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ABSTRACT  

PREDICTIVE DIGITAL MAPPING OF SOILS IN KITIMAT, BRITISH COLUMBIA 

Emily Olmstead 

Soil is an essential natural resource that supports provisioning services such as agriculture, 

silviculture, and mining. However, there is limited knowledge on forest soil properties 

across Canada. Digital soil mapping may be used to fill these data gaps, as it can predict 

soil properties in areas with limited observations. The focus of this study was to develop 

predictive maps of select soil physicochemical properties for the Kitimat Valley, British 

Columbia, and apply these maps to assess the potential impacts of sulphur dioxide 

emissions from an aluminum smelter, on soil properties in the Valley. Exchangeable [Ex.] 

magnesium, organic matter, pH, coarse fragment, Ex. potassium, bulk density, Ex. calcium, 

Ex. acidity, and Ex. sodium were all mapped with acceptable confidence. Time to depletion 

of base cation pools showed that ~240 km2 of the study area had a depletion time of 50 

years or less. However, sources of base cations such as atmospheric deposition and mineral 

weathering were not considered. 

 

Keywords: Digital soil mapping, predictive mapping, regression kriging, soil properties, 

acidification, buffering capacity, sulphur deposition. 
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1.0 CHAPTER 1: GENERAL INTRODUCTION 

 
1.1 FACTORS OF SOIL FORMATION  

Soil is an essential resource; it provides ecosystem regulation (water filtration and 

nutrient storage for plant productivity) and underpins important ecosystem services such 

as provisioning (i.e., agriculture, silviculture, and precious metals). These provisions are 

key to the economic success and the support of growing populations in many countries. As 

such, it is important to effectively manage these natural resources; to do this, we need to 

understand the spatial variation of their chemical and physical properties. 

Soils are comprised of varying mixtures of fragmented partially or completely 

weathered rocks, organic matter, water, air and living organisms. As soils develop, they 

form distinct layers which are called horizons; these horizons are created under specific 

soil forming conditions; the cross section of these horizons, or the soil profile, is used to 

identify soil types (Byers et al., 1938). There are many factors that influence the formation 

of soil, such as climate and topography, but it is important that the processes which turn 

geological materials such as rock, sand, and clay into parent material are identified. The 

first process these materials encounter is physical weathering; temperature changes occur 

and the expansion and contraction within the rock causes tension which causes weak areas 

to break and crumble. Additionally, in cool-temperate regions, water, which has filled the 

cracks in rock during the warmer months then freezes during the cold, causing further 

expansion and cracking. Plants have also been shown to cause expansion, as their roots fill 

crevasses and wedge rocks apart (Byers et al., 1938). Secondly, rock is turned into parent 

material through chemical weathering. Carbon dioxide (CO2), which is found in the soil as 

a byproduct of organic matter breakdown or plant respiration, and water react in the soil to 



2 
 

 
 

form carbonic acid (H2CO3) (Andrews and Schlesinger, 2001). This H2CO3, along with 

other organic acids produced via microbial activity (oxalate, acetate, and citrate acids) 

stimulate mineral dissolution in soil and the release of base cations (Byers et al., 1938; Fox 

and Comerford, 1990; Jones, 1998; Oh and Richter, 2004). After the parent material of a 

region is developed from rock, the process of soil formation can begin (Jenny, 1941).  

In 1883, Dokuchaev first discussed the idea that soil was a function of parent 

material, climate, vegetation, the age of the terrain and the topography. Then, in 1941, 

Jenny formalized a conceptual model to describe soil formation based on five main factors; 

this model was expressed as: 

𝑆 = 𝑓(𝑐𝑙, 𝑜, 𝑟, 𝑝, 𝑡 … ) 

Where S is a measurable soil property, and f meaning “is a factor of”, and clorpt represented 

the factors of soil formation: climate (cl), organisms (o), relief (topography; r), parent 

material (p), and time(t). Jenny made a distinction that these were considered factors 

because they were independent variables as opposed to causes or forces of soil formation. 

It was found that when this model was approached as a mathematical equation, it was not 

easily parameterized (Kline, 1973; Phillips, 1998, Stephens, 1947). Therefore, it was 

determined that it was instead to be used a conceptual model to show that soil formation 

occurs when variation is seen in one factor while the others remain relatively constant. This 

model has become one of the most popular concepts in pedology for understanding soil 

formation (Richards and Edmonds, 1987; Phillips, 1998).  

 Climate as a soil forming factor is broken down into two main variables, moisture 

and temperature. Moisture was identified as an important factor because as water percolates 

through the soil, soluble materials such as potassium and sodium are leached out and 
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carried to rivers and lakes via deep seepage. It was found that in areas of humid conditions, 

water is not readily held by soil particles, and so available materials are leached from the 

soil (Hilgard, 1914). It has also been found that in North America, areas of higher rainfall 

have higher clay content in the soil, due to increased weathering caused by the water 

movement through the soil (Coffey, 1912). Additionally, water has been shown to affect 

the size of soil aggregates, or particles, as it has been seen that aggregate size increased as 

rainfall increases (Baver, 1934). Temperature is important because it can dictate the rate of 

reactions which occur in the soil, such as chemical weathering; at temperatures below 0°C, 

chemical processes are practically stopped (van’t Hoff, 1884). If weathering in the soil 

does not take place, soil formation is slowed, and no base cations are released, which is not 

conducive to vegetation productivity. As well, temperature determines the depth of 

weathering and soil formed; in colder climates like Canada, soil depths rarely exceed a 

meter, where tropical climates have much deeper soil profiles (Jenny, 1941). Lastly, 

temperature can determine the rate at which litter fall decomposes and is incorporated into 

the soil as organic matter; climates with warmer temperatures have seen much faster 

decomposition than colder climates (Waksman and Gerretsen, 1931). 

 Organisms (specifically microorganisms such as bacteria, and vegetation) have a 

role in soil formation; bacteria are often found on exposed rock faces, and they are also 

abundantly found in phases of rock decay, indicating they play a role in rock decomposition 

to form soils. As well, nitrogen fixing bacteria such as Azobacter are often found in soils 

and may influence the amount of nitrogen found in the soil (Blochlinger, 1931). Lastly, 

soil bacteria produce CO2 in the process of breaking down soil organic matter, which can 

produce organic acids (Schlesinger, 1977). Vegetation can influence soil in many ways, as 
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roots hold soil particles together and prevent erosion, allowing for the formation of a soil 

profile (Braun-Blanquet and Jenny, 1926). As well, plant roots exploit fresh cracks exposed 

in rocks and continue to create spaces, breaking up larger rocks (Phillips et al., 2008). Roots 

have also been found to give off CO2 as part of the respiration process, which as mentioned 

above has been found to increase the solubility of carbonates and continue the weathering 

and soil formation process (Andrews and Schlesinger, 2001; Oh and Ritcher, 2004). 

Vegetation has also been found to influence vertical water movement through the soil, as 

the development of roots creates space for water percolation, and water uptake by 

vegetation increases the upward movement of water (Wu et al., 1999). Lastly, vegetation 

may influence the amount of organic matter present in a soil, as litterfall and grasses are 

decomposed and incorporated into the humus layer of soil (Jenny, 1941) 

 Relief, or topography was deemed a factor of soil formation for two reasons; the 

first was the effect of relief on water movement. Ellis (1938) found that soils in areas of 

depression receive more water because they receive the same amount of rainfall as other 

areas, plus the runoff from the areas that surround it. Additionally, areas which are 

undulating or hilly, receive less water due to the same runoff processes. As discussed 

above, the amount of water which is percolated into the soil will determine leaching of 

nutrients and weathering depth of the soil. Relief has also shown to influence soil based on 

erosion; areas with steeper slopes and little vegetation (such as mountainous areas) are 

eroded through rainfall and wind processes, and much of the materials are transported from 

the higher elevations to the bottom of the slope, causing less developed soil profiles in the 

higher elevation areas and more developed soils in the lower elevations (Marbut, 1935).   
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 Parent material, as was defined by Jenny (1941): the initial state of the soil system, 

or the geological material which soil has formed. There are many different types of bedrock 

material, with two main sub-groups being primary (residual) or secondary (transported) 

parent materials. Residual parent material occurs when bedrock such as igneous, 

sedimentary, or metamorphic rock is weathered in its original place, while transported 

parent material is comprised of materials which are deposited during glaciation (Byers et 

al., 1938). The parent material can influence soil formation as the different materials lend 

to the development of different soil properties once the parent material is weathered. For 

example, parent materials developed on igneous rock were found to have lower calcium, 

but higher potassium, and phosphorous than a parent material developed from calcareous 

bedrock (Leiningen 1912). As well, parent materials dictate texture (sand silt, and clay) as 

parent materials high in silicon and aluminum give way to produce clay, while quartz 

produces sandy soils. Soil texture in turn influences aggregation and water infiltration, 

which can influence leaching and deep soil weathering (Byers et al., 1938). 

 Time was the last soil formation factor identified by Jenny (1941). Most obviously, 

all the physical and chemical processes which occur in soil formation occur over time. It 

is seen that areas which were not glaciated have much deeper and more developed soil 

profiles than areas like north America, which have comparatively new soils. Depending on 

the other soil formation factors, these soils which have developed longer may be higher in 

organic matter, clays, and base cations, which may also contribute to a higher buffering 

capacity.  
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1.2 SOIL PHYSICOCHEMICAL PROPERTIES  

There are many physical and chemical properties of soil that can be used to determine 

its quality. Soil quality is a concept that is based on the objectives of whoever is assessing 

it; for instance, in the case of forestry or agriculture, soil quality many be evaluated as the 

soils capacity for continued crop growth, or the support of biomass production (Shoenholtz 

et al., 2000). For this study, soil quality was defined more broadly, as was stated by Carter 

and MacEwan (1996), soil quality describes a soil condition that supports a healthy 

ecosystem.  

Some well-known physical soil properties that are measured to determine soil quality 

are bulk density (Db), soil particle size (sand, silt, and clay), and coarse fragment (CF). 

Chemical soil properties used to assess soil quality are organic matter (OM), exchangeable 

cations, soil nutrient availability of nitrogen, phosphorous, and potassium (NPK) as well 

as pH. Bulk density is the proportion of soil and pore space in a given soil sample; it is 

used to evaluate soil compaction and influences root growth and water and oxygen supply 

(Larson and Pierce, 1991; Doran and Parkin, 1994). Organic matter is the proportion of 

soil which is comprised of various stages of decaying litter and detritus and represents a 

considerable carbon and nutrient reservoir in the soil (Lutzow and Koegel-Knabner, 2009). 

Soil particle size is the percentage of sand, silt, and clay that is present in a soil sample and 

influences many other soil processes such as water, oxygen and nutrient movement through 

the depths of the soil profile. For example, soils which have a higher sand content will have 

increased water flow but also less water retention, where soils containing more clay will 

have decreased water movement but higher water retention (Doran and Parkin, 1994). 

Lastly, CF is the proportion of soil which is greater than 2 mm.  
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In terms of chemical soil properties used to assess soil quality, OM is used to assess 

soil quality because it influences many other soil properties, such as: the aggregation of 

soil particles, and soil porosity (which then influences water and air movement). As well, 

it contains a considerable pool of carbon and nutrients such as nitrogen, phosphorous, and 

exchangeable cations (Henderson, 1995). Next, exchangeable cations, which are positively 

charged ions which are adsorbed to negatively charged exchange sites found on the soil 

exchange complex found as part of organic matter or clays in soils. The four major basic 

cations are calcium (Ca2+), magnesium (Mg2+), potassium (K+), and sodium (Na+), and the 

main acidic cations are aluminum (Al3+) and H+ (Sumner and Miller, 1996; Sonon et al., 

2014). These cations, depending on the acidity of the soil solution can “exchange” or be 

displaced from the exchange site in order to buffer other positively charged acidic ions 

such as H+ (Sonon et al., 2014; Tamminen and Starr, 1990). The major net sources of 

cations are chemical weathering of soil parent material and wet and dry atmospheric 

deposition; they are also cycled through vegetation as they are taken up as essential 

nutrients and released again as vegetation dies and decomposes (Ouimet and Duchesne, 

2005; Schoenholtz et al., 2000). Soil nutrient availability is often assessed by soil 

concentrations of NPK, especially in the context of agriculture (Romig et al., 1996). These 

nutrients are often used to assess a soils capacity for plant (or crop) production (Reganold 

and Palmer, 1995; Aune and Lal, 1997). Lastly, Soil pH is important because as pH 

decreases (or H+ increases), chemical weathering at the surface of rock and soil particles 

occurs; this in turn mobilizes base cations and Al3+; as previously mentioned, base cations 

are important for plant productivity and acid buffering, however, Al3+ is toxic to vegetation 

(Byers et al., 1938; UBA, 2004; Kochian et al., 2005).  
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1.3 DIGITAL SOIL MAPPING 

Traditionally, mapping soils to understand their spatial distribution involved time-

consuming and costly soil sampling which generally covered a minimal area, leaving 

knowledge gaps across large areas (McBratney et al., 2000). Born out of these constraints, 

the earliest form of kriging was developed and applied in the 1950’s in the mining industry, 

when Danie Krige studied the most effective way to predict concentrations of high-grade 

gold ore based on the locations of known high-grade ore deposits. In the 1960’s, Georges 

Matheron formalized the work of Krige, and presented it as the theory presently known as 

geostatistics (Babish, 2006). Geostatistics is a subset of statistics focused on the 

interpretation and analysis of data which is referenced geographically. Geostatistical 

techniques underpin predictive soil mapping, which use data sets with few soil 

observations, inexpensive information such as digital elevation models and remote sensing 

imagery, combined using geostatistical methods. These geostatistical methods included 

environmental correlation, and ordinary kriging, as well as hybrid methods such as 

regression kriging and kriging with external drift (Bishop & McBratney, 2001). In the 

digital mapping of soil properties, the conceptual model first introduced by Jenny (1941) 

is used, as the knowledge and understanding that clorpt factors influence soil properties is 

applied, and continuous maps of these factors can be used as predictors in order to create 

digital maps for soil properties in areas that have not been sampled. Using continuous maps 

in predictive digital mapping creates a conceptual difference from traditional soil mapping. 

Traditional soil maps used aerial photographs and Landsat images to define landscape 

features, which were used to generated subunits of soil types based on the soil surveyor’s 

bias. The result was a soil map of ‘polygons’ which represented identified soil type 
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(Minasny and McBratney, 2015). In contrast, with continuous maps the coverage is not 

broken up into subunits, as such there are no obvious polygons or hard boundaries.   

One of the most widely used methods for predictive soil mapping is regression kriging 

(RK) because of its flexibility in defining trends based on different linear models (Gasch 

et al., 2015). Regression kriging combines the regression of a dependent variable such as 

soil pH or Db on independent continuous auxiliary variables such as vegetation cover, 

temperature, and bedrock type with kriging of the regression residuals (Babish, 2006). 

Regression kriging has been found to be one of the most accurate methods for producing 

predictive maps for environmental factors (Bishop and McBratney, 2001). It should be 

noted that there are limitations to RK such as its complexity. Regression kriging, like all 

kriging methods, also completely relies on data quality and quantity. If data comes from 

different sources or the sampling design is not representative, and there are only a small 

number of sites (less than 50), then final predictions may be poor (Hengl et al., 2007). 

Considering these limitations, RK has still been found to be one of the most accurate 

methods for producing predictive maps for soils (Bishop and McBratney, 2001).  

Historically, the emphasis of soil sampling and mapping has been on agricultural 

regions, with the aim to classify soils and improve our understanding of soil properties to 

support the continued development of the agricultural industry (Baldwin et al, 1938). Since 

the early 1980’s, Agriculture and Agri-Food Canada has been producing national soil maps 

(Soil Landscapes Canada; SLC) and updating the accompanying database. The SLC is a 

product of the Canadian Soil Information Service (CanSIS); while it covers the entire 

nation, the focus has always been agricultural regions (Schut et al., 2011). However, the 

resolution for these maps is coarse (1:1,000,000), which can cause a generalization of map 
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features over such a large area (Schut et al., 2011). Unlike agricultural land, forest regions 

of Canada have not been highly sampled; the SLC database has only provided soil 

information for forested areas once, in the initial lunch of the project and has not been 

updated since. As well, the polygons found for the forest maps are large and imprecise 

(Schut et al., 2011). This has created a large knowledge gap, as Canada’s forests comprise 

10% of the worlds forest cover, and so it is important that their soil properties be better 

understood.  

Digital mapping may close both of the knowledge gaps presented here; firstly, it can 

be applied to the agricultural areas where soil data already exists and can be used to 

improve the resolution for these areas. In addition, the vast area of forest in Canada is under 

sampled and has limited data, which has led to a minimal understanding of forest soil 

properties across the nations. Digital mapping is essential in these areas then, as it can be 

applied to the minimal data sets and produce digital soil maps which will increase this 

understanding. 

