized by flow cytometry. *Applied Biochemistry and Biotechnology*, **159**: 568-578.
- Lu, Y., D. Tarkowska, V. Tureckova, T. Luo, Y. Xin, J. Li, Q. Wang, N. Jiao, M. Strnad & J. Xu. (2014). Antagonistic roles of abscisic acid and cytokinin during response to nitrogen deletion in oleaginous microalga *Nannochloropsis oceanica* expand the evolutionary breadth of phytohormone function. *The Plant Journal*, doi: 10.1111/tpj.12615.
- Morrison, E. N., R. J. N. Emery & B. J. Saville. (2015). Phytohormone involvement in the Ustilago maydis - Zea mays pathosystem: relationships between abscisic acid and cytokinin levels and strain virulence in infected cob tissue. Public Library of Science One, 10: e0130945. doi:10.1371/journal.pone.0130945.
- Mostafa, H., M. Hala, K. Hemmat & S. Mervat. (2005). Improving the characteristics of roselle seeds as a new source of protein and lipid by gibberellin and benzyladenine application. *Journal of Applied Sciences Research*, **1**: 161-167.
- Nambara, E. & A. Marion-Poll. (2005). Abscisic acid biosynthesis and catabolism. *Annual Review of Plant Biology*, **56**: 165-85.
- Narine, S.S., J. Yue & X. Kong. (2007). Production of polyols from canola oil and their chemical identification and physical properties. *Journal of the American Oil Chemist's Society*, 84: 173-179.
- Noble, A., A. Kisiala, A. Galer, D. Clysdale & R. J. N. Emery. (2014). *Euglena gracilis* (Euglenophyceae) produces abscisic acid and cytokinins and responds to their exogenous

application singly and in combination with other growth regulators. *European Journal of Phycology*, **49**: 244-254.

- Ohlrogge, J. B. & Jaworski, J. G. (1997). Regulation of fatty acid synthesis. Annual Review of Plant Physiology and Plant Molecular Biology, **48**: 109-136.
- Ordog, V., W. Stirk, J. van Staden, O. Novak & M. Strnad. (2004). Endogenous cytokinins in three genera of microalgae from the chlorophyta. *Phycological Society of America*, 40: 88-95.
- Park, W., G.Yoo, M. Moon & J. Yang. (2013). Phytohormone supplementation significantly increases growth of *Chlamydomonas reinhardtii* cultivated for biodiesel production. *Applied Biochemistry and Biotechnology*, **171**: 1128-1142.
- Pertry, I., K. Vaclavikova, S. Depuydt, P. Galuszka, L. Spichal, W. Temmerman, E. Stes, T. Schmulling, T. Kakimoto, M. C. E. Van Montagu, M. Strnad, M. Holsters, P. Tarkowski & D. Vereecke. (2009). Identificantion of *Rhodococcus fascians* cytokinins and their modus operandi to reshape the plant. *Proceedings of the National Academy of Sciences USA*, **106**: 929-934.
- Pils, B. & A. Heyl. (2009). Unravelling the evolution of cytokinin signalling. *Plant Physiology*, **151**: 782-791.
- Piotrowska, A. & R. Czerpak. (2009). Cellular response of light/dark-grown green alga *Chlorella vulgaris* Beijerinck (Chlorophyceae) to exogenous adenine- and phenylureatype cytokinins. *Acta Physiologiae Plantarum*, **31**: 573-585.
- Piotrowska, A. & R. Czerpak. (2009). Cellular response of light/dark-grown green alga *Chlorella vulgaris* Beijerinck (Chlorophyceae) to exogenous adenine- and phenylurea-type cytokinins. *Acta Physiologiae Plantarum*, **31**: 573-585.
- Piotrowska, A., R. Czerpak, A. Pietryczuk, A. Olesiewicz & M. Wedolowska. (2008). The effect of indomethacin on the growth and metabolism of green algae *Chlorella vulgaris* Beijerinck. *Plant Growth and Regulation*, 55: 125-136.
- Priyadarshani, I. & B. Rath. (2012). Commercial and industrial applications of microalgae A review. *Journal of Algal Biomass*, **4**: 89-100.
- Quesnelle, P. E. & R. J. N. Emery. (2007). Cis-cytokinins that predominate in Pisum satvium during early embryogenesis will accelerate embryo growth in vitro. Canadian Journal of Botany, 85: 91-103.
- Radhika, V., N. Ueda, Y. Tsuboi, M. Kojima, J. Kikuchi, T. Kudo & H. Sakakibara. (2015). Methylated cytokinins from the phytopathogen Rhodococcus fascians mimic plant hormone activity. *Plant Physiology*, pp. 00787.2015.
- Sakakibara, H. (2006). Cytokinins: activity, biosynthesis and translocation. *Annual Review of Plant Biology*, **57**: 431-449.
- Sato, N., M. Tsuzuki & A. Kawaguchi. (2003). Glycerolipid synthesis in *Chlorella kessleri* 11h I. existence of a eukaryotic pathway. *Biochimica et Biophysica Acta*, **1633**: 27-34.
- Sederias, J. & B. Colman. (2007). The interaction of light and low temperature on breaking the dormancy of *Chara vulgaris* oospores. *Aquatic Botany*, **87**: 229-234.
- Seyfabadi, J., Z. Ramezanpour & Z. A. Khoeyi. (2011). Protein, fatty acid and pigment content of *Chlorella vulgaris* under different light regimes. *Journal of Applied Phycology*, 23: 721-726.
- Shu, C., C. Tsai, W. Liao, K. Chen & H. Huang. (2012). Effects of light quality on the accumulation of oil in a mixed culture of *Chlorella* sp. and *Saccharomyces cerevisiae*. *Journal of Chemical Technology and Biotechnology*, 87: 601-607.

- Siddiqui, M. H., M. N. Khan, F. Mohammed & M. M. A. Khan. (2008). Role of nitrogen and gibberellin (GA<sub>3</sub>) in the regulation pf enzyme activities and in osmoprotectant accumulation in *Brassica juncea* L. under salt stress. *Journal of Agronomy and Crop Science*, **194**: 214-224.
- Simopoulos, A. P. (1991). Omega-3 fatty acids in health and disease and in growth and development. *American Journal of Clinical Nutrition*, **54**: 438-463.
- Sostaric, M., J. Golob, M. Bricelj, D. Klinar & A. Pivec. (2009). Studies on the growth of *Chlorella vulgaris* in culture media with different carbon sources. *Chemical and Biochemical Engineering Quarterly*, **23**: 471-477.
- Spichal, L., N. Rakova, M. Riefler, T. Mizuno, G. Romanov, M. Strnad & T. Schmulling. (2004). Two cytokinin receptors of *Arabidopsis thaliana*, CRE1/AHK4 and AHK3, differ in their ligand specificity in a bacterial assay. *Plant Cell Physiology*, 45: 1299-1305.
- Spíchal, L. (2012). Cytokinins recent news and views of evolutionally old molecules. *Functional Plant Biology*, **39**: 267-284.
- Spolaore, P., C. Joannis-Cassan, E. Duran & A. Isambert. (2006). Commercial applications of microalgae. *Journal of Bioscience and Bioengineering*, **101**: 87-86.
- Stephenson, A. L., J. S. Dennis, C. J Howe, S. A. Scott & A. G. Smith. (2010). Influence of nitrogen-limitation regime on the production by *Chlorella vulgaris* of lipids for biodiesel feedstocks. *Biofuels*, 1: 47-58.
- Sul, H., & D. Wang. (1998). Nutritional and hormonal regulation of enzymes in fat synthesis: studies of fatty acid synthase and mitochondrial glycerol-3-phosphate acyltransferase gene transcription. *Annual Reviews in Nutrition*, 18: 331-351.
- Sushchick, N. N., G. S. Kalacheva, N. O. Zhila, M. I. Gladyshev & T. G. Volova. (2003). A temperature dependance of the intra- and extracellular fatty acid composition of green algae and cyanobacterium. *Russian Journal of Plant Physiology*, **50**: 374-380.
- Tarakhovskaya, E. R., Y. U. Maslov & M. F. Shishova. (2007). Phytohormones in algae. *Russian Journal of Plant Physiology*, **54**: 163-170.
- Tate, J., M. Gutierrez-Wing, K. Rusch & M. Benton. (2013). The effects of plant growth substances and mixed cultures on growth and metabolite production of green algae Chlorella sp.: a review. *Journal of Plant Growth Regulation*, **32**: 417-428.
- Tatsuzawa, H. & E. Takizawa. (1995). Changes in lipid and fatty acid composition of *Pavlova lutheri*. *Phytochemistry*, **40**: 397-400.
- Teale, W. D., I. A. Paponov & K. Palme. (2006). Auxin in action: signalling, transport and the control of plant growth and development. *Molecular Cell Biology*, **7**: 847-859.
- Theiss, C., P. Bohley, H. Bisswanger & J. Voigt. (2004). Uptake of polyamines by the unicellular green alga *Chlamydomonas reinhardtii* and their effect on ornithine decarboxylase activity. *Journal of Plant Physiology*, **161**: 3-14.
- Tsuzuki, M., E. Ohnuma, N. Sato, T. Takaku & A. Kawaguchi. (1990). Effects of CO2 concentration during growth on fatty acid composition in microalgae. *Plant Physiology*, 93: 851-856.
- Wang, S. Y. & M. Faust. (1988). Changes of fatty acids and sterols in apple buds during bud break induced by a plant bioregulator, thidiazuron. *Physiologia Plantarum*, 72: 115-120.
- Wang, Z., M. Bai, E. Oh & J. Zhu. (2012). Brassinosteroid signalling network and regulation of photomorphogenesis. *Annual Review of Genetics*, 46: 701-724.

- Widjaja, A., C. Chien & Y. Ju. (2009). Study of increasing lipid production from freshwater microalgae Chlorella vulgaris. Journal of the Taiwan Institute of Chemical Engineers, 40: 13-20.
- Xin, L., H. Hong-ying, G. Ke & S. Ying-xue. (2010). Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake and lipid accumulation of a freshwater microalga *Scenedesmus* sp. *Bioresource Technology*, **101**: 5494-5500.
- Yamaguchi, S. (2008). Gibberellin metabolism and its regulation. Annual Review of Plant Biology, **59**: 225-251.
- Yoshida, K., E. Igarashi, M. Mukai, K. Hirata & K. Miyamoto. (2003). Induction of tolerance to oxidative stress in the green alga, *Chlamydomonas reinhardtii*, by abscisic acid. *Plant, Cell* and Environment, 26: 451-457.

# 7. Appendices

### 7.1 Endogenous Hormone Study Raw Data:

The following includes all raw data produced from the endogenous hormone study of Chlorella vulgaris. Data tables for ABA and all cytokinin types found (Free Bases, Ribosides, Nucleotides and Methylthiols) have been included as well as all supplementary numbers used for calculations such as molecular weight and tissue weight. All sample names proceeded by "P" represent pellet samples, while all samples labelled "S" are supernatant samples.

## 7.1.1 ABA:

| Table 6: Endogenous | ABA | content of | Chlorella | vulgaris |
|---------------------|-----|------------|-----------|----------|
|---------------------|-----|------------|-----------|----------|

| #      | Name | MW ABA | 2HABA    | ABA      | Tisue Weight (g fwt.) | Internal Stnd (ng) | ABA     |
|--------|------|--------|----------|----------|-----------------------|--------------------|---------|
| ABA 1  | P 2  | 264.32 | 1.62E+07 | 4.52E+04 | 0.2170                | 2.70E+01           | 1.3134  |
| ABA 2  | Р3   | 264.32 | 1.95E+07 | 4.74E+04 | 0.2380                | 2.70E+01           | 1.0433  |
| ABA 3  | P 4  | 264.32 | 1.58E+07 | 4.52E+04 | 0.2250                | 2.70E+01           | 1.2988  |
| ABA 4  | P 5  | 264.32 | 2.10E+07 | 4.75E+04 | 0.2490                | 2.70E+01           | 0.9279  |
| ABA 5  | P 6  | 264.32 | 1.78E+07 | 3.58E+04 | 0.1150                | 2.70E+01           | 1.7865  |
| ABA 6  | Ρ7   | 264.32 | 1.70E+07 | 3.66E+04 | 0.1810                | 2.70E+01           | 1.2150  |
| ABA 7  | P 8  | 264.32 | 1.83E+07 | 3.88E+04 | 0.1400                | 2.70E+01           | 1.5470  |
| ABA 8  | S 1  | 264.32 | 7.92E+06 | 3.35E+05 | 0.1650                | 2.70E+01           | 26.1860 |
| ABA 9  | S 2  | 264.32 | 9.39E+06 | 5.58E+05 | 0.2170                | 2.70E+01           | 27.9732 |
| ABA 10 | S 3  | 264.32 | 9.46E+06 | 4.22E+05 | 0.2380                | 2.70E+01           | 19.1460 |
| ABA 11 | S 4  | 264.32 | 7.62E+06 | 4.03E+05 | 0.2250                | 2.70E+01           | 24.0105 |
| ABA 12 | S 5  | 264.32 | 9.08E+06 | 4.21E+05 | 0.2490                | 2.70E+01           | 19.0209 |
| ABA 13 | S 6  | 264.32 | 1.11E+07 | 2.59E+05 | 0.1150                | 2.70E+01           | 20.7259 |
| ABA 14 | S 7  | 264.32 | 1.05E+07 | 4.19E+05 | 0.1810                | 2.70E+01           | 22.5206 |
| ABA 15 | S 8  | 264.32 | 1.20E+07 | 3.63E+05 | 0.1400                | 2.70E+01           | 22.0715 |

### 7.1.2 Free Bases:

Table 7: Endogenous cytokinin free base content of Chlorella vulgaris

|    |    |      |        |          |          |          |         |          |          |        |          |          | Tissue   | Internal |        |      |    |    |
|----|----|------|--------|----------|----------|----------|---------|----------|----------|--------|----------|----------|----------|----------|--------|------|----|----|
|    |    |      |        |          |          |          |         |          |          |        |          |          | Weight   | Stnd     |        |      |    | 1  |
| #  |    | Name | MW Z   | 2HDZ     | tZ       | cisZ     | MW DZ   | 2HDZ     | DZ       | MW iP  | 2HiP     | iP       | (g fwt.) | (ng)     | TransZ | CisZ | DZ | iP |
| FB | 31 | P 2  | 219.25 | 9.14E+05 | 0.00E+00 | 0.00E+00 | 221.259 | 9.14E+05 | 0.00E+00 | 203.25 | 4.59E+06 | 0.00E+00 | 0.2170   | 10       | 0      | 0    | 0  | 0  |
| FB | 32 | Р3   | 219.25 | 9.83E+05 | 0.00E+00 | 0.00E+00 | 221.259 | 9.83E+05 | 0.00E+00 | 203.25 | 4.25E+06 | 0.00E+00 | 0.2380   | 10       | 0      | 0    | 0  | 0  |

| FB 3  | Ρ4  | 219.25 | 9.04E+05 | 0.00E+00 | 0.00E+00 | 221.259 | 9.04E+05 | 0.00E+00 | 203.25 | 3.55E+06 | 0.00E+00 | 0.2250 | 10 | 0       | 0      | 0 | 0       |
|-------|-----|--------|----------|----------|----------|---------|----------|----------|--------|----------|----------|--------|----|---------|--------|---|---------|
| FB 4  | Ρ5  | 219.25 | 8.77E+05 | 0.00E+00 | 0.00E+00 | 221.259 | 8.77E+05 | 0.00E+00 | 203.25 | 4.58E+06 | 0.00E+00 | 0.2490 | 10 | 0       | 0      | 0 | 0       |
| FB 5  | Ρ6  | 219.25 | 9.91E+05 | 0.00E+00 | 0.00E+00 | 221.259 | 9.91E+05 | 0.00E+00 | 203.25 | 4.30E+06 | 0.00E+00 | 0.1150 | 10 | 0       | 0      | 0 | 0       |
| FB 6  | Ρ7  | 219.25 | 9.95E+05 | 0.00E+00 | 0.00E+00 | 221.259 | 9.95E+05 | 0.00E+00 | 203.25 | 4.23E+06 | 0.00E+00 | 0.1810 | 10 | 0       | 0      | 0 | 0       |
| FB 7  | Ρ8  | 219.25 | 6.93E+05 | 0.00E+00 | 0.00E+00 | 221.259 | 6.93E+05 | 0.00E+00 | 203.25 | 3.21E+06 | 0.00E+00 | 0.1400 | 10 | 0       | 0      | 0 | 0       |
| FB 8  | S 1 | 219.25 | 5.54E+05 | 6.85E+05 | 4.74E+04 | 221.259 | 5.54E+05 | 0.00E+00 | 203.25 | 3.10E+06 | 1.84E+05 | 0.1650 | 10 | 341.788 | 23.651 | 0 | 17.6987 |
| FB 9  | S 2 | 219.25 | 9.90E+05 | 1.56E+06 | 2.98E+04 | 221.259 | 9.90E+05 | 0.00E+00 | 203.25 | 4.59E+06 | 4.99E+05 | 0.2170 | 10 | 331.2   | 6.3268 | 0 | 24.6489 |
| FB 10 | S 3 | 219.25 | 8.47E+05 | 1.26E+06 | 5.16E+04 | 221.259 | 8.47E+05 | 0.00E+00 | 203.25 | 5.03E+06 | 6.40E+05 | 0.2380 | 10 | 285.083 | 11.675 | 0 | 26.303  |
| FB 11 | S 4 | 219.25 | 8.64E+05 | 9.96E+05 | 3.37E+04 | 221.259 | 8.64E+05 | 0.00E+00 | 203.25 | 4.12E+06 | 6.51E+05 | 0.2250 | 10 | 233.681 | 7.9067 | 0 | 34.5518 |
| FB 12 | S 5 | 219.25 | 4.72E+05 | 7.73E+05 | 2.17E+04 | 221.259 | 4.72E+05 | 0.00E+00 | 203.25 | 2.19E+06 | 6.34E+05 | 0.2490 | 10 | 299.984 | 8.4213 | 0 | 57.2025 |
| FB 13 | S 6 | 219.25 | 6.99E+05 | 2.30E+05 | 3.64E+04 | 221.259 | 6.99E+05 | 0.00E+00 | 203.25 | 3.10E+06 | 2.08E+05 | 0.1150 | 10 | 130.501 | 20.653 | 0 | 28.706  |
| FB 14 | S 7 | 219.25 | 6.25E+05 | 9.82E+05 | 2.81E+04 | 221.259 | 6.25E+05 | 0.00E+00 | 203.25 | 3.21E+06 | 4.58E+05 | 0.1810 | 10 | 395.925 | 11.329 | 0 | 38.7839 |
| FB 15 | S 8 | 219.25 | 8.92E+05 | 3.51E+05 | 3.80E+04 | 221.259 | 8.92E+05 | 0.00E+00 | 203.25 | 4.36E+06 | 4.42E+05 | 0.1400 | 10 | 128.196 | 13.879 | 0 | 35.6268 |

# 7.1.3 Ribosides:

# Table 8: Endogenous cytokinin riboside content of Chlorella vulgaris

|      |            |        |              |              |              |        |          |          |        |          |          |          | Internal  |         |        |         |        |
|------|------------|--------|--------------|--------------|--------------|--------|----------|----------|--------|----------|----------|----------|-----------|---------|--------|---------|--------|
| ш    | Nomo       |        | 21170        | 170          | CieZD        |        | 2007     | D7D      |        | 211:00   | :00      | Weight   | Stnd (ng) | Trops7D | CiaZD  | 070     | :00    |
| #    | Name       | ZK     | ZHZK         | tzr          | CISZR        | DZK    | ZHDZ     | DZR      | IPK    | ZHIPK    | IPK      | (g twt.) | (ng)      | Transzk | CISZR  | DZR     | IPK    |
| D 1  | <b>D 2</b> | 254 27 | 3.13         | 4.94         | 1.59         | 252.20 | 2.015.00 | 1 245.04 | 225.27 | 1.005.00 |          | 0 21 70  | 10        | 0 207   | 0.000  | 0.550   | 0.000  |
| КI   | ΡZ         | 351.37 | E+06         | E+03         | E+04         | 353.38 | 2.91E+06 | 1.24E+04 | 335.37 | 1.89E+06 | 0.00E+00 | 0.2170   | 10        | 0.207   | 0.666  | 0.556   | 0.000  |
|      | <b>D</b> 2 | 254 27 | 3.19         | 5.07         | 1.58         | 252.20 | 2.005.00 | 0.215.02 | 225.27 | 1.015.00 |          | 0 2200   | 10        | 0 100   | 0 502  | 0.271   | 0 000  |
| КZ   | P 3        | 351.37 | E+06         | E+03         | E+04         | 353.38 | 2.98E+06 | 9.31E+03 | 335.37 | 1.81E+06 | 0.00E+00 | 0.2380   | 10        | 0.190   | 0.592  | 0.371   | 0.000  |
| 0.0  | D /        | 251 27 | 2.81         | 4.62         | 1.09         | 253.20 | 2 225-06 | 1.025.04 | 225 27 | 1 405-06 |          | 0 2250   | 10        | 0 200   | 0 401  | 0 5 7 9 | 0.000  |
| КЭ   | F 4        | 551.57 | 2 5 6        |              | 1 05         | 555.50 | 2.222+00 | 1.022+04 | 555.57 | 1.492+00 | 0.00E+00 | 0.2250   | 10        | 0.206   | 0.491  | 0.578   | 0.000  |
| D /  | DE         | 251 27 | 3.30         | 5.45         | 1.95         | 253.20 | 2 175,06 | 1.015.04 | 225 27 | 1 105,04 |          | 0.2400   | 10        | 0 175   | 0 626  | 0.262   | 0.000  |
| Π4   | РЭ         | 551.57 | 4 06         | E+05         | 4 56         | 555.50 | 5.17E+00 | 1.012+04 | 555.57 | 1.192+04 | 0.00E+00 | 0.2490   | 10        | 0.175   | 0.020  | 0.502   | 0.000  |
| DE   | DG         | 251 27 | 4.00<br>E±06 | 7.97         | 4.50<br>E±02 | 252.20 | 2 246+06 | 1 155+04 | 225 27 | 1 005+04 | 0.005+00 | 0 1150   | 10        | 0.486   | 0 279  | 0 872   | 0 000  |
| 11.3 | ΓU         | 331.37 | 2 20         | Q 55         | 1 5 2        | 333.30 | 3.24L+00 | 1.13L+04 | 333.37 | 1.091+04 | 0.002+00 | 0.1150   | 10        | 0.400   | 0.278  | 0.873   | 0.000  |
| RG   | D 7        | 351 37 | 5.20<br>F±06 | 6.00<br>6.00 | 1.32<br>F±04 | 353 38 | 3 25E±06 | 7 18F±03 | 335 37 | 2 02E±06 | 0.00E+00 | 0 1810   | 10        | 0 420   | 0 747  | 0 345   | 0 000  |
| ŇŬ   | . /        | 551.57 | 2 78         | 5.83         | 7 47         | 555.50 | 3.232.00 | 7.102.05 | 555.57 | 2.021100 | 0.002+00 | 0.1010   | 10        | 0.420   | 0.747  | 0.545   | 0.000  |
| R 7  | PS         | 351 37 | £+06         | 5.05<br>F+03 | F+03         | 353 38 | 2 38F+06 | 5 93E+03 | 335 37 | 1 52E+06 | 0.00E+00 | 0 1400   | 10        | 0 4 2 6 | 0 546  | 0 504   | 0 000  |
|      | 10         | 551.57 | 1 90         | 3 83         | 1 92         | 555.50 | 2.302.00 | 3.332.03 | 555.57 | 1.522.00 | 0.002.00 | 0.1400   | 10        | 0.420   | 0.540  | 0.504   | 0.000  |
| R S  | S 1        | 351 37 | F+06         | 5.05<br>F+03 | F+04         | 353 38 | 2 10F+06 | 5 39F+03 | 335 37 | 1 93F+06 | 4 00F+04 | 0 1650   | 10        | 0 348   | 1 743  | 0 4 4 0 | 3 745  |
|      | 51         | 551.57 | 3 34         | 2 39         | 1 23         | 333.30 | 2.102.00 | 5.552.05 | 555.57 | 1.552.00 | 1.002.01 | 0.1050   | 10        | 0.510   | 1.7 15 | 0.110   | 5.7 15 |
| R 9  | 52         | 351.37 | F+06         | E+03         | F+04         | 353.38 | 3.59F+06 | 7.60F+03 | 335.37 | 3.85E+06 | 4.50F+04 | 0.2170   | 10        | 0.094   | 0.483  | 0.276   | 1.606  |
| R    |            | 001.07 | 4.10         | 1.69         | 1.22         | 000100 | 01002.00 | 1002.00  | 000107 | 01002.00 | 11002.01 | 0.2170   |           | 0.051   | 01100  | 0.270   | 1.000  |
| 10   | S 3        | 351.37 | E+06         | E+03         | E+04         | 353.38 | 3.75E+06 | 1.27E+04 | 335.37 | 5.76E+06 | 7.76E+04 | 0.2380   | 10        | 0.049   | 0.356  | 0.403   | 1.688  |
| R    |            |        | 2.81         | 3.78         | 1.80         |        |          |          |        |          |          |          |           |         |        |         |        |
| 11   | S 4        | 351.37 | F+06         | F+03         | F+04         | 353.38 | 2.23E+06 | 9.91F+03 | 335.37 | 2.82F+06 | 4.32F+04 | 0.2250   | 10        | 0.170   | 0.810  | 0.559   | 2.030  |
| R    | 0.         | 001.07 | 1.60         | 4.21         | 6.41         | 000.00 | 21202.00 | 51512-00 | 000107 | 21022.00 |          | 0.2200   | 10        | 01170   | 0.010  | 0.000   | 2.000  |
| 12   | S 5        | 351.37 | E+06         | E+03         | E+03         | 353.38 | 1.68E+06 | 7.67E+03 | 335.37 | 1.60E+06 | 3.41E+04 | 0.2490   | 10        | 0.301   | 0.458  | 0.519   | 2.552  |
| R    | S 6        | 351.37 | 2.88         | 2.67         | 5.38         | 353.38 | 3.29E+06 | 8.77E+03 | 335.37 | 2.94E+06 | 2.52E+04 | 0.1150   | 10        | 0.229   | 0.462  | 0.656   | 2.222  |

| 13 |     |        | E+06 | E+03 | E+03 |        |          |          |        |          |          |        |    |       |       |       |       |
|----|-----|--------|------|------|------|--------|----------|----------|--------|----------|----------|--------|----|-------|-------|-------|-------|
| R  |     |        | 2.13 | 2.99 | 1.73 |        |          |          |        |          |          |        |    |       |       |       |       |
| 14 | S 7 | 351.37 | E+06 | E+03 | E+04 | 353.38 | 2.11E+06 | 8.29E+03 | 335.37 | 2.24E+06 | 5.11E+04 | 0.1810 | 10 | 0.221 | 1.277 | 0.614 | 3.758 |
| R  |     |        | 3.29 | 3.29 | 1.22 |        |          |          |        |          |          |        |    |       |       |       |       |
| 15 | S 8 | 351.37 | E+06 | E+03 | E+04 | 353.38 | 3.13E+06 | 1.39E+04 | 335.37 | 3.27E+06 | 3.27E+04 | 0.1400 | 10 | 0.203 | 0.754 | 0.898 | 2.130 |

