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Abstract

SPAF-network with Saturating Pretraining Neurons

Hasham Burhani

In this work, various aspects of neural networks, pre-trained with denoising au-

toencoders (DAE) are explored. To saturate neurons more quickly for feature learning

in DAE, an activation function that offers higher gradients is introduced. Moreover,

the introduction of sparsity functions applied to the hidden layer representations is

studied. More importantly, a technique that swaps the activation functions of fully

trained DAE to logistic functions is studied, networks trained using this technique are

reffered to as SPAF-networks. For evaluation, the popular MNIST dataset as well as

all 3 sub-datasets of the Chars74k dataset are used for classification purposes. The

SPAF-network is also analyzed for the features it learns with a logistic, ReLU and a

custom activation function. Lastly future roadmap is proposed for enhancements to

the SPAF-network.

Keywords: Unsupervised Pretraining, Machine Learning, Neural Networks,

Denoising Auto-Encoders, SPAF-network, Artificial Neurons.
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Chapter 1

Introduction

1.1 Introduction

In our modern era, we are increasingly relying on intelligent machines to help

us carry out various tasks. These tasks range from mundane tasks such as vacuuming

the house to complex security threatening problems such as automating the task of

recognizing suspects in thousands of images. These intelligent machines are possible

due to the advances in the field of Artificial Intelligence. Artificial Intelligence broadly

speaking is a field in Computer Science and Engineering, as such it can be further

divided into various distinct sub-fields. Some of these fields pertain to vision, speech,

object detection, scene detection, motion detection, navigation and dozens of others.

Many of these fields and in particular, speech and vision recognition belong to an

area called Machine Learning.

Machine Learning in essence is using computational methods to study data for

patterns, then using these learned patterns to make predictions on new data. At
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a very basic level, it can be equated to a line of best fit on a scatter plot. Where

the x-axis are the inputs and y-axis are outputs, by drawing a line that best fits the

pattern of x to y, we can then extrapolate and make predictions on undocumented

(x,y) points.

0 20 40 60 80 100
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350

Square Footage [m2]

P
ri

ce
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$]

House square footage versus price

House samples
Good-fit line
Bad-fit line

Figure 1.1: Line of best fit attempts applied to house square footage (x) versus price
(y)

An example of when this is useful can be found in Fig. 1.1 where the square

footage of houses are plotted against the prices at which they were sold at. If an

individual wanted to use this information to price a new house, then a line of best

fit can be drawn and used as a guidance for pricing a new house given its square

footage. The process of drawing a line that fits the data best can also require some

effort, and can have an effect on how reliable of an estimate one may recieve on the

price of the new house. In Fig. 1.1, the solid line would be selected as the line of best

fit. While the task may seem trivial in this specific example, since it is visibly clear

that the solid line is closer to all the points than the dashed line; this however may

2



not always be the case. One can imagine that simply taking one variable (size of the

house) maybe insufficient for pricing. Other features or attributes of the house are

also important when pricing, for instance location, number of rooms, bathrooms and

etc are all very important factors. As such it especially becomes hard when dealing

with multiple dimensions and thousands upon thousands of points, to a) draw lines

and b) select the line of best fit. The math and comparison of different lines become

extremely difficult, as such needing an algorithm to automate the selection of a line

that fits the dataset best becomes important.

Learning Algorithms

Another way to look at the previous example is to think of the line of best

fit as a function that takes house square footage and produces a price. The solid

line in Fig. 1.1, would have the form outlined in Eq. (1.1). So instead of manually

plotting new points on the line of best fit, one can use the equation of the line to

compute the prices. This whole process in essence is what a Learning Algorithm in

Machine Learning would do. In fact, this exact process of line generation and the

selection of the line that fits best is called Linear Regression. In Linear Regression an

equation in the form of Eq. (1.2) is manipulated till an equation that approximates

the data points best is computed. This new equation is different from a simple line

such as the one in Eq. (1.1) in that it can take multiple features. The bold variables

namely w and x are vectors. The w and b are manipulated in the direction that

minimizes an error. There are various ways to measure the error, a simple method

is equivalent to measuring the sum of all distances between each point and the line.

The line that provides the smallest error then is selected as the best-fit line. There

are a variety of other Learning Algorithms that one can use when needing to learn

from data. Other learning algorithms include, Logistic Regression, (SVM) Support

3



Vector Machines and Neural Networks. Selecting which one to use is dependent on

a variety of factors, some of which are: availability of resources on a system, type of

system/platform, data and even type of Machine Learning problem. This example

falls under a regression problem, simply put, the prices for the houses can be any

real number. Problems such as number recognition in images fall under classification

problems, classification problems have to classify input into a distinct category. For

instance, an image with a handwritten nine should be classified by the algorithm

as a nine. Logistic Regression, SVM and Neural Networks are capable of solving

classification problems.

f(x) = 3x+ 75 (1.1)

f(x) = xwT + b (1.2)

The focus of this thesis will be on Neural Networks. The ideas for modern neural

networks stemmed out of research focused on the computational model of biological

neurons since the early 1940s, see the work of McCulloch and Pitts in (1). Since

then neural networks have gone through ups and downs, especially when it comes

to academic research focus. Neural networks after the advent of Support Vector

Machines took the backseat in the machine learning community. Research continued

in various labs even during this low period. For example neural networks were used

in experiments with complex input with the idea that it can learn its own features, as

seen in (2). It wasnt until the early 2000s, when SVM plateaued on many problems,

that Neural Networks once more gained popular support. Neural Networks can be

topologically designed such that they can learn better features from the input. It

4



was exactly progress in regards to automatic feature learning, that brought neural

networks back to the spot light (3). In one of the more popular cases, Google was

able to train a network to recognize the face of a cat from Youtube videos (4). They

can now be found in Apple, Google and Microsoft products that rely on speech and

image recognition.

1.2 Data, Datasets and Functions

In the previous sections, Machine Learning was defined to be the study of pat-

terns in data, then using those patterns to make intelligent decisions, which is not

completely accurate in all Machine Learning problems. In some problems, given an

input x and output y combinations, a function needs to be constructed that can ac-

curately produce the output given the input. In other words, a function that can

map x→ y, lets call this function f(). This function is often an approximation of the

true function F (). Approximating F () is useful as it allows us to compute outputs y

for previously unseen inputs x. This is the case in the house pricing example in the

previous section. Historical data was used as samples of the true F (), and the line

equation constructed from this historical data can now be used to price houses that

haven’t been sold yet. A note worth making, is that while no mathematical procedure

for learning structure and patterns have been discussed yet, combining the two types

of learning, the learning of patterns from x and then using that knowledge to better

map x→ y can be very powerful. This idea will further be explored in Chapter 3.

In Machine Learning, the historical data collected is called a dataset, the features

are used as inputs, and that which needs to be predicted is called an output. Any

complete (x, y) datasets used to compute a function f() that can map x→ y, is called

a training set. And often, to test the effectiveness of f(), samples set aside and not

5



used in the training set are used, this set is called the Testing set. In some cases,

a separate Validation set is used to direct the Learning Algorithm towards the true

F ().

1.3 Major Contribution

The goal of this work was to explore methods that could accelerate pre-training

with autoencoders a variant of neural networks, and improve hidden layer represen-

tations. As such, a total of three separate areas were covered in the overall work.

A new modified activation function was introduced during pre-training with autoen-

coders, this method was picked to increase gradients and therefore increase the rate of

neuron saturation. Secondly, to the best of our knowledge, for the first time with pre-

training and fine-tuning methodologies, a different activation function was used in the

pre-training stage versus the fine-tuning stage, networks trained with this method we

call SPAF-networks (Swapped Pre-training Activation Functions). Finally, methods

that induced sparse representations in the hidden layers of denoising autoencoders

were explored, this was done by using an L1 and log based term of the hidden rep-

resentation and added to the cost function as a regularization term. A paper using

this work has also been published (5).

1.4 Thesis Outline

The rest of this thesis will be divided as follows: In Chapter 2, Neural Networks

will be covered in more detail, various application areas will be discussed along with

various feature selection techniques.
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In Chapter 3, the new work and how it relates to and helps unsupervised fea-

ture learning in denoising autoencoders will be discussed. Chapter 3 will begin with

mathematical preliminaries will followed by the detailed explanations of supervised

and unsupervised networks.

In Chapter 4, the datasets used to test the algorithm will be discussed in detail,

followed by implementation details of the algorithms. The end of the chapter will be

reserved for mentioning experimental results on the datasets.

Finally, Chapter 5 will be used to outline the conclusion of the work as well as

ideas and suggestions for future work.
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Chapter 2

Background

2.1 Artificial Neural Networks

Artificial Neural Networks (ANNs) are biologically inspired machine learning

algorithms, that are capable of approximating very complex functions. Networks

that are considered to meet a certain requirements (networks with at least one-hidden

layer), are in fact universal function approximators (6). Meaning they are capable

of approximating any function given enough samples of required function. Due to

the biological inspiration, the architecture and naming conventions of the building

blocks of an artificial neuron mimic those of a biological neuron. A biological neuron

is composed of three distinct parts, the dendrite (incoming signals), the cell body

and finally the axon (outgoing signals). They receive a signal through the dendrite,

decide on whether to propagate it forward in the soma (body) and finally propagate

the signals forward through the axon (7).
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2.1.1 Artificial Neuron

An artificial neuron similarly can have a node with incoming (dendrite) and

outgoing (axon) connections as seen in Fig. 2.1. Each connection has an associated

weight, which is used to multiply the incoming value by, the artificial neuron then

takes the value and will alter it in some way, before propagating the output further

on as final output, or an input to other neurons.

Inputs Neuron Output

Figure 2.1: Artificial neuron with multiple inputs will produce one output. However
this output can be connected to multiple neurons, much like how biological neurons
work.

Each neuron can have different functions to apply to its incoming signal. These

functions are called activation functions, there are many different kinds of activation

functions, a few of the popular ones are: Logistic function (2.1), Step function (2.2),

Hyperbolic Tangent (2.3), and Rectified Linear Unit (ReLU) (2.4). These functions

are in place to mimic the action potential found in biological neurons. When an

action potential is reached the neurons fire a signal, which is propagated forward.

While these activations functions are not as complex as the real biological ones, they

still regulate the strength of the output.

φ(x) =
1

1 + e−x
(2.1)
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Figure 2.2: Some common activation functions that can be found in neural networks

φ(x) =

 1 if x =¿ 0

−1 if x ¡ 0
(2.2)

φ(x) =
1− e−2x

1 + e−2x
(2.3)

φ(x) =

 x if x ¿ 0

0 if x ¡= 0
(2.4)

Like a biological neuron, an artificial neuron can have multiple incoming con-

nections as seen in Fig. 2.1, it deals with this by simply adding up all the signals

prior to applying an activation function. This can be seen in Eq. (2.5); Where fj(x)

represents the jth neuron and φ, x, w and b represents the activation function, input,

weight and bias values respectively. Inputs are first multiplied by the weights of the
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connections before being summed and potentially squashed by an activation function.

It is also worth noting, Eq. (2.5) is identical in every aspect but the addition of the

activation function φ, to the Linear Regression equation seen in Eq. (1.2) discussed

in Chapter 1.

fj(x) = φ(bj +

|x|−1∑
i=0

xiwij) (2.5)

2.1.2 A Network of Neurons

This building block, like the biological neuron, can be connected with others

to create complex topologies that can compute different functions. To illustrate this

point, an OR, AND and XOR functions will be constructed using neural networks

and explained. These functions are popular in the industry to showcase the ability

of neural networks in separating non-linear problems. Richard Bland outlines the

functions in more detail in (8). To better understand the functions, Table 2.1 can

be analyzed. Two binary variables are taken as input and a single binary output is

produced.

A B OR AND XOR

0 0 0 0 0
0 1 1 0 1
1 0 1 0 1
1 1 1 1 0

Table 2.1: A and B represent two binary features, followed up by output for an OR,
AND and a XOR function.

An OR will produce a 1, if any of the two features is set to a 1. To produce the

right output for an OR function using a neural network, weights of value 1 can be
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Figure 2.3: OR Network

used with each connection to one output node, this is illustrated in Fig. 2.3.

To assure that the right output is produced, an activation function that simply

outputs zero or one needs to be put in place. A custom activation function of the

form in Eq. (2.6) can be used.

φ(x) =

 1 if x ¿ 0

0 if x ¡= 0
(2.6)

With this last piece in place, Eq. (2.5) can be used to compute an output using

the network in Fig. 2.3 as follows:

Input : [0, 1],Weights : [1, 1], Bias : −0.5

f([0, 1]) = φ(0 +
1∑

i=0

xiwij)

= φ(−0.5 + ((0 ∗ 1) + (1 ∗ 1)))

= φ(0.5)

= 1
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This equation can be used again for all the inputs and it will produce the right

output. To construct an AND function, the bias will have to be adjusted to a -1 on

the output node. Doing this will increase the required activation rate to a 2 before

the bias is applied. Therefore both inputs (A and B) will need a value of 1 for the

neuron to activate. This network can be seen in Fig. 2.4.

A

B

AND
1

1

-1

Input
layer

Output
layer

Figure 2.4: AND Network

2.1.3 Hidden Layers

Before the network for the XOR function can be created, new terms for more

complex topologies will need to be mentioned. In ANNs, the majority of the topologies

follow the feed-forward neural network topology. Neurons are grouped such that, they

are layered with lower layers feeding output to the next layer sequentially, this process

is called feed forward. In regards to the number of layers, there is no limit on how

many there can be in a network.

The first layer is called an input layer, the layers immediately following the input

layer are called hidden layers, and is often simply clamped with the values from the

input vector, as has been the case in previous examples. Fig. 2.5 is a 1-hidden layer

network. As is evident, there are no intra-layer connections between neurons. This
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Figure 2.5: Feed-Forward neural network has input nodes that simply take the value
of each input, and the following layers up until the last layer (Output Layer) are
called hidden layers.

architecture produces a simple sequential process to compute values for each layer.

