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Abstract

Population-Level Ambient Pollution Exposure Proxies

Carlone Scott

The Air Health Trend Indicator (AHTI) is a joint Health Canada / Environment

and Climate Change Canada initiative that seeks to model the Canadian national

population health risk due to acute exposure to ambient air pollution. The common

model in the field uses averages of local ambient air pollution monitors to produce

a population-level exposure proxy variable. This method is applied to ozone, nitro-

gen dioxide, particulate matter, and other similar air pollutants. We examine the

representative nature of these proxy averages on a large-scale Canadian data set,

representing hundreds of monitors and dozens of city-level populations. The careful

determination of temporal and spatial correlations between the disparate monitors al-

lows for more precise estimation of population-level exposure, taking inspiration from

the land-use regression models commonly used in geography. We conclude this work

with an examination of the risk estimation differences between the original, simplistic

population exposure metric and our new, revised metric.

Keywords: Time Series, Spatial Process, Temporal Process, Spatio-Temporal, Nugget

effect, Air Pollution, Population Health Risk
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1. Introduction

Acute and long term health effects that air quality have on human morbidity and

mortality have been studied by many researchers [3, 11, 21, 31]. These health effects

are modelled from reported data for pollutants based on some metric which may

be a twenty-four or eight-hour mean, or some other daily metric. Furthermore the

standard population air pollution “ ‘risk” model also uses these averaged local ambient

air pollution monitors to produce a population-level exposure proxy variable, and

often applied to ozone, nitrogen dioxide, particulate matter, and other similar air

pollutants. We examine the representative nature of the proxy averages and compare

with variations of other averaging methods.

The paper makes use of Toronto data to examine the representative nature of the

proxy using monitors and city-level populations. Our model will use observed data

from this data set for the pollutants ozone, nitrogen dioxide, and particulate matter.

The thesis is set out as follows: we begin with an introduction and an examination

of some previous work. We then present background information that is required

for our model development. The data set being used is then discussed along with an

overview of how monitoring occurs for Canadian air pollution records. The space-time

model employed and the theory behind it is then presented, along with the different

metrics used in practice for air pollution. We then present the results of our modelling

followed by a discussion of these results and their application to risk metrics. This

work then concludes with findings and a scope of future work to be done.
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2. Background

We begin this chapter by examining previous work, we then provide some informa-

tion on the chemistry of the pollutants we are studying. We then review some basic

definitions to aid with clarity of the paper. It is key to have an understanding of Tem-

poral and Spatial Processes in order to fully understand the Spatio-Temporal models

used in this project. This chapter is then closed by presenting these fundamentals for

Spatial and Temporal Processes.

2.1 Previous Work

The following review of literature presents associated work that have been done in pre-

dicting pollutant concentrations. It will be noted that significant work has been done

applying land use regression (LUR) models in particular for prediction of pollutant

concentrations.

Henderson et al. [15] applied the method of Land Use Regression (LUR) to esti-

mate long-term concentrations of traffic-related Nitrogen Oxides and Fine Particulate

Matter. The authors used integrated 14-day mean concentrations that were measured

with passive samplers at 116 sites in Vancouver, British Columbia for spring and fall

2003. They estimated annual mean NO, and NO2 concentrations; the range for these

estimates achieved greater spatial variability than the reported regulatory range for

the region. They also investigated concentrations using LUR for fine particulate

2



matter (PM2.5) that was measured at a subset of 25 sites. The authors used some

fifty-five variables that described each sampling site, with these variables generated

in a Geographic Information System (GIS). The authors’ use of LUR presents a good

technique for predicting ambient air pollution concentrations. These predictions how-

ever were a yearly predicted concentration for each of the pollutants of study.

Ramos et al. performed two studies on this topic. In the first [25] they devel-

oped a hybrid interpolation technique that combined the inverse distance-weighted

(IDW) method with Kriging with external drift (KED), and applied it to daily PM2.5

levels observed at 10 monitoring stations. The authors achieved a down-scaled high-

resolution map for PM2.5 for the Island of Montreal. For the KED interpolation, the

authors used spatio-temporal daily meteorological estimates and spatial covariates

as land use and vegetation density. They developed different KED and IDW daily

estimation models for the year 2010 for each of the six synoptic weather classes. They

developed the clusters using principal component analysis and unsupervised hierar-

chical classification. They found that the performance of the hybrid model was better

than that of the KED or the IDW alone.

In their second study [26] they looked at spatial modelling of daily concentrations

of ground level ozone (O3) in Montreal for the year 2010. The authors assessed the

kriging with external drift (KED) model to estimate O3 concentrations by synoptic

weather classes for 2010. They compared these results with ordinary kriging (OK),

and a simple average of 12 monitoring stations. They also compared the estimates

obtained for the 2010 summer with those from a Bayesian maximum entropy (BME)

model. They found that the KED model with road and vegetation density as covari-

ates showed good performance for all six synoptic classes. They did note that future

work needed to be done to integrate the temporal dependency in the data in order to

not overstate the performance of the KED model.
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Sabaliauskas et al. [29] applied land-use regression (LUR) to characterise the spa-

tial distribution of ultra-fine particles (UFP) in Toronto. They used measured Particle

Number (PN) concentrations from residential areas around Toronto, Canada, between

June and August 2008. They used combination of fixed and mobile monitoring to

assess spatial gradients between and within communities. Their mobile data included

average PN concentrations collected on 112 road segments from 10 study routes that

were repeated on three separate days. They used the mobile data to create the land-

use regression model while the fixed sites were used for validation purposes. The

authors found that the predictor variables that best described the spatial variation

of PN concentration included population density, total resource and industrial area

within, total residential area, and major roadway and highway length. They found

that the LUR model successfully predicted the afternoon peak PN concentration but

over-predicted the 24-h average PN concentration.

Weichenthal et al. [32] applied a LUR model for characterising the spatial dis-

tribution of ambient ultra-fine particles (UFPs). The authors developed a land use

regression model for ambient UFPs in Toronto, Canada using mobile monitoring data

collected during summer/winter 2010–2011. They included 405 road segments in the

analysis. Their final model explained 67% of the spatial variation in mean UFPs and

included terms for the logarithm of distances to highways, major roads, the central

business district, Pearson airport, and bus routes as well as variables for the number

of on-street trees, parks, open space, and the length of bus routes within a 100 m

buffer. They found that there was no systematic difference between measured and

predicted values when the model was evaluated in an external data set. They devel-

oped this model to be used in the evaluation of the chronic health effects of UFPs

using population-based cohorts in the Toronto area.

Though there have been multiple studies associated with the prediction of pollu-

tant concentrations, we have noted that the main concentration of previous work has

4



been done employing land use regression models. These studies mainly accomplished

these predictions at the yearly level, and some of the studies did not fully employ the

temporal dependency. We will therefore set out in this study to employ the temporal

dependency and predict a daily mean for pollutant concentrations.

2.2 The Pollutants

As stated in the introduction, we are concerned with acute and long term health

effects that air quality has on morbidity and mortality. It is critical that we have an

understanding of the structure and chemistry of the pollutants we are studying. We

are focusing on three pollutants, nitrogen dioxide (NO2), ozone (chemically known

as trioxide, O3) and particulate matter (PM2.5).

Nitrogen Dioxide (chemical formula NO2) in its natural form is a pungent gas

with a light brown appearance that is produced both naturally and artificially. Nitro-

gen Dioxide is a natural gas in the atmosphere, produced from the stratosphere, from

volcanoes, lightning and also from bacterial respiration. This naturally occurring gas

is critical in the process of absorbing sunlight and regulating the chemistry of the

troposphere. It plays a significant role in determining ozone concentrations. Arti-

ficially NO2 is a produced as a by-product from power plants, industrial processes,

cigarette smoking, butane and also from fertilisers. Chronic exposure to NO2 can

cause respiratory effects in humans and can also worsen respiratory illness in people

already suffering from respiratory related illnesses such as asthma. Health Canada

recommends [6] a residential maximum exposure short term limit of 170 µg/m3 (90

ppb) NO2 and long term limit of 20 µg/m3 (11 ppb). The critical effects are decreased

lung function and increased airway responsiveness in asthmatics.

In 2014, the annual average concentrations of NO2 in the air varied from 4.4 ppb in

Atlantic Canada to 10.5 ppb in British Columbia. Concentrations of NO2 were lower
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in Atlantic Canada, southern Quebec and the Prairies and northern Ontario region

than in 2013. However, concentrations were higher in southern Ontario and British

Columbia in 2014 compared to the previous year. Since 2000, decreasing trends in

NO2 concentrations were observed for all regions in Canada. Southern Ontario had

the largest decreasing trend at 0.7 ppb per year, followed by southern Quebec and

British Columbia with 0.5 ppb per year and 0.4 ppb per year, respectively. Atlantic

Canada had a decreasing trend of 0.3 ppb per year, while the Prairies and northern

Ontario region had a decreasing trend of 0.2 ppb per year [6].

Ozone or trioxide (chemical formula O3) is an inorganic molecule. It presents as

a pale blue gas with a distinctively pungent smell. Ozone is formed naturally from

dioxygen (O2) by the action of ultraviolet light and also atmospheric electrical dis-

charges, and is present in very low concentrations throughout the Earth’s atmosphere.

Ozone is also produced artificially by the burning of fossil fuels, methane, and from

ozone generators used to produce ozone for cleaning air or removing smoke odours in

unoccupied rooms. Ozone in the upper atmosphere (10 to 50 kilometres above the

earth’s surface) protects the earth from the sun’s harmful ultraviolet radiation. In

the lower atmosphere and at ground level, ozone is harmful to human health. It can

cause breathing problems, reduce lung function and aggravate asthma and other lung

diseases. Ozone is not directly emitted by anthropogenic sources, but is formed in the

lower atmosphere when precursor gases such as nitrogen oxides (NOx) and volatile

organic compounds (V OCs) react in sunlight. Ozone (ground-level) can damage veg-

etation and it is one of the leading causes for summertime smog. Ground-level ozone

can harm lung function and irritate the respiratory system. Exposure to ozone (and

the pollutants that produce it) is linked to premature death, asthma, bronchitis, heart

attack, and other cardiopulmonary problems [13]. Health Canada recommends a res-

idential maximum exposure limit of 40 µg/m3 (20 ppb) ozone, based on an averaging

time of 8-hours [4]. Above this limit there is a decrease in pulmonary function and
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increases in subjective respiratory symptoms.

In 2014, the national annual average concentration of ground-level O3 was 32.9

parts per billion (ppb), or 0.1% higher than in 2013. The annual peak (4th-highest)

8-hour O3 concentration in 2014 was 53.4 ppb, or 3.5% lower than in 2013. Although

the annual peak concentration of O3 was frequently above the 2015 Standard before

2008, it has consistently been below for the last seven years. In Canada, there are

two national ozone (O3) indicators:

1. An annual average concentration indicator that is based on the annual average

concentrations (of the daily maximum 8-hour averages); it is used to capture

prolonged or repeated exposures over longer periods or chronic exposure.