# 7.1.4 Nucleotides:

Table 9: Endogenous cytokinin nucleotide content of Chlorella vulgaris

|      |      |        |           | -    |        |        |            |      |        |        |      | 144 - <sup>1</sup> - 1- 1 | Internal     |          |        |      |         |
|------|------|--------|-----------|------|--------|--------|------------|------|--------|--------|------|---------------------------|--------------|----------|--------|------|---------|
| #    | Name | ZNT    | ZH<br>ZNT | ZNT  | CisZNT | DZNT   | 2H<br>DZNT | DZNT | iPNT   | 2HiPNT | iPNT | (g fwt.)                  | Sthd<br>(ng) | TransZNT | CisZNT | DZNT | iPNT    |
|      |      |        | 2.07      | 1.66 | 4.69   |        | 9.63       | 0.00 |        | 5.48   | 8.31 |                           |              |          |        |      |         |
| NT 1 | P 6  | 351.37 | E+05      | E+03 | E+03   | 353.38 | E+02       | E+00 | 335.37 | E+05   | E+03 | 0.115                     | 10           | 1.98     | 5.61   | 0.00 | 3.93    |
|      |      |        | 1.57      | 9.27 | 9.85   |        | 7.78       | 0.00 |        | 4.81   | 1.02 |                           |              |          |        |      |         |
| NT 2 | Р7   | 351.37 | E+05      | E+02 | E+03   | 353.38 | E+02       | E+00 | 335.37 | E+05   | E+04 | 0.181                     | 10           | 0.93     | 9.86   | 0.00 | 3.49    |
|      |      |        | 2.08      | 1.39 | 5.10   |        | 6.64       | 0.00 |        | 6.11   | 1.05 |                           |              |          |        |      |         |
| NT 3 | P 8  | 351.37 | E+05      | E+03 | E+03   | 353.38 | E+03       | E+00 | 335.37 | E+05   | E+04 | 0.14                      | 10           | 1.36     | 4.98   | 0.00 | 3.66    |
|      |      |        | 1.47      | 9.47 | 2.63   |        | 7.68       | 0.00 |        | 9.33   | 9.29 |                           |              |          |        |      |         |
| NT 4 | S 5  | 351.37 | E+04      | E+02 | E+04   | 353.38 | E+02       | E+00 | 335.37 | E+03   | E+04 | 0.249                     | 10           | 7.36     | 204.49 | 0.00 | 1192.37 |
|      |      |        | 2.51      | 3.96 | 7.74   |        | 1.10       | 0.00 |        | 1.34   | 5.61 |                           |              |          |        |      |         |
| NT 5 | S 6  | 351.37 | E+04      | E+02 | E+03   | 353.38 | E+03       | E+00 | 335.37 | E+04   | E+04 | 0.115                     | 10           | 3.90     | 76.31  | 0.00 | 1085.52 |
|      |      |        | 2.56      | 9.44 | 2.97   |        | 1.39       | 0.00 |        | 1.85   | 1.18 |                           |              |          |        |      |         |
| NT 6 | S 7  | 351.37 | E+04      | E+02 | E+04   | 353.38 | E+03       | E+00 | 335.37 | E+04   | E+05 | 0.181                     | 10           | 5.80     | 182.42 | 0.00 | 1050.77 |

# 7.1.5 Methylthiols:

Table 10: Endogenous cytokinin methylthiol content of *Chlorella vulgaris* 

|     |      | MW  |      |      | MW  | 2H   |       | MW  | 2H   |       | MW   | 2H   |      | Tissue   | Internal |       |       |       |      |
|-----|------|-----|------|------|-----|------|-------|-----|------|-------|------|------|------|----------|----------|-------|-------|-------|------|
|     |      | MeS | 2H   |      | MeS | MeS  |       | MeS | MeS  |       | MeS  | MeS  | MeS  | Weight   | Stnd     |       |       |       | MeS  |
| #   | Name | Z   | MeSZ | MeSZ | iP  | iP   | MeSiP | ZR  | ZR   | MeSZR | iPA  | iPA  | iPA  | (g fwt.) | (ng)     | MeSZ  | MeSiP | MeSZR | iPA  |
|     |      |     | 1.67 | 7.46 |     | 1.25 | 9.65  |     | 1.47 | 2.45  | 3.81 | 2.81 | 3.66 |          |          |       |       |       |      |
| M 1 | P 2  | 265 | E+05 | E+04 | 249 | E+06 | E+04  | 397 | E+06 | E+04  | E+02 | E+06 | E+04 | 0.2170   | 10       | 77.68 | 14.29 | 1.93  | 1.58 |
|     |      |     | 1.52 | 5.69 |     | 9.31 | 8.99  |     | 1.44 | 2.49  | 3.81 | 2.30 | 3.02 |          |          |       |       |       |      |
| M 2 | Р3   | 265 | E+05 | E+04 | 249 | E+05 | E+04  | 397 | E+06 | E+04  | E+02 | E+06 | E+04 | 0.2380   | 10       | 59.35 | 16.29 | 1.83  | 1.45 |
|     |      |     | 1.08 | 4.48 |     | 6.33 | 5.57  |     | 1.00 | 1.56  | 3.81 | 1.53 | 2.48 |          |          |       |       |       |      |
| M 3 | P 4  | 265 | E+05 | E+04 | 249 | E+05 | E+04  | 397 | E+06 | E+04  | E+02 | E+06 | E+04 | 0.2250   | 10       | 69.57 | 15.71 | 1.75  | 1.89 |
|     |      |     | 1.44 | 6.14 |     | 8.94 | 8.19  |     | 1.59 | 2.64  | 3.81 | 2.55 | 4.32 |          |          |       |       |       |      |
| M 4 | P 5  | 265 | E+05 | E+04 | 249 | E+05 | E+04  | 397 | E+06 | E+04  | E+02 | E+06 | E+04 | 0.2490   | 10       | 64.62 | 14.78 | 1.68  | 1.79 |
|     |      |     | 1.36 | 2.81 |     | 9.11 | 3.53  |     | 1.41 | 1.49  | 3.81 | 2.06 | 2.55 |          |          |       |       |       |      |
| M 5 | P 6  | 265 | E+05 | E+04 | 249 | E+05 | E+04  | 397 | E+06 | E+04  | E+02 | E+06 | E+04 | 0.1150   | 10       | 67.80 | 13.53 | 2.31  | 2.83 |
|     |      |     | 1.62 | 6.58 |     | 9.67 | 1.01  |     | 1.56 | 1.78  | 3.81 | 2.25 | 2.72 |          |          |       |       |       |      |
| M 6 | Р7   | 265 | E+05 | E+04 | 249 | E+05 | E+05  | 397 | E+06 | E+04  | E+02 | E+06 | E+04 | 0.1810   | 10       | 84.68 | 23.17 | 1.59  | 1.75 |

|      |     |     | 9.60 | 2.49 |     | 4.30 | 2.74 |     | 1.08 | 8.99 | 3.81 | 1.48 | 2.58 |        |    |         |        |       |       |
|------|-----|-----|------|------|-----|------|------|-----|------|------|------|------|------|--------|----|---------|--------|-------|-------|
| M 7  | P 8 | 265 | E+04 | E+04 | 249 | E+05 | E+04 | 397 | E+06 | E+03 | E+02 | E+06 | E+04 | 0.1400 | 10 | 69.91   | 18.28  | 1.50  | 3.27  |
|      |     |     | 1.16 | 1.75 |     | 5.62 | 5.60 |     | 7.22 | 1.25 | 3.81 | 8.91 | 8.66 |        |    |         |        |       |       |
| M 8  | S 1 | 265 | E+05 | E+06 | 249 | E+05 | E+05 | 397 | E+05 | E+05 | E+02 | E+05 | E+04 | 0.1650 | 10 | 3450.25 | 242.53 | 26.43 | 15.46 |
|      |     |     | 1.49 | 3.59 |     | 9.20 | 9.81 |     | 1.05 | 1.06 | 3.81 | 1.60 | 8.56 |        |    |         |        |       |       |
| M 9  | S 2 | 265 | E+05 | E+06 | 249 | E+05 | E+05 | 397 | E+06 | E+05 | E+02 | E+06 | E+04 | 0.2170 | 10 | 4189.89 | 197.34 | 11.72 | 6.47  |
|      |     |     | 1.82 | 3.84 |     | 9.55 | 8.34 |     | 1.18 | 1.47 | 3.81 | 1.82 | 1.08 |        |    |         |        |       |       |
| M 10 | S 3 | 265 | E+05 | E+06 | 249 | E+05 | E+05 | 397 | E+06 | E+05 | E+02 | E+06 | E+05 | 0.2380 | 10 | 3345.31 | 147.36 | 13.18 | 6.54  |
|      |     |     | 1.27 | 2.97 |     | 6.15 | 6.56 |     | 9.20 | 1.22 | 3.81 | 1.13 | 8.91 |        |    |         |        |       |       |
| M 11 | S 4 | 265 | E+05 | E+06 | 249 | E+05 | E+05 | 397 | E+05 | E+05 | E+02 | E+06 | E+04 | 0.2250 | 10 | 3922.15 | 190.39 | 14.85 | 9.20  |
|      |     |     | 7.23 | 1.40 |     | 3.23 | 4.13 |     | 5.65 | 3.59 | 3.81 | 5.89 | 3.67 |        |    |         |        |       |       |
| M 12 | S 5 | 265 | E+04 | E+06 | 249 | E+05 | E+05 | 397 | E+05 | E+04 | E+02 | E+05 | E+04 | 0.2490 | 10 | 2934.57 | 206.23 | 6.43  | 6.57  |
|      |     |     | 9.87 | 7.13 |     | 5.62 | 6.64 |     | 6.41 | 2.37 | 3.81 | 6.00 | 2.79 |        |    |         |        |       |       |
| M 13 | S 6 | 265 | E+04 | E+05 | 249 | E+05 | E+05 | 397 | E+05 | E+04 | E+02 | E+05 | E+04 | 0.1150 | 10 | 2370.44 | 412.61 | 8.10  | 10.61 |
|      |     |     | 9.39 | 2.22 |     | 5.90 | 7.24 |     | 6.68 | 1.05 | 3.81 | 9.93 | 9.58 |        |    |         |        |       |       |
| M 14 | S 7 | 265 | E+04 | E+06 | 249 | E+05 | E+05 | 397 | E+05 | E+05 | E+02 | E+05 | E+04 | 0.1810 | 10 | 4929.05 | 272.28 | 21.87 | 13.99 |
|      |     |     | 1.96 | 9.78 |     | 8.01 | 8.04 |     | 1.13 | 8.61 | 3.81 | 1.62 | 1.18 |        |    |         |        |       |       |
| M 15 | S 8 | 265 | E+05 | E+05 | 249 | E+05 | E+05 | 397 | E+06 | E+04 | E+02 | E+06 | E+05 | 0.1400 | 10 | 1344.96 | 287.94 | 13.71 | 13.66 |

# 7.2 Exogenous Hormone Study Raw Data:

# 7.2.1 Hormone Addition OD Values:

Table 11: Optical densities of MeSZ, tZ, BA, ABA and Control cultures across all concentrations

|           |       | 1     | 0-7 M |               |         |         |       | 10-6 M |       |         |       |       | 10-5 M |       |         |
|-----------|-------|-------|-------|---------------|---------|---------|-------|--------|-------|---------|-------|-------|--------|-------|---------|
|           | MeSZ  | tZ    | BA    | ABA           | Control | MeSZ    | tZ    | BA     | ABA   | Control | MeSZ  | tZ    | BA     | ABA   | Control |
| day       |       |       |       |               |         |         |       |        |       |         |       |       |        |       |         |
| 1         | 0.831 | 0.758 | 0.816 | 0.769         | 0.815   | 0.856   | 0.825 | 0.776  | 0.871 | 0.874   | 0.77  | 0.779 | 0.793  | 0.869 | 0.82    |
|           | 0.834 | 0.802 | 0.785 | 0.752         | 0.809   | 0.77    | 0.826 | 0.754  | 0.762 | 0.803   | 0.809 | 0.735 | 0.805  | 0.802 | 0.813   |
|           | 0.854 | 0.854 | 0.765 | 0.769         | 0.82    | 0.89    | 0.817 | 0.827  | 0.875 | 0.875   | 0.705 | 0.82  | 0.0    | 0.787 | 0.817   |
| dav       |       | 0.754 | 0.813 | 0.845         | 0.8     |         | 0.89  | 0.850  | 0.842 | 0.720   |       | 0.788 | 0.789  | 0.829 | 0.778   |
| 2         | 0.817 | 0.635 | 0.79  | 0.813         | 0.811   | 0.97    | 0.87  | 0.997  | 0.822 | 0.927   | 0.831 | 0.849 | 0.853  | 0.911 | 0.754   |
|           | 0.84  | 0.863 | 0.891 | 0.861         | 0.845   | 1.008   | 0.903 | 1.019  | 0.925 | 0.999   | 0.877 | 0.817 | 0.861  | 0.793 | 0.842   |
|           | 0.852 | 0.822 | 0.848 | 0.852         | 0.907   | 0.985   | 0.871 | 1.002  | 0.993 | 1.004   | 0.812 | 0.815 | 0.846  | 0.781 | 0.772   |
|           |       | 0.884 | 0.82  | 0.823         | 0.85    |         | 0.902 | 1.011  | 0.995 | 0.961   |       | 0.848 | 0.83   | 0.79  | 0.789   |
| day       |       |       |       |               |         |         |       |        |       |         |       |       |        |       |         |
| 3         | 0.957 | 0.899 | 0.992 | 0.978         | 0.996   | 1.093   | 0.975 | 1.159  | 1.111 | 1.121   | 0.978 | 1.015 | 1.028  | 1.069 | 0.926   |
|           | 0.899 | 0.947 | 1.008 | 0.984         | 0.946   | 1.114   | 0.986 | 1.134  | 1.067 | 1.123   | 0.993 | 0.975 | 1.044  | 0.93  | 0.996   |
|           | 0.953 | 0.935 | 0.942 | 0.966         | 1.042   | 1.109   | 1.001 | 1.133  | 1.145 | 1.103   | 0.979 | 0.976 | 1.012  | 0.901 | 0.896   |
| veh       |       | 1.016 | 1.021 | 0.972         | 0.952   |         | 0.996 | 1.132  | 1.14  | 1.07    |       | 1.019 | 1.022  | 0.91  | 0.894   |
| 4         | 1.09  | 1     | 1.117 | 1.031         | 1.093   | 1.24    | 1.094 | 1.31   | 1.189 | 1.202   | 1.09  | 1.18  | 1.198  | 1.18  | 1.037   |
|           | 0.983 | 1.055 | 1.091 | 1.017         | 0.983   | 1.268   | 1.069 | 1.286  | 1.137 | 1.219   | 1.106 | 1.117 | 1.195  | 0.965 | 1.105   |
|           | 1.089 | 1.035 | 1.06  | 0.992         | 1.08    | 1.265   | 1.154 | 1.3    | 1.232 | 1.244   | 1.109 | 1.126 | 1.136  | 1.002 | 0.957   |
|           |       | 1.136 | 1.117 | 1.013         | 1.006   |         | 1.121 | 1.283  | 1.204 | 1.152   |       | 1.146 | 1.176  | 0.976 | 1.048   |
| day       |       |       |       |               |         |         |       |        |       |         |       |       |        |       |         |
| 5         | 1.17  | 1.043 | 1.182 | 1.068         | 1.206   | 1.356   | 1.128 | 1.421  | 1.175 | 1.036   | 1.091 | 1.248 | 1.182  | 1.25  | 1.036   |
|           | 0.985 | 1.132 | 1.117 | 1.026         | 0.953   | 1.38    | 1.066 | 1.33   | 1.213 | 1.258   | 1.133 | 1.193 | 1.224  | 0.948 | 1.052   |
|           | 1.155 | 1.066 | 1.006 | 0.934         | 1.069   | 1.379   | 1.187 | 1.311  | 1.221 | 1.294   | 1.111 | 1.184 | 1.188  | 1.078 | 0.861   |
| dav       |       | 1.077 | 0.949 | 0.985         | 1.076   |         | 1.241 | 1.355  | 1.066 | 1.287   |       | 1.15  | 1.215  | 0.946 | 1.051   |
| uay<br>6  | 1 196 | 1 089 | 1 192 | 1 025         | 1 182   | 1 4 3 9 | 1 181 | 1 552  | 1 268 | 1 363   | 1 094 | 1 305 | 1 285  | 1 408 | 1 066   |
| Ŭ         | 0.92  | 1.203 | 1.117 | 1.071         | 1.035   | 1.486   | 1.045 | 1.498  | 1.289 | 1.338   | 1.01  | 1.316 | 1.281  | 1.104 | 1,106   |
|           | 1.217 | 1.062 | 1.101 | 1.005         | 1.129   | 1.448   | 1.267 | 1.479  | 1.378 | 1.332   | 1.118 | 1.269 | 1.297  | 1.085 | 0.971   |
|           |       | 1.165 | 1.063 | 1.007         | 1.126   |         | 1.307 | 1.435  | 1.202 | 1.219   |       | 1.264 | 1.316  | 1.042 | 1.073   |
| day       |       |       |       |               |         |         |       |        |       |         |       |       |        |       |         |
| 7         | 1.384 | 1.233 | 1.352 | 1.269         | 1.417   |         | 1.217 |        | 1.445 | 1.489   | 1.16  | 1.483 | 1.455  | 1.469 | 1.178   |
|           | 0.884 | 1.317 | 1.307 | 1.133         | 1.032   |         | 1.078 |        | 1.424 | 1.484   | 1.103 | 1.412 | 1.406  | 1.095 | 1.299   |
|           | 1.313 | 1.148 | 1.198 | 1.006         | 1.308   |         | 1.375 |        | 1.474 | 1.458   | 1.213 | 1.358 | 1.41   | 1.16  | 0.995   |
| dav       |       | 1.3   | 1.159 | 1.083         | 1.085   |         | 1.393 |        | 1.259 | 1.208   |       | 1.42  | 1.487  | 1.005 | 1.255   |
| a<br>8    | 1,572 | 1.479 | 1.451 | 1.454         | 1,593   |         | 1,297 |        | 1,562 | 1,588   | 1,391 | 1,483 | 1,455  | 1,469 | 1,438   |
| Ŭ         | 0.967 | 1.499 | 1.453 | 1.277         | 1.058   |         | 1.122 |        | 1.55  | 1.614   | 1.19  | 1.512 | 1.599  | 1.132 | 1.525   |
|           | 1.353 | 1.301 | 1.354 | 1.103         | 1.494   |         | 1.497 |        | 1.596 | 1.631   | 1.452 | 1.497 | 1.568  | 1.356 | 1.221   |
|           |       | 1.418 | 1.342 | 1.199         | 1.244   |         | 1.565 |        | 1.422 | 1.442   |       | 1.546 | 1.487  | 1.241 | 1.41    |
| day       |       |       |       |               |         |         |       |        |       |         |       |       |        |       |         |
| 9         | 1.572 | 1.612 | 1.451 | 1.454         | 1.593   |         | 1.531 |        | 1.562 |         | 1.601 |       |        | 1.469 | 1.438   |
|           | 1.251 | 1.499 | 1.453 | 1.47          | 1.472   |         | 1.35  |        | 1.55  |         | 1.574 |       |        | 1.335 | 1.525   |
|           | 1.649 | 1.458 | 1.512 | 1.387         | 1.494   |         | 1.497 |        | 1.596 |         | 1.452 |       |        | 1.475 | 1.366   |
| Ι.        |       | 1.621 | 1.513 | 1.412         | 1.525   |         | 1.565 |        | 1.599 |         |       |       |        | 1.309 | 1.542   |
| day<br>10 | 1 572 |       |       | 1 /5/         |         |         | 1 521 |        |       |         |       |       |        | 1 /60 | 1 /20   |
| 10        | 1.572 |       |       | 1.434<br>1.47 |         |         | 1 492 |        |       |         |       |       |        | 1 510 | 1.450   |
|           | 1 649 |       |       | 1 518         |         |         | 1 497 |        |       |         |       |       |        | 1 475 | 1 51    |
|           | 1.045 |       |       | 1 576         |         |         | 1.565 |        |       |         |       |       |        | 1.524 | 1 542   |

# 7.2.2 Lipid Sample Weights:

| Table 12: Algae | pellet drv | weight/g | and lipid | sample | weight/g | calculations |
|-----------------|------------|----------|-----------|--------|----------|--------------|
|                 |            |          |           |        |          |              |

|         | Algae Pellet Dry Weight/ g | Lipid Tube /g | Tubes + Lipid | Lipid Sample/g |
|---------|----------------------------|---------------|---------------|----------------|
| C 51    | 0.542                      | 11.4764       | 11.5057       | 0.0293         |
| 52      | 0.562                      | 11.3442       | 11.3542       | 0.01           |
| 53      | 0.613                      | 11.3781       | 11.3865       | 0.0084         |
| 54      | 0.487                      | 11.431        | 11.4378       | 0.0068         |
| 61      | 0.697                      | 11.4872       | 11.4953       | 0.0081         |
| 62      | 0.689                      | 11.455        | 11.4657       | 0.0107         |
| 63      | 0.685                      | 11.4503       | 11.4575       | 0.0072         |
| 64      | 0.63                       | 11.3448       | 11.3581       | 0.0133         |
| 71      | 0.648                      | 11.5408       | 11.547        | 0.0062         |
| 72      | 0.61                       | 11.5749       | 11.5866       | 0.0117         |
| 73      | 0.612                      | 11.4766       | 11.4839       | 0.0073         |
| 74      | 0.624                      | 11.3903       | 11.405        | 0.0147         |
| BA 51   | 0.577                      | 11.6392       | 11.6512       | 0.012          |
| 52      | 0.646                      | 11.6507       | 11.6623       | 0.0116         |
| 53      | 0.638                      | 11.5488       | 11.5605       | 0.0117         |
| 54      | 0.614                      | 11.677        | 11.6945       | 0.0175         |
| 61      | 0.443                      | 11.5808       | 11.5912       | 0.0104         |
| 62      | 0.61                       | 11.7023       | 11.7143       | 0.012          |
| 63      | 0.597                      | 11.4069       | 11.4196       | 0.0127         |
| 64      | 0.612                      | 11.5398       | 11.5474       | 0.0076         |
| 71      | 0.55                       | 11.59         | 11.601        | 0.011          |
| 72      | 0.578                      | 11.394        | 11.4034       | 0.0094         |
| 73      | 0.58                       | 11.6209       | 11.6298       | 0.0089         |
| 74      | 0.578                      | 11.4991       | 11.506        | 0.0069         |
| ABA 51  | 0.593                      | 11.4579       | 11.4647       | 0.0068         |
| 52      | 0.678                      | 11.4935       | 11.5039       | 0.0104         |
| 53      | 0.628                      | 11.4899       | 11.4961       | 0.0062         |
| 54      | 0.611                      | 11.3279       | 11.3341       | 0.0062         |
| 61      | 0.68                       | 11.3953       | 11.3984       | 0.0031         |
| 62      | 0.64                       | 11.5555       | 11.561        | 0.0055         |
| 63      | 0.683                      | 11.4363       | 11.4443       | 0.008          |
| 64      | 0.689                      | 11.5385       | 11.5454       | 0.0069         |
| 71      | 0.595                      | 11.5503       | 11.5552       | 0.0049         |
| 72      | 0.62                       | 11.511        | 11.5146       | 0.0036         |
| 73      | 0.615                      | 11.4416       | 11.463        | 0.0214         |
| 74      | 0.653                      | 11.3764       | 11.3837       | 0.0073         |
| tZ 51   | 0.574                      | 11.4534       | 11.4613       | 0.0079         |
| 52      | 0.588                      | 11.4865       | 11.4981       | 0.0116         |
| 53      | 0.611                      | 11.5129       | 11.5207       | 0.0078         |
| 54      | 0.649                      | 11.4369       | 11.4435       | 0.0066         |
| 61      | 0.646                      | 11.4724       | 11.4778       | 0.0054         |
| 62      | 0.663                      | 11.7141       | 11.7196       | 0.0055         |
| 63      | 0.654                      | 11.71         | 11.7175       | 0.0075         |
| 64      | 0.663                      | 11.3966       | 11.4028       | 0.0062         |
| 71      | 0.662                      | 11.5222       | 11.5275       | 0.0053         |
| 72      | 0.614                      | 11.5349       | 11.5403       | 0.0054         |
| 73      | 0.632                      | 11.4574       | 11.4632       | 0.0058         |
| 74      | 0.674                      | 11.5234       | 11.5304       | 0.007          |
| MeSZ 51 | 0.641                      | 11.5254       | 11.5314       | 0.006          |
| 52      | 0.655                      | 11.6245       | 11.6297       | 0.0052         |
| 53      | 0.638                      | 11.5351       | 11.5409       | 0.0058         |
| 61      | 0.589                      | 11.4932       | 11.5035       | 0.0103         |
| 62      | 0.614                      | 11.5042       | 11.5108       | 0.0066         |
| 63      | 0.616                      | 11.4459       | 11.454        | 0.0081         |
| 71      | 0.634                      | 11.6364       | 11.6433       | 0.0069         |
| 72      | 0.635                      | 11.6229       | 11.6299       | 0.007          |
| 73      | 0.69                       | 11.4876       | 11.4922       | 0.0046         |

