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ABSTRACT
SELF-ORGANIZING MAPS
and GALAXY EVOLUTION

Jacques Béland

Artificial Neural Networks (ANN) have been applied to many areas of research.

These techniques use a series of object attributes and can be trained to recognize

different classes of objects. The Self-Organizing Map (SOM) is an unsupervised

machine learning technique which has been shown to be successful in the mapping

of high-dimensional data into a 2D representation referred to as a map. These maps

are easier to interpret and aid in the classification of data. In this work, the existing

algorithms for the SOM have been extended to generate 3D maps. The higher

dimensionality of the map provides for more information to be made available to

the interpretation of classifications. The effectiveness of the implementation was

verified using three separate standard datasets. Results from these investigations

supported the expectation that a 3D SOM would result in a more effective classifier.

The 3D SOM algorithm was then applied to an analysis of galaxy morphology

classifications. It is postulated that the morphology of a galaxy relates directly

to how it will evolve over time. In this work, the Spectral Energy Distribution

(SED) will be used as a source for galaxy attributes. The SED data was extracted

from the NASA Extragalactic Database (NED). The data was grouped into sam-

ple sets of matching frequencies and the 3D SOM application was applied as a

morphological classifier. It was shown that the SOMs created were effective as

an unsupervised machine learning technique to classify galaxies based solely on

their SED. Morphological predictions for a number of galaxies were shown to be

in agreement with classifications obtained from new observations in NED.

Keywords: Self-Organizing Maps, Kohonen, SHARCNET, Parallel, Galaxy,

Evolution, Multi-wavelength, Classification, Morphology
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Chapter 1

Introduction

The advent of relatively inexpensive computing technologies has brought about a

vast increase in the amount of information created and shared amongst various

parties. The Internet and new technologies such as camera phones and social

media sites such as Facebook generate an enormous amount of information daily.

Similarly, the medical, public safety, insurance and travel industries create their

own volumes of data. Leveraging these new technologies has brought about the

requirement for flexibility and quick access to individual data items.

The scientific community has also benefitted from advances in technology. The

pace with which scientific data are now collected is impressive. Projects such as the

Large Hadron Collider, the Hubble telescope and multiple automated sky surveys

produce Terabytes of data daily when they are in operation.

In many cases, individuals are only interested in retrieving information in its

original form. On Facebook, it is sufficient to have family and friends read a post or

view a picture. There is, however, great potential in the ensemble of all of the data

collected in any one specific field. This potential comes from what can be gleamed

from the data itself, not just information about averages and other statistics but

also patterns and inter-relationships within the data.

The volume of data present in any one of these databases makes the extraction

of useful information impractical without automated approaches. Data Mining and

Knowledge Discovery are names given to various techniques used to generate in-

sights into the data. Machine Learning techniques automate the discovery process.

One avenue of machine learning is simply the extraction of statistical information

which can then lead to policy decisions such as insurance rates. The approach of

interest, in this thesis, is the processing of data in the attempt to discover like data

elements which are distinct enough to group into classes.

The processing of data to establish an automated technique of classifying ob-

jects is performed either through a supervised or unsupervised method. In the

supervised case, a subject matter expert uses already established knowledge of

object classes to guide the classifier into reproducing expected results. In the un-

supervised case, the technique alone is responsible for finding commonalities within

the data and from those, identifying objects which belong to the same class.
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The research in this thesis will only focus on one specific approach to machine

learning. The technique is called a Self-Organizing map. This is an unsuper-

vised technique and will rely only on the attributes in the data to extract class

information. There are numerous avenues for the application of machine learning

algorithms. In this project, we will investigate the application of Self-Organizing

Maps to the problem of galaxy classification. The objective is to create an au-

tomated systematic classifier which is capable of differentiating between different

galaxy morphologies.

Historically, the classification of galaxies has been performed manually. Pho-

tographs in the visible range of the spectrum were used to group galaxies by prop-

erties [30, 68]. The existing classification schemes are therefore biased towards the

visible part of the spectrum and subject to human interpretation and intuition.

This has led to numerous studies which have shown that rarely do human experts

agree on individual classifications [41].

Hubble had established his classification scheme before the advent of sensors

capable of measuring signals in regions of the electromagnetic spectrum unavailable

to the human eye. Sensor improvements and automated surveys have and will

continue to provide a volume of information far exceeding classification capacities of

human experts. The NASA-Extragalactic Database (NED) [47] is a data repository

which incorporates the data from many separate studies into one single standard

source of galaxy attributes. The galaxy properties used in this modelling effort

will be restricted to the amount of energy the galaxies are emitting in various

frequencies across the electromagnetic spectrum. Collectively, these measurements

are known as the Spectral Energy Distribution (SED).

The research presented here had two aims. The first focus will be on the cre-

ation of an effective 3D version of a Self-Organizing Map classifier. This new

implementation will be evaluated against known datasets to confirm its effective-

ness as an unsupervised approach. It will be shown that the implementation of a

3D SOM was successful. The implementation was also used to investigate various

approaches to improving both performance and the quality of the results obtained.

The second objective is to determine if, within the galaxy data collected, there

exists combinations of frequencies which could lead to a valid classifier. There

is no a priori knowledge of which frequencies within a SED are telltale signs of

galaxy morphology. An investigation of the combinations of available frequencies

will therefore be initiated. Though a significant amount of data was collected for

analysis, the sparsity of the data had a direct impact on the results obtained.

It will be shown that the 3D SOM was effective in resolving galaxies into major

morphological classifications. The approach was also successful in predicting the

class of a number of galaxies whose morphology was unknown at the onset of this

research.
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Chapter 2

Background

2.1 Data Mining

Data mining [62] is the process of extracting useful, sometimes non-intuitive infor-

mation from a number of observed objects or data events. Each of these can be

characterised by a list of properties which we will call attributes. These attributes

describe all of the known facets of these objects that are deemed important in mod-

elling their underlying rules and relationships. By leveraging various algorithms to

compare the attributes of these objects or events, it is possible to group like items

together.

The outcome of the modelling process can take the form of a set of rules de-

scribing the relationships between attributes in a dataset. This can be used, for

example, to evaluate the probability of a specific outcome. In some applications, it

is sufficient to have the data-mining process produce a set of results which can then

be interpreted by subject matter experts. In others, what is desired, is to have the

process recognize specific types of objects and associate them with unique prede-

termined classes. The associations are typically vetted by a human expert who is

developing the process. The implementation of the algorithms in software which

permits a computer to process process data and learn to classify events is called

machine learning.

2.2 Machine Learning

The goal of teaching a machine to classify data typically derives from the fact

that subject matter experts are limited in their ability to visualize and interpret

datasets which possess a large number of dimensional attributes. Interpreting

relationships with data possessing more than three dimensions can be difficult.

Furthermore, the large number of events collected for analysis most often make

the task of manual analysis impossible. Often there are relationships within the

data that are unexpected and exist beyond the domain knowledge of such expert.

3



The construction of algorithms that analyse events in a systematic approach allows
for the detection of these unexpected relationships.

The benefit of creating a process by which objects can be classified is not limited
to the immediate dataset. The process can be used as a guide or model which will
allow the classification of new events. This provides the capability of leveraging
the model to detect new and unexpected events or just focus on specific known
occurrences.

There are numerous different approaches to developing processes capable of
classifying events. Some must be guided by human experts, while others only re-
quire post-processing interpretation. In this work, we shall focus only on a variation
of Artificial Neural Networks, a technique called Self-Organizing Maps.

2.2.1 Artificial Neural Networks

Artificial Neural Networks, henceforth called ANN, are a machine learning tech-
nique which are used in an attempt to mimic the signaling processes involved in the
human brain [39]. Though we will not examine all of the nuances of ANNs here,
many of the concepts are important in regards to their similarities to the technique
used in the data analysis portion of this thesis: the Self-Organizing Map.

In a model of the brain, a neuron can be treated as a simple processing unit.
It receives a number of signals from various sources and processes them based on
a learned response. This learned response evolves through repeated exposure to
similar inputs and feedback from the resultant output. Though the chemical pro-
cesses involved in the generation of the response are not known completely [39, 54],
they can be mimicked through various means known as activation functions. In the
software equivalent of neurons, the signal strength coming from the various input
pathways are combined, through individual weighting, to produce an integrated
response signal of the artificial neuron. Based on the strength of the normalized
inputs, the neuron decides if it should fire an output signal or not. This output
signal can be directed to follow-up stages consisting of a single neuron or to a set
of multiple targets. A simple example of an artificial neuron configuration can be
seen in Figure 2.1

Figure 2.1: A simple model of an artificial neuron showing n inputs and a single
output.
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In the software implementation of a neural network the number of neurons is

typically limited. The network should have a sufficiently large enough neuron pop-

ulation to accept all of the individual inputs and to represent all of the properties

present in the input space. The neural network’s output must also be configured

to present information which can be interpreted to produce distinct classifications

of the input.

The human body contains about a trillion 1012 of neurons [31, 54]. In a typical

ANNs, however [31], 10 to 10,000 neurons are typically used. These are grouped

into three main layers: Input, Hidden and Output.

The input layer: The input signals for this layer are derived directly from the

attributes which describe the events we want to examine. If the objects or

events we are classifying are characterised by n properties, the design of the

neural network will typically have n neurons in the input layer.

The hidden layers: These layers receive signals from the input layer and combine

them based on a set of input weights. If the signals satisfy the requirements

of the activation function, a signal is sent to the next layer in the ANN. The

next layer can either be another hidden layer or the output layer. Jadid [34]

suggests that an upper bound to the number of neurons in the hidden layer

is 10 or 20 percent of the ratio of the training set size to the total number of

neurons present in both the input and output layers.

The output layer: This layer presents one or multiple output nodes. The signal

provided by the output layer is used to interpret the classification of the

event. This is either presented as a range of output values or by signals from

specific output neurons.

An example of a simple three-layer neural network is shown in Figure 2.2

Figure 2.2: An example of a 7:4:2 ANN with seven inputs, 4 neurons in the hidden
layer and two outputs.
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Artificial Neural Networks can learn using a variety of supervised or unsu-

pervised approaches. For a supervised ANN, the network must be trained using

previously classified information. Example events of known classifications are pre-

sented to the network. Through various algorithms, the weights which affect the

signal combinations are tuned to produce the desired output classifications. The

tuning process is performed over numerous iterations through the training data.

Each pass adjusts the weights between the various neurons in an attempt to provide

the best classifications possible for the ensemble of the data. Attention must be

taken to ensure that possible idiosyncracies in the data do not lead to over-tuning

of the weights.

Unsupervised approaches do not rely on any a priori knowledge of the classes

present in the input data. The data are presented to the network in multiple iter-

ations. With each iteration, the network adjusts its responses based solely on the

attributes of the input data. After several iterations, the weights associated with

each neuron will stabilize and their variations will reach an agreed-upon stopping

criteria.

The quality of the network can be evaluated in a number of ways. If a subject

matter expert expects a specific distribution amongst the classes, an analysis of

the output stages can reveal a qualitative measure of the goodness of the network.

A more common approach is to use data of known classes, either from a subset of

the data or a separate test dataset, and measure the effectiveness of the ANN in

reproducing the results.

The machine-learning aspect of this approach is dependent on existing inter-

pretations of the data and the training process is therefore subject to any bias

in the training dataset. Once trained, an ANN can be used to quickly classify

new data. For the purpose of this thesis, we will investigate the application of an

unsupervised technique, the Self-Organizing Map.

2.2.2 Self-Organizing Maps

The Self-Organizing Map (SOM), is a unique category of neural networks. Their

current form was introduced by Teuvo Kohonen [39] in 1990. Unlike previous

neural networks which had neurons operating in sequenced layers, the neurons in

Kohonen’s maps compete as a whole for the input data. As such, Kohonen labelled

his neural network a competitive learner [4, 39, 71].

The objective of the mapping process is to define a set of prototype vectors,

represented by the neurons, to accurately represent the input data. The arrange-

ment of these prototypes into a predetermined grid allows for the projection of

a high-dimensional space represented by the number of input attributes, into an

easier to interpret low-dimensional grid space. Kohonen’s approach provides for

a mechanism which can preserve the neighbourhood relationships from the input

space to the SOM’s geometry. The objective of the mapping process is that objects
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that are similar in the input data will resolve to neighbouring positions within the
final map. These groups of like neurons are called clusters and are the mechanism
by which we can identify the classifications of the objects being mapped.

A real-world example of implementing the Kohonen algorithm could be a library
classification system for books. As objects, books have a number of properties. A
short list could include: subject matter, author, publisher, size, colour, keywords
and binding method. If we consider all of these properties as independent from
each other, they can define an attribute space for all books. The mapping process
from the high-dimensional attribute space to the library shelves is what the SOM
will attempt to perform.

Similar books would wind up with similar vectors. The measure of similarity,
as we will discuss later in Section 2.3.3, will determine the proximity of the books
within the library stacks. For this example, it will suffice to imagine that the
similarity measure between “Mark Twain” and “H.G. Wells” is comparable to
that of “Poetry” and “Chemical Engineering” as well as “Penguin Press” and
“Random House”. Other attributes which are numerical in nature, such as physical
dimensions, weight and number of pages, have similarity measures which can be
expressed more mathematically if desired.

We consider the stacks in a library as a collection of prototype vectors, each
individual shelf having a potentially unique collection of properties from the input
space. The SOM algorithm would then classify like books together, in doing so,
creating sections in the library for Literature, History, Mathematics, Business and
Sciences. Within this mapping, however, Biochemistry books would find them-
selves mapped in boundary regions between the two main classes: Biology and
Chemistry. An example of a possible 3D SOM map of a library is shown in Figure
2.3.

Figure 2.3: A simulated SOM of a science library classification system.

7



This example demonstrates the potential for SOMs. They can take a high-

dimensional space and map it to a two-dimensional bookcase and shelf arrange-

ment. Careful attention must be taken when choosing which attributes to include

in the mapping process. In the above example attribute space, including the bind-

ing method may produce results wherein identical works (e.g. same author, same

title), may not end up being co-located in the map if one were a paperback and the

other hardbound. If the selection and weighting of the attributes is not initially

carefully considered, the binding dimension could carry as much weight as author

or language.

Once established, the SOM model can be used to quickly classify new arriving

titles into the collection. It can also be used to identify books for which no existing

mappings exist. Books that match existing prototypes will be easily classified. New

arrivals with unobserved attribute values will be identified as outliers and could

facilitate an expansion or a re-training of the existing map.

It is also important to note that adding dimension to the library, such as adding

floor or building information, allows for greater flexibility in how books are at-

tributed with locations within the library. Similarly, extending the standard 2D

SOM to 3D allows for the possibility of higher granularity in the positioning of

objects within a map. In this thesis, we will investigate the application of a 3D

version of the Kohonen SOM to various datasets.

2.2.3 Summary

In this section we have introduced machine learning. The application of machine

learning algorithms can be leveraged to facilitate the extraction of knowledge from

a collection of data. The rules and patterns discovered in the data can then be

used to determine the classification of new data events. We will now examine the

algorithm used here in more detail.

2.3 Overview of the Kohonen Algorithm

The Kohonen algorithm provides a framework which can be implemented in a

multitude of ways. Self-Organizing Maps based on Kohonen’s approach are often

called Kohonen Maps. The interpretation of each element of the algorithm can

lead to the construction of vastly different maps. There are, however, a number

of design guidelines which can be leveraged to produce more effective maps. The

most important of these are: Neuron Population Size, Distance and Similarity, Ini-

tialization of the map, Normalization of the Data, Missing Data, Adjustment of the

prototype weights, Map Geometry, Quality Assurance Measures and Termination

criteria.

In the following sections, we will discuss these features and guidelines for their

implementation will be suggested. Before doing so, a brief overview of the algorithm

is necessary to provide context for these parameters.
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2.3.1 Introduction to SOMs

Kohonen Maps provide a mechanism by which a set of data with a high-dimensional

attribute space can be mapped to a lower-dimensional representation. The process

is expected to enhance the appearance of interrelationships within the data, leading

to a robust classification system.

The process begins with the selection of a target map geometry. The size and

shape of the map must be chosen to facilitate the interpretation of the results

while providing sufficient volume for the mapping process to work efficiently. The

internal prototype vectors must be initialized to values which are representative of

the input space. Techniques for initializing the map will be discussed in section

2.3.6.

The algorithm then involves an iterative process of choosing random data from

the input dataset and finding where in the map that particular item should be

placed. Data elements are presented to the map individually. The map is scanned

for the prototype vector which most closely resembles the attributes of the candi-

date element. Once the prototype which is most similar to the datum is found,

its attribute weights are adjusted to make it more representative of this partic-

ular data element. The process then extends the adjustment of the prototype

attributes to neighbouring cells. This “tunes” this specific region of the map to

attract data elements from the input dataset which are most similar to the cur-

rent candidate. These prototype weight adjustments alter the map and can affect

subsequent prototype-datum pairings.

For each iteration, all of the input data are presented to the map in a different

random order. The mapping process continues until a predetermined condition is

met. The termination criteria can be based on a map quality measure, when input

data elements become bound to unique prototypes or simply a fixed number of

iterations.
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While ( the te rminat ion c r i t e r i a i s not met )
{

ad jus t the neighborhood rad iu s
ad jus t the l e a r n i n g ra t e
randomize the p r e s en ta t i on order o f the data
fo r each data item
{

Find the c l o s e s t matching prototype
f o r a l l c e l l s with in the neighbourhood rad iu s
{

ad jus t prototype weights o f each c e l l
based on d i s t ance and l e a r n i n g ra t e .

}
}

eva luate the terminat ion c r i t e r i a
}

Figure 2.4: A pseudocode version of the Kohonen Algorithm.

The completed Kohonen Map will, based on a sufficient quality measure, group

like prototypes into areas which can identify clusters within the input data. The

effectiveness of the algorithm and the quality of the results obtained are highly

dependent on the characteristics of the target map. The following sections will

address some of the more important facets involved in building an effective Kohonen

Map.

2.3.2 Neuron Population Size

The choice of the number of neurons to use in a Self-Organizing Map is subjective

and a balance must be struck between the number of neurons present and the

computational cost they each represent. There should be a sufficient population

in the output space to effectively represent the expected number of classes present

in the input data. There should also be sufficient additional neurons in the map

to help highlight demarcation boundaries between the various clusters of points.

Kohonen’s paper [39] presents a taxonomy example map where an arrangement

of 70 cells are configured in a 7x10 grid for this map. He uses this structure to map

32 data samples possessing five attributes each. This represents a greater than one-

to-one relationship between the number of neurons and samples. For large datasets

with multiple attributes, this would suggest very large maps are required. For

reasons we shall explore shortly, this ratio is much too computationally expensive

for sample sizes ranging into the tens of thousands.

For a sample size of N , an appropriate number of prototypes is on the order of√
N [61]. Vesanto [69] and Wendel [73] have adopted 5

√
N as the default number of
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cells for the SOM for the SOMToolbox1. Wendel & Buttenfield [73] have extended

on this by including the number of attributes into the calculation. They suggest

that the SOM cell count should be more closely defined as in Equation 2.1, where

a represents the number of attributes in the dataset.

Ncells = 5
√
N × a (2.1)

The term neuron is typically used to specify a unique element of the SOM grid.

There is a one-to-one relationship between the neurons, their prototype vectors

and the individual cells within the grid. We will therefore use the terms neuron,

cell and prototype interchangeably.

2.3.3 Distance and Similarity

There are two very important concepts used in Kohonen maps. These will be

called similarity and distance for the remainder of this thesis. Though synonyms

in common usage, in SOMs these terms are used to describe two very distinct

geometries present in the map. As such, we will adhere to the following definitions:

Distance: Distance will be understood to be a measure of proximity between two

elements of the SOM grid structure. Typically it represents the Euclidean

proximity of the two points and can be expressed in terms of grid units. For

irregular geometries of the SOM, such as the surface of a toroid or a sphere,

the evaluation of distance may not be as straight forward as calculating the

Euclidean distance.

Similarity: Similarity will be used to measure proximity within the data’s at-

tribute space. It will be a measure that will evaluate how closely two entities

are to being identical at the attribute level. There are numerous ways in

which we can compute similarity. It is important to note, however, that

many of these techniques are dependent on compatible ranges of values be-

tween the various attributes. If we are to calculate a Euclidean measure of

similarity and one attribute is several orders of magnitude larger than the

others, it will bias the similarity measure towards that single attribute. If a

simple Euclidean similarity is used, the original data must be normalized to

prevent this bias. Other techniques such as the Pearson similarity measure

offers a uniform balance between the different dimensions in the dataset[7].

Another approach for evaluating similarity, the Mahalanobis measure, can

account for correlations between the input dimensions[7].

1The SOM toolbox is an GNU GPL application made available by the Laboratory of Computer
and Information Science. The authors are: Esa Alhoniemi, Johan Himberg, Juha Parhankangas
and Juha Vesanto. See: http://www.cis.hut.fi/projects/somtoolbox/
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In the context of this thesis, we will only deal with numerical data. The con-

cept of similarity measures with categorical data, such as “Math”, “Science” and

“History” in the above library example, will not be addressed. Further reading on

this topic can be found, for example, in Boriah’s paper [6].

It is imperative to keep the concepts of similarity and distance distinct. Even

though for our purposes we will use the Euclidean measure for both, one represents

proximity in attribute space and the other by grid coordinates.

2.3.4 Normalization of the Data

Ensuring that the similarity measure provides unbiased values is paramount for the

proper application of the SOM algorithm. It does, however, introduce the problem

of how to place all of the data attributes on a common scale.

One technique that is often used [13, 31, 40, 69] is to preprocess the input data

and, for each attribute, calculate a mean and a standard deviation. Attributes

are then normalized by subtracting the mean from each value and by scaling the

data’s distribution variance to a range of plus or minus one. Note that since we

are using Euclidean similarity values which required the sum of the squares of the

differences, negative attribute values do not adversely affect the calculation.

A different technique involves finding the minimum and maximum value for

each attribute and scaling all data to lie between zero and one. A drawback to this

technique is that it does not leave any room for future data processed by the map

if newly acquired data falls below the minimum or above the maximum. One could

add extra padding to the scale factor but determining the proper amount would

have to be estimated by a subject matter expert using knowledge not available in

the input data. This could introduce bias into the map if all attributes are not

normalized in the same fashion.

An alternate approach would see the global data range for all attributes em-

ployed as the scale factor. This would ensure that the scaling is linear across the

range of values. If there exists subtle relationships between the attributes, the

scaling may impact on our ability to detect it.

The selection of a normalizing methodology must minimize any bias imposed on

the data. The application of any algorithm must ensure that the original data are

normalized on a common footing. If some attributes are used under a logarithmic

scale, such as pH or visible magnitudes, any scaling should be performed on the

untransformed data. It must also ensure that the data are prepared in such a

fashion to allow a well-balanced evaluation of the similarity measure between the

input data and the prototype neurons of the SOM.
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2.3.5 Missing Data

There are a number of different proposed techniques for addressing the problem

of missing data [14, 37, 62]. The Kohonen algorithm is, by design, sensitive to

the input data. Any bias in the input attributes will create a bias in the map.

One can simply eliminate data elements with missing values from analysis. If

the data requires processing items with missing values, attempts can be made to

approximate their value [62] or their contribution can be ignored when evaluating

similarity measures [37].

The introduction of a replacement value for a missing data attribute by its mean

or interpolated value [62] may or may not be appropriate. In simple cases, inter-

preted values based on adjacent measurements may be acceptable. In situations

where the behaviour of the property is less well known, assigning a replacement

value may introduce bias. The choice of technique in itself can introduce a bias

into the input data item as well. The choice would depend on the subject matter’s

expert opinion which in itself, is biased based on their experiences.

For the purpose of this thesis, we will reject any candidate items which do not

have a complete set of attributes. Though this will significantly reduce the number

of available items for the study, it will minimize the introduction of any additional

bias into the map.

2.3.6 Initialization of the Map

In the Kohonen implementation, each neuron carries with it a measure of how

strongly it expresses a value for each of the attributes. Each neuron, which exists

in a specific grid location, is called a prototype vector. In the Kohonen algorithm

the prototypes are tuned repeatedly in an attempt to allow the map to provide the

best possible representation of the input space.

The objective of the initialization is to provide a set of candidate prototype

neurons which span the expected input attribute space. Recalling the requirements

of the normalization of the data, the initial values of the map should correspond

to the same scale and range. Here are a few examples of different initialization

techniques:

Random: This technique simply assigns a unique random value, between the ob-

served minimum and maximum value of each attribute, to the corresponding

attributes of each neuron in the map. Values can also be generated to cover

[−1, 1] or [0, 1] for normalized attribute values.

Per-Attribute Random Assign a random value to each attribute of each neuron.

The value assigned is based on the mean and standard deviation, or the

range or values, for each specific attribute as determined by the normalization

technique used.
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SOM based Random Assigns random attribute values to each neuron based on

the overall range of values observed during the normalization phase. The

range is based on the whole SOM attribute space.

Random input data This technique samples a set number of random points

from the input space to become a set of seed points. A similarity mea-

sure is evaluated between all of the chosen points. The seed data elements

are introduced in the SOM and placed at separations from each other com-

mensurate with their similarity in the input space. This placement attempts

to preserve the data proximity attributes between both spaces.