For example, given values for the input layer (simply clamp the values of inputs, or

use the input vector), the first hidden layer can be computed using the following

equation:

f(x) = φ(xW + b) (2.7)

Where x, W and, b and the input vector, weight matrix that represents all the

connections between input neurons and hidden neurons, and finally the bias vector

representing biases for each hidden neuron respectively. In fact this equation can be

applied to any layer in the network, where the input, x is simply the output of the

previous layer. An important point to make here, is the representation of connection

weights between layers in the form of a matrix. By doing so, the summation from
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Eq. (2.5), can be replaced by a simple dot product between x and W in Eq. (2.7).

The matrix is constructed by simply placing indexes of neurons in one layer as rows,

and the next layer as columns. The values in each group of index is the weight of the

connection between the neurons that the indexes represent. Fig. 2.6 is a network with

3 input neurons, 2 hidden neurons and 1 output neuron. Its corresponding matrix for

the connections between the input layer and hidden layer is as follows:


0.1 0.1

0.2 0.2

0.3 0.3



I1

I2

I3
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H2

O

0.1
0.1

0.2

0.2
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Input
layer

Hidden
layer

Output
layer

Figure 2.6: A network with three input neurons, connected to two hidden neurons all
feeding output to a final output neuron.

2.1.4 Intermediate Representation

Both the OR and AND function can be separated by a simple line as seen in

Fig. 2.7, and Fig. 2.8, this is unlike the XOR function seen in Fig. 2.9. To construct

a network that can mimic the XOR function, the input needs to be modified to an
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Figure 2.7: OR Function displayed in a scatter plot. Blue stars marks indicate an
output of one, and red squares indicate an output of zero. The OR function can be
linearly separated as indicated by the black line.

intermediate representation that is separable. One way to achieve this, is to simply

add a hidden layer that can represent the intermediate representations.

By the simple definition of a XOR network, or by analyzing Table 2.1, one

can see that the XOR function simply activates for problems where an OR function

activates but not an AND function. By this definition it can be easily seen that the

two networks seen in Fig. 2.3 and 2.4 if combined as input to another network will

give this new network the simple ability to check for an OR and not an AND; to

ultimately allow for the introduction of XOR logic into a network. What this means

is that the outputs from the OR and AND networks will represent the neurons in the

hidden layer of a XOR network. These hidden neurons, then become intermediate

features for the XOR function. Following the logic discussed earlier, the outgoing

connection from the AND neuron can have a weight of −1, which means if the AND
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neuron activates a value of -1 will be produced (dislike of an AND presence). If it

does not activate, a value of 0 will be produced. The OR neuron can have an outgoing

connection of 1, if it activates it will produce a 1, if not a 0. Hence if both are on,

−1 + 1, will produce a 0 at the output, and if only the OR neuron is on, then 0 + 1,

will produce a 1. Simply, what the output node checks is for the presence of an OR

neuron (weight of 1 from OR neuron) and not an AND neuron (weight of −1 from

AND neuron) to activate; this is represented by the red and green lines in Fig. 2.10.

It is important to note, that a neural network produces a function, as can be

seen by analyzing the inputs and weights of the various networks constructed above.

Consider the OR function, with weight values of [1, 1], we get the equation:

A+B − 0.5 = 0

0 1 2
0

1

2

A

B

AND Function

Output = 0
Output = 1
Linear Line

Figure 2.8: AND Function displayed in a scatter plot. Blue stars marks indicate an
output of one, and red squares indicates an output of zero. The AND function can
be linearly separated as indicated by the black line.
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Figure 2.9: XOR Function displayed in a scatter plot. Blue marks indicate an output
of one, and red indicates an output of zero. The XOR function cannot be linearly
separated by a line.

IA

IB

H1

H2
XOR

-1

-0.5

1

1
1

1

1

−1

Input
layer

Hidden
layer

Output
layer

Figure 2.10: XOR Network with OR and AND networks

at the output node. This equation is simply the equation of a line, the activation

function changes this to:
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Figure 2.11: All possible values of H1 and H2 from 2.10 plotted on a scatter plot.
The problem is linearly separable.

φ(x) =

 1 if A+B − 0.5 ¿ 0

0 if A+B − 0.5 ¡= 0
(2.8)

Of course constructing more and more complex networks enable us to mimic

more and more complex functions, as was the case with the XOR function. While

these networks were hand constructed, in Chapter 3, a method called Back Propa-

gation will be discussed, which enables the automatic learning of weights for neural

networks. This makes neural networks extremely powerful in their ability to approx-

imate and build all kinds of complex functions. Another important point to make,

the addition of hidden layers, enabled us to add logic gates within the network, which

were then used as features in the final output layer. One can imagine, adding more

layers, which would then create even more complex features built on top of features

to feed to the final output layer.
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2.2 Applications for ANNs

ANNs are unique in that they can be applied to many kinds of problems. In

the industry they can be found in a wide variety of areas, from Robots that serve

coffee (9) all the way to powering speech recognition software in Android phone

devices (10). It is worth mentioning however, that finding ANNs in the indusrty

is a recent phenomenon. It is due to the recent progress in neural networks in the

academic field that pushed the industry to realize their potential. Much of the chain

of developments can be attributed to a new training methodology developed by Geoff

Hinton at the University of Toronto, which was soon discovered to work well in

initializing the weights of neural networks. This sparked a series of applications

in the industry and also produced new record successes on image recognition tasks

such as ImageNet. In fact ImageNet over the past 5 years has seen a consistent

improvement over its classification accuracy. ImageNet has seen a trend of more and

more teams utilizing neural networks. In 2005 no teams used a neural network, in

2012 every team that participated in the ImageNet competition had used a neural

network (11). Looking at the details of some of the applications, outlines a new

kind of problem. Previously architectures and examples pertaining to the regression

problem were discussed. These industry examples all have an aspect of classification

in them. A classification problem in Machine Learning, takes an input and assigns it

into a category, the OR, AND and XOR functions constructed in the previous section

were all also classification problems. Those problems had a possible output of two

categories or classes. In the case of speech recognition, taking audio as input would

be run through a network, which would in turn assign the audio into one of several

outputs that could represent words.
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2.2.1 Multi-Class Classification

Multi-Class classification refers to machine learning classification tasks that have

higher than two categories. In neural networks, two categories can be classified by

a network that has one output, this can easily be seen in the examples discussed in

the previous section. In those scenarious an output of greater than 0 was set to one

class and an output of 1 of the same neuron was considered another class. To enable

multi-class classification, more than one output neuron can be used. This difference

can be seen by comparing Fig. 2.5 versus 2.12.

...

... ...
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Figure 2.12: In a classification problem, neural networks are designed to have multiple
output neurons, each representing a category. In this case, the neural network is
designed to categorise input into n categories.

However with multiple outputs a method to select one of the many outputs

is needed. One such method is called Softmax. Softmax is a two step process, the

first step is applying the Logistic Activation function seen in Eq. (2.1) in all output

neurons, the values are then taken and converted to probabilities using the following

equation:
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Pr(z)j =
zj∑n
i=0 zi

(2.9)

Where z is the output vector from a given network, and zj is simply the value in

the jth index of the vector. Softmax is a popular function that is used in multiclass

neural network topologies (12). The function Pr(), will produce a new vector with

probabilities, this in fact is more powerful than the hard classifier that was used in

previous examples. With softmax, we can attribute probabilities to input belonging

to a certain class, we can also choose to attribute multiple classes to an input with

probabilities as certainties. A class or category is represented by the index of the

output vector, this needs to be predefined, and often the dataset with input and

output groupings are adjusted such that each class is represented by the proper index.

Consider the following example with a random array representing a cat, dog and a

wolf, in [Input], [Output] format.

[0.1, 0.3, 0.4, 0.9], [cat]

[0.3, 0.9, 0.1, 0.2], [dog]

[0.6, 0.1, 0.7, 0.3], [wolf ]

The first step to converting this to be compatible for a softmax neural network, would

be to count the number of different classes. Which in this case is three, a vector of size

three is then created to represent the classes, and each index represents a unique class.

In this case, position zero for cat, one for dog and two for a wolf. This information

is then used to construct a one-hot vector. Which simply means to set a value of 1

in the corresponding position to represent a class in the vector. The output vectors
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would then look like this:

[0.1, 0.3, 0.4, 0.9], [1, 0, 0]

[0.3, 0.9, 0.1, 0.2], [0, 1, 0]

[0.6, 0.1, 0.7, 0.3], [0, 0, 1]

In most problems, the norm is to assign the input the class with the highest

probability. This simply translates to selecting the neuron with the highest probabil-

ity, returning the index of that neuron as the class. From the previous examples if

the network returned 2, the class wolf would be assigned to the input that produced

that output.

2.2.2 Document Classification

An example of where multi-class neural networks can be applied is document

classification. The goal of the network is to classify a page into one of several cate-

gories. This is useful in a wide variety of ways, in a search engine this can be used

to return webpages that are directly relevant to the topic the user is researching.

Similarly the technology is being used for delivering a much more relevant online

advertisement in the Targeted Advertisement Industry. This is done, by first classify-

ing the web page the user is on, into one of potentially thousands of categories, then

matching an advertisement to the category of the web page. This is called Contextual

Targeting (13).

Another name for document classification is text classification, and as such,

to classify documents or text, the individual words need to be formatted such that

neural networks can process them. To humans, understanding documents is simply
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the task of reading the words, for neural networks that can only process numbers,

words will need to be converted to numbers. The process of generating inputs for

machine learning is called feature engineering, in other words, it means document

representation (14). A popular method for document representation is called bag of

words. In this method a document is represented as a set of words together with their

associated frequency or occurrence in the document (14). Bag of words is also often

referred to as n-grams, where n stands for the number of words in a single feature.

An example of n-grams can be seen in Table 2.2.

Feature 1-gram 2-gram 3-gram

0 This This is This is an
1 is is an is an example
2 an an example
3 example

Table 2.2: The text This is an example broken into n-grams.

The bag of words method can be broken into the following steps:

(1) Create the desired n-gram table using the whole corpus (dataset). This often

means, an n-gram table representing every word found in the vocabulary of the

corpus.

(2) For each feature z from step one, create a vector for each document where

the index z has the frequency of feature z in the document. This vector then

becomes the input x.

(3) For each input x (representing document), create an associated 1-hot output

vector y, to represent the category of the document input x represents.

Once this is complete, documents will be represented in the format (x,y), ready

to be further processed.
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2.2.3 Image Classification

Image Classification or Image Recognition is the task of identifying the objects

or persons in an image. This is useful in a wide variety of ways, consider image

recognition at security institutions, Facebook also employs Image recognition for its

tagging tips (15). Unlike humans, computers see an image as pixels, as such the input

to a learning algorithm is the individual pixels. Unlike document classification, the

processing of images as input is a little simpler, and can be processed as follows:

(1) Convert each image to a matrix, where each position in the matrix directly

corresponds to the pixel intensity in the image.

(2) Convert the matrix to row-major vector x, by appending all of the rows from

the matrix together in the order of first to last.

(3) For each input x (representing each iamge), create an associated 1-hot output

vector y, to represent the category of the image input x represents.

Once this is complete, images will be in the right format for a classification

algorithm, that takes x as input and expects y as output.

2.3 Feature Selection

Feature selecting is an integral part of machine learning, it is often used to re-

duce computational complexity and in many cases to improve performance. Feature

selection is the process of selecting a subset of the features used in a learning algo-

rithm. Consider the case of document classification, if a large dataset is ever used,
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Figure 2.13: Unlike humans, computers cannot process the images with the complex-
ity of all of its features. It simply sees pixels that make up the image.

then the size of the vocabulary might get large enough to increase the size of the in-

put vectors to the point where it is infeasible to store, use and process in a Learning

Algorithm. This is easy to see when considering that a website like wikipedia has

over 2.6 billion words (16), using a 1-gram bag of words method will give us a vector

of size 2.6 billion for each wikipedia page! Feature selection is also used to reduce

the noise in a dataset which will ultimately increase the classification accuracy of a

model. Noise can be thought of as features that reduce the accuracy of a model in

its ability to map unseen inputs x to y (17). Consider training a document model

by using documents written by a few individuals, each individual’s name appears at

the end of each document. If for instance, the documents that belong to the category

sports were all written by Joe Smith, then the model could erroneously assume that

the feature Joe Smith is very telling of the category sports. If the model were to ever

get deployed and be asked to classify a politics document written by Joe Smith, it

might erroneously classify it as a sports document.

26



2.3.1 Existing Methodologies

There are many feature selection algorithms, two of the popular methods are

TF-IDF (term frequency inverse document frequency) and χ2 (Chi-Square). TF-IDF

measures the relevance of a word to a document in a corpus, this has widely been useful

in machine learning as well as query retrieval, where it has increased performance as

seen in (18). As indicated by the name, TF-IDF is a multi-step algorithm and can

be broken down into the following steps:

(1) The first part of TF-IDF is TF or term frequency. The simplest approach is to

count the frequency of word w in document d, denoted as tf(w, d).

(2) The second step is computing IDF or inverse document frequency and it is

measured by dividing the total number of documents in the corpus, by the total

number of documents that have the word w. IDF is logarithmically scaled, so

the final form of the equation is as follows:

idf(w,D) = log
N

(1 + |d ∈ D : w ∈ d|)
(2.10)

Where D denotes the corpus and N is the total number of documents in D. one

is added to the denominator to avoid a division by zero.

(3) The final step is combining the two parts to compute TF-IDF, and that is done

by simply multiplying the two functions:

tfidf(w,D) = tf(w, d)× idf(w,D) (2.11)

tf-idf is computed for every feature in a corpus and is then used as a dimension-

ality reduction tool. This is done by keeping features with high values and discarding
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features with lower values. Similarly χ2 can be used to lower dimensionality by scor-

ing all of the features in a dataset. Its different in that, while TF-IDF measures

the relevance of a word to a document, χ2 measures independence of two variables.

In document classification, a words independence can be measured in regards to a

specific category. The first step of χ2 is calculating a total of four variables:

(1) A = The number of times w is found in the category c (co-occurance).