 

1.4 KITIMAT, BRITISH COLUMBIA 

The Kitimat Valley is located on the northwestern coast of British Columbia (BC) near 

the Pacific Ocean; its lowest point is at the head of the Douglas Channel in Kitimat to the 

south, and it stretches just past the city of Terrace, which is about 50 km to the north (ESSA 

et al., 2013). It is surrounded by mountainous coastal temperate rainforests and the 

landcover is dominated by dense forest, predominantly comprised of Tsuga heteophylla 

(Western Hemlock). The soils are typical of the coastal landscapes of forested Northern 

British Columbia; they are dominated by brunisols and podzols which have been formed 

on three main bedrock types: calc-alkaline volcanic rocks, granodioritic intrusive rocks and 



11 
 

 
 

quartz dioritic intrusive rocks. Soils have also been formed from glaciofluvial surficial 

materials as a result of glacial deposits (Clague, 1984; LNG technical data report; Stantec, 

2014; Canadian System of Soil Classification, 1998). During the last decade, the increase 

in industry in this area and concern for pressures on the environment have resulted in 

several soil surveys of the Kitimat Valley such as the LNG technical report (Stantec, 2014), 

the sulphur dioxide technical assessment report (known as STAR from here on; ESSA et 

al., 2013) and Levasseur (2017). Through these surveys, soils have been analyzed for Db, 

field moisture, pH, exchangeable cations, OM, particle size, and major oxides; additionally, 

survey data was used to create a simple map of soil types. Lastly, mineral surface area and 

critical loads were estimated by Levasseur (2017), and STAR mapped critical loads (ESSA 

et al., 2013). However, fundamental physicochemical soil properties (e.g., Db, OM, CF, 

clay, pH, exchangeable acidity and exchangeable cations) have not been mapped for this 

region yet, so there is a limited understanding of their spatial variation in the Kitimat 

Valley. Mapping these soil properties is critical in order to manage the natural resources of 

the region, as well as identify any potential impacts industrial activity may have on the soil. 

The population of Kitimat is small, with 6394 people based on the 2016 census, and 

the population of Terrance – which is the closest city to Kitimat – is 13,663 (Statscan 2016). 

While the region has a low population and is rugged and mountainous, it is still an area 

which has a considerable industrial influence, such as the Rio Tinto BC Works aluminum 

(Al) smelter, and the shipping of aluminum to markets in North America and Asia out of 

the Douglas Channel (ESSA et al., 2013). The construction of the Rio Tinto BC Works 

aluminum smelter (formerly known as Rio Tinto Alcan) began in 1951, and aluminum was 

first produced from the smelter in 1954. A modernization of the smelter was announced in 
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2006, called the Kitimat Modernization Project (KMP); the construction of this project 

began in 2011 and was completed in 2016. The modernization project increased aluminum 

production by 48% from its original capacity of 280,000 tonnes per year (t/yr). This 

increased production was accompanied by a permitted increase in sulphur dioxide (SO2) 

emissions from 27 tonnes per day (t/d) to 42 t/d (ESSA et al., 2013). As there is a lack of 

soil maps and knowledge of the soil properties in the Kitimat valley, the potential impacts 

of sulphur (S) deposition from this smelter are unknown.  

 

1.5 SOIL ACIDIFICATION 

It is well established that metal smelters are large point sources of SO2 emissions 

(Hutchinson and Whitby, 1977; Freedman and Hutchinson, 1980). Emissions of SO2 have 

many pathways into the surrounding environment; once emitted, SO2 can be transported in 

the atmosphere until it is removed via two processes: dry and wet deposition. Dry 

deposition occurs when gaseous SO2 and particulate sulfate (SO4
2-) are deposited directly 

onto the surrounding soil and vegetation as it is heavier than air and has a short residency 

time (1-3 days) in the atmosphere (Garland, 1977; Schwartz, 1989). Sulphur dioxide is 

deposited onto plant surfaces, where it is oxidized to SO4
2- and washed off the forest canopy 

in rain events (Piirainen et al., 2002; Reuss and Johnson, 1986). Sulphur dioxide can also 

undergo oxidation in the atmosphere, ultimately resulting in the formation or sulphuric acid 

(H2SO4), which is deposited in rainfall (Kellogg et al., 1972; Mylona, 1996). Once this 

H2SO4 is deposited onto the earth’s surface, it dissociates into H+ and SO4
2- (Guadalix and 

Pardo, 1991). As H+ enters the soil, it binds preferentially to exchange sites where base 

cations (Ca2+, Mg2+, K+, and Na+) are displaced. As the concentration of H+ increases with 

acidic deposition, more base cations are displaced from the exchanges sites in order to 
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neutralize the continued acidic deposition. If the amount of base cations in the soil is large 

enough to continually neutralize H+ inputs, then the soil will not change; however, if the 

continued deposition is greater than the soils capacity to neutralize H+, then the soil 

becomes acidified (van Breeman et al., 1984; Reuss and Johnson, 1986; Reuss et al., 1987; 

Fernandez et al., 2003). This acidification also influences metal toxicity, particularly Al3+; 

when pH levels in soil are below 5, Al3+ becomes mobilized and is then bioavailable to 

plants. Aluminum is toxic to vegetation and may impact plant tissues through uptake from 

the root, or aquatic organisms in receiving waters when Al3+ is leached through the water 

table (Kochian et al., 2005). This in turn could cause a shift in plant populations to species 

which are more tolerant of acidic soil (Driscoll et al., 2001; Cape et al., 2003; Dore et al., 

2007).  

 

1.6 KEY SOIL PROPERTIES FOR MAPPING AND RISK ASSESSMENT 

As previously described, soil quality, or the condition of a soil which can maintain a 

sustainable forest management, can be assessed by measuring physical and chemical soil 

properties such as Db, and soil particle size, OM, exchangeable cations, as well as pH. In 

order to manage forests of the Kitimat Valley, these soil properties need to be mapped 

because then the variation, magnitude and current state of these properties can be better 

understood. Once soil properties are mapped, they can also allow for the assessment of 

how sensitive the soils are to acidic deposition. Like soil quality, there are many soil 

properties which are used to assess soil sensitivity to acidic deposition. Risk assessments, 

such as the one completed by Williston et al., (2016) often evaluate the sensitivity of an 

area to acidic deposition through the calculation of critical loads. Critical loads in soils are 

defined as an estimate of exposure to a pollutant below a specified sensitivity to a chemical 
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criterion so that significant harmful effects on sensitive elements of the environment do not 

occur (Nilsson, 1988). More specifically, in the last 25 years, UNECE has been using 

critical loads of atmospheric nitrogen and sulphur as indicators of ecosystem sensitivity to 

acidification (UBA, 2004). Under the UNECE updated handbook for the Convention for 

Long-Range Transboundary Air Pollution (LRTAP; 2015), critical loads are defined as: 

‘[A] a quantitative estimate of the exposure to one or more pollutants below which 

significant harmful effects on specified sensitive elements of the environment do not occur 

according to present knowledge’ 

The chemical criterion chosen for critical loads is based on the dose response 

relationship between chemical characteristics and ecosystem functions. The critical 

criterion that has been used by UNECE is the aluminum to base cation ratio in the soil 

(Nilsson and Grennfelt, 1988). However, while critical loads are widely used in risk 

assessment, they produce steady-state quantities; this means that they do not include short-

term buffering processes such as buffering via exchangeable base cations (Spranger et al, 

2008). Soil properties such as cation exchange capacity (CEC), base saturation (BS) the 

base cation (BC) pools are three properties widely used as indicators of how well a soil 

may neutralize acidic deposition. These measures include short term buffers of acidic 

deposition and can ultimately lend an understanding to not just if an ecosystem is affected 

but when it could be affected. The CEC is the sum of the total amount of positively charged 

ions (called exchangeable base cations Ca2+, Mg2+, K+, Na+, and exchangeable acidic 

cations H+, and Al3+) bound on exchange complexes, or sites, found in the soil (Sonon, 

2014). These soil exchange sites are the negative charges found on the surface of clay and 

organic matter particles. These negative charges attract Ca2+, Mg2+, K+, Na+ because they 



15 
 

 
 

are positively charged, and so they adhere to the clay and organic matter particles where 

they are held in the soil and may be taken up by plants. As ions are constantly input into 

the soil through nutrient cycling, ions are continuously taken up and displaced; ions with 

higher valence (higher charge, like Ca2+, Mg2+ and Al3+) are preferentially bound to these 

sites (Reuss et al., 1987).  The BS of a soil is the percentage of the CEC that is made up of 

the base cations Ca2+, K+, Mg2+, and Na+ on the soil exchange sites (Shoenholtz et al., 

2000). Lastly, BC pools are the total amount of base cations available in the soil at a given 

time; base cation pools are dependent on the base cation concentrations, soil bulk density, 

and the depth of soil being evaluated.  

 
1.7 OBJECTIVES 

The primary objective of this thesis was to assess the spatial variability of soil 

properties in the Kitimat Valley and create predictive soil maps for the region. Soil 

properties such as Db, OM, CF, clay, pH, exchangeable acidity, and exchangeable cations 

have not been previously mapped for this region; digital maps would allow for the 

understanding of the variation and state of these properties for the soils of this region. 

The secondary objective of this thesis was to use predictive digital mapping in an 

application to assess the potential impacts of S deposition from the aluminum smelter in 

the Kitimat, Valley. To do this, first indicators of soil buffering capacity (CECE, BSE, and 

BC pools) were evaluated to determine regional sensitivity to acidic deposition using 

predictive digital maps. These measures were used instead of critical loads because they 

provide a time to effects assessment where critical loads assessments focus on long-term 

impacts and ignore finite buffers such as BC pools. Secondly, the potential impacts to forest 
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soils in the Kitimat Valley was assessed using predictive digital maps of calculated time to 

base cation depletion.  

To support this assessment, mineral soil samples were taken from 72 locations 

throughout the Kitimat region during the period 2012–2016 and were analyzed for Db, 

OM, CF, clay, pH, exchangeable acidity (H+, Al3+) and exchangeable cations (Ca2+, Mg2+, 

K+, and Na+). Predictive maps were created for these soil properties for the average of the 

top 50 cm of mineral soil using regression kriging following Hengl et al. (2004) and their 

quality was assessed. To assess the sensitivity of the soils, indicators of soil buffering 

capacity (CECE, BSE, and total BC pools) were calculated. In addition, time to base cation 

pool depletion was calculated for the average of the top 50 cm of mineral soil using 

modelled S deposition based on permitted SO₂ emissions.  

This thesis is written in manuscript style, divided into two main manuscript chapters 

to meet the overall objectives of this work. The first manuscript (Chapter 2) addresses the 

primary objectives, focusing on assessing the spatial variability of soil properties in the 

Kitimat Valley through the development of predictive digital maps for the region. 

Additionally, the quality of the predictive maps was assessed. The second manuscript 

(Chapter 3) addresses the secondary objectives, focusing on areas identified as sensitive to 

acidic deposition and assessing the potential impacts of increased SO₂ emissions through 

calculating the time to base cation pool depletion based on post-modernization total S 

deposition estimates. The description of the study region, sampling methods and sample 

sites are repeated across both chapters to facilitate stand-alone manuscripts.  
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2.0 CHAPTER 2: CHAPTER 2: PREDICTIVE MAPPING OF SOIL PROPERTIES IN 

THE KITIMAT VALLEY, BRITISH COLUMBIA   

2.1 INTRODUCTION 

Soil is a key natural resource which provides fundamental ecosystem services such 

as provisioning (i.e., agriculture, silviculture, and precious metals) as well as ecosystem 

regulation (water filtration and nutrient storage for plant productivity). These provisions 

are the backbone of the economic success of many countries; so, it is important then to 

understand the spatial patterns in soil properties to allow us to effectively manage these 

natural resources. Traditionally, mapping soils to understand their spatial distribution 

involved time-consuming and costly soil sampling which generally covered a minimal area 

leaving knowledge gaps across large areas (McBratney et al., 2000). Born out of these 

constraints, Danie Krige developed the earliest form of kriging for use in the mining 

industry; the location of high-grade gold was predicted based on the known locations of 

high-grade ore. In the 1960’s, this work was formalized by Matherton, and presented as 

the theory known as geostatistics (Babish, 2006). Geostatistical techniques underpin 

predictive soil mapping, which use data sets with few soil observations, inexpensive 

information such as digital elevation models and remote sensing imagery, combined using 

geostatistical methods (Hengl, 2004). One of the most widely used methods for predictive 

soil mapping is regression kriging. Regression kriging combines the regression of a 

dependent variable such as soil pH or bulk density on independent continuous auxiliary 

variables such as vegetation cover, temperature, and bedrock type with kriging of the 

regression residuals (Babish, 2006). This method is used for predictive digital soil mapping 

because of its flexibility in defining trends based on different linear models (Gasch et al., 
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2015). As well, it has been found to be one of the most accurate methods for producing 

predictive maps for environmental factors (Bishop and McBratney, 2001).  

Globally, a shortage of soil maps has been documented; Grunwald and associates 

(2011) stated that soils are the least described spatial variable at the global scale, and that 

soil maps are often undocumented or incomplete. Digital soil mapping has been completed 

successfully in many cases worldwide; global maps for soil type at the 1 km scale (Hengl 

et al., 2014), as well as the 250 m scale for the continent of Africa (Hengl et al., 2017). 

These maps came from an initiative launched in 2009 called the GlobalSoilMap project 

after the second global workshop on Digital soil Mapping in 2006 (Hartemink et al., 2010). 

During this workshop, it was discussed and understood that maps of soil properties are not 

readily available; hence it was suggested that an initiative based on open source 

information and data contributed by many countries may allow for the creation of a global 

raster map of soil properties (Hartemink et al., 2010). Clearly, there has been some progress 

from this initiative, but for many areas, especially for areas such as Russia and Northern 

Canada, there is a serious knowledge gap. Hengl and colleagues (2014) acknowledged that 

these areas in particular lack the soil data required to complete reliable predictive digital 

mapping  

The area of interest to this study is the Kitimat Valley, in North-West BC. There 

has been an increase in industrial activity in the Kitimat Valley in the last decade, and 

concern for pressures on natural resources, including soil, as a consequence of this 

industrial activity have resulted in the completion of several soil surveys in the region. 

Through these surveys, soils have been analyzed for bulk density, field moisture, pH, 

exchangeable cations, total organic carbon, particle size, and major oxides. Additionally, 
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mineral surface area and critical loads estimations were made by Levasseur (2017) and a 

simple map of soil types, as well as the exceedances of critical loads, were mapped by LNG 

Canada (Stantec, 2014) and ESSA et al., (2013) in the Sulphur dioxide technical 

assessment report (STAR). However, fundamental soil properties (e.g., Db, OM, CF, clay, 

and pH, exchangeable acidity, Ca2+, Mg2+, K+, and Na+) have not been mapped for this 

region yet, so there is a limited understanding of the spatial variability of these soil 

properties in the Kitimat Valley. Mapping these soil properties is critical in order to manage 

the natural resources of the region, as well as identify any potential impacts industrial 

activity may have on the soil. 

The principle objective of this chapter was to predict soil properties (Db, OM, CF, 

clay, and pH, exchangeable acidity, Ca2+, Mg2+, K+, and Na+) across the Kitimat Valley 

through digital soil mapping. To do this, mineral soil samples at three fixed depths were 

taken from 72 locations throughout the Kitimat region during the period 2012–2016 and 

were analyzed for previously mentioned soil properties. Predictive maps were then created 

for these soil properties for the top 50 cm of mineral soil using regression kriging following 

Hengl et al. (2004) and their quality was assessed by calculating the total variation 

explained by the model (TVAR) and the normalized root mean square error (RMSE). 

 
2.2 METHODS 

2.2.1  STUDY AREA AND SITE SELECTION 

The Kitimat Valley is located on the northwest coast of British Columbia; its lowest 

point (300 m) is at the head of the Douglas Channel close to the town of Kitimat, in the 

south of the valley, and the most northern point extends to just past the city of Terrace, 

which is about 50 km to the north (ESSA et al., 2013; Clague, 1984). Three bedrock types 
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are dominant in the region (calc-alkaline volcanic rocks, granodioritic intrusive rocks and 

quartz dioritic intrusive rocks); intrusive igneous rock has been shown to provide an acidic, 

coarse, parent material (Jenny, 1941). Additionally, surficial geology mapped and 

described by Clague (1984) showed that the valley bottom between Kitimat and Terrace 

was substantially covered by glacial deposits such as alpine complexes, till veneer, and 

glaciomarine sediments. This may be reflected in soil properties, as alpine complexes and 

till veneers can lead to the formation of more acidic soils (Tamminen and Starr, 1990), and 

glaciomarine sediments contain greater amount of base-rich minerals and produce soils 

with higher base cation weathering rates (Egli et al., 2001). Of the 10 soil orders found in 

Canada, there are three which are associated with forest landscapes: Luvisolic, Podzolic, 

and Brunisolic. Of these three soil orders, Podzolic and Brunisolic soils predominate the 

soil landscape of the Kitimat Valley (Canadian System of Soil Classification, 1998; LNG 

Canada, 2014). Soils of these orders are found in the same basic parent material type, often 

found in areas of sandy parent material underlain with igneous rock and areas of sandy 

glaciofluvial deposits. Podzols and Brunisols are found in the same parent material and are 

both found under canopies dominated by coniferous vegetation; however, they have 

fundamental differences. Podzols are acidic soils dominant in ecoregions with more than 

700 mm of rain per year, where Brunisols are found in areas of less precipitation and are 

poorly weathered soils that lack distinct horizons which prevents them as being classified 

as podzols or luvisols. Podzols have a distinct light grey upper horizon that is formed from 

the increased precipitation and organic acids produced from the decomposition of 

coniferous leaf litter, which in turn creates a zone of strong weathering. This strong 

weathering causes eluviation, or the downward transport of primary minerals such as 
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aluminum, iron and other metal ions from the upper to lower horizons, thus the upper 

horizon is light (Canadian System of Soil Classification, 1998).  