Most dissimilar input data This technique parses all of the input data and

selects a number of candidate data points which exhibit the most dissimilarity

with all of the other elements of the input dataset. These most distant objects

should represent the most separated classes of objects. It may also find the

worst-case outliers in the population. It should isolate the most extreme

prototypes for any of the classes of objects we are trying to find. All other

objects in the dataset should reside within these boundaries.

Eigenvalue Using Principal Component Analysis [37, 40, 64] it is possible to ex-

tract the most significant eigenvectors and eigenvalues from a dataset. These

can then be used in turn to seed the distribution of attribute values linearly

across the maps to highlight the pre-existing structure within the data.

Each of these techniques imparts an order onto the original map. Though

the map will evolve as data are processed by the algorithm, the initial conditions

of the map impart a topological structure within the SOM. Completely random

approaches could produce similar prototype neurons in disparate regions of the

map. These regions may never coalesce, leaving quite similar prototypes in disjoint

portions of the map. This will result in similar data items being mapped into

disjointed cluster of nodes within the map. The similar but disjoint regions can

have an influence on the convergence rate of the map as data items may be mapped

to BMUs between regions at each iteration of the map. The evaluation of the

number of actual clusters will be impacted as these separated regions will appear

distinct in the grid space of the SOM.

As we shall soon see, the selection of the initialization technique has a direct

bearing on the speed with which the Kohonen algorithm will converge on a solu-

tion. The first method, random, introduces no knowledge into the original map.

Techniques involving seeding the map with some of the original data, however,

initially favour data elements most similar to the seeds.
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2.3.7 Adjustment of the Prototype Weights

The learning phase of the SOM involves two main steps. Every data item that

we are trying to map will undergo these two actions. The first process is to find,

within the SOM, which neuron is the most similar to the data elements under

consideration. This step is called finding the Best Matching Unit or BMU. This

involves evaluating the similarity measure between each neuron in the map and the

data item under consideration. The node which is found to be the most similar is

deemed the BMU.

Once the BMU has been found, the Kohonen algorithm then provides a method

by which the similarity between the BMU and data element is reinforced. The

attributes, or “weights” of the BMU are modified to more closely match those of

the data item being mapped. To enhance the likelihood that neighbouring cells will

attract similar data in future iterations, the prototype weights of adjacent nodes

are adjusted to more closely resemble the datum being mapped. The amount

of the adjustment is dependent on the grid distance between the BMU and the

specific neighbour. This distance is called the nearest neighbour distance. Figure

2.5 shows the region surrounding a sample BMU located at (3,0,4). Notice that

since this BMU is present on the edge of the SOM, it does not have a symmetrical

distribution of nearest neighbours as some would reside outside of the map volume.

Figure 2.5: A sample BMU at coordinates (3,0,4). The BMU region’s radius is
set at 3 for this example. Adjacent cells, to a radius if 3, are shown with their
Euclidean distances.
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The extent to which the weights of individual grid neurons are adjusted will

decrease over time. Most initialization schemes set the SOM node weights to values

that are independent of the neighbour’s values. When training takes place, the

algorithm facilitates more and more similarity between adjacent nodes. At first, it

is desirable to create large neighbourhoods of similarity to increase the chances of

clustering like items from the dataset. As these neighbourhoods are strengthened,

it is desirable to allow the algorithm to tighten the radius of similarity. By reducing

the number of nearest-neighbour cells affected by the weight adjustments, over time

the amount of similarity will become more concentrated around the BMU. This

will lead to more compact clusters of nodes which represent the same type of data

elements. It also has the benefit of allowing the nodes at the fringes of the clusters

to become less tightly bound to the current BMU. This can provide for more clearly

defined boundaries between clusters. It will also allow for a zone of nodes which

more closely represent data which rightly belong to classifications shared amongst

clusters.

2.3.8 Map Geometry

The neurons in a SOM are organized in a grid system. Each neuron resides in an

individual grid cell. In some implementations, the grid takes the form of hexagonal

tiles, giving each node six equidistant neighbours. In most other implementations,

a regular Cartesian grid is chosen for simplicity. The quality of the resulting map

is not affected by one’s choice of tile shape [66]. The distance between two nodes is

important when data are mapped into the SOM. A hexagonal grid system with six

neighbours finds all immediate neighbours at a single grid unit distance. Cartesian

grids, however, will produce, in two dimensions, four neighbours along the cell’s

edge at a distance of one unit and four more at the vertices with a distance of
√

2

units. The number of nearest neighbour cells in an SOM will directly affect the

number of computations required as the map is built.

A simple Cartesian ordering of the cells of a SOM does bring about one major

problem. In the process of building the map, weights of the BMU’s neighbouring

cells are adjusted. This promotes the creation of a gradient in the attribute weights

within cell neighbourhoods. In the Cartesian model, however, a number of cells are

found on the periphery of the map. They therefore do not enjoy the same number

of adjacent cells as nodes within the bulk of the map. This creates a bias for these

nodes as they are less likely to influence, or be influenced by, the same number of

adjoining cells as their bulk counterparts. This can result in edge cells attracting

a disproportionate number of the input data [29, 52, 74] and causing bias in the

map.

A number of alternate solutions have been proposed to alleviate the Cartesian

edge effect problem. One solution involves simply wrapping a two dimensional map,

allowing cells on one edge to influence cells on the opposing edge. This essentially
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turns a two-dimensional map into a surface. A number of different surfaces have

been proposed for SOMs; toroidal and spherical are the most common [56, 74].

One issue with using such mappings is the positioning of the appropriate number of

neurons across the volume’s surface equidistant with each other. Another challenge

is keeping track of which nodes neighbour every other node and at what distance.

Placing ten, a hundred or even a thousand nodes at equidistant points on the

surface of a sphere is not a trivial exercise [19, 74].

In the implementation of the SOM for this work, we have concentrated on the

simple Cartesian grid.

2.3.9 Quality Assurance Measures

Self-Organizing Maps are generated in an unsupervised manner. The topology-

preservation qualities of the mapping can be affected by local phenomenon within

the SOM structure. Initialization techniques can create disparate regions within

the map that contain similar prototype neurons. This can result in splitting a

collection of the input space into multiple zones within the map when, in fact, the

SOM regions represent the same class of data. Similar issues arise at the edges

of the map when the attributes of the prototype neurons are not moderated by

the same size neighbourhood as cells within the bulk of the map. It is therefore

imperative to have a measure of how well the constructed map reflects the input

data. Not only is it important to find clusters of nodes in the map, the topology

of the input space must be preserved where like items in the input space, map to

adjacent areas in the SOM.

The Quantization Error (QE) [4, 51, 66] is a measure of how well the cell’s

prototypes represent the input space. It is evaluated as the average difference

between the data vectors and their associated cells prototype vector. The lower

the value, the better the collection of data vectors are properly represented by their

prototype. One difficulty with this measure is that it is an intra-cell measure of

similarity and is therefore unable to gauge the overall effectiveness of the mapping.

The Topographic Error (TE) [4, 51, 66] attempts to address the local self-similar

issue within the map. It is a measure of how similar adjacent prototype vectors

are to the data points they represent. A data element’s two BMUs are determined.

If the map is well ordered, the two BMUs should be adjacent to each other. If

they do not share a common edge or vertex, the algorithm asserts a penalty to the

error measure. When all the data are evaluated, a score for the current map is

obtained. The higher the score, the more distortion is present in the map. During

the training phase of the map, the TE values should decrease in size as similar

prototypes within the map migrate towards each other. This is a more sensitive

measure to the overall topology preservation of the map as it places no restriction

on the location of the data element’s two BMUs.

The Topographic Product (TP) [4, 51] examines local distortions in the SOM.

For each cell, a fixed number of nearest neighbours are used to generate a local
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measure of similarity. This similarity is evaluated for both the SOM cells, and

separately for the data points they represent. These two values are combined to

give a measure of the effectiveness of the map at preserving the topology of the

input space. The total map contribution of these values can be used to determine

if more or fewer cells would provide a map with better topological preservation

than the current SOM.

The Trustworthiness Measure [51, 71] also measures the effectiveness of neigh-

bourhood preservation through the mapping process. It measures the number of

dissimilarities between the SOM and input data memberships of a fixed number of

nearest neighbours. The average is computed over the SOM, the Trustworthiness

Measure is then evaluated as 1 minus the average. The closer the value is to 1, the

less distortion is present in the mapping.

The Neighbourhood Preservation [51, 71] measure is related to Trustworthiness.

The focus of this measure is on the input data and how well similar samples are

mapped to the same neighbourhood in the SOM. Again in this case, the closer the

measure is to a value of 1, the better the mapping preserves the topology of the

input space.

The SOM is typically a 1D, 2D or 3D arrangement of prototype vectors. The

vectors have dimensionality equivalent to the number of attributes in the in-

put data. The mapping process projects these high-dimensional vectors into the

lower, typically 2D, SOM. Topology preservation is an essential requirement for

self-organized maps. The process should ensure that similar objects in the high-

dimensional input space are mapped close to each other in the SOM. Likewise,

dissimilar objects should find themselves mapped further apart. If the map is not

well ordered, then there exist within the map disconnected regions of similarity.

These twists or knots in the map indicate that the map was malformed [26, 38, 58].

The map will have to undergo additional iterations, or a different initialization tech-

nique should be used and the map recreated. The above measures can be used to

suggest a course of action.

2.3.10 Termination Criteria

The Kohonen algorithm is an iterative process. Every data point in the input

space is mapped into the SOM. This process molds the SOM to represent the

input space. Kohonen has suggested that this training phase of the SOM may take

100,000 iterations [39]. If the input dataset itself contains tens of thousands of

data points, this could amount to a significant amount of resources and time. A

balance between resources and the quality of the map must then be entertained.

One measure of the map’s convergence is to monitor the allocation of the BMU.

The selection of a BMU is based on how well it represents an individual datum.

If, during the training phase of the map, we find that every data element is being

consistently mapped to the same specific BMU, then we know that the SOM has

converged on a possible solution. Further processing may not be required.
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Every iteration, however, modifies not only the BMU’s attributes but also those
within its neighbourhood. These changes might lead to an eventual migration of
the input space to new BMUs. As the algorithm progresses, the neighbourhood
region affected by BMU selection becomes smaller and smaller. At the stage where
the neighbourhood function only targets the BMU itself, additional iterations are
of less benefit to the assignment of BMUs. Additional processing will tune the
prototype vectors to more closely resemble their final set of data elements from the
input space.

Each iteration trains the BMU and its neighbourhood to best represent its asso-
ciated data from the input space. Since the attributes of the BMU are moderated
by the attributes of the input data, the process may reach a state where the BMU
is hovering around an average of the data and no longer converging. A simple ex-
ample would be for a prototype that represents two one-dimensional data elements
with values of 2 and 6. If the map converges and these two data elements are al-
ways presented to the same BMU, then every time the data element 2 is presented
to the map, the prototype will become more similar to 2. When 6 is presented
to the BMU, the prototype will be adjusted to be more similar to 6. Both data
elements belong to the same BMU, however, since they do not have an identical
value, the prototype will oscillate between two values ad-infinitum. Extending this
to higher dimensions compounds the problem. Unless all of the data points asso-
ciated with the same BMU have identical attributes, the prototype attributes will
not converge to fixed values. The implementation of the SOM must then specify
at what point further iterations of the algorithm are beneficial. If none of the data
from the input space change their BMU for a fixed number of iterations, the map
may be considered as complete. It may be sufficient to stop at this point.

Any algorithm used to terminate the mapping process must take into account
the Quality Assurance techniques described in the previous section. The Topo-
graphic Error and the Topographic product give a measure of confidence in the
map’s ability to preserve the topology of the input space. This will allow for a
simpler interpretation of the map and the clusters it represents.

2.3.11 Summary

The major concepts which affect the Kohonen Map have been reviewed in this
section. Individually, any of these parameters can have a profound impact on both
the performance and quality of the final SOM. In turn, this affects the quality of
the resultant classifier.

The implementation decisions for any of these map parameters will vary from
one subject matter to another. Determining the size of the map will depend on the
number of attributes. Normalization will depend on the types of attributes. The
similarity measure may need to include some special functions to accommodate
categorical attributes such as author or keywords. Additionally, a number of these
parameters may have to be determined through an iterative process of trial and
error until a satisfactory mapping is achieved.

The configuration of the properties of the SOM will influence the the quality
of the final map. Testing several different configurations will help produce a more
robust and useful classifier.
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2.4 Mathematical Description of the Kohonen

Algorithm

The previous section examined the major concepts involved with the Kohonen
Self-Organizing Map. The most important of these concepts are the measure of
similarity, finding the BMU within the SOM and adjusting the weights once the
BMU is found. This section will leverage these concepts and present in mathemat-
ical terms the approach used in this work to implement the algorithm.

2.4.1 Adjusting Attribute Weights

Kohonen suggests [39] that in a competitive learning environment, the neuron
which most closely matches the input data should be rewarded by tuning its at-
tribute values to more closely match those of the input. In this process, the input
characteristics are being imprinted on the map. The extent of the tuning is propor-
tional to the actual similarity between the input data D and the BMU prototype
P . We can write the per-attribute weight W adjustment for attribute a as:

Wnew = Wold + (Γ× (Da − Pa)) (2.2)

In this equation, Γ is a weighting function which influences the intensity of the
training adjustment. We will see in the next few sections that it is moderated by
the rate at which the SOM learns as well as a cell’s distance to the BMU.

2.4.2 The BMU and the Measure of Similarity

Each iteration of the algorithm requires that for each input data element, the best
matching unit be determined. It is found by calculating a measure of similarity
between the attributes of the data item and each and every prototype within the
SOM. The prototype which expresses the smallest difference is elected as the BMU
for that particular datum.

There are numerous measures of similarity available [6, 15, 40], the implemen-
tation used in this work is the Euclidean measure. If we represent the input data
as d and the prototype vectors as p, their ith attributes will be labelled as di and pi
respectively. The similarity measure S can therefore be evaluated as a Euclidean
measure over n attributes. This equates to the square root of the sum of square
differences between the n attributes:

S =

√√√√ n∑
j=1

(dj − pj)2 (2.3)

In the implementation of the algorithm, the computationally expensive square
root function has been omitted, for our purposes, the result of comparing the
squares of numbers instead of comparing the numbers themselves is sufficient. The
ordering, for all positive numbers, is preserved though not necessarily the relative
magnitude. Since we are solely interested in which is numerically larger, omitting
the square root will not alter the determination of the BMU.
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2.4.3 The BMU Neighbourhood

Once the BMU has been found for each element of the input dataset, we have to
determine the region of the map that should be adjusted to better resemble the
candidate datum.

The BMU neighbourhood is used to tune the region surrounding the BMU to
the properties of the input space, which trains the SOM to have a region sensitised
to similar inputs. Initially, to help order the complete SOM, it is desirable to
have the tuning process, for each input vector, affect a significant portion of the
map. For this to happen, the initial BMU neighbourhood size should be roughly
equivalent to the complete map. After a sufficient number of iterations (Kohonen
suggests 1000 or so [39]), it is beneficial to reduce the range of influence of the input
space. This allows the map to slowly develop regions that are more finely tuned to
specific classes of input attributes. At the same time, data elements can migrate
to more representative BMU regions if their current associations are less and less
representative. Over numerous iterations of the algorithm, the neighbourhood size
is slowly decreased until it reaches the size of a single SOM cell. This promotes
the algorithm to establish, at the node level, a region of prototype vectors which
best represents a distinct class of objects.

Starting from an initial radius of σ0 equal to the majority of the map, the radius
is decreased based on the number of remaining iterations [40]. Hence for the ith

iteration of a total of λ, we can calculate the BMU neighbourhood radius as:

σi = σ0e
−i/λ (2.4)

For each iteration, this equation shrinks the range of influence of each object
of the input space as it is re-introduced into the SOM.

2.4.4 The Learning Rate

When an input datum is associated with a specific BMU, the weights of BMU’s
neighbourhood prototypes must be adjusted to the new input. The extent to which
we allow the adjustment to happen affects how quickly the map can approach an
optimum solution.

In the early stages of building the SOM, large adjustments to the prototype
weights allow the BMUs to migrate towards the attributes of the input data more
quickly. These coarse adjustments permit a more rapid adjustment of the map’s
attributes. This, in turn, allows the BMUs to better represent the input data.

As the algorithm progresses, reducing the intensity of the learning or the coarse-
ness of the adjustment will make the map more sensitive to small fluctuations in
properties. These smaller variations in properties might help identify separate
classes. We therefore allow the learning rate to vary with an exponential decay
function similar to that of the neighbourhood size.

Ri = R0e
−i/λ (2.5)

This equation [40] gives us a measure of the intensity of the learning component
of the algorithm Ri, relative to the initial learning rate R0, for the ith iteration of
λ.
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2.4.5 Distance Effects

When weights are adjusted for the BMU, the intent is to make that specific neuron

more attuned to the unique input it represents. It is also desirable to enhance

the immediate region surrounding the BMU to like elements of the input space,

which enforces the topology preserving properties of the SOM. If the strength of

the adjustment is made uniformly over the BMU neighbourhood, the tuning effect

is diluted over the region. We therefore introduce a distance-dependent factor to

the weight adjustment scheme. As with the learning rate, this weighting factor

must also decrease in strength as the algorithm progresses through each iteration.

If we define the Euclidean grid distance between the cell being adjusted and

the BMU as g, we can write the distance modifier as [40]:

Θi = e−g
2/2σ2

i (2.6)

We can see that in this equation the strength of the adjustment is proportional

to the ratio of the distance from the BMU and the maximum radius of the BMU

region as determined by Equation 2.4.

2.4.6 The Mapping Equation

The above sections have introduced a number of factors which combine to influence

the amount that a prototype’s attribute weights are adjusted. We can now combine

these findings into an final expression that can be used to describe the adjustments:

W ′
a = Wa + ΘiRi((Da −Wa)) (2.7)

In this equation [40], W ′
a represents the new weight to be assigned to the pro-

totype vector’s a attribute. It is based on the attribute’s old value Wa and the

attribute value of the data item Da. The extent of the adjustment is moderated by

both the distance from the BMU using both Θi and the learning rate Ri. We can

then express Equation 2.7 as a general expression for the attributes, but in terms

of iterations:

Wi+1 = Wi +R0e
−i/λe−g

2/2σ2
i ((Di −Wi)) (2.8)

In the Kohonen algorithm [40], only cells within the BMU region are affected

by these weight adjustments.
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2.4.7 Summary

In this section we have examined the moderators used in adjusting SOM cell weights

based on the input data. These influences combine to give us a framework which

we can use to implement the Kohonen algorithm and create Self-Organizing Maps.

The SOM algorithm maps a high-dimensional space into a lower dimensional

space. This process is undertaken to facilitate the extraction of useful relation-

ships within the data that are invisible in the original dataset. A proper topology

preserving mapping will group like objects in the original space to closely neigh-

bouring regions in the map space. The next section will cover techniques which

can be used to discover patterns and relationships within the map. These patterns

will help identify regions of the map that represent clusters of like objects which

are of interest and potentially new unknown relationships.

2.5 Interpretation of the SOM

The objective of machine learning is to discover patterns and relationships within

a dataset. These features can be leveraged to group like objects into distinct

clusters. Further analysis can then focus on the characteristics of the cluster and

not peculiarities of each individual object. For very large datasets, the computation

cost of standard clustering techniques becomes significant [60, 69]. In such cases it

is possible to use a SOM to not only reduce the dimensionality of the dataset but

to also reduce the number of objects which require clustering. This allows a large

volume of data, the input space, to be analysed through the investigation of the

properties and relationships that exist between the prototype neurons in the SOM

grid.

In the analysis of a SOM, groups of similar prototypes, representing multiple

similar objects from the original dataset, will belong to the same cluster. Con-

versely, prototypes that are dissimilar should exist in their own separate clusters.

Clustering techniques therefore need only investigate as many prototypes as make

up the SOM and not the dimensionality of the original dataset.

There are many techniques that have been developed to help discover existing

clusters in a dataset. It is sometimes possible to identify clusters of nodes through

the visual inspection of the map. If the cluster boundaries are not very well de-

fined, determination of cluster membership can become a subjective exercise. The

methods described in the next few sections have evolved to help alleviate most of

the subjectiveness surrounding the determination of cluster membership.
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2.5.1 K-means

The k-means Algorithm [62] is based on the creation of a collection of k prototype

cluster centres. The cluster centres are then compared to the SOM’s prototype

neurons and prototypes are assigned to cluster centres based on a similarity mea-

sure. Once the map prototypes are all allocated, they are used to generate new

cluster centroid values and the group averages of the properties are then assigned

to their respective cluster centroids. A new iteration is performed comparing the

map neurons to each centroid. If required, cluster memberships are updated to

better reflect similarities. The process is repeated and memberships adjusted until

no further changes occur. When the clustering reaches a steady-state, the cluster

centroids represent a set of prototypes which best describe the SOM.

This algorithm requires prior knowledge of the number of expected clusters

within the map and fixing the initial number of clusters may introduce some bias

into the process. If there is a known number of clusters, this algorithm may be

appropriate. However if the actual number of clusters is unknown, fixing their

number may results in some more subtle aspects of the map may be missed. In

such cases, the initial number of assumed clusters can be varied and the algorithm

processed a number of times. A measure would have to be developed to quantify

a quality of clustering before a winning configuration can be determined. The

measure would have to include some evaluation of the homogeneity of the clusters

and would necessitate significant domain knowledge of the underlying dataset. One

such measure is to calculate the sum of the squared error (SSE). This is calculated

as the sum of the square of the differences between a cluster centroid and all of its

members. The smaller the SSE, the closer the k-means centroids represent their

data elements. If we compare multiple k-means calculations with differing number

of centroids, the one which produces the lowest SSE yields the best representation

of the data. The number of initial centroids must, however, be reasonable for the

dataset being examined. Choosing an artificially high number of centroids will

produce an artificially low SSE. The choice of the number of centroids should rely

heavily on domain knowledge.

2.5.2 Single Linkage

The Single Linkage [62, 69] approach to clustering is an agglomerative hierarchical

clustering technique. One benefit of this approach is that no assumptions are made

for the number of clusters present in the data. Every prototype neuron in the SOM

is initially considered an individual cluster, clusters are then joined together based

on their similarity.

The first iteration will see the two neurons in the SOM which are most similar,

joined together to create a new cluster of two points. The algorithm then proceeds

to select the next two most-similar prototypes and joins them together. This can
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result in either creating a new cluster or merging prototypes into an existing multi-

prototype cluster. One advantage of this technique is that it is not influenced by

the grid coordinates of the prototypes being clustered. This has the effect that

distortions in the topology of the map are ignored and like-prototypes in disjointed

portions of the map are clustered as if they were adjacent. Each iteration results

in the merging of two clusters until only one cluster remains.

The benefit of this technique is that it does not require a priori knowledge of the

number of clusters. The drawback though is that, when the algorithm terminates,

we are left with a single cluster. It is then necessary to review the mergers and

decide which mergers are appropriate and which occurred between two clusters

which should have remained distinct. At a certain point, the similarity measure

becomes too large and the representative clusters are too dissimilar to merge. This

cut-off point can be evaluated using the same SSE technique as describe above.

2.5.3 Complete Linkage

The Complete Linkage algorithm [62, 69] is applied in much the same way as Single

Linkage. The difference in the two techniques is the selection process for merging

clusters.

In Complete Linkage, clusters are ranked based on their maximum distance

from all other clusters. With this technique, for every pair of clusters, the similarity

between their memberships is compared. Their most distant members are used to

set the cluster-cluster distance. A tally is kept of the most dissimilar clusters.

When the evaluation is complete, the clusters which are the least dissimilar, with

the shortest cluster-cluster measure and hence most similar, are merged.

By selecting the least dissimilar clusters, the algorithm is less sensitive to noise

and outliers [62]. Similar to Single Linkage, this algorithm is not bound by a pre-

determined fixed set number of clusters of topology preservation. The necessary

re-evaluation of the inter-cluster distances and determining the smallest magnitude

makes this technique much more computationally expensive than Single Linkage.

2.5.4 Visualizing and Interpreting Clusters

The processing of the SOM and applying clustering algorithms to the resultant map

all occur without direct intervention. There are no mechanisms, in the environment

used in this work, to view the process as it moves forward. Providing such an

environment would have a significant impact on the progress and efficiency of the

SOM implementation. This is left for future work outside of the scope of this

thesis.

The techniques discussed in the previous sections only provide a mechanism

by which prototypes can be grouped or clustered based on their overall similarity.

They do not provide a list of labels for each cluster, such as “Sciences” or “History”.

These will have to be determined after the process is complete and known data are
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presented to the map for classification. The number of clusters discovered within

the SOM is also undetermined unless one uses a technique which requires this to

be fixed beforehand.

Identification of the clusters will depend on the subject matter expert. A priori

knowledge of the data will guide the decisions on how to separate the clusters into

meaningful classifications. It is possible to plot the resultant SOM on a grid system

using unique colours for each cluster discovered. For algorithms such a Single or

Complete Linkage, this would results in a map containing only a single cluster. For

such techniques, additional steps are required to separate the single cluster into

the proper number of candidates.