2. An annual peak (4th-highest) 8-hour indicator that is based on the annual 4th-

highest daily maximum 8-hour average concentrations; it is used to capture

immediate or acute short-term exposure.

The peak O3 indicator is calculated using an approach that is aligned with the 2015

Canadian Ambient Air Quality Standards (the standards) [4].

Particulate Matter (PM2.5) or fine particulate matter is a general term for all

small particles found in air measuring equal to or less than 2.5 micrometres in aero-

dynamic diameter. It is a complex mixture with its constituents varying in shape,

size, surface area, density, and chemical composition. Indoor PM2.5 is composed of

sources such as smoking, cooking, cleaning and from external PM2.5 sources such as

traffic, heating (in winter), industrial processes, among others, that have infiltrated

from outside. Average indoor PM2.5 concentrations in different Canadian cities were

less than 15 µg/m3 in homes without smokers and 35 µg/m3 in homes with smokers

[5]. In general, indoor PM2.5 levels were lower than outdoor concentrations measured

directly outside the home, except in homes with smokers. Studies have investigated
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the relationship between indoor PM2.5 and health, presenting evidence for a relation-

ship between indoor PM2.5 levels and declines in lung function and increases in ex-

haled nitric oxide, a marker of airway inflammation in asthmatic children [10, 17, 18].

Changes in exhaled nitric oxide were however more strongly associated with outdoor

PM2.5 than indoor PM2.5. Other studies showed that the associations between in-

door PM2.5 and subtle changes in markers of cardiovascular disease have also been

observed in older adults [21, 1, 31].

Indoor levels of PM2.5 should be kept as low as possible, as there is no apparent

threshold for the health effects of PM2.5. It is impossible to entirely eliminate PM2.5

indoors, as among its sources are essential and everyday activities, such as cooking and

cleaning mentioned above, as well as infiltration from outdoor sources. Any significant

reduction in PM2.5 would be expected to result in health benefits, especially for the

elderly or children and other people with underlying health conditions. The Canadian

Ambient Air Quality Standards has set objectives for outdoor air quality in Canada

as 10 µg/m3 (annual) and 28 µg/m3 (24 hour) [12]. While Health Canada has not

set a maximum limit for indoor PM2.5 levels, they have advised that indoor levels be

kept lower than outdoor levels.

2.2.1 Pollutant units of measurement

For clarity, we will explain the units of measurements used for each pollutant. As

mentioned above NO2 and O3 are reported in ppb (parts per billion), while PM2.5

is reported in µg/m3 (micro-grams per cubic meter). Furthermore PM sizes are

measured in microns (micrometers), so for PM2.5 the reported measurement unit is

associated with particulate matter of size 2.5 microns. The unit µg/m3 is generally

known as mass per unit volume, while ppb is generally known as volume mixing ratio.

Inmass per unit volume, the mass of pollutant is expressed as a ratio to the volume
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of air. Since the volume of a given packet of air is dependent upon the temperature

and pressure at the time of sampling, the pollutant concentration expressed in these

units is dependent on the conditions at the time of sampling. In volume mixing

ratio, the unit expresses the concentration of a pollutant as the ratio of its volume if

segregated pure (no air), to the volume of the air in which it is contained. Ideal gas (a

hypothetical gas whose molecules occupy negligible space and have no interactions,

and that consequently obey the gas laws exactly) [16] behaviour is assumed and thus

the concentration is not dependent upon temperature and pressure as these affect

both the pollutant and the air to the same extent. As a consequence of the gas laws

[30], a gas present at a volume mixing ratio of 1 ppb is not only 1cm3 per 10−9 cm3

of polluted air, it is also 1 molecule per 10−9 molecules and has a partial pressure of

one billionth of the atmospheric pressure.

2.2.1.1 Unit conversions

It is useful to know the unit conversion between µg/m3 and ppb, so we give a brief

derivation of the conversion formula in this section. Under standard conditions (0

degrees Centigrade, 1013.25 hectopascals-hPa), one mole of an ideal gas occupies

22.414 litres(l). The mass of a pollutant p,Mp in grams (g) can therefore be converted

to its equivalent molecular volume Vp in litres:

Vp =
Mp

MW
(22.414 l)

where MW denotes the molecular weight of the pollutant (measured in g/mol). For

measurements at pressure and temperature other than the standard conditions, cor-

rections to the standard volume must be applied, based on the ideal gas law:

22.414 l

(
T

273.15 K

)(
1013.25 hPa

P

)
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where T and P are the ambient temperature (measured in Kelvins) and pressure

(measured in hectopascals-hPa) at the time of measurement, respectively. Therefore,

ppb = Vp/Va

where Va and Vp are the air and pollutant volume, respectively. Combining the

equations gives the conversion formula:

ppb =

(
Mp

MW
(22.414 l)

(
T

273.15 K

) (
1013.25 hPa

P

)
Va

)(
1, 000, 000 l/m3

)
.

2.3 Temporal Processes

The data of interest in this study is generated from observations over time (time

series) in a given space. We need to investigate the change in time that occurs in the

data of interest, being the observations at any given location ("constant location").

We are interested in the temporal processes associated with the observations, noting

that these observations come with measurement error. We begin with some definitions

that we will use throughout the project.

We denote [A] and [A|B] to represent the marginal and conditional probability

distributions, respectively. Then the joint distribution of A and B can be written as

[A,B] = [A|B][B],

and the law of total probability can be written as

[A] =

∫
[A|B][B]dB,

where
∫
g(B) [B] dB denotes the expectation of some function g(B) of B. In terms

of this notation, Bayes’ Theorem can be written as

[B|A] =
[A|B][B]∫

[A|B][B]dB
=

[A|B][B]

[A]
.

The following definitions as set out in [8] are critical for the understanding of Spatio-

Temporal Modelling.
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Bayesian Hierarchical Modelling (BHM)

If we let Z represent the data, Y the hidden process that we need to predict and

θ the unknown parameters, then the basic representation of a Bayesian Hierarchical

Model is obtained by

Data model: [Z|Y, θ]

Process model: [Y |θ]

Parameter model: [θ]

Note that sometimes [Z|Y, θD] and [Y |θP ] is written to emphasise the data-model

parameter θD and the process-model parameters θP . Then θ = {θD, θP}, and the

parameter model is {θD, θP}.

The joint distribution is therefore given as

[Z, Y, θ] = [Z|Y, θ][Y |θ][θ]

From Bayes’ Theorem the conditional distribution of Y and θ, given the data Z

(which is called the posterior distribution) is obtained as

[Y, θ|Z] =
[Z|Y, θ][Y |θ][θ]

[Z]
,

where

[Z] =

∫ ∫
[Z|Y, θ][Y |θ][θ]dY dθ.

All inference on Y and θ in the BHM depends on this distribution (within the frame-

work of Bayesian decision theory).

Empirical Hierarchical Modelling (EHM)

An EHM results from estimating the parameters directly from the data and "plug-

ging" them back into the model. The representation of EHM is obtained by

Data model: [Z|Y, θ]
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Process model: [Y |θ]

where it is assumed the parameter θ is fixed, but unknown. Formally a third level

could still be considered, but where the parameter model [θ] concentrates all its

probability at the fixed θ. We can write the data-model parameters as θD and the

process-model parameters as θP by writing the two-level model as [Z|Y, θD], [Y |θP ],

and θ = {θD, θP}. In an EHM, all probability distributions are conditional on θ.

Inference on Y depends on the distribution

[Y, θ|Z] =
[Z|Y, θ][Y |θ]

[Z|θ]
,

where [Z|θ] =
∫

[Z|Y, θ][Y |θ]dY . The "Empirical" part of the EHM arises from

replacing [Z|Y, θ] with [Z|Y, θ̂], where θ̂ is an estimator of θ (that is, depends only on

the data Z). It is also possible that θ is estimated from an independent study.

2.3.1 Characterisation of Temporal Processes

A temporal process can be written as Y (·) or more completely as

Y(r) : r ∈ Dt

where r indexes the time of the possibly multivariate process Y(·) and Dt is a subset

of R1. The process Y may be deterministic or stochastic. The model is quite general

if the possibility that the index set Dt can be a random set. For a continuous-time

process, it is assumed that Dt is fixed and has nonzero length in the continuous

interval (−∞,∞), generally assuming that Dt = [0,∞). For a discrete-time process

(time series), a fixed index set of finite or countable set of times, Dt = {0,±1,±2, ...}

is assumed; generally the set is limited to Dt = {0, 1, 2, ...}. A third type of process

is a temporal point process, where Dt is assumed to be a random set made up of

randomly occurring points (events) in R1. For example, the time of occurrence of a

tornado in a given country could be represented as a Poisson point process in time.
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For clarity, a continuous-time process is denoted Y(t) and a discrete-time process is

denoted Yt.

When working with real-world temporal processes, typically we have only one

realisation of that process and the associated time series can be viewed as just one

sample from a population. This population is characterised by its joint distribution.

As an example, consider a time series given by {Yt : t = 0, ..., T}. Its joint distribution

is denoted by

[Y0, Y1, ..., YT ]

From our basic results earlier we can write

[Y0, ..., YT ] = [YT |YT−1, ..., Y0][YT−1|YT−2, ..., Y0]...[Y1|Y0][Y0]. (2.1)

For practical modelling additional assumptions is needed about the components of

Equation (2.1). Equation (2.1) can be assumed to be modelled by a first-order Markov

property.

[Yt|Yt−1, ..., Y0] = [Yt|Yt−1], for all t = 1, 2, ... (2.2)

This property suggests a "lack of memory", so only the most recent past determines

the conditional probabilities about the present given the whole past, so Equation (2.1)

becomes

[Y0, ..., YT ] = [Y0]
T∏
t=1

[Yt|Yt−1]. (2.3)

A continuous-time process Y (t) might be described by the simple differential equa-

tion in which the rate of change of the process Y with time is simply related to a

function of the process at time t:

dY (t)

dt
= f(Y (t)), t ≥ 0, (2.4)

where the function f may be linear or nonlinear in Y (t). Thus given some initial

condition Y (0), the evolution of the process is completely determined by the function
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f . If we are only limited to processes at discrete times then an analogous equation

could be written as,

Yt =M(Yt−1), t = 1, 2, ..., (2.5)

whereM maps the process from the previous time t−1 to the current time t. Again,

given an initial condition Y0, the process {Yt : t = 0, 1, 2, ...} is completely determined

by the functionM.