The Kitimat the Valley is located mainly within the Coastal Western Hemlock 

(CWH) biogeoclimatic zone, with the high elevation mountain regions being within the 

Alpine Tundra (AT) and Mountain Hemlock (MH) zones (Krajina, 1975). The CWH zone 

is on average the rainiest biogeoclimatic zone in British Columbia, with cool summers and 

mild winters (Meidinger and Pojar, 1991). This is true for Kitimat and Terrace, as the long-

term (1981-2010) average yearly precipitation was 2774.6 and 1168.9 mm, and the annual 

average temperature was 7.9 and 7.4°C, respectively (Environment Canada, 2018).  

The landcover in Kitimat Valley is dominated by dense forest, predominantly comprised 

of Tsuga heteophylla (Western Hemlock). The topography of the Kitimat Valley is very 

rugged, as it is flanked by mountain ranges with peaks as high as 1700 m. The principal 

industry in the region is the Rio Tinto BC Works smelter (ESSA et al., 2013). Also, a 

liquified natural gas (LNG) project in Kitimat has been announced recently, representing 

additional future industrial pressures on the surrounding environment. This LNG pipeline 

will carry natural gas to a processing facility in Kitimat where it will be condensed and 

shipped out of the Douglas Channel.  

In the current study, the mapping domain was defined as a 3,000 km2 rectangular 

area in the Kitimat Valley (see Figure 2-1) with an east-west dimension of 30 km and a 

north-south dimension of 100 km; this domain  defines the area of potential anthropogenic 

impact from the smelter and related activities such as smelting, as well as accounts for 

potential future industrial activity which may also impact the area. To properly evaluate 

the impacts of these industries, soil samples were collected in this area. Site selection used 
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a stratified random sampling approach to ensure spatial coverage. The strata were based on 

the bedrock geology map for the study region, and within each stratum a minimum of 4 

sampling sites were randomly selected. Soil sampling was carried out following a common 

protocol; a 500 by 500 m grid was overlaid on the study domain, and all accessible sites 

(within ~250 m from a road/trail) were identified; from this, sample sites were randomly 

selected. While sites were accessible, they were also more than 50 m away from roads, 

rivers, and lakes, were undisturbed by human activity, and have a slope of less than 45 

degrees (ESSA et al., 2013). In addition, soil data were supplemented with samples from 

other surveys being carried out in the region; in total, soil samples at three fixed depths 

were taken from 57 locations. Lastly, in 2016, additional sites were sampled to supplement 

the spatial representation of sites collected in 2012 (n=15). A total of 72 locations were 

sampled following a common sampling protocol during the period 2012–2016 (see Figure 

2-1). For details on locations and site characteristics, please see Appendix Table A1. 
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2.2.2  FIELD PROCEDURES 

At each sampling location, after the 20 m by 20 m plot was established, the sample field-

sheet was filled out, where observations such as site ID, co-ordinates, time, date, 

temperature, elevation, site position, slope, and dominant vegetation were recorded.  Then, 

at each of the four corners and the centre of the plot, a soil auger was used to collect mineral 

soils from the fixed depths of: 0-10 cm, 15-25 cm, and 40-50 cm (below the forest floor); 

the five samples from each respective depth were then composited into one sample per 

depth and labeled accordingly (making a total of three depth samples per plot). These three 

samples were taken to provide a representative average for the top 50 cm of soil. In 

addition, soil bulk density samples were collected from the centre of the plot using a 

hammer core, at the same depths as the composite soil samples. Samples were retaken in 

the presence of large rocks and roots; after sampling, each of the bulk density samples were 

Figure 2-1. Spatial coverage of the 72 soil sampling locations within the Kitimat Valley. Samples 

were collected during 2012 and 2016; the blue dots represent a single sample location. 
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place in their own plastic bags and labeled (ESSA et al., 2013). In total, 72 sites were 

sampled throughout the Kitimat Valley between 2012 and 2016 using this field protocol. 

The total number of individual soil samples collected for chemical analysis was 213 

samples (depths 15-25 were missing for three sites: GD009, OG009, and VA002), which 

were sent to Trent University for preparation and laboratory analysis. For a complete table 

of site coordinates and characteristics, see Appendix Table A1.  

 

2.2.3  LABORATORY METHODS  

Upon arrival in the laboratory, all bulk density and composite samples were 

weighed, then composite samples were transferred into aluminum foil pans, and allowed 

to air dry for 2 weeks. Samples were then sieved in a 2 mm sieve and the coarse (> 2 mm) 

and fine (< 2 mm) fractions were weighed. 

All soils (n=213) were analyzed for Db, OM by loss on ignition, CF (> 2 mm), pH, 

and particle size (sand, silt and clay), following the methods outlined by ESSA et al. (2013). 

All samples were analyzed for exchangeable cations (Ca, K, Mg, Na, Fe, Mn) following 

Dohrmann et al. (2012), exchangeable acidity and aluminum (Al3+) following Thomas 

(1982) and Sims (1996).  

 

Coarse fragment and bulk density (Db) 

All Db samples were oven dried at 105°C for 24 hours; dried samples were then 

sieved in a 2 mm sieve, and the coarse (>2 mm) and fine (<2 mm) materials were weighed. 

The volume of coarse fragment (>2 mm), was estimated by adding the sieved coarse 

fragment (> 2 mm) to 100 mL of water in a graduated cylinder and recording the volume 

of water that was displaced.   
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Db was calculated according to the equation:  

𝐵𝑢𝑙𝑘 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝑔 𝑐𝑚–3) =
𝐷𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑓𝑖𝑛𝑒 (< 2 𝑚𝑚)𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 (𝑔)

𝑆𝑜𝑖𝑙 𝑐𝑜𝑟𝑒 𝑣𝑜𝑙𝑢𝑚𝑒 (𝑐𝑚3) − 𝐶𝑜𝑎𝑟𝑠𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 (𝑐𝑚3)
 

Where the soil core volume was the volume of the bulk density hammer ring used in the 

field. 

 

pH, organic matter, and particle size 

Upon arrival to the laboratory, a 10 g subsample of fresh soil was taken for pH 

analysis before the remaining sample was air dried. Soil pH was measured in water; fresh 

soil was sieved (< 2 mm) to remove coarse debris, and 5 g was weighed out into a labeled 

conical tube. Then 20 mL of b-pure water was added, and samples were placed on a shaker 

table for 40 minutes. After being shaken, they were left to sit for 20 minutes to allow the 

particles to settle. A glass-probe pH electrode calibrated using 3 pH standards was used to 

record the pH. The pH probe was rinsed with b-pure water between samples to avoid cross 

contamination. 

Sample crucibles were washed with DI water, oven dried at 105°C for 3-4 hours 

until all moisture was removed and placed in a desiccator to cool. Empty crucibles were 

then labeled with ink and weights were recorded using an analytical balance; 

approximately 5 grams of fine air-dried soil (<2 mm) was then added to the crucible. Full 

crucibles were oven dried for 12 hours at 105°C, transferred to a desiccator and dried 

weights were recorded. Finally, the full crucibles were placed in a muffle furnace and 

ignited (ashed) at 400°C for 10 hours. After cooling in a desiccator, final weights were 

recorded. From this, percent organic matter was calculated using the following formula: 
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%𝑂𝑀 =
(𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑑𝑟𝑦 𝑠𝑜𝑖𝑙 –  𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑎𝑠ℎ𝑒𝑑 𝑠𝑜𝑖𝑙) 

(𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑑𝑟𝑦 𝑠𝑜𝑖𝑙)
∗ 100 

 

All samples were analyzed for particle size using laser diffraction (Horiba Partica 

LA-950) following methods outlined by Whitfield and Reid (2013). Samples were dried, 

sieved, and run in triplicate; the different size particle fractions were identified, and 

grouped by sand (60-250 µm), silt (2-6 µm) and clay (< 2 µm) size categories. The average 

of the triplicates was then used to describe the percent of sand, silt, and clay.   

 

Exchangeable cations and exchangeable acidity 

Exchangeable cations were determined for all soil samples using an ammonium 

acetate (NH4OAc) extraction, following protocols outlined by Dohrmann et al. (2012). One 

litre of 1 M NH4OAc solution was made by adding 77.08 g of NH4OAc to 1 L of b-pure 

water and adjusting the pH to 7 by adding ammonium hydroxide (NH4OH) or acetic acid 

(CH3COOH). Five grams of air-dried soil was weighed into a labeled 50 mL conical tube, 

and 25 mL of NH4OAc was added. The samples were shaken for 15 minutes and then 

allowed to stand for approximately 16 hours. A Buchner funnel was fitted with #42 

Whatman filter paper and placed on a 250 mL Buchner flask with a vacuum side arm and 

rubber ring, ensuring a proper seal. The vacuum filter was turned on, and the filter paper 

moistened to ensure suction. The soil was transferred from the conical tube to the Buchner 

funnel, and washed twice with 10 mL of NH4OAc, allowing each wash to go through the 

funnel without the soil cracking and drying out. The extractant was poured into a labeled 

50 mL conical tube. A subsample was then acidified with nitric acid (HNO3; 2% by 

volume) and analyzed for cations (Ca2+, Mg2+, K+ and Na+) using inductively coupled 
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plasma optical emission spectrometry (ICP-OES; Optima 7000DV). A total of 18 method 

blanks were analyzed, as at least three blanks were included in each batch of 50 samples. 

These method blanks were then used to blank correct the analysis. Additionally, Buchner 

funnels were washed 3 times with 10 mL of b-pure water between samples to ensure 

accurate and reliable analysis.  

 Soil samples were analyzed for exchangeable acidity following the methods 

outlined by Thomas (1982) and Sims (1996). Potassium chloride (KCl; 1M) and sodium 

hydroxide (NaOH) solutions were made. The NaOH solution was then titrated with 

standardized hydrochloric acid (HCl) three times and the concentration of the NaOH 

solution was verified to be ~0.1 N using the formula: 

𝐶1𝑉1 =  𝐶2 𝑉2 

 

Five grams of air-dried soil was weighed into a labeled 50 mL conical tube; 25 mL 

of 1 M KCl solution was added and the mixture was left to sit for 30 minutes. A Buchner 

funnel was fitted to a 250 mL flask with a vacuum side-arm and #42 Whatman filter paper. 

Light suction was applied, and the filter paper was moistened; the soil-KCl mixture was 

then transferred to the Buchner funnel. The soil was washed with an additional 125 mL of 

KCl solution in increments of 25 mL, ensuring the solution ran through the filter but the 

soil was not dried or cracked. A subsample of leachate (15 mL) was poured into a conical 

tube and acidified with HNO3 (2% by volume) for analysis of Al by ICP-OES (Optima 

7000DV). The remainder of the extractant (135 mL) was used to obtain exchangeable 

acidity; to do this, 4–5 drops of phenolphthalein were added to the leachate in the 250 mL 

flask and titrated with the 0.1 N NaOH to the first permanent pink point. Volumes of NaOH 
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were recorded before and after titration, and total volume was used to calculate 

exchangeable acidity. A total of 30 method blanks were analyzed during this procedure, as 

at least three method blanks were run for each set of 25 samples to allow for blank 

correction. Buchner funnels were washed 3 times with b-pure water between samples to 

ensure accurate and reliable analysis. 

 
2.2.4  DESCRIPTIVE SUMMARY OF SOIL DATA 

Summary statistics (minimum, maximum, and average), as well as coefficient of 

variation (CV%) were calculated for the 0-10, 15-25, and 40-50 cm depth data. The CV 

was calculated using the formula:  

𝐶𝑉% =
standard deviation

𝑚𝑒𝑎𝑛
∗ 100 

 The data distribution for each soil variable was visually assessed using boxplots 

and tested for normality using the D’Agostino-Pearson Test. Finally, the Kruskal-Wallis 

test was used to determine if there were statistical differences in soil variables between 

depths; a Dunn’s test was used post-hoc to determine which depths were statistically 

different. 

 
2.2.5  PREDICTIVE MAPPING PROCEDURES 

Predictive mapping using regression kriging followed the generic framework 

outlined by Hengl et al. (2004; Figure 2-2). (1) covariate layers (independent variables or 

predictors such as factors which affect soil formation (clorpt) see Table 2-2; full list in 

Appendix Table A2) were prepared in QGIS. (2) the dependent, or target variables (soil 

properties; Db, OM, CF, clay, pH, exchangeable acidity, Ca2+, Mg2+, K+, and Na+) were 

transformed, and the RK, fitting semivariograms, as well as the back transformation of the 
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predictive models were all carried out using Statistical software packages in R (Global Soil 

Information Facilities (GSIF), raster, sp, rgdal, and gtools, boot, factoextra, corrplot, 

HydroGOF). (3) predictive maps were visualized in QGIS. This predictive mapping 

procedure was performed for soil properties (Db, OM, CF, clay, pH, exchangeable acidity 

and exchangeable cations) for the average of the top 50 cm of mineral soil.  

 

 

 

 

 

 

 

 

 

 

 

Preparing Covariates 

The first step to producing predictive maps for the soil properties (Db, OM, CF, 

clay, pH, exchangeable acidity and exchangeable cations) for the study area was to unify 

the projections and the grid size of the covariate (auxiliary) maps. Covariates are the 

Figure 2-2 The generic framework outlined by Hengl et al. (2004), adapted for use in this study. 
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independent variables, such as elevation, temperature, slope, and forest vegetation, which 

have continuous coverage across the study area. In total, 91 covariates maps were prepared, 

the categories of maps were: elevation, slope, geology, forest cover, precipitation, runoff, 

and temperature (Table 2-1, Table A2). Geology and forest cover covariate layers were 

chosen based on their presence in the study domain; if a geology or vegetation type was 

present in any part of the study domain, it was included. All covariate maps were unified 

to the Statistics Canada Lambert, EPSG 3347 projection; this projection was used as it 

produces less distortion for north western regions of Canada. All covariate maps were 

converted into raster maps with a 250 m × 250 m grid spacing over the study domain, e.g., 

vector data, such as geology, were rasterized (using the rasterize tool in QGIS version 

2.18). This grid spacing was selected because 68 of the 91 covariate maps had a 250 m by 

250 m grid spacing when retrieved from their respective sources, so all others were adjusted 

to match that grid spacing. Once grid spacing and projection were the same, the 91 

rasterized covariate maps were compiled into a “raster stack” using the stack package in R. 

This raster stack was then transformed into factors, referred to as soil predictive 

components (SPC’s), which are derived from principle component analysis (PCA) using 

the GSIF R package. SPC’s are used in predictive mapping instead of the original predictor 

(auxiliary) values because it removes skew and covariance between the variables (Hengl 

et al., 2004).  A scree plot was used to determine how many SPC’s were used in the 

predictive mapping; a scree plot shows what fraction of the total variance is explained by 

the SPC’s.  
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Table 2-1 Covariate data for predictive mapping: data type (climate, soil, hydrology, topography, 

geology, and forest vegetation; as well as the number of maps from each category), variable, data 

(map) resolution and source. 

Data type Variables Resolution  Source 
Climate (n = 15) Total precipitation, annual 

mean, maximum and 

minimum temperature 

10 km grid Canadian Forestry 

Service; (McKenney, 

2006) 

Soil (n = 30) Bulk density, cation 

exchange capacity, percent 

clay, coarse fraction 

volume, organic carbon, 

pH, percent sand, soil type 

250 m SoilGrids; 

(www.soilgrids.org) 

Hydrology (n = 1) Runoff (Q) 250 m Cubic spline 

interpolation at 250 m of 

meteorological data from 

16,115 points produced 

by the MetHyd model 

(New et al., 2000; Bonten 

et al., 2016) 

Typography (n = 

2) 
DEM, slope 30 m Canadian Digital Surface 

Model; 

(https://open.canada.ca/d

ata/en/dataset/768570f8-

5761-498a-bd6a-

315eb6cc023d) 
Geology (n = 6) Bedrock type Vector data, 

bedrock units 
British Columbia 

Geological Survey (Cui 

et al., 2017) 

Forest Vegetation 

(n = 37) 
Vegetated and non-

vegetated landcover, 
species composition, forest 

structure 

250 m Canada's National 

Forestry Inventory 

(Beaudoin et al., 2014) 

 

Transform Target Variables and Perform Regression Kriging to Produce Predictive 

Models 

Observed soil data by depth (Db, OM, CF, clay, pH, exchangeable cations, Ca2+, 

Mg2+, K+, and Na+) were averaged (weighted by bulk density and depth) so that the target 

variables represented the average top 50 cm of mineral soil. Predictive mapping was then 

carried out on this 0–50 cm soil depth. 
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The GSIF package was used to automate the methods involved in regression 

kriging. Each target variable was logit transformed; logit transformation is a function that 

log transforms a dataset, which is bound by a specified minimum and maximum and 

improves the normality of target variables (Hengl et al., 2007). The logit transformed data 

was then fit with the SPC’s produced from the covariate layers, using the fit.gstatModel 

function in GSIF. This function uses stepwise regression to derive the best set of predictors 

based on Akaike Information Criterion (AIC) scores, which are then used to fit the target 

variables with a general linear model (GLM) (Hengl et al., 2004). After the data is fit with 

the GLM, the fit.gstatModel function performs the kriging of the regression residuals; these 

interpolated residuals are then added to the fitted GLM and a final prediction map is 

created. 