A technique for evaluating the clustering process is to generate a dendrogram.

A dendrogram is a tree-like representation each step of the clustering process. Each

prototype vector is represented by its own unique cluster leaf-node. As prototypes

are clustered together, branches are used to illustrate the merge. The height of

the point where the branches are joined represents the similarity between the two

clusters. Eventually, at the end of the process we are left with a single branch

which is considered the trunk of the tree.

It is then up to the person analyzing the data to decide which merges should

be pruned off into distinct clusters. Merges that are judged to represent clusters

which are too dissimilar are used as pruning points. All branches belonging to

the pruned region will be given the same cluster label. Once this step has been

performed, the SOM can be re-plotted showing the unique clusters found within

the data.

Techniques such as the Kohonen SOM do not require pre-training with data of

known classification. Once trained, however, having data which represents known

classes can facilitate labelling the identified clusters of the map. Leveraging such

data will help associate known clusters with known classifications. At the end of

the process, clusters which have not been tied to existing classification may indicate

new and previously unknown classes or sub-classes. This could then lead to a review

of the pruning process or investigation into the newly discovered classification.

2.5.5 Summary

We have examined three different techniques for determining the cluster relation-

ships between the prototype neurons in the SOM. K-means as well as single and

complete linkage allow to the grouping of like prototypes into clusters. Dendro-

grams and other techniques can be applied to the final cluster and map to identify

distinct regions of the map which represent the desired classifications. In most

cases, knowledge of the data and rough idea of the expected number of classifica-

tions are required to fully interpret the results of the SOM process.
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2.6 Implementing the SOM

The description of the Kohonen algorithm given in previous sections is fairly

straight forward. The concepts of reducing the neighbourhood size and the reduc-

tion in how aggressively the algorithm learns, once explained, make some intuitive

sense. What is less clear, however, is the conversion of the algorithm into an effi-

cient computer application. In this section we will introduce some of the challenges

faced when implementing the algorithm.

2.6.1 Memory Consumption

Current consumer grade computers are significantly more powerful than those avail-

able only a decade ago. The amount of physical memory available today outstrips

by a few orders of magnitude the amount of disk storage available when Kohonen

first introduced the SOM. Expectations are that this trend will continue for the

foreseeable future.

Though complex in its structure, a Self-Organizing map does not in itself occupy

a significant amount of memory. To efficiently process a dataset through a SOM,

the application will have to maintain a copy of the map in memory. For the best

performance, it is also desirable to maintain a complete copy of the dataset in

memory as well. The SOM algorithm repeatedly adjusts the map by exposing it

to the original data, reading the data from disk for every iteration would incur a

significant time cost.

Each data element that we want to examine brings with it a set number of

attributes A. Each one of these properties will be allocated a unique region of

memory. The size S, in bytes of this portion of memory will be dependent on the

data type being stored. For each data element, we will require a minimum of A×S
bytes of memory for integer attributes (4 bytes each for a single precision 32bit

floating point number). Each prototype neuron in the SOM will also require A×S
bytes of memory.

Table 2.1 illustrates memory requirements for a variety of SOM geometries.

Most current computers possess several Gigabytes of main memory. All of the

examples shown in the Table 2.1 represent but a fraction of the memory available.

What is not immediately obvious though is that for every computation involving

each of the data elements, the data must pass through the machine’s cache. Even

the most cache-rich server class machines rarely exceed 16Mb of cache memory.

Hence, though the data may easily fit into the memory of a single machine, there

is a performance degradation issue if we can not fit both the data and the whole

map into the available cache.
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2.6.2 The Computational Load

The SOM algorithm is performed over numerous iterations until a stopping crite-

rion is reached. For each iteration every data element is presented to the SOM in

order to determine its BMU. This means that a similarity measure is calculated

for each comparison. The similarity measure involves calculating the Euclidean

distance (Equation 2.3) which is made up of a subtraction, a multiplication and

an addition followed by a square root. If, as we have previously mentioned we

omit the expensive square root calculation, we are left with three floating point

operations per attribute.

These operations must be performed for each SOM cell and for each element

of the input dataset. Once a BMU is found, its prototype weights as well as those

in the BMU neighbourhood, must be adjusted. This involves evaluating Equation

2.4 for each attribute: two exponential functions, a subtraction, and an addition.

Table 2.2 summarizes the computational load of implementing the SOM algorithm

for a single iteration through the data.

For simplicity, the weight adjustment calculations are taken for the first iter-

ation where we adjust all of the prototypes in the map, which is a slight over-

statement of the load. The BMU region is typically circular and maps are usually

square or rectangular hence a few prototypes in the corners of the map will be ex-

cluded. Our calculation will provide a load estimate for the worst-case scenario, as

the algorithm progresses and the BMU region becomes smaller, the contribution to

the total number of calculations from weight adjustments becomes smaller as well.

In the final iterations, the neighbourhood radius will be one, and only the nearest

neighbours of the BMU will be adjusted. At this point in time the computational

load of the weight adjustments will be minimal.

If we simply look at the number of CPU operations required to perform the

calculations required, we can get an estimate for the CPU load for various SOM

scenarios. In this example we will use the term operations to represent a “time

cost” for the processing of an operation such as addition or multiplication. Since

the actual real-time cost of these operations is architecture specific, based on nu-

merous performance enhancement tricks such as instruction pre-fetching etc., we

will simply use discrete artificial units of time for our evaluations. In this simple

model, we will assign a time cost of 1 to additions and subtractions, 2 to multipli-

cation and 3 to division. It is important to note that this is an oversimplification

of the whole process and does not provide an accurate measurement of the time it

will take to produce the target SOM. This model ignores memory and cache access

times, instruction look ahead and a number of other performance enhancements

that are possible. This exercise does, however, allow us to gauge the computa-

tional requirements of the two main processes required for map building, namely

the identification of the BMU and adjusting the weights in the BMU region. Table

2.2 provides an evaluation of the number of computations required in the first pass

through the SOM algorithm for a dataset with 5 attributes.
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Number of operations
SOM
Size
(nxn)

#
cells

Dataset
size

Find the
BMU

Adjust Weights
(r=BMU re-
gion)

Last Iteration
(r=1)

64 2,000 2,560,064 800 16

8x8
64 10,000 12,800,064 800 16
64 100,000 128,000,064 800 16

100 2,000 4,000,100 1,248 16

10x10
100 10,000 20,000,100 1,248 16
100 100,000 200,000,100 1,248 16
256 2,000 10,240,256 3,216 16

16x16
256 10,000 51,200,256 3,216 16
256 100,000 512,000,256 3,216 16
400 2,000 16,000,400 5,024 16

20x20
400 10,000 80,000,400 5,024 16
400 100,000 800,000,400 5,024 16

Table 2.2: 5 attribute dataset CPU processing demands for various 2D SOM ge-
ometries.

It is important to stress that the numbers presented here are for a single iter-

ation through a 2D SOM. The radius used in all calculations for the initial BMU

region is equal to half the length of the side of the SOM. Extending these results

to 3D increases these results by a factor of 4
3
r which is the ratio of the the volume

of a sphere of radius r to the surface area of a circle of the same radius.

If, as Kohonen proposes, the training of the SOM might entail 100,000 passes

through the original dataset, the computational requirements can be significant.

2.6.3 Parallelization Opportunities

The significant number of computations required to satisfy the Kohonen algorithm

present a challenge for implementation. The sequential execution of all operations

can require several hours, if not days, to complete on a standard consumer-grade

computer. A batch variation of the Kohonen algorithm has been developed to

reduce the number of computations required while building the map [40, 42]. It

achieves an improvement in speed by not updating the prototype weights until after

all BMUs have been identified for the input data elements. Though this improves

the speed of each iteration, it does so at the expense of allowing the map to adapt

in a more gradual manner to the inputs.

Other approaches to improving the performance of the SOM is to exploit op-

portunities for parallelization within the algorithm. Lawrence [42] identifies two

methods for implementing neural networks. The first, called network partitioning,
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divides the processing workload across multiple processors. The other approach,

data partitioning, presents distinct subsets of the input data to separate maps

implemented across multiple processors.

The Batch SOM exploits a parallel approach to identify BMUs since the SOM is

static until all BMUs are identified. With this approach, both partitioning schemes

are possible though Lawrence argues that the data partitioning offers much greater

opportunities for scalability. In this case, the exchange of information relating to

the SOM updates can wait until the complete input dataset has been processed.

The original Kohonen algorithm, however, sees the SOM adapting individually

to each input. This restricts our ability to parallelize the selection of BMUs using

the data partitioning scheme as each iteration adjusts the prototype weights and

therefore creates a new map space for subsequent data elements.

The algorithm does, however, allow for a certain amount of parallel processing.

Unlike the batch SOM approach, we can leverage network partitioning. With this

approach, there are two main opportunities. The first is in the selection of an

individual input element’s BMU. The search space for the BMU covers the whole

map and it is possible to subdivide the map into equal portions and present each

as an independent search space. The results from all of the searches can then be

compared to find the overall BMU. For a simple 2D Cartesian map, this can be

accomplished by subdividing the map by rows or columns. When the map is evenly

distributed into regions of identical size, the processing time for the search should

be identical for all sub-maps.

The second opportunity for a parallel approach is the adjustment of the weights

after a BMU is found. Much like the search, it can be broken down into a per-

column or per-row tasks and each assigned to a different parallel thread. Unlike the

previous opportunity, the process of adjusting the weights of the map uses different

resources based on the portion of the map being examined. The BMU region that

is adjusted varies in size as the algorithm progresses and rarely covers the complete

map. This means that some portions of the maps will not undergo any prototype

modification while other regions will see all of their prototypes changed. This leads

to an imbalance in the computational resources required by each parallel thread. In

the worst case scenario, a single parallel stream will perform all of the calculations.

Fortunately, this only happens when the radius is small which means the BMU

region only contains a small number of nodes. The general case, however, will

see multiple parallel threads sharing the workload which will improve the overall

performance of the mapping process.

This 2D model can be extended to our 3D SOMs. The volume of the SOM can

be subdivided into separate planes. Threads can then be created to process both

the search and weight adjustments as required.
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2.6.4 MPI versus OpenMP

There are two main type of parallel multi-processors systems: shared memory or
distributed memory. The choice of which to use is driven by the algorithm being
implemented. In the case of the Kohonen algorithm, the SOM itself is treated
as a monolithic object. All aspects of the mapping process rely heavily on the
current state of the prototype vectors and each iteration through the data has the
potential of affecting the whole map. As such, any implementation of the algorithm
will require all code running in parallel to have simultaneous access to a current
image of the map.

In a simple distributed-memory approach to parallelization, each computer has
a single processor and its own unique memory address space. An implementation
of the algorithm on such an architecture would require a local copy of a portion of,
or the complete SOM on each machine. It would also require that each machine
possess its own copy of the input dataset or a portion thereof. Each processor
would therefore be responsible for a specific region of the SOM or of the input
data. Any changes to the local portion of the map would necessitate notifying all
of the other processors as their local maps may be affected as well. The processor-
to-processor update notifications and their data are implemented using a standard
library, for example one known as MPI [42, 49].

In the non-batch version of the SOM, the benefit of sharing the computational
load amongst separate memory spaces is lost when the algorithm reaches the stage
of updating the SOM prototype weights. As an example, since the determination
of the BMUs is based on prototype weights, all machines involved must therefore
run in lock-step. Once each processor has determined its BMU, its results must be
compared to that of all of the others. This requires each processor to communicate
with every other processor. These inter-process data exchanges occur at a rate
significantly slower than memory access times. The algorithm therefore is likely
to spend a significant portion of its time communicating and less time computing.
Implementing a non-batch version of the Kohonen algorithm using a distributed
memory architecture is therefore not expected to be very efficient.

The second parallel approach is using a multi-processor system that uses shared
memory. Such systems are programmed through the use of libraries which manage
the overhead of parallelization. One such library is OpenMP [48]. The benefits of
such a system are based on the fact that no inter-processor communications are
required while accessing the SOM. All processors involved in performing the map-
ping process have complete access to a single shared copy of the map. Care must
be taken in the implementation of the algorithm to ensure that no two processors
are performing updates on a single prototype at the same time. In the algorithm,
SOM updates are only performed when weights are adjusted. If, as we mentioned
previously, updates are performed on a per-row, per-column or per-plane basis, no
contention for prototypes will be experienced. The process of parallelizing the code
must therefore properly segment the SOM to prevent overlaps in the updates. Im-
plementations of the Kohonen algorithm using OpenMP are therefore well suited
for shared-memory computers.
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2.6.5 Performance Issues with OpenMP

Shared-memory computers are convenient in that they remove the need for ex-

plicit message passing and program coordination issues encountered on other ar-

chitectures. Properly allocating unique portions of the SOM to distinct processor

removes the possibility of multiple access to the same SOM elements by two pro-

cessors. There are, however, a few aspects of such environment which must be

taken into account when implementing an application.

Though the memory space of shared memory computers is shared, CPU access

to specific elements stored in memory is greatly enhanced if the data required is

stored in the machine’s cache. If a requested data item is not in cache, retrieving it

from main memory will incur a significant time cost. Members of the SHARCNET

technical staff performed evaluations of the SAW cluster using the lmbench2 tools.

They found that access L1 cache items times were on the order of 1.5070ns, L2

cache was 8.7410ns and main memory on the order of 105.1ns [44]. From this we

can conclude that if an item is not in at least the L2 cache, accessing that data

would take over twelve times longer to access. This illustrates that as much data

as possible should be in kept in cache. This is especially true for the SOM itself.

If the SOM is not cache resident, then finding BMUs and adjusting weights will

suffer a significant performance hit.

The dataset is typically much larger than the SOM. If the implementation of

the code forces a large portion of the data to be stored in cache, it may cause

portions of the SOM out of cache. This will have a significant negative impact on

performance. The parallel portions of the algorithm should then be designed to

operate on a per-iteration per-data element approach. This would see a minimum

of the input data being pre-fetched in cache while having the SOM access more

frequently, improving its chance of staying cache resident.

Another significant performance impact can come about from overhead in the

OpenMP library. When a portion of code is parallelized, overhead occurs as the

system creates threads to handle the requested task. The more often threads are

created, the more overhead is incurred by the application and the more time is

spent on thread creation and tear-down. To best manage these performance costs,

the portions of code that are to be parallelized must attempt balance the thread

creation rates and the gains achieved from multiple threads.

As an example, we can examine a simple 3D SOM consisting of a set number of

j planes. Each plane in the SOM consists of n rows and m columns. Let us say that

j < n < m. If the parallelization were implemented to maximize parallelism for the

m items to be evaluated, the routine would create j×n×m processes. If, however,

the parallelization created a thread to process each plane, only j processes would

be created. This would save the equivalent of n ×m time the creation/teardown

costs. Even for a small 5× 7× 9 SOM, this represents a decrease from 315 threads

2The LMbench - Tools for Performance Analysis are available at
http://lmbench.sourceforge.net/
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to only 5, a factor of 63 reduction in overhead. Depending on the thread capacity

of the system used for the computations, creating j×n threads may be an equally

effective variation with only a factor of n increase in overhead. This overhead may

be less than the efficiency gained through additional threads resulting in a more

efficient implementation.

2.6.6 Summary

This section discussed a number of important aspects which could affect the per-

formance of the Kohonen algorithm’s implementation. The shared and distributed

memory approaches were compared. OpenMP was found to be more applicable to

the efficient performance of this implementation of Kohonen Maps. Other aspects

of the application design were also examined in terms of their possible impact on

overall performance.

2.7 Selection a Subject Matter to Model

Data mining has always been an important part of astronomical research [2, 8].

Examples of this include astronomers examining photographic plates for objects

of interest as well as researching ancient manuscripts for celestial events. As the

volume of data increased and in order to mine existing data, automation of data

collection started. As an example, the Automated Plate Scanner Catalog started

a project to digitize the National Geographic-Palomar Observatory Sky Survey

photographic plates for both the blue and red portions of the spectrum [59]. As

early as 1992, neural networks were implemented for the automated analysis of the

images to separate out stars from other objects.

Machine learning algorithms have long been applied to astronomical research

[9, 23, 68]. Techniques such as ANN and SOM offer possible avenues in automating

the classification of objects. Though a significant portion of the application of

machine learning focuses on examining data through data mining efforts, some

neural networks are applied directly to the raw data as they are acquired. It

is known that some celestial events, such as gamma ray bursts, are precursors

to other events of interest. Machine learning algorithms have been adapted to

monitor streams of raw data from some instruments and generate alerts for events

of interest [7, 9]. When such alerts are raised, additional resources can be brought

to task for a more thorough examination of the target.

In most cases, the time-sensitive nature of the machine learning techniques is

not as critical. As sky surveys become more expansive and farther reaching, they

witness more and more objects. It is of great interest to apply automated pro-

cesses to these objects as their rate of discovery far outstrips manual classification

capacities [53].
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One area of astronomy which relies on accurate morphological classification of

galaxies is the creation of evolutionary models. It is believed that as galaxies age,

they transition from one observable morphology to another [13, 68]. The study

of the mechanisms involved and their effect on these transitions, or evolution, is

an active area of research. To generate an understanding of the various stages of

evolution, it is important to study galaxies of various morphologies. As the rate

of discovery of new galaxies is increasing all of the time [2, 41], it is important to

find an accurate automated process which could help assign morphologies to each.

The focus of the research in this thesis is to apply the technique of Self-

Organizing Maps to the automated classification of galaxies. The following sections

will describe the reasoning behind this choice as well as the properties of galaxies

which are deemed important in identifying morphologies.

2.7.1 Galaxy Evolution

Observations of galaxies have revealed that they come in various shapes and mani-

fest distinct attributes. In an attempt to create some order out of the observations,

Edwin Hubble proposed a galaxy classification scheme, commonly referred to as

the Hubble Tuning Fork, in 1926 [30]. The classification scheme not only proposes

a way to separate out galaxies but it also hints at the possibility that galaxies

evolve from one type to another. An example of the original hubble tuning fork

diagram is shown in Figure 2.6 [68]. There have been numerous adaptations and

proposed changes to the approach since then [13, 68]. These schemes have been

proposed to adapt Hubble’s original work to account for newly observed galaxy

morphologies.

The original Hubble classes were derived from observations performed in the

visible range of the light spectrum. The process was laborious and the results

were often based on subjective evaluations of what could be derived from the

photographic plates. Results often depended on the interpreter and could vary

significantly from one specialist to another [25]. The objective of all of the clas-

sification schemes is to group galaxies into families. These classes and sub-classes

are proposed as a model which can be used to study the evolutionary life cycle of

galaxies. Astronomers could then use these classes to map out the different stages

of galactic evolution similar to what they have done for stars in the H-R diagram

[10, 41]. In this chapter we will examine different properties that can be used to

describe a galaxy. From this, we will propose an approach which could be effective

in mapping the different stages of a galaxy’s life cycle.
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2.7.2 Galaxy Attributes

In the simplest of models, a galaxy is a collection of stars and interstellar material.

The constituent stars are expected to be similar to those observed in our own

galaxy. Stellar evolution has been extensively studied and modelled, resulting in

the creation of the H-R diagram [13, 72]. This model has proven to be quite

successful in describing the life cycle of stars. Younger galaxies would be expected

to have younger, bluer stars. Conversely, older galaxies would present a larger

fraction of older, redder stars. It can be argued that, in a isolated and relatively

static galaxy, the populations of young and old stars could be used as a direct

measure of its age. If according to our models such as the H-R diagram, a star

requires eight billion years to reach a certain stage in its evolution, then observing

such a star population in a distant galaxy would provide for a lower limit to the

galaxy’s age.

The interstellar material present in a galaxy is made up of planets, dust and

gas. These are not, in themselves, capable of creating a significant, detectable

amount of radiation from internal processes. These objects can, however, affect

our detection of the radiation signals generated by the local stellar population [33].

The interstellar material can reflect or absorb portions the signal. If absorbed, this

radiation can also serve to excite this interstellar material. It would then follow

that once the material is sufficiently heated, it would emit radiation of its own.

This radiation will be characteristic of the substances itself. These re-emissions

are responsible for signals in the infrared portion of the spectrum.

Our ability to observe galaxies is dependent on our ability to measure their

properties. Using instruments specifically crafted for this purpose, we can measure

the amount of energy being received from each galaxy. In contrast to early in-

vestigations, modern instruments allow us to study galaxies in wavelengths which

span the electromagnetic spectrum. The extended range of frequencies available

through modern instruments allows for a more comprehensive representation of the

physical processes at work within each galaxy candidate. Other tools allow us to

measure the size and distance of each galaxy. Leveraging these various techniques

allows for the direct comparisons of attributes between individual galaxies. It also

permits the grouping of galaxies into families which possess similar properties.

2.7.3 Measuring Radiation

The original photographic plates used in astronomy provided a method of capturing

the light emitted from galaxies. Depending on the chemicals applied to the plate

and wavelength filters applied to the optics, it was possible to affect the plate’s

sensitivity to specific wavelengths. The darker images on the plate indicated that

more chemical reactions took place implying that more radiation was received.

From this, astronomers are able to get a sense of the brightness of a galaxy for the

specific optical region under study. The brightness can then be compared to known
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standards and a magnitude measurement determined for the galaxy. The observed

galaxy would exhibit different magnitude values depending on the frequency of the

light observed.

To extend the range of frequencies that can be studied, detectors capable of

measuring radiation intensities outside of the visible spectrum have been developed.

Also, a number of observatories have been launched into space to overcome the

limitation to ground-based observations caused by the atmosphere. Currently, it is

possible to measure the radiation received from a galaxy from the radio region into

the γ-ray range. Measurements taken with these instruments record the amount

of radiation per unit of surface over the detector. This quantity of energy per unit

surface area is know as the flux. To facilitate the comparisons between the amount

of signal received at different wavelengths, astrophysicists use a unit of measure to

represent the flux density of a signal. This is a measure of the flux per frequency

interval of the radiation being observed, essentially a measure of the radiation

received per oscillation of the electromagnetic wave. The unit of measure used to

describe flux density is the Jansky and is equivalent to 10−23 erg s−1cm−2Hz−1.

2.7.4 The Observed Spectrum

Most objects either emit, reflect, transmit or absorb the flow of a detectable quan-

tity of radiation. The amount of interaction between the radiation and the object

is dependent on the composition of the object as well as the frequency of the radi-

ation. Further, radiation might also be scattered as it flows through objects. Our

ability to witness the presence of an object is dependent on our ability to detect this

radiation. Extracting the qualities of the detected signal allows the determination

of the physical processes occurring at or surrounding the source.

The stellar populations within galaxies generate a combination of measurable

forms of radiation and the various stages in star development provide identifiable

signatures that can be detected, measured and classified. Within the host galaxy,

the radiation generated by stars is also subject to absorbtion and scattering. The

effects of these processes on the incident radiation are dependent on the nature

of the incident object; they can result in the generation of secondary emissions of

radiation. The properties of the induced emissions will be indicative of the makeup

of the material affected.

The resultant radiation emitted by a galaxy will therefore be a combination of

the spectra from the various star populations, emissions from interstellar material

as well as contributions from other more exotic processes. Components of the

resulting spectrum can be used to identify specific physical processes that are taking

place within each individual galaxy. As such, analysis of the emitted radiation and

its intensity at various frequencies can be used to identify specific characteristics

of the target galaxy.
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2.7.5 The Spectral Energy Distribution

The collection of frequency specific measurements for a galaxy can reveal a great

deal about the galaxy itself. The intensity of the individual signals allows us

to calculate the amount of energy being emitted by the galaxy at each specific

wavelength. A graph of the amount of energy being emitted by a galaxy versus

the wavelength is known as a Spectral Energy Distribution or SED.

The SED of a galaxy is, as we have mentioned previously, depends on the

characteristic processes occurring within the galaxy. As galaxies age it would be

expected that the types of processes that can take place would change over time.

Certainly, based on the H-R diagram, one would not expect to see indications of

the late stages of a star population’s life cycle to occur in a target galaxy unless

the galaxy itself was at least as old as required by the stars. This would lead to the

notion that most galaxies would exhibit different SEDs, not only from each other

but one should also expect the SED of a galaxy itself to change over a long period

of time. Like galaxies of like age should present similar SEDs if their internal

constituent star populations are compatible. Conversely, galaxies of the same age

but of very different morphology may provide substantially different SEDs. An

opportunity exists where the SED of a number of galaxies could be compared and

this might lead to some insight into their evolution.

Different models are being developed to reproduce SEDs based on known stellar

processes [20, 72]. These models not only take into account stellar evolution, they

also include effects on the SED caused by interstellar gas and dust as well as

photometric redshifts.

Figures 2.7, 2.8, and 2.9 are examples of SEDs obtained from the NASA Ex-

tragalactic Database (NED) [47]. Examination of these figures shows distinct dif-

ferences between the SED. The differences are not limited to the intensity of the

measurements but to the shape of the overall curve as well, which is an indication

that the SED may have the potential to lead to a classification system for galaxy

morphologies. It is also important to note that the scatter in the data plotted at

any one frequency is probably a better measure of the error present in the data

than is given by the error bars present for any individual measurement.