# 7.2.3 FAME Sample Weights:

|              | Tubes  | Tubes + FAME/ g | FAME/ g |
|--------------|--------|-----------------|---------|
| C 51         | 2.4835 | 2.5104          | 0.0269  |
| C 52         | 2.4814 | 2.4935          | 0.0121  |
| C 53         | 2.5237 | 2.5355          | 0.0118  |
| C 54         | 2.4737 | 2,4843          | 0.0106  |
| C 61         | 2 4896 | 2 4993          | 0.0097  |
| C 62         | 2.4030 | 2.4555          | 0.0037  |
| C 62         | 2.4004 | 2.4545          | 0.0113  |
| 64           | 2.4033 | 2.5013          | 0.0114  |
| 71           | 2.4924 | 2.3037          | 0.0115  |
| 71           | 2.5005 | 2.508           | 0.0075  |
| 72           | 2.4831 | 2.495           | 0.0119  |
| 73           | 2.4827 | 2.4919          | 0.0092  |
| 74           | 2.5009 | 2.5128          | 0.0119  |
| BA 51        | 2.4849 | 2.4953          | 0.0104  |
| 52           | 2.4835 | 2.4942          | 0.0107  |
| 53           | 2.4854 | 2.4962          | 0.0108  |
| 54           | 2.49   | 2.5032          | 0.0132  |
| 61           | 2.4901 | 2.4969          | 0.0068  |
| 62           | 2.489  | 2.5004          | 0.0114  |
| 63           | 2.4845 | 2.4962          | 0.0117  |
| 64           | 2.4744 | 2.4818          | 0.0074  |
| 71           | 2.493  | 2.5032          | 0.0102  |
| 72           | 2.4737 | 2.4838          | 0.0101  |
| 73           | 2.5233 | 2.5326          | 0.0093  |
| 74           | 2.473  | 2.4812          | 0.0082  |
| ABA 51       | 2,4819 | 2,4901          | 0.0082  |
| 52           | 2.4819 | 2.4907          | 0.0088  |
| 53           | 2.4848 | 2,4925          | 0.0077  |
| 54           | 2.482  | 2,4901          | 0.0081  |
| 61           | 2,4809 | 2,4863          | 0.0054  |
| 62           | 2 5017 | 2.1005          | 0.0072  |
| 63           | 2.4832 | 2,4918          | 0.0086  |
| 64           | 2 5013 | 2 5086          | 0.0073  |
| 71           | 2 524  | 2.5000          | 0.0075  |
| 71           | 2.324  | 2.001           | 0.007   |
| 72           | 2.4000 | 2.4555          | 0.0037  |
| 73           | 2.5250 | 2.5415          | 0.0185  |
| 74<br>+7 E 1 | 2.3008 | 2.3030          | 0.0088  |
| 12 51        | 2.525  | 2.3317          | 0.0087  |
| 52           | 2.4828 | 2.493/          | 0.0109  |
| 53           | 2.4845 | 2.4931          | 0.0086  |
| 54           | 2.4852 | 2.4939          | 0.0087  |
| 61           | 2.4/44 | 2.4816          | 0.0072  |
| 62           | 2.5246 | 2.5322          | 0.0076  |
| 63           | 2.4835 | 2.4927          | 0.0092  |
| 64           | 2.5236 | 2.5311          | 0.0075  |
| 71           | 2.4892 | 2.4964          | 0.0072  |
| 72           | 2.4823 | 2.4896          | 0.0073  |
| 73           | 2.4824 | 2.4898          | 0.0074  |
| 74           | 2.4884 | 2.4967          | 0.0083  |
| MeSZ 51      | 2.4918 | 2.4992          | 0.0074  |
| 52           | 2.4814 | 2.4886          | 0.0072  |
| 53           | 2.4817 | 2.4886          | 0.0069  |
| 61           | 2.4835 | 2.492           | 0.0085  |
| 62           | 2.4847 | 2.4914          | 0.0067  |
| 63           | 2.5232 | 2.5304          | 0.0072  |
| 71           | 2.5241 | 2.531           | 0.0069  |
| 72           | 2.5021 | 2.5086          | 0.0065  |
| 73           | 2.4843 | 2.4893          | 0.005   |

# Table 13: FAME sample weight/g calculations

# 7.2.4 FAME Profile:

Table 14: Peak to mass conversion of FAME's (samples in 500µl, injection volume 1µl)