Once the predictive maps of the target variables are produced, they are back 

transformed from the logit scale to the original units of the target variables using the 

inv.logit function from the boot package;  this back transformed map was then imported 

into QGIS for final visualization.  

Lastly, it should be noted that rare high values (outliers) were assessed using 

Cook’s distance and Q-Q plots produced in R. In extreme cases, these rare high values 

were removed when interpolation was improved, or where all values remained inside of 

cook’s distance and TVAR and RMSE increased.  

 
2.2.6  STATISTICAL ANALYSIS AND VALIDATION OF PREDICTIVE MAPS 

Using the GSTAT package and krige.cv function in R, a five-fold cross validation 

was run on the 72 observed data points after the predictive mapping procedure was 

completed; this function splits the observations up into N parts as specified by the user, 
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and predictions are made on N-1 parts. In this case N=5; this means the data were broken 

up into groups of 14-15 points each (each of these groupings is then called a fold). To run 

cross-validation, one group of 14-15 observations is left out, and the 57 or 58 observations 

are used to predict this smaller group. These predictions are run a total of 5 times, once for 

each group of 14-15 points (or fold) which have been left out; the krige.cv function runs 5-

fold validation as the default (Pebesma, 2004). The cross-validation was then used to 

calculate the total variation (TVAR) explained by the model (TVAR, GSIF package; Hengl 

et al., 2013). TVAR is calculated using the following equation:  

𝑇𝑉𝐴𝑅 = [1 −
𝑆𝑆𝐸

𝑆𝑆𝑇𝑂
] ∗ 100% 

Where SSE is the sum of squares for the residuals at cross-validation points and SSTO is 

the total sum of squares (Hengl et al., 2014).  

Cross-validation was also used to create predicted versus observed plots which 

were used to visually assess the goodness of fit of the predictive models created with the 

whole dataset. Additionally, normalized RMSE (NRMSE) was calculated in R using the 

rmse function of the HydroGOF package and normalized by dividing by the mean. This 

was done to assess the difference between the predicted versus observed data at the 72 

sample locations. 

 

2.3 RESULTS AND DISCUSSION 

2.3.1  OBSERVED SOIL DATA 

Average Db, coarse fragment, and pH increased with increasing depth (0-10, 15-

25, 40-50 cm; Table 2-2; Appendix Figure A1). Average Db by depth was 0.59 (0.09-1.19), 

0.75 (0.09-1.39), and 0.83 (0.13-2.00) g/cm3. Average CF was 14.98 (0.00-80.61), 18.51 

(0.00-93.68), and 21.43 (0.00-65.91) %. Average pH was 4.6 (3.7-6.5), 5.0 (4.0-6.6), and 
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5.3 (4.71-6.6). In contrast, average OM, clay, exchangeable acidity, and Ex. K+ decreased 

with depth (Table 2-2; Figure A1). Average OM was 17.53 (2.60-89.48), and 12.62 (1.94-

52.78) and 8.85 (1.81-61.67) %.  Average Ex. acidity was 3.95 (0.13-15.13), 2.77 (0.53-

8.53), and 2.04 (0.13-8.60) meq/100g. Exchangeable K+ had average values of 0.16 (0.02-

0.83), 0.11 (0.02-0.41), and 0.10 (0.45) meq/100g.  

The increase in Db and pH with increase in depth was in line with previous literature; 

Db in soils typically increases with soil depth, as deeper soil layers contain less OM, are 

more compacted and have less root penetration than surface layers (Larson and Pierce, 

1991; Doran and Parkin, 1994). Similarly, a previous study has also shown that pH 

increases with depth; especially for soils under forest canopy (Dorji et al., 2014).  

The decrease in Ex K+ with depth is widely observed (Giehl and Wiren, 2014). 

Exchangeable K+ may have less vertical movement through soil because it is found at lesser 

concentrations than other exchangeable base cations; Ex. K+ has been found at 

concentrations 10 times lower than Ex. Ca2+ and half of Ex. Mg2+ (Brady, 1984). As there 

is less Ex. K+ in the soil and available for plant growth, it is often found that plants do not 

release Ex. K+ back into the soil, and so they become reservoirs. This is opposed to 

abundant cations like Ex. Ca2+, which shows a consistent pattern of nutrient cycling – it is 

taken up by plants and returned to the soil through leaf-litter fall – contributing to 

consistency in concentration with depth (Likens et al., 1967; Brady, 1984; Likens et al., 

1994). Jobaggy and Jackson also found that like the current study, OM and clay decrease 

with depth globally in soils (2000).  

The CV% by depth showed high ranges for many of the soil properties, with only 

Db showing less than 50% (Table 2-2). However, many of the soil properties showed a 
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decrease in the coefficient of variation with an increase in depth; for example, coarse 

fragment, clay, and pH all decreased in CV% with an increase in depth (Table 2-2). These 

CV values indicate that the spatial variation of the soil across the region changes by depth. 

The largest decreases were observed for coarse fragment (120.5, 101.2, and 88.4%), clay 

(105.2, 76.2, and 74.1%), and pH (162.3, 142.5, and 92.8%; note minimum, maximum, 

average, and CV for the log [H+] values were calculated first and then converted back to 

pH) (Table 2-2).  

The high coefficient of variation indicated high spatial variation within the data 

over the study area; factors of soil formation such as slope, and type of parent material may 

explain this variation; slope may have affected the variation, as it was found by Moore et 

al. (1993), that terrain attributes such as slope were significantly correlated to soil 

properties such as clay and pH. Additionally, slope can influence erosion and transportation 

of materials from higher elevation areas to flatter plains (Marbut, 1935). This would be the 

case in the Kitimat Valley, as it is surrounded by mountains, and so material may have 

been eroded from the mountainous areas and transported to the glacial outwash plains. 

Parent material is a major factor for the formation of soil and its inherent properties such 

as texture, acidity, and nutrient density (Anderson, 1988; Osher and Buol, 1998; Brady and 

Weil, 2010). This is not true for a proportion of the Valley though, as surficial materials 

such as glaciofluvial surficial deposits, covered 26% of the study area. Glaciofluvial 

materials dictate the weathering of cations rather than bedrock geology or parent material 

in these soils; areas dominated by glaciofluvial deposits may have higher base rich minerals 

and may show different properties that would be expected from the bedrock geology (Egli 

et al., 2001). 
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Soil Db, OM, pH, Ex. acidity, and Ex. K+ were found to have significant differences 

between depths (p<0.05, Table 2-3). Although Ex. Mg2+ did not show a consistent increase 

or decrease with depth it was found to have a significant difference between the upper and 

lower soil depths (Table 2-3). Soil Db, Ex. acidity, and Ex K+ were significantly different 

between the 0-10 and 15-25 cm layers (Table 2). Further, Db, OM, pH, Ex. acidity, and 

Ex. K+ all showed a statistical difference between the 0-10 and 40-50 cm layers (Table 2-

3). A significant difference between the 0-10 and 40-50 cm depths was expected because 

of soil processes and biological factors which dictate the distribution of soil properties. 

Leaching, evaporation, nutrient uptake and decomposition facilitated by vegetation and 

earthworms all occur at the upper layers of soil and decrease with depth. This is especially 

true for the exchangeable cations, of which many are required for plant growth (Jobaggy 

et al., 2001; Giehl and Wiren, 2014). As well, upper soil depths contain more organic matter 

owing to litter fall, which can affect soil nutrient availability, soil texture, and soil density. 

This is opposed to lower soil depths which have less organic matter and are more compact, 

creating a more uniform soil which ultimately is less variable than the upper depths 

(Shoenholtz et al., 2000).  
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Table 2-2 Average soil properties (bulk density, coarse fragment, organic matter, clay, 

exchangeable [Ex] acidity and Ex cations) and coefficient of variation (CV; %) at three sampling 

depths (0-10 cm, 15-25 cm, and 40-50 cm) for all 72 sampling locations in the Kitimat Valley, 

British Columbia. 

Parameter Units Average by soil depth CV% by soil depth 

Soil depth cm 0-10 15-25 40-50 0-10 15-25 40-50 

Bulk density   g/cm3 0.59 0.75 0.83 48.58 37.05 46.48 

Coarse fragment % 14.89 18.51 21.43 120.47 101.24 88.4 

Organic matter % 17.53 12.62 8.85 94.18 81.86 97.10 

Clay  % 4.93 4.51 4.04 105.24 76.20 74.09 

pH (H2O)  4.6 5.0 5.3 162.25 142.50 92.78 

Ex acidity meq/100g 3.95 2.77 2.04 64.32 65.36 81.06 

Ex calcium  meq/100g 1.92 1.43 1.78 128.01 153.09 138.92 

Ex potassium meq/100g 0.16 0.11 0.10 78.96 70.35 82.98 

Ex magnesium meq/100g 0.50 0.31 0.43 114.62 127.75 175.93 

Ex sodium  meq/100g 0.08 0.06 0.10 218.24 184.89 300.96 

 
 
Table 2-3 Dunn’s tests (Significance at p<0.025, indicated by *) for all significantly different soil 

properties (bulk density, coarse fragment, organic matter, clay, exchangeable [Ex] acidity and Ex 

cations) and coefficient of variation (CV; %) comparing the three sampling depths (0-10 cm, 15-

25 cm, and 40-50 cm) for all 72 sampling locations in the Kitimat Valley, British Columbia. 

  

0-10 cm vs 

15-25 cm 

0-10 cm vs 

40-50 cm 

15-25 cm vs 

40-50 cm 

 Parameter Units    

Bulk density g/cm3 * *  

Coarse fragment %    

Organic matter %  * * 

Sand %    

Silt  %    

Clay  %    

pH (H2O)   *  

Ex acidity meq/100g * *  

Ex calcium  meq/100g    

Ex potassium meq/100g * *  

Ex magnesium meq/100g * *  

Ex sodium  meq/100g    

Ex aluminum meq/100g    

Ex iron meq/100g    

Ex manganese  meq/100g  *  
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2.3.2  OBSERVED SOIL DATA: WEIGHTED-AVERAGES 

In general, the weighted-average soil properties for the 0-50 cm soil depth were 

very similar to the 15-25 cm layer (Table 2-2, Table 2-4). The weighted average for bulk 

density was 0.74 g/cm3, with a range of 0.12-1.47 g/cm3 (15-25 cm layer average: 0.75 

g/cm3). The weighted averages for pH was 5.01 and a range of 4.33-6.48 (15-25 cm: 5.0); 

and exchangeable acidity was 2.58 meq/100g with a range of 0.13-6.89 meq/100g (15-25 

cm: 2.77 meq/100g). In contrast, the weighted average of exchangeable calcium and 

magnesium were similar to the 40-50 cm layer. Exchangeable calcium had a weighted 

average of 1.72 meq/100g and a range of 0.04-11.36 meq/100g (40-50 cm: 1.78 meq/100g); 

exchangeable magnesium had a weighted average of 0.40 meq/100g and a range of 0.02-

3.42 meq/100g (40-50 cm: 0.43 meq/100g). 

The CV% for the weighted averages of bulk density, coarse fragment, organic matter, 

exchangeable acidity, and potassium were lower than the CV% for the individual soil 

depths (38.5, 85.1, 69.9, 59.8, and 69.1%, respectively; Table 2-2, Table 2-4). The soil 

properties with the highest CV for the weighted averages were sodium (261.1%), 

magnesium (136.8%), calcium (132.7%), pH (117.5%) and clay (100.5%). These high CV 

values indicated that these properties were highly variable across the study area. Also, the 

CV values for the top 50 cm of mineral soil for these properties for were not always lower 

than the CV values of the individual observed soil depths of 0-10, 15-25, and 40-50 cm 

(Table 2-2, Table 2-4). 

Lower variation found in the weighted soil depth is likely caused by how the weighted 

soil depth is calculated; the lowest depths generally had the highest bulk density, and so 

had the greatest weighting of the three depths. This is because at lower depths, where bulk 
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density is higher, there is more soil, which therefore represents more of the available 

nutrient reservoirs. This is congruent with what Geisler and Lundstrom (1993) found, 

which was that bulked soil samples showed reduced variation for cations such as sodium, 

magnesium and potassium when compared to individual soil samples. 

 
Table 2-4 Minimum, maximum, average and coefficient of variation (CV; %) values of soil 

properties (bulk density, coarse fragment, organic matter, clay, exchangeable [Ex] acidity and Ex 

cations) of the top 50 cm of mineral soil for all 72 sampling locations in the Kitimat Valley, 

British Columbia. 

 

2.3.3  PREDICTOR VARIABLES, EVALUATION OF FIT, AND DIGITAL SOIL 

MAPS 

The scree plot showed that most variation was explained by the first 10 SPC’s 

(Figure 2-3), to further investigate the predictors which were included in these 10 SPC’s, 

an SPC contribution map was made (see Appendix Figure A2). Here it was seen that the 

first 20 SPC’s had some of the strongest predictor variables, and so a total of 20 SPC’s 

were used.  

Parameter Units Minimum Maximum Average CV% 

Bulk density g/cm3 0.12 1.47 0.74 38.5 

Coarse fragment  % 0.05 80.61 19.45 85.1 

Organic matter % 2.33 36.29 11.28 69.9 

Clay  % 0.85 37.40 4.77 100.5 

pH (H2O)  4.33 6.48 5.01 117.5 

Ex acidity meq/100g 0.13 6.89 2.58 59.8 

Ex calcium  meq/100g 0.04 11.36 1.72  132.7 

Ex potassium meq/100g 0.02 0.39 0.12 69.1 

Ex magnesium meq/100g 0.02 3.42 0.40 136.8 

Ex sodium meq/100g 0.00 1.65 0.08 261.1 
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The SPC contribution map showed distinct groupings of predictors; climate variables 

were shown to have the greatest contribution of all the independent variables to the SPC 

(Appendix Figure A2). After climate, soil properties (i.e., coarse fraction volume and 

percent sand) and bedrock type, showed to have contributed moderately. Climate is a factor 

of soil formation, and bedrock is the precursor for parent material which is another soil 

formation factor; Jenny (1941), stated that climate and parent material were the two most 

influential factors in terms of soil formation (Jenny, 1941). As such, it would make sense 

that these two factors had a higher contribution to the SPC than all other factors. All species 

of hemlock, which included: Tsuga heteophylla, Tsuga canadensis, and Tsuga 

mertensiana, (Western, Eastern, and Mountain hemlock) were included as predictors, 

however, only Eastern and Western hemlock showed any contribution to the SPC, which 

was found to be weak (Appendix Figure A3). It is unsurprising that Western Hemlock 

contributed to the SPC, as it is the dominating vegetation cover in the study domain (ESSA 

et al., 2013).  

The comparison of predicted against observed for Db, OM, CF, pH (H2O), and 

exchangeable Ca2+, Mg2+, K+ were clustered around the 1: 1 line suggesting a strong 

Figure 2-3 Scree plot, with SPC’s (principal components) 1-10 compared to the variance (%) explained 

by each individual SPC. 
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goodness-of-fit (Figure 2-4). The strong spatial relationships for Db, CF and exchangeable 

Ca2+ were reinforced by their respective semivariograms (Appendix Figure A4), which 

showed a closer distance between the residuals and a better model fit. Additionally, the 

TVAR for these soil properties were found to be the highest for Db, OM, CF, pH, and 

exchangeable Ca2+, Mg2+, K+, with values of 19.8, 26.4, 21.2, 24.3, 17.7, 21.0, 27.2% 

respectively (Table 2-5). While the goodness of fit was strong for organic matter, the 

semivariogram showed no distinct model fit (Appendix Figure A4; Table 2-5). Clay, 

exchangeable acidity, and Na+ had an almost horizontal spread in the predicted values 

versus the empirical data (Figure 2-5), indicating a poor fit of the regression relationship 

and residuals (Appendix Figure A4). However, only the semivariogram for clay reinforced 

the poor spatial relationship. The total variation explained for clay, exchangeable acidity, 

and sodium were low, at 0, 11.5, and 2.5% (Table 2-5). 