(2) B = The number of times w occurs outside of category c.

(3) C = The number of times c occurs without w, (number of documents without

the word w).

(4) D = Number of times neither c nor w occurs (documents without c or w).

(5) N = Total number of documents in corpus.

The scoring is then calculated for each word in the corpus by the following

formula:

χ2 =
N × (AD − CB)2

(A+ C)× (B +D)× (A+B)× (C +D)
(2.12)

Higher scores in χ2 mean that the two features w, c are not independent, in

other words they should be retained in the final feature list. This is why χ2 is often

described as a measure of the lack of independence between two variables (19).

Considering that machine learning is applied to a wide array of different areas,

there are similarly a wide array of feature selection algorithms that have been de-

veloped. What is more interesting to mention is the idea of abstracted features to
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different fields. The methods described so far, work well with the Document clas-

sification and potentially many other problems. Where it is lacking is Image Clas-

sification, where instead of high level features like words, the individual pixels are

provided. Words are high level human features that have meaning. These meanings

translate well to categories, so applying independence analysis is logical, doing the

same on pixels would produce very noisy results on images. Even if pixels were good

features, any small variation in the image would cause drastic differences in the vec-

tors. Consider an image with a human face, pixels that are found in the eye region

would be very telling of the presence of an eye; a slightly different pose of the same

individual would translate the effect of that pixel to a different area causing noise in

the model. Word level features in images would translate to concepts such as an eye,

mouth, brow and etc for a human face. Window, door, and bell for a house. Of course

feature engineering at this level for images can be extremely difficult, these will have

to be hand constructed which is a futile task due to the sheer number of different

features that can be found for all objects. What has been done is the introduction of

mathematical methods that can create a list of features from images (20), similarly

in Speech Recognition there are many different kinds of feature selection algorithms

that are employed (21). What would be far more interesting is a method that can

automatically be applied on the most basic building block features (pixels) and learn

high level features that can enhance accuracy levels in classification tasks.

2.3.2 Deep Learning

With recent breakthroughs in our understanding of how the human brain works,

new development methodologies have been proposed and developed. One such break-

through falls under Deep Learning, it borrows a central idea from the human brain

that deals with multiple levels of representation of the sensory input. For instance the
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visual stimuli is converted to various levels of representation with increasing complex-

ity before it reaches the visual cortex (22). This phenomenon makes Deep Learning

very interesting when considering the various problems with the conventional meth-

ods discussed earlier. Deep Learning will accept a raw input and transform them to

a better representative feature space of the problem. It also can be used in a wide

array of fields, Deep Learning has been applied in Text Classification, Image Recogni-

tion/Classification, and Speech recognition. In fact in Image and Speech recognition

it has replaced all conventional methods and is widely being used in the iPhone,

Android, and Windows phone platforms. Deep Learning can further be divided into

several different algorithms, a few of the popular algorithms are Autoencoders, Deep

Belief Networks and Deep Convolutional Networks. The focus of this work will be on

AutoEncoders, which will be discussed in detail in the next Chapter.

Conventional methods like TF-IDF and χ2 have proven to be useful in some

areas; they however are not a universal solution. They are also inherently a linear

transformation tool, and as the size of the datasets increases we will increasingly need

non-linear tools to represent high dimensional data in a useful way. It is also clear,

that while hand-engineered features have helped various fields, they are not the most

effective way to move forward. As such, recent research has heavily been focused on

deep learning solutions that are inherently non-linear. It is thus very reasonable that

research will continue to be focused on these areas, and inspiration will be drawn

from the multi-level representational ability of the human brain to develop complex

self-learning feature selection algorithms.
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Chapter 3

Sparse and Saturating Neurons

3.1 Preliminaries

3.1.1 Cost Function

In the previous chapter, a few different neural networks were created, each due

to their topology and weights produced a different function. As such, if the weights

can be intelligently or heuristically modified towards a desired function, learning can

be achieved. An important piece for this to work is to assess the impact of a change in

weights on the final output of the function. Given the definition of Machine Learning

in Chapter 1, the impact can be measured in terms of the actual function F , and the

prediction of the learning algorithm f . The lower the difference between the two, the

closer we are in regards to learning. Given that the actual function F is unknown,

observations of F can be taken (from the dataset), and the performance of f on that

dataset can be compared. The formula that measures the performance of f is called

a cost function. A popular cost function is known as Mean Squared Error (MSE) and
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is measured as follows:

ferror =
1

D

D∑
j=0

N∑
i=0

(fnet(xj)i − yji)2 (3.1)

Where fnet is the output of the network, x is a given sample from the dataset and

y is its associated expected output value and N is the demensionality of the output

vector, which is also the same as the number of classes. The equation can be used

to compute one error at a time, or the error of a network on the whole dataset. In

the case of computing the error for anything larger than one sample, the mean of the

errors is taken; D in that case represents the total number of samples used to compute

an error. MSE will produce a lower score when fnet makes close predictions to y. In

other words, the higher the classification accuracy of the network, the lower the score

of MSE. Given a method to modify weights, weights can be updated such that ferror

is minimized, in this manner gradual learning can be achieved. An algorithm that

mimics this process is outlined below.

(1) Initialize weights randomly.

(2) Compute ferror with (x, y) and fnet

(3) If ferror is acceptably low, stop. Return current fnet.

(4) Else update weights towards a better estimate.

(5) Repeat from step two.

Another cost function that can be used in classification problems is the Mean

Negative Log-Likelihood (NLL), this function deals with increasing the probability

of producing the correct class. Recall that in Chapter 2, a softmax funciton was
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introduced and explained to be akin to producing probability for every possible class.

That is to say: P (y|x; θ) = softmax(fnet(x; θ)). Where y, x is the class and input

from the dataset, and fnet is the full network function and θ are its parameters. NLL

works towards increasing the probability of the correct class y for every x. To work

in a minimization environment the log of the probability is taken, then converted

to a negative, thus when minimizing NLL, it is equivalent to maximizing the log

probability. The final equation for NLL is as follows:

NLL = −
D∑
j=0

N∑
i=0

1{yj=i}log(P (yi|xj; θ)) (3.2)

Due to the different types of cost functions, in the rest of the chapters fcost will

be used to refer to a generic cost function. In this work, the MSE cost function is

used in the denoising autoencoders (DAE) and NLL in the final network fine-tuning.

All of these will be discussed in the next few sections.

3.1.2 Backpropagation

Given that different weights produce different functions, for learning to take

place, a learning algorithm can randomly generate weights until weights that meet a

certain minimum on a cost function is attained. However the effort for finding the

right weights will increase substantially as the size of the network grows. An algorithm

that can more intelligently adjust the weights is needed for network sizes where an

exhaustive search method is impractical. One such method is called Backpropagation.

Backpropagation is one of the most popular learning algorithms for training neural

networks. Backpropagation utilizes gradient descent, which is the process of adjusting

the parameters of the network in the direction of achieving a minimum for the cost
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function. This is achieved by taking the partial derivative (gradients) of the cost

function with respect to the parameters that need to be adjusted in the network.

As such, for back-propagation to work, the activation function used needs to be

differentiable (23), the activation function referred in Eq. (2.6) cannot be used with

back-propagation. Other activation functions that are differentiable, such as the ones

found in Eq. (2.1) and Eq. (2.3) will work. Back-propagation can be broken down

into these steps:

(1) Given a network and input data, propagate forward to produce an output.

(2) Compute a cost given the output from step 1 and actual expected output from

dataset. Eq. (3.1) can be used in this step to produce an error. We will define

fcost and for the time being, can be equated as such: fcost = ferror It is possible

to enhance a cost function to do more than just reducing the error. This will

be further discussed in another section.

(3) Take the derivative of the cost function with respect to all the parameters using

the following equation.

∆θ =
∂fcost
∂θ

(3.3)

Where ∆θ stands for the change in θ, and θ stands for all the parameters in the

network that need to be changed and fcost is simply ferror

(4) Update all the parameters using the following equation:

θ = θ − γ∆θ (3.4)

Where the added γ is a configurable parameter that controls the rate of change

in the parameters. This variable is called the learning rate.
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Taking the gradients of the cost function can become fairly complex and will

need the application of the chain-rule. In fact the name backpropagation comes from

reusing gradients of nested functions in the lower order of the network. However

in programmatic implementation, due to the availability of automatic differentiation,

the process is fairly simple. One such library that offers automatic differentiation with

chain rule is Theano (24). With backpropagation a complete Learning Algorithm can

be seen in Algorithm 1. The function propagateforward in the algorithm refers to

computing the full output of a neural network given an input x.

Algorithm 1: Backpropagation

Data: TrainingData = [(x, y)..., (x, y)] where x is an input vector and y is its
corresponding 1-hot category vector.

Data: V alidationData = [(x, y)..., (x, y)]
begin

Predictions←− Array()
Actual←− Array()
W ←− Random(min = −1, high = 1)
b←− Random(min = −1, high = 1)
epoch←− 0
accuracy ←− 0
while epoch++ < 1000 and accuracy < acceptable do

for sample ∈ TrainingData do
x←− sample[0]
y ←− sample[1]
ŷ ←− Propagateforward(x)
cost←− fcost(ŷ, y)
∆W,∆b←− gradients(cost, w.r.t = (W, b))
W ←− W + γ∆W
b←− b+ γ∆b

for sample ∈ V alidationData do
x←− sample[0]
y ←− sample[1]
AppendToPredictions(Propagateforward(x))
AppendToActual(y)

accuracy ←− ComputeAccuracy(Actual, Predictions)
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3.1.3 Batch & Mini Batch Learning

Up until now, a method called stochastic gradient descent (also called online

learning) has been discussed for the purpose to training neural networks. In stochastic

gradient descent weights are updated after one sample iteration through the network,

this can be seen in the the backpropagation algorithm discussed in the previous

section.

An alternative to stochastic gradient descent is to first compute the errors of

the network on all available samples before making an update. This method is called

batch learning, where batch refers to the whole training dataset. In batch learning

the updates gathered point in the right direction, however doing so means to tally up

updates for each sample before updating the parameters, as such selecting the right

value for the learning rate is very important. One way to look at this is to imagine

that the cost function outlines a terrain and the parameters are the coordinates.

Taking the gradient of the cost function tells the learning algorithm of the direction

towards parameters that will produce a lower cost, but it never provides magnitude.

Using a small learning rate will cause the algorithm to converge to an acceptable

minimum very slowly (this is due to the need to compute gradients for every sample

before an update). Using a large learning rate will cause the algorithm to potentially

hop around from hill to hill in the terrain.

Stochastic gradient descent on the other hand, deals with one sample at a time,

the process is much quicker to get direction then move in that direction, however

because only one sample is used at a time, the path taken towards a minimum (valley)

will form a zig-zag (Because each sample will pull towards different parameters that

will produce an optimal for that sample only). Which essentially translates to more

parameter updates before we reach an acceptable minimum. Stochastic gradient
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descent is also prone to the very same large and low learning rate problems of batch

learning, however it suffers less so, this is because unlike batch learning the gradients

are not accumulated before an update.

Both methods are well understood, but often researchers may lean towards one

more than the other, this is mainly due to which one they believe is faster in regards

to convergence. An extensive survey and study by Wilson and Martinez in (25) shows

that stochastic gradient descent is capable of learning just as well and is faster than

batch learning. Of course there would have to be a lower bound on the number of

samples in a dataset. A dataset with just ten samples will be much faster with batch

learning, and still provide gradients in the true direction.

In this study, a hybrid of the two will be used by taking advantage of a method

called mini-batch learning. Mini-batch learning divides the original batch (dataset)

by the required number of samples in a smaller batch referred to as mini-batch. In

this work, a mini-batch of size ten will be used. The gradients are computed and

accumulated for ten samples before parameter updates are done. This algorithm will

still produce a zig-zag path, but one that will have fewer direction changes than a

fully stochastic algorithm. Due to the nature of various libraries and optimizations

for matrix-matrix computations available on modern computers, using mini-batch will

produce far faster forwardpropagation results. An algorithm that deals specifically

with mini-batch gradient descent is outlined in Algorithm 2.
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Algorithm 2: Mini batch Algorithm

Data: TrainingData = [(x, y)..., (x, y)]
begin

W ←− initiatilize W
b←− initialze b
while stopping criterion not met do

∆W,∆b←− 0
minibatch←− Get next ten samples from TrainingData
for sample ∈ minibatch do

x←− sample[0]
y ←− sample[1]
ŷ ←− Propagateforward(x)
cost←− fcost(ŷ, y)
∆W,∆b←− (∆W,∆b) + gradients(cost, w.r.t = (W, b))

W ←− W + γ∆W
b←− b+ γ∆b

3.1.4 Initializing Parameters

To understand how the parameters need to be initialized, activation functions

need to be discussed in a different light. Ultimately throughout the learning process,

weights are updated such that neurons are forced to produce a representation that

will make it easier for the last layer to produce the right answers. As discussed in

Chapter 2, the last step before a neuron value is set is the application of an activation

function over the scaled and summed inputs. As such, when computing gradients

for weights, the derivative of the activation function will have an impact over the

size of the update step in backpropagation. Considering that, if the initial values

of the neurons are very high, and the region of the activation function is flat, then

likewise the update steps will be fairly small. To achieve higher update steps, the

neuron output will need to be in a region that produces high derivatives. Fig. 3.1

shows the gradients of a logistic and ReLU function. ReLU consistently produce the

same derivative for all values equal to or above zero, where as a logistic function will

produce its highest value at zero, and smoothly degrade as the input moves away
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from zero in both directions.