For a stochastic or random processes, it can be said that the future is only partially

determined from the past. If we added a random "noise" component to Equation

(2.5):

Yt =M(Yt−1) + ηt, t = 1, 2, ..., (2.6)

where {ηt : t = 1, 2, ...} is a mean-zero random process and ηt is statistically indepen-

dent of Yt−1, then this random-noise term implies that the process {Yt} is random as

well. The next section gives some fundamental principles on time series, which will

assist in framing the background for this thesis.

2.3.2 Time Series Fundamentals

We begin by defining some basic functions of a discrete-time sequence of real-valued

random variables {Yt : t ∈ D}. Given Dt = {0, 1, ...} and that {Yt : t = 0, 1, ..., } is a

time series then the mean function is defined as

µt ≡ Et(Yt), t ∈ Dt, (2.7)

which is simply the mean of the process relative to the underlying probability space.

A simple model for µt is normally chosen with the uncertainty placed in the remaining

stochastic component, {Yt − µt : t = 0, 1, ...}. This uncertainty is described through

the autocovariance function,

CY (t, r) = cov(Yt, Yr) = E{(Yt − µt)(Yr − µr)}, t, r ∈ Dt (2.8)
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which describes how the process co-varies across different time lags, after accounting

for the mean function. Here CY (t, r) = CY (r, t) and also the variance is a special case

of the autocovariance where CY (t, t) = var(Yt) = σ2
t . The auto-correlation function

is then obtained after normalising, and measures the linear statistical dependence

between different members of the time series. Formally,

ρY (t, r) =
CY (Yt, Yr)√

CY (t, t)CY (r, r)
, t, r ∈ Dt. (2.9)

where ρY (t, r) ∈ [−1, 1].

A sufficient condition for Equations (2.8) and (2.9) to exist is σ2
t < ∞, for all

Dt. A common assumption that is normally made for time series models is that of

stationarity. There are different forms of stationarity for d -dimensional space, we are

interested in the special case of one dimension (time).

Definition 1. Strong stationarity of {Yt} is an assumption that says that any finite

collection, {Yt1, ..., Ytm}, of random variables from the time series has the same joint

distribution as {Yt1+τ , ..., Ytm+τ}, for any τ ∈ {0,±1,±2, ...}. Weak stationarity of

{Yt} is an assumption that requires initially the existence of the second moment (then

the first moment automatically exists); that is, assume var(Yt) ≡ σ2
t < ∞, for all

t ∈ Dt. Time series whose variance are finite are said to be second-order stationary

if

(i) E(Yt) ≡ µ, for all t ∈ Dt.

(ii) cov(Yt, Yr) ≡ CY (t− r), for all t, r ∈ Dt.

Second-order stationarity is an assumption that says any pair, Yt, Yr, has exactly the

same first and second moments (including cross-moments which defines the autoco-

variance function) as the pair Yt + τ, Yr + τ , for any τ ∈ {0,±1, ...}. For processes

with finite variance, strong stationarity implies second-order stationarity, but not vice

versa.
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2.3.2.1 White-Noise Process

A white-noise process is defined as a discrete-time random process {Wt : ...,−1, 0, 1, ...}

whose elements are mutually independent and have a common probability density

function. Typically, its mean µw is assumed to be zero, and its autocovariance func-

tion is

C(τ) =


σ2
w, τ = 0

0, τ = ±1,±2, ...,

(2.10)

where σ2
w > 0 is the white-noise variance.

2.3.2.2 Random-Walk Process

A time series {Yt} is said to be a random walk if

Yt = Yt−1 +Wt, t = 1, 2, ..., (2.11)

where Wt is the white-noise process with mean µw and variance σ2
w.

2.3.2.3 Autoregressive Process

In this study the observations of environmental processes depend on one or more

observations that immediately proceed it. A time series that models this structure is

the autoregressive (or AR) process. The model that is introduced for the modelling

of our pollutants in Chapter 3 employs the AR process, hence a formal definition is

presented here. A time series {Yt} is said to be an autoregressive process of order p,

AR(p), if

Yt = m1Yt−1 +m2Yt−2 + ...+mpYt−p +Wt, t = ...,−2,−1, 0, 1, 2, ..., (2.12)

where Wt is a white-noise process with mean zero and variance σ2
w, and where {mi :

i = 1, ..., p}, are fixed but unknown parameters. Specifically we will employ the AR(1)
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process, that is

Yt = m1Yt−1 t = ...,−2,−1, 0, 1, 2, ..., (2.13)

where Wt is a white-noise process with mean zero and variance σ2
w, and we write

α = α1 for the notional simplicity. By back-substitution, we obtain

Yt = Wt + αWt−1 + α2Wt−2 + α3Wt−3 + ...

=
∞∑
k=0

αkWt−k

(2.14)

where it is assumed that |α < 1|. That is, the AR(1) process can be written as an

infinite series of white-noise random variables. Since E(Wt) = 0 and var(Wt) = σ2
w,

it follows that E(Yt) = 0 and

var(Yt) = σ2
w

(
1 + α2 + α4 + ...

)
=

σ2
w

1− α2
(2.15)

which does not depend on t.

2.4 Spatial Processes

This section follows closely the work of Cressie and Wikle [8]. A spatial process can

be considered as a temporal snapshot, a temporal aggregation or a temporally frozen

state of space-time process. We will present some definitions followed by some key

concepts to facilitate our understanding of spatial processes.

Definition 2. The variogram is defined as the variance of the difference between

field values at two locations (s1 and s2) across realisations of the field [9]:

2γ(s1, s2) = var (Z(s1)− Z(s2)) = E
[
((Z(s1)− µ(s1))− (Z(s2)− µ(s2)))2

]
.

If the spatial random field has constant mean µ, this is equivalent to the expectation

for the squared increment of the values between locations s1 and s2 (where s1 and s2
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are points in space and possibly time):

2γ(s1, s2) = E
[
(Z(s1)− Z(s2))2] .

2.4.1 Data, Measurement and Error

Data as we know comes with error: there are the obvious errors associated with mea-

suring, manipulating, archiving, there are however other errors associated with the

discrete spatial and temporal sampling of an inherently continuous system. There are

scales of variability that are unresolved and that will further "contaminate" the ob-

servations. Variability results from two important sources: one from the sources due

to measurement of the phenomenon of interest, and the other due to the incomplete

knowledge of the phenomenon. These are called the "data process" and "process

model" respectively. The nugget effect is defined as being equal to the discontinuity

of the variogram at the origin. This discontinuity can be made up of both measure-

ment error and spatial dependence at scales smaller (microscales) than the available

distances between observations.

It must be noted that care must be taken when applying kriging as some sta-

tistical software may fail to filter out these variability due to measurement error.

The model that we will introduce later in this thesis employs algorithms that does

not filter out the variability mentioned above. Consider an unobserved air quality

measurement such as NO2 at a known location along with observed Nitrogen Diox-

ide (NO2) readings at known locations throughout our region of interest (Toronto).

The data process (D) at the location of our region (s) is given by Ds ⊂ Rd. Then

Y (·) ≡ {Y (s) : s ∈ Ds} is defined to be the true NO2 value at location so. The obser-

vations are "noisy" versions of the true NO2 reading at known locations {s1, ...., sm};

the observations can be written as (assuming additive measurement error):

Z(si) = Y (si) + ε(si) i = 1, ....,m
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where, independently of Y (·), ε(·) ≡ {ε(s) : s ∈ Ds} is a white-noise process with

mean zero and variance σ2
ε ≥ 0.

The optimal spatial predictor of Y (s0) at known location s0, based on squared error

loss and data,

Z ≡ (Z(s1), ..., Z(sm))′,

is given as

E(Y (s0)|Z).

2.4.2 The Nugget Effect explained by simple Spatial Hierar-

chical Model

It is assumed that Y (·) and ε(·) in Z(si) = Y (si) + ε(si), are independent Gaussian

processes, and therefore only the first two moments are needed to characterise com-

pletely the probabilistic distributions. By further assuming second-order stationarity

the following is defined:

CY (h) ≡ cov(Y (s), Y (s+h)), for all s, s+h ∈ Ds.

Clearly σ2
Y ≡ CY (0), and

lim
h→0

(CY (0)− CY (h)) ≡ CY (0+) ≡ σ2
0 ≥ 0,

with σ2
0 ≤ σ2

Y . Then σ2
0 represents the variance of the microscale component of the

process Y (·). Since var(ε(s)) = σ2
ε ,

cov(Z(s), Z(s+h)) ≡ CZ(h) =


σ2
Y + σ2

ε , h=0

CY (h), h 6=0

which implies that

lim
h→0

(CZ(0)− CZ(h)) ≡ CZ(0+) = σ2
0 + σ2

ε ≡ c0 ≥ 0
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This quantity, c0, is the "nugget effect" and is made up of two non-negative compo-

nents: σ2
0 (the microscale variance of Y (·)) and σ2

ε (the measurement-error variance

of Z(·)).

The geostatistical model on Ds ⊂ Rd described above can be written hierarchically as:

Data model: Conditional on σ2
ε , and for i = 1, ...,m,

Z(si)|Y ((si), σ2
ε ∼ iid Gaussian(Y (si), σ2

ε).

Process model: Conditional on µ and CY , Y (·) is a stationary Gaussian process

with mean µ and covariance function CY (h);h ∈ Rd.

For the optimal spatial prediction mentioned earlier in this section geostatistics uses

an EHM approach, estimating unknown parameters of the HM (such as, σ2
ε , µ, CY )

from the empirical variogram.

The nugget effect is important in the sense of environmental modelling such as

the pollutant modelling that we set out to accomplish in this work. If we were to

ignore the nugget effect in our model accuracy would be affected as a result of the

errors mentioned above that are associated with σ2
ε and σ2

0 being ignored. This would

result in inaccuracies in our predictions of the true pollutant values (Y (·)).
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3. Spatio-temporal modelling

3.1 The model

We look at the framework of the model in this chapter along with additional deriva-

tions that help to shape that framework. In this section we set out to explain the

model [2] used in the project. The pollutants being modelled as stated in the back-

ground reading are: Ozone (O3), Nitrogen Dioxide (NO2) and Particulate Matter

(PM2.5). For observations of the pollutants of study we employ the following distri-

bution:

yit ∼ Normal
(
ηit, σ

2
e

)
, (3.1)

Where yit denotes the logarithm of the pollutant concentration measured at site si

(i = 1, ..., n) and day t = 1, ..., T , σ2
e the variance of the measurement error defined

by a Gaussian white-noise process, both spatially and serially uncorrelated (that is

there is no correlation (similarity) between observations at different sites and days),

and

ηit = b0 +
M∑
m=1

βmxmi + ωit, (3.2)

where b0 is the intercept and β1, ..., βM are the mixed effects related to meteorological

and orographical covariates x1, ..., xm. ωit refers to the latent or inferred spatio-

temporal process (that is the true unobserved level of pollution) which changes in
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time with first-order autoregressive dynamics and spatially correlated innovations:

ωit = aωi(t−1) + ξit, (3.3)

with t = 2, ..., T , |a| < 1 and ωi1 ∼ Normal
(

0, σ2

(1−a2)

)
. ξ is a zero-mean Gaussian

field, assumed to be temporally independent and characterised by the following spatio-

temporal covariance function:

Cov (ξit, ξju) =


0, if t 6= u

Cov (ξi, ξj) , if t = u
, (3.4)

for i 6= j, where Cov (ξit, ξju) is given by the Matèrn spatial covariance function:

Cov (ξ(si), ξ(sj)) = Cov (ξi, ξj) =
σ2

Γ(λ)2λ−1
(κ ‖ si − sj ‖)λKλ (κ ‖ si − sj ‖) . (3.5)

Equation 3.4 is separable and can be written as the product of a purely spatial and

purely temporal covariance function.