| Peak         Peak         Peak         Peak         Peak         Peak         Peak         mess         Peak         mess         mess <th< th=""><th></th><th>Pa</th><th>Imitic</th><th>S</th><th>tearic</th><th>(</th><th>Dleic</th><th>Liı</th><th>noleic</th><th>Li</th><th>nolenic</th><th>Heptade</th><th>ecanoic</th></th<>                              |         | Pa    | Imitic   | S     | tearic    | (     | Dleic    | Liı   | noleic   | Li   | nolenic  | Heptade | ecanoic |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------|----------|-------|-----------|-------|----------|-------|----------|------|----------|---------|---------|
| Area         m (mg)         Area         M (mg) <th< td=""><td></td><td>Peak</td><td></td><td>Peak</td><td></td><td>Peak</td><td></td><td>Peak</td><td></td><td>Peak</td><td></td><td>Peak</td><td>m</td></th<>                      |         | Peak  |          | Peak  |           | Peak  |          | Peak  |          | Peak |          | Peak    | m       |
| C 51         50238         0.628504         8965         0.1097171         13762         0.080802         11924         0.323365         228         0.035197         12819         1.78           S3         41421         0.522765         6000         0.0745164         27764         0.28276         2782         0.524741         1045         0.010036         76180         1.05           S4         5502         0.656627         8143         0.0999582         41556         0.478779         45181         0.740612         1765         0.052381         125642         1.73           G3         30769         0.656627         8143         0.0999582         41056         0.47779         45181         0.740612         1765         0.052381         125642         1.73           G3         0.075967         6549         0.010413         6461         0.047873         20191         555594         4104         0.07714         7393         0.555994         10.07714         7394         1.47           7         35300         0.72554         1008501         1.67718         80211         550751         1256         0.030505         55714         0.80           7         46361         0.72785                                                                                                                                                                                                                          |         | Area  | m (mg)   | Area  | m (mg)    | Area  | m (mg)   | Area  | m (mg)   | Area | m (mg)   | Area    | (mg)    |
| 52         43605         0.548957         8212         0.100774         37936         0.282117         37916         0.648901         5060         0.10704         92313         1.27           53         41421         0.522765         6000         0.0745164         27764         0.282574         111444         1.54           61         52583         0.656677         8143         0.099582         41556         0.478779         45181         0.706121         1765         0.052381         1256622         1.13           63         35769         0.466976         6549         0.081631         3031         0.215599         4194         0.01614         82226         1.13           64         31549         0.404914         6194         0.077088         15569         0.378076         1020         0.03365         16718         1.47           73         5590         0.33353         35569         3.078076         1020         0.03366         10678         1.6817           74         46821         0.587514         1.0703         51569         0.378076         1020         0.02556         3.714         0.80         2.722         1.04184         1.50         0.411616         0.44076 <td< td=""><td>C 51</td><td>50238</td><td>0.628504</td><td>8965</td><td>0.1097171</td><td>13762</td><td>0.089802</td><td>11924</td><td>0.325365</td><td>2228</td><td>0.035197</td><td>128819</td><td>1.78</td></td<>        | C 51    | 50238 | 0.628504 | 8965  | 0.1097171 | 13762 | 0.089802 | 11924 | 0.325365 | 2228 | 0.035197 | 128819  | 1.78    |
| 53         41421         0.522765         6000         0.0745164         27764         0.28276         27892         0.524741         1045         0.10036         76180         1.05           64         152583         0.656627         8143         0.099582         41550         0.478779         45181         0.740612         176         0.252441         11444         1.54           63         36769         0.666976         6549         0.081341         36461         0.407474         29919         0.55005         1323         0.01614         82256         1.13           64         31594         0.406976         6549         0.0210318         5516         6077578         62101         0.950751         2150         0.033553         16807         1.477           72         5800         0.335536         3680         0.406931         2020         0.838636         63037         0.838702         1422         0.02562         1.37           74         64364         0.079428         8950         0.120138         51564         0.61841         50763         0.81309         1833         0.027121         14706         2.20           74         64364         0.079318         8550         0                                                                                                                                                                                                                     | 52      | 43605 | 0.548957 | 8212  | 0.1007774 | 37936 | 0.428117 | 37916 | 0.649901 | 5606 | 0.10704  | 92313   | 1.27    |
| 5         55032         0.685997         6930         0.0855574         48037         0.56948         5381         0.048866         1774         0.025541         111444         1.54           61         52583         0.656375         18009         0.1316092         46010         0.541112         5488         0.0663         0.025349         105671         1.36           64         31594         0.046974         6549         0.0810341         36461         0.047747         29919         0.550594         4194         0.01701         71299         0.98           72         58330         0.725549         10085         0.1230138         51561         0.57978         62011         0.95075         122         0.02181         1.471           72         58060         0.72846         10085         0.1230138         51664         0.61844         0.01309         1832         0.02189         1.481         1.52           74         64521         0.03853         0.682345         3.0578         1.03109         1.533         0.67737         8.0407         0.74706         1522         0.02189         1.53         0.121684         1.041         1.54           74         64324         0.79732                                                                                                                                                                                                                       | 53      | 41421 | 0.522765 | 6000  | 0.0745164 | 27764 | 0.28576  | 27892 | 0.524741 | 1045 | 0.010036 | 76180   | 1.05    |
| 61         52883         0.656627         81.43         0.0999822         41556         0.478779         45181         0.740611         7765         0.02381         125642         1.73           63         36769         0.466976         6549         0.0316092         40610         0.551112         1568         0.05381         125542         1.73           75         8330         0.725449         10085         0.0123013         55571         0.677778         62011         0.030565         58714         0.80           74         64621         0.587257         7179         0.0885136         40052         0.583658         4708         0.20181         9290         1.37           74         64621         0.587257         7179         0.0885136         40052         0.583658         4708         0.20181         92920         1.37           74         64640         0.794026         9973         0.1216842         26975         0.414668         21166         0.44076         1822         0.025652         180469         2.49           75         5944         0.74493         8560         0.104085         57245         0.698346         53037         0.85149         0.0161125         0.016112                                                                                                                                                                                                                 | 54      | 55032 | 0.685997 | 6930  | 0.0855574 | 48037 | 0.56948  | 53851 | 0.848866 | 1774 | 0.025541 | 111444  | 1.54    |
| 62         6007         0.750457         10809         0.0310692         46010         0.541112         54833         0.063         0.5505         1332         0.01614         82256         1.13           64         31594         0.404914         6194         0.0768195         23033         0.219549         30395         0.55594         4194         0.07701         71299         0.98           72         58330         0.725535         3680         0.0469731         23038         0.18233         15556         0.03165         1000550         55374         0.80           74         46801         0.58755         7109         0.0869313         15156         0.61844         50763         0.810309         1833         0.027221         147046         2.03           72         64040         0.794026         9973         0.1216842         36975         0.41468         21166         0.444076         1822         0.02139         174666         2.41           643         80567         0.1249018         5750         0.57108         19205         1.415168         0.02139         174666         2.41           61         80697         0.993788         12533         0.1527142         0.85704                                                                                                                                                                                                                     | 61      | 52583 | 0.656627 | 8143  | 0.0999582 | 41556 | 0.478779 | 45181 | 0.740612 | 1765 | 0.025349 | 105671  | 1.46    |
| 63         36769         0.466976         6549         0.00810341         36461         0.407474         2919         0.55094         4134         0.07701         71299         0.98           72         58330         0.235534         1660         0.0469731         20388         55761         0.677578         62011         0.950751         1216         0.030565         58714         0.80           74         64621         0.58725         7179         0.0285136         49050         0.58365         4708         0.734706         1522         0.02161         99290         1.37           74         64621         0.58725         7179         0.0285136         49050         0.58365         4708         0.734706         1522         0.02181         92290         1.37           74         64364         0.794026         9973         0.1216842         36975         0.41468         2116         0.44076         1833         0.027201         1462         0.01931         163179         2.254           74         64364         0.79912         8795         0.127362         80733         0.82491         9204         .41713         1380         0.016010         199           64         31185<                                                                                                                                                                                                                     | 62      | 60407 | 0.750457 | 10809 | 0.1316092 | 46010 | 0.541112 | 54983 | 0.863    | 3036 | 0.052381 | 125642  | 1.73    |
| 64         31594         0.404914         6194         0.07781         2103         0.32543         0.0355         1.6718         1.47           72         S580         0.325549         10085         0.1230138         55761         0.67778         62011         0.950751         2126         0.009505         58714         0.80           74         46821         0.587525         7179         0.0885136         49052         0.583685         44708         0.310309         1853         0.02752         147046         2.03           74         64364         0.794026         9973         0.1216482         36975         0.414668         50307         0.838072         1482         0.07631         163179         2.25           74         64346         0.7997912         8795         0.107698         66152         0.089145         23595         0.471089         1575         0.021109         1592         1.016112         2.76           64         31185         0.40009         6844         0.040664         5256         0.86408         2.66         0.446542         1.38         0.016212         0.15712         2.17         0.3336         0.216121         0.016512         2.176         0.3320         0.3555                                                                                                                                                                                                    | 63      | 36769 | 0.466976 | 6549  | 0.0810341 | 36461 | 0.407474 | 29919 | 0.55005  | 1332 | 0.01614  | 82256   | 1.13    |
| 72         58330         0.725549         10085         0.123038         55761         0.677578         62011         0.950751         12156         0.030856         10671           73         25809         0.335536         3680         0.0469731         20388         0.123231         5554         1020         0.009055         58714         0.80           74         46821         0.587525         7179         0.0885136         49052         0.583685         44708         0.734706         1522         0.020181         99290         1.37           74         64400         0.794026         9973         0.116468         21166         0.41476         1222         0.020131         163179         2.25           74         64364         0.797912         8795         0.1157088         65162         0.809145         23595         0.47108         1471         0.073301         174666         2.16           613         8153         0.56773         0.152142         0.80730         3546         0.40664         5225         0.636408         2760         0.046511         13894         1.92           64         31185         0.400009         6854         0.046444454         51444         0.8144454 <td>64</td> <td>31594</td> <td>0.404914</td> <td>6194</td> <td>0.0768195</td> <td>23033</td> <td>0.219549</td> <td>30395</td> <td>0.555994</td> <td>4194</td> <td>0.07701</td> <td>71299</td> <td>0.98</td>   | 64      | 31594 | 0.404914 | 6194  | 0.0768195 | 23033 | 0.219549 | 30395 | 0.555994 | 4194 | 0.07701  | 71299   | 0.98    |
| 73         25809         0.335536         3680         0.0465731         20388         0.182533         15569         0.734706         1020         0.009505         58714         0.80           74         46821         0.58755         7179         0.0885136         49052         0.583685         44708         0.734706         1522         0.020181         99290         1.37           74         64040         0.794026         9973         0.1216842         36975         0.414668         21166         0.44076         1822         0.027521         180489         2.49           74         64364         0.797912         8795         0.1076988         65162         0.809145         23595         0.471089         1575         0.021309         174666         2.41           61         80697         0.993788         12553         0.151215         0.8072         1.10718         82227         1.29057         2.358         0.65103         19824         2.76           63         45183         0.400051         13950         0.11708         29264         0.451473         1338         0.016268         100701         1.39           51         29944         0.385126         64822         0.0803383 <td>72</td> <td>58330</td> <td>0.725549</td> <td>10085</td> <td>0.1230138</td> <td>55761</td> <td>0.677578</td> <td>62011</td> <td>0.950751</td> <td>2156</td> <td>0.033665</td> <td>106718</td> <td>1.47</td> | 72      | 58330 | 0.725549 | 10085 | 0.1230138 | 55761 | 0.677578 | 62011 | 0.950751 | 2156 | 0.033665 | 106718  | 1.47    |
| 74         44821         0.587525         7179         0.0885136         49020         0.583665         44708         0.73706         1522         0.020181         99290         1.37           BA 71         58605         0.728846         10085         0.1230138         51564         0.618841         5073         0.810309         1853         0.027221         147046         2.03           72         64040         0.794026         973         0.1216842         36975         0.414668         21166         0.44076         1522         0.002162         180309         12452         0.02721         14520         0.019378         1255         0.101988         5125         0.02145         3535         0.471089         1575         0.021309         17466         2.10           63         45133         0.55781         9750         0.1155709         913546         0.08664         5256         0.86408         1005101         1389         1.9924         2.75           64         31185         0.400009         6854         0.0804531         25778         22024         0.451473         1338         0.01626         15001         1.399           51         29944         0.385126         68482         0.08033                                                                                                                                                                                                    | 73      | 25809 | 0.335536 | 3680  | 0.0469731 | 20388 | 0.182533 | 15569 | 0.370876 | 1020 | 0.009505 | 58714   | 0.80    |
| BA 71         58605         0.728846         10085         0.1230138         51564         0.618841         50763         0.81009         1853         0.027221         147046         2.09           73         59943         0.744893         8560         0.1049089         57245         0.698346         53037         0.838702         1482         0.012931         163179         2.25           74         64364         0.79712         8795         0.175988         61512         80071         1.01781         89227         1.2055         0.175312         18806         2.50           62         90021         1.105607         13966         0.169125         80072         1.01781         89227         1.2057         3258         0.0475113         199824         .76           64         31185         0.400009         6854         0.0802387         19570         0.171085         29626         0.546392         1742         0.04661         1339           51         29944         0.385126         6482         0.0802387         0.321755         33375         0.593202         1212         0.01358         17032         2.17           53         30320         0.324575         0.3375         0.593202 <td>74</td> <td>46821</td> <td>0.587525</td> <td>7179</td> <td>0.0885136</td> <td>49052</td> <td>0.583685</td> <td>44708</td> <td>0.734706</td> <td>1522</td> <td>0.020181</td> <td>99290</td> <td>1.37</td>  | 74      | 46821 | 0.587525 | 7179  | 0.0885136 | 49052 | 0.583685 | 44708 | 0.734706 | 1522 | 0.020181 | 99290   | 1.37    |
| 2         64040         0.794026         9973         0.1216842         3675         0.414668         21166         0.44076         1822         0.025652         180489         2.49           73         59943         0.748933         8560         0.1049089         57245         0.693346         53037         0.838702         1482         0.019311         163179         2.25           64         80697         0.993788         12553         0.1572142         6873         0.894401         92061         1.415168         4117         0.075372         180601         2.50           63         45183         0.567881         9795         0.1195709         35646         0.408664         55256         0.66408         760         0.40651         1379           51         29944         0.385126         6482         0.0802387         19570         0.171085         29626         0.546392         1742         0.02486         100792         1.39           52         46737         0.586518         8006         0.093318         46241         0.544345         51418         0.818447         1302         0.016502         157032         2.17           53         30822         0.323775         63245                                                                                                                                                                                                                   | BA 71   | 58605 | 0.728846 | 10085 | 0.1230138 | 51564 | 0.618841 | 50763 | 0.810309 | 1853 | 0.027221 | 147046  | 2.03    |
| 73         59943         0.744893         8560         0.1049089         57245         0.683445         53037         0.838702         1482         0.019331         163179         2.25           74         64364         0.79912         8795         0.1076988         65162         0.889014         23595         0.471089         1575         0.021309         174666         2.41           62         90021         1.105607         13969         0.159125         8072         1.01781         89227         1.22057         3258         0.057103         199824         2.76           64         31185         0.400009         6854         0.086251         2576         0.264302         1742         0.02486         100792         1.39           51         29944         0.385126         6482         0.080237         1970         0.171085         29626         0.54392         1742         0.02486         100792         1.39           52         46737         0.58518         8006         0.093338         4021         0.454345         5148         0.81877         142         0.02486         1001502         15703         2.124           753         30822         0.39565         7251                                                                                                                                                                                                                              | 72      | 64040 | 0.794026 | 9973  | 0.1216842 | 36975 | 0.414668 | 21166 | 0.44076  | 1822 | 0.026562 | 180489  | 2.49    |
| 74       64364       0.797912       8795       0.1076988       65162       0.809145       23595       0.471089       1575       0.021309       174666       2.41         61       80697       0.993788       12553       0.1523142       68753       0.859401       9206       1.415168       4117       0.075372       180601       2.50         62       90021       1.105607       13969       0.169125       80072       1.29057       3258       0.057103       199244       2.76         64       31185       0.40009       6854       0.084651       25736       0.257378       2024       0.451147       1338       0.016268       100610       1.39         51       29944       0.385126       6482       0.080237       19570       0.171085       59626       0.546132       1742       0.01502       15732       2.17         53       30822       0.395655       7251       0.0893683       3036       0.321755       33375       0.59302       1212       0.01550       165697       2.11         54       31350       0.41988       5744       0.071477       27040       0.24572       1262       0.01452       126662       1.74 <t< td=""><td>73</td><td>59943</td><td>0.744893</td><td>8560</td><td>0.1049089</td><td>57245</td><td>0.698346</td><td>53037</td><td>0.838702</td><td>1482</td><td>0.019331</td><td>163179</td><td>2.25</td></t<>                                                                                          | 73      | 59943 | 0.744893 | 8560  | 0.1049089 | 57245 | 0.698346 | 53037 | 0.838702 | 1482 | 0.019331 | 163179  | 2.25    |
| 61         80697         0.993788         12553         0.1523142         68753         0.859401         99206         1.415168         4117         0.075372         180601         2.50           62         90021         1.105607         13969         0.169125         80072         1.01781         89227         1.29057         3258         0.057103         199824         2.76           64         31185         0.400009         6854         0.084551         25736         0.257378         2024         0.451473         1338         0.016268         100610         1.39           51         29944         0.385126         6482         0.0802387         19570         0.171085         29626         0.54332         1742         0.013588         157032         2.177           53         30822         0.395655         7251         0.0893683         3036         0.321755         33375         0.593202         1212         0.013588         79744         1.35           54         31350         0.440198         5744         0.0714771         27709         0.28457         21501         0.444943         1483         0.019352         124662           64         56480         0.373362         1124 <td>74</td> <td>64364</td> <td>0.797912</td> <td>8795</td> <td>0.1076988</td> <td>65162</td> <td>0.809145</td> <td>23595</td> <td>0.471089</td> <td>1575</td> <td>0.021309</td> <td>174666</td> <td>2.41</td>  | 74      | 64364 | 0.797912 | 8795  | 0.1076988 | 65162 | 0.809145 | 23595 | 0.471089 | 1575 | 0.021309 | 174666  | 2.41    |
| 62         90021         1.105607         13969         0.169125         80072         1.01781         89227         1.29057         3258         0.057103         199824         2.76           64         31185         0.400009         6544         0.086640         5256         0.866408         2760         0.046511         13894         1.92           51         29944         0.385126         6482         0.0802387         19570         0.171085         29626         0.546392         1742         0.02486         100792         1.39           52         46737         0.586518         8006         0.098318         46241         0.544345         5148         0.015052         157032         2.17           53         3022         0.395655         7271         0.0588371         12071         0.066136         2980         0.21359         1262         0.014552         12622         1.744           64         30248         0.384772         6841         0.058851         12701         0.46136         2880         0.19352         124329         1.71           63         30205         0.44606         8928         0.192778         22496         0.212034         1584         0.37659         <                                                                                                                                                                                                                 | 61      | 80697 | 0.993788 | 12553 | 0.1523142 | 68753 | 0.859401 | 99206 | 1.415168 | 4117 | 0.075372 | 180601  | 2.50    |
| 63         45183         0.567881         9795         0.1195709         36546         0.408664         55256         0.866408         2760         0.046511         138949         1.92           64         31185         0.400009         6854         0.0846551         25736         0.257378         22024         0.451473         1338         0.016268         100610         1.39           52         46737         0.586518         8006         0.098318         46241         0.544345         51418         0.818487         1302         0.015502         157032         2.17           53         3022         0.395555         7251         0.0898571         12071         0.066136         2980         0.21369         1262         0.014652         126062         1.74           62         30248         0.388772         6834         0.08477         2769         0.22457         2151         0.444943         1483         0.019552         166967         2.31           64         56480         0.70362         11244         0.1368923         4700         0.494789         2191         0.453559         2538         0.04179         21558         2.98           51         38559         0.48044                                                                                                                                                                                                                        | 62      | 90021 | 1.105607 | 13969 | 0.169125  | 80072 | 1.01781  | 89227 | 1.29057  | 3258 | 0.057103 | 199824  | 2.76    |
| 64       31185       0.400009       6854       0.0846551       25736       0.257378       22024       0.451473       1338       0.016268       100610       1.39         51       29944       0.385126       6482       0.0082387       19570       0.171085       29626       0.546332       1742       0.015628       100752       1.39         53       30822       0.395655       7251       0.0893683       3036       0.321755       3337       0.593202       1212       0.013588       97944       1.35         54       31350       0.401988       5744       0.0714771       27004       0.275124       29502       0.544844       2784       0.047022       89903       1.24         ABA 61       17653       0.237725       4681       0.0588571       12071       0.066136       2980       0.21309       1622       0.014552       12662       1.74         63       35025       0.44606       8928       0.1092778       22496       0.212034       1584       0.374809       3016       0.051956       166967       2.31         64       54840       0.783249       1273       5255       0.25062       21913       0.540486       1080300302       17950                                                                                                                                                                                                                                                                                   | 63      | 45183 | 0.567881 | 9795  | 0.1195709 | 36546 | 0.408664 | 55256 | 0.866408 | 2760 | 0.046511 | 138949  | 1.92    |
| 51         29944         0.385126         6482         0.0802387         19570         0.171085         29626         0.546392         1742         0.02486         100792         1.39           52         46737         0.586518         8006         0.0983318         46241         0.544345         51418         0.818487         1302         0.015502         157032         2.17           53         30822         0.395655         7251         0.089683         30336         0.321755         33375         0.593202         1212         0.013588         7944         1.35           61         1653         0.237725         4681         0.0588571         12071         0.066136         2980         0.21369         1262         0.014652         126667         1.31           63         35025         0.44604         4268         0.0392778         22496         0.212041         15884         0.37409         3016         0.05156         166567         2.31           64         56480         0.703362         11254         0.1368923         42700         0.494789         22191         0.453559         2538         0.04179         12370         2.28           51         33359         0.480444                                                                                                                                                                                                                     | 64      | 31185 | 0.400009 | 6854  | 0.0846551 | 25736 | 0.257378 | 22024 | 0.451473 | 1338 | 0.016268 | 100610  | 1.39    |
| 52       46737       0.586518       8006       0.0983318       46241       0.544345       51418       0.818487       1302       0.015502       157032       2.17         53       30822       0.395655       7251       0.0893683       3036       0.321755       303375       0.593202       1212       0.013588       97944       1.35         486.61       17653       0.237725       6881       0.0088571       12071       0.066136       2980       0.21369       1262       0.014552       12602       1.74         62       30248       0.388772       6834       0.084117       2767       0.28457       21501       0.444943       1483       0.019552       124329       1.71         63       35025       0.44606       8928       0.1902778       22496       0.212034       15884       0.374099       3161       0.025165       165967       2.21         51       38359       0.486044       4268       0.059359       27939       0.28209       2462       0.48387       1634       0.02563       16577       2.29         52       46814       0.58741       10432       0.1214523       38124       0.43078       3845       0.624042       1406                                                                                                                                                                                                                                                                                          | 51      | 29944 | 0.385126 | 6482  | 0.0802387 | 19570 | 0.171085 | 29626 | 0.546392 | 1742 | 0.02486  | 100792  | 1.39    |
| 53         30822         0.395655         7251         0.0893683         3036         0.321755         33375         0.593202         1212         0.013588         97944         1.35           54         31350         0.401988         5744         0.0714771         27004         0.275124         29502         0.544844         2784         0.040702         89903         1.24           ABA 61         17653         0.237775         4681         0.0588571         12071         0.066136         2980         0.21369         1262         0.014652         126062         1.74           62         30248         0.388772         6834         0.084177         27679         0.28457         21501         0.444943         1483         0.019352         12528         2.38           64         56480         0.703362         11254         0.1368923         42700         0.494789         22191         0.453559         2538         0.04179         21558         2.98           51         3359         0.48044         4268         0.0539539         27939         0.28209         4620         0.43887         1270         0.014525         3.37         2.98           50717         0.634249         9370                                                                                                                                                                                                                    | 52      | 46737 | 0.586518 | 8006  | 0.0983318 | 46241 | 0.544345 | 51418 | 0.818487 | 1302 | 0.015502 | 157032  | 2.17    |
| 54         31350         0.401988         5744         0.0714771         27004         0.275124         29502         0.544844         2784         0.047022         89903         1.24           ABA 61         17653         0.237725         4681         0.0588571         12071         0.066136         2980         0.21369         1262         0.014652         126062         1.74           62         30248         0.388772         6834         0.0844177         27679         0.28457         21501         0.444943         9.3016         0.051955         166967         2.31           63         5025         0.44604         4268         0.053953         27939         0.28209         24620         0.44387         1634         0.022563         165777         2.29           52         46814         0.587441         10432         0.1271335         25256         0.25066         29153         0.540486         1988         0.03092         179503         2.48           53         50717         0.634249         9370         0.1145253         38124         0.430748         35845         0.624421         1406         0.017141         17237         2.38           54         47934         0.600873 <td>53</td> <td>30822</td> <td>0.395655</td> <td>7251</td> <td>0.0893683</td> <td>30336</td> <td>0.321755</td> <td>33375</td> <td>0.593202</td> <td>1212</td> <td>0.013588</td> <td>97944</td> <td>1.35</td>  | 53      | 30822 | 0.395655 | 7251  | 0.0893683 | 30336 | 0.321755 | 33375 | 0.593202 | 1212 | 0.013588 | 97944   | 1.35    |
| ABA 61         17653         0.237725         4681         0.0588571         12071         0.066136         2980         0.21369         1262         0.014652         126062         1.74           62         30248         0.388772         6834         0.0844177         27679         0.28457         21501         0.444943         1483         0.019352         124329         1.71           63         35025         0.44606         8928         0.1092778         22496         0.212034         15884         0.374809         3016         0.051956         166967         2.31           64         56480         0.703362         11254         0.1368923         42700         0.494789         22191         0.453559         2538         0.04179         215558         2.98           51         38359         0.486044         4268         0.0539539         27939         0.28209         24620         0.483887         1634         0.022563         165777         2.29           52         46814         0.587441         10432         0.114523         38124         0.430748         35845         0.624042         1406         0.01774         172370         2.38           54         47934         0.600873                                                                                                                                                                                                            | 54      | 31350 | 0.401988 | 5744  | 0.0714771 | 27004 | 0.275124 | 29502 | 0.544844 | 2784 | 0.047022 | 89903   | 1.24    |
| 62302480.38877268340.0844177276790.28457215010.44494314830.0193521243291.7163350250.4460689280.1092778224960.212034158840.37480930160.0519561669672.3164564800.703362112540.1368923427000.494789221910.45355925380.041792155582.9851383590.48604442680.0539539279390.28206246200.4838716340.022563165772.2952468140.587441104320.1271335252560.25066291530.54048619880.0300921795032.4853507170.63424993700.1145253381240.430748358450.62404214060.0177141723702.3854479340.60087365450.080986417000.480794406780.68438712700.0148221301121.7972269240.34890880990.0994359263280.265663209290.43780120640.0317091131801.5673531300.664187114690.139448627170.774927447600.73535542180.077521911622.6474201910.26816254080.0374517125870.07388114220.3198467980.004783447470.616115084 <td>ABA 61</td> <td>17653</td> <td>0.237725</td> <td>4681</td> <td>0.0588571</td> <td>12071</td> <td>0.066136</td> <td>2980</td> <td>0.21369</td> <td>1262</td> <td>0.014652</td> <td>126062</td> <td>1.74</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ABA 61  | 17653 | 0.237725 | 4681  | 0.0588571 | 12071 | 0.066136 | 2980  | 0.21369  | 1262 | 0.014652 | 126062  | 1.74    |
| 63350250.4460689280.1092778224960.212034158840.37480930160.0519561669672.3164564800.703362112540.1368923427000.494789221910.45355925380.041792155582.9851383590.48604442680.0539539279390.288209246200.48388716340.0225631657972.2952468140.587441104320.1271335252560.25066291530.54048619880.0300921795032.4853507170.63424993700.1145253381240.430748358450.62404214060.0177141723702.3854479340.60087365450.080986417000.480794406780.68438712700.0148221301121.791271242340.31664870540.0870295210190.191364173830.39352618580.0273271292971.7872269240.34890880990.0994359263280.25563209290.43780120640.0317091131801.5673531300.661387114690.1394448627170.774927447600.75355542180.077521911622.6474201910.26816254080.0374517125870.073585114820.3184647980.004783447470.616622                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 62      | 30248 | 0.388772 | 6834  | 0.0844177 | 27679 | 0.28457  | 21501 | 0.444943 | 1483 | 0.019352 | 124329  | 1.71    |
| 64564800.703362112540.1368923427000.494789221910.45355925380.041792155582.9851383590.48604442680.0539539279390.288209246200.48388716340.0225631657972.2952468140.587441104320.1271335252560.25066291530.54046619880.030921795032.4853507170.63424993700.1145253381240.43074835840.62404214060.0177141723702.3854479340.60087365450.0809866417000.48074406780.68438712700.0148221301121.7972242340.31664870540.0870295210190.191364173830.39352618580.0273271292971.7872269240.34890880990.0994359263280.265663209290.43780120640.317091131801.5673531300.663187114690.1394448627170.774927447600.73535542180.077521911622.6474201910.26816254080.0674881279520.288391207550.43562927030.045299828591.1461150840.20691528780.0374517125870.07338114820.3198467980.004783447470.616225543 </td <td>63</td> <td>35025</td> <td>0.44606</td> <td>8928</td> <td>0.1092778</td> <td>22496</td> <td>0.212034</td> <td>15884</td> <td>0.374809</td> <td>3016</td> <td>0.051956</td> <td>166967</td> <td>2.31</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 63      | 35025 | 0.44606  | 8928  | 0.1092778 | 22496 | 0.212034 | 15884 | 0.374809 | 3016 | 0.051956 | 166967  | 2.31    |
| 51       38359       0.486044       4268       0.0539539       27939       0.288209       24620       0.483887       1634       0.022563       165797       2.29         52       46814       0.587441       10432       0.1271335       25256       0.25066       29153       0.540486       1988       0.030092       179503       2.48         53       50717       0.634249       9370       0.1145253       38124       0.430748       35845       0.624042       1406       0.017714       172370       2.38         54       47934       0.600873       6545       0.0809866       41700       0.48074       40678       0.684387       1270       0.014822       130112       1.79         72       26924       0.348908       8099       0.0994359       26328       0.265663       20929       0.437801       2064       0.031709       113180       1.56         73       53130       0.663187       11469       0.1394448       62717       0.77452       44760       0.735355       4218       0.07752       191162       2.64         74       20191       0.268162       5478       0.0374517       12587       0.073358       11482       0.319846       7                                                                                                                                                                                                                                                                                   | 64      | 56480 | 0.703362 | 11254 | 0.1368923 | 42700 | 0.494789 | 22191 | 0.453559 | 2538 | 0.04179  | 215558  | 2.98    |
| 52         46814         0.587441         10432         0.1271335         25256         0.25066         29153         0.540486         1988         0.030092         179503         2.48           53         50717         0.634249         9370         0.1145253         38124         0.430748         35845         0.624042         1406         0.017714         172370         2.38           54         47934         0.600873         6545         0.0809866         41700         0.480794         40678         0.684387         1270         0.014822         130112         1.79           1271         24234         0.316648         7054         0.0870295         21019         0.191364         17383         0.393526         1858         0.027327         129297         1.78           72         26924         0.348908         8099         0.0994359         26328         0.26563         20929         0.437801         2064         0.031709         113180         1.56           73         53130         0.663187         11469         0.1394448         62717         0.774927         4470         0.43569         2703         0.04529         82859         1.14           61         15084         0.26915<                                                                                                                                                                                                            | 51      | 38359 | 0.486044 | 4268  | 0.0539539 | 27939 | 0.288209 | 24620 | 0.483887 | 1634 | 0.022563 | 165797  | 2.29    |
| 53         50717         0.634249         9370         0.1145253         38124         0.430748         35845         0.624042         1406         0.017714         172370         2.38           54         47934         0.600873         6545         0.0809866         41700         0.480794         40678         0.684387         1270         0.014822         130112         1.79           1271         24234         0.316648         7054         0.0870295         21019         0.191364         17383         0.393526         1858         0.027327         129297         1.78           72         26924         0.348908         8099         0.0994359         26328         0.265663         20929         0.437801         2064         0.031709         113180         1.56           73         53130         0.663187         11469         0.139448         62717         0.774927         44760         0.735355         4218         0.07752         191162         2.64           74         20191         0.268162         5408         0.0674881         27952         0.288911         20735         0.435659         380         0.004783         44747         0.61           61         15084         0.20691                                                                                                                                                                                                            | 52      | 46814 | 0.587441 | 10432 | 0.1271335 | 25256 | 0.25066  | 29153 | 0.540486 | 1988 | 0.030092 | 179503  | 2.48    |
| 54479340.60087365450.0809866417000.480794406780.68438712700.0148221301121.791Z 71242340.31664870540.0870295210190.191364173830.39352618580.0273271292971.7872269240.34890880990.0994359263280.265663209290.43780120640.0317091131801.5673531300.663187114690.1394448627170.774927447600.73535542180.077521911622.6474201910.26816254080.0674881279520.288391207550.43562927030.045299828591.1461150840.20691528780.0374517125870.073358114820.3198467980.004783447470.6162255430.33234647420.0595813221640.207388140240.3515858860.006655753731.0463307660.39498467230.0880387236940.2288175170.39519915980.0217981017231.40MeSZ 71173140.23365938370.048837229470.218346118970.32502828150.047681794521.0972203980.27064439700.050416191900.165767106100.30895837320.06184810311.1173157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 53      | 50717 | 0.634249 | 9370  | 0.1145253 | 38124 | 0.430748 | 35845 | 0.624042 | 1406 | 0.017714 | 172370  | 2.38    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 54      | 47934 | 0.600873 | 6545  | 0.0809866 | 41700 | 0.480794 | 40678 | 0.684387 | 1270 | 0.014822 | 130112  | 1.79    |
| 72269240.34890880990.0994359263280.265663209290.43780120640.0317091131801.5673531300.663187114690.1394448627170.774927447600.73535542180.077521911622.6474201910.26816254080.0674881279520.288391207550.43562927030.045299828591.1461150840.20691528780.0374517125870.073358114820.3198467980.004783447470.6162255430.33234647420.0595813221640.207388140240.3515858860.006655753731.0463307660.39498467230.083099315850.339235274660.51917314970.01965718740.9964235540.30849371390.0880387236940.2288175170.39519915980.0217981017231.40MeSZ 71173140.23365938370.04837229470.218346118970.32502828150.047681794521.0972203980.27064439700.050416191900.165767106100.30895837320.067184810311.1173157890.2153736300.0463795156970.11682288260.28668326730.0446611030081.426125750<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | tZ 71   | 24234 | 0.316648 | 7054  | 0.0870295 | 21019 | 0.191364 | 17383 | 0.393526 | 1858 | 0.027327 | 129297  | 1.78    |
| 73       53130       0.663187       11469       0.1394448       62717       0.774927       44760       0.735355       4218       0.07752       191162       2.64         74       20191       0.268162       5408       0.0674881       27952       0.288391       20755       0.435629       2703       0.045299       82859       1.14         61       15084       0.206915       2878       0.0374517       12587       0.073358       11482       0.319846       798       0.004783       44747       0.61         62       25543       0.332346       4742       0.0595813       22164       0.207388       14024       0.351585       886       0.006655       75373       1.04         63       30766       0.394984       6723       0.083099       31585       0.339235       2746       0.519173       1497       0.01965       71874       0.99         64       23554       0.308493       7139       0.0880387       22947       0.218346       11897       0.325028       2815       0.047681       79452       1.09         72       20398       0.21537       3630       0.0463795       15697       10610       0.308958       3732       0.067184                                                                                                                                                                                                                                                                                         | 72      | 26924 | 0.348908 | 8099  | 0.0994359 | 26328 | 0.265663 | 20929 | 0.437801 | 2064 | 0.031709 | 113180  | 1.56    |
| 74       20191       0.268162       5408       0.0674881       27952       0.288391       20755       0.435629       2703       0.045299       82859       1.14         61       15084       0.206915       2878       0.0374517       12587       0.073358       11482       0.319846       798       0.004783       44747       0.61         62       25543       0.332346       4742       0.0595813       22164       0.207388       14024       0.351585       886       0.00655       75373       1.04         63       30766       0.394984       6723       0.0830999       31585       0.339235       27466       0.519173       1497       0.01965       71874       0.99         64       23554       0.308493       7139       0.0880387       23694       0.2288       1757       0.395199       1598       0.021798       101723       1.40         MeSZ 71       17314       0.233659       3837       0.048375       15697       0.116882       8826       0.286683       2673       0.047681       79452       1.09         72       20398       0.21537       3630       0.0463795       15697       0.116882       8826       0.286683       2673                                                                                                                                                                                                                                                                                         | 73      | 53130 | 0.663187 | 11469 | 0.1394448 | 62717 | 0.774927 | 44760 | 0.735355 | 4218 | 0.07752  | 191162  | 2.64    |
| 61       15084       0.206915       2878       0.0374517       12587       0.073358       11482       0.319846       798       0.004783       44747       0.61         62       25543       0.332346       4742       0.0595813       22164       0.207388       14024       0.351585       886       0.006655       75373       1.04         63       30766       0.394984       6723       0.0830999       31585       0.339235       27446       0.519173       1497       0.01965       71874       0.99         64       23554       0.308493       7139       0.0880387       23694       0.2288       17517       0.395199       1598       0.021798       101723       1.40         MeSZ 71       17314       0.233659       3837       0.048837       22947       0.218346       11897       0.325028       2815       0.047681       79452       1.09         72       20398       0.21537       3630       0.0463795       15697       0.116882       8826       0.286683       2673       0.044661       103008       1.42         61       25750       0.334829       4852       0.0608872       17988       0.148945       25230       0.491504       5805 </td <td>74</td> <td>20191</td> <td>0.268162</td> <td>5408</td> <td>0.0674881</td> <td>27952</td> <td>0.288391</td> <td>20755</td> <td>0.435629</td> <td>2703</td> <td>0.045299</td> <td>82859</td> <td>1.14</td>                                                                   | 74      | 20191 | 0.268162 | 5408  | 0.0674881 | 27952 | 0.288391 | 20755 | 0.435629 | 2703 | 0.045299 | 82859   | 1.14    |
| 62         25543         0.332346         4742         0.0595813         22164         0.207388         14024         0.351585         886         0.006655         75373         1.04           63         30766         0.394984         6723         0.0830999         31585         0.339235         27446         0.519173         1497         0.01965         71874         0.99           64         23554         0.308493         7139         0.0880387         23694         0.2288         17517         0.395199         1598         0.021798         101723         1.40           MeSZ 71         17314         0.233659         3837         0.048837         22947         0.218346         11897         0.325028         2815         0.047681         79452         1.09           72         20398         0.21537         3630         0.0463795         15697         0.116882         8826         0.286683         2673         0.044661         103008         1.42           61         25750         0.334829         4852         0.0608872         17988         0.148945         25230         0.491504         5805         0.111273         112614         1.55           62         25048         0.32641 <td>61</td> <td>15084</td> <td>0.206915</td> <td>2878</td> <td>0.0374517</td> <td>12587</td> <td>0.073358</td> <td>11482</td> <td>0.319846</td> <td>798</td> <td>0.004783</td> <td>44747</td> <td>0.61</td>    | 61      | 15084 | 0.206915 | 2878  | 0.0374517 | 12587 | 0.073358 | 11482 | 0.319846 | 798  | 0.004783 | 44747   | 0.61    |
| 63         30766         0.394984         6723         0.0830999         31585         0.339235         27466         0.519173         1497         0.01965         71874         0.99           64         23554         0.308493         7139         0.0880387         23694         0.2288         17517         0.395199         1598         0.021798         101723         1.40           MeSZ 71         17314         0.233659         3837         0.048837         22947         0.218346         11897         0.325028         2815         0.047681         79452         1.09           72         20398         0.270644         3970         0.050416         19190         0.155767         10610         0.308958         3732         0.067184         81031         1.11           73         15789         0.21537         3630         0.0463795         15697         0.116882         8826         0.286683         2673         0.044661         103008         1.42           61         25750         0.334829         4852         0.0608872         17988         0.148945         25230         0.491504         5805         0.111273         112614         1.55           62         25048         0.32641 <td>62</td> <td>25543</td> <td>0.332346</td> <td>4742</td> <td>0.0595813</td> <td>22164</td> <td>0.207388</td> <td>14024</td> <td>0.351585</td> <td>886</td> <td>0.006655</td> <td>75373</td> <td>1.04</td>    | 62      | 25543 | 0.332346 | 4742  | 0.0595813 | 22164 | 0.207388 | 14024 | 0.351585 | 886  | 0.006655 | 75373   | 1.04    |
| 64         23554         0.308493         7139         0.0880387         23694         0.2288         17517         0.395199         1598         0.021798         101723         1.40           MeSZ 71         17314         0.233659         3837         0.048837         22947         0.218346         11897         0.325028         2815         0.047681         79452         1.09           72         20398         0.270644         3970         0.050416         19190         0.165767         10610         0.308958         3732         0.067184         81031         1.11           73         15789         0.21537         3630         0.0463795         15697         0.116882         8826         0.286683         2673         0.044661         103008         1.42           61         25750         0.334829         4852         0.0608872         17988         0.148945         25230         0.491504         5805         0.111273         112614         1.55           62         25048         0.32641         4886         0.0612909         20478         0.183792         22445         0.45673         6505         0.12616         109651         1.51           63         25400         0.330631 <td>63</td> <td>30766</td> <td>0.394984</td> <td>6723</td> <td>0.0830999</td> <td>31585</td> <td>0.339235</td> <td>27446</td> <td>0.519173</td> <td>1497</td> <td>0.01965</td> <td>71874</td> <td>0.99</td>    | 63      | 30766 | 0.394984 | 6723  | 0.0830999 | 31585 | 0.339235 | 27446 | 0.519173 | 1497 | 0.01965  | 71874   | 0.99    |
| MeSZ 71         17314         0.233659         3837         0.048837         22947         0.218346         11897         0.325028         2815         0.047681         79452         1.09           72         20398         0.270644         3970         0.050416         19190         0.165767         10610         0.308958         3732         0.067184         81031         1.11           73         15789         0.21537         3630         0.0463795         15697         0.116882         8826         0.286683         2673         0.044661         103008         1.42           61         25750         0.334829         4852         0.0608872         17988         0.148945         25230         0.491504         5805         0.111273         112614         1.55           62         25048         0.32641         4886         0.0612909         20478         0.183792         22445         0.45673         6505         0.12616         109651         1.51           63         25400         0.330631         6511         0.080583         16740         0.131479         17647         0.396822         8448         0.167484         106265         1.46           51         25359         0.33014 <td>64</td> <td>23554</td> <td>0.308493</td> <td>7139</td> <td>0.0880387</td> <td>23694</td> <td>0.2288</td> <td>17517</td> <td>0.395199</td> <td>1598</td> <td>0.021798</td> <td>101723</td> <td>1.40</td>    | 64      | 23554 | 0.308493 | 7139  | 0.0880387 | 23694 | 0.2288   | 17517 | 0.395199 | 1598 | 0.021798 | 101723  | 1.40    |
| 72       20398       0.270644       3970       0.050416       19190       0.165767       10610       0.308958       3732       0.067184       81031       1.11         73       15789       0.21537       3630       0.0463795       15697       0.116882       8826       0.286683       2673       0.044661       103008       1.42         61       25750       0.334829       4852       0.0608872       17988       0.148945       25230       0.491504       5805       0.111273       112614       1.55         62       25048       0.32641       4886       0.0612909       20478       0.183792       22445       0.45673       6505       0.12616       109651       1.51         63       25400       0.330631       6511       0.080583       16740       0.131479       17647       0.396822       8448       0.167484       106265       1.46         51       25359       0.33014       6996       0.086341       24198       0.235854       23059       0.464396       1406       0.017714       99969       1.38         52       26651       0.345634       6054       0.0751575       23845       0.230913       22910       0.462536       1232                                                                                                                                                                                                                                                                                         | MeSZ 71 | 17314 | 0.233659 | 3837  | 0.048837  | 22947 | 0.218346 | 11897 | 0.325028 | 2815 | 0.047681 | 79452   | 1.09    |
| 73         15789         0.21537         3630         0.0463795         15697         0.116882         8826         0.286683         2673         0.04661         103008         1.42           61         25750         0.334829         4852         0.0608872         17988         0.148945         25230         0.491504         5805         0.111273         112614         1.55           62         25048         0.32641         4886         0.0612909         20478         0.183792         22445         0.45673         6505         0.12616         109651         1.51           63         25400         0.330631         6511         0.080583         16740         0.131479         17647         0.396822         8448         0.167484         106265         1.46           51         25359         0.33014         6996         0.086341         24198         0.235854         23059         0.464396         1406         0.017714         99969         1.38           52         26651         0.345634         6054         0.0751575         23845         0.230913         22910         0.462536         1232         0.014014         137774         1.90                                                                                                                                                                                                                                                                | 72      | 20398 | 0.270644 | 3970  | 0.050416  | 19190 | 0.165767 | 10610 | 0.308958 | 3732 | 0.067184 | 81031   | 1.11    |
| 61         25750         0.334829         4852         0.0608872         17988         0.148945         25230         0.491504         5805         0.111273         112614         1.55           62         25048         0.32641         4886         0.0612909         20478         0.148945         25230         0.491504         5805         0.111273         112614         1.55           63         25400         0.330631         6511         0.080583         16740         0.131479         17647         0.396822         8448         0.167484         106265         1.46           51         25359         0.33014         6996         0.086341         24198         0.235854         23059         0.464396         1406         0.017714         99969         1.38           52         26651         0.345634         6054         0.0751575         23845         0.230913         22910         0.462536         1232         0.014014         137774         1.90                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 73      | 15789 | 0.21537  | 3630  | 0.0463795 | 15697 | 0.116882 | 8826  | 0.286683 | 2673 | 0.044661 | 103008  | 1.42    |
| 62         25048         0.32641         4886         0.0612909         20478         0.183792         22445         0.45673         6505         0.12216         109651         1.51           63         25400         0.330631         6511         0.080583         16740         0.131479         17647         0.396822         8448         0.167484         109651         1.51           51         25359         0.33014         6996         0.086341         24198         0.235854         23059         0.464396         1406         0.017714         99969         1.38           52         26651         0.345634         6054         0.0751575         23845         0.230913         22910         0.462536         1232         0.014014         137774         1.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 61      | 25750 | 0.334829 | 4852  | 0.0608872 | 17988 | 0.148945 | 25230 | 0.491504 | 5805 | 0.111273 | 112614  | 1.55    |
| 63         25400         0.330631         6511         0.080583         16740         0.131479         17647         0.396822         8448         0.167484         106265         1.46           51         25359         0.33014         6996         0.086341         24198         0.235854         23059         0.464396         1406         0.017714         99969         1.38           52         26651         0.345634         6054         0.0751575         23845         0.230913         22910         0.462536         1232         0.014014         137774         1.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 62      | 25048 | 0.32641  | 4886  | 0.0612909 | 20478 | 0.183792 | 22445 | 0.45673  | 6505 | 0.12616  | 109651  | 1.51    |
| 51         25359         0.33014         6996         0.086341         24198         0.235854         23059         0.464396         1406         0.017714         99969         1.38           52         26651         0.345634         6054         0.0751575         23845         0.230913         22910         0.462536         1232         0.014014         137774         1.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 63      | 25400 | 0.330631 | 6511  | 0.080583  | 16740 | 0.131479 | 17647 | 0.396822 | 8448 | 0.167484 | 106265  | 1.46    |
| 52 26651 0.345634 6054 0.0751575 23845 0.230913 22910 0.462536 1232 0.014014 137774 1.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 51      | 25359 | 0.33014  | 6996  | 0.086341  | 24198 | 0.235854 | 23059 | 0.464396 | 1406 | 0.017714 | 99969   | 1.38    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 52      | 26651 | 0.345634 | 6054  | 0.0751575 | 23845 | 0.230913 | 22910 | 0.462536 | 1232 | 0.014014 | 137774  | 1.90    |
| 53 18515 0.248062 4660 0.0586078 21842 0.202881 10700 0.310082 680 0.002274 90113 1.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 53      | 18515 | 0.248062 | 4660  | 0.0586078 | 21842 | 0.202881 | 10700 | 0.310082 | 680  | 0.002274 | 90113   | 1.24    |

### 7.3 Nuclear Magnetic Resonance (NMR):

<sup>13</sup>C-NMR was conducted on a Varian spectrometer (Varian Inc., USA) using labelled chloroform as the solvent and data was collected on a Biosystem Mariner high resolution electronspray spectrometer (PerSeptive Biosystems Inc., USA). TMS was used as an internal standard (0.0 PPM). Figure 21 shows a spectrum collected from a random lipid sample before transesterification, showing the intact bonds of mono-, di-, and triacylglycerols (3.6-5.6 PPM). Other peaks are most likely pigment lipids such as carotenoid. Figure 22 shows the spectrum of a random FAME sample after transesterification, showing the absence of glycerol meaning transesterification was successful, fatty acid methyl esters (0.8-1.0 PPM) and a peak suspected to be a long chain alkane (1.2-1.4 PPM). This was confirmed by TLC (see Figure 23).