−4 −2 0 2 4
−2

−1

0

1

2

input

D
er

iv
at

iv
e

V
al

u
e

Derivatives of Activation Functions

Logistic
ReLU

Figure 3.1: Derivatives of a logistic and ReLU activation functions

Therefore, given a logistic based neural network, to saturate the neurons towards

an optimal, weights needs to be initialized such that the input to the activation

function is close to zero. A simple method to achieve that, would be to generate

numbers for weights associated with each neuron that have a mean of zero, and are

small, for the sake of this example assume (−0.1, 0.1). This will force all incoming

inputs to first be scaled down to really small signals, and the summation will force

to cancel out signals of the same strength that are positive and negative. Thus

ensuring that most neurons will produce values that are around zero, and ensuring

saturation through the use of higher gradients. The specific method that was used in

this work comes from the work of Xavier Glorot and Yoshua Bengio in (26), where

they received good results for using the initialization technique that depends on the

number of columns and rows in the weight matrix (corresponding to number of visible

and hidden neurons). A variation of that technique is outlined in Eq. (3.5). This
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equation is very popular and is also used in the Theano tutorial neural networks (27).

The biases are set to a value of zero. Setting the biases to anything but a zero would

cause the input to the activation function to move away from zero.

W ∼ U

(
−
√

6

v + h
,

√
6

v + h

)
(3.5)

Where U refers to a random uniform number generator which sets the first input as

a minimum possible value and the second input as a maximum. v and h refer to the

number of visible units and hidden units.

3.1.5 Overfitting, Generalization & Regularization

Like other learning algorithms, neural networks can produce functions that are

over complex for the data, what this produces is a great accuracy on the data that it

was trained on, but will have a low accuracy on unseen data. What the model ends

up learning in this case is the noise that is found in the training data, but that noise

maybe absent in unseen data, As such it is able to successfully learn the training data

and often performs very well but fails when the model is asked to perform on data

that wasn’t used to train it. This is called overfitting.

One way to overcome overfitting, is to track the performance of the network on

a validation set, once the performance starts to degrade, learning can be stopped

(28). The process of preventing overfitting is closely related to two other concepts,

generalization and regularization.

Generalization happens when the model performs just as well on previously

unseen data as it did on training data (12). When a model overfits, it often ends up

learning the noise and bias in the data. These may not be present in other data that
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may come from the same distribution as the training data. This causes the model to

perform much worse on previously unseen data. The goal of a learning algorithm is

to achieve high generalization.

Regularization on the other hand deals with model complexity; it is related to

overfitting, in that a model that overfits is often very complex in order to conform to

the contours of the training data. A popular way to apply regularization to neural

networks, is to add another term to the cost function. This is besides the error term

responsible for increasing classification accuracy. An example of regularization is

when weights are constrained to be small, this is often achieved by simply adding the

value of the weights to the cost function. Other more complex methods also exist.

A popular term can be seen in Eq. (3.6), the γ term in the cost function dictates

the extent of regularization. A higher γ will force the learning algorithm to favour

smaller weights over learning to classify properly.

fcost = ferror + γ|W |2 (3.6)

Because of the close relationship between these three concepts, affecting one of

these will have effects on the others. Neural networks that are large, and especially

deep networks (networks with more than one hidden layer) are prone to overfitting, as

such regularization methods become increasingly important as the size of the network

grows. A major method that helps in that regard is Dropout and more recently

DropConnect (29; 30). Both methods incorporate the dropping of values at random.

In Dropout hidden neuron values are dropped and in DropConnect individual weight

connections are dropped. More specifically, in forwardpropagation, neurons or weights

are selected at random, and their values are set to zero. In a sense, this cancels a

percent of the information flow in the network, thereby simplifying the model. The
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official explanation behind the success of Dropout is attributed to the averaging of

thinned networks (29). However it can also very easily be seen that these thinned

networks are sparse large networks. Consider the case where 50% of the inputs in a

hidden layer are dropped, then what is really happening is that 50% of the values are

set to zero, irrespective of the original values. This causes the hidden layer to have

at-least 50% of its values set to zero, which will cause the layer to be far more sparse

than what it started with. Sparsity will be explained in the next section.

3.1.6 Measuring Sparsity

Sparsity formally is the number of zeros in a vector. Consider the two vectors

x = [1, 1, 0, 1, 0, 1, 1] and y = [0, 0, 1, 0, 1, 0, 0], if sparsity was measured on both,

y would have a higher sparsity score, since it has more zeros. A simple method

of measuring sparsity would be to simply count the number of zeros. In a neural

network where the goal is to measure the sparsity in the hidden layer, a sequential

code that would need to check every index in the hidden layer and count the number of

zeros would be required. That however maybe impractical and slow for large neural

networks, hence a more simple and mathematical equation is needed. There are

various such equations as can be seen in (31), in Machine learning l1 and l2 referred

to as L1 and L2 going forward, are common. Both can be computed by the same

general equation, this equation can be seen in Eq. (3.7). L2 is often applied on the

weights of a neural network as a regularization method. Another equation that can

easily be added to the cost function would be log-penalty as seen in Eq. (3.8). When

applying L1 and log-penalty to vectors x and y, we get the values 5.0 and 2.0 for

L1 and 1.41 and 0.70 for log-penalty. Normally the negatives of these equations are

taken to signify higher sparsity for higher numbers (31), for our purpose since we are

minimizing a cost function, high numbers for lower sparsity is preferred, therefore
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the negatives of these equations will not be taken. This will lead gradient descent to

increase sparsity while minimizing cost.

lp =

(∑
j

cpj

)1/p

for p > 0 (3.7)

where vector c = {c1, c2, · · · , cn}. L2 is often applied to the weights of a neural

network as a regularization method.

fs = log

(
1 +

n∑
i=1

(y2i )

)
(3.8)

where yi is the output from the ith neuron in the hidden layer.
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Figure 3.2: Comparison of the L1 norm in blue versus the log-penalty in red proposed
for this work.
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3.1.7 Unsupervised Feature Learning & Autoencoders

In Chapter 2, to solve a non-linear problem that was inseparable, a hidden layer

was added (Section 2.1.4). In a sense, the hidden layer transformed the input to

become linearly separable. The idea of unsupervised pre-training is to build hidden

layers that have been automatically trained to pick up features using unsupervised

learning algorithms. An easy way to force neural networks to learn abstract features of

the input, is to rethink of the expectation. So far, classification neural networks that

focused on mapping input x to output or category y have been discussed. In those

cases the objective of the neural network is to simply classify correctly, irrespective

of how its done, this can potentially make the network prone to overfitting due the

presence of the possible bias and noise in the dataset. If the objective of the network

is to learn representation, then the objective will need to be better aligned to achieve

that. A simple method, that may direct us in the right direction, would be to simply

ask the network to reconstruct its input from a hidden representation.
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Figure 3.3: AutoEncoder transforms the input into a hidden representation, then
reconstructs the input back from the hidden representation.

To do this, the network first need to propagate its input forward to a hidden

state, this can be achieved by using Eq. (3.9). The output of this propagation, is

what we will refer to as hidden representations, this can be followed by propagating

back using Eq. (3.10). This output produced will be an array that will be in the

same dimensionality as the input. These two functions, lay the foundation for the

ability of a neural network to learn to reconstruct the original image from the hidden

representation. If the network can be forced not to simply copy the inputs to the

hidden layers, then we can guarantee a different representation in the hidden layer

by simply minimizing a reconstruction criterion where x is the input, and x̂ is the

reconstruction from the hidden representation. MSE can be used as the cost function

for lowering the difference between the original and the reconstruction.

h(x) = φ(xW + b) (3.9)
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x̂ = φ(h(x)U + c) (3.10)

This particular neural network topology is referred to as an autoencoder. Au-

toencoders have successfully been used to learn hidden representations of its inputs,

these were also then successfully placed in a regular classification neural network

(32). The process of first learning hidden representations using unsupervised meth-

ods such as an AutoEncoder is called unsupervised pre-training. Which is followed

by classification using a regular feedforward network, this network retains the hidden

representations from pre-training, this stage is referred to as the fine-tuning stage.

When multiple layers of a neural network are pretrained in this manner, it is referred

to as layer-wise pre-training. Pseudo-code for functions that will mimic activations

of an autoencoder are as follows:

1 import numpy

2 #numpy imported to perform a dot product

3 de f Encode (x , W, b) :

4 re turn a c t i v a t i o n (numpy . dot (x ,W) + b)

5 de f Decode (x , U, c ) :

6 re turn a c t i v a t i o n (numpy . dot (x ,U) + c )

3.1.8 Denoising AutoEncoder

Denoising AutoEncoders unlike regular AutoEncoders learn abstract features

much like those found in RBM models (33). This is achieved by corrupting the input

before it is fed into the model, thus the model is forced to reconstruct the original from

a corrupted input. Fig. 3.4 showcases how the corrupted dotted inputs are expected

to be rebuilt as the original. In denoising autoencoders the input or x is corrupted
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before being passed to Eq. (3.9), this can be achieved by simply multiplying x by

a randomly generated binary vector of the same size as x, as shown in Eq. (3.11).

The level of corruption can be controlled by adjusting the probability that each value

at index i in the vector m is set to 1. For instance a corruption level of 30% will

produce a 1 for index i in the vector m with probability 0.7. If this is applied to an

image; which is first converted from matrix form to row-major vector form; 30% of

the pixels in that image will be corrupted, receiving a 0 in place of the original value.

Abstracting away the mathematical details, this procedure will produce a network

that resembles Fig. 3.4.

x̄ = x×m (3.11)
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Figure 3.4: Denoising AutoEncoder gets a corrupted input and is expected to recon-
struct the original. (Dotted neurons automatically are set to a value of 1).
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Layer-wise pre-training

Recent successes in the deep learning field have been attributed to early unsuper-

vised layerwise pre-raining methods which helped deep architectures learn layerwise

representations (34; 35). This was largely attributed to the ability of these unsu-

pervised networks to learn abstract features, one of these unsupervised methods, a

variation of autoencoders, called denoising autoencoders have been found to learn

interesting features of the input (33). Given Eq. (3.9), it can easily be seen that the

encoding process is highly dependant on the weights W and the biases b. As such,

once an autoencoder has been successfully trained to reconstruct the input, it can

be assumed that the encoding parameters of the network (W,b) can successfully be

used as building blocks for the first layer of a neural network, and this process will

bring along the information encoded in the parameters (W,b). Interestingly enough,

the hidden representation from this network, can be used as input to another autoen-

coder, this autoencoder will learn features of features. This process can be repeated as

many times as the number of desired hidden layers for a feedforward neural network.

The process of throwing away decoding parameters (U, c), and instead using hidden

representation as input to subsequent layers are all a part of layerwise pre-training.

This process has been widely successful, and has not been limited to autoencoders

(36; 32; 33). Once the desired number of hidden layers are trained layer-wise, the

final network can be topped off with a softmax layer and fine-tuned using regular

backpropagation. The main difference here, is that the final network parameters are

initialized using autoencoders.
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3.2 The Model

Sparsity has been seen as an advantageous characteristic in Machine Learning,

this can be seen through various other works that forced networks to learn sparse

representations. A popular method where this can be found is in Sparse Coding

models (37), where the model is forced to prefer sparse representation by adding a

sparsity term to the loss function, these methods can also be applied to AutoEncoders.

Aside from adding a direct sparsity term to the cost function, using certain activation

functions have also been found to help with training neural networks. ReLU, or

rectified linear units that take the max between zero and the input x, have been

found to decrease training time and sometimes even increase classification accuracy

(38).

Other major methods that are widely used today can also be seen to increase

sparsity, namely Dropout and DropConnect (29; 30). Both of these methods have

overtaken the layer-wise pretrainig methodologies, the main reason is the ability for

the network to perform just as well, without the need to waste time pre-training.

However as explained in previous sections in this chapter, unsupervised feature learn-

ing can be integral to creating representations that are robust to noise, as such models

that are far superior in their ability to classify can be created. As such, the main work

done in this research focuses on enhancing unsupervised pre-training methodology in

denoising autoencoders. The exact areas are as follows:

(1) New Activation Function

(2) Addition of log-penalty sparsity term to the cost function

(3) Swapping of activation function back to logistic function once the DAE is

trained.
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The final complete model will be a neural network with sigmoidal activation neu-

rons throughout. Training the model will follow the layerwise pre-training paradigm,

which falls into two parts. The first is the unsupervised stage also known as unsu-

pervised pre-training. The second stage is the supervised training using the weights

learned in the unsupervised stage. Conventionally many types of learning algorithms

have been used for the unsupervised pretrainig stage, in this model a modified De-

noising AutoEncoder will be used.

The focus of this work will also be on the unsupervised pre-training stage. The

modifications applied to DAE can also be divided into two areas, first of which is in

regards to the activation function used in the hidden layer. The second modification,

is in regards to the cost function. To reduce the total training time and still maintain

the advantages provided by unsupervised pre-training, a model that can saturate the

neurons quickly will be preferred. One way to achieve this is through using a high

learning rate. However a more natural method is to use an activation function that

has higher gradients around zero. The reasoning behind this is to simply increase the

gradient size, hence the change in weights with each update. In essence enabling the

fast saturation of neurons.

The adjustment to the cost function is in regards to restricting the information

flow between the layers. In other words, restricting the amount of potential copying

of information. Consider images as input, since the objective of an AutoEncoder is to

reconstruct the original image from the hidden layer representation, it will be fairly

easy for the model to simply copy the input directly into the hidden layer (provided

there are sufficient neurons in the hidden layer), however this would give us no better

representation to apply a classifier unto. As such, a neural network that can force the

model to focus on the more salient, structure related information will inevitably give

us a much better representation. One such way to reduce the flow of information is to
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force a large percentage of the neurons to be close to zero, or in other words force the

model to prefer sparse representations in the hidden layer. Doing this mathematically

is to use a sparsity term along with the reconstruction term in the cost function. The

main work is in regards to the swapping of functions before fine-tuning begins. This

particular methodology we refer to as Swapped pre-training Activation Functions

(SPAF), networks trained in this method are referred to as SPAF-networks.

The rest of this chapter will outline the details of modifications in the Unsuper-

vised layer, an explanation of the transfer of learned knowledge from the pre-training

phase to the supervised fine-tuning phase and finally the details of the fine-tuning

phase.