3.2 Stochastic Partial Differential Equation (SPDE)

approach

In this section we set out to explain the SPDE methodology employed in the INLA

model used in Chapter 5. Rue and Tjelmeland, see [28], proposed approximating

a continuous field using a Gaussian Markov Random Field (GMRF). We can have

continuous random fields that are Markov, which present the case when the continuous

field is a solution of a linear stochastic partial differential equation (SPDE). The

SPDE approach used in INLA consists of representing a continuous spatial process

(a Gaussian field) using a discretely indexed spatial random process (a GMRF). The

starting point is the linear fractional SPDE:(
κ2 −∆

)α
2 (τξ(s)) =W(s), (3.6)
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where s ∈ Rd, ∆ is the Laplacian, α controls the smoothness, κ > 0 is the scale

parameter, τ controls the variance, and W(s) is the Gaussian spatial white noise

process. The exact stationary solution to this SPDE is the stationary GF ξ(s) given

by

Cov (ξ(si), ξ(sj)) = Cov (ξi, ξj) =
σ2

Γ(λ)2λ−1
(κ ‖ si − sj ‖)λKλ (κ ‖ si − sj ‖) , (3.7)

where ‖ si−sj ‖ is the Euclidean distance between two geometric locations, si, sj ∈ Rd,

σ2 is the marginal variance, and Kλ denotes a modified Bessel function [27] of the

second kind, of order λ > 0

Kλ (x) =

∫ ∞
0

e−x cosh t cosh λt dt λ > 0 (3.8)

Note the Bessel function is used as there is a need to find separable solutions for

Laplace’s equation. The order λ > 0 measures the degree of smoothness of the

process and is usually kept fixed. κ > 0 on the converse is a scaling parameter related

to the range r, the distance at which the spatial correlation becomes almost null.

The link between the SPDE in Eq. (3.5) and the Matèrn parameters is given

by the following equations involving the smoothness parameter λ and the marginal

variance σ2: 
λ = α− d

2

σ2 = Γ(λ)

Γ(α)(4π)
d
2 κ2λτ2

.

For the case of s ∈ R2 (d = 2), it follows that
λ = α− 1

σ2 = Γ(λ)
Γ(α)(4π)κ2λτ2

.

For the INLA model used in this project the default value for the smoothness of the

parameter is α = 2 (corresponding to λ = 1). For α = 2 the range r and the variance

σ2 are given by

r =

√
8

κ
(3.9)
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σ2 =
1

(4π)κ2τ 2
(3.10)

The solution to the SPDE represented by the stationary and isotropic Matèrn Gaus-

sian field ξ(s), can be approximated using the finite element method (FEM) [20]

through a basis function representation defined on a triangulation (see Section 3.3)

of the domain D.

ξ (s) =
G∑
g=1

ϕg (s) ξ̃g. (3.11)

Here

G is the total number of vertices of the triangulation,

{ϕg} is the set of (deterministic) basis functions, and

ξ̃g are zero mean Gaussian distributed weights

In order to obtain a Markov structure, the basis functions are chosen to have a local

support and to be piece-wise linear in each triangle, i.e., ϕg is 1 at vertex g and 0 at

all other vertices. Using Neumann boundary conditions [22], it follows that (for the

case α = 2) the precision matrix Q for the Gaussian weight vector ξ̃ = {ξ̃1, ..., ξ̃G} is

given by

Q = τ 2
(
κ4C + 2κ2G + GC−1G

)
(3.12)

where the generic element of the diagonal matrix C is

Cii =
∫
ϕi(s)ds

and the one of the sparse matrix G is

Gii =
∫
∇ϕi(s)∇ϕj(s)ds (where ∇ denotes the gradient)

The precision matrixQ, whose elements depend on τ and κ, is sparse and consequently

ξ is a GMRF with distribution Normal(0,Q−1) and represents the approximated
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solution to the SPDE. It is worth noting that the default internal representation

for the SPDE parameters in the R-INLA package that was used for the project is

log(τ) = θ1 and log(κ) = θ2 where θ1 and θ2 are given a joint Normal prior distribution

(by default independent).

3.2.1 Defining the projector (observation) matrix

The response mean (ηi) that correspond with the linear predictor from normally

distributed observations (yi ∼ Normal(ηi, σ2
e)) is defined as

ηi = b0 + ξi, (3.13)

where b0 represents the intercept and ξi represents the random effect. This linear

predictor can be represented by

ηi = b0 +
G∑
g=1

Aig ξ̃g, (3.14)

given the basis function representation of Equation (3.10). Here ϕg(si) is the gth

basis function evaluated in si, the linear predictor can be expressed as

ηi = b0 +
G∑
g=1

ϕg(si)ξ̃g, (3.15)

with Aig = ϕg(si) being a common element of the sparse matrix A which maps the

GRMF ξ̃ from the G triangulation vertices to the n observation locations.

3.3 Mesh pre-construction

The triangulation of the spatial domain mentioned in Section 3.2 is obtained by

subdividing the spatial domain into a set of non-intersecting triangles, where any two

triangles meet at most, a common edge or corner see Figure 3.1. There is a trade off

between accuracy of the GMRF representation and computational costs, we will look

at this trade off and look at a few meshes and discuss the mesh used for computation
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in the following.

3.3.1 Toronto mesh pre-construction

We now discuss the steps taken in constructing the mesh used for the Toronto study.

The R-INLA package uses the function inla.mesh.2d. Among the arguments that

inla.mesh.2d takes, we will look at the following: loc, loc.domain, max.edge and

offset. The loc argument is a non-optional argument that gives the coordinates

of the desired location of study. These coordinates may not necessarily include the

coordinates of the location of the sites where the pollutants were observed. Another

non-optional argument max.edge defines the required maximum edge for any given

triangle in the triangulation, this may be a one or two argument assignment. The

following code produces figure 3.1 which shows the mesh plot with max.edge defined

to be 1000 meters (1 kilometre).

mesh_0 <- inla.mesh.2d(loc = t_coords, max.edge = 1000)

In the case where max.edge takes two arguments, the second sets the maximum

edge for the triangles in the outer extension of the domain as seen in Figure 3.2. It

can be seen that adjusting the second value of max.edge produces a change in the

outer domain’s triangles as seen in the comparison of the plots in Figure 3.2 which

is produced by the following code. In mesh_1 the spatial domain is extended to the

outer. When we compare both plots in Figure 3.2 they would both yield equally

accurate results for the inner bounds of the spatial domain. The top plot would

produce more accurate results for the outer bound as opposed to the bottom plot.

The latter plot would however be favourable as it accomplishes the task of reducing or

eliminating boundary effects whilst not compromising too much on computing costs.

mesh_1 <- inla.mesh.2d(loc = t_coords, max.edge = c(1000, 1000))

mesh_2 <- inla.mesh.2d(loc = t_coords, max.edge = c(1000, 2000))
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Figure 3.1: Triangulation for Toronto mesh, with maximum triangle edge defined as
1000 meters

Now let us examine the loc.domain arguments. Our previous plots assumed that

our area of study was bounded by the coordinates supplied, which means predictions

will only be calculated for the domain in the inner and outer sections which may not

necessarily include the desired complete domain as is the case with Toronto. Since

we are interested in the entire Toronto area and the coordinates (which in this case

are the pollutant monitoring stations), our previous mesh will not suffice as some of

the spatial domain is located outside this prescribed domain. To fix this we supply

loc.domain, the intended domain, which in this case is the Toronto city borders.

The following code produces Figure 3.3. It can be seen that once the Toronto border

is specified, our spatial domain now extends to include the entire Toronto area with

an outer domain specified to deal with the problem of boundary effect.

mesh_3 <- inla.mesh.2d(loc = t_cords, max.edge = c(1000, 2000),

27



Figure 3.2: Outer triangle bounds defined, first mesh (top) inner and outer max edge
similar, and second mesh (bottom) outer max edge twice inner max edge
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loc.domain = TO_border)

Figure 3.3: Triangulation of (third mesh) spatial domain with Toronto border defined

The offset, an optional argument, defines how much domain should be extended.

We examine this by looking at mesh_4, and mesh_5 with different offset as defined

in the code included. Note the top plot in Figure 3.4 offset is defined with a larger

offset for the outer, while in the bottom plot it is defined with a smaller offset for the

inner. Like max.edge, offset can take one or two arguments. If one argument is

supplied, it is automatically, by default, defined as the distance to which the domain

is extended in the outer. For two arguments passed to offset, they are defined as:

firstly, the distance to which the domain is extended in the outer, and secondly, as

the distance to which the domain is extended in the inner. Here we have supplied two

arguments to offset for the extent to which the domain is extended. We have also

made minor adjustments to max.edge. For demonstration purposes, we will revisit

this in the Section 3.3.2.
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mesh_4 <- inla.mesh.2d(loc = t_cords, max.edge = c(1500, 6000),

loc.domain = TO_border, offset = c(600, 18000))

mesh_5 <- inla.mesh.2d(loc = t_cords, max.edge = c(1500, 6000),

loc.domain = TO_border, offset = c(1000, 1500))

3.3.2 Toronto mesh and grid

In an ideal world where computational costs do not exist and time is not a constraint,

mesh_5 as constructed in Section 3.3, would be ideal for extremely precise calcula-

tions/predictions. Since we do not exist in the ideal world we will adjust our mesh

construction to reflect this reality. This process is a meticulous task and can be a

tedious one if not carefully thought out and executed. Before we can utilise a con-

structed mesh for INLA calculations we require a grid on which our predictions are

projected; this is required because we are working with data that is associated with

area and we have to take into account the spatial dependency through the neighbour-

hood structure.

From the background, our study observations tend to be more similar the closer

they are spatially, because they are influenced by similar conditions. Given 1, ..., n

where n denotes the number of locations at which the observations are recorded, then

for the given area i, its neighbourN (i) are defined as the areas which share its borders.