## 7.4 Thin Layer Chromatography (TLC):

A TLC was conducted on the FAME NMR sample using hexane and ethyl acetate as the solvents to confirm the presence of a long chain alkane. Four ratios of hexane to ethyl acetate were used from left to right in Figure 23: 5:1, 1:0, 20:1 and 40:1. Plate 3 indicated the presence of free fatty acids and fatty acid methyl esters, while plate 1, 3 and 4 revealed the presence of a long chain alkane compound.



Figure 23: TLC of FAME sample

# 7.5 ANOVA Statistical Reports:

For simplicity only ANOVA Reports which indicated significance from the control have been included.

#### One Way Analysis of Variance

| Group Name     | N     | Missing | Mean    | Std Dev  | SEM     |        |
|----------------|-------|---------|---------|----------|---------|--------|
| Control        | 12    | 0       | 0.0808  | 0.0163   | 0.00470 |        |
| BA 10-6        | 4     | 0       | 0.132   | 0.0196   | 0.00980 |        |
| ABA 10-6       | 4     | 0       | 0.0903  | 0.0120   | 0.00600 |        |
| tZ 10-6        | 4     | 0       | 0.0773  | 0.00560  | 0.00280 |        |
| MeSZ 10-6      | 3     | 0       | 0.126   | 0.00883  | 0.00510 |        |
| Source of Vari | ation | DF      | SS      | MS       | F       | P      |
| Between Group  |       | 4       | 0.0122  | 0.00304  | 14.092  | <0.001 |
| Residual       |       | 22      | 0.00475 | 0.000216 |         |        |
| Total          |       | 26      | 0.0169  |          |         |        |

Data source: Slopes Hormones 10-6

The differences in the mean values among the treatment groups are greater than would be expected by chance; there is a statistically significant difference (P = <0.001).

Power of performed test with alpha = 0.050: 1.000

All Pairwise Multiple Comparison Procedures (Duncan's Method) :

#### Comparisons for factor:

| Comparison      | Diff of Means | p   | - P   | P      | P<0.050     |
|-----------------|---------------|-----|-------|--------|-------------|
| Row 2 vs. Row 4 | 0.0551        | 5   | 7,499 | <0.001 | Yes         |
| Row 2 vs. Row 1 | 0.0516        | 4   | 8,601 | <0.001 | Yes         |
| Row 2 vs. Row 3 | 0.0421        | 3   | 5.730 | <0,001 | Yes         |
| Row 2 vs. Row 5 | 0.00670       | 2   | 0.844 | 0.557  | No          |
| Row 5 vs. Row 4 | 0.0484        | - 4 | 6.099 | <0.001 | Yes         |
| Row 5 vs. Row 1 | 0.0449        | 3   | 6.694 | <0.001 | Yes         |
| Row 5 vs. Row 3 | 0.0354        | 2   | 4.461 | 0.005  | Yes         |
| Row 3 vs. Row 4 | 0.0130        | 3   | 1.769 | 0.250  | No          |
| Row 3 vs. Row 1 | 0.00950       | 2   | 1.584 | 0.275  | Do Not Test |
| Row 1 vs. Row 4 | 0.00350       | 2   | 0.583 | 0.684  | Do Not Test |

A result of "Do Not Test" occurs for a comparison when no significant difference is found between two means that enclose that comparison. For example, if you had four means sorted in order, and found no difference between means 4 vs. 2, then you would not test 4 vs. 3 and 3 vs. 2, but still test 4 vs. 1 and 3 vs. 1 (4 vs. 3 and 3 vs. 2 are enclosed by 4 vs. 2: 4 3 2 1). Note that not testing the enclosed means is a procedural rule, and a result of Do Not Test should be treated as if there is no significant difference between the means, even though one may appear to exist.

#### One Way Analysis of Variance

Data source: Slopes Hormones 10-5

| Group Name<br>Control<br>BA 10-5<br>ABA 10-5<br>tZ 10-5<br>MeSZ 10-5 | N<br>12<br>4<br>4<br>3 | Missing<br>0<br>0<br>0<br>0<br>0 | Mean<br>0.0808<br>0.106<br>0.0753<br>0.107<br>0.0814 | Std Dev<br>0.0163<br>0.0116<br>0.00740<br>0.00920<br>0.0180 | SEM<br>0.00470<br>0.00580<br>0.00370<br>0.00460<br>0.0104 |            |
|----------------------------------------------------------------------|------------------------|----------------------------------|------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------|------------|
| Source of Vari<br>Between Group<br>Residual<br>Total                 | iation<br>os           | DF<br>4<br>22<br>26              | SS<br>0.00409<br>0.00439<br>0.00848                  | MS<br>0.00102<br>0.000199                                   | <b>F</b><br>5.127                                         | Р<br>0.005 |

The differences in the mean values among the treatment groups are greater than would be expected by chance; there is a statistically significant difference (P = 0.005).

Power of performed test with alpha = 0.050: 0.852

All Pairwise Multiple Comparison Procedures (Duncan's Method) :

| Comparisons for factor: |               |   |        |       |             |  |  |
|-------------------------|---------------|---|--------|-------|-------------|--|--|
| Comparison              | Diff of Means | р | q      | P     | P<0.050     |  |  |
| Row 4 vs. Row 3         | 0.0314        | 5 | 4.447  | 0.009 | Yes         |  |  |
| Row 4 vs. Row 1         | 0.0259        | 4 | 4.493  | 0.007 | Yes         |  |  |
| Row 4 vs. Row 5         | 0.0253        | 3 | 3.318  | 0.036 | Yes         |  |  |
| Row 4 vs. Row 2         | 0.000700      | 2 | 0.0991 | 0.945 | No          |  |  |
| Row 2 vs. Row 3         | 0.0307        | 4 | 4.348  | 0.009 | Yes         |  |  |
| Row 2 vs. Row 1         | 0.0252        | 3 | 4.371  | 0.007 | Yes         |  |  |
| Row 2 vs. Row 5         | 0.0246        | 2 | 3.226  | 0.033 | Yes         |  |  |
| Row 5 vs. Row 3         | 0.00610       | 3 | 0.800  | 0.600 | No          |  |  |
| Row 5 vs. Row 1         | 0.000600      | 2 | 0.0931 | 0.948 | Do Not Test |  |  |
| Row 1 vs. Row 3         | 0.00550       | 2 | 0.954  | 0.507 | Do Not Test |  |  |
|                         |               |   |        |       |             |  |  |

A result of "Do Not Test" occurs for a comparison when no significant difference is found between two means that enclose that comparison. For example, if you had four means sorted in order, and found no difference between means 4 vs. 2, then you would not test 4 vs. 3 and 3 vs. 2, but still test 4 vs. 1 and 3 vs. 1 (4 vs. 3 and 3 vs. 2 are enclosed by 4 vs. 2: 4 3 2 1). Note that not testing the enclosed means is a

### **One Way Analysis of Variance**

#### Data source: Hormone Treatment Day 2

| Group Name     | Ν     | Missing | Mean  | Std Dev | SEM     |        |
|----------------|-------|---------|-------|---------|---------|--------|
| Control        | 12    | 0       | 0.872 | 0.0829  | 0.0239  |        |
| BA 10-7        | 4     | 0       | 0.837 | 0.0372  | 0.0186  |        |
| Ba 10-6        | 4     | 0       | 1.007 | 0.00844 | 0.00422 |        |
| BA 10-5        | 4     | 0       | 0.848 | 0.0114  | 0.00571 |        |
| ABA 10-7       | 4     | 0       | 0.837 | 0.0198  | 0.00991 |        |
| ABA 10-6       | 4     | 0       | 0.934 | 0.0704  | 0.0352  |        |
| ABA 10-5       | 4     | 0       | 0.819 | 0.0534  | 0.0267  |        |
| tZ 10-7        | 4     | 0       | 0.801 | 0.0984  | 0.0492  |        |
| tZ 10-6        | 4     | 0       | 0.886 | 0.0160  | 0.00800 |        |
| tZ 10-5        | 4     | 0       | 0.832 | 0.0163  | 0.00813 |        |
| MeSZ 10-7      | 3     | 0       | 0.836 | 0.0145  | 0.00838 |        |
| MeSZ 10-6      | 3     | 0       | 0.988 | 0.0156  | 0.00902 |        |
| MeSZ 10-5      | 3     | 0       | 0.840 | 0.0273  | 0.0158  |        |
| Source of Vari | ation | DF      | SS    | MS      | F       | Р      |
| Between Group  | s     | 12      | 0.186 | 0.0155  | 4.950   | <0.001 |
| Residual       |       | 44      | 0.138 | 0.00313 |         |        |
| Total          |       | 56      | 0.324 |         |         |        |

The differences in the mean values among the treatment groups are greater than would be expected by chance; there is a statistically significant difference (P = <0.001).

Power of performed test with alpha = 0.050: 0.996

All Pairwise Multiple Comparison Procedures (Duncan's Method) :

#### Comparisons for factor:

| Comparisons for facto |               |    |       |         |             |
|-----------------------|---------------|----|-------|---------|-------------|
| Comparison            | Diff of Means | р  | q     | Р       | P<0.050     |
| Row 3 vs. Row 8       | 0.206         | 13 | 7.369 | <0.001  | Yes         |
| Row 3 vs. Row 7       | 0.189         | 12 | 6.734 | <0.001  | Yes         |
| Row 3 vs. Row 10      | 0.175         | 11 | 6.252 | <0.001  | Yes         |
| Row 3 vs. Row 11      | 0.171         | 10 | 5.653 | < 0.001 | Yes         |
| Row 3 vs. Row 2       | 0.170         | 9  | 6.074 | <0.001  | Yes         |
| Row 3 vs. Row 5       | 0.170         | 8  | 6.074 | < 0.001 | Yes         |
| Row 3 vs. Row 13      | 0.167         | 7  | 5.532 | <0.001  | Yes         |
| Row 3 vs. Row 4       | 0.160         | 6  | 5.707 | < 0.001 | Yes         |
| Row 3 vs. Row 1       | 0.135         | 5  | 5.929 | <0.001  | Yes         |
| Row 3 vs. Row 9       | 0.121         | 4  | 4.314 | 0.007   | Yes         |
| Row 3 vs. Row 6       | 0.0735        | 3  | 2.626 | 0.085   | No          |
| Row 3 vs. Row 12      | 0.0196        | 2  | 0.648 | 0.649   | Do Not Test |
| Row 12 vs. Row 8      | 0.187         | 12 | 6.174 | <0.001  | Yes         |
| Row 12 vs. Row 7      | 0.169         | 11 | 5.587 | 0.001   | Yes         |
| Row 12 vs. Row 10     | 0.155         | 10 | 5.141 | 0.003   | Yes         |
| Row 12 vs. Row 11     | 0.151         | 9  | 4.682 | 0.006   | Yes         |
| Row 12 vs. Row 2      | 0.150         | 8  | 4.975 | 0.003   | Yes         |
| Row 12 vs. Row 5      | 0.150         | 7  | 4.975 | 0.003   | Yes         |
| Row 12 vs. Row 13     | 0.148         | 6  | 4.569 | 0.005   | Yes         |
| Row 12 vs. Row 4      | 0.140         | 5  | 4.636 | 0.004   | Yes         |
| Row 12 vs. Row 1      | 0.116         | 4  | 4.537 | 0.004   | Yes         |

| Row 12 vs. Row 9    | 0.101    | 3  | 3.346  | 0.029 | Yes         |
|---------------------|----------|----|--------|-------|-------------|
| Row 12 vs. Row 6    | 0.0539   | 2  | 1.783  | 0.214 | Do Not Test |
| Row 6 vs. Row 8     | 0.133    | 11 | 4.743  | 0.006 | Yes         |
| Row 6 vs. Row 7     | 0.115    | 10 | 4.109  | 0.016 | Yes         |
| Row 6 vs. Row 10    | 0.101    | 9  | 3.626  | 0.032 | Yes         |
| Row 6 vs. Row 11    | 0.0974   | 8  | 3.222  | 0.055 | No          |
| Row 6 vs. Row 2     | 0.0965   | 7  | 3.448  | 0.038 | Do Not Test |
| Row 6 vs. Row 5     | 0.0965   | 6  | 3,448  | 0.036 | Do Not Test |
| Row 6 vs. Row 13    | 0.0938   | 5  | 3,101  | 0.055 | Do Not Test |
| Row 6 vs. Row 4     | 0.0862   | 4  | 3.081  | 0.051 | Do Not Test |
| Row 6 vs. Row 1     | 0.0620   | 3  | 2.713  | 0.076 | Do Not Test |
| Row 6 vs. Row 9     | 0.0473   | 2  | 1.688  | 0.239 | Do Not Test |
| Row 9 vs. Row 8     | 0.0855   | 10 | 3 055  | 0.074 | No          |
| Row 9 vs Row 7      | 0.0677   | 9  | 2 420  | 0.154 | Do Not Test |
| Row 9 vs. Row 10    | 0.0542   | 8  | 1 938  | 0.249 | Do Not Test |
| Row 9 vs. Row 11    | 0.0502   | 7  | 1.659  | 0.319 | Do Not Test |
| Row 9 vs. Row 2     | 0.0492   | 6  | 1 760  | 0.285 | Do Not Test |
| Row 9 vs. Row 5     | 0.0492   | 5  | 1 760  | 0.205 | Do Not Test |
| Row 9 vs. Row 5     | 0.0452   | 4  | 1.528  | 0.270 | Do Not Test |
| Row 9 vs. Row 15    | 0.0405   | 3  | 1.336  | 0.350 | Do Not Test |
| Row 9 vs. Row 4     | 0.0390   | 2  | 1.595  | 0.500 | Do Not Test |
| Row 9 vs. Row 1     | 0.0147   | 2  | 2.006  | 0.050 | Do Not Test |
| Row 1 vs. Row 8     | 0.0707   | 9  | 3.090  | 0.008 | Do Not Test |
| Kow I vs. Kow /     | 0.0530   | 8  | 2.319  | 0.108 | Do Not Test |
| Kow I vs. Kow 10    | 0.0395   | /  | 1.728  | 0.299 | Do Not Test |
| Kow I vs. Kow II    | 0.0354   | 0  | 1.380  | 0.399 | Do Not Test |
| Row 1 vs. Row 2     | 0.0345   | 2  | 1.510  | 0.351 | Do Not Test |
| Row 1 vs. Row 5     | 0.0345   | 4  | 1.510  | 0.339 | Do Not Test |
| Row 1 vs. Row 13    | 0.0318   | 3  | 1.243  | 0.414 | Do Not Test |
| Row 1 vs. Row 4     | 0.0242   | 2  | 1.061  | 0.457 | Do Not Test |
| Row 4 vs. Row 8     | 0.0465   | 8  | 1.661  | 0.323 | Do Not Test |
| Row 4 vs. Row 7     | 0.0288   | 7  | 1.027  | 0.538 | Do Not Test |
| Row 4 vs. Row 10    | 0.0152   | 6  | 0.545  | 0.742 | Do Not Test |
| Row 4 vs. Row 11    | 0.0112   | 5  | 0.369  | 0.822 | Do Not Test |
| Row 4 vs. Row 2     | 0.0102   | 4  | 0.366  | 0.817 | Do Not Test |
| Row 4 vs. Row 5     | 0.0102   | 3  | 0.366  | 0.810 | Do Not Test |
| Row 4 vs. Row 13    | 0.00750  | 2  | 0.248  | 0.862 | Do Not Test |
| Row 13 vs. Row 8    | 0.0390   | 7  | 1.290  | 0.439 | Do Not Test |
| Row 13 vs. Row 7    | 0.0212   | 6  | 0.703  | 0.670 | Do Not Test |
| Row 13 vs. Row 10   | 0.00775  | 5  | 0.256  | 0.877 | Do Not Test |
| Row 13 vs. Row 11   | 0.00367  | 4  | 0.113  | 0.945 | Do Not Test |
| Row 13 vs. Row 2    | 0.00275  | 3  | 0.0910 | 0.953 | Do Not Test |
| Row 13 vs. Row 5    | 0.00275  | 2  | 0.0910 | 0.949 | Do Not Test |
| Row 5 vs. Row 8     | 0.0363   | 6  | 1.295  | 0.431 | Do Not Test |
| Row 5 vs. Row 7     | 0.0185   | 5  | 0.661  | 0.683 | Do Not Test |
| Row 5 vs. Row 10    | 0.00500  | 4  | 0.179  | 0.913 | Do Not Test |
| Row 5 vs. Row 11    | 0.000917 | 3  | 0.0303 | 0.985 | Do Not Test |
| Row 5 vs. Row 2     | 0.000    | 2  | 0.000  | 1.000 | Do Not Test |
| Row 2 vs. Row 8     | 0.0363   | 5  | 1.295  | 0.423 | Do Not Test |
| Row 2 vs. Row 7     | 0.0185   | 4  | 0.661  | 0.676 | Do Not Test |
| Row 2 vs. Row 10    | 0.00500  | 3  | 0.179  | 0.907 | Do Not Test |
| Row 2 vs. Row 11    | 0.000917 | 2  | 0.0303 | 0.983 | Do Not Test |
| Row 11 vs. Row 8    | 0.0353   | 4  | 1.169  | 0.459 | Do Not Test |
| Row 11 vs Row 7     | 0.0176   | 3  | 0.582  | 0 702 | Do Not Test |
| Row 11 vs Row 10    | 0.00408  | 2  | 0.135  | 0.924 | Do Not Test |
| Row 10 vs. Row 8    | 0.0313   | 3  | 1 116  | 0.463 | Do Not Test |
| Row 10 vs. Row 7    | 0.0135   | 2  | 0.482  | 0.735 | Do Not Test |
| 100 IV 13. 100 // / | 0.0100   | 2  | 0.102  | 0.755 | 201101103   |
|                     |          |    |        |       |             |
| Row 7 vs. Row 8 | 0.0177 | 2 0.634 | 0.656 | Do Not Test |
|-----------------|--------|---------|-------|-------------|
|                 |        |         |       |             |

### Data source: Hormone Treatment Day 4

| Group Name     | Ν     | Missing | Mean  | Std Dev | SEM     |         |
|----------------|-------|---------|-------|---------|---------|---------|
| Control        | 12    | 0       | 1.094 | 0.0965  | 0.0279  |         |
| BA 10-7        | 4     | 0       | 1.096 | 0.0235  | 0.0117  |         |
| BA 10-6        | 4     | 0       | 1.295 | 0.0109  | 0.00545 |         |
| BA 10-5        | 4     | 0       | 1.176 | 0.0247  | 0.0124  |         |
| ABA 10-7       | 4     | 0       | 1.013 | 0.0140  | 0.00699 |         |
| ABA 10-6       | 4     | 0       | 1.190 | 0.0345  | 0.0173  |         |
| ABA 10-5       | 4     | 0       | 1.031 | 0.0872  | 0.0436  |         |
| tZ 10-7        | 4     | 0       | 1.057 | 0.0499  | 0.0250  |         |
| tZ 10-6        | 4     | 0       | 1.109 | 0.0316  | 0.0158  |         |
| tZ 10-5        | 4     | 0       | 1.142 | 0.0242  | 0.0121  |         |
| MeSZ 10-7      | 3     | 0       | 1.054 | 0.0502  | 0.0290  |         |
| MeSZ 10-6      | 3     | 0       | 1.258 | 0.0126  | 0.00725 |         |
| MeSZ 10-5      | 3     | 0       | 1.102 | 0.00834 | 0.00482 |         |
| Source of Vari | ation | DF      | SS    | MS      | F       | Р       |
| Between Group  | s     | 12      | 0.332 | 0.0277  | 8.062   | < 0.001 |
| Residual       |       | 44      | 0.151 | 0.00343 |         |         |
| Total          |       | 56      | 0.483 |         |         |         |

The differences in the mean values among the treatment groups are greater than would be expected by chance; there is a statistically significant difference (P = <0.001).

Power of performed test with alpha = 0.050: 1.000

All Pairwise Multiple Comparison Procedures (Duncan's Method) :

| Comparison        | Diff of Means | р  | q     | Р       | P<0.050 |
|-------------------|---------------|----|-------|---------|---------|
| Row 3 vs. Row 5   | 0.282         | 13 | 9.610 | < 0.001 | Yes     |
| Row 3 vs. Row 7   | 0.264         | 12 | 9.013 | < 0.001 | Yes     |
| Row 3 vs. Row 11  | 0.241         | 11 | 7.609 | < 0.001 | Yes     |
| Row 3 vs. Row 8   | 0.238         | 10 | 8.133 | < 0.001 | Yes     |
| Row 3 vs. Row 1   | 0.201         | 9  | 8.400 | < 0.001 | Yes     |
| Row 3 vs. Row 2   | 0.199         | 8  | 6.776 | < 0.001 | Yes     |
| Row 3 vs. Row 13  | 0.193         | 7  | 6.103 | < 0.001 | Yes     |
| Row 3 vs. Row 9   | 0.185         | 6  | 6.324 | < 0.001 | Yes     |
| Row 3 vs. Row 10  | 0.153         | 5  | 5.206 | 0.001   | Yes     |
| Row 3 vs. Row 4   | 0.119         | 4  | 4.045 | 0.011   | Yes     |
| Row 3 vs. Row 6   | 0.104         | 3  | 3.559 | 0.020   | Yes     |
| Row 3 vs. Row 12  | 0.0371        | 2  | 1.172 | 0.412   | No      |
| Row 12 vs. Row 5  | 0.244         | 12 | 7.725 | < 0.001 | Yes     |
| Row 12 vs. Row 7  | 0.227         | 11 | 7.172 | < 0.001 | Yes     |
| Row 12 vs. Row 11 | 0.204         | 10 | 6.021 | < 0.001 | Yes     |
| Row 12 vs. Row 8  | 0.201         | 9  | 6.358 | < 0.001 | Yes     |
| Row 12 vs. Row 1  | 0.164         | 8  | 6.127 | <0.001  | Yes     |
| Row 12 vs. Row 2  | 0.161         | 7  | 5.102 | 0.002   | Yes     |
| Row 12 vs. Row 13 | 0.156         | 6  | 4.612 | 0.005   | Yes     |
| Row 12 vs. Row 9  | 0.148         | 5  | 4.683 | 0.004   | Yes     |
| Row 12 vs. Row 10 | 0.115         | 4  | 3.648 | 0.021   | Yes     |