3.2.1 New Activation Function

To assure that all of the neurons are well saturated in the pre-training phase,

an activation function with high gradients near zero is preferred. The function used

in this work can be seen in Eq. (3.12). A comparison between Sigmoid and this

new activation can be seen in Fig. 3.5, as is evident from that graph, the proposed

function is much steeper around zero, and also reaches its threshold at much lower

values of its input. A comparison of the new activation function and ReLU can be

seen in Fig. 3.6, the ReLU does offer a similar gradient to the new activation function,

but it has no gradients in the negative spectrum for its input.

As will be seen in Chapter 4, ReLU causes the network to learn mostly excitatory

features, where as the new activation function allows for inhibitory neurons just like

a logistic function. The exact gradient differences between a logistic function and the

newly proposed function can be seen in Fig. 3.7. The higher gradients enable the
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network to saturate quickly, the swapping of activation function before fine-tuning,

which will be explained in SPAF-network section, enables us to go back to regular

gradients using a logistic function for smooth tuning of the weights for classification.

Activation(x) =
x√

1 + x2
+ 0.5 (3.12)
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Figure 3.5: Comparison of the modified Elliot function in red versus the sigmoidal
activation function in blue

3.2.2 Sparse favouring Loss Function

As outlined in the previous section, sparsity in the hidden layer representations

will be preferred. This will divide the loss function into two distinct parts. First, the

model needs to reduce the reconstruction error. Second, the model needs to prefer

sparse representations in the hidden layer over non-sparse representations. The first
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Figure 3.6: Comparison of the proposed activation function in red versus the ReLU
activation function in blue

part is easily achieved by using a mean-squared error function. Minimizing MSE

will lead to minimizing the reconstruction error. The second part can be achieved

by using one of the sparsity functions mentioned in the previous section, Measuring

Sparsity.

Previously L1 and L2 regularization techniques have utilized 11 and l2 norms

to force the weights of neural networks to remain sparse. In this work, the focus

is on the representation of inputs, hence sparsity will be forced on the hidden layer

neurons. This model will use the log-pentaly formula to force regularization, the main

reason for this selection is that it is easily computable, and the values also do not

explode for possibly very large inputs as is the case with L1. If the values become

very large, the loss function will be competing against itself in regards to favouring

sparsity versus reconstruction error. This is also the reason why L1 is often used with

a small weight penalty, to force the model to prefer reconstruction over sparsity. The
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Figure 3.7: Derivatives of a logistic and the newly proposed activation function

final loss function with the two pieces can be seen in Eq. (3.13).

fcost =
N∑
i=0

(f(x)i − yi)2 + log(
M∑
i=0

(1 + |hi|)2) (3.13)

Where the h holds the hidden representation in an autoencoder, N is the di-

mensionality of y and M is the dimensionality of hidden layer h.

3.3 Conclusion

Conventionally the weights of the supervised network in the fine-tuning stage are

constructed using all of the hidden layer representations generated in the unsupervised

pre-training stage. The parameters that are borrowed are the weights, the biases

and the activations of each hidden layer. In the SPAF-model, only the weights and
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biases are kept from the unsupervised pre-training stage. The activations used in

the pre-trainig stage are all replaced with logistic activation functions. The network

will still resemble the topology created in the pre-training stage, minus the decoding

weights on the top-most layer. For supervised training to be able to work, a softmax

layer with as many units as the number of classes is added to the topmost hidden

layer. This is the final step for the supervised fine-tuning stage, before conventional

backpropagation is applied to finetune the weights for a classification task.

The reasoning behind why this specific technique was chosen is as follows: Since

most of the feature learning occurs in the pre-training stage, the process is accelerated

by introducing saturating neurons. Once the neurons are saturated, the logistic is

used to only finetune the weights in a smooth manner for classification. The goal

is to try and find the closest minimas that reduce a classification error given the

pretrained parameters. Since the pretrained parameters have learned abstract and

hopefully useful features, then doing so will be advantageous towards achieving a

better classification result.

Finally, the newly proposed model offers high gradients with no algorithmic or

topological differences in comparison to the conventional unsupervised pre-training

technique. The higher gradients come in the form of a different activation function,

which in regards to its complexity, is still constant. As such one output from both

models with the same number of neurons in all of its layers will be: O(Mn), where

M is the matrix multiplication part, and n is the number of matrix multiplications.
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Chapter 4

Implementation & Experiments

4.1 Implementation

The overall problem can be divided into two distinct parts, the unsupervised

pre-training using autuencoders, and the final fine-tuning using a regular feedforward

neural network. The second part borrows parameters from the first. An intuitive

way of programming this problem, is to simply create two modules, the first taking

care of unsupervised training and the final stage copying weights and fine-tuning.

However, it is far more efficient to create one network, that has the ability to pretrain

its individual hidden layers, before finally fine-tuning. Fig. 4.1 outlines the final solu-

tion. The program was coded in Python to take advantage of Theano, a library that

enables automatic differentiation (24). This simplifies the backpropagation algorithm

in regards to computing gradients with respect to the the parameters in the network.

More importantly modules for an autoencoder and feed-forward neural networks are

available on the Theano website as tutorials (27), these were taken as starting points

and extensively modified to create the final program. Another important part to
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mention is that the denoising autoencoder designed, used the transpose of the weight

matrix W for decoding, this produces better features and also simplifies the design of

the autoencoder.

Figure 4.1: A neural network that follows pre-training paradigm trains each hidden
layer with the input of the preceeding layer. Encoding weights are kept, and the
decoding weights are removed once pre-training is complete.

The main computation falls under two files, the first of which deals with a

feedforward network with a softmax output layer (fine-tuning file), the second deals

with unsupervised pre-training using autoencoders. The final algorithms for pre-

training and fine-tuning can be seen in Algorithm 3 and 4 respectively.
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Algorithm 3: pre-training Algorithm

Data: TrainingData = [(x, y)..., (x, y)] where x is an input vector and y is its
corresponding 1-hot category vector.

begin
γ ←− pre− traininglearningrate
for hiddenlayer ∈ HiddenLayers do

W ←− hiddenlayer.W
b←− hiddenlayer.b
c←− hiddenlayer.c
Initialize W
b←− 0
c←− 0
for pre− trainingepochs = 0; pre− trainingepochs <
10; pre− trainingepochs++ do

for minibatch ∈ TrainingData do
∇W,∇b,∇c,←− 0
for sample ∈ minibatch do

x←− sample[0]
y ←− sample[1]
h←− Encode(W, b, x)
x̂←− Decode(W T , c, h)
cost←− ferror(x̂, x) + logPenalty(h)
∇W,∇b,∇c,←− (∇W,∇b,∇c) + gradients(cost, w.r.t =
(W, b, c))

W ←− W + γ∇W
b←− b+ γ∇b
c←− c+ γ∇b
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Algorithm 4: Fine-tuning Algorithm

Data: TrainingData = [(x, y)..., (x, y)]
Data: V alidationData = [(x, y)..., (x, y)]
begin

γ ←− learningrate
patience←− 10 ∗ trainingbatches
patienceincrease←− 2
improvementthreshold←− 0.995
donetraining ←− false
epoch←− 0
iter ←− 0
while epoch++ < 300 and (!donetraining) do

for minibatch ∈ TrainingData do
iter + +
∇θ ←− 0
for sample ∈ minibatch do

x←− sample[0]
y ←− sample[1]
ŷ ←− fnet(x; θ)
cost←− fcost(ŷ, y)
∇θ ←− ∇θ + gradients(cost, w.r.t = θ)

θ ←− θ + γ∇θ

validationscore = TestModel(fnet, V alidationData)
if validationscore > bestvalidationscore then

bestvalidationscore←− validationscore
if validationscore < bestvalidationscore ∗ improvementthreshold then

patience←− max(patience, iter ∗ patienceincrease)

if patience < iter then
donetraining ←− True
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4.2 Datasets & Experiments

To test the algorithms, four datasets will be used, namely MNIST and Img,

Hnd and the Fnt datasets from the bigger Chars74k dataset (39). A total of six

models divided into two groups will be trained and compared for three of the four

datasets. The first group we will refer to as the SPAF-network, and the second as

Sigmoidal group. The Sigmoidal group offers sigmoidal activation functions with

no function swapping during fine-tuning. The SPAF-network employs the newly

proposed activation function, and will also incorprate function swapping to sigmoidal

activations during the fine-tuning stage. Both of these groups will offer models with

these variations:

(1) No sparsity term in the cost function.

(2) L1 sparsity term.

(3) Newly propsed log-penalty sparsity term.

For each of the six models, depending on the dataset 30 networks were trained,

tested, averaged and 95% confidence intervals were calculated and graphed. For the

last dataset Fnt, two models will be compared across two types of model and data

variations. First being, varying the number of neurons in each layer and the second

being the percent of dataset used for training. The first experiment will be used to

see the effect of increasing the number of available neurons on the final performance

for each model. The second experiment to measure the affect of increasing data

samples over learning. It is also worth mentioning that all of the statistics gathered

in the experiment were done so programmatically using the scipy and numpy libraries

(40). Every network was allowed to run for a minimum of ten pre-training epochs
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and a maximum of 300 finetuning epochs with early stopping if the network stops

to improve after training for a minimum of 10 ∗ trainingbatches iterations over the

data, where trainingbatches is measured by how many mini-batches the full dataset

gets divided into. Along with a minimum wait, there is also a patience variable, that

increases as we get better results, this is to better follow the performance curve as it

approaches its best performance threshold. The Fnt and Img dataset was allowed to

run 40 pre-training epochs and 100 for Hnd dataset.

4.2.1 MNIST

The MNIST dataset is a fairly popular dataset for neural networks for various

reasons. The main reason is that the algorithm is preprocessed and formatted, and

the data is also real world handwritten digits (41). They were originally collected

from a larger database of handwritten digits, but hand crafted to be a much more

reasonable dataset. The digits were collected from Census Bureau employees and

high school students. The training set and testing set are designed such that, the

writers of the training set do not have any samples in the testing set. Thus the two

datasets are written by completely different people (41). Each individual sample is

a 28 ∗ 28 size vector, representing a square image in row-major format. There are a

total of 60,000 samples in the training dataset, and 10,000 samples in the testing set.

A two hidden layered network with 200 neurons each will be used to test this dataset,

we will refer to this network as a 200-200 network. The network will have 28∗28 input

neurons (corresponding to the number of pixels in each image), and a final softmax

classification layer with ten neurons (corresponding to the total number of digits in

the dataset, zero to nine). A subset of 50,000 from the training dataset will be used

to train the network, another 10,000 will be kept for validation purposes. The final

test set will be used to measure the final performance of the network. A learning
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rate of 0.1 was used for both the supervised and unsupervised training stages. The

L1-models had a γ value of 0.01, while the log-penalty models had a value of 1. This

is because L1-models would produce sparsity terms that were too large for proper

learning to be effective, hence the small γ value. A total of 30 networks were trained

to get proper statistics.

Figure 4.2: Sample images from the MNIST dataset, as can be seen, there is a wide
variation in writing styles
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Figure 4.3: Comparison of Sigmoidal activation function versus the SPAF-network,
along with the affects of L1 and the newly proposed log-penalty term.

The error percent of the various models and their respective confidence intervals

can be seen in Fig. 4.3. The L1-model was worse off in both the standard Sigmoidal-
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model and the SPAF-network. In regards to the success of the new model, it produced

better average results when compared with its corresponding conventional Sigmoidal-

models. The log-penalty on the other hand produced about the same performance as

the regular models. When it comes to sparsity, the results were drastically different.

The L1-models produced the most sparse representations in the first hidden layer

where they achieved 0.152 ± 0.003, 0.286 ± 0.008 for the sigmoidal and the SPAF-

network respectively, this can be seen in Fig. 4.4. The newly proposed log-penalty

based models reduced sparsity in all layers and models except for the second layer

in the Sigmoidal-model, as can be seen in Fig. 4.5. We can conclude that the L1

induces sparsity at the expense of accuracy, while the log-penalty was ineffective at

both inducing sparsity and offering better accuracy performance.
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Figure 4.4: Comparison of the average activation in the first layer of Sigmoidal-model
versus the SPAF-network, along with the affects of L1 and the newly proposed log-
penalty term.

4.2.2 Chars74k

Similar to MNIST the Chars74k dataset has images of the arabic numerals for

classification. It however also has the english alphabet for classification tasks, this
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Figure 4.5: Comparison of the average activation in the second layer of Sigmoidal-
model versus SPAF, along with the affects of L1 and the newly propsed log-penalty
term.

makes this dataset much more difficult than the MNIST dataset, by bringing the

total possible classes to 62 versus the ten total categories in MNIST. Chars74k comes

in three folders, the first of which is called Fnt and has images of numbers and the

alphabet generated from computer fonts. The second folder called Bmp, has images

that were generated from natural images of various signs which were taken using

a variety of cameras. The last folder is called Hnd and has images of handwritten

letters generated through a tablet device (39). The dimensionality of each image

varies in Chars74k, as such they were scaled and feature scaled to [0, 1] to reduce

dimensionality and also make them better suited for neural network classification.

The exact process was divided into two steps, the first step involved processing each

image in the following manner:

(1) Reading image into program.

(2) Convert image to greyscale

(3) Color invert each image

(4) Save image to disk
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All this was done through a python library called Pillow (42).

Figure 4.6: The individual dataset in Chars74k were formatted in a tree folder struc-
ture, with the top level folder indicating one of the 3 folders, and each subfolder
indicating a category.

The second step involved getting the images ready in standard (X, Y ) dataset

format that can be fed to a neural network. The original dataset was stored on disk

in a tree folder structure with images of the same cateogry or class saved in the same

folder as seen in Fig. 4.6. These folders were traversed and processed in the following

manner:

(1) In each folder open every image and let folder name be expected output.

(2) Select each image and resize to 28 ∗ 28 pixels.

(3) Store pixel values in array x and folder name to varibale y.