A first-order neighbour is a neighbour that shares the immediate border with area i,

a second-order neighbour shares its immediate border with a first-order neighbour of

area i, see [2], and Figure 3.5 demonstrates this concept graphically. Given the set

of neighbours N (i) and using the local Markov property that the parameter θi for

the ith area is independent of all other parameters, then the makegrid function is

used to construct the desired grid for Toronto. This function takes a spatial object.

This spatial object was retrieved from the City of Toronto [23] as a shapefile and
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Figure 3.4: Triangulation for Toronto pollutant stations with offset defined for com-
parison, fourth mesh (top) offset defined larger than fifth mesh (bottom)
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Figure 3.5: Neighbouring structure demonstrating first-order and second-order neigh-
bours

converted for use in R. The grid size that was used consisted of 500 metre grids.

This high resolution grid was chosen because we wanted to capture points in every

census tract area (we will define this in Chapter 4), our desired resolution being

1000 metre to 2000 metre grids. As mentioned earlier, higher max.edge defined in

inla.mesh.2d will result in less accuracy. Given that the grid used had a higher

resolution than desired, increasing the value of max.edge within reason does not

compromise our results, while reducing computing costs. The triangulation of the

spatial domain was adjusted until a balance of accuracy and speed was attained.
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On average it would take forty seconds to run a month’s calculation with R-

INLA (or four hours per year per pollutant), which resulted in a total run-time of

approximately 134 hours (for all three pollutants for for the eleven year period). This

was improved by using cloud computing and parallel programming to cut processing

times by half. Using the original mesh constructed in Section 3.3 would result in an

even slower run time and crashes as was experienced during the testing and adjusting

stages of mesh construction.

The final mesh, Figure 3.6, that was employed given the constraints was sufficient

for this study. The offset was extended beyond the "ideal" mesh boundaries to in-

crease accuracy lost due to increase in triangle size. The Toronto border has also

been included in the plot in Figure 3.6 to give a clearer picture of the final mesh

construction and relative dimensions.
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Figure 3.6: Mesh used for Toronto study (adjusted to balance computational costs
and accuracy)
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4. Data Pre-processing and Metrics

4.1 Data Retrieval

The data set used in this study is drawn from monitoring done through Environment

Canada’s National Air Pollution Surveillance (NAPS) program between 1982 and

2015. The program was established in 1969 to monitor and assess the quality of

ambient (outdoor) air in the populated regions of Canada. There are currently 286

sites in 203 communities in every province and territory. These pollutant stations

measure across these sites in part: sulphur dioxide (SO2), carbon monoxide (CO),

nitrogen dioxide (NO2), ozone (O3) and particulate matter (PM, both PM10 and

PM2.5). Figure 4.1 shows the NAPS network with more stations in populated areas

and less or none in underpopulated areas. These stations fluctuate in operation

over the period 1982 - 2015, which means station data is not continuous for the

period. This off-line and on-line nature of the sites vary for different reasons: some are

retired due to population decreasing, while others are brought on-line as population

increases; other factors that affect the fluctuation of stations include maintenance and

accessibility issues.

The monitoring stations are clustered in Census Divisions (CD). One division of

keen interest is the Toronto Census Division (CD3520) given that this area has the

most population in Canada. The Toronto CD has a total of 14 stations (Figure 4.2).

The Toronto census area has an approximate area of 630.2 km2 which is home for
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Figure 4.1: National Air Pollution Surveillance Program (NAPS) Network

approximately 2.81 million Canadians. As with other stations across the country the

Toronto CD stations’ active monitoring fluctuates with as few as 6 stations during

the 1974 - 1984 period to as many as ten stations during the 2007 - 2016 period. This

fact presents an additional problem in modelling the effects of air pollution, because

not only do the sites change but also the demographics, as people move into and out

of the Toronto census division.

The data set of study for this thesis was retrieved from Environment Canada’s

National Air Pollution Surveillance Program (NAPS). This data is presented in a

hourly format for each site and each pollutant is reported independently in separate

text files. The retrieval process is best described in the following steps:

1. The data was downloaded into R (statistical programming language) in its raw
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Figure 4.2: Toronto NAPS monitoring sites

form

2. The data was then pre-processed to account for missing values

3. It was then reordered using various R packages with the primary one being the

dplyr package

4. We then used various averages (which will be discussed further below) to com-

press the hourly observations to daily readings.
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4.2 Data Processing

In addition to the data retrieval methods employed we had to do an extensive amount

of data processing to clean the raw data. This raw data was the complete Canada

data set for all monitoring stations for the time period 1974 - 2016. Cleaning this

Figure 4.3: Toronto observed NO2 time series 2005 - 2016

included resolving issues such as missing data and corrupt data. The data was sorted

by city (Toronto), by station and over the required period. The period for the data

used in the study was cut to include only data for 2005 - 2016. This was done as the

data was too sparse before this period that it would not provide any additional value.

We present simple time series plots for the pollutants in Figures 4.3, 4.4, and

4.5 for pollutants NO2, O3, and PM2.5 respectively. These time series plots are not

free of measurement errors and are not the true representation of the Toronto city-

level concentration levels. The following chapter will investigate the spatio-temporal

factors discussed in the previous chapter to arrive at a more accurate "time series".

It is also interesting to see how observed pollutant concentrations vary by stations.
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Figure 4.4: Toronto observed O3 time series 2005 - 2016

In Figure 4.6 we present boxplots for each pollutant over the period 2005 - 2016 by

stations. It can be seen that there is not a huge variance between stations. Stations

that were closer to major highways however had elevated concentrations. We will

examine these trends in the next chapters.

Figure 4.5: Toronto observed PM2.5 time series 2005 - 2016
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Figure 4.6: Toronto pollutant concentration by station 2005 - 2016
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4.3 Metrics Comparisons

Here we will look at the effect of different averages on the daily reported metric for

Ozone (O3) and Nitrogen Dioxide (NO2). The selected method will be used in our

analysis for the Spatio-Temporal Analysis and we therefore see this as a critical step

in our analysis of the overall air quality metric calculations and predictions. Before

we present these methods we first look at a few plots of our data to have a feel of the

representative nature.

The data collection at stations is done on a "continuous" basis and aggregated

into hourly readings. For clarity, a day is considered to be the twenty four hour period

between 12am and 12am. We looked at different averages to aggregate these hourly,

24 hour readings to a daily reading. The methods used are listed below, being that

the method currently used by Environment Canada is the 24-hour arithmetic mean:

24-hour mean This is done by compressing the 24 hourly observations per day using

the arithmetic mean to produce one daily observation.

24-hour trimmed-mean This is done by compressing the 24 hourly observations

per day using the arithmetic mean then trimming a percentage of the lower and

upper tails of the data to produce one daily observation.

Daylight mean The daylight mean compresses the 12 hourly observations during

daylight hours (7am to 7pm) to a single daily metric utilising the arithmetic

mean

Max 8-hour Using the arithmetic mean, an eight hour maximum mean is computed

using eight of the 24 hourly observations per iteration and sliding throughout

the 24 observations. The maximum of these computations is then used for the

daily metric for the given day
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Max 6-hour mean This is computed similarly to the max 8-hour mean above using

six observations instead of eight.

24-hour median The median of the 24 hourly observations is computed as a daily

metric for this method.

Figure 4.7 shows the plots of each of the mentioned averages above.

Figure 4.7: Examining Means
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4.4 The Study Area: Census Tract

Our study area, Toronto, has as one of its features Census Tracts as defined for the

purpose of the census. The 2006, 2011, and 2016 census tracts differ slightly. This is

due to the increase in population which in turn causes an increase in housing which

results in an increase in the number of census tracts. For this study, we used the 2016

Census Tract which consists of five hundred and seventy two (572) geographic areas.

It is worth noting that the change in geography of these areas between 2006 to 2016

was minimal with the main change being additional areas (2006 had 531 such areas,

2011 had 544 areas).

Figure 4.8: 2016 Toronto Dissemination Tracts

Figure 4.8 shows the 2016 dissemination tract used in the study. These tracts

are identified by a unique geographical identifier, GeoUID (see Figure 4.9). Every
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five years there is a complete census which is available for public use from Statistics

Canada [7]. We used the data for the 2006, 2011, and 2016 population census which

gives population down to the census dissemination tract level. These years were used

to interpolate the yearly (2006 to 2016) population for each tract assuming a linear

relationship.

Figure 4.9: Population data for 2006, 2011, and 2016 for Toronto Census Dissemina-
tion Tracts

In Chapter 3, we explained how our model predicts the posterior mean over a

500 metre grid. This grid’s resolution is finer that the census tracts’ area (meaning

each census tract area will have one or multiple grid points). To project the predicted

mean values to the census tract we used the overlay function (over) from the sp

package in R. We then used the arithmetic mean of the posterior means that were

located in each tract to achieve an average posterior mean per census dissemination

tract.
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Figure 4.10: Toronto Receptors proximity to Roads. Stations are denoted by blue,
while light grey denotes the local roads and black denotes the major highways

4.4.1 Stations’ proximity to roads

As with many of the world’s cities one of the main sources of air pollution for Toronto

is traffic. We have included a plot (see Figure 4.10) of the pollutant stations and

their proximity to the larger roads. It is important to note the proximity from the

the main highways in particular (black). Note that Figure 4.10 shows all the stations

that exist in Toronto over the last twenty years. These stations are not always active.

We show this full picture for visualization purposes of all sites and their proximity to

major roadways. In the next chapter we will compare how pollutant levels vary with

proximity to major highways in particular.
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5. Discussion and Results

We begin our analysis by presenting and discussing results from the model described

in Chapter 3. The data used for each pollutant (NO2, O3, and PM2.5) were prepared

for the model as described in Chapter 4. Our model is implemented through R-INLA

[2] which requires the following for computing the required mean field for Toronto:

1. Pollutant data which we have called

Toronto_Data

2. Monitoring Station coordinates which we denote

TO_coords

3. Toronto borders which we denote

TO_border

4. Toronto grid discussed in Chapter 3.3.2 denoted

TO_grid

The pollutant data frame mentioned above is stacked by days (see Figure 5.1). Pre-

dictions are computed per "stacked" day (where each day’s data is presented per

station, then the following day per station). As mentioned in Chapter 4, our data
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Figure 5.1: Pollutant (NO2) data frame used as input for INLA computations

set consists of data for each pollutant for the period January 1, 2006 to December

31, 2016. We also presented the pollutant stations for Toronto in Chapter 4, with

some of these stations going online (active) or offline (inactive) due to various reasons.

These reasons include geographical relocation of stations, changes in population, and

other factors. We have employed four stations for our computations as these stations

were online for the entire study period, and furthermore they represented Toronto

geographically.