Low TVAR values such as the ones seen in this study were also seen in a global study, 

where RK was applied for mapping soil properties (soil organic carbon, pH, sand, silt, clay, 

Db, CEC, and CF) at a 1 km grid spacing. The TVAR calculated for their soil properties 

ranged from 23-51% in this study and rarely exceeded 50% (Hengl et al., 2014). This being 

said, it was suggested that low TVAR values may be improved upon by using more 

sophisticated geostatistical methods, such as machine learning and random forest models, 

but these techniques also come with their own drawbacks, such as overfitting of the 

predictor variables (Hengl et al., 2014). As well, as discussed above, the predictor variables 

have uncertainties which may affect variation; as predictor data continues to be collected 

and improved, the databases will be improved, which will ultimately improve the quality 

of the maps. 
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The Db, OM and exchangeable K+ had NRMSE values of 35.0 and 37.0, and 58.0% 

(Table 2-5), which were generally consistent with total variation explained by the models 

(Table 2-5). Additionally, Hengl (2007) stated that an NRMSE value close to 40% is 

generally satisfactory in terms of prediction; this means that the mapping of Db and OM 

were the most successful of all soil properties. The NRMSE for CF, pH, exchangeable Ca2+ 

and exchangeable Mg2+ were found to be higher at 132, 194, 157, and 130% (Table 5). An 

NRMSE value of >70% is typically qualified as less satisfactory (Hengl, 2007). The 

NRMSE value for exchangeable acidity was low (56.0%) compared to TVAR explained 

by the model (Table 2-5). Exchangeable Na+ and clay had lower NRMSE values (63.0 and 

61.0%), which are generally satisfactory but were not supported by their very little to no 

TVAR values. This could be because the range in values seen in the observed data for these 

properties is not as wide as the others, such as CF, which had a high range in values (Table 

2-4). As digital mapping relies on the variation of the observed data to predict unknown 

areas, if the values have a smaller range and are very similar, it may be more difficult to 

estimate trends, resulting in a final map with a low TVAR value.  

Based on the TVAR values for the soil properties evaluated in this study, the predictive 

maps can be ranked by the confidence in which they were mapped. Soil properties were 

found to be mapped with acceptable confidence with the exception of clay, which was not 

mapped acceptably. The order of confidence for the soil properties was: Ex Mg2+ > OM > 

pH > CF > Ex K+ > Db > Ex Ca2+ > Ex acidity > Ex Na+.  

Before moving on to the visualization of the maps, it should be noted here the cross 

validation used to estimate the TVAR values was based on N=5 number of groups. This 

was based on a previous study which suggested that N=5 or N=10 should be used in model 
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training because there is a bias-variance trade-off; having more folds (smaller groups) leads 

to less prediction bias but has higher amounts of predicted variance (James et al., 2013). 

Ideally, a dataset is large enough that a validation set – or randomly selected data points, 

which are not used to create the model – would be used to validate the model rather than 

cross validation. Validations sets are used because they eliminate any bias that may be 

found when using cross-validation, as comparing any data to itself will cause some degree 

of bias (James et al., 2013). 

Visually, the predictive maps for the top 50 cm of mineral soil indicated lower 

values in the glacial outwash plain compared with mountainous upper region and sloped 

sides of the valley for CF, OM, exchangeable acidity, K+, and Na+ (Figure 2-5). In contrast, 

Db, clay, pH, exchangeable Ca2+, and Mg2+ all showed patterns of higher values in the 

bottom of the valley in comparison to the mountainous and sloped regions (Figure 2-5).   

When discussing these digital maps, it would be remiss not to discuss their 

uncertainty and reliability, as the uncertainty in the maps used to predict soil properties 

may affect the variation of the final digital maps produced. Five main sources of 

uncertainty in digital maps have been identified by Finke (2006). First was positional 

accuracy, which is whether map boundaries are correctly aligned; raster maps must be 

aligned in a raster stack and the boundaries the same, in order to perform RK. Secondly, 

completeness of the dataset (both in analysis and geographically for the study domain); in 

this study, it may be that the south-western corner had less samples than the rest of the 

study area, and therefore may have been inaccurately fit, there are limited samples 

surrounding it to estimate from. As well, the errors associated with the measurements of 

soil analysis were identified by Finke (2006); data retrieved for digital soil mapping is 
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completed by many individuals, and errors in their measurements may not be identified 

prior to using the data for predictive mapping. Lastly, how up to date the data is and its 

lineage (when maps of different scales and data sources are combined) were determined 

to be sources of uncertainty in continuous soil data and digital maps. Specifically, lineage 

was an issue covariate map for soil type, as maps of different scales and data sources 

were combined to create it (Omuto et al., 2012; Grunwald et al, 2011).  

While not all the maps have reached the level of confidence as previously found in 

the literature, there is no doubt that they are a helpful tool in which the soil properties of 

the area can be assessed. Based on the current trends in soil mapping, predictive digital 

mapping is the methodology that researchers will continue to pursue into the future, 

especially as methods involving machine learning continue to improve results (Hengl et 

al., 2017). The continuous data for regions such as Northern Canada is lacking and make 

it difficult to produce accurate, reliable maps. However, as more research develops in 

Northern Canada, and as digital mapping research expands in the country, continuous data 

will be updated. As this continuous data is updated, the maps created here can be improved 

because additional variation and patterns in soil properties can be captured and used 

towards predicting areas where data is lacking. These are the first detailed maps of soil 

properties of this area of Northern Canada as such, theses maps can not only be used to 

assess spatial variation, magnitude, and current state in soil properties but can also be 

considered a starting point for future mapping in the region. 



45 
 

 
 

 

Table 2-5 The variation (TVAR) described by the predictive models (%) and the normalized root 

mean square error (NRMSE; %) for soil properties (bulk density, coarse fragment, organic matter, 

clay, exchangeable [Ex] acidity and Ex cations) for the top 50 cm of mineral soil. 

 

  

Units Parameter Variation Explained (%) NRMSE (%) 

g/cm3 Bulk density 19.8 35 

% Organic matter 26.4 37 

% Coarse fragment 21.2 132 

% Clay 0.00 61 

 pH (H2O) 24.3 194 

meq/100g Ex acidity 11.5 56 

meq/100g Ex calcium 17.7 157 

meq/100g Ex potassium 21.0 58 

meq/100g Ex magnesium 27.2 130 

meq/100g Ex sodium 2.5 63 

 
Figure 2-4 The observed versus predicted values for all transformed soil properties (bulk density, 

coarse fragment, organic matter [LOI], clay, exchangeable [Ex] acidity and Ex cations) for the top 50 

cm of mineral soil after cross validation (CV) was performed. 
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Figure 2-5 a. Predictive maps of soil properties (bulk density [Db], organic matter [OM]) for the average of the 

top 50 cm of mineral soil in the Kitimat Valley, British Columbia. 



47 
 

 
 

 

Figure 2-6 b. Predictive maps of soil properties (fragment [CF] and clay, for the average of the top 

50 cm of mineral soil in the Kitimat Valley, British Columbia. 
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Figure 2-7 c. Predictive maps of soil properties (pH and exchangeable [Ex] acidity) for the 

average of the top 50 cm of mineral soil in the Kitimat Valley, British Columbia. 
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Figure 2-8 d. Predictive maps of soil properties (exchangeable [Ex] Ca2+ and K+) for the average 

of the top 50 cm of mineral soil in the Kitimat Valley, British Columbia. 
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Figure 2-9 e. Predictive maps of soil properties (exchangeable [Ex] Mg2+ and Na+) soil for the 

top 50 cm of mineral soil in the Kitimat Valley, British Columbia. 
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2.4 CONCLUSIONS 

Climate and bedrock type were shown to have the highest contribution to predictive 

mapping. Western Hemlock, while ubiquitous in the study area, only had a small 

contribution. The total variation (TVAR) explained by the predictive models for the soil 

properties were in the range of previous studies, giving confidence in the quality of the 

final predictive maps. The order of confidence of the predictive maps was: Ex. Mg2+ > OM 

> pH > CF > Ex. K+ > Db > Ex. Ca2+ > Ex. acidity > Ex. Na+; clay was the only soil 

property which was not mapped with acceptable confidence. Visually, the predictive maps 

showed the lower outwash plain of the valley have lower values of CF, OM, Ex. acidity, 

Ex. K+, and Ex. Na+ than the mountainous upper regions. Bulk density, clay, Ex. Ca2+ and 

Mg2+ were found to show the opposite. Factors of uncertainty and reliability in these 

predictive maps were boundary alignment, completeness of the dataset (analytically and 

geographically), and the use of maps at different scales from different data sources.  

While not all maps reached the level of confidence as previously found in the 

literature, there is no doubt that these soil property maps – which are the first for the region 

– are a helpful tool to assess the variation, state and magnitude of soil properties.  
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3.0 CHAPTER 3: THE PRACTICAL APPLICATION OF DIGITAL SOIL MAPPING: 

THE POTENTIAL IMPACTS OF AN ALUMINUM SMELTER ON SOIL 

ACIDIFICATION 

3.1 INTRODUCTION 

It is well established that atmospheric emissions from fossil fuel combustion – 

especially coal burning, shipping emissions, and base metal smelters, are the main sources 

of atmospheric sulphur (Cullis and Hirschler, 1980; Freedman and Hutchinson, 1980; 

Brimblecombe et al., 1989; Watson et al., 1990). Gaseous sulphur dioxide (SO2) is the 

main form of atmospheric sulphur emitted from these anthropogenic sources and it is the 

main precursor for acidic precipitation. Once SO2 is emitted from a point source, it can be 

transported within the atmosphere until it is removed via two processes; dry and wet 

deposition (Kellogg et al., 1972). Dry deposition occurs when SO2 is deposited directly 

onto the surrounding soil and vegetation as it is heavier than air and has a short residency 

time (1-3 days) in the atmosphere (Garland, 1977; Schwartz, 1989). Alternatively, SO2 can 

undergo oxidation reactions which ultimately results in the formation or sulphuric acid 

(H2SO4), which is deposited in rainfall (Kellogg et al., 1972; Mylona, 1996). SO2 can be 

oxidized in a reaction within a singular phase such as interaction with water droplets in 

clouds or fog, or in a reaction, which occurs in multiple phases, such as gas to particle 

conversion (Bunce, 1994)  Once the H2SO4 has been deposited onto the surrounding 

vegetation, water, and soil surfaces, it dissociates into H+ and SO4
2-  (Guadalix and Pardo, 

1991).  

One of the most significant impacts of acidic deposition on soil is the leaching of base 

cations (Ca2+, Mg2+, K+ and Na+) and increase in concentration of aluminum (Al3+) in soil 

solution. As the H+ concentration in soil increases, base cations are preferentially displaced 

at the soil exchange sites (van Breeman et al., 1984; Reuss and Johnson, 1986; Reuss et 
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al., 1987; Fernandez et al., 2003). As base cations are displaced, they are then mobilized in 

the soil solution, and become bioavailable, so they are taken up by plants or leached from 

the soil by outflow of drainage water, along with SO4
2-. The displacement of base cations 

is a neutralization process; base cations will continue to be displaced by H+ until the base 

cation pools have been diminished by the acidic deposition. However, this displacement is 

not linear, as it is increasingly difficult to displace base cations as concentrations decrease; 

as such all base cations will never be totally displaced from soil (Johnson et al., 1983). 

Base cations are necessary for plant growth and if they are washed out of the soil, plant 

nutrient availability may be impacted (Likens et al., 1998; Jobaggy and Jackson, 2001). As 

well, when Al3+ is mobilized with increased H+ concentrations, it can negatively impact 

vegetation as Al3+ is toxic to plants and has been shown to cause damage to plant tissue 

and effect growth (Driscoll et al., 2001; Dore et al., 2007). 

How easily a soil will acidify is dependent on its buffering capacity, or simply put how 

much acid can be neutralized before there is a change in soil pH (Bowman et al., 2008). 

Buffering capacity may be indicated by certain properties such as cation exchange capacity 

(CEC), and base saturation. CEC is the total amount of positively charged cations (basic 

cations: Ca2+, Mg2+, K+ and Na+; acidic cations: H+, Al3+) present on exchange sites in soil 

(Sonon, 2014). Base saturation is the relative abundance of base cations on the soil 

exchange complex in comparison with the total cations (Sumner and Miller, 1996). Soils 

with higher CEC and base saturation have higher buffering capacities and are less sensitive 

to acidic deposition because of the higher base cation concentrations, which allows for 

more neutralization of H+.  
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Between 1980-2010, SO2 emissions have been reduced by 78 and 61% in the United 

States and Canada following the implementation of regulations to control atmospheric 

pollution in the Canada-US Air Quality Agreement (Canada-US AQA, 2010). However, 

these North American trends may not reflect the local area directly surrounding large SO2 

emission sources. As previously mentioned, the residency time of SO2 ranges from 12 

hours to 3 days (Kellogg et al., 1972; Garland, 1977; Swartz, 1989). The distance that SO2 

can travel while in the atmosphere is dependent on several meteorological conditions such 

as temperature, rainfall, humidity, wind speed and turbulence. Long-range transport of SO2 

is more likely under cool, dry conditions with low winds (Kellogg et al., 1972; Mylona, 

1996; Khoder, 2002). Deposition has been shown to decrease exponentially with distance 

from point sources (Fay et al., 1985; Mylona, 1996); as such, dry deposition of S may likely 

have local effects close to emission sources such as aluminum smelters (Lee et al., 2011). 

The Kitimat Valley is located in the northwestern coast of British Columbia (BC), 

Canada and is the area of interest to this study. Despite the rugged forested landscape of 

this northern region, there is still considerable industrial influence. The main industry of 

concern is the Rio Tinto BC Works aluminum smelter has emitted SO2 as a consequence 

of aluminum smelting since it started production in 1954 and has been emitting SO2 at a 

rate of 27 tonnes per day (t/d) since 1999 (ESSA et al., 2013). In 2015, the Kitimat 

Modernization Project (KMP) was completed to upgrade the smelter technology at the Rio 

Tinto smelting facilities. With the KMP, emissions of SO2 were permitted to increase from 

27 t/d to 42t/d. This permitted increase in SO2 emissions will lead to an increase in sulphur 

deposition, and there is concern that the surrounding forest soils may be impacted (ESSA 

et al., 2013). Previous works have completed risk assessments on the soils in the Kitimat 
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Valley; the sulphur dioxide technical assessment report (STAR; ESSA et al., 2013), as well 

as Levasseur (2017) used the pre and post-KMP deposition scenarios (27 and 42 t/d) to 

estimate the exceedance of critical loads for the area. Critical load exceedances determine 

long-term impacts of steady state acidic deposition; however, they exclude short term 

buffers and give no indication of how long it will take for an area to be impacted by acidic 

deposition. The spatial patterns of short-term soil buffers such as cation exchange capacity 

(CEC), base saturation (BS), and base cation (BC) pools for the Kitimat Valley are 

unknown. It is important that they are evaluated as they can provide an indication of regions 

where effects may be observed in the near future depending of the magnitude and longevity 

of acidic deposition. Digital soil mapping techniques such as the ones developed for soil 

properties in the region can be applied here to address this knowledge gap.  

The principle objective of this chapter was to apply digital soil maps of the Kitimat 

Valley to assess the buffering capacity and the potential impacts of increased SO2 

emissions and S deposition on the soil surrounding the Rio Tinto BC Works aluminum 

smelter. To do this, mineral soil samples at three fixed depths were taken from 72 locations 

throughout the Kitimat region during the period 2012–2016 and were analyzed for bulk 

density, exchangeable acidity and exchangeable cations. Then, following techniques 

outlined by Hengl et al. (2004), digital (predictive) soil maps were created for CEC, BS, 

and BC pools for the top 50 cm of mineral soil. These indicators of soil buffering capacity 

were used to evaluate regional sensitivity.  Then, exchangeable base cation pools for the 

top 50 cm of mineral soil was overlaid with modelled sulphur deposition under full 

permitted emissions to calculate the time to base cation pool depletion. Identifying regions 
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with low base saturation and short time to depletion will allow for the identification of 

areas that are sensitive to increased acidic deposition. 

 

3.2 METHODS 

3.2.1  STUDY AREA 

The Kitimat Valley is located on the northwest coast of British Columbia; its lowest 

point (300 m) is at the head of the Douglas Channel in Kitimat, in the south of the valley, 

and it extends to just past the city of Terrace, which is about 50 km to the north (ESSA, 

2014; Clague, 1984). ESSA et al., 2013). The underlying terrain is comprised of mostly 

intrusive igneous rock, which provides an acidic, coarse, parent material (Hutchinson et 

al., 1979). Additionally, surficial geology mapped and described by Clague (1984) showed 

a significant portion of the study area, particularly the valley bottom between Kitimat and 

Terrace, was substantially covered by glacial deposits such as alpine complexes, till veneer, 

and glaciomarine sediments. These deposits can determine the sensitivity of soil, as alpine 

complexes and till veneers lend to the formation of podzolic soils, which are more acidic 

(Tamminen and Starr, 1990), and glaciomarine sediments contain greater amount of base-

rich minerals and produce soils with higher base cation weathering rates (Johnson et al., 

2000).    

Kitimat is located predominantly within the Coastal Western Hemlock (CWH) 

biogeoclimatic zone, with the high elevation mountain regions being within the Alpine 

Tundra (AT) and Mountain Hemlock (MH) zones (Krajina, 1975). The CWH zone is on 

average the rainiest biogeoclimatic zone in British Columbia, with cool summers and mild 

winters (Meidinger and Pojar, 1991). This is true for Kitimat and Terrace, as the long-term 

(1981-2010) average yearly precipitation was 2774.6 and 1168.9 mm, and the annual 



57 
 

 
 

average temperature was 7.9 and 7.4 °C, respectively (Environment Canada, 2018).  