(4) Normalize values in x using Eq. (4.1)
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Once this process was completed for all possible images, all values of x were

appended to X and all y to Y. Scikit-learn (43) was then used to generate unique

numbers for each category name, these numbers were then converted to one-hot

vectors at run time. Each subfolder was converted to its own dataset using the

aforementioned method. Models were trained and built on each of these subfolders

and their associated results are mentioned in their own respective sections. Unlike

MNIST, chars74k does not have a designated test set, as such the repeated random

sub-sampling cross-validation was used.

xscaled =
x−Xmin

Xmax −Xmin

(4.1)

Bmp Dataset

The available samples per class varies widely in this dataset, starting at 33

samples per class all the way to 554 samples. For this dataset, a learning rate of 0.2

for both pre-training and fine-tuning stages was used, this was selected based on test

network training starting with a learning rate of 0.8, 0.2 showed promising descend

in cost. The gamma values for the sparse models were kept the same as the MNIST

models. This dataset was randomly split 75/25 for training and test sets a total of

10 times and their average and standard deviations were calculated. The results on

training the models on the BMP dataset can be seen in Fig. 4.7. The associated

average activation values in each hidden layer can be seen in Fig. Similar to the

results in MNIST, the L1-model offered higher sparsity at the expense of accuracy

performance, and the log-penalty again decreased sparsity in both models except the

second layer in the standard Sigmoidal-model as can be seen in Fig. 4.8 and Fig. 4.9.
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Figure 4.7: Comparison of Sigmoidal-model versus SPAF function, along with the
affects of L1 and the newly propsed log-penalty term on the Img Dataset.
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Figure 4.8: Comparison of the average activation in the first layer of Sigmoidal-model
versus SPAF, along with the affects of L1 and the newly propsed log-penalty term on
the Img Dataset

Hnd Dataset

This dataset only has a total of 3,410 samples, it was collected through tablet

pc from a total of 55 individuals. Similar to the original work in (39), approximately

15 samples from each class were randomly placed in a testing set, the remaining were

placed in a training set. A total of 30 networks again were trained in this manner
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Figure 4.9: Comparison of the average activation in the second layer of Sigmoidal-
model versus SPAF, along with the affects of L1 and the newly proposed log-penalty
term on the Img dataset.

to produce the results shown in Fig. 4.10. The results for Hnd dataset were not

as pronounced as the previous two datsets discussed, both in performance and also

sparsity induction for both L1 and the log-penalty. This may be related to the lack of

samples for this particular dataset despite that, the SPAF-network performed better

on average than the standard Sigmoidal-model. What is worth mentioning is that

the log-penalty model continued to increase sparsity in the second hidden layer of the

Sigmoidal-model. The sparsity results in the first and second layers can be seen in

Fig. 4.11 and Fig. 4.12 respectively.

Fnt Dataset

This dataset was by far the biggest out of all. A total of 62, 992 samples were

collected from 254 different fonts in four styles (39). Due to the size of this dataset

and the higher classification complexity (due to the increase in available classes over

MNIST), two sets of experiments were conducted to test two models. First being
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Figure 4.10: Comparison of Sigmoidal activation function versus the newly proposed
swapped activation function, along with the affects of L1 and the newly propsed
log-penalty term on the Hnd Dataset.
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Figure 4.11: Comparison of the average activation in the first layer of Sigmoidal-
model versus SPAF, along with the affects of L1 and the newly propsed log-penalty
term on the Hnd Dataset

the conventional sigmodial model, where the normal logistic activation functions are

used in both pre-training and fine-tuning stages. The second model is the proposed

SPAF-network model. These models in the first experiment are trained for their

classification performance over the number of neurons used in each hidden layer.

These results can be seen in Fig. 4.13. In the second experiment, the models were

tested for their performance given a percent of the overall dataset. All the models

in this experiment utilized a network with two hidden layers of 200 neurons each.
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Figure 4.12: Comparison of the average activation in the second layer of Sigmoidal-
model versus SPAF, along with the affects of L1 and the newly propsed log-penalty
term on the Hnd dataset.
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Figure 4.13: Comparing the regular Sigmoidal-model over the SPAF-network for their
performance over different number of neurons in the hidden layers

The results of the second experiment can be seen in Fig. 4.14. Both models utilized

the random sampling of approximately 15 samples from the dataset for the testing

set. The first experiment used the same number of samples in the training set as the

testing set (15).
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Figure 4.14: Comparing the regular Sigmoidal-model over the SPAF-network for their
performance given a percent of the total dataset for training.

The first experiment that studies the affect of the number of neurons in the

hidden layers over performance showed promising results. The experiment results

can be seen in Fig. 4.13. The proposed model starts at about the same result as the

Sigmoidal-model at 50 neurons, but quickly outperforms it until about 700 neurons,

where both models start to plateau to about the same performance average. The

second experiment seen in 4.14 shows that there is no real difference between the

two models when we increase the number of training samples. This can be related

to the fact that only 15 samples per class were used for testing, as the two models

approach the maximum possible performance, the difference in their learning ability

diminishes.
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4.2.3 Learned Features

In this section, a method for how to reconstruct images from weights will be

discussed, and using this method images of features learned across two SPAF-networks

and the regular logistic DAE pretrained based network. These three models will be

trained on three of the four datasets from the previous experiments, namely MNIST,

Fnt and Hnd. For the sake of simplicity, the same network topology of 200-200 and

learning rate of 0.1 will be used. In regards to pre-training epochs, ten epochs were

used for MNIST and 100 for Fnt and MNIST. The MNIST splits were kept the same,

so 50, 000 samples were used for training, where as for Fnt and Hnd 50% of their

respective datasets were used.

4.2.4 Images from Weights

Recall that in Chapter 2, the XOR function was constructed from the OR and

AND networks. The weights of the XOR network going from the hidden layer to

the classification layer were described in the manner of ‘presence’ of and ‘absence’

of features; where features were the OR and AND functions. In regards to images,

weights can be described in the following fashion. Weights that are positive, coming

from a pixel can be thought of, as weights that ‘like’ the pixel. Given that a neuron

will have connections to every single pixel in the image, the weights can be thought

of as the ‘like’ and ‘dislike’ variables of a neuron. Given a single layer, the process

of converting the ‘like’ and ‘dislike’ variable intensities to pixel intensities for every

neuron requires the conversion of every column in the weight matrix W to a row-

major vector that follows the same technique as the original image. Given this vector,

a matrix of pixel intensities can be created by first feature scaling the vector to values

between (0, 1) using Eq. (4.1). This matrix can then be converted to an image using
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a generic library that can take pixel intensities in a matrix form. One such library

that was used in this study is Pillow (42). In this manner, values that are high, will

mean particular pixel areas that the neuron likes in an image, and pixels that are

dark are ones that the neuron dislikes.

Another way to understand this, is to consider the range of possible values that

each scaled vector can take. The lower values will get closer to zero, and the higher

values will get closer to 1. Absolute 0 meaning complete inhibition of that particular

pixel, and 1 meaning excitation of that pixel. A collection of these can indicate the

excitation of the neuron for the presence of a feature that is more complex than

a pixel. Fig. 4.15 outlines this process, where the like and dislike of pixel values

is referred to as pixel strength. This method of generating images from weights is

widely used in the industry (33; 34; 35; 44).

Figure 4.15: Converting Weights of neurons in the first layer to feature images.

The process can repeated for as many layers as needed. The calculation become
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more complicated, however the intuition remains the same. In this experiment, the

first layer features were generated by code provided in the Theano tutorials (27). An

algorithm was developed for generating matrices for layers above layer-1, and can be

seen in the pseudocode below.

1 #where vh i s the v i s i b l e−hidden matrix

2 #can a l s o be a r e c u r s i v e c a l l to drawWeights

3 #thereby r ep r e s en t i ng a preced ing hidden−hidden matrix

4 #and hh i s the next l e v e l hidden−hidden matrix .

5 de f drawWeights (vh , hh , l a y e r ) :

6 new = vh . copy ( )

7 new . f i l l ( 0 )

8 f o r master , k in enumerate (hh .T) :

9 #t a l l y up a l l v i s i b l e un i t connect i ons f o r t h i s neuron .

10 f o r idx , va lue in enumerate ( k ) :

11 new [ master , : ] = new [ master , : ] + vh [ idx , : ] ∗ value

12 image = PIL . Image . fromarray ( t i l e r a s t e r im a g e s (

13 X=numpy . asar ray (new) ,

14 img shape=(28 , 28) , t i l e s h a p e =(20 , 10) , t i l e s p a c i n g =(1 , 1) ) )

15 image . save (name+’ layer− ’+s t r ( l a y e r )+’ . png ’ )

16 re turn new

In essence what that algorithm does, is traverse the connections from the top,

all the way down to the original pixels. This is done in such a fashion, that a final

matrix that has dimensions of (v, h) is attained, where v and h refers to the number of

neurons in the visible and hidden layer in question. This final matrix can then easily

be used to save an image with patterns which translate back to the inhibition and

excitation of the various neurons. To better understand the calculations being made

in a neural network, consider that the weights of every neuron in the first layer will

generate as many images as there are neurons in that layer. These images represent

the features that this first layer has learned. As such the layers above will be learning
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features of the features in the first layer. Therefore when wanting to get features

for every neuron in subsequent layers, the associated weights of the neurons in the

respective layer will be used as scaling units for the images of individual neurons of

the preceding layer, these images once scaled can be summed, to produce a single

image per neuron in layers above the first.

Feature Learning Results

When trained on MNIST and the given network configuration, the features

learned in the first hidden layer of the newly proposed based SPAF network produces

more inhibitory and excitatory neurons than those learned by the regular Sigmoidal-

network. The ReLU based SPAF network surprisngly only offers excitatory and

neutral neurons, this is explained by the fact that the ReLU activation only offers

gradients on the positive spectrum of the inputs. Inhibitory neurons are defined as

neurons, that have predominantly lower values (indicated by the black in the images)

and excitatory neurons are defined by the predominantly large values (indicated by

the white in the images).

The second layer was far more interesting, as almost all the neurons produced

predominantly inhibitory neurons. The sigmoidal produced the most excitatory neu-

rons, however as can be seen in Fig. 4.16, the patterns still mimic the features learned

in layer-1, as they are mostly basic detectors for a cluster of neighbourly pixels. The

ReLU based SPAF-model fails at producing any discernible features for half of its

neurons, and the rest of the neurons that do learn features are like those learned in

the regular sigmoidal network; predominantly simple. The first block in question in

Fig. 4.17, is the representations of the newly proposed function based SPAF-model.

As can be seen almost all of the neurons with the exception of two, sixth from top
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right, and second from bottom left) produce complex features that mimic line and

curve detection.

The Features learned for the Fnt dataset as seen in Fig. 4.18, follow simi-

lar patterns to those from the MNIST dataset. The ReLU based SPAF network

again produces predominantly excitatory neurons with a minority being neutral. The

newly proposed activation based SPAF network again produced more excitatory and

inhibitory neurons than the regular Sigmoidal-model. The second layer as seen in Fig.

4.19, showed interesting results, as some of the neurons can be seen to have copied

individual images. This is not necessarily great for classification, as these particular

neurons have over-fit to one particular sample. The other two models continued to

produce good features in its second layer.

The Hnd based model learned very few interesting features in all of the models.

The fewest can be seen in the regular Sigmoidal-model. The trend of ReLU producing

excitatory neurons in layer-1 continued here as well. Overall in the second layer, while

the newly proposed activation function based SPAF and regular sigmoidal-network

produced interesting features, there was however not much complexity when compared

to previous datasets in the type of features learned. This can be attributed to the

limited number of samples used for each individual class, infact by using 50% of the

total 3, 410 samples available in the dataset, each individual class had roughly 27

samples in the training dataset. The respective features from layer-1 and layer-2 can

be seen in Fig. 4.20 and Fig. 4.21.

Lastly, what is important to take away from these results is that each network

learned unique features, especially in layer-2 of the networks. To see the features of

all five trained networks, see Appendix B.

76



Figure 4.16: Features of the first layer of SPAF-networks with the proposed activation
function and ReLU along with a regularly DAE pretrained network with logistic
function, in that respective order. Trained on the MNIST dataset.

4.3 Conclusion

The SPAF-model showed promising results throughout, with 16.4%, 12.6% and

13.3% improvement over the Sigmoidal-model in the no-penalty, L1 penalty and log-

penalty models respectively. Improvements were also seen in the BMP dataset, how-

ever they were less pronounced with 5.2%, 5.3% and 1.4% for the no-penalty, L1

penalty and log-penalty comparisons in favour of the SPAF-model. The Hnd dataset

was more consistent with 4.9%, 5.4% and 5.1% improvements over the Sigmoidal-

model.

In regards to sparsity, the log-penalty due to it’s small values was not able

to induce very high sparse representations in the first hidden layer. However, it

consistently produced better results in the second layer of the Sigmoidal-model over
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Figure 4.17: Features of the second layer of SPAF-networks with the proposed activa-
tion function and ReLU along with a regularly DAE pretrained network with logistic
function, all in that respective order. Trained on the MNIST dataset.

the SPAF-model, this can be seen in Fig. 4.12, 4.9 and 4.5. This maybe related

to the type of features that are learned when applying log-penalty on a Sigmoidal-

model versus a SPAF-model. Further investigation with analysis of features of each

respective model might shed more light into this phenomenon.

In regards to features learned, the SPAF-model produced a higher number of

fuller features; both excitatory and inhibitory. This is especially pronounced in the

second layer of the SPAF-model trained on the MNIST dataset seen in Fig. 4.17,

where the majority of the features end up with strokes, line and edge detectors that

can be thought of as building blocks on top of the simple circles learned in the previous

layer.