2.7.6 Distance and Velocity

Hubble’s other major contribution to astronomy was the observational verification

of a relationship between the distance of a galaxy and its radial velocity [43]. Mea-

surements of the distance to several galaxies when plotted against their velocities

showed that with the exclusions of a few members of the local group of galaxies,

the further a galaxy was, the faster it was moving away from our own galaxy.

This distance-velocity relationship has a direct impact on the study of galaxies.

Large, automated galactic surveys do not allow for the detection and measurement
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of standard distance markers to estimate the separation between each and the

earth. Using the Hubble relationship, such distances can be determined.

Similar to the Doppler shift for sound, the velocity at which an object is moving

in relationship to the earth affects the wavelength of the electromagnetic wave

measured. For objects moving towards the Earth, the wavelength appears to be

shortened. Similarly, for objects like galaxies which are moving away from us,

the wavelength appears elongated by an amount proportional to its velocity. For

low redshift objects, the effect is below a detectable limit. For larger velocities,

the effect can become significant. Velocities of distant galaxies and hence their

distance, can be determined using this Doppler shift and the Hubble Relation in

Equation 2.9 [33].

cz = H0d km s−1 (2.9)

where d is the distance, H0 is called the Hubble Constant with a value of

71 km s−1 Mpc−1 and z is obtained from:

z =
∆λ

λ0
(2.10)

where ∆λ is the shift in wavelength and λ0 is the source wavelength. If spectral

lines of known origin can be found in the spectrum of a remote galaxy, calculations

can be performed on the amount of redshift observed to obtain a radial velocity.

2.7.7 Corrections

The radiation signal emitted by the target galaxies must travel from the source

object to the detector and the distances over which the signal must travel will

impact our ability to measure its intensity. Also, the pathway the signal follows

is not devoid of sources of interference. These two factors must be accounted for

before we can attempt to compare galaxies to one another.

The flux density of a detected electromagnetic signal is inversely proportional to

the square of the distance between the source and the detector. To enable direct

comparisons between measurements made of galaxies known to be at different

distances, we must adjust our data. For the purpose of this work, all measurements

were adjusted to a standard common distance of 10MPc (see Section 4.3, Equation

4.3).

There is an inherent lower limit to a device’s ability to detect a signal. Much as

the human eye is unable to see many faint astronomical objects, modern detectors

also have their limitations. Due to this sensitivity limit, faint objects may be

undetectable. This bias is known as the Malmquist bias [63], and means that at

greater distances only brighter sources are seen, not fainter ones. Also, different

studies use different types of detectors, which can lead to bright objects in one

frequency band being invisible to detectors in other bands.
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We know from studies within our own galaxy that the signal received from
objects is affected by the interstellar medium present. This effect is known as
extinction. Though we have no techniques to evaluate the level of extinction oc-
curring within distant galaxies, we can compensate for signal degradation caused
by dust within our own galaxy which has been reasonably well mapped. The inter-
nal dust distribution in the Milky Way is not uniform, however, studies [28] have
measured the amount of signal extinction in various portions of the sky. We can use
these known quantities to further normalize the signal strength from each individ-
ual galaxy. Extinction affects mostly the frequencies in the visible, U.V. portions
of the spectrum [28, 32]. We must therefore compensate by different amounts for
the various frequencies observed.

The last correction to the data that will be investigated, known as the K cor-
rection, is one which attempts to compensate for the effects of the expansion of
the universe. The Hubble relation related a measured redshift to a distance mea-
sure. Redshift affects the SED that is measured from each galaxy. The SED is
a measurement of the amount of energy received from an object plotted against
the frequency of the observation and the frequency of a measurement is inversely
proportional to its wavelength. If a redshift is measured and found to affect the
wavelength by say five percent, the impact on the frequency will be different in
different regions of the spectrum. For a very long wavelength the effect is mini-
mal on the frequency. For wavelengths several orders of magnitude shorter, which
are common in SEDs, the shift in frequency will be significantly different. The
implication of this effect is that observations made at specific frequencies may in
fact be measuring different regions of the SED depending on the redshift of the
target galaxy. This implies that if we were to observe the same galaxy’s SED at
two significantly different redshifts, the SEDs would appear quite different. The K
correction attempts to compensate for these redshift-induced distortions [18].

Different approaches have been taken to evaluate the K correction. Pence [50]
presented his results based on observational data. Blanton and Roweis [5] present
an approach based on templates derived from stellar populations. Chilingarian
[11] created a series of polynomials which allowed for the approximation of the K
correction based solely on a redshift value and observations at a single frequency.
It is this paper which we will use as a reference for correcting out SED data.

2.7.8 Summary

The concept of galaxy classifications and evolution was refined by individuals such
as Edwin Hubble [30] and Sidney van den Bergh [68]. A proper understanding of
the differences between galaxies is important in creating a model of their evolution.
Galaxies are classified based on their detectable characteristics.

In this chapter we have discussed the methods and challenges encountered when
collecting qualitative data from galaxies. Measurements are affected by the lim-
itations of the detectors, extinction, distance and the opacity of out atmosphere
are certain wavelengths. Careful corrections must be made the the observations to
ensure that like attributes can be compared on an equal basis.
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2.8 Conclusion

In this section we have introduced the concept of machine learning. It is expected

that the implementation of such techniques will help provide a consistent interpre-

tation of the data being modelled. Once properly trained, the SOM should provide

for rapid and efficient classification of new data.

Some of the major ideas governing the creation of Self-Organizing Maps were

presented and the mathematical and computational aspects of the algorithm were

investigated in order to identify optimization opportunities though parallelization

efforts.

This chapter also focused on an area of study upon which we will leverage our

interpretation of the Kohonen map: a model for the evolution of galaxies. The

characteristics of galaxies, which we shall use as attributes were identified. We

discussed the spectral energy distribution of galaxies which will be obtained and

corrected for distance and extinction. These will form the data upon which we will

create our classification model.

In the following chapters, we will investigate the acquisition of our data and our

selection of valid candidates for the study. We will also undertake an investigation

of the appropriateness of various SOM configurations.
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Chapter 3

Model and Data

3.1 Introduction

The previous chapter provided an introduction to the concepts of machine learn-

ing and Self-Organizing Maps. Details were given on how, in mathematical terms,

the SOM is tuned to best reflect the input data’s attributes. The following sections

will concentrate on how the algorithm was implemented for use within this thesis.

Emphasis will be placed on various techniques used to make the application more

efficient and reduce the overall run time involved in building individual maps.

This chapter will also describe the dataset that was acquired for study. The

study of galaxy evolution will be conducted through an analysis of galaxy SEDs.

To perform this study, a significant amount of information will have to be collected

to cover the known galaxy types as well as much of the electromagnetic spectrum

for which data is available. In the second section of this chapter we will investigate

different sources of data for our study as well as the processes used to acquire the

data.

3.2 Implementing the Self-Organizing Map

The SOM algorithm was implemented using a custom application written in the C

language. There exist a number of utilities such as R and MatLAB which provide

SOM packages. The decision to write a distinct version of the SOM was based

on the desire to gain detailed knowledge of the details of implementation. It also

allowed the opportunity to investigate variations to the standard SOM geometry.

Finally, the code allowed for a study of different map initialization techniques not

found in off-the-shelf packages.
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3.2.1 Geometry

The SOM algorithm allows for the mapping of a high-dimensional space represent-
ing the data’s attribute space, to a typically two dimensional map. In the mapping
process it is possible that some of the information contained in the data is obscured
by other artifacts in the map. The majority of the datasets used in this work were
comprised of multiple attributes. When these datasets were examined using PCA,
more than three eigenvectors were identified. For this reason, it was decided to
extend the normal Kohonen algorithm to a three-dimensional map to allow the
expression of more eigenvectors in the resultant map. The SOM algorithm will
still be mapping a high dimensional space to a lower one. By expanding the map
space to three dimensions it is expected that we can enhance the SOM’s ability to
resolve object classes.

The 3D interpretation of the SOM was restricted to investigating maps on
a regular Cartesian grid. Other geometries such as toroidal or spherical were
not included due to their inherent difficulties in positioning nearest neighbours at
uniform distances from each other [29, 56, 74]. Similarly, extending the hexagonal
grid commonly used in 2D maps was not possible as the shape does not translate
to 3D without introducing gaps in the map coverage.

Extending the map to a third dimension has a direct impact on the number
of nearest neighbours. In a 2D Cartesian grid arrangement, each prototype can
be represented by a single grid square. A prototype would have four neighbours
adjacent to the four faces of the square. These would be neighbours at a distance
of one grid unit. The prototype would also have four neighbours which touch it
at the corners. These would be at a distance of

√
2 from the prototype. In 3D,

the number of nearest neighbours soars to a total of 26. This is made up of six
neighbours along the faces of the now cubic prototype, twelve neighbours that are
co-planar along the edges of the cube and another eight adjacent to the vertices of
the cube. The prototype would then have six neighbours at a distance of 1, twelve
at a distance of

√
2 and eight more at a distance of

√
3. An illustrative drawing is

shown in Figure 3.1.
Extending the map to a third dimension changes the map from a surface topol-

ogy to that of a volume. The direct impact is more than just increasing the number
of computations by the size of the new dimension. Interactions between the “lay-
ers”, which can be represented by the standard 2D arrangements, also come into
effect. The increased number of nearest neighbours does not directly affect the de-
termination of the BMU. This calculation is directly proportional to the size of the
third dimension, however, the stage of adjusting the weights changes drastically.
This is where BMU regions in the bulk of the volume affect prototypes in adjoining
layers. Instead of updating the prototypes which fall within a region of the map
defined as 4πr2 in the case of 2D maps, we now must consider a membership which
spans the volume of 4

3
πr3. Except for just updating the nearest neighbours, this

always incurs significantly more computations. The additional computation costs
can be extrapolated from the increase in the number of target prototypes sum-
marised in Table 3.1. In this summary we can see that using a nearest neighbour
radius as small as 3 increases the workload for weight adjustments from 45 updates
to 251. This represents a factor of 557% in workload.
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Figure 3.1: Nearest Neighbours in a Cartesian grid. (a) 2D SOM. (b) 3D SOM

3.2.2 Randomizing the Input Data

When data are presented to the SOM each element has an immediate impact on

the structure of the map. If the data elements are always presented to the map in

the same order it might induce into the map bias for the first few data elements

over the others.

As suggested by Kohonen [39], all of the data were presented to the map in

a different random order for each iteration. An array of indices was created and

sorted into a random order, that array was then processed sequentially to extract

the next random data element to present to the map.

3.2.3 Optimizations

There are a number of optimizations that were brought into the code to improve

performance. The first was a decision to not compute any square roots. Equation

2.3 describes the calculation for the similarity between a datum and a prototype

vector, this equation is used solely for finding the BMU. Determining the BMU

is based on finding the most similar measure which equates to smallest similarity

measure. In this case, it is not the magnitude of the number that is important,

only the ordering. Since comparing numbers or their squares does not change the

ordering, for our purposes the calculation of the square root is superfluous.

Square roots can also be eliminated from the process of determining if a proto-

type falls within a certain grid distance from the BMU. As the algorithm progresses,

the BMU region changes in size. Once a BMU has been chosen for a specific datum,

all of the nodes within the BMU region have their weights tuned to the new input.

For this, we need to scan a volume of the SOM for all prototypes within a BMU

radius in all directions. In the Cartesian grid of the SOM, this means that we need

to scan in all three dimensions for all nodes within the target zone. Geometrically

this equates to scanning a cube of prototypes for those which might fall within

the enclosed sphere. In code, this equates to scanning in the x, y and z directions
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and evaluating the distance to the BMU for each prototype’s coordinates. As in

the case of the similarity, comparing the square of the BMU region’s radius to the

sum of the squares of the prototype’s coordinates is sufficient to determine if it lies

within the BMU regions or not.

Recalling Table 2.2, we can get an estimate for the overall savings in time by

not computing square roots for the Euclidean measure. For each datum presented

to the SOM at each iteration, we save a square root for every prototype present

in the SOM. In addition, based on the size of the BMU regions for that iteration,

we save additional square roots every time we determine if a prototype falls within

the region or not.

In Equation 2.7, Θi and Ri represents the weighting factor that need to be

applied to tune the prototype to the newly presented datum. Θi describes the

distance sensitive component of the adjustment while Ri describes the learning

rate factor. For any one iteration through the input dataset, the learning factor

remains a constant. Similarly, the distance-based values for the influence of Θ are

constant for the iteration and are only moderated by the distance to the BMU.

This allows us to further reduce the number of calculations by evaluating these

values once per iteration and not every time a distance evaluation is required.

In a 3-dimensional volume, using discrete prototype coordinates such as in

matrix, only discrete distance values are possible. If we evaluate the distances from

the origin to the points at coordinates (3,4,0), (0,3,4), (3,0,4) (0,0,5), we find that

they are all equidistant. The sum of the squares of the differences in the coordinate

pairs with those of the origin all equate to a value of 25. Within the grid structure

of the SOM, each one of these points will mirror points relative to the BMU. As an

example, if we consider the BMU at the origin, then the point (3,4,1) has distance

clones at (-3,4,1), (-3,-4,1), (3,-4,1) and four others changing the z coordinate from

1 to -1. In fact, any point in the first quadrant should have at least one equivalent

point within the other eight quadrants around the origin. The discrete coordinate

system within the SOM ensures that multiple prototype coordinates have identical

distance measures from the BMU. Also, because we are summing the squares of

integers, a number of distances will never be encountered. As an example, there are

no three integers which once squared, will result in a distance (without the square

root) of 7. We can leverage this to reduce the number of overall calculations in the

processing of the weight adjustments.

In the implemented code, arrays were created to track which combinations of

coordinates yielded valid distances as well as what the weight adjustment factor

would be for those distances. The first array, updated at the beginning of the

routine, calculated valid distances possible within the constraints of the dimensions

of the SOM. For each iteration through the input dataset, a one-time pass was

used to calculate the weight factors Θ for the current learning rate and all valid

distances. This alleviated the need to calculate the weight factor for each prototype

within the BMU region of each datum, saving two exponentiations and a couple

of divisions for each weight adjustment.
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3.2.4 Leveraging parallel processing

In the previous chapter we presented an overview of both the MPI and OpenMP

approaches to parallelization. The MPI based approach was eliminated from con-

sideration because of the complexities of managing and coordinating updates to

the SOM for the original Kohonen algorithm used in this research. The frequent

changes to the SOM would require the rebroadcast and synchronization of the

complete SOM at every iteration and for each datum processed. For these reasons,

only the OpenMP approach was implemented.

The objective of parallelization is to break down a large computation task into

multiple sub-tasks. These stand-alone tasks could then be processes independently

on multiple processors to achieve an overall improvement in performance of the

code. The better the code performs, the more quickly results can be obtained. It

also allows for the opportunity to explore larger and more complex problems which

might have been impractical to run before.

The SOM algorithm on first glance seems to lend itself quite well to the idea of

parallelizing its execution. The iterative process of presenting each datum to the

SOM, the selection of the BMU and the adjustment of the BMU region weights

all appear to be valid candidates. The one overriding constraints on our ability to

parallelize the solution is the SOM itself. The objective of the algorithm is that

each time a datum is presented to the SOM, the later is enhanced to better reflect

the input space. Subsequent updates to the map will therefore be dependent on

the order that the updates are performed in. If parallelization was implemented to

present BMU region updates to the map simultaneously from unique data elements

in each thread, the sequence of the updates would be disrupted. Since the order of

the data being presented to the SOM is by design random, this reordering is not

problematic. The drawback to this approach is that it will create memory access

contention when updating prototypes of the map as the BMU region weights are

adjusted. The contention will be greatest at the early stages of creating the map

when the BMU regions essentially cover the entire volume.

The second opportunity for OpenMP would be in the selection of the BMU. This

step in the algorithm does not modify the map and is therefore a easy candidate to

select for parallelization. Without parallelization, the BMU is found by iterating

through the SOM through each of the three dimensions. When implementing a

parallelized version, care must be taken to balance the number of prototypes being

investigated in parallel with the time costs of creating additional thread to perform

the task. Recalling from Section 2.6.5 that the outer loop solution would only see

5 threads created for a 5×7×9. A factor of 63 reduction in the number of threads

created. Performance testing revealed a significant impact with the inner-loop

solution. In this implementation of the code, the SOM was sliced into 2D layers as

shown in Figure 3.2. Each layer was presented to a separate thread. Each thread

searched by row and column through its assigned plane. Once all of the threads
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Figure 3.2: SOM processing by assigning the x = 3 plane to a unique thread.

had completed, their layer-level BMUs were compared and the winning candidate

was elected as the BMU for the candidate datum.

The other major opportunity for a performance enhancement through OpenMP

was with the adjustment of weights within the SOM once a BMU was elected. The

adjustment of weight for any unique prototype is only dependent on its relationship

with the BMU in terms of a distance measure, the weight adjustment is not a

function of the weights or attributes of any of the surrounding prototypes. The

independence of a prototype from its neighbours allows us to adjust any prototype’s

attribute weights without having to be concerned about what order the adjustments

are being made or adjacent neighbours. The BMU region was processed in much

the same way as the BMU was determined. 2D layered slices of the SOM were

presented separate threads. Each layer was then scanned for prototypes which

might fall within the BMU weight adjustment radius. When a valid target was

identified, the weight was adjusted.

3.2.5 The Control File

The processing of a dataset into a SOM requires that attributes be identified for

both the map and the data. In the case of the data, it is sufficient to identify the

filename where the data resides as well as the number of attributes it contains.

For the SOM algorithm, we need to specify the dimensions of the map, the

number of iterations through the data, the initial BMU radius, the learning rate

as well as which technique we want to use to initialize the SOM.

An additional parameter used to moderate the selection of the BMU was added

to the control file. This parameter, when selected, moderated the process of select-

ing a BMU. The implementation of this parameter will be discussed in AppendixA.

All of these parameters were included in a control file for the SOM application.

This permitted the quick processing of the same data file and SOM geometry for

multiple initialization techniques by simply changing one line in the control file.
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Similarly, changing the geometry of the SOM for multiple runs of the same data
file was just as easy. This facilitated the bulk processing of multiple SOM runs
to explore how changes in the initialization or geometry of the map affected the
quality of the final results.

3.2.6 Clustering the SOM Prototypes

The final step in processing the data is to provide a way of interpreting the results
present in the completed SOM. To this end, a separate application was written to
apply the Single Linkage algorithm to the map.

In Single Linkage, the most similar prototypes are clustered together. The
process continues until all of the clusters have been merged into one. To facilitate
extracting the actual data clusters from the output, a separate routine was written
to help generate dendrograms. A sample dendrogram is presented in Figure 4.3.
These diagrams help visualize the various levels of similarity that were used to join
the clusters together. They can also help identify the levels at which the branches
represent distinct classes of objects.

3.2.7 The Runtime Environment

All of the SOM processing for this thesis was performed on resources made available
through the Shared Hierarchical Academic Research Computing Network(SHARCNET).
More specifically, all of the data was processed on the SAW cluster.

SAW was chosen as its resources were sufficient to run all of the SOM geometries
used in the analysis phase of this thesis. The geometry chosen for this work was
such that at most the implementation would use fewer than eight threads. It
would therefore be inefficient to run the code on clusters where each node provided
more than eight. The additional capacities on these computers would be wasted.
The choice of forcing all processing within the same cluster was made to ensure
that performance comparisons could be made from model to model. Though the
mapping exercises were run on a cluster, no job required more than one node to
run on as this would have necessitated using MPI. The convenience of running on
a cluster, however, permitted for several families of jobs to be run concurrently on
separate nodes.

The cluster of computers is comprised of 336 processing nodes. Each node in
the cluster has the following characteristics: 8 cores (2 sockets x 4 cores per socket),
Intel Xeon @ 2.83 GHz E5440 processors [35] as well as 16.0 GB of memory. Each
processor has 12Mb of L2 cache with an access time measured by lmbench of 8.74ns
[44].

As an extreme example of memory requirements, processing a SOM which had
dimensions of 30×30×30 would represent 27, 000 prototypes. If we add to this say
5,000 data elements, we would have a grand total of 32, 000 attribute vectors which
are the bulk of the memory requirements for the SOM. If each vector is made up
of 20 attributes of 16 bytes each, the SOM and data would require about 10Mb of
memory. For the Xeon CPUs available on SAW, this fits quite nicely in L2 cache
as we will see in Chapter 4
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3.2.8 Summary

This section has provided an overview of the process used to implement a version

of the Kohonen SOM. The implementation leverages a number of techniques which

help reduce the overall number of calculations required. To further reduce the run

time of the SOM creation process, the code utilized the OpenMP libraries to help

parallelise the code to run in a shared memory environment.

3.3 Data: Galaxy Attributes

Galaxy classifications have historically been driven by observations in the visible

range of the spectrum. Hubble’s Tuning Fork diagram, as an example, is a classifi-

cation system based on the observational data available at the time. Since galaxies

contain billions of stars, it would follow that many of the observational properties

of a galaxy could be deduced from observations of stars. It should also follow that

if we know how stars change over time, we could use this knowledge to develop a

model for how galaxies might be expected to change over time as well. There are

a number of research efforts which attempt to reproduce the observable attributes

of galaxies through the simulation of large populations of stars [20, 72]. The suc-

cess of such efforts indicate that it should be possible to obtain a model for the

evolution of galaxies by observing the properties of the stars they contain and not

simply their appearance in the visual part of the spectrum. Attributes which have

been used as modifiers of the Hubble Tuning Fork, such as bars or no-bars, Spiral

or elliptical will not be used in the analysis phase. In this research, we will only

use the SED signatures collected from galaxies as a measure of their attributes.

Studies of galaxies in the past were performed on a per-observatory and per-

project basis. Each observatory research group would collect a series of image plates

and they would be physically stored in a library. Study of the plates required physi-

cal access. Today, most of the large-scale studies make their data available to other

researchers in electronic format.1, 2, 3. Great care is taken at all sites to generate

the most accurate measurements possible. The advent of large-scale automated

surveys has brought about a deluge of such data. Each of these surveys typically

only observe a small portion of the electromagnetic spectrum. Some study the

visible, some observe the radio or x-ray region. Due to the vast number of objects

included in most large scale surveys, the resulting datasets share one common sim-

ilarity: the lack of a common naming convention. Most surveys catalogue their

results based on the equatorial coordinates of the detected objects. The lack of

an authoritative central object catalogue, where each object has a unique agreed

upon designation, makes cross-study investigations more difficult. Compounding

1European Southern Observatory (ESO): http://www.eso.org/
2The Sloan Digital Sky Survey (SDSS): http://www.sdss.org/
3The Arecibo Legacy Fast ALFA Survey (ALFALFA): http://egg.astro.cornell.edu/index.php/
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this problem are the facts that not all objects are visible to all surveys and not all

surveys can study the sky with the same angular resolution.

Large groups within the astronomical community have created common databases

which congregate their research team’s data. Examples of these Virtual Observa-

tories include the Canadian4, US5 and International web sites6.

3.3.1 NASA Extragalactic Database (NED)

One such effort in creating a central repository of multiple independent studies

is the NASA Extragalactic Database (NED)7. The NED database has aggregated

information from about 90 thousand journal articles [47] and catalogs8. Objects

have been uniquely identified across studies and NED has created a standardized

cross-reference system to link the various galaxy names. The NED preferred names

allows the extraction of spectral data from numerous studies to be obtained through

a single query. Other attributes that are available include:

Equatorial Coordinates: This defines the Right Ascension (RA) and Declina-

tion (DEC) of the galaxy. It allows for the object to be located in the sky.

Redshift: The redshift of a galaxy is a measure of the magnitude by which a

galaxy’s velocity affects its spectrum. The redshift of a galaxy is also used as

a measure of distance. Negative values represent galaxies moving towards our

own, positive values are for galaxies that are moving away. The more rapidly

it is moving, the larger the magnitude of the redshift. At high redshift,

the effects of velocity on the measured SED become significant [32]. For the

purpose of this study, our samples were restricted to galaxies having a positive

redshift value which was less than 0.1. This eliminated the requirement of

having to compensate for high redshift using the K correction.

Angular Size: The apparent size of the galaxy in degrees. Each wavelength used

in a study will measure a different angular size for the galaxy. Different

regions of a galaxy generate different amounts of radiation at various wave-

lengths. The measured dimensions will therefore vary based on the frequency

under study. Both the major and minor axis values are given, they will be

used later to remove unwanted measurements from the study. In this anal-

ysis, we are only interested in whole-galaxy measurements. Only galaxies

which contained valid values for the major axis were included. As well, SED

measurements that only represented a sub-region of the target were excluded.

4http://www3.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/cvo/
5http://www.us-vo.org/
6http://www.ivoa.net/
7The NASA/IPAC Extragalactic Database (NED) is operated by the Jet Propulsion Labora-

tory, California Institute of Technology, under contract with the National Aeronautics and Space
Administration

8http://ned.ipac.caltech.edu/samples/NEDmdb.html
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Distance: This represents the physical distance to a galaxy. The distance is crit-

ical in adjusting the measured flux to a common measure for all galaxies.