The landcover in Kitimat Valley is dominated by dense forest, predominantly comprised 

of Tsuga heteophylla (Western Hemlock). The topography of the Kitimat Valley is very 

rugged, as it is flanked by mountain ranges with peaks as high as 1700 m. The principal 

industry in the region is the Rio Tinto BC Works smelter (ESSA et al., 2013). A liquified 

natural gas (LNG) project in Kitimat has been announced recently, representing added 

future industrial pressures on the surrounding environment. This LNG pipeline will carry 

natural gas to a processing facility in Kitimat where it will be condensed and shipped out 

of the Douglas Channel.  

The Rio Tinto BC Works smelter was first built in the Kitimat Valley between 1951 

and 1954, and a significant modernization project, the Kitimat Modernization Project 

(KMP) was completed in 2015. This modernization was designed for an increase in 

aluminum production by 48% from its original capacity of 280,000 tonnes per year. 

However, this increased production was accompanied by a permitted increased in SO2 

emissions of up to 42t/d because capturing or scrubbing the SO2 emissions was not cost 

efficient. Currently, the smelter is at full production capacity, but emissions for 2016-2018 

were only ~30t/d; the permitted 42t/d is required to allow for the decline of quality in green 

coke which may contain higher amounts of sulphur. 

The current study focused on an area of 3,000 km2 within the Kitimat Valley, 

surrounding the Rio Tinto BC Works smelter, spanning 30 km in the east-west direction 

and a 100 km in the north-south direction. This was established based on the modelling 

domain used by the atmospheric dispersion modelling system CALPUFF (ESSA et al., 

2013). Soil samples at three fixed depths were taken from 72 locations throughout this 
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study domain during the period 2012–2016. The 213 individual samples from these 

locations were analyzed for bulk density (Db), coarse fragment (CF), organic matter (OM), 

pH, clay, exchangeable acidity and exchangeable base cations (Ca2+, Mg2+, K+, and Na+), 

which were used for predictive mapping (See Chapter 2, Figure 2-1).  

 
3.2.2  FIELD SAMPLING AND LABORATORY METHODS 

Site selection used a stratified random sampling approach to ensure spatial 

coverage. The strata were based on the bedrock geology map for the study region, and 

within each stratum a minimum of 4 sampling sites were randomly selected. Soil sampling 

was carried out following a common protocol; a 500 by 500 m grid was overlaid on the 

study domain, and sample sites were required to be accessible (the grids had to be within 

~250 m from a road/trail). While sites were accessible, they were more than 50 m away 

from roads, rivers, and lakes, were undisturbed by human activity (no presence of forestry 

etc.) and had a slope of less than 45 degrees (See Chapter 2; ESSA et al., 2013). At each 

sampling location, a 20 m by 20 m sampling plot was established as close as possible to 

the centre of the 500 m by 500 m sampling grid (Chapter 2; ESSA et al., 2013). At each of 

the four corners and the centre of the plot, an auger was used to collect minerals soils from 

the fixed depths of: 0-10 cm, 15-25 cm, and 40-50 cm (below the forest floor); the five 

samples from each respective depth were then composited into one sample and labeled 

accordingly (making a total of three depth with mineral soil samples per plot). In addition, 

soil bulk density samples were collected from the centre of the plot using a hammer core, 

at the same depths as the composite soil samples. In total, 72 sites were sampled throughout 

the Kitimat Valley between 2012 and 2016.  

Upon arrival in the laboratory, all Db samples were oven dried at 105°C for 24 
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hours; dried samples were then sieved in a 2mm sieve, and the coarse (>2 mm) and fine 

(<2 mm) materials were weighed. Composite samples were transferred into aluminum foil 

pans and allowed to air dry for 2 weeks; once fully dry, the composite samples were also 

sieved in a 2 mm sieve. 

The volume of coarse fragment (CF; >2 mm), or coarse fraction displacement, was 

determined to calculate Db; this displacement was estimated by adding the sieved coarse 

fragment (> 2 mm) to 100 mL of water in a graduated cylinder and recording the volume 

of water that was displaced. Db was determined using the equation:  

𝐷𝑏 (𝑔 𝑐𝑚–3) =
𝐷𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑓𝑖𝑛𝑒 (< 2 𝑚𝑚)𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 (𝑔)

𝑆𝑜𝑖𝑙 𝑐𝑜𝑟𝑒 𝑣𝑜𝑙𝑢𝑚𝑒 (𝑐𝑚3) − 𝐶𝑜𝑎𝑟𝑠𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 (𝑐𝑚3)
 

Where the soil core volume was represents the inner sampling ring of the bulk density 

hammer.  

All composite soil samples were analyzed for exchangeable cations (Ca2+, K+, 

Mg2+, Na+, Fe2+, Mn2+) using ammonium acetate (NH4OAc), following protocols outlined 

by Dohrmann et al. (2012). Exchangeable acidity (H+ + Al3+) was determined following 

the methods outlined by Thomas (1982) and Sims (1996). The observed soil data by depth 

(0-10, 15-25, 40-50 cm) was then averaged for each soil property (weighted by bulk density 

and depth) so the average of the top 50 cm of mineral soil was represented. Digital maps 

were created for this average 50 cm of mineral soil. For full details on laboratory methods 

and analysis see Chapter 2.  

 
3.2.3  SULPHUR DEPOSITION 

Sulphur deposition data was retrieved from the Sulphur Dioxide Technical 

Assessment Report (STAR; ESSA et al., 2013). The STAR technical assessment report 

evaluated the potential impacts of SO2 emissions from the Rio Tinto BC Works aluminum 
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smelter on human health and the surrounding environment (soils, surface water, and 

vegetation). This assessment was based on the application to amend previous SO2 permit, 

and the increase of SO2 emissions from 27 t/d to 42 t/d to allow for higher production of 

aluminum. It is important to note here that SO2 has been emitted at the pre-KMP emissions 

rate (27 t/d) since the 1950’s, long before the permitted increase was introduced (ESSA et 

al., 2013). It is critical that the assessment of potential impacts must acknowledge that 

acidic deposition in the study area has been occurring for 65 years previous to this study. 

In order to determine the potential impacts of the increased post-KMP SO2 emissions (42 

t/d), STAR used the CALPUFF dispersion model to estimate wet and dry deposition 

throughout the study domain under post-KMP atmospheric SO2 emissions (42 t/d). 

CALPUFF is a non-steady-state dispersion model which uses meteorological and 

geographical data to determine the plume of emissions from a point source. Based on the 

post-KMP emission scenario, deposition was estimated to range from ~1 to 50 kg S/ha/yr 

in the study area (ESSA et al., 2013; Williston et al., 2016). 

 

 
3.2.4  PEDICTIVE DIGITAL SOIL MAPPING 

Predictive digital soil maps were created for Db, exchangeable base cations (Ca2+, 

Mg2+, K+, and Na+), effective cation exchange capacity (CECE), and effective base 

saturation (BSE) in the top 50 cm of mineral soil. Mapping was carried out using regression 

kriging following the generic framework outlined by Hengl et al. (2004): first, the 

preparation of covariate data (auxiliary variables, i.e., slope, elevation, bedrock type) was 

done in QGIS (2016). Secondly, the transformation of dependent variables (i.e., soil type, 

bedrock geology), performing regression kriging, fitting semivariograms, and back 
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transformation of the predictive models were completed using Statistical software 

packages in R (Global Soil Information Facilities (GSIF), raster, sp, rgdal, and gtools). 

Lastly, QGIS was used for the final visualization of the maps.  

 
3.2.5  INDICATORS OF SOIL BUFFERING CAPACITY AND POTENTIAL 

IMPACTS OF INCREASED SULPHUR DEPOSITION 

In this study, effective cation exchange capacity (CECE), effective base saturation 

(BSE), and base cation (BC) pools were evaluated as indicators of soil buffering capacity 

and the total time to base cation depletion was calculated to evaluate the potential impacts 

of sulphur deposition from the aluminum smelter. This was done to assess how sensitive 

the soils are to acidic deposition because these measures include short term buffers of 

acidic deposition. They can then ultimately lend an understanding of the temporal influence 

of acidic deposition and determine not only if an ecosystem is affected but also when it is 

likely the impacts will be seen. As discussed in Chapter 2, this is unlike how typical risk 

assessments are completed, where critical loads of atmospheric nitrogen and sulphur are 

used as indicators of ecosystem sensitivity to acidification following the LRTAP 

Convention (Chapter 2; UNECE, 2015). However, while critical loads are widely used in 

risk assessment, they produce long-term steady-state estimates; this means that they do not 

include short-term buffering processes such as buffering via exchangeable base cations 

(Spranger et al, 2008). As such, CECE, BSE, and BC pools were used to assess the short-

term buffering capacity of the soil and potential impacts of acidic deposition from the 

aluminum smelter.  

Cation exchange capacity (CEC) is a measure of the soil’s ability to hold positively 

charged ions. As such, it influences soil structure stability, nutrient availability, and 

provides a buffer against soil acidification (Sumner and Miller, 1996). CEC is typically 
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measured by one extraction processes using NH4Cl (Nissinen and Ilvesniemi, 1990). When 

NH4Cl is added to a soil sample, all soil exchange sites are saturated with ammonia; the 

amount of ammonia is then measured and the total positive charge a soil can hold is 

determined (Hendershot et el., 1993; Tucker, 1985). Alternatively, if individual 

exchangeable cations are extracted separately through exchangeable base cation and 

exchangeable acidity extractions, and summed together, the effective CEC (CECE) is 

estimated. CECE was estimated as the sum of exchangeable Ca2+, K+, Mg2+, Na+, Al3+ and 

H+ concentrations (Tamminen and Starr, 1990). 

Effective base saturation is the percentage of the CECE which is made up of the 

base cations Ca2+, K+, Mg2+, and Na+. Base saturation is an indicator of a soils ability to 

buffer acidic deposition (Shoenholtz et al., 2000). The BSE (%) was calculated by dividing 

the sum of Ca2+, K+, Mg2+, and Na+ by the CECE and then multiplied by 100. In this study, 

values of 10 and 20% were recommended limits of BSE. These values were chosen because 

previously it has been recommended that soils do not fall below ~20% BSE in order 

maintain soil quality and to protect tree health and forest ecosystem functions (Ouimet et 

al., 2006). Additionally, it has been shown that if the BSE of a soil reaches 10%, deleterious 

impacts on the soil can occur, such as soil acidification and soil toxicity due to increased 

Al3+ concentrations. So, for the observed and mapped data, the percentage of sites or area, 

respectively, that had a BSE below 10 and 20% were determined. This was done using a 

cumulative frequency plot for the observed data, and zonal raster statistics – which 

calculated the area of BSE – using QGIS for the predictive maps.   

The base cation pool, which is the total amount of base cations available in the soil 

(at the point risk of assessment), and like base saturation, it is an indicator of a soils ability 
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to buffer acidic deposition. i.e., a larger base cation pool can buffer a greater magnitude of 

acidity. Base cation pools (meq/m2) were calculated using the following equation:  

𝐵𝐶 𝑝𝑜𝑜𝑙 (
𝑚𝑒𝑞

𝑚2
) =

(𝐶𝑜𝑛𝑐. 𝑜𝑓 𝑏𝑎𝑠𝑒 𝑐𝑎𝑡𝑖𝑜𝑛 (𝑚𝑒𝑞/100𝑔)

100
𝑋 𝐷𝑏 (

𝑔

𝑐𝑚3
) 𝑋 100000 𝑋 𝐷𝑒𝑝𝑡ℎ (50 𝑐𝑚) 

The time to base cation depletion is the amount of time (in years) it will theoretically 

take continued acidic deposition to deplete the entire base cation pool. The time to 

depletion for the top 50 cm of mineral soil was calculated as the base cation pool (meq/m2) 

divided by estimated wet and dry sulphur deposition (meq/m2/yr) under the post-KMP 

atmospheric SO2 emission scenario (42 t/d) (ESSA et al., 2013). Deposition estimates were 

retrieved in kg S/ha/yr and converted from kg S/ha/yr to meq/m2/year. It is important to 

note that time to depletion is the worst-case scenario and should be viewed as such. The 

scenario calculated in this study is based on permitted SO2 emissions (42t/d); this emissions 

scenario has not yet been reached, as averages for 2016-2018 were ~30t/d, and therefore 

currently S deposition is not as high as what was used in to calculate time to depletion. 

Additionally, only total BC pools were used to estimate time of depletion; the calculation 

did not take into account other sources of base cations into the soil system, such as the BC 

pool found in the organic horizon of soil, base cation weathering, and base cation 

deposition (Rosenstock et al; 2019).   

3.3 RESULTS AND DISCUSSSION 

3.3.1  QUANTITATIVE DATA 

Within the top 50 cm of mineral soil, the average CECE and BSE across the 72 

sampling sites were 5.0 meq/100g (1.1-15.4 meq/100g) and 39.2% (6.4-98.8%). The 

variation of CECE and BSE were low, with a CV of 59% and 66%, respectively (Table 3-

1). Approximately 7% and 30% of sample sites (n = 72) had a BSE < 10 and 20% 

respectively (Figure 3-1).  
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CECE for the 0-50 cm depth was half of what has been found in 19 forest soils 

across the Georgia Basin, British Columbia (10.3 meq/100g) at the 0-100 cm depth 

(Mongeon et al 2010). The range in values seen in this study were similar to a previous 

study of the Catskills Mountainous southeastern New York State, which is a relatively 

pristine area of the state; here this study found 2.0-17.4 meq/100g for the 0-50 cm depth in 

51 hardwood forest soil samples (Johnson et al., 2000). BSE values for this study were also 

comparable to previous studies completed in Finland; the first of which found BSE of 27 

and 35% for the 5-20 cm and 20-40 cm depths for 65 sample locations (Tamminen and 

Starr, 1990). The second study found a BSE value of 40.9% for the 50-60 cm depth across 

320 sample locations (Nuotio et al., 1990).  

The BC pool for the top 50 cm of mineral soil had an average of 8369 meq/m2 (520-

67244 meq/m2), with almost three times the variation than CECE and BSE with a CV of 

144% (Table 3-1). The dominant exchangeable cation in the 0-50 cm depth was calcium, 

which contributed to 73% of the total pool, which is similar to previous studies (Tamminen 

and Starr, 1990; Nuotio et al., 1990; Joslin et al., 1992; Johnson et al., 2000). 

 

 

Table 3-1 Minimum, maximum, average, coefficient of variation (CV; %) of the observed soil 

data for the soil properties: CECE (meq/100g), BSE (%), Cation pools (Ca, K, Mg, Na, and BC; 

meq/m2) for the top 50 cm of mineral soil. 

 

 

 

 

 

 

 

 

 

 

Parameter Units Min Max Average CV (%) 

CECE  (meq/100g) 1.1 15.4 5.0 59 

BSE  % 6.4 98.8 39.2 66 

Ca pool  (meq/m2) 153.8 56194.8 6134.2 152 

K pool  (meq/m2) 67.0 2061.3 415.9 90 

Mg pool  (meq/m2) 72.4 15872.6 1511.7 173 

Na pool  (meq/m2) 11.7 7673.1 307.3 296 

BC pool (meq/m2) 520.5 67243.9 8369.1 144 
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3.3.2  DIGITAL MAPS AND REGIONAL SOIL BUFFERING CAPACITY 

Average CECE in the top 50 cm of mineral soil across the mapped study domain 

was 4.23 meq/100g; the range was 0.75-20.77 meq/100g, with a CV of 38%. Average BSE 

was 33.2%, with a range of 1.7-99.9%, and a CV of 66% (Table 3-2). The variations for 

the mapped CECE was much lower than the observed data, the variations for the observed 

and mapped BSE were the same (Table 3-1, Table 3-2). Also note that while the high end 

of the range for BSE reached ~100%, only 0.14% of the total area had a BSE of 99%. Lastly, 

within the top 50 cm of mineral soil, 16.7% and 37.8% of the total mapped study area had 

a BSE of less than 10 and 20%; this would indicate that a substantial percentage of the study 

area was within the limits of BSE set for this study.  

The BC pool had an average of 5725 meq/m2, with a range of 210-78627 meq/m2, 

and a CV of 112% (Table 3-2). This average was lower than the average for the observed 

weighted soil data (observed was 8369 meq/m2), which showed a greater range in values 

(Table 3-1, Table 3-2). As was seen in the observed data, the variation for the BC pool was 

much higher than the variation seen in the CECE and BSE maps (Table 3-1, Table 3-2). 

Figure 3-1 Cumulative frequency plot for the effective base saturation (%) in the top 50 cm of mineral 

soil. 
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Additionally, calcium was also the dominating cation for the 0-50 depth, comprising 70% 

of the total pool. It was also interesting that for the mapped K pool, the variation was lower 

in the map values than what was seen in the observed data, even though there was a higher 

range in the map data (Table 3-1, Table 3-2).  