Lastly, the most important idea is in regards to the variation in the type of
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Figure 4.18: Features of the first layer of SPAF-networks with the proposed activation
function and ReLU along with a regularly DAE pretrained network with logistic
function, in that respective order. Trained on the Fnt dataset.

features learned when using different activation functions. Our results have further

strengthened the idea that deep neural networks are filled with many local minima,

some of which perform better than others, this is discussed in the work of Erhan et

al. in (45). The ReLU features learned are specially indicative of this phenomenon,

where the weights are clearly in a very different region than all the others. This work

can further be extended by varying the activation functions further and measuring

the performance.
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Figure 4.19: Features of the second layer of SPAF-networks with the proposed activa-
tion function and ReLU along with a regularly DAE pretrained network with logistic
function, all in that respective order. Trained on the Fnt dataset.
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Figure 4.20: Features of the first layer of SPAF-networks with the proposed activation
function and ReLU along with a regularly DAE pretrained network with logistic
function, in that respective order. Trained on the Hnd dataset.
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Figure 4.21: Features of the second layer of SPAF-networks with the proposed activa-
tion function and ReLU along with a regularly DAE pretrained network with logistic
function, in that respective order. Trained on the Hnd dataset.
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Chapter 5

Conclusion

5.1 Conclusion

In this work various ideas were explored to enhance the pre-training stage in

supervised networks whose weights are initialized using unsupervised autoencoders.

More specifically, a new activation function was introduced to the hidden layer of

denoising autoencoders. This activation function was selected specifically to offer

higher gradients and also offer negative output values much like a tanh function, but

with a focus on positive values. The goal was to accelerate neuron saturation in the

hidden layers, and results have shown that this new method does translate to better

results. More specifically, the new activation function showed promising results, with

better average error rates over 30, or ten networks for MNIST and Chars74k datsets.

The second idea explored was the introduction of the log based sparsity penalty

on the hidden layer representation in the cost function. This model was compared

and contrasted with an L1 penalty on the hidden representations and was found to
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show that the log penalty offered no improvements in the first layer of the models,

but showed modest improvements in the second layer of Sigmoidal models. The

reasoning behind why improvements were only seen in the second layer of Sigmoidal

models and not the newly proposed models, can be linked to the kind of features that

are learned in layer-1 of the SPAF-model, that make layer-2 much more resilient to

sparsity changes. The L1 penalty showed improvements over every layer, except for

the second layer in the model with the new activation function trained on MNIST as

well as the Hnd Dataset. The log penalty did not affect the classification performance

in any significant way, the L1 on the other hand, increased classification error in more

than one dataset understandably so, as the reduction in average activation in the

hidden layers was significant.

The final and unique method for this work was the introduction of the SPAF-

network model, which incorporated the swapping of activation functions from the

unsupervised to supervised training stages. This is the first research work that has

explored this concept and the results are promising. While the model did perform

better on average on several of the datasets, what is more important is that this

model is capable of learning. The swapping of activation function can open a new

research area into combining models with unique feature detection abilities. These

unique features in the SPAF-model can be combined and finetuned using the standard

Sigmoidal or recent ReLU activations for fine-tuning.

5.2 Limitations & Future Work

In regards to limitations, a few of them revolve around the various parameters

used in the models, namely the learning rate as well as the γ parameter for sparsity

in the cost function. It would be interesting to see if further reduction of γ, in the
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L1-model would lead to a more comparable performance in error rates yet still offer

good sparsity improvements. Likewise a comparison over all the models with multiple

reasonable learning rates can offer more insight over the differences in the learning

abilities of the various models. Another major area, is the max number of allowed

epochs for training in both the unsupervised and supervised stages. Varying the

number of epochs and studying the effects of the length of training time over the

features learned as well as the final performance will shed more light into the effects

of swapping activation functions as well as varying penalty terms.

In regards to potential future work, there are a few avenues. One major avenue

is the introduction of other activation functions during activation swapping from pre-

training to funetuning stages. For instance, this work tested a new activation function

that closely resembled a tanh but with a y − axis translation and a higher gradient.

In this form as was seen, both excitatory and inhibitory features are produced in the

hidden layer. Other activation functions may produce different proportions of exci-

tatory, inhibitory and neutral neurons. The ReLU activation function for instance,

only provides gradients for positive output, hence pushing the weights towards pos-

itive weights; this gives us a model that only ever produces excitatory neurons, as

was seen in the results. Other activation function, that may focus more on producing

negative values will likewise produce predominantly inhibitory neurons. It would be

interesting to compare and contrast the performance of both these models. That can

further be extended by creating a hybrid model that randomly selects a percent of

the neurons from models trained with vastly different activation function to create

hybrid layers with drastically different features. Incorporating some of this knowledge

in Convolutional neural networks may also produce interesting results. The SPAF-

model can further extend the ability of the conventional layers to create a larger

variation in its feature maps; thus opening the potential for further improvements in

classification performance.
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Appendix A

Appendix

A.1 MNIST 200-200 Sigmoidal Network No Penalty

Term

average: 2.015 std: +- 0.138076065993

LayerOne Activations

0.406032316542 std: +- 0.00528142770508

LayerTwo Activations

0.334163289287 std: +- 0.00800826895513

[ 2.03 1.95 2.08 2.01 2.12 2.27 1.76 1.74 1.89 1.96 2.02 2.14

1.88 2.04 2.08 1.93 2.28 1.83 2.18 2.03 1.98 2.31 1.83 2.11

2.02 1.97 2.05 2.07 1.98 1.91]
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A.2 MNIST 200-200 Sigmoidal Network log penalty

average: 1.93566666667 std: +- 0.118678370209

LayerOne Activations

0.279282081424 std: +- 0.00510171660576

LayerTwo Activations

0.193012877292 std: +- 0.0042919473522

[ 2.01 2.06 1.9 1.96 1.89 1.97 1.99 1.96 2.2 1.85 1.87 1.95

1.82 1.68 1.87 2.03 2.01 1.95 2.29 1.87 1.93 1.76 1.88 1.73

1.93 1.95 1.9 1.92 2.01 1.93]

A.3 MNIST 200-200 Sigmoidal Network L1 penalty

average: 2.30633333333 std: +- 0.130651784867

LayerOne Activations

0.152066204159 std: +- 0.00335341178362

LayerTwo Activations

0.126760358864 std: +- 0.0036927543879

[ 2.17 2.33 2.3 2.4 2.27 2.11 2.51 2.15 2.3 2.43 2.14 2.32

2.4 2.46 2.46 2.32 2.71 2.18 2.28 2.3 2.22 2.11 2.36 2.41

2.17 2.31 2.26 2.32 2.17 2.32]
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A.4 MNIST 200-200 SPAF-Network No Penalty

Term

average: 1.685 std: +- 0.0726521392206

average activations Layer 1:

average: 0.442140897767 std: +- 0.00733054683157

average activations Layer 2:

average: 0.245269342607 std: +- 0.00680615541421

A.5 MNIST 200-200 SPAF-Network log penalty

average: 1.69166666667 std: +- 0.0976757674941

LayerOne Activations

0.378140412225 std: +- 0.0058100137639

LayerTwo Activations

0.261579565372 std: +- 0.0100946314887

[ 1.8 1.73 1.79 1.66 1.76 1.55 1.6 1.62 1.6 1.62 1.6 1.65

1.74 1.64 1.67 1.66 1.64 1.59 1.92 1.82 1.61 1.69 1.92 1.74

1.84 1.66 1.55 1.73 1.62 1.73]

A.6 MNIST 200-200 SPAF-Network L1 penalty

average: 1.999 std: +- 0.120784932835

LayerOne Activations

0.286514413471 std: +- 0.00848186569934
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LayerTwo Activations

0.30432592998 std: +- 0.017904758007

[ 1.88 1.78 2.05 2.13 1.94 1.87 2.02 1.94 1.88 1.81 2.14 2.11

1.98 2.02 2.06 2.02 2.07 2.03 1.81 2.09 1.93 2.06 2.21 1.78

2.04 2.04 1.92 1.96 2.17 2.23]

A.7 Hnd dataset 200-200 Sigmoidal-Network L1

penalty

average: 50.6884057971 std: +- 1.74530907283

LayerOne Activations

0.332040828486 std: +- 0.00443763731482

LayerTwo Activations

0.241891155534 std: +- 0.00601108034783

[ 52.93478261 48.15217391 50.97826087 47.93478261 53.15217391

51.73913043 50.32608696 51.30434783 49.02173913 49.45652174

52.06521739 50.76086957 51.19565217 51.41304348 48.91304348

54.7826087 49.89130435 53.47826087 50.54347826 50.43478261

52.2826087 47.82608696 51.52173913 49.89130435 49.56521739

48.47826087 51.95652174 49.23913043 52.60869565 48.80434783]
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A.8 Hnd dataset 200-200 Sigmoidal-Network log

penalty

average: 50.4130434783 std: +- 1.46003254144

LayerOne Activations

0.278877926569 std: +- 0.00496434754724

LayerTwo Activations

0.196698051929 std: +- 0.00514898714236

[ 51.19565217 50.43478261 51.73913043 49.67391304 52.06521739

50.2173913 50.65217391 50.76086957 49.02173913 48.36956522

51.30434783 50. 50.10869565 51.95652174 48.58695652

54.13043478 49.45652174 49.89130435 48.15217391 49.89130435

51.63043478 47.82608696 50.10869565 50.65217391 50.76086957

49.13043478 53.47826087 48.80434783 52.06521739 50.32608696]

A.9 Hnd dataset 200-200 Sigmoidal-Network No

penalty

average: 50.7934782609 std: +- 1.69629075675

LayerOne Activations

0.413474922148 std: +- 0.00503668606661

LayerTwo Activations

0.304151464329 std: +- 0.00752188960895

[ 52.39130435 51.08695652 49.45652174 49.34782609 50.86956522

51.19565217 49.7826087 53.15217391 49.89130435 49.67391304
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51.52173913 50.97826087 54.23913043 51.84782609 48.91304348

55.65217391 50.10869565 48.58695652 49.56521739 49.7826087

50.97826087 46.63043478 51.08695652 51.19565217 51.63043478

50.43478261 52.60869565 50.32608696 50.76086957 50.10869565]

A.10 Hnd dataset 200-200 SPAF-Network L1 penalty

average: 48.0688405797 std: +- 1.87021461028

LayerOne Activations

0.422996403438 std: +- 0.00555557375641

LayerTwo Activations

0.36545346276 std: +- 0.015222697638

[ 48.80434783 48.69565217 48.58695652 45.65217391 48.69565217

47.60869565 44.23913043 49.56521739 44.56521739 45.86956522

48.36956522 47.93478261 49.45652174 50. 47.60869565

51.63043478 48.91304348 46.73913043 46.08695652 47.2826087

51.63043478 46.52173913 49.34782609 48.47826087 47.82608696

48.58695652 51.08695652 45.32608696 49.7826087 47.17391304]

A.11 Hnd dataset 200-200 SPAF-Network log penalty

average: 47.6920289855 std: +- 1.83342283679

LayerOne Activations

0.413656007672 std: +- 0.00695700445938

LayerTwo Activations
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0.379042815457 std: +- 0.012717972992

[ 48.69565217 45.86956522 47.93478261 47.60869565 47.2826087

49.67391304 46.08695652 49.23913043 44.7826087 49.34782609

45.2173913 47.39130435 47.82608696 47.93478261 45.2173913

50.43478261 47.82608696 49.13043478 47.2826087 46.73913043

49.02173913 43.58695652 47.7173913 49.45652174 48.47826087

48.26086957 50.54347826 45.10869565 51.19565217 45.86956522]

A.12 Hnd dataset 200-200 SPAF-Network No penalty

average: 48.2898550725 std: +- 1.52353241472

LayerOne Activations

0.455611277365 std: +- 0.00735349748563

LayerTwo Activations

0.354987800169 std: +- 0.0125050934264

[ 50.97826087 46.95652174 49.13043478 46.84782609 47.39130435

47.82608696 45.86956522 48.36956522 47.17391304 49.7826087

47.2826087 47.7173913 48.80434783 49.23913043 45.86956522

49.56521739 49.67391304 47.5 49.34782609 50.10869565

48.69565217 46.19565217 48.47826087 47.5 48.36956522

46.19565217 51.30434783 48.26086957 51.41304348 46.84782609]
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A.13 Img dataset 500-400 Sigmoidal-Network No

penalty

average: 29.375 std: +- 0.952996917624

average activations Layer 1:

average: 0.333074501102 std: +- 0.00429321012854

average activations Layer 2:

average: 0.224190098619 std: +- 0.00276707496876

A.14 Img dataset 500-400 Sigmoidal-Network L1

penalty

average: 31.3854166667 std: +- 1.43285026986

average activations Layer 1:

average: 0.116259871115 std: +- 0.00452441823107

average activations Layer 2:

average: 0.107110430289 std: +- 0.00258336032168

A.15 Img dataset 500-400 Sigmoidal-Network log

penalty

average: 29.2239583333 std: +- 0.733783745438

average activations Layer 1:

average: 0.263147223218 std: +- 0.00536961512996
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average activations Layer 2:

average: 0.194161940109 std: +- 0.0021697675218

A.16 Img dataset 500-400 SPAF-Network No penalty

average: 27.8489583333 std: +- 0.882670373269

average activations Layer 1:

average: 0.252317078138 std: +- 0.00661106141532

average activations Layer 2:

average: 0.258295582197 std: +- 0.0114883552225

A.17 Img dataset 500-400 SPAF-Network L1 penalty

average: 30.953125 std: +- 1.16463038441

average activations Layer 1:

average: 0.116478605554 std: +- 0.00231731625868

average activations Layer 2:

average: 0.10877348584 std: +- 0.00174710700659

A.18 Img dataset 500-400 SPAF-Network log penalty

average: 27.6822916667 std: +- 0.767323795598

average activations Layer 1:

average: 0.219429005757 std: +- 0.00998341604752
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average activations Layer 2:

average: 0.295352717604 std: +- 0.0088516773689

A.19 Fnt dataset 50-50 SPAF-Network

average: 36.4157706093 std: +- 1.46708424177

LayerOne Activations

0.487105370405 std: +- 0.00913897135714

LayerTwo Activations

0.443889845583 std: +- 0.0134994356665

[ 35.16129032 36.77419355 38.27956989 37.41935484 36.02150538

36.66666667 36.12903226 36.55913978 34.19354839 36.34408602

35.05376344 36.12903226 36.4516129 37.09677419 36.12903226

35.69892473 36.34408602 37.84946237 34.7311828 39.89247312

36.88172043 33.87096774 34.51612903 37.52688172 34.19354839

37.95698925 38.49462366 38.92473118 36.66666667 34.51612903]