Stations are spread as North Toronto (North York area, north of highway 401),

East Toronto (Scarborough area), South Toronto (downtown area), and West Toronto

(highway 401 north of Etobicoke and west of Pearson International Airport). Note

the weather related covariates in the data frame Toronto_Data, were chosen from

the Toronto Pearson weather station as the station was active for the study period.

Missing weather data was replaced with a moving arithmetic mean. These covariates

along with the geostatistical covariates for each pollutant station is also presented in

Figure 5.1. In addition, we have assumed that the average weather conditions per

day were the same throughout Toronto (as measured at the Toronto Pearson weather

station). It is also important to note that the respective pollutant measurements are

47



Symbol Definition
A Altitude (meters)
UTMX and UTMY Universal Transverse Mercator (UTM) X and Y

coordinates see Chapter 4.4.1
WS Wind Speed measured in kilometres per hour (km/h)
WD Wind Direction measured in tens of degrees (10’s degrees,

where 10 10’s deg is 100 degrees
PREC Precipitation measured in millimetres (mm)
TEMP Temperature, collected as degrees Celsius and

converted to Kelvins (K) for computation

Table 5.1: Covariates used in INLA

log transformed as required by our model (see Equation (3.1)).

The grid explained in Section 3.3.2 is plotted in Figure 5.2. This grid consists

of 5332 points, and our interest lies in predicting the posterior mean for each of

these points. The mesh used in the Toronto study (see Figure 3.6) was created from

G = 306 vertices. This mesh was then used to create the Matèrn SPDE object and

the projector matrix A (from Section 3.2) using the following code:

Toronto_spde <- inla.spde2.matern(mesh = Toronto_mesh, alpha=2)

A_est <- inla.spde.make.A(mesh = Toronto_mesh,

loc = coords.allyear,

group = Toronto_Data$time,

n.group = n_days)

stack_est <- inla.stack(data = list(logNO2 = Toronto_Data$logNO2),

A = list(A_est, 1),

effects = list(c(s_index, list(Intercept = 1)),

list(Toronto_Data[,3:9])),

tag = "est")

Note the projector matrix A’s (object A_est) number of columns is given by the

number of mesh vertices times number of time points (days). In running the INLA
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Figure 5.2: Toronto grid of 5332 points (grey area of plot), blue dots denote the
monitoring stations

trials for the chosen mesh (306 vertices) it was noticed that the program would break

for time points beyond forty points (days) as a result of the limited computing power.

The data was computed by months which reduced the time points to at most 31 days,

which resulted in a 306 x 31 columns by 5332 number of grid points rows projector

matrix. The group argument represent the time grouping (4 measurements for each

day, one from each of the stations of study) and the n.group arguments represent

the number of groups (28, 29, 30 or 31 days depending on the month). The spatial

field object being computed (with the object number of time points replicated by the

number of vertices) by the inla.stack function was used to create the stack object
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for the estimation of the spatio-temporal model. The function takes the logarithm

of the data and the covariates for the monitoring stations. The similar object for

the prediction of the particular day (i_day) is then created again by the use of the

inla.spde.make.A function:

A_pred <- inla.spde.make.A(mesh = Toronto_mesh,

loc = as.matrix(TO_grid),

group = i_day,

n.group = n_days)

The stack object for the prediction is created as follows. Note that the standardised

covariates cov_matrix_std are employed for the prediction stack.

Our code thus far has been for the general case for each pollutant, and we now use

the specific case for pollutant NO2 for the remainder of this section with the process

from this point on.

stack_pred <- inla.stack(data = list(logNO2 = NA),

A = list(A_pred, 1),

effects = list(c(s_index, list(Intercept = 1)),

list(cov_matrix_std)), tag="pred")

The stack for both the estimate and the prediction was then combined to a full stack.

The output for the inla function then provided the estimate directly of the linear

predictor at the grid level for the day required for prediction. The formula that was

used for our prediction included an explicit intercept for the covariates. The group

and control.group arguments that are passed to the function are used to specify

that the spatial locations are linked by the SPDE model object (spde) at each time

point. The process then transforms across time by an AR(1) process (see Equation

(3.3)).
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formula <- logNO2 ~ -1 + Intercept + UTMX + UTMY + WS + A + WD + PREC +

TEMP + f(spatial.field, model = Toronto_spde,

group = spatial.field.group,

control.group = list(model = "ar1"))

To obtain our output, the final step in the process is then computed by using the

following code. This is the step that is computationally expensive and the cause for

reducing the density of the mesh (thus reducing the vertices to achieve computation

without breaking):

output <- inla(formula, data = inla.stack.data(stack, spde = Toronto_spde),

family = "gaussian", verbose = T,

control.predictor = list(A = inla.stack.A(stack),

compute = TRUE))

From our output we retrieved the posterior summary statistics for the fixed effects

β, 1/σ2
e and the AR(1) coefficient a. The posterior estimates for the spatial range r

and variance σ2 are also retrieved. We then extracted the posterior marginals of the

linear predictor (available for all of the Toronto grid locations) to obtain the smooth

prediction (without measurement error) for i_day and then compute the posterior

mean of the exponential distribution to achieve the natural NO2 prediction. This

process was replicated for O3 and PM2.5.

5.1 INLA metrics and mean fields comparison for

pollutants

We begin our comparison by looking at the posterior mean field prediction produced

from our results for a specific day July 10, 2010 for our three pollutants. We first
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Figure 5.3: Toronto posterior mean of Nitrogen Dioxide (NO2) for July 10, 2010.
Figure plotted using Universal Transverse Mercator (UTM) coordinate system

present the posterior mean field for NO2. Figure 5.3 shows that over our region,

predicted values for NO2 range from 4.5 ppb to 14 ppb. Pollutant levels are lowest

in the central northern Toronto area and relatively average (from our range) in the

central southern Toronto area. Levels are closer to the high values in our range in

the eastern and western Toronto areas. Nitrogen dioxide is part of a group of gaseous

air pollutants produced as a result of road traffic and other fossil fuel combustion

processes as discussed in Chapter 1. For this given day we notice that this reasoning

would be flawed if we were to argue in a vacuum, since our lowest predictions for the

day is just north of the 401 highway (where traffic is usually high).

There are other factors which affect our predictions (covariates). Our posterior

mean predictions are likely explained by these variations. We mentioned proximity
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to major highways, but there are a variety of other sources within the metro Toronto

area that will affect pollutant measurements and hence predictions. For our project,

we are mainly looking at the main contributors (e.g. large highways). Figure 5.4

Figure 5.4: Posterior mean of Ozone (O3) for July 10, 2010. Figure plotted using
Universal Transverse Mercator (UTM) coordinate system

shows the predicted posterior mean for Ozone with range of 20 ppb to 31 ppb, with

higher predictions for central north and central south Toronto, and lower reading for

Toronto east and west. Note again that lower and higher readings are relative to the

given range. We will look at changes over the yearly range later in this chapter.

Figure 5.5 show the posterior mean for particulate matter with a range of 4 µg/m3

to 9 µg/m3. Here predictions are lower in the central and northern Toronto area with

slightly higher readings in the east and west Toronto area. The highest posterior

means were recorded in the far east of Toronto (close to the border). Another in-
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Figure 5.5: Posterior mean of Particulate Matter 2.5 (PM2.5) for July 10, 2010. Figure
plotted using Universal Transverse Mercator (UTM) coordinate system

teresting plot is the probability of exceeding a given threshold. Table 5.2 gives the

annual maximum acceptable concentrations for each pollutant for Canada. For July

10, 2010 we see that the maximum predicted posterior mean for nitrogen dioxide and

particulate matter (2.5 microns) are 14 ppb and 9 µg/m3 respectively, since these are

well below the limit we need not examine the plot of posterior probability exceeding

acceptable levels. Ozone, however, is well above the annual limit of 15 ppb, we will

relax this limit to 20 ppb for the purpose of visualising the probability. Figure 5.6

shows the posterior probability of exceeding the maximum concentrations for July

10, 2010. Note that there are areas where it is certain (Probability = 1) that the

concentration limits will be exceeded. It must be noted that without relaxing the

limit, all of the region would have exceeded the limit for the chosen day.
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Pollutant Exposure Period Concentration
NO2 Yearly 50
O3 Yearly 15
PM2.5 Yearly 70

Table 5.2: National ambient air quality objectives for pollutants (maximum accept-
able concentrations)

Figure 5.6: Probability of O3 Posterior mean field exceeding allowable limit for July
10, 2010. Figure plotted using Universal Transverse Mercator (UTM) coordinate
system

5.2 Seasonal Trends

The seasons of a year bring changes in the weather and hence environmental effects

that result from these changes. We present the trends due to the effects of these

seasons. For clarity, the seasons are defined as Winter (December, January, February),

Spring (March, April, May), Summer (June, July, August), Fall (September, October,
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November) for our area of study, Toronto. Figure 5.7 shows the posterior mean by

the seasons for nitrogen dioxide. It can be seen that the posterior mean is highest

in the colder seasons and lower in the warmer seasons. We could argue that this is

due to higher NO2 being produced from sources such as: heating requirements in the

winter, and vehicles (people tend to drive instead of commuting). One could argue

that there are also activities in the hotter months that produce high NO2. We could

not argue the case of traffic effect by season as only the average annual daily traffic

(AADT) data is publicly available [24].

There is however another phenomenon that causes lower levels for NO2 in warmer

months. Looking at Figure 5.8 we can see that the opposite is true for O3 levels - they

are higher in warmer months. While NO2 is directly emitted from various sources, the

formation of ground level O3 requires four key ingredients: volatile organic compounds

(V OC), nitrogen oxides (NOx), heat and sunlight. We know that NO2 is directly

emitted, and V OC is also directly emitted as a result of human activity. Heat and

sunlight depends on weather which changes with seasons. Outdoor air quality can

therefore be expected to worsen with high temperature, and especially in hot summer

days without clouds, where there is an affluence of sunlight. This is due to the fact

that NOx and V OC provide extra oxygen atoms that combine with atmospheric

oxygen (O2) to form ozone (O3). We use the following simple chemical equation to

explain how O3 can be formed from NO2:

NO2 + Sunlight = NO +O,

O +O2 = O3

it can be seen that this chemical reaction "takes" an oxygen atom from NO2. This

"available" oxygen atom then combines with O2 forming O3, generally resulting in

lower levels of NO2 and higher levels of O3.

56



Figure 5.9 shows the seasonal changes in PM2.5. Particulate matter can be emit-

ted or formed. As with O3 formation becomes faster with heat. PM is considered

primary when it is emitted directly from combustion, and secondary when it is pro-

duced from the chemical reaction of other air pollutants. Concentration of secondary

PM increases during heat waves, since the reactions that lead to its formation are

accelerated as heat acts as a catalyst (similar formation of O3 explained earlier).