NED contains both redshift-derived distances and in some cases, distances

obtained through direct measurement of stellar properties within the host

galaxy. Each galaxy in our sample is required to have a distance measure-

ment. This value is required to ensure that we are able to translate all SED

measurements to a standard common distance. The distance measure that is

used is one that is determined from the Hubble relation and also compensates

for the gravitational effects of the Virgo cluster. NED establishes a distance

value called the Hubble Flow Distance for most galaxies, only galaxies with

such a value have been included.

Morphology Classification: Individual studies attempt to assign a Hubble class

to each object; when possible, these classifications have been extracted for

comparison with the results of the SOM. Galaxies of unknown morphology

were kept for possible morphology prediction from our SOM classification

model.

Extinction: Extinction is the reduction in the measured signal due to interstellar

material between the source and the sensor. These values were retrieved on a

per-galaxy basis. The extinction values provided represent the magnitude of

the extinction within our own galaxy. There are currently no methods avail-

able to measure internal extinction in distant galaxies. The NED database

provides extinction values for the optical portion of the spectrum; though

there are methods for correcting for extinction in other frequency bands the

corrections are not as significant as for those in the optical regime and are

beyond the scope of this thesis.

Synonyms: Each astronomical study assigns unique names or labels to each ob-

ject. Authors referencing these studies also include these specific names in

their work. Unfortunately, from study to study, these names are not consis-

tent. One of the many contributions of NED is to maintain a cross-reference

of all of these names and the objects they refer to. This allows the corre-

lation of data from multiple studies for the same object. A version of the

NED cross-reference table was created locally for all objects, linking the NED

preferred name to other identifier names used in contributing research. This

data was used to prevent duplicating data downloads and allowing the same

object from entering our dataset multiple times under different names. This

would have biased the analysis.

The NED information store was the sole source of data for this thesis. All data

items within NED have been compiled from disparate sources and have undergone

a consistent set of transformation to preset all data in a consistent manner and a

standard set of units.
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3.3.2 Galaxies

Each of the surveys contributing to NED has specific goals in mind. The NED

database therefore contains objects of a number of different types such as stars,

super novae etc. In this work, we are only interested in objects which are galax-

ies. Based on the preferred name in NED, an object inherits that specific study’s

classification. If the object is found in multiple studies, it may exist in NED’s

cross-reference data with multiple classifications. When extracting objects from

NED, objects were included as a galaxy if any of their cross-reference classifica-

tions matched the galaxy type. This permitted the inclusion of radio sources or

infrared objects into the study as long as another study in a different frequency

region declared the object as a galaxy.

3.3.3 The Spectral Energy Distribution

NED provides individual measurements of the radiation output of a galaxy at

specific wavelengths. Individually, these measurements can be used to identify and

compare specific processes occurring with the host galaxy [13]. As a collection

of a series of measurements spanning the whole spectrum, these measurements

represent a picture of the state of the galaxy.

Studies have been conducted in an attempt to reproduce the spectral energy

distribution of galaxies [20, 72]. These studies are based on a number of assump-

tions about the population sizes of different types of stars. It is believed [72] that

variations in population densities amongst the types of stars is a direct measure of

the evolutionary stage of the galaxy.

In a static galaxy, where start formation has ceased, stars go through their life

cycle and rarely ever affect their surroundings. If a galaxy is static, then once

all of the gas clouds that can collapse into stars have done so, what is left is a

fixed collection of stars. No new stars should be born after this point. Individual

stars would age according to their position on the well-understood HR diagram. In

such an environment, a measurement of the age of the oldest stars would provide

an age for the galaxy. Measurements of the number of stars at specific positions

within the HR diagram would then give us a snapshot of the galaxy and allow us

to predict what it will look like in the future. A measurement of the complete

spectrum would indicate where the galaxy resides within its life-cycle.

However, observable galaxies are not static and motions within the galaxy en-

sure that new opportunities for star formation occur over time. As stars age and

die, their impact on their surrounding presents opportunities for the creation of

new stars. Measurements of the spectral energy distribution of a target galaxy can

therefore tell us more than just an inventory count of star types and their numbers,

it can also tells us about the dynamics in play within the galaxy. The combina-

tion of the information contained in the SED should allow us to get a measure of
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the forces driving change within the galaxy and hence, from that, determine its

evolution.

The objective of this thesis is to apply the SOM algorithm in an attempt to

extract a classification scheme for galaxy evolution. It is expected that the combi-

nations of stellar types contained within each galaxy can lead to a determination of

its current position on the evolutionary pathway. The spectral energy distribution

from each galaxy should give us the information required for the mapping process.

For the purpose of this analysis, we will not introduce any information contained

in atomic or molecular line spectra.

3.3.4 The Data

The first data to be downloaded from NED consisted of extracts from some of the

major surveys. Targeted were some of the more common-named surveys such a

objects with a designation of NGC, UGC and ESO. The next phase tried to ensure

that we would have data in a number of different spectral regions. Targeted were

ALFALFA in the Radio, IRAS9 in the Infra-red, 2MASS10 in the IR and visible as

well as GALEX11 in the ultraviolet.

Additional galaxies were extracted from NED for the Sloan Digital Sky Survey

(SDSS). Due to the large number of objects in this study, it was not feasible to

acquire a complete list of the galaxies it contains, there is a hard limit to the

number of objects NED can return from any one query. Follow-up queries then

consisted of subdividing the sky into patches of fixed angular size in both right

ascension and declination. Each patch then returned as many galaxy type objects

as possible. Of note, however, is that most of these surveys register any object

in their field of view. For each extract from NED, only candidates identified as

galaxies were retained.

For all of the galaxy name acquisition phases, generating duplicate data was

an issue. Galaxies often have multiple different names, one for each study. For

the galaxies whose SED are shown in the previous chapter, NGC 1275 is known

in NED under 99 different names, Messier 084 has 66 while Messier 077 has 80.

For each galaxy, a cross-id table was downloaded with all NED synonyms. At each

data import, either by the name of the study such as SDSS or by region of the sky,

each name was checked against the known synonyms for data already imported.

Values for distance, Redshift, morphology and distance were downloaded for

each galaxy. In addition, galactic extinction values for the visible wavebands were

also acquired for later correction to the luminosity in each band. In all, there

were 680,162 combined galaxies in the bulk downloads. Of these, more than 60%

were lost due to insufficient data, see Table 3.2. These galaxies are represented by

2,519,121 unique synonyms in the various studies used to collect their SED data.

9NASA/IPAC Infrared Science Archive: http://irsa.ipac.caltech.edu/data/ISSA/
10The 2MASS Redshift Survey: https://www.cfa.harvard.edu/ dfabricant/huchra/2mass/
11The Galaxy Evolution Explorer: http://www.galex.caltech.edu/index.html
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Number of SED records
Complete dataset: 11,092,432

LINE data: 103,004
SDSS uncertainty: 1,600,150

Angular FOV: 759,350
Quality Issues: 6,551,996

Included in the analysis: 2,077,932
Unique galaxy-freq. pairs: 1,456,948

Table 3.3: SED records excluded from the analysis.

Number of Galaxies
Complete dataset: 680,162

Redshift out of range: 417,445
Invalid object type: 1,572
Available to study: 261,145

Table 3.2: Contributions to the number of galaxies lost from the analysis.

The next phase of acquiring data consisted of downloading SED data for each

candidate galaxy. This was performed one-by-one for all of the unique galaxy

names collected in the first phase. In all, 11,092,432 individual SED data points

were retrieved from NED. The observational data extracted represents SED mea-

surements in 1,137 different frequencies.

Further processing of the SED data was required. As stated previously, SED

data whose angular field of view (FOV ) was constrained to just a portion of the

complete galaxy, were removed from consideration. Additionally, many SED mea-

surements belonged to atomic and molecular emission spectra. Data from these

narrow spectral “lines” are not considered part of the same SED processes under

study in this work. Similarly, SED entries associated with comments containing

keywords such as: “poor quality”, “multiple objects”, “nucleus only” or “confu-

sion” were omitted. The final reduction was the weighted averaging of the SED

measurements when multiple measurements were available for the same galaxy-

frequency pairings. This further reduces the number of available SED measure-

ments for analysis down to 1,456,948. A summary of the records removed from

consideration is shown in Table 3.3.
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3.3.5 Summary

The NASA Extragalactic Database was used as a single source for all of the data

used in this work. The database combines information from thousands of inde-

pendent research projects into one self-consistent source. NED also provided unit

conversions for the SED values, from all of the studies into a standardised set of

units. This prevented the introduction of any systematic errors into this work due

to an error in unit conversion. The NED cross-IDs were also leveraged to avoid

introducing duplicate copies of the same galaxies into the dataset. This would have

introduced bias into the dataset as some galaxies would be represented more than

once.

3.4 Conclusion

In this chapter we have discussed the implementation of the SOM algorithm. We

have also introduced some techniques to improve the performance of the code.

This includes the use of the OpenMP libraries to create a parallelized version of

the code to run in a shared-memory environment.

The objective of the implemented code was to develop a tool that could be used

to study the evolution of galaxies. Through an analysis of common elements of the

SED, it is expected that the SOM will be able to help classify galaxies into their

appropriate morphological classes. Data was exported from NED and prepared for

analysis. In the next chapter, we will review the results of the analysis.
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Chapter 4

Results

4.1 Introduction

In the previous chapters, the Kohonen SOM was introduced. The algorithm was

examined in depth and approaches which would allow performance improvements

were examined. This lead to the implementation of 3D SOM which leverage

OpenMP to further enhance processing through the use of parallelization. A can-

didate dataset, representing the spectral energy distribution of numerous galaxies,

was selected for processing. It is the aim of this work to analyze these data using

SOMs and produce an effective galaxy morphology classifier.

In the following sections, the implemented version of the 3D SOM will be eval-

uated using well studied datasets to ensure that it is effective in classifying these

standards. Attention will then be placed on the data collected, the processing re-

quired to correct for astronomical effects and to bring it into a self-consistent state.

From the acquired NED data, candidate datasets with unique attributes will be

created and processed through various SOM configurations. The results of these

investigations and their effectiveness as classifiers will be compared.

4.2 SOM Code Verification

The SOM code implementation was tested using two distinct datasets before it was

used to analyse the galaxy data. The first test data presented to the code was a

large set of data points where each datum was made up of three attributes. Each

attribute representing an intensity value for the red, green or blue colour channels

(RGB). When combined, these three attributes are used to produce display colours

for most graphics software. The data was presented to the SOM for classification.

The three attributes present in the data matched the three dimensions of the SOM.

The resultant map showed that the colour data elements were mapped separating

out the data into red, blue and green regions with the overlap giving rise to the

other intermediary colours. One of the test mappings is shown in Figure 4.1.
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Figure 4.1: SOM separation of the RGB colour dataset.

The second dataset used to analyzed with the SOM is the zoo datasets made
available through the Machine Learning Repository (MRL)1. The dataset is com-
prised of 101 records each with 18 attributes. 17 of the attributes are simple
boolean values, two are numeric. The data represent a series of records describing
the characteristics of a number of living creatures. These attributes include: do
they have hair?, teeth? or a backbone? Are they aquatic? or airborne?, predators?
or venomous?

A manual separation of the dataset was performed by sorting the attributes.
Visual examination of the list and breaking it down when attributes differed, al-
lowed for the grouping like creatures together. The raw data was then presented to
the SOM code and the resultant map was compared to the manual classifications.
The results were identical.

The results of the two test datasets indicated that the algorithm was imple-
mented correctly and was producing consistent results.

A more thorough testing of the application and its features was performed
on the Iris dataset from the MRL. The effects of the SOM geometry, number of
prototypes as well as normalization techniques were explored in depth. Details of
this additional testing and results, see Appendix A, further support the correctness
of the implementation of the Kohonen algorithm in this application.

4.3 Data Reduction

A significant amount of data were collected from NED for this research. Constraints
were placed on the data to ensure that the analysis was not compromised by known
artifacts in the bulk data. The following is a list of factors which were used to pre-
process data to ensure that they were appropriate for analysis:

1Machine Learning Repository: http://archive.ics.uci.edu/ml/datasets.html
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• Field of view

• Redshift

• Extinction

• Distance normalization

Each of these factors was addressed as follows:

A large portion of the SED data resident within NED is comprised of measure-

ments which, by design, only include specific regions of the target. Certain studies

only focus on the central bulge of a galaxy or portions of its disk. For this analysis

all of the SED entries in the dataset which had an angular field of view which was

less than that of the complete galaxy were excluded.

Similar constraints were placed on redshift. In Chapter 2 the K correction

was introduced to correct for distortions of the SED caused by redshift. As the

redshift becomes larger, relativistic effects become significant and distortions are

introduced into the SED. To reduce the requirement for significant K corrections,

the candidate galaxies were restricted to those with a redshift less than or equal to

0.1 [32]. An analysis was performed on the data collected from NED. It was found

that for small redshifts, the K correction was smaller than the existing uncertainty

in the data. For this analysis, the SED data collected was not K corrected.

Before flux values can be adjusted for distance, they must be corrected for

galactic extinction. Previously we have stated that the extinction is a measure of

the reduction in intensity of a signal due to dust and gas between the source and

the observer. Within NED, extinction values are available for specific bands within

the visible portion of the spectrum. Care was taken to reduce the extent of the

impact of extinction by choosing galaxies which did not lie directly in the galactic

plane. A plot of the galaxies present in the database is shown in Figure 4.2.

The NED database contains extinction values for the U, B, V, R, I, J, H and K

filters. These values were used to correct the respective SED measurements when

applicable. Equation 4.1 relates an extinction value for the V filter AV in terms

of the flux density measured fV and the flux density one would have measured

without extinction: fV0 .

AV = −2.5 log

(
fV
fV0

)
(4.1)

Which, solving for fV0 , simplifies to:

fV0 =
fV

10(AV /−2.5)
(4.2)

Each SED measurement in the visible portion of the spectrum, for which we

had a corresponding extinction value, was corrected before further processing.
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A proper comparison of the luminosity of galaxies requires that we account
for their relative distances. Without a proper distance correction, it is impossible
to distinguish between a bright galaxy that is far away and a faint galaxy that
is nearby if their detected flux are identical. The data collected by NED is not
by default corrected for distance. To properly correct the data before they are
included in the mapping process, all SED data must be corrected for distance.
We must therefore only include galaxies and SED data for objects with known
distance measures. Equation 4.3, was used to convert the fluxes present in NED to
the apparent luminosity. The conversion is dependent on the galaxy’s distance Dg,
the galaxy’s measured luminosity from NED L0 and on setting standard distance
for comparisons. In this analysis we used a standard distance of 10Mpc. This
conversion permitted the direct comparison of luminosity values across the SED.

Lstd = L0 ×
4πD2

g

4π(10Mpc)2
= L0 ×

(
Dg

10Mpc

)2

(4.3)

The final processing of the SED data involved summarizing the existing data to pro-
vide a single SED value for every galaxy-frequency pair in our dataset. The SOM
algorithm requires that each attribute of each object be unique. For measurements
from multiple studies which provided NED with their results, a measurement error
based weighted average was used to generate a single value.

The process of filtering out unwanted data significantly reduced both the num-
ber of galaxies and the number of SED data points available for study. Reductions
due to redshift and distance considerations reduced the total number of galaxies
from 680,162 to 261,145. Applying our constraints and uniqueness requirements
to the SED data reduced our spectral data from 11,092,432 to 1,456,948 records.

4.3.1 Additional Quick-Validation Data

The only attributes used by the SOM to classify galaxies are the SED measurements
at different frequencies. The SOM technique does not rely on any external sources
to moderate the creation of the map or its final clustering. To facilitate a quick
visualization of the effectiveness of the created SOM, an additional galaxy property
was maintained in the dataset. This property was the NED classification of the
morphology of the object.

Extensions to the Hubble diagram provide a large number of morphologies and
sub-morphologies for galaxy classification. For the purpose of an initial view of
the data such granularity was not required. Because this property of the galaxy
was not going to be involved in the mapping process itself, the sub-morphologies
were re-mapped to the broadest of classes: Spiral, Peculiar, Irregular, Elliptical
and Lenticular.

The objective of carrying this extra piece of information was to make interpret-
ing the maps as simple as possible. With the broad morphologies in place, it was
a quick exercise to witness the locations of the various galaxies within the map.
This view would reveal the effectiveness of the SOM process at extracting sufficient
information from the SED data to map like morphologies close together.
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4.4 Data Pre-processing

The objective of the SOM is to group objects together based on their similarities

across a number of attributes. However, the relationship between the data was

one-to-many. For any particular galaxy, there exists a series of frequencies for

which we have measurements. What is missing from this dataset is a method of

generating a list of galaxies which all shared a set list of frequency measurements.

To this aim, an additional step was included in the data pre-processing.

An analysis of the SED data was performed and a list of unique frequencies was

extracted. This list contained 1137 different frequency values which spanned all of

the observations. If the list of attributes for each prototype in the SOM were to

be made up of 1137 values, it would cause two issues. The first issue would be the

fact that for most galaxies, most of their attributes would consist of missing data.

Though there exist techniques to deal with missing values, most are implemented

to substitute surrogate values for only a small subset of the input data and typically

only for any one attribute per datum. The replacement value is based on some

expert based best-estimate or on some average based on similar data items. The

use of all 1137 frequencies would present such a sparse dataset that values for

missing data would be more numerous that the actual number of measurements.

In the data collected from NED, the galaxy with the largest number of known

attribute values contained 195 unique frequency measurements.

The second difficulty with using all of the frequencies is the amount of memory

required to store the information. Through using all 1137 attributes, we require

that every prototype and every data element presented to the SOM consumes

almost six times more memory than required by the single object which exhibits

the maximum number of observations. Also, including all of the frequencies would

imply that all of the galaxies in the dataset would be eligible for inclusion in

the analysis. Combined, the impact on memory consumption would far outstrip

the available cache memory on even the largest processors. This would lead to a

significant degradation in the performance of the SOM routine.

To solve the above issue, an analysis of the most common frequency pairings

was undertaken. Each galaxy in the dataset was taken and a list of the frequencies

for which we have observations was made. To make comparisons easier, a boolean

vector was created for each galaxy. The vector contained a dimension for each of

the 1137 frequencies. If a galaxy was observed to have data for a specific frequency,

the bit value at that position was marked with a ’1’. Otherwise all bits were set

to ’0’. The result of the exercise was a set of vectors indicating where observations

were available.

Each galaxy’s frequency vector was then compared to all of the others maintain-

ing a count which indicated how many galaxies were represented by the exact same

bit vector. The resultant group of bit vectors represented a ’family’ of galaxies with

an identical list of observed frequencies.
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Bandpass Frequency ν (Hz) Number of families
Radio 3.0e10 > ν 2,477
Millimeter 3.0e11 > ν > 3.0e10 250
Sub-Millimeter 1.0e12 > ν > 3.0e11 11
Far Infrared 7.5e12 > ν > 1.0e12 223
Mid-Infrared 6.0e13 > ν > 7.5e12 404
Near Infrared 3.0e14 > ν > 6.0e13 378
Visual 9.0e14 > ν > 3.0e14 22,307
Ultraviolet 2.0e16 > ν > 9.0e14 194
X-rays 2.0e19 > ν > 2.0e16 561
Gamma Rays ν > 2.0e19 9
Multi-Bandpass all 17,227

Table 4.1: Number of bit vector families per spectral region

Once a popularity list was created for the bit vectors, they were then compared

amongst themselves. For each of the observed vectors a comparison was made of

the frequencies present with those of all of the other vectors. This was done to

generate frequency bit-vectors present within the data which were not affiliated to

any specific galaxy. This permitted the creation of galaxy families which, though

they represented fewer frequencies, contained a larger number of candidate galaxies.

The intent of creating the above datasets was to explore the possibility that a

SOM would be capable of classifying galaxies in such a way that we could interpret

the results in terms of morphologies. The source studies which created the data

in NED typically only examine a specific portion of the spectrum. An additional

avenue of investigation would be to examine if any one region of the spectrum

would contain sufficient information to lead to SOM morphological classifications

on their own. To explore this, the above frequency bit vectors were reprocessed to

create new patterns. These new patterns would only have ’1’ for the region of the

spectrum they represent and ’0’ everywhere else. This then created additional bit

vector families for Radio, Millimeter (mm), sub-millimeter (sub-mm), Far Infrared

(FIR), Mid-Infrared (MIR), Near infrared (NIR), Visual, Ultraviolet (UV), X-ray

and Gamma-Ray regions. [33, 47]

The result of this process was a list of families of frequencies present in the

data. This permitted the creation of numerous dataset for SOM processing. By

using the bit vector approach, the datasets were guaranteed to not contain any

missing data.

Table 4.1 shows the number of bit vector families that were found in each of

the spectral regions. It is interesting to point out that the visual range generated a

larger number of bit vectors than the overall multi-region approach. This artefact

is caused by the sub-vector matching. By masking out the other regions, more

variations of bit patterns were generated in the visual region.
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Bandpass Frequency ν (Hz) Number of candidate datasets
Radio 3.0e10 > ν —
Millimeter 3.0e11 > ν > 3.0e10 —
Sub-Millimeter 1.0e12 > ν > 3.0e11 —
Far Infrared 7.5e12 > ν > 1.0e12 6
Mid-Infrared 6.0e13 > ν > 7.5e12 11
Near Infrared 3.0e14 > ν > 6.0e13 22
Visual 9.0e14 > ν > 3.0e14 26
Ultraviolet 2.0e16 > ν > 9.0e14 —
X-rays 2.0e19 > ν > 2.0e16 3
Gamma Rays ν > 2.0e19 —
Multi-Bandpass all 428

Table 4.2: Number of candidate datasets per spectral region

4.5 Generating the Dataset

Once all of the bit vector families had been identified, the process of creating the

input files for SOM processing could begin. The large volume of families made

processing each impractical. A scoring algorithm was developed to determine the

most suitable candidates. The objective of the scoring was to provide the largest

number of frequencies and the largest number of galaxies to the SOM. It was

found that these two metrics were often diametrical opposites. Families with very

few frequencies tended to have a large number of galaxies. Conversely, families

with many frequencies tended to have a minimal contingents of galaxies. Some

base requirements helped in the selection process. Families represented by fewer

frequencies, hence attributes, than the dimensionality of the SOM were excluded.

Additionally, families which contained fewer than several hundred galaxies were

also omitted.

Table 4.2 shows the results of the scoring process. The final tally of acceptable

datasets was 496. Unfortunately, a number of frequency regions failed to produce

sufficient candidates and were therefore dropped from further processing. Note

also that, though the visual region generated a large volume of candidate families

in Table 4.1, only 26 of these produced candidates acceptable for processing.

With the number of families determined, each was converted into an input

dataset for the SOM.

The SOM process is sensitive to the data presented to it. As we have stated

previously, even the order with which the data are presented to the SOM can affect

the outcome. If the procedure used to present the data inadvertently favours some

data over the rest, bias can be imprinted on the map. It is therefore important to
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Morphology Number of Galaxies
Spiral 38,706
Peculiar 2,533
Irregular 1,755
Elliptical 7,793
Lenticular 7,985

Table 4.3: Galaxy sample size by morphology.

ensure that the data we use to build the maps reflect as best we can, a uniform

distribution of the various known morphologies.

As shown in Table 4.3, the complete set of galaxies present in this study is

heavily weighted towards the spiral morphology. In many of the candidate datasets,

this ratio is even more severe. To provide for a more even representation, the

populations of the different morphologies were balanced in the final datasets. Each

dataset was inventoried for the different populations it contained. To arrive at a

sample size for each morphology the high and low population counts were excluded

and an average of the remaining three class populations was calculated. This

average was then used as the required representation from each class. To build

the dataset used for study, some morphologies were under-sampled, selecting at

random candidates from the full population. Other less abundant classes were

over-sampled by randomly selecting candidates (with replacement).

The objective of this investigation is to evaluate the effectiveness of the SOM

algorithm at classifying galaxies by morphology. Though forcing equal morpholog-

ical representation in the dataset would seem in contradiction with the objective of

this research, it is in fact imperative for the production of effective mappings. The

morphologies themselves are not used to create the map. All the normalization

process provides is a mechanism to ensure one population does not monopolize the

complete map, overshadowing all others.

4.5.1 Exploring the Mapping Process

In Chapter 2 Wendel & Buttenfield [73] suggested that a an appropriate number

of neurons for a SOM can be expressed as shown in Equation 2.1. In this equation

N represents the number of data elements while a is the number of attributes.

In our datasets we have an average of 1100 galaxies. The number of attributes

ranges from four to twelve. For our purposes this yields a range from 66 to 114

cells. This figure is, however, based on an equation originally derived for a two

dimensional SOM.

A number of tests were performed where both the dimensions of the SOM were

varied as well as the method used to initialize the map. SOMs were created in the

following geometries: 30× 30× 30, 3× 5× 7, 3× 9× 27, 9× 9× 9 and 5× 7× 9.

Initialization techniques for the SOM included:
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NONE: The raw, unscaled data is used for the map.