The glacial outwash plain generally had lower predicted CECE than the 

mountainous areas; particularly, the mountainous areas to the north-west and south-east 

had the highest CECE (Figure 3-2). This spatial pattern was also seen in the digital maps 

for BSE and BC pools. The glacial outwash plain had higher BSE values and higher BC 

pools than the mountainous areas; it also appeared that a considerable proportion of the 

southern region of the study area had a BSE of 10% and lower BC pools (Figure 3-2). These 

areas, as previously mentioned, are important to note, as areas of lower BSE values may 

indicate areas which are more sensitive to acidic deposition. The higher values in the glacial 

outwash plain are likely due to the surficial material of the area; glaciofluvial deposits may 

have higher base rich minerals (Egli et al., 2001), and so these areas would have higher 

base cation pools. 

It should also be noted that a rough diamond shape was seen in many of the maps, 

particularly the maps for CECE and BC pools (Figure 3-2). Variables which have stronger 

influences on the dependent variable can cause a distinct spatial pattern such as the 

diamond shape seen in the maps of CECE and BC pools. When comparing the size and 

shape of the Quartz Dioritic (QD) bedrock map to this distinct shape, it was determined to 

be the same. Quartz dioritic bedrock was one of many geology maps which are part of a 

province-wide repository maintained by the British Columbia Geological Survey (Miller 

et al., 2017). It was also one of the most dominant bedrock types in the study area, covering 
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almost 30% (ESSA et al., 2013). From this, it can be determined that there was a strong 

relationship between areas underlain with QD bedrock and higher BC concentrations. This 

may have been seen based on the weathering products of QD; once weathered, QD forms 

saprolite, a porous and thoroughly decomposed rock, containing quartz and kaolinite 

(Turner et al., 2003). In BC, these saprolites are formed on glacial tills in rolling terrain, 

much like that of Kitimat (De Kimpe et al, 1984). While quartz is hard and often slow to 

weather, kaolinite is an important weathering product because it is a type of silicate clay 

that contributes negative charges where exchangeable base cations adhere to (Brady, 1984). 

Thus, the strong relationship between QD and higher base cation concentrations. 

 
Table 3-2 Minimum, maximum, average, coefficient of variation (CV; %) of the predictive maps 

created for the soil properties: CECE (meq/100g), BSE (%), Cation pools (Ca, K, Mg, Na, and 

BC; meq/m2) at the 0-50 cm soil depth. 

 

 

 

 

 

 

Parameter Units Min Max Average CV (%) 

CECE  meq/100g 0.8 20.8 4.3 38 

BSE  % 1.7 99.9 33.2 66 

Ca pool  meq/m2 0.00 66184.0 4006.0 132 

K pool  meq/m2 43.1 2999.07 451.2 79 

Mg pool  meq/m2 33.6 26241.9 1110.4 198 

Na pool  meq/m2 36.8 1603.4 157.8 46 

BC pool meq/m2 210.4 78627.0 5725.3 112 
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3.3.3  POTENTIAL IMPACTS OF SULPHUR DEPOSITION 

Average S deposition across the study domain was 19.3 meq/m2/yr, with a range of 

0.4-814.3 meq/m2/yr and a CV of 78.1%. Deposition rates greater than 800 meq/m2/yr were 

found closest to the smelter, located in the southwest corner of the study domain (Figure 

3-3). As distance from the smelter increased, deposition decreased, with the outer 

boundaries of the study domain receiving <5 meq/m2/yr (Figure 3-3). This was to be 

expected based on the effect of rainfall and wind direction on S deposition. Increased 

rainfall may affect the distance in which emitted SO2 travels in the atmosphere in two ways; 

first, increased rainfall could increase the homogenous oxidation reaction which occurs to 

create the H2SO4, and secondly, rainfall may intercept sulfate particulate in the air, 

removing them in a process called rainout (Kellogg et al., 1972). As well, the surrounding 

Figure 3-2 Digital soil maps of CECE (meq/100g), BSE (%), and base cation (BC) pool (meq/m2) 

for the 0-50 cm soil depth in the Kitimat Valley, British Columbia. 
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Hazleton and Coastal mountains create a corridor for the valley, preventing other possible 

wind. Therefore, wind direction could have also been determined to be a factor in S 

deposition because of the predominant south-north winds in the Kitimat Valley which 

control the movement of the plume from the smelter. Ultimately, this would mean that 

emitted SO2 would be dominated by wet deposition processes that determine short-range 

rather than long-range transport. As previously mentioned, the valley is located in one of 

the rainiest bioegeoclimatic zones in British Columbia, receiving up to 2775 mm of rain 

on average annually (Meidinger and Pojar, 1991; Environment Canada, 2018), and so the 

amount of precipitation the valley received may have affected the deposition pattern.  

The average time to depletion for the base cation pool in the top 50 cm of mineral 

soil under modelled S deposition (42 t/d) was 773 years, with a range of 2.6-29741 years 

and a CV of 181 %. Approximately 8% of the soils mapped in the study area had a depletion 

time of 50 years or less. Depletion times were shortest (less than 50 years) along the glacial 

outwash plains and longest along the mountainous areas with depletions times greater than 

750 years. This time to depletion pattern closely follows the pattern of the S deposition 

plume (Figure 3-4), with the majority of the areas with the lowest time to depletion under 

the highest deposition values (Figure 3-3, Figure 3-4). As depletion times closely followed 

the pattern of the S deposition plume, it may be suggestive that time-to-depletion was 

driven by high modelled deposition. However, not all areas with short time to depletion 

were found under the areas of elevated deposition, such as the southeastern corner of the 

study area, and the northern valley bottom (Figure 3-4). This was because these areas had 

small BC pools which were not large enough to buffer the amount of acidic deposition they 

received (Figure 3-2). It is likely that soil type played a role in the small BC pool; one of 
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the most dominant soil types in the study area was podzol soil, which are acidic in a nature 

and contain low concentrations of base cations (Peterson, 1980). 

It is also important to acknowledge that uncertainty in digital mapping is prevalent 

and may have impacted the variation and quality of the final maps. As discussed in 

Chapter 2, there were many sources of uncertainty in digital maps which have been 

identified by Finke (2006). The first that applies to the maps created in this chapter is 

completeness of the dataset (both in analysis and in terms of spatial coverage of the study 

domain); in this study, it may be that the south-western corner had less samples than the 

rest of the study area, and therefore there would have been greater uncertainty in the 

predictions in that area, potentially skewing the predictions. Also, there were three sites 

in which singular depths which were missing and not analyzed, so analysis was not 

entirely complete for all depths at all 72 sites. As well, how up to date the data is and 

errors that may occur when maps of different scales and sources are combined may be 

sources of uncertainty in continuous soil data and digital maps. Specifically, the issue of 

combining maps from different sources was discussed as a source of uncertainty in the 

soil type covariate map used to create the predictive maps (Omuto et al., 2012; Grunwald 

et al, 2011). Additionally, as these sources of uncertainty affected the digital maps 

previously produced for soil properties (Chapter 2) they may have been further 

compounded here when they were used to calculate the maps in this chapter. This is 

because there is a combined uncertainty from many sources used to produce the final 

maps: the raster maps for base cation concentrations and bulk density were used to 

calculate the total BC pool, as well as uncertainty in the S deposition data. It has been 
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acknowledged that S deposition was overestimated previously; as such, the estimates of 

time to base cation depletion cannot be seen as conservative and should be revisited.  

While estimates of time to depletion suggest that 8% (~240 km2) of the forest soils 

in the study region will lose their exchangeable base cations (due to the acidic buffering of 

nutrient pools) in less than 50 years, this represents the worst-case scenario. For context, 

the smelter has been producing emissions of SO2 for more than 50 years at the rate of 27 

t/d (ESSA et al., 2013); it is possible that the acidic deposition from the last 65 years has 

already depleted the soils. It is also paramount that it is understood that base cation pools 

will never be fully depleted; as base cation concentrations in the soil decrease, 

displacement becomes increasing difficult, meaning there will always be some 

concentration of base cations in the soil (Johnson et al., 1983). These maps are a worst-

case, simplified analysis and do not represent the entirety of what is occurring in the soil. 

This is because only one source of base cations (the base cation pool) was considered; two 

of the largest sources of base cations into terrestrial systems which were not considered are 

atmospheric deposition and mineral weathering. Atmospheric deposition of base cations 

occurs through both natural and anthropogenic processes such as dust deposition, fossil 

fuel combustion and agricultural practices (Hedin et al., 1994; Lovblad et al., 2004). 

Mineral weathering occurs when the parent material of the soil is broken down over time 

and base cations are released (Ouimet et al., 2005). Weathering rates for the Kitimat Valley 

have been previously estimated; most of the study area had weathering rates between 50-

150 meq/m2/year, with areas south of the Kitimat Village and high elevation areas to the 

south-west of Terrace having the lowest weather rates of 25-50 meq/m2/year (ESSA et al., 

2013). It was also found that on average, base cation deposition was about 6 meq/m2/year 
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for the Kitimat Valley (KAEEA, 2014). It is seen in the deposition map that only a very 

small area of the study region had very high deposition (Figure 3-3). As such, there were 

areas (i.e., North of the Douglas Channel) in the study region where the range in time to 

depletion were shorter, showing a decreased range of ability to buffer the acidic deposition 

(Figure 3-4). Again, it is unrealistic to assume that these areas will be depleted in 50 years 

or less, as only base cation pools, which affect the short-term buffing of acid, were 

evaluated. Other sources and fluxes into the system were not included.   

Lastly, it is important to address that this type of assessment is looking at a static 

point in time, while soil properties and S deposition models are dynamic. Soil data was 

collected once for each site, so it represents one point in one moment of time between 

2012-2015, and average S deposition data for a year was used. As the smelter has been 

operating for the last 65 years, it is very unlikely that temporal changes in soil as well as 

fluxes of inputs of base cations and changes in deposition throughout time were captured 

with this point data. As a result, this is another reason that findings here should be 

considered a first attempt at assessing impacts through predictive mapping rather than 

definitive findings.  
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Figure 3-3 Modelled Sulphur deposition (kg SO4
2- /ha/yr) for the Kitimat Valley, British Columbia under 

the post-KMP permitted emissions scenario of 42 t/d. 

Figure 3-4 Time to depletion map (years) for the top 50 cm of mineral soil in the Kitimat Valley, British 

Columbia. 
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3.4 CONCLUSIONS 

The digital map of BSE for the top 50 cm of mineral soil showed that 16.7% (~500 

km2) and 37.8% (~1,100 km2) of the mapped soil area had a BSE of less than 10 and 20%. 

This indicated that a substantial percentage of the study area is within the BSE limits set 

for this study, and areas within or below these limits may show impacts to ecosystem 

function, as well as increased Al3+ concentrations which is toxic to vegetation and could 

lead to a decline in tree health. The BC pools were highly variable, the southern region of 

the study area had lower pools than those of the glacial outwash plain; glaciofluvial 

sediments contributed to the larger base cation pools.  

Less than 10% of the study area (~240 km2) had a depletion time of 50 years or 

less, with depletion times closely following the pattern of the S deposition plume, 

suggesting time-to-depletion was driven by high modelled deposition. However, small 

areas in southeastern corner of the study area, and the northern valley bottom showed time 

to depletions in the 50-100-year range, which may indicative of low small BC pools. Time 

to depletion estimates were calculated as a worst-case scenario, where sources of base 

cations such as atmospheric deposition and mineral weathering, as well as sinks and 

removals, were not considered. If considered, average base cation deposition for the area 

(6 meq/m2/yr) and average base cation weathering rates for the study area (50-100 

meq/m2/yr) would increase the time in which base cation pools are depleted by S deposition 

in some areas. However, there are areas in which the highest deposition rate is still greater 

than base cation pools, deposition, and weathering combined. These areas identified as 

having the lowest base cation weathering rates were found south of the Kitimat Village and 

the high elevation areas to the south-west of Terrace. It was identified that these were the 

areas which could potentially be impacted by the increased SO2 emissions.  
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4.0 FINAL CONCLUSIONS 

General conclusions 

In the first manuscript, it was seen that in the observed soil data, CF, clay, and pH 

all showed a decrease in the coefficient of variation with an increase in depth. Variation 

within the soil depths could be explained through soil processes such as nutrient cycling 

and biological processes which occur at soil surface and decrease with depth. The range in 

elevation (10-1287 m), slope of the rugged terrain, as well as the dominant parent material 

(quartz diorite (QD)) in the study area may have resulted in the range of variation found in 

the soil properties for the average top 50 cm of soil. Bulk density was found to have the 

lowest variation of 38.5%, while Ex. Na+ had the highest, with 261.1%.  

When the predictive maps of the average top 50 cm of soil were evaluated, it was 

found that total variation (TVAR) explained by the predictive model for the soil properties 

were similar to those of the literature, giving confidence in the quality of the final predictive 

maps. The exception to this was clay, which was not mapped with acceptable confidence. 

The order of confidence of the predictive maps was: Ex. Mg2+ > OM > pH > CF > Ex. K+ 

> Db > Ex. Ca2+ > Ex. acidity > Ex. Na+. Ultimately, the maps produced here are the first 

of their kind for the Kitimat Valley, and are an invaluable tool in which the state, magnitude 

and variation of the soil properties can be assessed 

These predictive maps were then used to predict indicators of soil buffering 

capacity (effective cation exchange capacity (CECE), effective base saturation (BSE), and 

base cation (BC) pools), as well as assess the potential impact of increased SO2 emissions 

on the surrounding forest soil. 

In the second manuscript, the digital map of BSE for the top 50 cm of mineral soil 

showed that 16.7% (~500 km2) and 37.8% (~1,100 km2) of the total area had a BSE of less 
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than 10 and 20%. This indicated that a large portion of the study area is within the BSE 

limits set for this study. The BC pool was also quite variable, and maps showed that the 

southern region of the study area had lower pools than those of the glacial outwash plain; 

glaciofluvial sediments were found to contribute to the larger base cation pools. A rough 

diamond shape was seen in many of the maps, particularly the maps for CECE and BC 

pools. This was found to be the result of a strong relationship between QD bedrock and 

higher concentrations of base cations. QD was one of the most dominant bedrock types in 

the study area; it is possible this relationship was seen due to the weathering products of 

QD, which includes kaolinite, a type of silicate clay which has higher exchange sites for 

cations to adhere to. 

Average total sulphur (S) deposition across the study domain showed that 

deposition was highest under the plume. This suggested that time-to-depletion was driven 

by high modelled deposition. Less than 10% of the study area (~240 km2) had a depletion 

time of 50 years or less; depletion times were shortest along the glacial outwash plains and 

longest along the mountainous areas. This time to depletion pattern closely follows the 

pattern of the S deposition plume. However, the southeastern corner of the study area, and 

the northern valley bottom had short depletion times under low S deposition; this was a 

result of small BC pools in those areas. It is important to note that these areas may have a 

shorter temporal range of buffering acidic deposition and should be monitored.  

Time to depletion estimates were calculated as a worst-case scenario, where sources 

of base cations such as atmospheric deposition and mineral weathering, were not 

considered. The smelter has been producing SO2 for the last 65 years and soils have not 

yet been depleted of their BC pools. Additionally, this study has observed a snapshot of 
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those years based on data for one year. It was difficult to determine whether those dynamic 

processes of soils and their interaction with acidic deposition was captured by this data and 

whether sensitive areas seen were already sensitive from the first 60 years previous to this 

work.   

 

Study significance and limitations  

 As previously mentioned, more soil surveys have been done in recent years because 

of increased industrialization the Kitimat Valley including the KMP and LNG pipeline. 

These surveys have produced soil data, and the LNG data was used to create simple maps 

of soil classes. Additionally, a map of weathering rates using simple digital mapping 

techniques has been made. While all this work has been done, the soil properties discussed 

throughout this thesis have never been mapped for the Kitimat Valley. This study was the 

first to apply the regression kriging (RK) approach to mapping soil properties in the Kitimat 

Valley. This is important because data availability across Canada, especially in remote 

northern areas such as Kitimat can be scarce, and so these maps can now contribute to the 

data as well as illustrate the variation, state and magnitude of soil properties there. Lastly, 

areas in the Kitimat Valley which could be potentially impacted by the increased acidic 

deposition were identified. It was seen in the second manuscript that predictive digital 

mapping can be applied to large, real-world environmental problems, making risk 

assessments at these large scales easier to approach. This is a contribution to the predictive 

mapping field in Canada, because it was a showcase in how RK was used to improve 

regional soil information to support the assessment of environmental impacts of industrial 

emissions.  
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 The main limitations of this study were data availability and uncertainty. 

Availability is a limitation as high resolution maps of bedrock geology and soil class can 

be hard to access for remote areas such as Kitimat. This is especially true for forest soils, 

which have been under-sampled as a result of a historic focus of soil mapping in Canada 

on agricultural areas to improve and maintain the industry.  