NOx, ammonia (NH3), sulphur oxides (SOx), and V OC have been identified as

reagents that contribute to the formation of secondary particulate matter (explain-

ing the higher levels of PM2.5). When high temperatures coincide with periods of

high atmospheric pressure, ozone and particulate matter can reach dangerously high

levels. While high temperature leads to faster formation of ozone and fine particu-

late matter, high pressure makes it difficult for natural air currents to dissipate these

pollutants. Rainfall is generally beneficial for air quality, since particulate matter in

the air adheres to water droplets and falls to the ground. We will look at the risks

associated with pollutant levels in the next chapter.
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a) b)

c) d)

e)

Figure 5.7: Plots a) to d) are the posterior mean field for NO2 concentration (in ppb)
by seasons: Winter, Spring, Summer, and Fall respectively for Toronto plotted using
the UTM scale. Plot e) is the time series plot for the period Dec 2015 to Nov 2016
of daily NO2 predicted mean field concentrations (in ppb) for Toronto
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a) b)

c) d)

e)

Figure 5.8: Plots a) to d) are the posterior mean field for O3 concentration (in ppb)
by seasons: Winter, Spring, Summer, and Fall respectively for Toronto plotted using
the UTM scale. Plot e) is the time series plot for the period Dec 2015 to Nov 2016
of daily O3 predicted mean field concentrations (in ppb) for Toronto
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a) b)

d) c)

e)

Figure 5.9: Plots a) to d) are the posterior mean field for PM2.5 concentration (in
µg/m3) by seasons: Winter, Spring, Summer, and Fall respectively for Toronto plot-
ted using the UTM scale. Plot e) is the time series plot for the period Dec 2015 to
Nov 2016 of daily PM2.5 predicted mean field concentrations (in µg/m3) for Toronto
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5.3 Spatio-temporal trends

We will first look at the trend of each pollutant. Changes in the natural logarithm are

(almost) equal to percentage changes in the original series, it follows that the slope of

a trend line fitted to log transformed data is equal to the average percentage growth

in the original series. For this reason we will use the log transformed posterior mean

field data to investigate the trend for each pollutant of the study period (January

2006 to December 2016). We fitted a General Additive Model (GAM) [14] to this log

transformed data in order to achieve the trend.

Figure 5.10 shows the log transformed posterior mean field average for NO2. Here

we see that there is a slight downward trend in NO2’s percent concentration. We

discussed earlier that there is a link between NO2 emissions and O3 formation, that

is O3 is formed from NO2. From Figure 5.11 we can see that the O3 levels are rising

(at a slightly lower rate that the decreasing rate of NO2). The "faster" rate at which

NO2 is decreasing when compared to O3 can be attributed to other factors such as

stricter regulations for emissions for the province of Ontario over the years.

Figure 5.10: Trend for NO2 over the period Jan 2006 to Dec 2016.

Figure 5.11 shows the log transformed posterior mean field average for O3. From
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this plot we can see that there is a steady increase in the percent concentration

(approximately 0.5%). This trend is likely to continue in the coming years unless

actions are taken to reduce emissions within the city. The effects of global warming

will add to this steady rise, as rising temperatures will also cause rising levels of O3 (as

heat is a catalyst in converting NO2 and other emitted compounds to O3). Fighting

global warming will therefore aid in reducing O3 levels for the future.

Figure 5.11: Trend for O3 over the period Jan 2006 to Dec 2016.

We can see from Figure 5.12 that there is a slight upward trend in PM2.5 concen-

tration levels. As noted earlier in this chapter, particulate matter is produced in two

ways: direct emissions and formation from other emitted substances. This noticeable

upward trend can be attributed to this fact. While there is a steady increase in emit-

ted pollutants, we will continue to see this rising trend continue. While the province

has put various regulations in place that restrict emission levels, there is still more

work needed to reduce particulate matter in the city of Toronto. We will discuss the

risk implications of pollutant levels in the following chapter. We will now look at the

differences in three time series plots.

(i) Station Mean - the daily averaged pollutant concentration observations across

stations over study period,
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Figure 5.12: Trend for PM2.5 over the period Jan 2006 to Dec 2016.

(ii) Mean Field - the daily averaged posterior mean field for Toronto (from spatio-

temporal INLA results), and

(iii) Population Weighted Mean - the posterior mean fields above weighted by pop-

ulation (from Toronto Tracts) then averaged for a daily results.

For these time series we will be looking at one year’s data (2016) to see the daily

differences. Figure 5.13 shows the three stated time series for the pollutants. We can

see that the differences between the Mean Field and the Population Weighted Mean

are not huge. However, when we compare these to the Station Mean we can see that

there is a larger noticeable difference; we can see that there were days where the

Station Mean presented an under representation of the concentration for pollutant,

while there were days that it gave an over representation.

As noted in the previous chapter pollutant levels may be affected by their proxim-

ity to highways. We will now examine the effects of a major highway (Highway 401)

on the pollutant levels of the posterior mean compared to a location farther from said

highway. In particular, we examine the posterior mean close to the Highway 401 and

Don Valley Parkway intersection and another posterior mean in South West Toronto

(Etobicoke) area. Figure 5.14 shows the comparison of the above mentioned areas for
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a)

b)

d)

Figure 5.13: Plots a) Comparison of daily concentration levels of Station Mean, Mean
Field, and Population Weighted Mean for each pollutant a) NO2, b) O3, and c) PM2.5.
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each pollutant (for the year 2016). The red line in the plot represents the highway

location mentioned above. The blue line represents the location in the Etobicoke

area. When we look at the plot for NO2 we can see that there is a clear difference

at various dates. On average all the pollutants show higher concentrations for the

highway location. For NO2 the maximum difference in concentration exceeded 12 ppb

in the summer (June 2016) and again in the Fall (October 2016). O3 for the high-

way location concentration difference exceeded 10 ppb at its maximum in the spring

(April 2016). For PM2.5 the highway location exceeded 5 µg/m3 at its maximum

concentration difference (January and August 2016).
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a)

b)

c)

Figure 5.14: Plots a) Comparison of daily concentration levels of Population Weighted
Mean for each pollutant a) NO2, b) O3, and c) PM2.5.

66



6. Risk Analysis

Various studies have shown the adverse health effects that short-term exposure to air

pollutants present. Specifically, these health effects include increased risk of prema-

ture mortality. In this chapter, we set out to examine the risk estimates between the

simplistic population exposure metric and our new metric presented in the previous

chapter, using previous work.

We set out by using a model for the estimation of population health risk as pre-

sented in the work by Burr, Takahara and Shin [3]. This model is built around a

Poisson Generalised Linear Model (GLM) or GAM. The log transformed daily mean

mortality counts is modelled as an additive combination of a smooth function of daily

mean temperatures, a smooth function of time, a categorical variable for the day-of-

week effect, and a parametric air pollution covariate (NO2, O3, or PM2.5). We will

adjust the baseline version of the model employed in [3] as required. We present the

baseline, for Yt, a daily mortality count series indexed by day, the following can be

written:

log(µt) = β0 + xtβ1 + DOWtβ2 + S(Temp, df = 3)t + S(Temp, df = 6/yr)t (6.1)

where µt = E[Yt] is the time-varying daily mean mortality, xt is the pollutant of

interest, also measured by a daily metric, such as sample mean, DOWt is an indicator

function for the day-of-week, both S functions are natural cubic regression splines with

the indicated df , computed on calendar time and daily mean temperature, both on
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the same day as the response. Seasonality presents a strong variability for mortality in

our study area Toronto. The smooth function presented in Equation 6.1 accounts for

unmeasured risk factors such as the long timescales structures that may be present.

For example, influenza epidemic is highest in mid-winter for our study area and

demographic shifts vary on a multi-year or decadal time scales.

We will compare the conventional population health risk explained above (we will

refer to this as population health risk (average), estimated with the naive average pol-

lution metric) with the risk for our weighted-by-population mean pollution exposure

metric (we will refer to this as population health risk (population weighted)). For both

risk measures we take into account:

(i) the mortality caused by all non-accidental deaths for both genders and all ages

birth to death, and

(ii) the mortality caused by all cardio-pulmonary deaths for both genders, also for

all ages birth to death.

6.1 Mortality (all non-accidental deaths)

The response that was used for this "non-accidental death risk" include all deaths for

the population of our study area that were non-accidental (all deaths not caused by

accidents), both genders (male and female), and for all ages (births to deaths) of the

population. The data set that was used was complete in that a complete interpolation

was done with bad data points flagged and removed. Figures 6.4, 6.5, and 6.6 show

risk plots for NO2, O3, and PM2.5 respectively. The blue solid and dash curve in

our plot represents population health risk (average), and its confidence interval (with

confidence level 95%) respectively. The black curve and grey fill represents population

health risk (population weighted), and its confidence interval (with confidence level
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95%) respectively. Note we used degree of freedom (df) = 26 (30 days) for these

risk calculations. In Figure 6.1 population health risk (average) is within the 95%

Figure 6.1: NO2 population health risk (average) versus population health risk (pop-
ulation weighted), blue and black curves respectively.

confidence interval for population health risk (population weighted) for most years. If

we were to interpret this in a traditional sense, there is not a statistical difference

between the two curves (since their confidence intervals overlap). This indicates

that there is some form of relationship between population health risk (average) and

population health risk (population weighted) - as expected, as the models are very

similar, differing only in the exposure metric used.

In Figure 6.2, population health risk (average) for O3 is only within the 95%

confidence interval for years 2008 – 2009, 2011 and part of 2013. It appears that

for this pollutant that the two risk curves track, indicating that the population-

weighted exposure metric is similar enough to the default naive averaging approach

as to provide similar interpretations. The differences are still large enough to warrant

further examination, however: it’s not as if the risk curves are exactly tracking, despite

the somewhat subtle changes.

In Figure 6.3 population health risk (average) for PM2.5 is within the 95% confi-

dence interval of population health risk (population weighted) for the majority of the
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Figure 6.2: O3 population health risk (average) versus population health risk (popula-
tion weighted), blue and black curves respectively.

Figure 6.3: PM2.5 population health risk (average) versus population health risk (pop-
ulation weighted), blue and black curves respectively.
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time period 2007 – 2013. Again if we were to explain this in the traditional statistical

sense like NO2 there is not a statistical difference between both curves (as there con-

fidence intervals overlap, for the most part). Further, the seasonality of the estimated

risks appears to be opposing - in 2009 the blue curve is at a minimum, while the

black is at a maximum, while in mid 2010-11, the opposite effect occurs, and then in

2012-13, again reversal. This is very curious, and definitely a cause for future study.

6.2 Mortality (cardio-pulmonary deaths)

In this section, the response that was used for this “cardio-pulmonary death risk”

include all deaths for the population of our study area that were caused by cardio-

pulmonary related deaths, both genders (male and female), and for all ages (births

to deaths) of the population.