PNORM: Per-attribute scaled data. Prototypes in the map are initialized by

generating per-attribute random values. These values are scaled to be within

the range of each attribute as seen in the training dataset.

SNORM: SOM based normalization. Prototype attribute values are generated

as per the PNORM technique. These values are then scaled based on the

overall range of all attributes present in the training dataset.

GNORM: Similar to the PNORM technique. In an attempt to reduce edge ef-

fects, a buffer area consisting of ten percent of the prototypes on each face

of the 3D SOM are forced to have zero for all attributes.

ADATA: The training dataset was examined. Similarity measures were evaluated

for all of the possible pairings within the data. The eight most dissimilar

data points were selected. These data items were then placed at the vertices

of the 3D SOM grid, keeping the ten percent buffer from the edges as in

the GNORM case. As the data points were placed within the grid, the

surrounding prototypes had their weights adjusted using the same rules as

those for a typical BMU region.

As a result of testing various geometries, a size of 5 × 7 × 9 was chosen for

all future maps. Also, our selection of normalization techniques was reduced to:

ADATA, NONE and PNORM.

4.6 Results

Of all of the frequency families created, 496 were chosen for preliminary analysis.

The selection was based on the number of galaxies present as well as trying to

maximize the number of spectral regions represented. From this first round of

investigation, the list was reduced to twelve candidate datasets.

The selected datasets were studied using maps which were 5 × 7 × 9 in size.

The maps were initialized using the ADATA, NONE and PNORM techniques. In

addition, the BMU selection was moderated using the CUBE, CUTOFF or FULL

approachA. All maps were constructed over a maximum of 500,000 iterations.

The results of all analyses are presented in Appendix C. Each set of results

begins with a description of the data. This includes, broken out by morphology,

the training set size. Also shown are the number of unique galaxies present in the

training data as well as the full dataset. In the case of each dataset extracted from

NED, there existed galaxies which matched the frequency profile but did not have

a NED defined morphology. A count of these galaxies is also presented. These

unknown galaxies will be discussed in the next section.
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The second portion of the dataset description is a list of the frequencies present

in the dataset. These are presented along with the frequency band they belong to.

The final data shown is a breakdown of the results of processing the data

through the various SOM configurations. For each experiment, a list of percentages

is shown which represents how well the SOM performed at classifying the input

data. Since all of the training data were of known morphology, prototypes within

the SOM were allocated to morphologies based on the predominant class present

within the SOM Cell.

The data presented is broken down into 3 different lines. The first line labeled

Training shows how well the training data were classified when it was presented

back to the SOM after the completion of the map build.

The second line contains information on the mapping accuracy of the SOM for

data that was not present in the training set. This line only contains statistics for

new data which mapped to prototypes in the SOM which were previously classified

by the training data. This second line has been labeled as New Data.

The final line presents, for each dataset, contains classification results for data

in the complete dataset which mapped to cells not classified by the training data.

Of the 315 cells in the SOM, not all were the recipients of mapped data during the

training phase. These prototypes were, however, subject to the training process.

When new data were presented to the SOM, often it was mapped to unclassified

prototypes. Similar to the classification during training, these new prototypes were

associated with a classification based on the majority class of the data mapped. The

third line, labeled No Map, shows how well the SOM performed in reproducing the

morphology of the new data. Next to the percentage, the number of data elements

is shown in brackets.

Each dataset in the appendix also contains additional information on each SOM.

These items include measures of the quality of the map such as the quantization

error and the termination error. Other data includes information on the build pro-

cess. These include the CPU time used to build the map, the number of iterations

required as well as the number of BMU changes still taking place had the map

not converged by the 500, 000th iteration. Finally, an examination of the training

set’s map utilization is presented. This includes how many prototypes represented

a single morphology, how many were associated with mixed-morphologies and a

measure of the percentage of the map used to represent the training data.

Interpretation of the results obtained leads to a number of interesting obser-

vations of the data. The following sections will discuss some of the major factors

which influenced the outcome of the mapping process.
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4.6.1 Class Imbalance

The number of candidate galaxies available within each dataset is constrained by

the number of observed frequencies. The larger the number of frequencies, the lower

the availability galaxies. Similarly fewer frequencies lead to a larger population to

study. One factor remains fairly consistent across the sample set, however, the

count imbalance in the morphologies.

Further complications arise when inspecting the classes present in the original

data. In most cases, spiral galaxies account for over 80% of the data. The other two

predominant morphologies as elliptical and lenticular types. Efforts were made to

ensure that an appropriate representation was provided to the SOM during train-

ing. an examination of the various datasets will show that in some cases, very

few candidate galaxies existed for certain morphologies. To provide sufficient data

for analysis, these under-represented classes might have their galaxies included an

order of magnitude more often than any galaxy of a different class. As an example,

Pat 952 1386 5 only contains 11 distinct peculiar galaxies and 2 irregulars. To cre-

ate the training dataset, these were duplicated numerous times each to provide for

the 151 samples required. Similarly Pat 1090 1145 7 required multiple duplicates

of its irregular and elliptical candidates. The result of this over sampling of a few

unique galaxies may have biased the SOM training towards these few examples.

The resultant map would therefore be biased to just a few representatives for spe-

cific classes. Larger datasets with a more even representation did not encounter

the same difficulties.

4.6.2 Map Coverage

Three other measures recorded for each analysis also display a relationship with

the dataset size. These are the number of prototypes which represent unique

morphologies, those that represent multi-morphology cells and the percentage of

the SOM’s volume mapped by the training data.

For very small sample sizes, the SOM provides ample space for associating in-

put data to prototypes. In such cases, competition for prototypes is low. This

leads to both an artificially high success rate in mapping morphologies as well as

a low demand for prototypes. The low requirement for prototypes is reflected in a

low map utilization of the training data. The side effect of the reduced competi-

tion for prototypes is that there are very few cells, if any which contain a mix of

morphologies.

In the results, as the number of candidate galaxies increases, so does the number

of cell prototypes mapped by the training data. The more competition for the

prototypes, the larger the number of mixed-morphology cells. This leads directly to

a better utilization of the SOM map space. In the perfect case, the objective would

be to have only single-morphology prototypes in the SOM. In a real case, it should

not be unexpected that candidates which lie between valid morphologies might
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congregate in ’border ’ cells between regions of unique morphologies. The difficulty

with such border regions is that it is difficult to assign a specific morphology to the

data elements they represent. Typically a majority rule approach is used. When

measuring the effectiveness of the SOM, the greater the number of border cells of

mixed-morphology, the lower the expected morphology prediction accuracy.

Examination of the results does show that for the simple, small training sets,

the reproducibility of the SOM mapping is much higher than for large datasets. As

the mixed morphology prototypes become more numerous, the prediction accuracy

diminishes.

4.6.3 Error Measures

As a verification step, both the quantization and topographic errors were deter-

mined for each iteration of the maps produced. Overall, their appearance is similar

to those obtained while investigating the Iris datasetA.

Reviewing the values (Appendix C) for QE, which represents how well the

prototypes represent their associated data points, did not yield any consistent

preference for any specific analysis technique. Similarly, TE values did not reveal

one technique to be more effective than any other.

The TE (dist) variation of the topographic error did provide the opportunity, in

a couple cases, to differentiation map quality. Results for Pat 1052 and Pat 1030

show instances where identical QE values generated TE(dist) values that were

significantly different. The default QE measure only provides for a 1 or 0 score if a

data item’s BMU are not adjacent. By measuring the map grid distance between

the first and second BMU, a more sensitive measure of the map’s ordering can be

made. Smaller distances would indicate maps which, for the same datasets, are

better aligned to the data.

It was found that, for maps with a larger percentage of coverage, values for both

QE and TE produced less variance from technique to technique. These maps were

also found to be those belonging to datasets with the larger number of candidate

galaxies.

4.6.4 Related Datasets

Of the twelve datasets examined, three were found to be subsets of the dataset

Pat 1052 1126 12. These four datasets have been placed at the end of Appendix

C. As a quick summary Table 4.4 shows the frequency overlaps in the different

datasets.

The extent to which they cover the SOM as well as the mix of single and multi-

morphology cells mirror what is seen in the other datasets. Based on their number

of attributes and dataset set sizes, their individual effectiveness at classifying the

training data is similar as well. A dendrogram of the Pat 1052 dataset, processed
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without adjusting the initialization of the SOM (NONE) and no restrictions to the

BMU movement (FULL) is shown in Figure 4.3.

Figure 4.3: A dendrogram showing the clustering of the Pat 1052 dataset.

The similarities are such that it is not clear if the improvement in the classifi-

cation seen in Pat 1052 1226 12 is due to the resultant sample size or the increase

in information contained in the additional attributes.

4.6.5 Predicting Morphology

Each of the datasets contained a number of galaxies for which NED had not deter-

mined a morphological classification. These galaxies were included in this study as

they contained the appropriate frequencies to be included in each analysis. This

provided for a larger sample size without impacting on the SOM build itself. These

’unknowns’ were not part of the training data and could therefore be used to mea-

sure the effectiveness of the SOMs at predicting a galaxy’s classification.

The list of unknown galaxies were evaluated by their respective SOMs and given

a classification. Each of these classifications was taken as a vote. The list of all

predicted morphologies for all of the unknown galaxies was compiled. The SOMs

were then used as an ensemble method [62] to predict an overall morphology for
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each object. Table 4.5 presents a summary of the morphology populations present

in the datasets analysed. It is important to note that many galaxies are counted

numerous times to make up these counts. As an example, recalling the Pat 1052

datasets, since Pat 1052 is a subset of Pat 139, at 192 and Pat Visual 49, all of its

galaxies are accounted for at least 4 times in the Table 4.5. A count of the unique

galaxies included in the datasets is also presented.

The galaxy dataset was collected at the beginning of this research project. The

NED database is constantly being updated with new classifications. The list of

unknown galaxies was presented back to NED to see if any morphologies had been

updated since the original data snapshot. It was found that a large number of the

previously unknown galaxies had now been given official NED morphologies. We

were then able to compare our predicted classes with those present in NED.

A summary of the predicted classes can be found in Appendix D where results

are given for galaxies with the largest number of votes per morphology.

Ensemble results for the peculiar, irregular and lenticular galaxies did not pro-

vide any consistency across the multiple SOMs. This resulted in a very poor

performance in predicting galaxy morphology. The spiral and elliptical predictions

provided results which were much more encouraging. With only a few exceptions,

both spiral and elliptical galaxies were predictable when the vote count stayed

above the 55% level.

4.7 Discussion

A number of difficulties were encountered within this project. The most interest-

ing question arising from the various tests was trying to determine which factors

influenced the convergence of the SOM the most. In the cases of the RGB or Iris

data, it was well established that the attributes in the data lead directly to a valid

classification scheme. The colour example was rather simplistic but did show that

the implementation was able to discover the ordering present in such cases. In the

case of the Iris data, historically, physical dimensions have been used to classify

species. Those data attributes were known to be the drivers of the classification.

It would therefore be expected that the SOM algorithm would produce a map

which could effectively classify the data. In the galaxy data, however, there were

no guarantees that any of the datasets contained sufficient embedded information

to lead to a valid classification scheme.

The main question which arose was whether the quality of the map was im-

pacted by the lack of information contained in the data or if it was an artefact

of the parameters and constraints placed on the map itself. If the dataset has no

intrinsic morphological knowledge embedded in it, an effective reliable map can-

not be produced. If, however, the selection of the map size is incorrect or if the

topological order is not maintained during the building of the map, the process

will not lead to an effective classifier. Similarly, if the normalization of the data
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before it is introduced to the map harms the embedded knowledge, the map will

exhibit the effects of these changes. The process of creating an effective SOM then

becomes an iterative search for the proper geometry and initialization techniques.

Since each dataset contains unique data, each dataset in turn would have to be

explored individually.

In the data extracted from NED, 1137 different frequencies were identified.

Data was extracted for 680,162 galaxies and used to produce all of the sample

dataset for the SOM discovery process. Though the data volume seems very large,

the sparsity of the dataset significantly reduces the number of candidate datasets.

Finding datasets which contained multiple frequencies as well as more than a few

hundred galaxies in each of the morphologies proved quite difficult. An examination

of the datasets in Appendix C shows that this was simply impossible in most cases.

Large datasets with more than 5 frequencies simply did not exist.

The results obtained from the different analyses do suggest that using SOMs to

classify galaxies by morphology is possible. The individual maps did not provide

as clear a distinction between morphologies as expected. The quality of the results

maybe a product of the geometry of the SOM selected, the lack of available data

or a combination of both. Collectively though, the maps produced did exhibit

some consistency in classification. For both the Spiral and Elliptical classes, it was

possible to correctly predict the morphology of a number of galaxies.
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Chapter 5

Conclusion and Future Work

5.1 Conclusions

We have shown that extending Self-Organizing maps to 3D is an effective technique

in discovering patterns and order within a set of high dimensionality data. The

RGB colour test data as well as the MRL’s Zoo dataset were successfully explored

using the SOM code implemented for this research.

Further analysis of the code implementation was performed on the Iris dataset.

Results from these tests showed the effectiveness level of various map dimensions

and normalization techniques. This information was then used to guide our deci-

sions regarding the use of SOMs for analysing SED data for galaxies in an attempt

to create an automated morphology classifier.

Of the 496 viable datasets generated from the NED data, only a dozen were

chosen for further processing. This reduction in the number of candidates can be

attributed to poor SOM performance in the preliminary round of analysis. The

performance of the mapping process is impacted by the information contained

in the attributes of the data as well as our choice of the geometry of the SOM.

The exhaustive search for the perfect map geometry for each individual candidate

dataset was beyond the processing capacity of the current thesis. A standard

configuration was chosen to help provide a basis for comparison between datasets.

Though the optimal solution for each dataset may be different due the number

of attributes and data elements present, the SOMs produced did show promise in

separating morphologies. For the maps that didn’t produce any distinct separation

between classes, it may be that the frequencies chosen for those datasets do not

provide sufficient information to distinguish Spirals from Ellipticals or any other

morphology.

Of the dozen datasets chosen, results from individual SOM showed promise

in identifying morphologies. By adopting an ensemble method approach it was

possible to provide morphology predictions for a number of galaxies. The more

effective predictions were found to be for spiral and elliptical classes.
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5.1.1 Future work

The objective of creating an automated classifier for galaxy morphology has been

shown to be possible. To produce more efficient SOMs will require additional

investigations.

The primary constraint in this work has been the limited size of the datasets.

Though the results for the smaller sets yield impressive reproducibility, it is not

evident that this is not just due to the small sample size yielding high percentages.

Without larger samples it is difficult to not think of this as a statistical effect of

a limited number of data points. The implication of the small sample sizes for

certain datasets may also imply that the frequencies used in the analysis are not

those that are of general interest to a large fraction of the studies producing SED

data. If this is the case, then classifiers based on these frequencies may be quite

good at determining galaxy morphology but they would be ineffective for the vast

majority of galaxies present in NED. Conversely, if the SOM proved very efficient, it

may guide future SED measurements for existing galaxies to include these specific

frequencies.

Another approach to the frequency issue may be to generate a reduced number

of data points per frequency band. Though this would reduce the overall number

of frequencies present, it has the potential of increasing the number of candidate

galaxies which share this new common attribute. This approach would require

developing a technique to merge multiple values into a single representative value.

This averaging, or bining of the data would have to take into account the number

of data points, if an average was better than the integral over the region etc. This

process is beyond the scope of the present research.

The two other factors which were found to be the most significant were the

map size as well as the initialization method. Improvements in the initialization

which would be of interest for future study would include using PCA to guide

prototype weighting [37, 64]. This would involve finding the three most significant

components embedded within the data and initializing the map accordingly. The

most significant component along the longest axis, the second along the mid-length

axis and the least significant of the three, along the shorter dimension of the SOM.

This may lead to a better ordering of the mapped data. It should be noted though

that it is possible that some of the attributes are not linear in nature and techniques

such as normal PCA may not be appropriate [24, 37].

The size of the map is difficult to determine other than trial and error. Due

to the edge effects, the smallest dimension should be kept above 3 units and from

our testing at or above 5. Kohonen suggests asymmetrical maps and one avenue

would be to scale the dimensions based on the impact of the three most significant

components determined by PCA. Even with these additional guidelines, it is ex-

pected that an iterative process will be required to find the optimal map size for

each individual dataset. From the current work, it is apparent that a one-size fits

all approach may not be optimal.
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For morphological identification, mixed results were obtained. The SOM algo-

rithm is an unsupervised learner, it is possible that the inclusion of Peculiar and

Irregular galaxies may have hindered the processing efficiency. In this work, at-

tempts were made to consider these morphologies as significant as those present on

the original Tuning Fork Figure 2.6. As such, the selection of datasets to process

as well as attributes focused on equal representations of the 5 classes: S, P, I, E

and L. It is possible that further work would benefit from focusing on the three

major classes and allow the SOM to allocate prototypes for the P and I classes on

its own. This would benefit the analysis by allowing for larger datasets as well as

reducing the requirement for aggressive over and under-sampling of the data.

In closing, it is expected that further work will provide direction on the ap-

propriate frequencies which could be used in an automated process to help assign

galaxy morphologies to unknown targets. The results here do indicate that identi-

fying Spirals and Ellipticals is possible. Future work may allow the tuning of the

SOM to help resolve sub-morphologies such as E0 from E3 and Sb spirals from

SBc Spirals.
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Appendix A

SOMs and The Iris Data Set

The purpose of this appendix is to provide an overview of the process used in mod-

elling a set of data using self-organizing maps. The investigations performed were

also used to verify the proper functioning of the three dimensional implementation

of the non-batch Kohonen SOM algorithm. The content of this section will include

the selection of a standard modelling dataset of known classifications. This will

be used to measure the effectiveness of the code implementation at resolving the

different classes present. Various SOM configuration parameters will be explored

to investigate how they affect the quality of the produced map.

A.1 The dataset

The data used in this exercise is the Iris dataset from the Machine Learning Repos-

itory at U.C. Irvine1. The Iris dataset is comprised of fifty data points for each of

for three types of irises: Iris Setosa, Iris Versicolour and Iris Virginica. Each data

point has four attributes: sepal length, sepal width, petal length and petal width.

The dataset has been studied by many groups [45, 62] and is known to have

one family of irises, Setosa, which is easily separable from the others. The other

two species are more closely related and are a bit more difficult to resolve.

A.2 Sizing the SOM

Choosing an appropriate size for a SOM has a direct effect on the quality of the

maps produced [39]. If the dimensions of a map are too small, important small-

scale variations in the data may be masked. Having a map that is too large has

the opposite effect where details are smeared out over a large region and become

less prominent.

Two other factors which must be considered are the quality of the map and the

amount of computational resources we are willing to use to obtain the final result.

1Machine Learning Repository: http://archive.ics.uci.edu/ml/datasets.html
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The larger the map, the more prototype vectors come into play in determining

the BMU. Doubling the map size in any two dimensions quadruples the number

of BMUs. Doubling also affects the effective radius of the BMU region which is

tuned to the new input data at each iteration of the map. For a three-dimensional

SOM, the number of cells affected by the weight smoothing over the BMU region

is defined by the volume of a sphere of a set radius. If we double the radius,

the volume of the sphere, hence the number of affected prototypes, increases by a

factor of eight. This represents a significant increase in the number of computations

required.

In terms of the quality of the map, we are concerned with the possible existence

of warping or twisting in the attribute space spanned by the map. In an ideal

SOM, all prototypes which are similar will occupy adjacent regions in the map.

As the map is tuned for the input data, it is possible to introduce variations in

the prototype weights which generate like prototypes in disjoined portions of the

map. For smaller maps, these separated regions cannot be too distant from each

other. The smoothing of the BMU regions will tend to blend in the differences and

reintegrate these prototypes into a common area. For very large maps though, it

is possible that the BMU region radius is not sufficient to bridge between these

distinct areas. In such cases, the regions remain distinct and the topology of the

input attribute space is not preserved in the mapping process.

To evaluate the effect of different size maps, four different size maps will be

investigated: 3× 5× 7, 5× 5× 5, 5× 7× 9 and 10× 10× 10.

A.3 Initializing the data

Three different methods of initializing the data and the SOM were used in this

exercise. These are a direct result of the map initialization techniques discussed in

section 4.5.1.

The first was to provide the data to the SOM in its raw form. The normalization

label for such data will be NONE.

The second approach was to also use the raw data but to use the eight most

dissimilar points in the dataset to seed the weights of original map corners, keeping

the most dissimilar points the furthest apart in the SOM’s grid. This approach

will be labeled ADATA.

The final technique used was to perform a normalization of the input data’s at-

tribute space. This was done to ensure that all of the attributes present were scaled

to a common range. This reduced the possibility of one attribute taking precedence

in all of the similarity measure calculations. The per-attribute normalization data

will be labeled PNORM.
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A.4 The stopping criteria

A rule of thumb for the number of iterations has been given as 500 times the

number of prototype vectors [29, 39]. This number was found to be insufficient

for the 3D SOMs used in this study. In this exercise, all of the datasets were

processed through the SOM for 500, 000 iterations or until there were no changes

to the BMUs2. Kohonen [39] and others [29] have suggested that other measures,

such as Quantization Error (QE) and Topographic Error (TE), can also be used

to evaluate the convergence of the map. Though not used as termination criteria,

these two measures will be investigated.

A.5 Modifications to the BMU selection

In much of the preliminary work for this thesis, it was found that upon completion

of the maximum number of iterations, many data elements had not converged to a

single specific BMU. Further research into the problem, by mapping the movements

of the data, revealed that many of these unsettled data points were oscillating

between individual sets of two or more BMUs.

In an attempt to reduce or eliminate these oscillations, two dampening tech-

niques were investigated. The CUBE method attempts to restrict movement be-

tween adjacent BMUs in the map’s coordinate system. The CUTOFF approach

restricts BMU movements based on a selected minimum separation in the attribute

space. These will be described in the following sections.

A.5.1 CUBE - Moderating a BMU’s Nearest Neighbours

Tracking the locations of the oscillating BMUs revealed that many were adjacent to

each other. As the data elements were allocated to one BMU, the neighbourhood

adjustment function was enough to alter adjoining prototypes to make them more

similar to the data being presented. In the next iteration, the item would jump

back to the original BMU.

To reduce the oscillations, the BMU selection process was given an extra option.

When selected, this option would prevent a data element from jumping to a new

BMU if that new target prototype was adjacent within a unit cube surrounding

the original within the SOM grid structure. This technique, CUBE, was compared

to the original to see if it would help the SOM converge more quickly.

2Changes to the BMUs had to remain at zero for 50 iterations before the map was considered
complete
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A.5.2 CUTOFF - Similarity Restrictions

The second technique that was developed to moderate the selection of the BMU was

based on the existing similarities within the data. If a set of data contains elements

which can be classified as similar, then, there must exist within the attribute space

a certain heightened similarity between those items. If an evaluation is made of

the similarities between all of the data elements in a dataset, some will be found to

be more similar and some more dissimilar. This is the basis upon which the SOM

is built.

If we plot the similarities within the raw data, we will be able to examine the

structure of the graph and find regions which share the same level of similarity. For

this purpose, it is not necessary to know which items are more similar to others,

just what the overall maximum similarity might be. If we know that a significant

portion of items within the data share a high degree of similarity, then any simi-

larity measure encountered during the BMU selection process which exceeds that

maximum value would indicate that the prototype and data item share a similarity

beyond what exists in the original dataset. The new BMU would therefore be the

optimum choice for that data element.

In the implementation of the Kohonen algorithm, the BMU is chosen based

on minimizing the Euclidean distance in the attribute space. A high degree of

similarity is synonymous with a small Euclidean distance in the attribute space.

To select an appropriate limit for restricting the BMU’s movement, an analysis of

the inter-data distances can be performed. Figure A.1 is a plot of the attribute

space distance profile which exists within the Iris data. An examination of the

figure reveals that a significant portion of inter-data distances have a value of less

than 5. For the Iris data, a Euclidean distance of 5 accounts for just over 48% of

all of the inter-data distances present in the original dataset.

In the analysis that follows, a number of distance restrictions will be chosen

in order to evaluate their impact on the quality of the SOM. Cutoff points were

chosen to restrict BMU changes at the 5%, 10%, 15%, 20%, 30%, 40% and 50% of

all possible distances. These are indicated in the distance chart in Figure A.2. This

new chart is just a sub-chart of the data shown in Figure A.1. Datasets analysed

using this technique will be identified as CUTOFF.
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Figure A.1: The Euclidean distance profile of the Iris data.
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Figure A.2: The Euclidean distance profile of the Iris data (details).

A.6 The Analysis of the Iris Data

The Iris data were investigated through implementing a number of different SOM

configurations. The data were preprocessed using either the ADATA, NONE or

PNORM normalization schemes. The impact of the map size was investigated

using maps of dimensions: 3 × 5 × 7, 5 × 5 × 5, 5 × 7 × 9 and 10 × 10 × 10. The

final modifier of the mapping process was applying restrictions to the selection of

the BMU to help control the oscillation problem.

The results of the investigation can be found in Tables A.1, A.2, A.3 and A.4.