As was discussed in both chapters of this thesis, there were many sources of 

uncertainty identified which affect digital mapping. Completeness of analysis and spatial 

coverage of the study domain was the first source identified. Three sites in this study had 

singular depths which were missing and not analyzed, so analysis was not entirely complete 

for all depths at all 72 sites. As well, the south-western corner had less samples than the 

rest of the study area, and therefore greater uncertainty in the predictions, potentially 

causing a skew in the over-all predictions. As well, errors that occur when maps of different 

scales and sources are combined may be sources of uncertainty in continuous soil data and 

digital maps. Specifically, this example of uncertainty arose in the covariate map of soil 

type. Additionally, the sources of uncertainty which affected the digital maps of soil 

properties may have been further compounded when they were used to calculate the maps 

for CECE, BSE, and BC pools. This is because there is a combined uncertainty from many 

sources used to produce the final maps: the raster maps for base cation concentrations and 

bulk density were used to calculate the total BC pool. Lastly, uncertainty in the S deposition 

data has been identified; it has been acknowledged that S deposition was previously 

overestimated; as such, time to depletion was likely overestimated and times are longer in 

actuality.  
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Recommendations 

Future work using predictive mapping in the Kitimat Valley should investigate 

continued soil sampling in the south-west corner of the study area. Additional samples 

would mean that a training data set could be set aside to better train and validate the model. 

As well, as continuous maps are updated through sampling initiatives and mapping 

research, the predictive maps created from them will also improve, so it is important that 

these updates continue. This study provided an initial application of RK and should be built 

upon and used in forested regions in Canada. Lastly, it is suggested that RK mapping 

techniques be applied to the weathering rates, bedrock geology and soil class maps which 

have already been created for the Kitimat Valley. These maps exist to some extent in this 

area but could be updated and improved; traditional mapping techniques were used to 

create them, which do not provide the continuous coverage that RK provides. Having a 

continuous map may provide more detail as it gives data for 250 m by 250 m grids rather 

than large polygons of one data type. This detail may further contribute to the 

understanding of weathering rates, bedrock geology and soil class. 
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6.0 APPENDIX 

Table A1. Site characteristics (sample ID, latitude, longitude, slope (degrees, total precipitation [mm], annual minimum, maximum, and 

mean temperature [°C], vegetation cover [%] and elevation [m] for all 72 locations sampled in the Kitimat Valley, British Columbia 

 

Sample ID Latitude Longitude 
Slope 

(degrees) 

Total 

Precipitation 

(mm) 

Annual Max 

Temp (°C)  

Annual Min 

temp (°C)  

Annual Mean 

temp (°C)  

Vegetation 

Cover (%) 

Elevation 

(m) 

A01 54.21106 -128.73848 11 2016 9 1 5 39.8 1114 

A02 54.27010 -128.72496 4 1564 6 -1 3 39.8 1287 

A03 54.29795 -128.70241 19 1864 8 1 5 40.7 1132 

A04 54.31601 -128.69710 5 1682 8 0 4 90.5 1150 

A05 54.21925 -128.74606 21 2016 9 1 5 52.5 823 

CA004 54.04152 -128.68081 0 2982 11 3 7 96.0 22 

CA008 54.42818 -128.64065 2 1916 11 3 7 100.0 115 

DCAS08-01 54.63180 -128.38968 11 1218 8 0 4 100.0 428 

DCAS08-03 54.65358 -128.67977 12 1470 9 1 5 100.0 251 

DCAS08-04 54.66512 -128.61191 20 1194 5 -2 2 95.8 706 

DCAS21 54.01498 -128.77339 9 2485 9 2 5 91.2 383 

DCAS23 53.93945 -128.61989 15 2530 9 2 6 90.8 317 

DCAS25 54.44968 -128.56120 1 1783 10 3 7 97.7 213 

DCAS26 54.29403 -128.60201 1 2111 11 3 7 97.7 208 

DCAS27 54.03402 -128.64607 0 3012 11 3 7 96.8 14 

DCAS28 54.05195 -128.70460 5 2982 11 3 7 96.8 166 

DCAS29 54.12220 -128.67442 2 2679 11 3 7 96.8 66 

E01 54.01448 -128.71008 21 3088 11 3 7 94.7 94 

E02 54.02568 -128.71893 12 2832 10 3 6 96.8 126 

G0026 54.25446 -128.74971 19 1564 6 -1 3 100.0 365 

G0027 54.25651 -128.74990 25 1564 6 -1 3 100.0 454 

G0028 54.24928 -128.75694 5 1903 8 1 4 74.5 193 
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GD003 54.33821 -128.53953 6 2020 11 3 7 99.8 163 

GD009 54.32926 -128.50122 11 1511 8 0 4 100.0 342 

GD012 54.23872 -128.45539 2 1988 10 2 6 99.8 150 

GD013 54.47267 -128.50635 5 1703 11 3 7 96.8 206 

G0008 54.24385 -128.73980 5 2016 9 1 5 100.0 183 

GR001 54.33452 -128.86574 23 1586 6 -1 3 100.0 580 

GR002 54.43693 -128.68596 4 1949 11 3 7 99.8 106 

GR003 54.44129 -128.67800 7 1949 11 3 7 100.0 142 

GR005 54.34788 -128.86517 36 2069 9 2 5 69.7 543 

JD132 54.283 -128.592 0 2175 11 3 7 97.5 204 

JD312 54.24 -128.643 3 2342 11 3 7 99.8 243 

L01 54.31455 -128.64862 4 2089 10 2 6 99.8 231 

L02 54.33215 -128.63716 6 2059 11 3 7 100.0 168 

L03 54.33066 -128.62736 4 2059 11 3 7 99.8 152 

L28 54.08047 -128.70444 6 2982 11 3 7 96.5 94 

LM001 54.52327 -128.42997 26 1396 9 1 5 94.2 379 

LM006 54.46008 -128.64799 9 1821 11 3 7 100.0 103 

LM009 54.46428 -128.65605 5 1821 11 3 7 100.0 139 

LM010 54.46430 -128.65887 5 1821 11 3 7 100.0 139 

OG001 54.31242 -128.86160 12 1586 6 -1 3 78.7 660 

OG003 54.37558 -128.86519 30 2176 10 3 7 70.7 396 

OG009 54.31740 -128.86314 11 1586 6 -1 3 77.2 624 

OG010 54.31849 -128.86413 7 1586 6 -1 3 75.7 609 

P01 54.47381 -128.56547 3 1728 11 3 7 99.8 229 

QD007 54.28023 -128.62490 0 2210 10 3 7 100.0 199 

QD012 54.37517 -128.58013 4 1918 11 3 7 99.8 86 

QD015 54.04485 -128.59393 10 2408 10 2 6 100.0 135 

QM001 53.98738 -128.64631 17 3007 11 3 7 98.8 119 

QM002 54.00672 -128.63648 23 3012 11 3 7 91.8 144 

QM003 53.98342 -128.64679 21 3007 11 3 7 96.5 129 
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QM005 53.99821 -128.64567 15 3012 11 3 7 98.7 117 

S01 53.09146 -128.79173 6 2745 9 2 6 90.2 108 

S006 54.58062 -128.70652 5 1642 11 3 7 99.8 217 

S011 54.59437 -128.68563 6 1642 11 3 7 97.7 210 

S02 53.94606 -128.73470 8 3349 11 3 7 100.0 138 

S022 54.59005 -128.68474 1 1642 11 3 7 97.7 216 

S03 53.93431 128.72674 9 3349 11 3 7 85.8 99 

SSS001 53.96930 -128.63697 9 3007 11 3 7 99.7 117 

SSS003 54.10934 -128.73578 10 2281 9 2 5 96.5 394 

SSS006 54.58559 -128.67827 3 1642 11 3 7 99.8 220 

SS1 54.02652 -128.70317 1 3088 11 3 7 89.2 10 

SSS005 54.40207 -128.84686 3 2176 10 3 7 97.0 57 

VA001 54.52647 -128.71312 11 1731 10 2 6 99.8 98 

VA002 54.54578 -128.71266 20 1657 10 2 6 99.5 263 

VA006 54.52128 -128.71516 5 1731 10 2 6 99.8 77 

VA012 54.55849 -128.71606 6 1657 10 2 6 97.7 174 

VC001 54.45235 -128.65294 3 1949 11 3 7 100.0 101 

VC002 54.44569 -128.82513 12 2119 11 3 7 99.8 61 

VC003 54.44677 -128.64617 1 1916 11 3 7 99.8 114 

VC005 54.45058 -128.63932 2 1838 11 3 7 99.8 119 
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Table A2. Parameter, file name, and variable description of all 91 continuous maps used to complete regression kriging in the Kitimat 

Valley, British Columbia. 

 

Parameter File names Variable description 

Climate variables sg_01 julian day number of start of the growing season 
 sg_02 julian day number at end of the growing season 
 sg_03 number of days of the growing season 
 sg_04 total precipitation for period 1 
 sg_05 total precipitation for period 2 
 sg_06 total precipitation for period 3 
 sg_07 total precipitation for period 4 
 sg_08 gdd above base_temp for period 1 
 sg_09 gdd above base_temp for period 2 
 sg_10 gdd above base_temp for period 3 
 sg_11 gdd above base_temp for period 4 
 sg_12 annual mean temperature 
 sg_13 annual minimum temperature 
 sg_14 annual maximum temperature 
 sg_15 mean temperature for period 3 
 sg_16 temperature range for period 3 

Soil variables BDTICM_M_250m absolute depth to bedrock 
 BLDFIE_M_sl3_250m bulk density @ 15cm 
 BLDFIE_M_sl4_250m bulk density @ 30cm 
 CECSOL_M_sl3_250m CEC @ 15cm 
 CECSOL_M_sl4_250m CEC @ 30cm 
 CLYPPT_M_sl3_250m Clay % @ 15cm 
 CLYPPT_M_sl4_250m Clay % @ 30cm 
 CRFVOL_M_sl3_250m Coarse fragment volume @ 15cm 
 CRFVOL_M_sl4_250m Coarse fragment volume @ 30cm 
 ORCDRC_M_sl3_250m Organic carbon @ 15cm 
 ORCDRC_M_sl4_250m Organic carbon @ 30cm 
 PHIHOX_M_sl3_250m pH H2O @ 15cm 
 PHIHOX_M_sl4_250m pH H2O @ 30cm 
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 SNDPPT_M_sl3_250m Sand % @ 15 cm 
 SNDPPT_M_sl4_250m Sand % @ 30 cm 

Runoff Q Runoff 

DEM DEM Digital elevation model 
 SLOPE Slope in degrees (from DEM) 

Geology variables andesite  

 andesite, basalt, volcanic sandstone, 

rhyolite 
 

 andesite breccia, lapilli tuff  

 andesite, dacite, volcaniclastics  

 andesitic volcanic rocks  

 argillite, chert, limy shale  

 argillite, siltstone, chert  

 calc-silicate, limestone, marble  

 conglomerate, breccia  

 conglomerate, carbonate  

 conglomerate, sandstone, siltstone  

 dacite, rhyolite  

 diorite  

 diorite, gabbro  

 diorite, gabbro, quartz diorite, granodiorite  

 diorite, granodiorite, tonalite, gabbro  

 diorite, granodiorite, tonalite, metagabbro  

 diorite, microdiorite, gabbro  

 gabbroic, diorite  

 gabbro, pyroxenite, diorite  

 granite  

 granite, granodiorite  

 granite, granodiorite, diorite  

 granodiorite  

 granodiorite, granite  

 granodiorite, tonalite, granite  
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 granodioritic intrusive rocks  

 granodioritic orthogneiss  

 intrusive rocks, undivided  

 limestone, cherty limestone  

 limestone, marble, calcareous sedimentary 

rocks 
 

 limestone, marble, silty limestone, 

mudstone, lapilli tuff 
 

 marble, calc-silicate  

 meta-andesite, metabasalt, metarhyolite  

 meta-andesite, metabasalt, metarhyolite -

altered 
 

 metabasalt  

 mylonitic orthogneiss  

 orthogneiss  

 orthogneiss metamorphic rocks  

 quartz diorite  

 quartz dioritic intrusive rocks  

 quartz-sericite schist  

 rhyolite  

 rhyolite, basalt  

 rhyolite dike  

 rhyolite dikes  

 sandstone, siltstone, argillite, conglomerate, 

basalt 
 

 sandstone, siltstone, shale, coal  

 sedimentary rocks, undivided  

 tonalite, diorite  

 tonalite, quartz diorite  

 tuff  

 undivided intrusive rocks  

 volcanic rocks, undivided  

 volcanic sandstone, siltstone  
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 volcanic sandstone, siltstone, tuff  

Forest variables LandCover_NonVeg  

 LandCover_VegNonTreed  

 LandCover_VegTreed  

 LandCover_Veg  

 Species_Abie_Ama  

 Species_Abie_Bal  

 Species_Abie_Las  

 Species_Abie_Spp  

 Species_Pice_Eng_Gla  

 Species_Pice_Eng  

 Species_Pice_Mar  

 Species_Pice_Rub  

 Species_Pice_Sit  

 Species_Pice_Spp  

 Species_Pinu_Con  

 Species_Pinu_Mon  

 Species_Pinu_Pon  

 Species_Pinu_Str  

 Species_Popu_Tre  

 Species_Pseu_Men_Men  

 Species_Pseu_Men  

 Species_Thuj_Pli  

 Species_Tsug_Can  

 Species_Tsug_Het  

 Species_Tsug_Mer  

 Species_Tsug_Spp  

 Structure_Biomass_Branch  

 Structure_Biomass_Foliage  

 Structure_Biomass_StemBark  

 Structure_Biomass_StemWood  

 Structure_Biomass_TotalDead  
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 Structure_Biomass_TotalLiveAboveGroun

d 
 

 Structure_Stand_Age  

 Structure_Stand_CrownClosure  

 Structure_Stand_Height  

 Structure_Volume_Merch  

 Structure_Volume_Total  

 

Table A1. Average, coefficient of variation (CV; %), minimum and maximum for all soil properties (bulk density, coarse fragment, organic 

matter, sand, silt and clay, exchangeable [Ex] acidity and Ex cations) at all sampling depths (0-10 cm, 15-25 cm, and 40-50 cm) for all 72 

sampling locations in the Kitimat Valley, British Columbia. 

 

 

Parameter Units Average CV% Minimum Maximum 

Soil depth cm 0-10 15-25 40-50 0-10 15-25 40-50 0-10 15-25 40-50 0-10 15-25 40-50 

Bulk density g/cm3 0.59 0.75 0.83 48.58 37.05 46.48 0.09 0.09 0.13 1.19 1.39 2.00 

Coarse fragment % 14.89 18.51 21.43 120.47 101.24 88.4 0.00 0.00 0.00 80.61 93.68 65.91 

Organic matter  % 17.53 12.62 8.85 94.18 81.86 97.10 2.60 1.94 1.81 89.48 52.78 61.67 

Sand % 50.45 52.68 53.11 38.88 36.38 33.99 13.08 15.86 13.51 99.31 98.47 97.90 

Silt  % 44.26 42.55 42.46 41.30 39.76 38.22 0.69 1.29 1.97 77.68 72.13 75.84 

Clay  % 4.93 4.51 4.04 105.24 76.20 74.09 0.00 0.12 0.14 37.40 16.39 13.73 

pH (H2O)  4.6 5.0 5.3 162.25 142.50 92.78 3.7 4.0 4.7 6.5 6.6 6.6 

Ex acidity meq/100g 3.95 2.77 2.04 64.32 65.36 81.06 0.13 0.53 0.13 15.13 8.53 8.60 

Ex calcium meq/100g 1.92 1.43 1.78 128.01 153.09 138.92 0.05 0.04 0.02 14.53 13.23 11.30 

Ex potassium meq/100g 0.16 0.11 0.10 78.96 70.35 82.98 0.02 0.02 0.02 0.83 0.41 0.45 

Ex magnesium meq/100g 0.5 0.31 0.43 114.62 127.75 175.93 0.04 0.03 0.01 3.66 2.53 4.20 

Ex sodium meq/100g 0.08 0.06 0.10 218.24 184.89 300.96 0.00 0.00 0.01 1.35 0.84 2.42 

Ex aluminum meq/100g 0.47 0.48 0.38 121.84 89.50 79.19 0.00 0.00 0.00 4.33 2.39 1.39 

Ex iron meq/100g 0.05 0.04 0.03 98.65 95.92 86.64 0.00 0.00 0.00 0.32 0.25 0.13 

Ex manganese meq/100g 0.05 0.02 0.01 207.49 178.82 136.98 0.00 0.00 0.00 0.58 0.18 0.11 
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Figure A1. Boxplot comparison of all soil properties (bulk density, coarse fragment, organic matter, sand, silt and clay, exchangeable [Ex] 

acidity and Ex cations) at the 0-10 cm, 15-25 cm, and 40-50cm depths.  
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Figure A2. A contribution map indicating the loading of all 91 predictor variables to the first and second SPC’s. 
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Figure A3. An SPC ‘heatmap’ and magnified examples, indicating the strongest predictor variables for the SPC’s 1-20. 
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Figure A4. Semivariograms fitted to the residuals of soil properties (bulk density [Db], coarse fragment [CF], organic matter, sand, silt and 

clay, exchangeable [Ex] acidity and Ex cations) at the weighted average soil depth of 0-50 cm. 

 

 

 

Db (g/cm3)  OM (%) CF (%) pH (H2O) Clay (%) 

Ex. Acidity (meq/100g) Ex. Ca (meq/100g) Ex. K (meq/100g) Ex. Mg (meq/100g) Ex. Na (meq/100g) 