Figure 6.4: NO2 population health risk (average) versus population health risk (pop-
ulation weighted), orange and black curves respectively (cardio-pulmonary related
deaths).

The data set that was used was complete in that a complete interpolation was done

with bad data points flagged and removed, then interpolated (only for the pollutants).

Figures 6.4, 6.5, and 6.6 shows risk plots for NO2, O3, and PM2.5 respectively. Here
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Figure 6.5: O3 population health risk (average) versus population health risk (pop-
ulation weighted), orange and black curves respectively (cardio-pulmonary related
deaths).

we use the yearly seasonality January to December (Jan – Dec). The orange solid dash

curve in our plot represents the population health risk (average) and its confidence

interval (with confidence level 95%) respectively. The black line, and the grey fill

represents the population health risk (population weighted) and its confidence interval

(with confidence level 95%) respectively.

Figure 6.6: PM2.5 population health risk (average) versus population health risk (pop-
ulation weighted), orange and black curves respectively (cardio-pulmonary related
deaths).
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Figure 6.7: NO2 population health risk (average) versus population health risk (pop-
ulation weighted), orange and black curves respectively (cardio-pulmonary related
deaths). Oct – Mar seasonality.

In Figures 6.4, 6.5, and 6.6 we can see that there is again differences in structure

between the two exposure series, with significant “seasonality” being exhibited in the

population-weighted exposure metrics which are not present in the naive average.

We also note that there is again some minor anti-phase behaviour, with peaks in the

orange curve where troughs exist in the black curve (especially Figure 6.6).

There are a number of years for which the population health risk (average) is not

within the 95% confidence interval of population health risk (population weighted)

with the exception of O3 (see Figure 6.5). This indicates that the changes we have

made to the pollutant through the efforts of Chapters 4 and 5 have seemingly strong

influences on the risk relationship between pollution and health, something which

previously to our knowledge not been noted in the published literature.

We also examined the seasonality, October to March (Oct – Mar), for the risk

models. This was done because we know that from numerous previous studies cardio-

pulmonary related illnesses are more frequent in the colder months. We present these

plots in Figures 6.7, 6.8, and 6.9 for the pollutants NO2, O3, and PM2.5 respectively.

From these plots we can see, that using the colder half of the year for seasonality,
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Figure 6.8: O3 population health risk (average) versus population health risk (pop-
ulation weighted), orange and black curves respectively (cardio-pulmonary related
deaths). Oct – Mar seasonality.

in a statistical sense the relationship between the risks are stronger (as the curves

confidence interval overlapped more than the prior results). In particular, we can

see that for NO2 the yellow and black curve where almost identical. There is also

significant increase in the overlap of the confidence intervals for O3 that is the case

when we use the Jan – Dec seasonality. PM2.5 however still presented a clear opposing

effect in seasonality and again this calls for future study.

Figure 6.9: PM2.5 population health risk (average) versus population health risk (pop-
ulation weighted) (orange and black curves respectively), cardio-pulmonary related
deaths Oct – Mar seasonality.
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Overall, the differences in these risk curves are larger than they may appear at

first glance. In particular, the fact that the risk curves are different at all is curious:

the models are the same, the predictors are the same, and the only difference is the re-

calculation and re-weighting of the pollution exposure. However, this seemingly minor

change has extremely large effects on the final risk, indicating that the relationships

being measured are quite sensitive to this input. More work needs to be done on

the stability of the population-weighted estimated pollution exposure in order to

determine if the changes being observed are due to specific influences.

Due to scope, we were unable to expand this project beyond Toronto to the rest

of Canada, but we feel that this is a fascinating question to try to answer, and hope

it can be a topic for future work.
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7. Conclusions and Future Work

The representative nature of the air population metric averages on the Canadian

(Toronto) data set studied in this thesis required careful thought as these reported

metrics estimate the true health effects associated with air-quality. A careful deter-

mination of the spatial and temporal correlations was implemented employing the

INLA spatio-temporal model. From our results, there is a clear disparity between

the station-level naive average of pollutants and the spatio-temporal posterior mean

field.

Given this disparity that was discussed in Chapter 5, we conclude that the station-

level average does not provide a true population-level exposure metric for air pollution.

We feel that our INLA spatio-temporal model allowed us compute a more accurate

mean for each pollutant, especially in the integration of the local population density

and estimation of the field strength across the city. In addition, our computation of a

mean field gave the opportunity to predict concentration levels for locations that did

not have observations. This was important in modelling the population health risk

for the city of Toronto as it provided complete accurate pollutant concentrations in

our calculation of the weighted population mean. Areas that had higher population

density would not have been properly accounted for with a simple city level average.

In our discussion we saw that there were instances where there the allowable

limit for pollutant concentrations were exceeded. These events, though not frequent,

showed that air pollution for the city is a real concern. This concern gives rise to
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health related risk which we investigated in Chapter 6. We found that pollutant

concentration levels had an impact on population health. Our investigation of popu-

lation health risk revealed that of the three pollutants studied NO2 had the strongest

impact.

Expanding this work to Canada wide data set would be desirable as there are

areas in Canada where air pollution monitoring is limited. Spatio-temporal analysis

would fill in the gaps and give a complete picture of pollutant modelling across the

country. We saw that while our model gave accurate predictions between station

locations, these predictions are less accurate as we moved farther from these stations.

Including observations for stations that are outside of the study area and also stations

with sparse data within our study area would aid in improving the accuracy. As an

example, including observations for Oshawa would give rise to better prediction for

eastern Toronto. In addition there are some additional covariates that would improve

our model. As was discussed in Chapter 5 there was not a good continuity in available

meteorological data that we used for the study. For future works we could employ

methods through the INLA model which could improve the continuity and spatial

accuracy of meteorological data (also using stations outside of our study area).

Using available satellite data for future work would also improve our model, this

would provide us with better observations to increase prediction. Li et al. [19],

developed a method for predicting high resolution spatial-temporal air pollutant maps

from various data sources. These data sources were varied (they utilised satellite and

mobile sensing data which we did not employ in our study), and they had good

volume (data was representative for each variety). Going forward we could build on

our work by including available data. We can also look at obtaining daily traffic data

(not publicly available) at locations along major roadways to include as covariates in

our model.
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A. R Code used for data development and

model computation

Check this appendix

Conv_longlat_XY <- function(data){
library(sp)
colnames(xy) <- c(’lon’, ’lat’)
coordinates(xy) <- ~ lon + lat
proj4string(xy) <- CRS("+proj=longlat +datum=WGS84")
p <- spTransform(xy, CRS("+proj=tmerc +lat_0=0 +lon_0=-79.5

+k=0.9999 +x_0=304800 +y_0=0
+datum=NAD27 +units=m +no_defs
+ellps=clrk66 +nadgrids=@conus,
@alaska,@ntv2_0.gsb,@ntv1_can.dat"))

tran_cood <- coordinates(p)
colnames(tran_cood) <- c(’x’, ’y’)
XY_Coords <- cbind(tran_cood[,1], tran_cood[,2])
XY_Coords

}

Figure A.1: Function used to convert longitude, latitude to UTMX, UTMX
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TO_Mean <- function(x1, x2, days, data){
# Call data to be used
TO_Data <- data[x1:x2,]
Fix_TO_Data <- TO_Data[6:7]
Fix_TO_Data[] <- lapply(Fix_TO_Data,

function(x) ifelse(is.na(x),
mean(x,

na.rm = TRUE), x))
TO_Data$WS <- Fix_TO_Data$WS
TO_Data$WD <- Fix_TO_Data$WD
# Data for calc
Toronto_Data <- TO_Data
# Prepare Borders for Toronto
TO_border <- TO_borderN

TO_coords <- CD_Toronto_X[c(3, 8, 12, 13), 1:3]
colnames(TO_coords) <- c("Station.ID", "UTMX", "UTMY")

# Prepare Data for Pollutant
n_stations <- length(TO_coords[,1]) #number of stations (data sparced)
n_data <- length(Toronto_Data[,1]) #number of space-time data
n_days <- n_data/n_stations #number of time points

rownames(TO_coords) <- 1:n_stations
TO_coords$Station.ID <- 1:n_stations
Toronto_Data$Station.ID <- rep(1:n_stations, n_days)

Toronto_Data$time <- rep(1:n_days, each = n_stations)
coords.allyear <- as.matrix(TO_coords[Toronto_Data$Station.ID,

c("UTMX","UTMY")])

# Standardize covariates and calculate log pollutant
Toronto_Data$logNO2 <- log(Toronto_Data$NO2)
mean_covariates <- apply(Toronto_Data[, 3:9], 2, mean, na.rm = TRUE)
sd_covariates <- apply(Toronto_Data[, 3:9], 2, sd, na.rm = TRUE)
Toronto_Data[, 3:9] <- scale(Toronto_Data[, 3:9],center = mean_covariates,

scale = sd_covariates)
# Altitude standardized by factor of 1/100 as study are is flat
Toronto_Data$A <- Toronto_Data$A/100

Figure A.2: Mean Field Function
Function used for computing Posterior mean field
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B. Posterior mean field plots for Toronto
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(a) 2006 (b) 2007

(c) 2008 (d) 2009

(e) 2010 (f) 2011

Figure B.1: NO2 Spatial mean field (2006 - 2011)
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(a) 2012 (b) 2013

(c) 2014 (d) 2015

(e) 2016

Figure B.2: NO2 Spatial mean field (2012 - 2016)
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(a) 2006 (b) 2007

(c) 2008 (d) 2009

(e) 2010 (f) 2011

Figure B.3: O3 Spatial mean field (2006 - 2011)
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(a) 2012 (b) 2013

(c) 2014 (d) 2015

(e) 2016

Figure B.4: O3 Spatial mean field (2012 - 2016)
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(a) 2006 (b) 2007

(c) 2008 (d) 2009

(e) 2010 (f) 2011

Figure B.5: PM2.5 Spatial mean field (2006 - 2011)
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(a) 2012 (b) 2013

(c) 2014 (d) 2015

(e) 2016

Figure B.6: PM2.5 Spatial mean field (2012 - 2016)
90



(a) Sp (b) Su

(c) Fl (d) Wr

Figure B.7: NO2 Spatial mean field by seasons 2006
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(a) Sp (b) Su

(c) Fl (d) Wr

Figure B.8: NO2 Spatial mean field by seasons 2016

92



(a) Sp (b) Su

(c) Fl (d) Wr

Figure B.9: O3 Spatial mean field by seasons 2006
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(a) Sp (b) Su

(c) Fl (d) Wr

Figure B.10: O3 Spatial mean field by seasons 2016
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(a) Sp (b) Su

(c) Fl (d) Wr

Figure B.11: PM2.5 Spatial mean field by seasons 2006
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(a) Sp (b) Su

(c) Fl (d) Wr

Figure B.12: PM2.5 Spatial mean field by seasons 2016
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