The main limit placed on all of the analyses performed was to set a maximum

number of iterations for each dataset. This limit was set to 500, 000 iterations

independent on the size of the SOM. This was done to limit the amount of resources

consumed for this investigation and to provide for a common measure for cross-

comparison. The size of the SOM has a direct bearing on the number of calculations

required per iteration. To provide a more consistent measure for comparison, all

of the data provided will be plotted against elapsed time instead of by iteration.

The effectiveness of the SOM produced can be evaluated using a number of

parameters. The most important is how effective the map is at classifying the
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input data. Other factors such as resource consumption costs in creating the map

must also factor in the evaluation. The following sections will investigate each in

turn.

A.7 Tracking BMU changes

The selection of a BMU and the subsequent tuning of the prototype values allows

for the establishment of an effective SOM. As the map converges to a final rep-

resentation of the input data, the number of BMU changes should decrease and

eventually reach zero.

In some cases, however, distortion in the map or data with no discernable

structure may delay the convergence of the map. Figures A.3 and A.4 are typical

graphs showing the number of BMU changes for each of the 9 BMU selection

modifiers as time series. Note that in these charts, only every 1000th point is

plotted to reduce the overwhelming density of points.

Examination of these figures reveals that there is a significant impact on the

convergence speed of the SOM as we increase the BMU similarity distance modifier.

Variations of the CUTOFF technique provide for a dramatic decrease in the number

of BMU changes. As we will see in the following sections, this come at a cost in the

quality of the resultant map. The CUBE technique and the 5% CUTOFF more

closely follow the unmodified approach while providing at times, a measurable

decrease in the number of BMU changes. Once can also notice that the CUBE

technique seems to extend the runtime of the algorithm by an appreciable amount.

All of the plots of BMU changes over time exhibit some interesting character-

istics. In the two examples provided, it is possible to see a number of occasions

where there are drastic increases in the number of BMU changes. In Figure A.3,

the 10% data shows such a change at the 350 second time interval. the 5% data

shows the same behaviour between 500 and 600 second. In Figure A.4 the same

two datasets show similar patterns between the 1000 and 1300 second marks.

The runtime of all of the datasets is directly impacted by the size of the maps.

This can be seen both graphically in these charts as well as in the results raw data

in tables A.1 through A.4.

A.8 Quantization Error

The quantization error if often stated as a mechanism for measuring the quality of

the mapping process. The QE value represents a measure of the attribute space

distance between the prototypes and all of the data elements associated with it.

The QE is averaged over the number of data elements present. Lower values

represent higher similarity between the data and the SOM. As the map converges

it is expected that these values will decrease since the SOM will be trained to

represent the data more and more reliably.
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QE can also be used as a termination criteria for the convergence of the SOM.

Results from the analysis show that the QE behaviour is consistent over the dif-

ferent normalization approaches and map sizes. Two examples of the QE versus

time plots are shown in Figures A.5 and A.6.

We can see that for the 5 × 5 × 5 chart that for most of the life cycle of the

SOM creation, the QE for all but the CUBE approach is significantly higher than

that for the unmodified approach (FULL).

It is also interesting to note that when the SOM is expanded to the 10×10×10

size, the range of QE values changes drastically. In Figure A.5 we find the y-

axis rage from 0 to 14 whereas in Figure A.6 this drops to 0 to 0.7. This can be

explained by looking at the number of SOM cells the data must map to. In the

first example, there are only 125 cells in the SOM to map the 150 Iris data points.

In the larger map, there are 1000 cells. There is almost an order of magnitude

more room in the second map than in the first. Since there is less contention for

the prototypes, each datum can eventually be assigned to a unique SOM cell. In

this case, it is not evident that the lower QE values represent a better SOM and

not just an attribute space with very little variance from point to point.

A.9 Termination Error

The termination error is a direct measure of the adjacency of the BMU and the

second BMU selected for each data item. It is therefore, a measure of the ordering

of the map. The value for TE is only increased if the first and second BMU are

not adjacent within the SOM. The normal measure for TE is to simply score 0 is

the BMUs are adjacent and an error of +1 if they are apart. In this thesis, this

has been extended to a TE(Distance) measure which accumulates the distances in

the offending BMUs. Both of these measure can be seen in the results tables.

Figures A.7 and A.8 are plots of TE for two sample runs of the Iris data. We

can see in the first figure that the early convergence in the 50% and 40% cases

bring about large TE. In the CUBE and 5% cases, however, we see that we get TE

values that are lower but at a small runtime cost.

Figure A.8 reflects how map size can have an effect on the building of the

SOM. In this example, the 50% and 40% cases have higher TE values while not

significantly decreasing the run time. In the 20%, 30% and 40% samples There is

little improvement in the TE values but the runtime is drawn out by almost 30%.
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A.10 Discussion

In this appendix we have explored the effectiveness of the implemented code in

analyzing the Iris dataset. Multiple SOM sizes and data normalization approaches

were tested.

From this analysis, a number of conclusions can be made. First is the impor-

tance of selecting an appropriate map size. Maps that are too large allow the data

to spread out and weight interactions between cells is minimized. Such maps can

be identified through the large number of populated cells and a small quantization

error. An example of such a map can be seen in Figure A.9. Maps which are tool

small cannot adequately represent the attribute space of the dataset. These maps

will therefore have higher attribute gradients and will tend to have cells which

contain multiple classes. An examination of the results tables show that for the

smaller SOM such as 3× 5× 7 the number of multi-morphology cells is larger than

those for the 5× 7× 9 and 10× 10× 10 maps.

Figure A.9: SOM - 10x10x10 Iris data: ADATA and CUBE.

Mapping the number of BMU changes, TE and QE have shown that being too

aggressive in moderating the BMU changes yields maps which terminate prema-

turely. These SOMs are also associated with larger QE and TE measures which

implies, poorer maps.

Figure A.10 and A.11 are maps which provide a balance of these different ap-

proaches. Both provide for a good separation between the classes while consuming

half of the resources required for larger maps.
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Figure A.10: SOM - 5x5x5 Iris data: PNORM and CUBE.

Figure A.11: SOM - 5x7x9 Iris data: ADATA and CUBE.
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A.11 Conclusion

We have shown that the implementation of the Kohonen algorithm is effective in

producing viable maps for classification purposes. Investigation of the BMU os-

cillations within the map indicate that they may be an artefact of the attribute

gradient within the map being too “flat”, resulting in adjacent cells being essen-

tially identical. The examination of the various BMU selection modifiers has shown

that the CUBE approach is effective in minimizing the QE and TE values though

at the expense of sometimes increasing the run time of the overall algorithm.

Experimentation in managing the BMU oscillations through restricting at-

tribute space distances showed promise. Most of these approaches caused sig-

nificant changes in quality of the maps produced. Only the 5% moderator showed

promise in improving both QE and TE values as compared to those of the raw data.

As with the CUBE case, this often lead to slightly longer run times. Restricting

the CUTOFF fraction to the 5% level will therefore be used for the analyses in

this thesis.

Further work will have to be undertaken to investigate some of the artefact

present in the BMU, QE and TE charts. Though it is thought that these are

caused by a reordering within the map, it is also plausible that some of these

irregularities may be caused by over-fitting the data. Such investigations, however,

are beyond the scope of this thesis.
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Appendix B

NED Data Extracts

This appendix examines the data retrieval steps used to extract data from NED.

This site was used as the exclusive source for the galaxy and SED data used in

this research. It provides for a consistent dataset which incorporates results from

multiple independent research teams. All of the data exported from NED were

kept in a MySQL database for local processing.

The NED site allows for data to be exported two different ways. The first tech-

nique involves submitting batch requests. The batch interface involves submitting

email requests to nedbatchipac.caltech.edu. The content of the body of the email

contains the parameters for the request.

For the purpose of this research, the NED batch requests were used to collect as

many galaxy names as possible which conformed to our Z < 0.1 requirement. Other

parameters which helped refine the searches include: Right ascension, declination

and object type. In all cases, batch searches of NED required that all objects

returned be of type: Galaxy. Preliminary requests were based on general catalogue

names such as NGC, UGC, SDSS. Because the NED batch requests were limited

in the number of objects they could return, this approach was not as effective

as expected. Follow up requests to find more galaxies subdivided the night sky

into quadrants. Requests which returned an incomplete set of responses were

subdivided into smaller quadrants and resubmitted.

Batch requests submitted to NED returned the NED preferred object name,

the object type, RA and DEC as well as the number of photometric measurements

present in NED. A sample header of a batch submission is shown below. These lists

were then used to download detailed information using the second NED interface.

File Name: BELAND_d_, Processing Time: Wed Mar 13 15:39:03

Output option: standard

************************** SEARCH REQUESTS ******************************

IN_CSYS : equatorial , IN_EQUINOX : J2000.0

OUT_CSYS: equatorial , OUT_EQUINOX: J2000.0

EXTENDED_NAME_SEARCH: Yes

SORTED_BY_FIELD : RA_or_Longitude

REDSHIFT_VELOCITY : 10000.0

DEFAULT_RADIUS : 5.000000

DEFAULT_BEGIN_YEAR : 1700

DEFAULT_END_YEAR : 2013

IAU NAME STYLE : S

PARAMETERS:

RA: Between 14h00m00.00000s and 15h00m00.00000s
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DEC: Between 10.0000000000 and +20d00m00.0000s

Name prefix (ALL of the following):

INCLUDE ANY:

Galaxies

EXCLUDE ANY:

REDSHIFT:

Less Than 30000.000000

************************** SEARCH RESULTS ******************************

PARAMETERS

2946 object(s) found.

#--Object Name------------Type-------------Position---------Dist.-Ref-Note-Phot

1 2MASX J14000229+13470 G 14h00m02.26s +13d47m10.0s 0.0 0 0 24

2 KUG 1357+161 G 14h00m02.59s +15d55m14.0s 0.0 6 0 14

3 2MASX J14000420+10515 G 14h00m04.24s +10d51m58.8s 0.0 0 0 24

Sample NED Batch results file.1

The second approach used to extract data from NED involved an iteration of

multiple steps.

Check duplicates: Every list of galaxy names provided to this routine checked

the local database to see if the galaxy name was already present. It also

verified to ensure the galaxy wasn’t present under another name or synonym.

Bulk Data: Download some basic information on each galaxy: RA, DEC, number

of photometric measurements, major and minor axes dimensions, Galactic

extinction for the visible wavelengths, D (Virgo+GA) and z.

Get SED data: For each galaxy download the current spectral energy distribu-

tion data.

Get cross-references: Each galaxy description in NED can be made up of con-

tributions from multiple studies. the cross-reference table lists all of the syn-

onyms under which a galaxy is known. This information is used to prevent

having duplicate entries in the database.

The iterative portion of the data extracts involved adding new galaxies to the

database. Every time a new set of galaxy names was generated, all of the above

steps were performed. Additionally over the course of this research, many updates

were performed by the NED team. These updates included new or updated data

for the required fields as well as many new SED measurements. Periodical checks

were performed to see if the number of photometric measurements changed for any

particular galaxy. If so, updates were performed.

All of the downloads through the web interface to NED returned bar-separated

data. These files were subsequently parsed and the appropriate database tables

updated. Though mostly automated, these steps still required significant manual

intervention. The process of obtaining data from NED, however, was quite efficient

once the processes involved were grasped.

1note sure if I need this? I am not showing the format of any other downloads for comparison.
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Appendix C

Results

C.1 Processing Results

The purpose of this appendix is to provide an overview of the datasets and how

they were analyzed through the course of this thesis.

Results are presented using three tables for each dataset. The first table de-

scribes the number of galaxies of each morphology used in the training set for

building the SOM, the number of unique galaxies present in that training set, the

actual number of galaxies present in the complete dataset as well as the percentage

representation of each morphology.

The second table shows the attributes present in the data. For each dataset a

list of the individual frequencies and the frequency band they represent is given.

The last table gives SOM performance measures for each technique used in the

analysis. Also present are runtime characteristics for each job so that a comparison

can be drawn between each approach.

111



P
a
t

1
3
0

1
0
0
4
2

5
S

P
I

E
L

N
E
D

U
n
k
n
o
w
n
s

N
E
D

K
n
o
w
n
s

T
r
a
in

in
g

s
a
m

p
le

s
iz

e
:

4
3
4

4
3
4

4
3
4

4
3
4

4
3
4

T
r
a
in

in
g

(
u
n
iq

u
e

g
a
la

x
ie

s
)
:

4
2
4

3
1
1

1
3
4

2
4
4

4
2
7

F
u
ll

d
a
t
a
s
e
t
:

6
9
9
9

6
3
0

1
3
4

2
4
4

4
2
7

1
5
7
5

8
4
3
4

%
M

o
r
p
h
.:

8
2
.9

9
7
.4

7
1
.5

9
2
.8

9
5
.0

6

O
b
s
e
r
v
e
d

F
r
e
q
u
e
n
c
ie

s
:

5
F
r
e
q
u
e
n
c
y

B
a
n
d

O
b
s
e
r
v
e
d

F
r
e
q
u
e
n
c
ie

s

R
a
d
io

M
il
li
m

e
t
e
r

S
u
b
M

il
li
m

e
t
e
r

F
I
R

3
0
0
0
0
0
0
0
0
0
0
0
0

M
I
R

N
I
R

1
3
8
0
0
0
0
0
0
0
0
0
0
0
0
,

1
8
2
0
0
0
0
0
0
0
0
0
0
0
0
,

2
4
0
0
0
0
0
0
0
0
0
0
0
0
0

V
is
u
a
l

6
8
1
0
0
0
0
0
0
0
0
0
0
0
0

U
lt
r
a
v
io

le
t

X
-r

a
y

G
a
m

m
a
-r

a
y

A
n
a
ly

s
is

T
e
c
h
n
iq

u
e

S
P

I
E

L
O

v
e
r
a
ll

%
∆ B
M

U
C
P
U

S
e
c
o
n
d
s

Q
E

T
E

T
E

(
d
is
t
)

S
in

g
le

M
o
r
p
h
.

M
u
lt
i

M
o
r
p
h
.

%
M

a
p

C
o
v
e
r
a
g
e

A
D

A
T
A

C
U

B
E
:

3
9
8

1
1
9
5
2
8

5
.5

9
E

+
3
4

3
.8

2
E

-0
1

1
.3

7
E

+
0
0

6
3

2
1
1

8
6
.9

8
4
3

5
1

7
9

6
7

5
1

5
4

2
9

2
6

0
0

0
2
9

1
0
0

(1
1
9
)

0
(1

4
)

0
(0

)
0

(0
)

0
(0

)
8
9

A
D

A
T
A

C
U

T
O

F
F
:

4
4
3

1
2
2
8
3
4

4
.9

4
E

+
3
4

2
.8

1
E

-0
1

1
.0

9
E

+
0
0

8
3

1
9
1

8
6
.9

8
4
3

5
0

7
7

5
8

5
1

5
2

3
3

3
0

0
0

0
3
3

1
0
0

(1
6
4
)

2
5

(8
)

0
(0

)
0

(0
)

0
(0

)
9
6

A
D

A
T
A

F
U

L
L
:

1
1
4
1

1
2
3
5
3
8

8
.2

6
E

+
3
4

3
.1

3
E

-0
1

1
.1

2
E

+
0
0

9
0

1
4
1

7
3
.3

3
4
8

3
5

8
2

5
1

4
7

4
9

3
4

1
7

0
0

0
3
3

1
0
0

(1
8
9
)

1
3

(1
5
)

0
(0

)
0

(0
)

0
(0

)
9
3

N
O

N
E

C
U

B
E
:

4
1
2

1
2
1
8
0
2

6
.8

4
E

+
3
4

4
.5

3
E

-0
1

1
.6

9
E

+
0
0

6
3

1
9
7

8
2
.5

4
5
6

5
1

7
8

6
3

4
6

5
5

3
9

3
0

0
0

0
3
8

1
0
0

(1
2
0
)

1
1

(1
9
)

0
(0

)
0

(0
)

0
(0

)
8
7

N
O

N
E

C
U

T
O

F
F
:

6
1
2

1
2
1
5
0
3

6
.9

2
E

+
3
4

2
.5

8
E

-0
1

8
.1

0
E

-0
1

1
0
6

1
2
3

7
2
.7

0
5
2

3
7

7
5

5
1

4
8

5
0

4
0

1
7

0
0

0
3
9

1
0
0

(1
9
0
)

1
7

(1
8
)

0
(0

)
0

(0
)

0
(0

)
9
2

N
O

N
E

F
U

L
L
:

1
1
3
0

1
2
0
4
2
0

8
.7

3
E

+
3
4

2
.6

0
E

-0
1

8
.7

6
E

-0
1

1
1
8

9
5

6
7
.6

2
3
6

3
9

7
1

4
4

5
5

4
6

2
4

2
4

0
0

0
2
4

1
0
0

(2
0
5
)

5
0

(1
2
)

0
(0

)
0

(0
)

0
(0

)
9
7

P
N

O
R

M
C
U

B
E
:

1
0
8
1

5
5
5
4
8

1
.7

9
E

-0
3

4
.7

3
E

-0
1

1
.8

3
E

+
0
0

4
9

2
1
6

8
4
.1

3
5
8

4
3

8
1

5
5

4
3

5
2

5
0

2
4

0
0

0
4
9

1
0
0

(1
9
0
)

8
(1

3
)

0
(0

)
0

(0
)

0
(0

)
9
4

P
N

O
R

M
C
U

T
O

F
F
:

1
1
6
4

1
2
4
9
2
0

1
.5

2
E

-0
0
3

4
.4

2
E

-0
0
1

1
.7

3
E

+
0
0
0

6
4

2
0
2

8
4
.4

4
5
0

5
0

7
9

5
8

4
3

5
2

0
0

0
0

0
0

0
(0

)
0

(0
)

0
(0

)
0

(0
)

0
(0

)
0

P
N

O
R

M
F
U

L
L
:

1
0
7
1

1
2
0
2
1
0

1
.6

8
E

-0
3

4
.4

8
E

-0
1

1
.5

9
E

+
0
0

5
6

2
1
2

8
5
.0

8
5
4

4
4

7
9

6
2

5
2

5
5

4
0

3
0

0
0

0
3
9

1
0
0

(1
8
)

5
0

(4
)

0
(0

)
0

(0
)

0
(0

)
9
0

A
n
a
ly

si
s

re
su

lt
s

fo
r

P
a
t

1
3
0

1
0
0
4
2

5
.

112



P
a
t

9
5
2

1
3
8
6

5
S

P
I

E
L

N
E
D

U
n
k
n
o
w
n
s

N
E
D

K
n
o
w
n
s

T
r
a
in

in
g

s
a
m

p
le

s
iz

e
:

1
5
1

1
5
1

1
5
1

1
5
1

1
5
1

T
r
a
in

in
g

(
u
n
iq

u
e

g
a
la

x
ie

s
)
:

1
0
7

1
1

2
1
0
9

1
2
2

F
u
ll

d
a
t
a
s
e
t
:

2
0
2

1
1

2
2
4
0

4
8
5

3
1
8

9
4
0

%
M

o
r
p
h
.:

2
1
.4

9
1
.1

7
0
.2

1
2
5
.5

3
5
1
.6

0

O
b
s
e
r
v
e
d

F
r
e
q
u
e
n
c
ie

s
:

5
F
r
e
q
u
e
n
c
y

B
a
n
d

O
b
s
e
r
v
e
d

F
r
e
q
u
e
n
c
ie

s

R
a
d
io

M
il
li
m

e
t
e
r

S
u
b
M

il
li
m

e
t
e
r

F
I
R

M
I
R

N
I
R

1
3
8
0
0
0
0
0
0
0
0
0
0
0
0
,

1
8
2
0
0
0
0
0
0
0
0
0
0
0
0
,

2
4
0
0
0
0
0
0
0
0
0
0
0
0
0

V
is
u
a
l

4
6
5
0
0
0
0
0
0
0
0
0
0
0
0
,

6
4
1
0
0
0
0
0
0
0
0
0
0
0
0

U
lt
r
a
v
io

le
t

X
-r

a
y

G
a
m

m
a
-r

a
y

A
n
a
ly

s
is

T
e
c
h
n
iq

u
e

S
P

I
E

L
O

v
e
r
a
ll

%
∆ B
M

U
C
P
U

S
e
c
o
n
d
s

Q
E

T
E

T
E

(
d
is
t
)

S
in

g
le

M
o
r
p
h
.

M
u
lt
i

M
o
r
p
h
.

%
M

a
p

C
o
v
e
r
a
g
e

A
D

A
T
A

C
U

B
E
:

3
5

3
7
8
7
5

2
.3

4
E

+
3
4

2
.5

4
E

-0
1

1
.2

0
E

+
0
0

7
3

4
1

3
6
.1

9
5
6

1
0
0

1
0
0

7
1

7
0

6
7

4
4

0
0

3
8

5
3

4
8

8
7

(1
5
)

0
(0

)
0

(0
)

7
6

(2
5
)

9
3

(4
0
)

8
6

A
D

A
T
A

C
U

T
O

F
F
:

1
3
1

3
9
3
1
5

9
.3

5
E

+
3
4

2
.1

7
E

-0
1

7
.0

3
E

-0
1

8
3

6
5

4
6
.9

8
7
5

1
0
0

1
0
0

7
2

6
9

7
3

4
1

0
0

4
6

5
2

4
9

9
2

(2
5
)

0
(0

)
0

(0
)

6
2

(8
)

9
4

(3
2
)

8
9

A
D

A
T
A

F
U

L
L
:

1
1
4

3
6
7
3
8

1
.2

9
E

+
3
4

1
.1

3
E

-0
1

3
.1

4
E

-0
1

1
0
1

4
3

4
5
.7

1
6
6

1
0
0

1
0
0

6
5

7
0

6
8

4
4

0
0

3
1

5
4

4
7

8
3

(1
8
)

0
(0

)
0

(0
)

8
3

(2
4
)

9
6

(5
6
)

9
0

N
O

N
E

C
U

B
E
:

2
5

3
8
6
9
6

1
.2

8
E

+
3
4

1
.9

1
E

-0
1

5
.4

9
E

-0
1

8
2

5
8

4
4
.4

4
7
9

1
0
0

1
0
0

6
8

6
8

7
3

5
2

0
0

2
6

5
1

4
6

8
8

(1
6
)

0
(0

)
0

(0
)

9
6

(2
5
)

9
4

(3
3
)

9
3

N
O

N
E

C
U

T
O

F
F
:

9
7

3
7
4
5
6

4
.7

0
E

+
3
4

3
.0

2
E

-0
1

1
.0

1
E

+
0
0

1
1
6

7
3

6
0
.0

0
7
8

1
0
0

1
0
0

7
9

7
6

7
8

4
1

0
0

4
1

3
8

3
9

7
5

(2
0
)

0
(0

)
0

(0
)

7
1

(2
4
)

9
1

(5
6
)

8
3

N
O

N
E

F
U

L
L
:

9
0

3
7
8
6
4

2
.3

4
E

+
3
4

8
.4

8
E

-0
2

2
.2

6
E

-0
1

7
0

3
8

3
4
.2

9
6
3

1
0
0

1
0
0

7
2

6
9

6
9

4
6

0
0

5
0

6
2

5
7

1
0
0

(1
4
)

0
(0

)
0

(0
)

9
5

(1
9
)

9
5

(2
2
)

9
6

P
N

O
R

M
C
U

B
E
:

5
5

3
7
1
1
7

2
.8

7
E

-0
4

1
.7

0
E

-0
1

4
.9

8
E

-0
1

1
0
8

4
2

4
7
.6

2
6
7

1
0
0

1
0
0

7
9

6
4

7
1

0
0

0
0

1
0
0

6
2

0
(0

)
0

(0
)

0
(0

)
0

(0
)

0
(0

)
0

P
N

O
R

M
C
U

T
O

F
F
:

1
0
4

3
8
2
2
9

3
.8

2
E

-0
4

1
.7

0
E

-0
1

5
.0

8
E

-0
1

7
8

3
9

3
7
.1

4
6
5

1
0
0

1
0
0

6
6

6
5

6
7

0
0

0
0

1
0
0

6
2

0
(0

)
0

(0
)

0
(0

)
0

(0
)

0
(0

)
0

P
N

O
R

M
F
U

L
L
:

9
3

3
8
3
3
0

2
.1

0
E

-0
4

2
.3

4
E

-0
1

8
.1

8
E

-0
1

1
1
6

6
0

5
5
.8

7
8
2

1
0
0

1
0
0

8
0

7
3

7
9

0
0

0
0

1
0
0

6
2

0
(0

)
0

(0
)

0
(0

)
0

(0
)

0
(0

)
0

A
n
a
ly

si
s

re
su

lt
s

fo
r

P
a
t

9
5
2

1
3
8
6

5
.