| Row 12 vs. R | low 4       | 0.0814  | 3  | 2.573  | 0.092  | No          |
|--------------|-------------|---------|----|--------|--------|-------------|
| Row 12 vs. R | low 6       | 0.0672  | 2  | 2.123  | 0.141  | Do Not Test |
| Row 6 vs. Ro | w 5         | 0.177   | 11 | 6.051  | <0.001 | Yes         |
| Row 6 vs. Ro | w 7         | 0.160   | 10 | 5.454  | 0.001  | Yes         |
| Row 6 vs. Ro | w 11        | 0.136   | 9  | 4.314  | 0.011  | Yes         |
| Row 6 vs. Ro | w 8         | 0.134   | 8  | 4 575  | 0.006  | Yes         |
| Row 6 vs. Ro | w 1         | 0.0967  | 7  | 4.042  | 0.015  | Yes         |
| Row 6 vs. Ro | w 2         | 0.0942  | 6  | 3 218  | 0.050  | Ves         |
| Row 6 vs. Ro | w 13        | 0.0888  | 5  | 2 808  | 0.082  | No          |
| Row 6 vs. Ro | w 15<br>w 9 | 0.0810  | 4  | 2.000  | 0.080  | Do Not Test |
| Row 6 vs. Ro | w 10        | 0.0482  | 3  | 1 647  | 0.279  | Do Not Test |
| Row 6 vs. Ro | w 10        | 0.0482  | 2  | 0.486  | 0.733  | Do Not Test |
| Row 0 vs. Ro |             | 0.163   | 10 | 5 565  | 0.001  | Do Not Test |
| Row 4 vs. Ro |             | 0.105   | 10 | 3.303  | 0.001  | Tes Vac     |
| Row 4 vs. Ro | w /         | 0.143   | 9  | 4.90/  | 0.005  | Tes         |
| Row 4 vs. Ro | ow 11       | 0.122   | 0  | 2.004  | 0.021  | 1 es        |
| Row 4 vs. Ro | W 8         | 0.120   | 6  | 4.088  | 0.014  | res         |
| Kow 4 vs. Ko | ow 1        | 0.0824  | 0  | 3.440  | 0.030  | res         |
| Kow 4 vs. Ko | w 2         | 0.0800  | 2  | 2.731  | 0.091  | No          |
| Row 4 vs. Ro | w 13        | 0.0746  | 4  | 2.357  | 0.135  | Do Not Test |
| Row 4 vs. Ro | w 9         | 0.0668  | 3  | 2.279  | 0.135  | Do Not Test |
| Row 4 vs. Ro | ow 10       | 0.0340  | 2  | 1.161  | 0.416  | Do Not Test |
| Row 10 vs. R | low 5       | 0.129   | 9  | 4.404  | 0.009  | Yes         |
| Row 10 vs. R | low 7       | 0.111   | 8  | 3.806  | 0.023  | Yes         |
| Row 10 vs. R | low 11      | 0.0882  | 7  | 2.789  | 0.094  | No          |
| Row 10 vs. R | low 8       | 0.0857  | 6  | 2.927  | 0.075  | Do Not Test |
| Row 10 vs. R | low 1       | 0.0484  | 5  | 2.024  | 0.210  | Do Not Test |
| Row 10 vs. R | low 2       | 0.0460  | 4  | 1.570  | 0.320  | Do Not Test |
| Row 10 vs. R | low 13      | 0.0406  | 3  | 1.283  | 0.399  | Do Not Test |
| Row 10 vs. R | low 9       | 0.0328  | 2  | 1.118  | 0.434  | Do Not Test |
| Row 9 vs. Ro | w 5         | 0.0962  | 8  | 3.286  | 0.051  | No          |
| Row 9 vs. Ro | ow 7        | 0.0787  | 7  | 2.688  | 0.106  | Do Not Test |
| Row 9 vs. Ro | w 11        | 0.0555  | 6  | 1.754  | 0.286  | Do Not Test |
| Row 9 vs. Ro | w 8         | 0.0530  | 5  | 1.809  | 0.263  | Do Not Test |
| Row 9 vs. Ro | w 1         | 0.0157  | 4  | 0.655  | 0.678  | Do Not Test |
| Row 9 vs. Ro | w 2         | 0.0132  | 3  | 0.452  | 0.766  | Do Not Test |
| Row 9 vs. Ro | w 13        | 0.00783 | 2  | 0.248  | 0.862  | Do Not Test |
| Row 13 vs. R | ow 5        | 0.0884  | 7  | 2.794  | 0.093  | Do Not Test |
| Row 13 vs. R | low 7       | 0.0709  | 6  | 2.241  | 0.173  | Do Not Test |
| Row 13 vs R  | ow 11       | 0.0477  | 5  | 1 409  | 0 384  | Do Not Test |
| Row 13 vs. R | ow 8        | 0.0452  | 4  | 1.428  | 0.366  | Do Not Test |
| Row 13 vs R  | ow 1        | 0.00783 | 3  | 0 293  | 0.847  | Do Not Test |
| Row 13 vs. R | ow 2        | 0.00542 | 2  | 0.171  | 0.904  | Do Not Test |
| Row 2 vs Ro  | w 5         | 0.0830  | 6  | 2 833  | 0.084  | Do Not Test |
| Row 2 vs. Ro | w 7         | 0.0655  | 5  | 2.035  | 0.166  | Do Not Test |
| Row 2 vs. Ro | w /         | 0.0422  | 4  | 1 335  | 0.398  | Do Not Test |
| Row 2 vs. Ro | w 11        | 0.0307  | 3  | 1 357  | 0.372  | Do Not Test |
| Row 2 vs. Ro | w o<br>     | 0.0337  | 2  | 0.101  | 0.972  | Do Not Test |
| Row 2 vs. Ro |             | 0.00242 | 5  | 2 260  | 0.943  | Do Not Test |
| Row I vs. Ro |             | 0.0600  | 2  | 2.209  | 0.037  | Do Not Test |
| Row I vs. Ro | W /         | 0.0031  | 4  | 2.038  | 0.095  | Do Not Test |
| Row I vs. Ro | ow 11       | 0.0398  | 2  | 1.490  | 0.328  | Do Not Test |
| Row I vs. Ro | w 8         | 0.03/3  | 2  | 1.501  | 0.276  | Do Not Test |
| Kow 8 vs. Ro | w 5         | 0.0433  | 4  | 1.4/0  | 0.550  | Do Not Test |
| Row 8 vs. Ro | w /         | 0.0257  | 3  | 0.879  | 0.563  | Do Not Test |
| Row 8 vs. Ro | w 11        | 0.00250 | 2  | 0.0790 | 0.956  | Do Not Test |
| Row 11 vs. R | low 5       | 0.0408  | 3  | 1.288  | 0.397  | Do Not Test |
| Row 11 vs. R | low 7       | 0.0232  | 2  | 0.735  | 0.606  | Do Not Test |
|              |             |         |    |        |        |             |

| Row 7 vs. Row 5 | 0.0175 | 2 0.597 | 0.675 | Do Not Test |
|-----------------|--------|---------|-------|-------------|
|                 |        |         |       |             |

## Data source: Hormone Treatment Day 6

| Group Name     | Ν     | Missing | Mean  | Std Dev | SEM     |         |
|----------------|-------|---------|-------|---------|---------|---------|
| Control        | 12    | 0       | 1.162 | 0.122   | 0.0353  |         |
| BA 10-7        | 4     | 0       | 1.118 | 0.0469  | 0.0234  |         |
| BA 10-6        | 4     | 0       | 1.491 | 0.0420  | 0.0210  |         |
| BA 10-5        | 4     | 0       | 1.295 | 0.0136  | 0.00680 |         |
| ABA 10-7       | 4     | 0       | 1.027 | 0.0266  | 0.0133  |         |
| ABA 10-6       | 4     | 0       | 1.284 | 0.0629  | 0.0315  |         |
| ABA 10-5       | 4     | 0       | 1.160 | 0.145   | 0.0725  |         |
| tZ 10-7        | 4     | 0       | 1.130 | 0.0567  | 0.0283  |         |
| tZ 10-6        | 4     | 0       | 1.200 | 0.100   | 0.0502  |         |
| tZ 10-5        | 4     | 0       | 1.289 | 0.0224  | 0.0112  |         |
| MeSZ 10-7      | 3     | 0       | 1.111 | 0.135   | 0.0781  |         |
| MeSZ 10-6      | 3     | 0       | 1.458 | 0.0204  | 0.0118  |         |
| MeSZ 10-5      | 3     | 0       | 1.074 | 0.0463  | 0.0267  |         |
| Source of Vari | ation | DF      | SS    | MS      | F       | Р       |
| Between Group  | )S    | 12      | 0.892 | 0.0743  | 9.704   | < 0.001 |
| Residual       |       | 44      | 0.337 | 0.00766 |         |         |
| Total          |       | 56      | 1.229 |         |         |         |

The differences in the mean values among the treatment groups are greater than would be expected by chance; there is a statistically significant difference (P = <0.001).

Power of performed test with alpha = 0.050: 1.000

All Pairwise Multiple Comparison Procedures (Duncan's Method) :

| <b>C</b> |          | 0   | C .     |  |
|----------|----------|-----|---------|--|
| Com      | nameone  | TOT | tactor: |  |
| COIII    | parisons | 101 | incioi. |  |

| Comparison        | Diff of Means | р  | q      | Р       | P<0.050 |
|-------------------|---------------|----|--------|---------|---------|
| Row 3 vs. Row 5   | 0.464         | 13 | 10.604 | < 0.001 | Yes     |
| Row 3 vs. Row 13  | 0.417         | 12 | 8.823  | < 0.001 | Yes     |
| Row 3 vs. Row 11  | 0.380         | 11 | 8.040  | < 0.001 | Yes     |
| Row 3 vs. Row 2   | 0.373         | 10 | 8.519  | < 0.001 | Yes     |
| Row 3 vs. Row 8   | 0.361         | 9  | 8.256  | < 0.001 | Yes     |
| Row 3 vs. Row 7   | 0.331         | 8  | 7.570  | < 0.001 | Yes     |
| Row 3 vs. Row 1   | 0.329         | 7  | 9.218  | < 0.001 | Yes     |
| Row 3 vs. Row 9   | 0.291         | 6  | 6.650  | < 0.001 | Yes     |
| Row 3 vs. Row 6   | 0.207         | 5  | 4.725  | 0.004   | Yes     |
| Row 3 vs. Row 10  | 0.203         | 4  | 4.628  | 0.004   | Yes     |
| Row 3 vs. Row 4   | 0.196         | 3  | 4.485  | 0.004   | Yes     |
| Row 3 vs. Row 12  | 0.0333        | 2  | 0.705  | 0.621   | No      |
| Row 12 vs. Row 5  | 0.431         | 12 | 9.112  | < 0.001 | Yes     |
| Row 12 vs. Row 13 | 0.384         | 11 | 7.593  | < 0.001 | Yes     |
| Row 12 vs. Row 11 | 0.347         | 10 | 6.861  | < 0.001 | Yes     |
| Row 12 vs. Row 2  | 0.339         | 9  | 7.182  | < 0.001 | Yes     |
| Row 12 vs. Row 8  | 0.328         | 8  | 6.938  | < 0.001 | Yes     |
| Row 12 vs. Row 7  | 0.298         | 7  | 6.303  | < 0.001 | Yes     |
| Row 12 vs. Row 1  | 0.296         | 6  | 7.410  | < 0.001 | Yes     |
| Row 12 vs. Row 9  | 0.258         | 5  | 5.452  | < 0.001 | Yes     |
| Row 12 vs. Row 6  | 0.173         | 4  | 3.669  | 0.020   | Yes     |

| Row 12 vs. Row 10                    | 0.169   | 3  | 3.579  | 0.020   | Yes         |
|--------------------------------------|---------|----|--------|---------|-------------|
| Row 12 vs. Row 4                     | 0.163   | 2  | 3.447  | 0.019   | Yes         |
| Row 4 vs. Row 5                      | 0.268   | 11 | 6.119  | < 0.001 | Yes         |
| Row 4 vs. Row 13                     | 0.221   | 10 | 4.671  | 0.006   | Yes         |
| Row 4 vs. Row 11                     | 0.184   | 9  | 3.888  | 0.022   | Yes         |
| Row 4 vs. Row 2                      | 0.177   | 8  | 4.034  | 0.016   | Yes         |
| Row 4 vs. Row 8                      | 0.165   | 7  | 3.771  | 0.023   | Yes         |
| Row 4 vs. Row 7                      | 0.135   | 6  | 3.085  | 0.060   | No          |
| Row 4 vs. Row 1                      | 0.133   | 5  | 3.725  | 0.021   | Do Not Test |
| Row 4 vs. Row 9                      | 0.0948  | 4  | 2.165  | 0.170   | Do Not Test |
| Row 4 vs. Row 6                      | 0.0105  | 3  | 0.240  | 0.875   | Do Not Test |
| Row 4 vs. Row 10                     | 0.00625 | 2  | 0.143  | 0.920   | Do Not Test |
| Row 10 vs. Row 5                     | 0.262   | 10 | 5 976  | < 0.001 | Yes         |
| Row 10 vs. Row 13                    | 0.214   | 9  | 4 538  | 0.007   | Ves         |
| Row 10 vs. Row 11                    | 0.177   | 8  | 3 756  | 0.025   | Ves         |
| Row 10 vs. Row 11                    | 0.170   | 7  | 3 801  | 0.019   | Ves         |
| Row 10 vs. Row 2                     | 0.150   | 6  | 3.628  | 0.027   | Ves         |
| Row 10 vs. Row 3                     | 0.120   | 5  | 2.042  | 0.068   | Do Not Test |
| Row 10 vs. Row 7                     | 0.129   | 4  | 2.942  | 0.008   | Do Not Test |
| Row 10 vs. Row 1                     | 0.127   | -  | 3.330  | 0.025   | Do Not Test |
| Row 10 vs. Row 9                     | 0.0885  | 2  | 2.025  | 0.184   | Do Not Test |
| Row 10 vs. Row 6                     | 0.00425 | 2  | 0.0971 | 0.940   | Do Not Test |
| Row 6 vs. Row 5                      | 0.257   | 9  | 5.879  | <0.001  | Yes         |
| Row 6 vs. Row 13                     | 0.210   | 8  | 4.449  | 0.008   | Yes         |
| Row 6 vs. Row 11                     | 0.173   | 1  | 3.000  | 0.027   | Yes         |
| Row 6 vs. Row 2                      | 0.166   | 6  | 3.794  | 0.021   | Yes         |
| Row 6 vs. Row 8                      | 0.154   | 5  | 3.531  | 0.029   | Yes         |
| Row 6 vs. Row 7                      | 0.124   | 4  | 2.845  | 0.071   | Do Not Test |
| Row 6 vs. Row 1                      | 0.123   | 3  | 3.431  | 0.025   | Do Not Test |
| Row 6 vs. Row 9                      | 0.0842  | 2  | 1.925  | 0.180   | Do Not Test |
| Row 9 vs. Row 5                      | 0.173   | 8  | 3.954  | 0.018   | Yes         |
| Row 9 vs. Row 13                     | 0.126   | 7  | 2.666  | 0.109   | No          |
| Row 9 vs. Row 11                     | 0.0890  | 6  | 1.883  | 0.252   | Do Not Test |
| Row 9 vs. Row 2                      | 0.0817  | 5  | 1.868  | 0.248   | Do Not Test |
| Row 9 vs. Row 8                      | 0.0702  | 4  | 1.605  | 0.309   | Do Not Test |
| Row 9 vs. Row 7                      | 0.0402  | 3  | 0.920  | 0.545   | Do Not Test |
| Row 9 vs. Row 1                      | 0.0383  | 2  | 1.073  | 0.452   | Do Not Test |
| Row 1 vs. Row 5                      | 0.135   | 7  | 3.769  | 0.023   | Yes         |
| Row 1 vs. Row 13                     | 0.0877  | 6  | 2.195  | 0.182   | Do Not Test |
| Row 1 vs. Row 11                     | 0.0507  | 5  | 1.268  | 0.433   | Do Not Test |
| Row 1 vs. Row 2                      | 0.0434  | 4  | 1.215  | 0.441   | Do Not Test |
| Row 1 vs. Row 8                      | 0.0319  | 3  | 0.893  | 0.557   | Do Not Test |
| Row 1 vs. Row 7                      | 0.00192 | 2  | 0.0536 | 0.970   | Do Not Test |
| Row 7 vs. Row 5                      | 0.133   | 6  | 3.034  | 0.065   | No          |
| Row 7 vs. Row 13                     | 0.0857  | 5  | 1.814  | 0.262   | Do Not Test |
| Row 7 vs. Row 11                     | 0.0488  | 4  | 1.031  | 0.514   | Do Not Test |
| Row 7 vs. Row 2                      | 0.0415  | 3  | 0.948  | 0.533   | Do Not Test |
| Row 7 vs. Row 8                      | 0.0300  | 2  | 0.686  | 0.630   | Do Not Test |
| Row 8 vs. Row 5                      | 0.103   | 5  | 2 348  | 0.146   | Do Not Test |
| Row 8 vs. Row 13                     | 0.0557  | 4  | 1 180  | 0.455   | Do Not Test |
| Row 8 vs. Row 11                     | 0.0188  | 3  | 0.307  | 0.794   | Do Not Test |
| Row 8 vs. Row 11                     | 0.0115  | 2  | 0.263  | 0.854   | Do Not Test |
| Row 2 vs. Row 5                      | 0.0013  | 4  | 2.085  | 0.196   | Do Not Test |
| Row 2 vs. Row J                      | 0.0442  | 3  | 0.036  | 0.100   | Do Not Test |
| Row 2 vs. Row 15<br>Row 2 vs. Row 11 | 0.00725 | 2  | 0.152  | 0.014   | Do Not Test |
| Row 2 vs. Row 11                     | 0.00725 | 2  | 1.777  | 0.914   | Do Not Test |
| Row 11 vs. Row 3                     | 0.0840  | 2  | 0.722  | 0.243   | Do Not Test |
| KOW 11 VS. KOW 15                    | 0.0570  | 2  | 0.752  | 0.007   | Do Not Test |
|                                      |         |    |        |         |             |

| Row 13 vs. Row 5 0.0470 2 0.994 0.486 Do N | Not Test |
|--------------------------------------------|----------|
|--------------------------------------------|----------|

Data source: Lipid Percent Dry Weight

| Group Name     | Ν     | Missing | Mean   | Std Dev | SEM    |         |
|----------------|-------|---------|--------|---------|--------|---------|
| Control        | 12    | 0       | 1.532  | 0.435   | 0.126  |         |
| BA 10-7        | 4     | 0       | 1.720  | 0.287   | 0.144  |         |
| BA 10-6        | 4     | 0       | 1.921  | 0.415   | 0.207  |         |
| BA 10-5        | 4     | 0       | 2.140  | 0.424   | 0.212  |         |
| ABA 10-7       | 4     | 0       | 0.971  | 0.147   | 0.0736 |         |
| ABA 10-6       | 4     | 0       | 1.011  | 0.128   | 0.0638 |         |
| ABA 10-5       | 4     | 0       | 1.050  | 0.0696  | 0.0348 |         |
| tZ 10-7        | 4     | 0       | 0.909  | 0.0859  | 0.0429 |         |
| tZ 10-6        | 4     | 0       | 0.937  | 0.128   | 0.0641 |         |
| tZ 10-5        | 4     | 0       | 1.411  | 0.350   | 0.175  |         |
| MeSZ 10-7      | 3     | 0       | 0.952  | 0.202   | 0.117  |         |
| MeSZ 10-6      | 3     | 0       | 1.380  | 0.279   | 0.161  |         |
| MeSZ 10-5      | 3     | 0       | 0.880  | 0.0616  | 0.0356 |         |
| Source of Vari | ation | DF      | SS     | MS      | F      | Р       |
| Between Group  | s     | 12      | 8.748  | 0.729   | 7.640  | < 0.001 |
| Residual       |       | 44      | 4.199  | 0.0954  |        |         |
| Total          |       | 56      | 12.947 |         |        |         |

The differences in the mean values among the treatment groups are greater than would be expected by chance; there is a statistically significant difference (P = <0.001).

Power of performed test with alpha = 0.050: 1.000

All Pairwise Multiple Comparison Procedures (Duncan's Method) :

| Comparisons for factor |               |    |       |         |             |
|------------------------|---------------|----|-------|---------|-------------|
| Comparison             | Diff of Means | р  | q     | Р       | P<0.050     |
| Row 4 vs. Row 13       | 1.260         | 13 | 7.554 | < 0.001 | Yes         |
| Row 4 vs. Row 8        | 1.231         | 12 | 7.968 | < 0.001 | Yes         |
| Row 4 vs. Row 9        | 1.203         | 11 | 7.789 | < 0.001 | Yes         |
| Row 4 vs. Row 11       | 1.187         | 10 | 7.117 | < 0.001 | Yes         |
| Row 4 vs. Row 5        | 1.169         | 9  | 7.569 | < 0.001 | Yes         |
| Row 4 vs. Row 6        | 1.129         | 8  | 7.311 | < 0.001 | Yes         |
| Row 4 vs. Row 7        | 1.090         | 7  | 7.059 | < 0.001 | Yes         |
| Row 4 vs. Row 12       | 0.760         | 6  | 4.557 | 0.006   | Yes         |
| Row 4 vs. Row 10       | 0.729         | 5  | 4.721 | 0.004   | Yes         |
| Row 4 vs. Row 1        | 0.608         | 4  | 4.824 | 0.002   | Yes         |
| Row 4 vs. Row 2        | 0.420         | 3  | 2.717 | 0.075   | No          |
| Row 4 vs. Row 3        | 0.219         | 2  | 1.417 | 0.322   | Do Not Test |
| Row 3 vs. Row 13       | 1.041         | 12 | 6.242 | < 0.001 | Yes         |
| Row 3 vs. Row 8        | 1.012         | 11 | 6.551 | < 0.001 | Yes         |
| Row 3 vs. Row 9        | 0.984         | 10 | 6.372 | < 0.001 | Yes         |
| Row 3 vs. Row 11       | 0.969         | 9  | 5.806 | < 0.001 | Yes         |
| Row 3 vs. Row 5        | 0.950         | 8  | 6.152 | < 0.001 | Yes         |
| Row 3 vs. Row 6        | 0.910         | 7  | 5.894 | < 0.001 | Yes         |
| Row 3 vs. Row 7        | 0.871         | 6  | 5.642 | < 0.001 | Yes         |
| Row 3 vs. Row 12       | 0.541         | 5  | 3.246 | 0.044   | Yes         |
| Row 3 vs. Row 10       | 0.510         | 4  | 3.304 | 0.036   | Yes         |

| Row 3 vs. Row 1   | 0.389  | 3  | 3.088  | 0.044 | Yes         |
|-------------------|--------|----|--------|-------|-------------|
| Row 3 vs. Row 2   | 0.201  | 2  | 1.300  | 0.363 | Do Not Test |
| Row 2 vs. Row 13  | 0.841  | 11 | 5.039  | 0.003 | Yes         |
| Row 2 vs. Row 8   | 0.811  | 10 | 5.252  | 0.002 | Yes         |
| Row 2 vs. Row 9   | 0.783  | 9  | 5.072  | 0.003 | Yes         |
| Row 2 vs. Row 11  | 0.768  | 8  | 4.602  | 0.006 | Yes         |
| Row 2 vs. Row 5   | 0.750  | 7  | 4.853  | 0.004 | Yes         |
| Row 2 vs. Row 6   | 0.710  | 6  | 4.594  | 0.005 | Yes         |
| Row 2 vs. Row 7   | 0.671  | 5  | 4.342  | 0.007 | Yes         |
| Row 2 vs. Row 12  | 0.341  | 4  | 2.042  | 0.196 | No          |
| Row 2 vs. Row 10  | 0.310  | 3  | 2.004  | 0.188 | Do Not Test |
| Row 2 vs. Row 1   | 0.189  | 2  | 1.497  | 0.296 | Do Not Test |
| Row 1 vs. Row 13  | 0.652  | 10 | 4.623  | 0.007 | Yes         |
| Row 1 vs. Row 8   | 0.622  | 9  | 4.935  | 0.004 | Yes         |
| Row 1 vs. Row 9   | 0.595  | 8  | 4.715  | 0.005 | Yes         |
| Row 1 vs. Row 11  | 0.579  | 7  | 4.107  | 0.013 | Yes         |
| Row 1 vs. Row 5   | 0.561  | 6  | 4.447  | 0.007 | Yes         |
| Row 1 vs. Row 6   | 0.521  | 5  | 4.130  | 0.011 | Yes         |
| Row 1 vs. Row 7   | 0.482  | 4  | 3.822  | 0.016 | Yes         |
| Row 1 vs. Row 12  | 0.152  | 3  | 1.078  | 0.478 | Do Not Test |
| Row 1 vs. Row 10  | 0.121  | 2  | 0.958  | 0.502 | Do Not Test |
| Row 10 vs. Row 13 | 0.531  | 9  | 3.183  | 0.060 | No          |
| Row 10 vs. Row 8  | 0.502  | 8  | 3.247  | 0.053 | Do Not Test |
| Row 10 vs. Row 9  | 0.474  | 7  | 3.068  | 0.065 | Do Not Test |
| Row 10 vs. Row 11 | 0.458  | 6  | 2.747  | 0.095 | Do Not Test |
| Row 10 vs. Row 5  | 0.440  | 5  | 2.848  | 0.078 | Do Not Test |
| Row 10 vs. Row 6  | 0.400  | 4  | 2.589  | 0.101 | Do Not Test |
| Row 10 vs. Row 7  | 0.361  | 3  | 2.338  | 0.125 | Do Not Test |
| Row 10 vs. Row 12 | 0.0311 | 2  | 0.187  | 0.896 | Do Not Test |
| Row 12 vs. Row 13 | 0.500  | 8  | 2.803  | 0.096 | Do Not Test |
| Row 12 vs. Row 8  | 0.470  | 7  | 2.820  | 0.090 | Do Not Test |
| Row 12 vs. Row 9  | 0.443  | 6  | 2.653  | 0.106 | Do Not Test |
| Row 12 vs. Row 11 | 0.427  | 5  | 2.395  | 0.138 | Do Not Test |
| Row 12 vs. Row 5  | 0.409  | 4  | 2.450  | 0.120 | Do Not Test |
| Row 12 vs. Row 6  | 0.369  | 3  | 2.211  | 0.147 | Do Not Test |
| Row 12 vs. Row 7  | 0.330  | 2  | 1.978  | 0.169 | Do Not Test |
| Row 7 vs. Row 13  | 0.170  | 7  | 1.018  | 0.541 | Do Not Test |
| Row 7 vs. Row 8   | 0.140  | 6  | 0.909  | 0.581 | Do Not Test |
| Row 7 vs. Row 9   | 0.113  | 5  | 0.730  | 0.652 | Do Not Test |
| Row 7 vs. Row 11  | 0.0971 | 4  | 0.582  | 0.713 | Do Not Test |
| Row 7 vs. Row 5   | 0.0788 | 3  | 0.510  | 0.737 | Do Not Test |
| Row 7 vs. Row 6   | 0.0389 | 2  | 0.252  | 0.860 | Do Not Test |
| Row 6 vs. Row 13  | 0.131  | 6  | 0.785  | 0.634 | Do Not Test |
| Row 6 vs. Row 8   | 0.102  | 5  | 0.658  | 0.685 | Do Not Test |
| Row 6 vs. Row 9   | 0.0739 | 4  | 0.478  | 0.762 | Do Not Test |
| Row 6 vs. Row 11  | 0.0583 | 3  | 0.349  | 0.819 | Do Not Test |
| Row 6 vs. Row 5   | 0.0400 | 2  | 0.259  | 0.856 | Do Not Test |
| Row 5 vs. Row 13  | 0.0910 | 5  | 0.546  | 0.737 | Do Not Test |
| Row 5 vs. Row 8   | 0.0616 | 4  | 0.399  | 0.801 | Do Not Test |
| Row 5 vs. Row 9   | 0.0339 | 3  | 0.219  | 0.886 | Do Not Test |
| Row 5 vs. Row 11  | 0.0183 | 2  | 0.110  | 0.939 | Do Not Test |
| Row 11 vs. Row 13 | 0.0728 | 4  | 0.408  | 0.797 | Do Not Test |
| Row 11 vs. Row 8  | 0.0434 | 3  | 0.260  | 0.865 | Do Not Test |
| Row 11 vs. Row 9  | 0.0156 | 2  | 0.0935 | 0.948 | Do Not Test |
| Row 9 vs. Row 13  | 0.0572 | 3  | 0.343  | 0.822 | Do Not Test |
| Row 9 vs. Row 8   | 0.0278 | 2  | 0.180  | 0.900 | Do Not Test |
|                   |        |    |        |       |             |

| Row 8 vs. Row 13 0.0294 2 | 0.176 | 0.901 | Do Not Test |
|---------------------------|-------|-------|-------------|
|---------------------------|-------|-------|-------------|

Data source: Fatty Acid Weights mg

| Group Name     | Ν      | Missing | Mean    | Std Dev | SEM   |         |
|----------------|--------|---------|---------|---------|-------|---------|
| Control        | 12     | 0       | 10.809  | 1.379   | 0.398 |         |
| BA 10-7        | 4      | 0       | 9.450   | 0.802   | 0.401 |         |
| BA 10-6        | 4      | 0       | 9.325   | 2.238   | 1.119 |         |
| BA 10-5        | 4      | 0       | 11.275  | 1.121   | 0.561 |         |
| ABA 10-7       | 4      | 0       | 7.167   | 1.271   | 0.636 |         |
| ABA 10-6       | 4      | 0       | 7.125   | 1.139   | 0.569 |         |
| ABA 10-5       | 4      | 0       | 8.200   | 0.394   | 0.197 |         |
| tZ 10-7        | 4      | 0       | 7.550   | 0.439   | 0.219 |         |
| tZ 10-6        | 4      | 0       | 7.875   | 0.779   | 0.390 |         |
| tZ 10-5        | 4      | 0       | 9.225   | 0.968   | 0.484 |         |
| MeSZ 10-7      | 3      | 0       | 6.133   | 0.818   | 0.472 |         |
| MeSZ 10-6      | 3      | 0       | 7.467   | 0.759   | 0.438 |         |
| MeSZ 10-5      | 3      | 0       | 7.167   | 0.205   | 0.119 |         |
| Source of Vari | iation | DF      | SS      | MS      | F     | Р       |
| Between Group  | os     | 12      | 144.119 | 12.010  | 9.016 | < 0.001 |
| Residual       |        | 44      | 58.612  | 1.332   |       |         |
| Total          |        | 56      | 202.731 |         |       |         |

The differences in the mean values among the treatment groups are greater than would be expected by chance; there is a statistically significant difference (P = <0.001).