A.20 Fnt dataset 100-100 SPAF-Network

average: 32.5448028674 std: +- 1.90848014822

LayerOne Activations

0.469396633084 std: +- 0.00770533720206

LayerTwo Activations

0.406812487123 std: +- 0.0140451630365

[ 32.25806452 34.51612903 32.3655914 33.97849462 30.64516129
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35.2688172 30.96774194 32.58064516 31.50537634 32.79569892

30.21505376 31.72043011 35.69892473 32.25806452 30.86021505

31.39784946 31.1827957 32.25806452 29.56989247 37.95698925

31.39784946 32.04301075 30.75268817 34.94623656 29.78494624

32.79569892 35.2688172 33.33333333 33.87096774 32.15053763]

A.21 Fnt dataset 200-200 SPAF-Network

average: 31.1935483871 std: +- 1.49312732917

LayerOne Activations

0.446805943969 std: +- 0.00603755095091

LayerTwo Activations

0.377071201389 std: +- 0.00867185986223

[ 30.96774194 31.61290323 31.93548387 30.64516129 29.56989247

32.79569892 30.75268817 31.82795699 30. 30.86021505

29.24731183 30.53763441 33.65591398 32.04301075 30.10752688

30.96774194 31.50537634 31.61290323 29.03225806 34.08602151

30.10752688 30.86021505 28.49462366 33.11827957 29.24731183

31.93548387 34.62365591 32.90322581 30. 30.75268817]

A.22 Fnt dataset 400-400 SPAF-Network

average: 31.2688172043 std: +- 1.87713727573

LayerOne Activations

0.413123027841 std: +- 0.00368036066158
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LayerTwo Activations

0.357652071463 std: +- 0.0105627227114

[ 31.1827957 31.72043011 31.29032258 34.08602151 29.35483871

33.5483871 33.5483871 32.79569892 28.92473118 31.29032258

28.49462366 30.75268817 33.5483871 31.61290323 31.1827957

29.03225806 31.07526882 31.1827957 28.27956989 34.83870968

29.46236559 31.82795699 28.17204301 33.01075269 29.13978495

31.07526882 34.19354839 32.90322581 31.1827957 29.35483871]

A.23 Fnt dataset 700-700 SPAF-Network

average: 31.29390681 std: +- 1.53816902587

LayerOne Activations

0.379521640686 std: +- 0.00593606415207

LayerTwo Activations

0.334115013532 std: +- 0.0159624770869

[ 30.75268817 32.68817204 31.39784946 33.11827957 29.56989247

33.76344086 31.50537634 32.58064516 29.46236559 32.04301075 30.

29.78494624 33.65591398 30.64516129 31.61290323 29.89247312

31.93548387 30.75268817 28.49462366 34.51612903 30.10752688

30.64516129 29.67741935 33.11827957 29.35483871 31.61290323

33.65591398 31.93548387 30.10752688 30.43010753]
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A.24 Fnt dataset 1000-1000 SPAF-Network

average: 31.4121863799 std: +- 1.75123261973

LayerOne Activations

0.353617485583 std: +- 0.0060085445815

LayerTwo Activations

0.294775072224 std: +- 0.0170667138442

[ 29.78494624 32.47311828 31.1827957 33.33333333 29.56989247

34.08602151 31.72043011 33.11827957 29.67741935 32.25806452

29.46236559 29.78494624 34.51612903 31.07526882 29.13978495

30.43010753 31.82795699 31.72043011 29.13978495 35.69892473

30.75268817 31.82795699 29.13978495 33.01075269 28.92473118

32.15053763 33.44086022 31.93548387 30.21505376 30.96774194]

A.25 Fnt dataset 50-50 Sigmoidal-Network

average: 36.1612903226 std: +- 1.75352356018

LayerOne Activations

0.486510907291 std: +- 0.0101482232436

LayerTwo Activations

0.443726148972 std: +- 0.0131973051622

[ 34.40860215 35.69892473 38.06451613 38.17204301 33.76344086

37.31182796 38.06451613 38.17204301 34.30107527 37.20430108

34.51612903 33.76344086 38.06451613 36.55913978 34.30107527

37.41935484 34.19354839 36.66666667 34.83870968 40.53763441

35.59139785 35.69892473 34.83870968 38.38709677 33.87096774
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35.59139785 37.84946237 36.55913978 36.23655914 34.19354839]

A.26 Fnt dataset 100-100 Sigmoidal-Network

average: 35.4659498208 std: +- 1.62055136109

LayerOne Activations

0.441502943289 std: +- 0.0053899264678

LayerTwo Activations

0.456047860258 std: +- 0.00604340809631

[ 34.7311828 38.17204301 35.59139785 34.08602151 35.69892473

38.17204301 32.90322581 38.92473118 34.62365591 34.94623656

33.65591398 34.40860215 36.88172043 35.48387097 33.44086022

35.91397849 35.80645161 36.34408602 32.58064516 37.20430108

35.16129032 34.40860215 33.44086022 36.66666667 33.01075269

35.80645161 37.6344086 36.23655914 36.4516129 35.59139785]

A.27 Fnt dataset 200-200 Sigmoidal-Network

average: 33.7204301075 std: +- 1.64662478537

LayerOne Activations

0.406774377753 std: +- 0.00402400993644

LayerTwo Activations

0.428018714356 std: +- 0.004377557142

[ 33.11827957 33.97849462 34.40860215 33.76344086 33.76344086

35.2688172 32.25806452 34.19354839 33.44086022 33.5483871
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32.25806452 33.01075269 35.48387097 31.93548387 31.29032258

32.25806452 36.12903226 33.5483871 31.50537634 36.98924731

32.47311828 33.97849462 32.15053763 35.59139785 31.1827957

33.33333333 38.17204301 33.5483871 35.48387097 33.5483871 ]

A.28 Fnt dataset 300-300 Sigmoidal-Network

average: 33.1433691756 std: +- 1.75451964326

LayerOne Activations

0.378371809088 std: +- 0.00371037806331

LayerTwo Activations

0.401575450276 std: +- 0.00448703144657

[ 31.82795699 34.30107527 33.11827957 35.69892473 32.79569892

36.55913978 33.44086022 34.19354839 32.25806452 32.58064516

29.89247312 32.25806452 34.83870968 31.93548387 31.29032258

32.90322581 33.44086022 34.30107527 30.10752688 36.55913978

30.53763441 32.25806452 31.50537634 35.2688172 31.29032258

33.87096774 36.02150538 33.33333333 32.79569892 33.11827957]

A.29 Fnt dataset 400-400 Sigmoidal-Network

average: 32.6559139785 std: +- 1.77036624222

LayerOne Activations

0.356917132398 std: +- 0.00346345997655

LayerTwo Activations
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0.377263443836 std: +- 0.00406335149786

[ 30.96774194 34.83870968 33.65591398 32.25806452 30.64516129

34.62365591 32.68817204 33.65591398 31.93548387 33.11827957 30.

31.93548387 36.02150538 30.96774194 30.53763441 30.75268817

33.01075269 31.50537634 30.10752688 36.02150538 31.1827957

33.22580645 30.75268817 35.37634409 30.96774194 35.2688172

34.08602151 33.65591398 33.11827957 32.79569892]

A.30 Fnt dataset 700-700 Sigmoidal-Network

average: 31.3440860215 std: +- 1.67795919996

LayerOne Activations

0.376454839656 std: +- 0.00728535358898

LayerTwo Activations

0.329812907765 std: +- 0.0186937725578

[ 30.53763441 32.25806452 30.96774194 33.65591398 28.49462366

33.97849462 31.1827957 33.44086022 29.03225806 32.68817204

29.78494624 30.86021505 33.76344086 31.50537634 30.64516129

30.64516129 31.50537634 31.07526882 29.13978495 35.05376344

29.35483871 31.1827957 28.92473118 32.79569892 28.8172043

31.1827957 33.11827957 32.3655914 31.07526882 31.29032258]

A.31 Fnt dataset 1000-1000 Sigmoidal-Network

average: 32.1684587814 std: +- 1.785525521
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LayerOne Activations

0.28455873079 std: +- 0.00355159054912

LayerTwo Activations

0.235650879549 std: +- 0.00323752780479

[ 31.07526882 33.76344086 33.11827957 32.90322581 30. 34.40860215

31.61290323 33.87096774 30.64516129 33.33333333 29.13978495

30.75268817 34.30107527 30.64516129 29.56989247 30.53763441

31.93548387 31.72043011 31.1827957 35.37634409 30.75268817

33.44086022 30.75268817 35.48387097 29.78494624 32.68817204

35.59139785 32.79569892 31.72043011 32.15053763]

A.32 10% training Fnt dataset 200-200 Spaf-Network

average: 20.064516129 std: +- 1.64428256805

LayerOne Activations

0.435749242699 std: +- 0.00518925923181

LayerTwo Activations

0.32336094079 std: +- 0.00583672563172

[ 18.70967742 22.68817204 21.07526882 20.43010753 18.60215054

22.47311828 20.96774194 21.61290323 17.09677419 19.24731183

19.35483871 17.41935484 21.1827957 19.24731183 20.86021505]

A.33 20% training Fnt dataset 200-200 Spaf-Network

average: 16.4444444444 std: +- 1.42567651963
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LayerOne Activations

0.429997410885 std: +- 0.00663367833362

LayerTwo Activations

0.305065258082 std: +- 0.00565056299617

[ 15.91397849 17.31182796 17.31182796 16.23655914 15.48387097

20.32258065 16.77419355 17.52688172 15.2688172 15.2688172

15.69892473 13.97849462 15.69892473 16.23655914 17.6344086 ]

A.34 50% training Fnt dataset 200-200 Spaf-Network

average: 13.1397849462 std: +- 1.58819788711

LayerOne Activations

0.415633734291 std: +- 0.0075062541002

LayerTwo Activations

0.281921876871 std: +- 0.00558575636773

[ 13.65591398 15.69892473 15.37634409 12.68817204 11.29032258

13.97849462 14.62365591 14.40860215 10. 13.01075269

13.22580645 10.43010753 13.01075269 13.33333333 12.3655914 ]

A.35 70% training Fnt dataset 200-200 Spaf-Network

average: 11.9498207885 std: +- 1.66758752069

LayerOne Activations

0.430604636595 std: +- 0.00619601230456

LayerTwo Activations
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0.286950898226 std: +- 0.00383594349772

[ 12.3655914 13.44086022 13.65591398 13.87096774 10.10752688

13.5483871 12.04301075 13.76344086 9.35483871 10.21505376

13.5483871 8.92473118 12.04301075 10.53763441 11.82795699]

A.36 90% training Fnt dataset 200-200 Spaf-Network

average: 11.3189964158 std: +- 1.36772991286

LayerOne Activations

0.415176183216 std: +- 0.00598043664498

LayerTwo Activations

0.343000039861 std: +- 0.00644888652744

[ 12.58064516 11.61290323 13.01075269 14.19354839 9.03225806

12.47311828 10.53763441 11.82795699 9.13978495 11.72043011

11.07526882 10.32258065 10.21505376 10.53763441 11.50537634]

A.37 10% training Fnt dataset 200-200 Sigmoidal-

Network

average: 21.0681003584 std: +- 1.86219947882

LayerOne Activations

0.415751518501 std: +- 0.0064212645445

LayerTwo Activations

0.381890000269 std: +- 0.00703455751795

[ 20. 23.76344086 21.61290323 22.25806452 17.74193548
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23.87096774 21.39784946 22.90322581 18.38709677 20.64516129

20.86021505 18.06451613 22.15053763 20.21505376 22.15053763]

A.38 20% training Fnt dataset 200-200 Sigmoidal-

Network

average: 17.5340501792 std: +- 1.64974256903

LayerOne Activations

0.411789855691 std: +- 0.00492026615895

LayerTwo Activations

0.35993252115 std: +- 0.00690541178238

[ 16.98924731 18.92473118 18.70967742 17.74193548 15.80645161

22.15053763 18.38709677 17.84946237 15.80645161 16.4516129

16.88172043 16.02150538 16.88172043 15.69892473 18.70967742]

A.39 50% training Fnt dataset 200-200 Sigmoidal-

Network

average: 13.4982078853 std: +- 1.35947699339

LayerOne Activations

0.415952832776 std: +- 0.00741936162213

LayerTwo Activations

0.33557353736 std: +- 0.00655986624061

[ 14.51612903 15.2688172 15.2688172 12.68817204 11.82795699
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14.19354839 14.19354839 16.12903226 11.39784946 13.22580645

12.25806452 12.58064516 13.65591398 12.04301075 13.22580645]

A.40 70% training Fnt dataset 200-200 Sigmoidal-

Network

average: 12.3082437276 std: +- 1.3914198237

LayerOne Activations

0.412280607496 std: +- 0.00553717608909

LayerTwo Activations

0.352144577669 std: +- 0.00628866036513

[ 13.5483871 13.33333333 13.44086022 12.79569892 10.64516129

14.51612903 13.44086022 13.33333333 10.10752688 10.75268817

11.93548387 9.67741935 13.01075269 12.04301075 12.04301075]

A.41 90% training Fnt dataset 200-200 Sigmoidal-

Network

average: 11.0896057348 std: +- 1.29084019885

LayerOne Activations

0.412105776905 std: +- 0.00598382952077

LayerTwo Activations

0.344297876639 std: +- 0.00808914513865

[ 12.47311828 12.25806452 13.11827957 12.25806452 10. 12.58064516
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12.68817204 10.75268817 9.46236559 10.53763441 10.53763441

9.35483871 10.21505376 10.75268817 9.35483871]
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Appendix B

Appendix

All feature images are in the order of: Newly proposed activation function, Relu

SPAF networks followed by the normal sigmoidal networks.

B.1 MNIST Features Layer-1

114



115



116



B.2 MNIST Features Layer-2
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B.3 Fnt Features Layer-1
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B.4 Fnt Features Layer-2
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B.5 Hnd Features Layer-1
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B.6 Hnd Features Layer-2

129



130



131