Power of performed test with alpha = 0.050: 1.000

All Pairwise Multiple Comparison Procedures (Duncan's Method) :

| Comparison       | <b>Diff of Means</b> | р  | q     | Р       | P<0.050 |
|------------------|----------------------|----|-------|---------|---------|
| Row 4 vs. Row 11 | 5.142                | 13 | 8.249 | < 0.001 | Yes     |
| Row 4 vs. Row 6  | 4.150                | 12 | 7.191 | < 0.001 | Yes     |
| Row 4 vs. Row 13 | 4.108                | 11 | 6.591 | < 0.001 | Yes     |
| Row 4 vs. Row 5  | 4.108                | 10 | 7.119 | < 0.001 | Yes     |
| Row 4 vs. Row 12 | 3.808                | 9  | 6.110 | < 0.001 | Yes     |
| Row 4 vs. Row 8  | 3.725                | 8  | 6.455 | < 0.001 | Yes     |
| Row 4 vs. Row 9  | 3.400                | 7  | 5.892 | < 0.001 | Yes     |
| Row 4 vs. Row 7  | 3.075                | 6  | 5.329 | 0.001   | Yes     |
| Row 4 vs. Row 10 | 2.050                | 5  | 3.552 | 0.028   | Yes     |
| Row 4 vs. Row 3  | 1.950                | 4  | 3.379 | 0.032   | Yes     |
| Row 4 vs. Row 2  | 1.825                | 3  | 3.162 | 0.039   | Yes     |
| Row 4 vs. Row 1  | 0.466                | 2  | 0.989 | 0.488   | No      |
| Row 1 vs. Row 11 | 4.676                | 12 | 8.876 | < 0.001 | Yes     |
| Row 1 vs. Row 6  | 3.684                | 11 | 7.819 | < 0.001 | Yes     |
| Row 1 vs. Row 13 | 3.642                | 10 | 6.914 | < 0.001 | Yes     |
| Row 1 vs. Row 5  | 3.642                | 9  | 7.730 | < 0.001 | Yes     |
| Row 1 vs. Row 12 | 3.342                | 8  | 6.345 | < 0.001 | Yes     |
| Row 1 vs. Row 8  | 3.259                | 7  | 6.917 | < 0.001 | Yes     |
| Row 1 vs. Row 9  | 2.934                | 6  | 6.227 | < 0.001 | Yes     |
| Row 1 vs. Row 7  | 2.609                | 5  | 5.537 | < 0.001 | Yes     |
| Row 1 vs. Row 10 | 1.584                | 4  | 3.362 | 0.033   | Yes     |

| Row 1 vs. Row 3   | 1.484  | 3  | 3.150  | 0.040 | Yes         |
|-------------------|--------|----|--------|-------|-------------|
| Row 1 vs. Row 2   | 1.359  | 2  | 2.884  | 0.048 | Yes         |
| Row 2 vs. Row 11  | 3.317  | 11 | 5.321  | 0.002 | Yes         |
| Row 2 vs. Row 6   | 2.325  | 10 | 4.029  | 0.018 | Yes         |
| Row 2 vs. Row 13  | 2.283  | 9  | 3.663  | 0.031 | Yes         |
| Row 2 vs. Row 5   | 2.283  | 8  | 3.957  | 0.018 | Yes         |
| Row 2 vs. Row 12  | 1.983  | 7  | 3.182  | 0.056 | No          |
| Row 2 vs. Row 8   | 1.900  | 6  | 3.292  | 0.045 | Do Not Test |
| Row 2 vs. Row 9   | 1.575  | 5  | 2.729  | 0.091 | Do Not Test |
| Row 2 vs. Row 7   | 1.250  | 4  | 2.166  | 0.170 | Do Not Test |
| Row 2 vs. Row 10  | 0.225  | 3  | 0.390  | 0.798 | Do Not Test |
| Row 2 vs. Row 3   | 0.125  | 2  | 0.217  | 0.879 | Do Not Test |
| Row 3 vs. Row 11  | 3.192  | 10 | 5.120  | 0.003 | Yes         |
| Row 3 vs. Row 6   | 2.200  | 9  | 3.812  | 0.024 | Yes         |
| Row 3 vs. Row 13  | 2.158  | 8  | 3.463  | 0.039 | Yes         |
| Row 3 vs. Row 5   | 2.158  | 7  | 3.740  | 0.024 | Yes         |
| Row 3 vs. Row 12  | 1.858  | 6  | 2.981  | 0.069 | Do Not Test |
| Row 3 vs. Row 8   | 1.775  | 5  | 3.076  | 0.057 | Do Not Test |
| Row 3 vs. Row 9   | 1.450  | 4  | 2.513  | 0.111 | Do Not Test |
| Row 3 vs. Row 7   | 1.125  | 3  | 1.949  | 0.201 | Do Not Test |
| Row 3 vs. Row 10  | 0.1000 | 2  | 0.173  | 0.903 | Do Not Test |
| Row 10 vs. Row 11 | 3.092  | 9  | 4.960  | 0.003 | Yes         |
| Row 10 vs. Row 6  | 2.100  | 8  | 3.639  | 0.030 | Yes         |
| Row 10 vs. Row 13 | 2.058  | 7  | 3.302  | 0.047 | Yes         |
| Row 10 vs. Row 5  | 2.058  | 6  | 3.567  | 0.030 | Yes         |
| Row 10 vs. Row 12 | 1.758  | 5  | 2.821  | 0.081 | Do Not Test |
| Row 10 vs. Row 8  | 1.675  | 4  | 2.903  | 0.066 | Do Not Test |
| Row 10 vs. Row 9  | 1.350  | 3  | 2.339  | 0.125 | Do Not Test |
| Row 10 vs. Row 7  | 1.025  | 2  | 1.776  | 0.216 | Do Not Test |
| Row 7 vs. Row 11  | 2.067  | 8  | 3.316  | 0.048 | Yes         |
| Row 7 vs. Row 6   | 1.075  | 7  | 1.863  | 0.263 | No          |
| Row 7 vs. Row 13  | 1.033  | 6  | 1.658  | 0.314 | Do Not Test |
| Row 7 vs. Row 5   | 1.033  | 5  | 1.791  | 0.268 | Do Not Test |
| Row 7 vs. Row 12  | 0.733  | 4  | 1.176  | 0.456 | Do Not Test |
| Row 7 vs. Row 8   | 0.650  | 3  | 1.126  | 0.459 | Do Not Test |
| Row 7 vs. Row 9   | 0.325  | 2  | 0.563  | 0.693 | Do Not Test |
| Row 9 vs. Row 11  | 1.742  | 7  | 2.794  | 0.093 | No          |
| Row 9 vs. Row 6   | 0.750  | 6  | 1.300  | 0.430 | Do Not Test |
| Row 9 vs. Row 13  | 0.708  | 5  | 1.136  | 0.482 | Do Not Test |
| Row 9 vs. Row 5   | 0.708  | 4  | 1.227  | 0.437 | Do Not Test |
| Row 9 vs. Row 12  | 0.408  | 3  | 0.655  | 0.667 | Do Not Test |
| Row 9 vs. Row 8   | 0.325  | 2  | 0.563  | 0.693 | Do Not Test |
| Row 8 vs. Row 11  | 1.417  | 6  | 2.273  | 0.167 | Do Not Test |
| Row 8 vs. Row 6   | 0.425  | 5  | 0.736  | 0.649 | Do Not Test |
| Row 8 vs. Row 13  | 0.383  | 4  | 0.615  | 0.697 | Do Not Test |
| Row 8 vs. Row 5   | 0.383  | 3  | 0.664  | 0.662 | Do Not Test |
| Row 8 vs. Row 12  | 0.0833 | 2  | 0.134  | 0.925 | Do Not Test |
| Row 12 vs. Row 11 | 1.333  | 5  | 2.001  | 0.216 | Do Not Test |
| Row 12 vs. Row 6  | 0.342  | 4  | 0.548  | 0.729 | Do Not Test |
| Row 12 vs. Row 13 | 0.300  | 3  | 0.450  | 0.767 | Do Not Test |
| Row 12 vs. Row 5  | 0.300  | 2  | 0.481  | 0.735 | Do Not Test |
| Row 5 vs. Row 11  | 1.033  | 4  | 1.658  | 0.294 | Do Not Test |
| Row 5 vs. Row 6   | 0.0417 | 3  | 0.0722 | 0.963 | Do Not Test |
| Row 5 vs. Row 13  | 0.000  | 2  | 0.000  | 1.000 | Do Not Test |
| Row 13 vs. Row 11 | 1.033  | 3  | 1.551  | 0.308 | Do Not Test |
| Row 13 vs. Row 6  | 0.0417 | 2  | 0.0668 | 0.963 | Do Not Test |
|                   |        |    |        |       |             |

| Row 6 vs. Row 11 0.992 2 1.591 0.267 | Do Not Test |
|--------------------------------------|-------------|
|--------------------------------------|-------------|

| Data source. Familie Aci | D | ata | source: | Palmitic | Acid |
|--------------------------|---|-----|---------|----------|------|
|--------------------------|---|-----|---------|----------|------|

| Group Name     | Ν     | Missing | Mean    | Std Dev | SEM   |         |
|----------------|-------|---------|---------|---------|-------|---------|
| Control        | 10    | 0       | 31.724  | 2.517   | 0.796 |         |
| BA 10-7        | 4     | 0       | 35.713  | 5.278   | 2.639 |         |
| BA 10-6        | 4     | 0       | 30.032  | 1.937   | 0.969 |         |
| BA 10-5        | 4     | 0       | 29.574  | 1.529   | 0.765 |         |
| ABA 10-6       | 4     | 0       | 36.954  | 3.140   | 1.570 |         |
| ABA 10-5       | 4     | 0       | 35.441  | 2.194   | 1.097 |         |
| tZ 10-7        | 4     | 0       | 28.166  | 2.555   | 1.278 |         |
| tZ 10-6        | 4     | 0       | 31.410  | 2.238   | 1.119 |         |
| MeSZ 10-7      | 3     | 0       | 29.482  | 1.978   | 1.142 |         |
| MeSZ 10-6      | 3     | 0       | 29.108  | 0.652   | 0.376 |         |
| MeSZ 10-5      | 3     | 0       | 29.972  | 0.643   | 0.371 |         |
| Source of Vari | ation | DF      | SS      | MS      | F     | Р       |
| Between Group  | s     | 10      | 354.096 | 35.410  | 5.162 | < 0.001 |
| Residual       |       | 36      | 246.960 | 6.860   |       |         |
| Total          |       | 46      | 601.056 |         |       |         |

The differences in the mean values among the treatment groups are greater than would be expected by chance; there is a statistically significant difference (P = <0.001).

Power of performed test with alpha = 0.050: 0.992

All Pairwise Multiple Comparison Procedures (Duncan's Method) :

| Comparison       | Diff of Means | р  | q     | Р       | P<0.050     |
|------------------|---------------|----|-------|---------|-------------|
| Row 5 vs. Row 7  | 8.788         | 11 | 6.711 | < 0.001 | Yes         |
| Row 5 vs. Row 10 | 7.846         | 10 | 5.547 | 0.001   | Yes         |
| Row 5 vs. Row 9  | 7.472         | 9  | 5.282 | 0.002   | Yes         |
| Row 5 vs. Row 4  | 7.380         | 8  | 5.635 | < 0.001 | Yes         |
| Row 5 vs. Row 11 | 6.981         | 7  | 4.935 | 0.003   | Yes         |
| Row 5 vs. Row 3  | 6.921         | 6  | 5.285 | 0.002   | Yes         |
| Row 5 vs. Row 8  | 5.543         | 5  | 4.233 | 0.010   | Yes         |
| Row 5 vs. Row 1  | 5.229         | 4  | 4.773 | 0.003   | Yes         |
| Row 5 vs. Row 6  | 1.513         | 3  | 1.155 | 0.448   | No          |
| Row 5 vs. Row 2  | 1.240         | 2  | 0.947 | 0.508   | Do Not Test |
| Row 2 vs. Row 7  | 7.548         | 10 | 5.764 | < 0.001 | Yes         |
| Row 2 vs. Row 10 | 6.606         | 9  | 4.670 | 0.006   | Yes         |
| Row 2 vs. Row 9  | 6.232         | 8  | 4.406 | 0.009   | Yes         |
| Row 2 vs. Row 4  | 6.139         | 7  | 4.688 | 0.005   | Yes         |
| Row 2 vs. Row 11 | 5.741         | 6  | 4.059 | 0.014   | Yes         |
| Row 2 vs. Row 3  | 5.681         | 5  | 4.338 | 0.008   | Yes         |
| Row 2 vs. Row 8  | 4.303         | 4  | 3.286 | 0.039   | Yes         |
| Row 2 vs. Row 1  | 3.989         | 3  | 3.641 | 0.019   | Yes         |
| Row 2 vs. Row 6  | 0.272         | 2  | 0.208 | 0.884   | Do Not Test |
| Row 6 vs. Row 7  | 7.275         | 9  | 5.556 | 0.001   | Yes         |
| Row 6 vs. Row 10 | 6.333         | 8  | 4.477 | 0.008   | Yes         |
| Row 6 vs. Row 9  | 5.959         | 7  | 4.213 | 0.012   | Yes         |
| Row 6 vs. Row 4  | 5.867         | 6  | 4.480 | 0.007   | Yes         |
|                  |               |    |       |         |             |

| Row 6 vs. Row 11  | 5.469  | 5 | 3.866  | 0.018 | Yes         |
|-------------------|--------|---|--------|-------|-------------|
| Row 6 vs. Row 3   | 5.409  | 4 | 4.130  | 0.010 | Yes         |
| Row 6 vs. Row 8   | 4.030  | 3 | 3.078  | 0.046 | Yes         |
| Row 6 vs. Row 1   | 3.717  | 2 | 3.392  | 0.022 | Yes         |
| Row 1 vs. Row 7   | 3.559  | 8 | 3.248  | 0.054 | No          |
| Row 1 vs. Row 10  | 2.616  | 7 | 2.146  | 0.197 | Do Not Test |
| Row 1 vs. Row 9   | 2.243  | 6 | 1.840  | 0.263 | Do Not Test |
| Row 1 vs. Row 4   | 2.150  | 5 | 1.963  | 0.225 | Do Not Test |
| Row 1 vs. Row 11  | 1.752  | 4 | 1.437  | 0.363 | Do Not Test |
| Row 1 vs. Row 3   | 1.692  | 3 | 1.544  | 0.311 | Do Not Test |
| Row 1 vs. Row 8   | 0.314  | 2 | 0.286  | 0.841 | Do Not Test |
| Row 8 vs. Row 7   | 3.245  | 7 | 2.478  | 0.137 | Do Not Test |
| Row 8 vs. Row 10  | 2.303  | 6 | 1.628  | 0.322 | Do Not Test |
| Row 8 vs. Row 9   | 1.929  | 5 | 1.364  | 0.399 | Do Not Test |
| Row 8 vs. Row 4   | 1.837  | 4 | 1.402  | 0.374 | Do Not Test |
| Row 8 vs. Row 11  | 1.438  | 3 | 1.017  | 0.504 | Do Not Test |
| Row 8 vs. Row 3   | 1.378  | 2 | 1.052  | 0.462 | Do Not Test |
| Row 3 vs. Row 7   | 1.867  | 6 | 1.425  | 0.385 | Do Not Test |
| Row 3 vs. Row 10  | 0.924  | 5 | 0.653  | 0.686 | Do Not Test |
| Row 3 vs. Row 9   | 0.551  | 4 | 0.389  | 0.806 | Do Not Test |
| Row 3 vs. Row 4   | 0.458  | 3 | 0.350  | 0.818 | Do Not Test |
| Row 3 vs. Row 11  | 0.0599 | 2 | 0.0423 | 0.976 | Do Not Test |
| Row 11 vs. Row 7  | 1.807  | 5 | 1.277  | 0.429 | Do Not Test |
| Row 11 vs. Row 10 | 0.865  | 4 | 0.572  | 0.717 | Do Not Test |
| Row 11 vs. Row 9  | 0.491  | 3 | 0.324  | 0.831 | Do Not Test |
| Row 11 vs. Row 4  | 0.398  | 2 | 0.282  | 0.843 | Do Not Test |
| Row 4 vs. Row 7   | 1.408  | 4 | 1.075  | 0.496 | Do Not Test |
| Row 4 vs. Row 10  | 0.466  | 3 | 0.329  | 0.829 | Do Not Test |
| Row 4 vs. Row 9   | 0.0922 | 2 | 0.0652 | 0.964 | Do Not Test |
| Row 9 vs. Row 7   | 1.316  | 3 | 0.930  | 0.541 | Do Not Test |
| Row 9 vs. Row 10  | 0.374  | 2 | 0.247  | 0.862 | Do Not Test |
| Row 10 vs. Row 7  | 0.942  | 2 | 0.666  | 0.641 | Do Not Test |

# Data source: Stearic Acid

| Group Name     | Ν     | Missing | Mean   | Std Dev | SEM   |         |
|----------------|-------|---------|--------|---------|-------|---------|
| Control        | 10    | 0       | 5.058  | 0.550   | 0.174 |         |
| BA 10-7        | 4     | 0       | 5.334  | 0.896   | 0.448 |         |
| BA 10-6        | 4     | 0       | 5.488  | 1.059   | 0.529 |         |
| BA 10-5        | 4     | 0       | 5.766  | 0.753   | 0.377 |         |
| ABA 10-6       | 4     | 0       | 8.374  | 1.231   | 0.616 |         |
| ABA 10-5       | 4     | 0       | 5.740  | 1.700   | 0.850 |         |
| tZ 10-7        | 4     | 0       | 7.227  | 1.262   | 0.631 |         |
| tZ 10-6        | 4     | 0       | 6.657  | 1.043   | 0.522 |         |
| MeSZ 10-7      | 3     | 0       | 5.988  | 0.398   | 0.230 |         |
| MeSZ 10-6      | 3     | 0       | 5.965  | 0.929   | 0.537 |         |
| MeSZ 10-5      | 3     | 0       | 7.134  | 0.388   | 0.224 |         |
| Source of Vari | ation | DF      | SS     | MS      | F     | Р       |
| Between Group  | s     | 10      | 45.974 | 4.597   | 4.897 | < 0.001 |
| Residual       |       | 36      | 33.796 | 0.939   |       |         |
| Total          |       | 46      | 79.771 |         |       |         |

The differences in the mean values among the treatment groups are greater than would be expected by chance; there is a statistically significant difference (P = <0.001).

Power of performed test with alpha = 0.050: 0.987

All Pairwise Multiple Comparison Procedures (Duncan's Method) :

| Comparison       | Diff of Means | р  | q     | Р       | P<0.050     |
|------------------|---------------|----|-------|---------|-------------|
| Row 5 vs. Row 1  | 3.316         | 11 | 8.182 | < 0.001 | Yes         |
| Row 5 vs. Row 2  | 3.040         | 10 | 6.274 | < 0.001 | Yes         |
| Row 5 vs. Row 3  | 2.886         | 9  | 5.957 | < 0.001 | Yes         |
| Row 5 vs. Row 6  | 2.634         | 8  | 5.438 | 0.001   | Yes         |
| Row 5 vs. Row 4  | 2.608         | 7  | 5.383 | 0.001   | Yes         |
| Row 5 vs. Row 10 | 2.409         | 6  | 4.604 | 0.006   | Yes         |
| Row 5 vs. Row 9  | 2.385         | 5  | 4.559 | 0.005   | Yes         |
| Row 5 vs. Row 8  | 1.717         | 4  | 3.545 | 0.026   | Yes         |
| Row 5 vs. Row 11 | 1.240         | 3  | 2.369 | 0.122   | No          |
| Row 5 vs. Row 7  | 1.147         | 2  | 2.367 | 0.103   | Do Not Test |
| Row 7 vs. Row 1  | 2.170         | 10 | 5.353 | 0.002   | Yes         |
| Row 7 vs. Row 2  | 1.893         | 9  | 3.907 | 0.022   | Yes         |
| Row 7 vs. Row 3  | 1.739         | 8  | 3.590 | 0.034   | Yes         |
| Row 7 vs. Row 6  | 1.488         | 7  | 3.071 | 0.066   | No          |
| Row 7 vs. Row 4  | 1.461         | 6  | 3.016 | 0.067   | Do Not Test |
| Row 7 vs. Row 10 | 1.262         | 5  | 2.412 | 0.136   | Do Not Test |
| Row 7 vs. Row 9  | 1.239         | 4  | 2.368 | 0.135   | Do Not Test |
| Row 7 vs. Row 8  | 0.571         | 3  | 1.178 | 0.439   | Do Not Test |
| Row 7 vs. Row 11 | 0.0931        | 2  | 0.178 | 0.901   | Do Not Test |
| Row 11 vs. Row 1 | 2.077         | 9  | 4.604 | 0.007   | Yes         |
| Row 11 vs. Row 2 | 1.800         | 8  | 3.440 | 0.042   | Yes         |
| Row 11 vs. Row 3 | 1.646         | 7  | 3.146 | 0.060   | No          |
| Row 11 vs. Row 6 | 1.395         | 6  | 2.665 | 0.106   | Do Not Test |

| Row 11 vs. Row 4  | 1.368  | 5 | 2.615  | 0.107 | Do Not Test |  |
|-------------------|--------|---|--------|-------|-------------|--|
| Row 11 vs. Row 10 | 1.169  | 4 | 2.090  | 0.186 | Do Not Test |  |
| Row 11 vs. Row 9  | 1.146  | 3 | 2.048  | 0.180 | Do Not Test |  |
| Row 11 vs. Row 8  | 0.478  | 2 | 0.913  | 0.523 | Do Not Test |  |
| Row 8 vs. Row 1   | 1.599  | 8 | 3.945  | 0.020 | Yes         |  |
| Row 8 vs. Row 2   | 1.322  | 7 | 2.729  | 0.102 | No          |  |
| Row 8 vs. Row 3   | 1.169  | 6 | 2.412  | 0.143 | Do Not Test |  |
| Row 8 vs. Row 6   | 0.917  | 5 | 1.893  | 0.242 | Do Not Test |  |
| Row 8 vs. Row 4   | 0.891  | 4 | 1.838  | 0.245 | Do Not Test |  |
| Row 8 vs. Row 10  | 0.692  | 3 | 1.322  | 0.385 | Do Not Test |  |
| Row 8 vs. Row 9   | 0.668  | 2 | 1.277  | 0.373 | Do Not Test |  |
| Row 9 vs. Row 1   | 0.931  | 7 | 2.064  | 0.215 | No          |  |
| Row 9 vs. Row 2   | 0.654  | 6 | 1.250  | 0.446 | Do Not Test |  |
| Row 9 vs. Row 3   | 0.500  | 5 | 0.956  | 0.554 | Do Not Test |  |
| Row 9 vs. Row 6   | 0.249  | 4 | 0.476  | 0.763 | Do Not Test |  |
| Row 9 vs. Row 4   | 0.222  | 3 | 0.425  | 0.780 | Do Not Test |  |
| Row 9 vs. Row 10  | 0.0234 | 2 | 0.0418 | 0.977 | Do Not Test |  |
| Row 10 vs. Row 1  | 0.907  | 6 | 2.012  | 0.221 | Do Not Test |  |
| Row 10 vs. Row 2  | 0.631  | 5 | 1.205  | 0.456 | Do Not Test |  |
| Row 10 vs. Row 3  | 0.477  | 4 | 0.912  | 0.563 | Do Not Test |  |
| Row 10 vs. Row 6  | 0.225  | 3 | 0.431  | 0.777 | Do Not Test |  |
| Row 10 vs. Row 4  | 0.199  | 2 | 0.380  | 0.790 | Do Not Test |  |
| Row 4 vs. Row 1   | 0.708  | 5 | 1.748  | 0.280 | Do Not Test |  |
| Row 4 vs. Row 2   | 0.432  | 4 | 0.891  | 0.572 | Do Not Test |  |
| Row 4 vs. Row 3   | 0.278  | 3 | 0.574  | 0.706 | Do Not Test |  |
| Row 4 vs. Row 6   | 0.0265 | 2 | 0.0547 | 0.969 | Do Not Test |  |
| Row 6 vs. Row 1   | 0.682  | 4 | 1.682  | 0.287 | Do Not Test |  |
| Row 6 vs. Row 2   | 0.405  | 3 | 0.836  | 0.582 | Do Not Test |  |
| Row 6 vs. Row 3   | 0.252  | 2 | 0.519  | 0.716 | Do Not Test |  |
| Row 3 vs. Row 1   | 0.430  | 3 | 1.062  | 0.485 | Do Not Test |  |
| Row 3 vs. Row 2   | 0.154  | 2 | 0.317  | 0.824 | Do Not Test |  |
| Row 2 vs. Row 1   | 0.277  | 2 | 0.683  | 0.632 | Do Not Test |  |

## Friday, August 28, 2015, 12:26:15 PM

## One Way Analysis of Variance

| Da | ta s | source: | O. | leic | Acid |  |
|----|------|---------|----|------|------|--|
|----|------|---------|----|------|------|--|

| Group Name     | Ν     | Missing | Mean     | Std Dev | SEM   |       |
|----------------|-------|---------|----------|---------|-------|-------|
| Control        | 10    | 0       | 23.476   | 3.694   | 1.168 |       |
| BA 10-7        | 4     | 0       | 28.890   | 4.966   | 2.483 |       |
| BA 10-6        | 4     | 0       | 23.540   | 2.999   | 1.500 |       |
| BA 10-5        | 4     | 0       | 20.959   | 4.444   | 2.222 |       |
| ABA 10-6       | 4     | 0       | 19.816   | 5.974   | 2.987 |       |
| ABA 10-5       | 4     | 0       | 21.847   | 3.524   | 1.762 |       |
| tZ 10-7        | 4     | 0       | 24.950   | 5.018   | 2.509 |       |
| tZ 10-6        | 4     | 0       | 20.011   | 5.131   | 2.566 |       |
| MeSZ 10-7      | 3     | 0       | 20.222   | 3.556   | 2.053 |       |
| MeSZ 10-6      | 3     | 0       | 13.593   | 1.707   | 0.985 |       |
| MeSZ 10-5      | 3     | 0       | 21.980   | 1.917   | 1.107 |       |
| Source of Vari | ation | DF      | SS       | MS      | F     | Р     |
| Between Group  | s     | 10      | 515.378  | 51.538  | 2.991 | 0.008 |
| Residual       |       | 36      | 620.371  | 17.233  |       |       |
| Total          |       | 46      | 1135.749 |         |       |       |

The differences in the mean values among the treatment groups are greater than would be expected by chance; there is a statistically significant difference (P = 0.008).

Power of performed test with alpha = 0.050: 0.784

All Pairwise Multiple Comparison Procedures (Duncan's Method) :

| Comparison       | Diff of Means | р  | q     | Р       | P<0.050     |
|------------------|---------------|----|-------|---------|-------------|
| Row 2 vs. Row 10 | 15.297        | 11 | 6.823 | < 0.001 | Yes         |
| Row 2 vs. Row 5  | 9.074         | 10 | 4.372 | 0.011   | Yes         |
| Row 2 vs. Row 8  | 8.879         | 9  | 4.278 | 0.012   | Yes         |
| Row 2 vs. Row 9  | 8.668         | 8  | 3.866 | 0.022   | Yes         |
| Row 2 vs. Row 4  | 7.931         | 7  | 3.821 | 0.022   | Yes         |
| Row 2 vs. Row 6  | 7.043         | 6  | 3.393 | 0.040   | Yes         |
| Row 2 vs. Row 11 | 6.910         | 5  | 3.082 | 0.057   | No          |
| Row 2 vs. Row 1  | 5.414         | 4  | 3.118 | 0.050   | Do Not Test |
| Row 2 vs. Row 3  | 5.350         | 3  | 2.578 | 0.093   | Do Not Test |
| Row 2 vs. Row 7  | 3.940         | 2  | 1.898 | 0.188   | Do Not Test |
| Row 7 vs. Row 10 | 11.357        | 10 | 5.066 | 0.003   | Yes         |
| Row 7 vs. Row 5  | 5.134         | 9  | 2.474 | 0.145   | No          |
| Row 7 vs. Row 8  | 4.939         | 8  | 2.380 | 0.157   | Do Not Test |
| Row 7 vs. Row 9  | 4.728         | 7  | 2.109 | 0.205   | Do Not Test |
| Row 7 vs. Row 4  | 3.991         | 6  | 1.923 | 0.242   | Do Not Test |
| Row 7 vs. Row 6  | 3.103         | 5  | 1.495 | 0.355   | Do Not Test |
| Row 7 vs. Row 11 | 2.970         | 4  | 1.325 | 0.401   | Do Not Test |
| Row 7 vs. Row 1  | 1.475         | 3  | 0.849 | 0.577   | Do Not Test |
| Row 7 vs. Row 3  | 1.411         | 2  | 0.680 | 0.634   | Do Not Test |
| Row 3 vs. Row 10 | 9.947         | 9  | 4.437 | 0.009   | Yes         |
| Row 3 vs. Row 5  | 3.724         | 8  | 1.794 | 0.285   | Do Not Test |
| Row 3 vs. Row 8  | 3.529         | 7  | 1.700 | 0.307   | Do Not Test |
| Row 3 vs. Row 9  | 3.317         | 6  | 1.480 | 0.368   | Do Not Test |

| 2.580  | 5                                                                                                                                                                                                                                                                                             | 1.243                                                | 0.442                                                | Do Not Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.692  | 4                                                                                                                                                                                                                                                                                             | 0.815                                                | 0.605                                                | Do Not Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1.559  | 3                                                                                                                                                                                                                                                                                             | 0.696                                                | 0.647                                                | Do Not Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.0639 | 2                                                                                                                                                                                                                                                                                             | 0.0368                                               | 0.979                                                | Do Not Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 9.883  | 8                                                                                                                                                                                                                                                                                             | 5.114                                                | 0.003                                                | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3.660  | 7                                                                                                                                                                                                                                                                                             | 2.107                                                | 0.206                                                | Do Not Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3.465  | 6                                                                                                                                                                                                                                                                                             | 1.995                                                | 0.225                                                | Do Not Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3.253  | 5                                                                                                                                                                                                                                                                                             | 1.684                                                | 0.298                                                | Do Not Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2.517  | 4                                                                                                                                                                                                                                                                                             | 1.449                                                | 0.359                                                | Do Not Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1.628  | 3                                                                                                                                                                                                                                                                                             | 0.938                                                | 0.538                                                | Do Not Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1.495  | 2                                                                                                                                                                                                                                                                                             | 0.774                                                | 0.588                                                | Do Not Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 8.387  | 7                                                                                                                                                                                                                                                                                             | 3.500                                                | 0.036                                                | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2.164  | 6                                                                                                                                                                                                                                                                                             | 0.965                                                | 0.556                                                | Do Not Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1.969  | 5                                                                                                                                                                                                                                                                                             | 0.878                                                | 0.587                                                | Do Not Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1.758  | 4                                                                                                                                                                                                                                                                                             | 0.734                                                | 0.642                                                | Do Not Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1.021  | 3                                                                                                                                                                                                                                                                                             | 0.455                                                | 0.765                                                | Do Not Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.133  | 2                                                                                                                                                                                                                                                                                             | 0.0593                                               | 0.967                                                | Do Not Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 8.254  | 6                                                                                                                                                                                                                                                                                             | 3.682                                                | 0.026                                                | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2.031  | 5                                                                                                                                                                                                                                                                                             | 0.979                                                | 0.545                                                | Do Not Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1.836  | 4                                                                                                                                                                                                                                                                                             | 0.885                                                | 0.575                                                | Do Not Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1.625  | 3                                                                                                                                                                                                                                                                                             | 0.725                                                | 0.634                                                | Do Not Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.888  | 2                                                                                                                                                                                                                                                                                             | 0.428                                                | 0.764                                                | Do Not Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 7.366  | 5                                                                                                                                                                                                                                                                                             | 3.286                                                | 0.043                                                | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1.143  | 4                                                                                                                                                                                                                                                                                             | 0.551                                                | 0.727                                                | Do Not Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.948  | 3                                                                                                                                                                                                                                                                                             | 0.457                                                | 0.764                                                | Do Not Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.737  | 2                                                                                                                                                                                                                                                                                             | 0.329                                                | 0.818                                                | Do Not Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 6.629  | 4                                                                                                                                                                                                                                                                                             | 2.766                                                | 0.081                                                | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.406  | 3                                                                                                                                                                                                                                                                                             | 0.181                                                | 0.905                                                | Do Not Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.211  | 2                                                                                                                                                                                                                                                                                             | 0.0943                                               | 0.947                                                | Do Not Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 6.418  | 3                                                                                                                                                                                                                                                                                             | 2.863                                                | 0.062                                                | Do Not Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.195  | 2                                                                                                                                                                                                                                                                                             | 0.0939                                               | 0.947                                                | Do Not Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 6.223  | 2                                                                                                                                                                                                                                                                                             | 2.776                                                | 0.058                                                | Do Not Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        | 2.580<br>1.692<br>1.559<br>0.0639<br>9.883<br>3.660<br>3.465<br>3.253<br>2.517<br>1.628<br>1.495<br>8.387<br>2.164<br>1.969<br>1.758<br>1.021<br>0.133<br>8.254<br>2.031<br>1.836<br>1.625<br>0.888<br>7.366<br>1.143<br>0.948<br>0.737<br>6.629<br>0.406<br>0.211<br>6.418<br>0.195<br>6.223 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 2.580 $5$ $1.243$ $0.442$ $1.692$ $4$ $0.815$ $0.605$ $1.559$ $3$ $0.696$ $0.647$ $0.0639$ $2$ $0.0368$ $0.979$ $9.883$ $8$ $5.114$ $0.003$ $3.660$ $7$ $2.107$ $0.206$ $3.465$ $6$ $1.995$ $0.225$ $3.253$ $5$ $1.684$ $0.298$ $2.517$ $4$ $1.449$ $0.359$ $1.628$ $3$ $0.938$ $0.538$ $1.495$ $2$ $0.774$ $0.588$ $8.387$ $7$ $3.500$ $0.036$ $2.164$ $6$ $0.965$ $0.556$ $1.969$ $5$ $0.878$ $0.587$ $1.758$ $4$ $0.734$ $0.642$ $1.021$ $3$ $0.455$ $0.765$ $0.133$ $2$ $0.0593$ $0.967$ $8.254$ $6$ $3.682$ $0.026$ $2.031$ $5$ $0.979$ $0.545$ $1.836$ $4$ $0.885$ $0.575$ $1.625$ $3$ $0.725$ $0.634$ $0.888$ $2$ $0.428$ $0.764$ $7.366$ $5$ $3.286$ $0.043$ $1.143$ $4$ $0.551$ $0.727$ $0.948$ $3$ $0.457$ $0.764$ $0.737$ $2$ $0.329$ $0.818$ $6.629$ $4$ $2.766$ $0.081$ $0.406$ $3$ $0.181$ $0.905$ $0.211$ $2$ $0.0939$ $0.947$ $6.223$ $2$ |

| Data source: L | inolei | : Acid |
|----------------|--------|--------|
|----------------|--------|--------|

| Group Name     | Ν     | Missing | Mean    | Std Dev | SEM   |         |
|----------------|-------|---------|---------|---------|-------|---------|
| Control        | 10    | 0       | 37.604  | 1.707   | 0.540 |         |
| BA 10-7        | 4     | 0       | 28.956  | 6.129   | 3.065 |         |
| BA 10-6        | 4     | 0       | 39.094  | 2.940   | 1.470 |         |
| BA 10-5        | 4     | 0       | 41.881  | 2.104   | 1.052 |         |
| ABA 10-6       | 4     | 0       | 32.182  | 4.719   | 2.360 |         |
| ABA 10-5       | 4     | 0       | 35.617  | 0.965   | 0.482 |         |
| tZ 10-7        | 4     | 0       | 36.479  | 3.417   | 1.709 |         |
| tZ 10-6        | 4     | 0       | 40.677  | 5.295   | 2.647 |         |
| MeSZ 10-7      | 3     | 0       | 37.796  | 1.915   | 1.105 |         |
| MeSZ 10-6      | 3     | 0       | 39.415  | 2.855   | 1.648 |         |
| MeSZ 10-5      | 3     | 0       | 39.886  | 1.527   | 0.882 |         |
| Source of Vari | ation | DF      | SS      | MS      | F     | Р       |
| Between Group  | )S    | 10      | 574.051 | 57.405  | 5.230 | < 0.001 |
| Residual       |       | 36      | 395.166 | 10.977  |       |         |
| Total          |       | 46      | 969.218 |         |       |         |

The differences in the mean values among the treatment groups are greater than would be expected by chance; there is a statistically significant difference (P = <0.001).

Power of performed test with alpha = 0.050: 0.993

All Pairwise Multiple Comparison Procedures (Duncan's Method) :

| Comparison       | Diff of Means | р  | q     | Р       | P<0.050     |
|------------------|---------------|----|-------|---------|-------------|
| Row 4 vs. Row 2  | 12.925        | 11 | 7.802 | < 0.001 | Yes         |
| Row 4 vs. Row 5  | 9.699         | 10 | 5.855 | < 0.001 | Yes         |
| Row 4 vs. Row 6  | 6.264         | 9  | 3.781 | 0.026   | Yes         |
| Row 4 vs. Row 7  | 5.402         | 8  | 3.261 | 0.053   | No          |
| Row 4 vs. Row 1  | 4.277         | 7  | 3.086 | 0.065   | Do Not Test |
| Row 4 vs. Row 9  | 4.085         | 6  | 2.283 | 0.165   | Do Not Test |
| Row 4 vs. Row 3  | 2.787         | 5  | 1.682 | 0.298   | Do Not Test |
| Row 4 vs. Row 10 | 2.466         | 4  | 1.378 | 0.383   | Do Not Test |
| Row 4 vs. Row 11 | 1.995         | 3  | 1.115 | 0.464   | Do Not Test |
| Row 4 vs. Row 8  | 1.204         | 2  | 0.727 | 0.611   | Do Not Test |
| Row 8 vs. Row 2  | 11.721        | 10 | 7.076 | < 0.001 | Yes         |
| Row 8 vs. Row 5  | 8.494         | 9  | 5.128 | 0.003   | Yes         |
| Row 8 vs. Row 6  | 5.059         | 8  | 3.054 | 0.070   | No          |
| Row 8 vs. Row 7  | 4.198         | 7  | 2.534 | 0.128   | Do Not Test |
| Row 8 vs. Row 1  | 3.073         | 6  | 2.217 | 0.178   | Do Not Test |
| Row 8 vs. Row 9  | 2.881         | 5  | 1.610 | 0.319   | Do Not Test |
| Row 8 vs. Row 3  | 1.583         | 4  | 0.956 | 0.545   | Do Not Test |
| Row 8 vs. Row 10 | 1.261         | 3  | 0.705 | 0.643   | Do Not Test |
| Row 8 vs. Row 11 | 0.791         | 2  | 0.442 | 0.757   | Do Not Test |
| Row 11 vs. Row 2 | 10.931        | 9  | 6.109 | < 0.001 | Yes         |
| Row 11 vs. Row 5 | 7.704         | 8  | 4.305 | 0.011   | Yes         |
| Row 11 vs. Row 6 | 4.269         | 7  | 2.386 | 0.152   | Do Not Test |
| Row 11 vs. Row 7 | 3.407         | 6  | 1.904 | 0.247   | Do Not Test |

| Row 11 vs. Row 1  | 2.282  | 5 | 1.480 | 0.360   | Do Not Test |
|-------------------|--------|---|-------|---------|-------------|
| Row 11 vs. Row 9  | 2.090  | 4 | 1.093 | 0.489   | Do Not Test |
| Row 11 vs. Row 3  | 0.792  | 3 | 0.443 | 0.771   | Do Not Test |
| Row 11 vs. Row 10 | 0.471  | 2 | 0.246 | 0.863   | Do Not Test |
| Row 10 vs. Row 2  | 10.460 | 8 | 5.846 | < 0.001 | Yes         |
| Row 10 vs. Row 5  | 7.233  | 7 | 4.042 | 0.016   | Yes         |
| Row 10 vs. Row 6  | 3.798  | 6 | 2.123 | 0.197   | Do Not Test |
| Row 10 vs. Row 7  | 2.937  | 5 | 1.641 | 0.310   | Do Not Test |
| Row 10 vs. Row 1  | 1.811  | 4 | 1.175 | 0.457   | Do Not Test |
| Row 10 vs. Row 9  | 1.619  | 3 | 0.847 | 0.578   | Do Not Test |
| Row 10 vs. Row 3  | 0.321  | 2 | 0.180 | 0.900   | Do Not Test |
| Row 3 vs. Row 2   | 10.138 | 7 | 6.120 | < 0.001 | Yes         |
| Row 3 vs. Row 5   | 6.912  | 6 | 4.172 | 0.012   | Yes         |
| Row 3 vs. Row 6   | 3.477  | 5 | 2.099 | 0.195   | Do Not Test |
| Row 3 vs. Row 7   | 2.615  | 4 | 1.579 | 0.317   | Do Not Test |
| Row 3 vs. Row 1   | 1.490  | 3 | 1.075 | 0.480   | Do Not Test |
| Row 3 vs. Row 9   | 1.298  | 2 | 0.725 | 0.611   | Do Not Test |
| Row 9 vs. Row 2   | 8.840  | 6 | 4.941 | 0.003   | Yes         |
| Row 9 vs. Row 5   | 5.614  | 5 | 3.137 | 0.053   | No          |
| Row 9 vs. Row 6   | 2.179  | 4 | 1.218 | 0.440   | Do Not Test |
| Row 9 vs. Row 7   | 1.317  | 3 | 0.736 | 0.628   | Do Not Test |
| Row 9 vs. Row 1   | 0.192  | 2 | 0.125 | 0.930   | Do Not Test |
| Row 1 vs. Row 2   | 8.648  | 5 | 6.240 | < 0.001 | Yes         |
| Row 1 vs. Row 5   | 5.422  | 4 | 3.912 | 0.014   | Do Not Test |
| Row 1 vs. Row 6   | 1.987  | 3 | 1.433 | 0.347   | Do Not Test |
| Row 1 vs. Row 7   | 1.125  | 2 | 0.812 | 0.570   | Do Not Test |
| Row 7 vs. Row 2   | 7.523  | 4 | 4.541 | 0.005   | Yes         |
| Row 7 vs. Row 5   | 4.296  | 3 | 2.594 | 0.091   | Do Not Test |
| Row 7 vs. Row 6   | 0.861  | 2 | 0.520 | 0.715   | Do Not Test |
| Row 6 vs. Row 2   | 6.662  | 3 | 4.021 | 0.010   | Yes         |
| Row 6 vs. Row 5   | 3.435  | 2 | 2.074 | 0.151   | Do Not Test |
| Row 5 vs. Row 2   | 3.227  | 2 | 1.948 | 0.177   | No          |

| Data source: Linolenic | : Acid |
|------------------------|--------|
|------------------------|--------|

| Group Name     | Ν     | Missing | Mean    | Std Dev | SEM    |         |
|----------------|-------|---------|---------|---------|--------|---------|
| Control        | 10    | 0       | 2.138   | 1.871   | 0.592  |         |
| BA 10-7        | 4     | 0       | 1.106   | 0.252   | 0.126  |         |
| BA 10-6        | 4     | 0       | 1.846   | 0.401   | 0.201  |         |
| BA 10-5        | 4     | 0       | 1.820   | 1.094   | 0.547  |         |
| ABA 10-6       | 4     | 0       | 2.674   | 1.024   | 0.512  |         |
| ABA 10-5       | 4     | 0       | 1.355   | 0.484   | 0.242  |         |
| tZ 10-7        | 4     | 0       | 3.178   | 0.579   | 0.289  |         |
| tZ 10-6        | 4     | 0       | 1.245   | 0.572   | 0.286  |         |
| MeSZ 10-7      | 3     | 0       | 6.511   | 0.963   | 0.556  |         |
| MeSZ 10-6      | 3     | 0       | 11.919  | 2.325   | 1.343  |         |
| MeSZ 10-5      | 3     | 0       | 1.027   | 0.546   | 0.315  |         |
| Source of Vari | ation | DF      | SS      | MS      | F      | Р       |
| Between Group  | )S    | 10      | 342.179 | 34.218  | 22.446 | < 0.001 |
| Residual       |       | 36      | 54.880  | 1.524   |        |         |
| Total          |       | 46      | 397.059 |         |        |         |

The differences in the mean values among the treatment groups are greater than would be expected by chance; there is a statistically significant difference (P = <0.001).

Power of performed test with alpha = 0.050: 1.000

All Pairwise Multiple Comparison Procedures (Duncan's Method) :

| Comparison        | <b>Diff of Means</b> | р  | q      | Р       | P<0.050     |
|-------------------|----------------------|----|--------|---------|-------------|
| Row 10 vs. Row 11 | 10.892               | 11 | 15.279 | < 0.001 | Yes         |
| Row 10 vs. Row 2  | 10.812               | 10 | 16.215 | < 0.001 | Yes         |
| Row 10 vs. Row 8  | 10.674               | 9  | 16.007 | < 0.001 | Yes         |
| Row 10 vs. Row 6  | 10.564               | 8  | 15.843 | < 0.001 | Yes         |
| Row 10 vs. Row 4  | 10.099               | 7  | 15.145 | < 0.001 | Yes         |
| Row 10 vs. Row 3  | 10.073               | 6  | 15.106 | < 0.001 | Yes         |
| Row 10 vs. Row 1  | 9.780                | 5  | 17.018 | < 0.001 | Yes         |
| Row 10 vs. Row 5  | 9.245                | 4  | 13.864 | < 0.001 | Yes         |
| Row 10 vs. Row 7  | 8.741                | 3  | 13.108 | < 0.001 | Yes         |
| Row 10 vs. Row 9  | 5.407                | 2  | 7.586  | < 0.001 | Yes         |
| Row 9 vs. Row 11  | 5.485                | 10 | 7.694  | < 0.001 | Yes         |
| Row 9 vs. Row 2   | 5.405                | 9  | 8.106  | < 0.001 | Yes         |
| Row 9 vs. Row 8   | 5.266                | 8  | 7.898  | < 0.001 | Yes         |
| Row 9 vs. Row 6   | 5.157                | 7  | 7.733  | < 0.001 | Yes         |
| Row 9 vs. Row 4   | 4.692                | 6  | 7.036  | < 0.001 | Yes         |
| Row 9 vs. Row 3   | 4.665                | 5  | 6.996  | < 0.001 | Yes         |
| Row 9 vs. Row 1   | 4.373                | 4  | 7.609  | < 0.001 | Yes         |
| Row 9 vs. Row 5   | 3.837                | 3  | 5.755  | < 0.001 | Yes         |
| Row 9 vs. Row 7   | 3.333                | 2  | 4.999  | 0.001   | Yes         |
| Row 7 vs. Row 11  | 2.151                | 9  | 3.226  | 0.058   | No          |
| Row 7 vs. Row 2   | 2.072                | 8  | 3.356  | 0.047   | Do Not Test |
| Row 7 vs. Row 8   | 1.933                | 7  | 3.131  | 0.061   | Do Not Test |
| Row 7 vs. Row 6   | 1.823                | 6  | 2.953  | 0.073   | Do Not Test |

| Row 7 vs. Row 4  | 1.358  | 5 | 2.200  | 0.174 | Do Not Test |
|------------------|--------|---|--------|-------|-------------|
| Row 7 vs. Row 3  | 1.332  | 4 | 2.157  | 0.173 | Do Not Test |
| Row 7 vs. Row 1  | 1.040  | 3 | 2.013  | 0.188 | Do Not Test |
| Row 7 vs. Row 5  | 0.504  | 2 | 0.816  | 0.568 | Do Not Test |
| Row 5 vs. Row 11 | 1.647  | 8 | 2.471  | 0.142 | Do Not Test |
| Row 5 vs. Row 2  | 1.568  | 7 | 2.539  | 0.128 | Do Not Test |
| Row 5 vs. Row 8  | 1.429  | 6 | 2.315  | 0.159 | Do Not Test |
| Row 5 vs. Row 6  | 1.319  | 5 | 2.137  | 0.187 | Do Not Test |
| Row 5 vs. Row 4  | 0.854  | 4 | 1.384  | 0.381 | Do Not Test |
| Row 5 vs. Row 3  | 0.828  | 3 | 1.341  | 0.379 | Do Not Test |
| Row 5 vs. Row 1  | 0.536  | 2 | 1.038  | 0.468 | Do Not Test |
| Row 1 vs. Row 11 | 1.111  | 7 | 1.934  | 0.245 | Do Not Test |
| Row 1 vs. Row 2  | 1.032  | 6 | 1.998  | 0.224 | Do Not Test |
| Row 1 vs. Row 8  | 0.893  | 5 | 1.729  | 0.285 | Do Not Test |
| Row 1 vs. Row 6  | 0.783  | 4 | 1.517  | 0.337 | Do Not Test |
| Row 1 vs. Row 4  | 0.318  | 3 | 0.616  | 0.685 | Do Not Test |
| Row 1 vs. Row 3  | 0.292  | 2 | 0.565  | 0.692 | Do Not Test |
| Row 3 vs. Row 11 | 0.819  | 6 | 1.229  | 0.454 | Do Not Test |
| Row 3 vs. Row 2  | 0.740  | 5 | 1.198  | 0.458 | Do Not Test |
| Row 3 vs. Row 8  | 0.601  | 4 | 0.974  | 0.537 | Do Not Test |
| Row 3 vs. Row 6  | 0.491  | 3 | 0.796  | 0.601 | Do Not Test |
| Row 3 vs. Row 4  | 0.0263 | 2 | 0.0427 | 0.976 | Do Not Test |
| Row 4 vs. Row 11 | 0.793  | 5 | 1.189  | 0.462 | Do Not Test |
| Row 4 vs. Row 2  | 0.713  | 4 | 1.156  | 0.464 | Do Not Test |
| Row 4 vs. Row 8  | 0.575  | 3 | 0.931  | 0.541 | Do Not Test |
| Row 4 vs. Row 6  | 0.465  | 2 | 0.753  | 0.598 | Do Not Test |
| Row 6 vs. Row 11 | 0.328  | 4 | 0.492  | 0.756 | Do Not Test |
| Row 6 vs. Row 2  | 0.248  | 3 | 0.402  | 0.792 | Do Not Test |
| Row 6 vs. Row 8  | 0.110  | 2 | 0.178  | 0.901 | Do Not Test |
| Row 8 vs. Row 11 | 0.218  | 3 | 0.327  | 0.830 | Do Not Test |
| Row 8 vs. Row 2  | 0.139  | 2 | 0.224  | 0.875 | Do Not Test |
| Row 2 vs. Row 11 | 0.0797 | 2 | 0.120  | 0.933 | Do Not Test |