113



P
a
t

1
0
3
0

1
2
6
1

7
S

P
I

E
L

N
E
D

U
n
k
n
o
w
n
s

N
E
D

K
n
o
w
n
s

T
r
a
in

in
g

s
a
m

p
le

s
iz

e
:

5
6

5
6

5
6

5
6

5
6

T
r
a
in

in
g

(
u
n
iq

u
e

g
a
la

x
ie

s
)
:

5
4

4
4

1
1

6
2
1

F
u
ll

d
a
t
a
s
e
t
:

1
0
6
3

1
3
6

1
1

6
2
1

1
5

1
2
3
7

%
M

o
r
p
h
.:

8
5
.9

3
1
0
.9

9
0
.8

9
0
.4

9
1
.7

0

O
b
s
e
r
v
e
d

F
r
e
q
u
e
n
c
ie

s
:

7
F
r
e
q
u
e
n
c
y

B
a
n
d

O
b
s
e
r
v
e
d

F
r
e
q
u
e
n
c
ie

s

R
a
d
io

M
il
li
m

e
t
e
r

S
u
b
M

il
li
m

e
t
e
r

F
I
R

5
0
0
0
0
0
0
0
0
0
0
0
0

M
I
R

1
2
0
0
0
0
0
0
0
0
0
0
0
0

N
I
R

1
3
8
0
0
0
0
0
0
0
0
0
0
0
0
,

1
8
2
0
0
0
0
0
0
0
0
0
0
0
0
,

2
4
0
0
0
0
0
0
0
0
0
0
0
0
0

V
is
u
a
l

3
7
9
0
0
0
0
0
0
0
0
0
0
0
0
,

6
8
1
0
0
0
0
0
0
0
0
0
0
0
0

U
lt
r
a
v
io

le
t

X
-r

a
y

G
a
m

m
a
-r

a
y

A
n
a
ly

s
is

T
e
c
h
n
iq

u
e

S
P

I
E

L
O

v
e
r
a
ll

%
∆ B
M

U
C
P
U

S
e
c
o
n
d
s

Q
E

T
E

T
E

(
d
is
t
)

S
in

g
le

M
o
r
p
h
.

M
u
lt
i

M
o
r
p
h
.

%
M

a
p

C
o
v
e
r
a
g
e

A
D

A
T
A

C
U

B
E
:

2
1
3
8
1
0

1
.3

5
E

+
3
4

2
.5

7
E

-0
1

7
.8

0
E

-0
1

6
2

2
1

2
6
.3

5
T

ra
in

in
g
:

7
8

7
5

8
2

1
0
0

8
1

7
9

N
e
w

d
a
ta

:
5
1

2
2

0
0

0
4
8

N
o

M
a
p
:

1
0
0

(3
0
8
)

4
(2

3
)

0
(0

)
0

(0
)

0
(0

)
9
3

A
D

A
T
A

C
U

T
O

F
F
:

2
1
3
7
7
0

8
.6

5
E

+
3
3

1
.6

8
E

-0
1

5
.3

3
E

-0
1

8
7

1
6

3
2
.7

0
T

ra
in

in
g
:

8
9

8
2

9
1

1
0
0

1
0
0

8
9

N
e
w

d
a
ta

:
6
5

2
0

0
0

0
6
1

N
o

M
a
p
:

1
0
0

(4
3
3
)

3
3

(3
6
)

0
(0

)
0

(0
)

0
(0

)
9
4

A
D

A
T
A

F
U

L
L
:

2
7

1
3
9
4
2

2
.7

3
E

+
3
4

1
.2

5
E

-0
1

3
.7

8
E

-0
1

4
0

1
6

1
7
.7

8
T

ra
in

in
g
:

7
0

5
2

8
2

1
0
0

6
7

6
6

N
e
w

d
a
ta

:
4
8

1
2

0
0

0
4
5

N
o

M
a
p
:

1
0
0

(1
4
0
)

5
0

(1
4
)

0
(0

)
0

(0
)

0
(0

)
9
5

N
O

N
E

C
U

B
E
:

2
1
2
9
0
0

1
.9

1
E

+
3
4

8
.2

1
E

-0
2

2
.4

9
E

-0
1

5
3

1
5

2
1
.5

9
T

ra
in

in
g
:

7
4

5
7

8
2

1
0
0

6
2

6
8

N
e
w

d
a
ta

:
4
6

1
3

0
0

0
4
3

N
o

M
a
p
:

1
0
0

(2
0
6
)

3
3

(1
5
)

0
(0

)
0

(0
)

0
(0

)
9
5

N
O

N
E

C
U

T
O

F
F
:

1
1
4
6
6
0

8
.2

4
E

+
3
3

1
.0

4
E

-0
1

2
.5

9
E

-0
1

6
5

1
7

2
6
.0

3
T

ra
in

in
g
:

7
6

6
6

9
1

1
0
0

8
1

7
6

N
e
w

d
a
ta

:
4
8

9
0

0
0

4
4

N
o

M
a
p
:

1
0
0

(3
5
4
)

1
9

(2
6
)

0
(0

)
0

(0
)

0
(0

)
9
4

N
O

N
E

F
U

L
L
:

2
6

1
3
7
2
3

9
.0

2
E

+
3
3

1
.4

6
E

-0
1

4
.5

3
E

-0
1

5
9

1
8

2
4
.4

4
T

ra
in

in
g
:

8
5

6
4

9
1

1
0
0

6
7

7
6

N
e
w

d
a
ta

:
4
7

2
9

0
0

0
4
5

N
o

M
a
p
:

1
0
0

(2
3
7
)

4
5

(2
0
)

0
(0

)
0

(0
)

0
(0

)
9
5

P
N

O
R

M
C
U

B
E
:

4
3

1
3
5
3
7

9
.0

4
E

-0
4

1
.0

4
E

-0
1

3
.1

6
E

-0
1

4
9

1
4

2
0
.0

0
T

ra
in

in
g
:

6
9

5
9

1
0
0

1
0
0

6
2

6
8

N
e
w

d
a
ta

:
2
1

9
0

0
0

2
0

N
o

M
a
p
:

1
0
0

(8
0
)

4
3

(7
)

0
(0

)
0

(0
)

0
(0

)
9
5

P
N

O
R

M
C
U

T
O

F
F
:

2
6

1
3
4
5
4

2
.6

2
E

-0
3

1
.7

5
E

-0
1

4
.7

8
E

-0
1

4
0

1
4

1
7
.1

4
T

ra
in

in
g
:

7
2

7
7

9
1

1
0
0

7
6

7
7

N
e
w

d
a
ta

:
0

0
0

0
0

0
N

o
M

a
p
:

0
(0

)
0

(0
)

0
(0

)
0

(0
)

0
(0

)
0

P
N

O
R

M
F
U

L
L
:

1
3

1
4
1
9
2

1
.0

1
E

-0
3

2
.5

4
E

-0
1

7
.2

7
E

-0
1

5
2

1
6

2
1
.5

9
T

ra
in

in
g
:

6
7

7
0

8
2

1
0
0

7
1

7
1

N
e
w

d
a
ta

:
4
4

1
1

0
0

0
4
2

N
o

M
a
p
:

1
0
0

(3
9
)

6
7

(3
)

0
(0

)
0

(0
)

0
(0

)
9
7

A
n
a
ly

si
s

re
su

lt
s

fo
r

P
a
t

1
0
3
0

1
2
6
1

7
.

114



P
a
t

1
0
4
6

1
2
3
5

7
S

P
I

E
L

N
E
D

U
n
k
n
o
w
n
s

N
E
D

K
n
o
w
n
s

T
r
a
in

in
g

s
a
m

p
le

s
iz

e
:

6
4

6
4

6
4

6
4

6
4

T
r
a
in

in
g

(
u
n
iq

u
e

g
a
la

x
ie

s
)
:

6
0

5
0

1
7

9
1
3

F
u
ll

d
a
t
a
s
e
t
:

1
0
1
7

1
6
2

1
7

9
1
3

1
3

1
2
1
8

%
M

o
r
p
h
.:

8
3
.5

0
1
3
.3

0
1
.4

0
0
.7

4
1
.0

7

O
b
s
e
r
v
e
d

F
r
e
q
u
e
n
c
ie

s
:

7
F
r
e
q
u
e
n
c
y

B
a
n
d

O
b
s
e
r
v
e
d

F
r
e
q
u
e
n
c
ie

s

R
a
d
io

M
il
li
m

e
t
e
r

S
u
b
M

il
li
m

e
t
e
r

F
I
R

3
0
0
0
0
0
0
0
0
0
0
0
0
,

5
0
0
0
0
0
0
0
0
0
0
0
0

M
I
R

N
I
R

1
3
8
0
0
0
0
0
0
0
0
0
0
0
0

V
is
u
a
l

3
7
9
0
0
0
0
0
0
0
0
0
0
0
0
,4

6
8
0
0
0
0
0
0
0
0
0
0
0
0
,6

4
1
0
0
0
0
0
0
0
0
0
0
0
0
,

6
8
1
0
0
0
0
0
0
0
0
0
0
0
0

U
lt
r
a
v
io

le
t

X
-r

a
y

G
a
m

m
a
-r

a
y

A
n
a
ly

s
is

T
e
c
h
n
iq

u
e

S
P

I
E

L
O

v
e
r
a
ll

%
∆ B
M

U
C
P
U

S
e
c
o
n
d
s

Q
E

T
E

T
E

(
d
is
t
)

S
in

g
le

M
o
r
p
h
.

M
u
lt
i

M
o
r
p
h
.

%
M

a
p

C
o
v
e
r
a
g
e

A
D

A
T
A

C
U

B
E
:

0
1
5
4
3
1

2
.8

5
E

+
3
3

1
.4

1
E

-0
1

5
.6

9
E

-0
1

8
4

1
6

3
1
.7

5
8
7

8
0

9
4

1
0
0

8
5

8
6

4
5

3
4

0
0

0
4
4

1
0
0

(4
0
3
)

2
9

(5
1
)

0
(0

)
0

(0
)

0
(0

)
9
1

A
D

A
T
A

C
U

T
O

F
F
:

8
7

1
6
9
4
1

1
.0

1
E

+
3
4

1
.5

3
E

-0
1

4
.9

1
E

-0
1

7
2

2
0

2
9
.2

1
8
5

8
6

8
8

1
0
0

6
9

8
5

5
9

3
7

0
0

0
5
7

9
8

(2
1
5
)

4
3

(3
7
)

0
(0

)
0

(0
)

0
(0

)
8
9

A
D

A
T
A

F
U

L
L
:

9
1
6
0
3
7

4
.4

9
E

+
3
3

3
.0

0
E

-0
1

9
.0

6
E

-0
1

8
1

1
6

3
0
.7

9
8
0

7
8

1
0
0

1
0
0

7
7

8
3

3
9

4
3

0
0

0
3
9

9
9

(3
3
7
)

3
8

(5
2
)

0
(0

)
0

(0
)

0
(0

)
9
1

N
O

N
E

C
U

B
E
:

3
1
5
2
1
2

2
.6

4
E

+
3
4

1
.7

5
E

-0
1

6
.5

7
E

-0
1

6
1

1
6

2
4
.4

4
6
8

6
8

7
1

1
0
0

6
9

7
0

3
7

3
7

0
0

0
3
7

1
0
0

(2
4
4
)

3
9

(3
6
)

0
(0

)
0

(0
)

0
(0

)
9
2

N
O

N
E

C
U

T
O

F
F
:

9
0

1
5
9
2
1

1
.0

9
E

+
3
4

1
.5

9
E

-0
1

5
.0

9
E

-0
1

6
2

1
5

2
4
.4

4
6
8

6
8

7
6

1
0
0

8
5

7
2

3
1

3
0

0
0

0
3
0

1
0
0

(3
1
8
)

2
9

(4
2
)

0
(0

)
0

(0
)

0
(0

)
9
1

N
O

N
E

F
U

L
L
:

3
1
6
6
1
4

1
.4

1
E

+
3
4

1
.2

8
E

-0
1

2
.8

9
E

-0
1

4
1

1
4

1
7
.4

6
6
2

6
4

3
5

7
8

8
5

6
2

3
8

3
7

0
0

0
3
8

9
9

(1
9
5
)

3
6

(3
3
)

0
(0

)
0

(0
)

0
(0

)
8
9

P
N

O
R

M
C
U

B
E
:

5
0

1
6
1
3
4

5
.5

9
E

-0
4

1
.8

4
E

-0
1

5
.5

1
E

-0
1

7
9

1
7

3
0
.4

8
8
5

8
2

7
6

1
0
0

1
0
0

8
5

1
9
8

0
0

0
1
1

1
0
0

(1
)

0
(0

)
0

(0
)

0
(0

)
0

(0
)

1
0
0

P
N

O
R

M
C
U

T
O

F
F
:

2
7

1
6
8
8
9

1
.9

9
E

-0
3

1
.3

1
E

-0
1

3
.9

9
E

-0
1

5
4

1
9

2
3
.1

7
6
8

6
6

8
2

1
0
0

5
4

7
0

0
2

0
0

0
0

1
0
0

(4
)

0
(0

)
0

(0
)

0
(0

)
0

(0
)

1
0
0

P
N

O
R

M
F
U

L
L
:

1
8

1
5
5
9
5

1
.9

1
E

-0
3

2
.5

9
E

-0
1

7
.5

4
E

-0
1

6
7

1
8

2
6
.9

8
7
3

7
0

7
1

1
0
0

8
5

7
4

0
1

0
0

0
0

0
(0

)
1
0
0

(1
)

0
(0

)
0

(0
)

0
(0

)
1
0
0

A
n
a
ly

si
s

re
su

lt
s

fo
r

P
a
t

1
0
4
6

1
2
3
5

7
.

115



P
a
t

1
0
9
0

1
1
4
5

7
S

P
I

E
L

N
E
D

U
n
k
n
o
w
n
s

N
E
D

K
n
o
w
n
s

T
r
a
in

in
g

s
a
m

p
le

s
iz

e
:

4
7

4
7

4
7

4
7

4
7

T
r
a
in

in
g

(
u
n
iq

u
e

g
a
la

x
ie

s
)
:

4
6

3
7

7
4

2
0

F
u
ll

d
a
t
a
s
e
t
:

9
8
9

1
1
3

7
4

2
0

8
1
1
3
3

%
M

o
r
p
h
.:

8
7
.2

9
9
.9

7
0
.6

2
0
.3

5
1
.7

7

O
b
s
e
r
v
e
d

F
r
e
q
u
e
n
c
ie

s
:

7
F
r
e
q
u
e
n
c
y

B
a
n
d

O
b
s
e
r
v
e
d

F
r
e
q
u
e
n
c
ie

s

R
a
d
io

M
il
li
m

e
t
e
r

S
u
b
M

il
li
m

e
t
e
r

F
I
R

5
0
0
0
0
0
0
0
0
0
0
0
0

M
I
R

2
5
0
0
0
0
0
0
0
0
0
0
0
0

N
I
R

1
3
8
0
0
0
0
0
0
0
0
0
0
0
0
,

1
8
2
0
0
0
0
0
0
0
0
0
0
0
0
,

2
4
0
0
0
0
0
0
0
0
0
0
0
0
0

V
is
u
a
l

3
7
9
0
0
0
0
0
0
0
0
0
0
0
0
,

6
8
1
0
0
0
0
0
0
0
0
0
0
0
0

U
lt
r
a
v
io

le
t

X
-r

a
y

G
a
m

m
a
-r

a
y

A
n
a
ly

s
is

T
e
c
h
n
iq

u
e

S
P

I
E

L
O

v
e
r
a
ll

%
∆ B
M

U
C
P
U

S
e
c
o
n
d
s

Q
E

T
E

T
E

(
d
is
t
)

S
in

g
le

M
o
r
p
h
.

M
u
lt
i

M
o
r
p
h
.

%
M

a
p

C
o
v
e
r
a
g
e

A
D

A
T
A

C
U

B
E
:

1
1
2
1
5
7

1
.8

5
E

+
3
4

1
.7

9
E

-0
1

5
.7

8
E

-0
1

6
4

1
7

2
5
.7

1
8
3

6
8

1
0
0

1
0
0

9
5

8
2

4
5

1
7

0
0

0
4
2

1
0
0

(3
2
5
)

2
6

(2
3
)

0
(0

)
0

(0
)

0
(0

)
9
5

A
D

A
T
A

C
U

T
O

F
F
:

0
1
0
2
9
5

1
.8

8
E

+
3
4

8
.5

1
E

-0
2

2
.5

7
E

-0
1

6
0

1
6

2
4
.1

3
8
5

7
0

1
0
0

1
0
0

8
5

8
2

4
3

1
6

0
0

0
4
1

1
0
0

(2
4
4
)

3
3

(2
1
)

0
(0

)
0

(0
)

0
(0

)
9
4

A
D

A
T
A

F
U

L
L
:

0
1
1
6
3
2

2
.9

4
E

+
3
4

1
.4

5
E

-0
1

4
.5

8
E

-0
1

5
2

9
1
9
.3

7
7
2

6
8

1
0
0

1
0
0

7
5

7
4

3
6

1
5

0
0

0
3
4

1
0
0

(2
4
0
)

4
8

(2
3
)

0
(0

)
0

(0
)

0
(0

)
9
5

N
O

N
E

C
U

B
E
:

0
1
1
3
7
9

1
.7

8
E

+
3
4

1
.1

9
E

-0
1

5
.1

0
E

-0
1

7
5

1
2

2
7
.6

2
8
0

7
8

8
6

1
0
0

9
5

8
3

4
5

1
7

0
0

0
4
3

1
0
0

(3
6
1
)

1
8

(3
4
)

0
(0

)
0

(0
)

0
(0

)
9
2

N
O

N
E

C
U

T
O

F
F
:

4
1
1
2
0
6

2
.0

0
E

+
3
4

1
.1

1
E

-0
1

3
.4

8
E

-0
1

5
8

1
1

2
1
.9

0
8
3

6
8

8
6

1
0
0

8
5

7
9

4
6

1
1

0
0

0
4
3

1
0
0

(2
2
4
)

3
3

(2
1
)

0
(0

)
0

(0
)

0
(0

)
9
4

N
O

N
E

F
U

L
L
:

0
1
0
3
9
7

1
.5

3
E

+
3
4

1
.2

8
E

-0
1

3
.9

4
E

-0
1

8
7

9
3
0
.4

8
9
1

9
5

1
0
0

1
0
0

1
0
0

9
5

4
1

1
7

0
0

0
4
0

1
0
0

(5
0
4
)

2
1

(4
7
)

0
(0

)
0

(0
)

0
(0

)
9
2

P
N

O
R

M
C
U

B
E
:

6
1
1
5
8
4

1
.3

5
E

-0
3

8
.5

1
E

-0
2

2
.4

6
E

-0
1

4
9

1
9

2
1
.5

9
7
6

7
6

8
6

1
0
0

8
5

7
9

3
4

1
6

0
0

0
3
3

1
0
0

(2
1
0
)

4
2

(1
2
)

0
(0

)
0

(0
)

0
(0

)
9
6

P
N

O
R

M
C
U

T
O

F
F
:

5
1
1
4
1
2

6
.7

0
E

-0
0
4

1
.7

9
E

-0
0
1

6
.2

2
E

-0
0
1

6
4

1
6

2
5
.4

0
7
8

7
8

8
6

1
0
0

9
5

8
2

0
0

0
0

0
0

0
(0

)
0

(0
)

0
(0

)
0

(0
)

0
(0

)
0

P
N

O
R

M
F
U

L
L
:

0
1
1
0
7
4

1
.4

4
E

-0
4

1
.8

3
E

-0
1

5
.3

9
E

-0
1

9
2

8
3
1
.7

5
9
3

9
2

1
0
0

1
0
0

1
0
0

9
5

1
2

1
4

0
0

0
1
2

1
0
0

(3
1
4
)

3
3

(3
3
)

0
(0

)
0

(0
)

0
(0

)
9
3

A
n
a
ly

si
s

re
su

lt
s

fo
r

P
a
t

1
0
9
0

1
1
4
5

7
.

116



P
a
t

1
1
0
0

1
1
2
1

6
S

P
I

E
L

N
E
D

U
n
k
n
o
w
n
s

N
E
D

K
n
o
w
n
s

T
r
a
in

in
g

s
a
m

p
le

s
iz

e
:

8
1

8
1

8
1

8
1

8
1

T
r
a
in

in
g

(
u
n
iq

u
e

g
a
la

x
ie

s
)
:

7
7

5
9

2
2

5
9

7
4

F
u
ll

d
a
t
a
s
e
t
:

8
4
6

1
1
0

2
2

5
9

7
4

1
0

1
1
1
1

%
M

o
r
p
h
.:

7
6
.1

5
9
.9

0
1
.9

8
5
.3

1
6
.6

6

O
b
s
e
r
v
e
d

F
r
e
q
u
e
n
c
ie

s
:

7
F
r
e
q
u
e
n
c
y

B
a
n
d

O
b
s
e
r
v
e
d

F
r
e
q
u
e
n
c
ie

s

R
a
d
io

1
4
0
0
0
0
0
0
0
0
,

2
3
8
0
0
0
0
0
0
0

M
il
li
m

e
t
e
r

S
u
b
M

il
li
m

e
t
e
r

F
I
R

M
I
R

N
I
R

1
3
8
0
0
0
0
0
0
0
0
0
0
0
0
,

1
8
2
0
0
0
0
0
0
0
0
0
0
0
0
,

2
4
0
0
0
0
0
0
0
0
0
0
0
0
0

V
is
u
a
l

6
8
1
0
0
0
0
0
0
0
0
0
0
0
0

U
lt
r
a
v
io

le
t

X
-r

a
y

G
a
m

m
a
-r

a
y

A
n
a
ly

s
is

T
e
c
h
n
iq

u
e

S
P

I
E

L
O

v
e
r
a
ll

%
∆ B
M

U
C
P
U

S
e
c
o
n
d
s

Q
E

T
E

T
E

(
d
is
t
)

S
in

g
le

M
o
r
p
h
.

M
u
lt
i

M
o
r
p
h
.

%
M

a
p

C
o
v
e
r
a
g
e

A
D

A
T
A

C
U

B
E
:

3
1

1
8
9
8
5

2
.2

3
E

+
3
4

3
.7

5
E

-0
1

1
.3

2
E

+
0
0

1
1
2

4
9

5
1
.1

1
8
1

7
8

9
5

8
8

6
4

7
8

4
0

1
3

0
0

0
3
9

1
0
0

(2
5
0
)

2
0

(2
0
)

0
(0

)
0

(0
)

0
(0

)
9
4

A
D

A
T
A

C
U

T
O

F
F
:

9
9

1
9
7
2
3

4
.2

0
E

+
3
4

2
.0

5
E

-0
1

6
.6

3
E

-0
1

8
4

5
8

4
5
.0

8
8
1

8
0

1
0
0

9
2

6
6

8
0

4
3

3
2

0
0

0
4
2

1
0
0

(2
2
5
)

6
(1

7
)

0
(0

)
0

(0
)

0
(0

)
9
3

A
D

A
T
A

F
U

L
L
:

9
2

1
9
9
6
6

1
.2

3
E

+
3
4

3
.8

3
E

-0
1

1
.2

2
E

+
0
0

1
1
6

4
9

5
2
.3

8
7
3

7
8

9
5

8
8

7
0

7
8

4
5

2
0

0
0

0
4
3

1
0
0

(2
2
7
)

3
8

(1
6
)

0
(0

)
0

(0
)

0
(0

)
9
5

N
O

N
E

C
U

B
E
:

2
0

1
9
7
3
5

1
.2

7
E

+
3
4

2
.2

2
E

-0
1

6
.2

5
E

-0
1

8
4

4
4

4
0
.6

3
5
8

6
4

9
1

8
0

6
4

6
8

3
9

2
9

0
0

0
3
9

1
0
0

(6
4
)

6
7

(6
)

0
(0

)
0

(0
)

0
(0

)
9
7

N
O

N
E

C
U

T
O

F
F
:

1
0
5

1
9
5
2
1

2
.5

5
E

+
3
4

2
.8

9
E

-0
1

9
.7

5
E

-0
1

9
6

6
0

4
9
.5

2
7
7

8
3

1
0
0

9
0

7
0

8
1

4
5

1
8

0
0

0
4
3

1
0
0

(1
5
8
)

1
7

(1
2
)

0
(0

)
0

(0
)

0
(0

)
9
4

N
O

N
E

F
U

L
L
:

1
1
8

1
8
5
3
5

3
.4

7
E

+
3
4

1
.6

0
E

-0
1

4
.2

8
E

-0
1

6
1

3
7

3
1
.1

1
6
4

5
4

5
9

7
5

6
4

6
4

4
7

2
1

0
0

0
4
5

1
0
0

(4
1
)

5
0

(4
)

0
(0

)
0

(0
)

0
(0

)
9
5

P
N

O
R

M
C
U

B
E
:

3
4
1

1
9
7
3
5

7
.5

9
E

-0
4

2
.6

2
E

-0
1

7
.5

1
E

-0
1

6
6

5
5

3
8
.4

1
5
8

5
3

9
5

8
3

7
4

6
9

3
8

2
1

0
0

0
3
6

1
0
0

(5
8
)

3
3

(3
)

0
(0

)
0

(0
)

0
(0

)
9
6

P
N

O
R

M
C
U

T
O

F
F
:

3
4
0

2
0
6
7
1

6
.9

0
E

-0
0
4

1
.2

3
E

-0
0
1

3
.8

4
E

-0
0
1

8
6

3
5

3
8
.4

1
5
3

5
1

8
6

7
5

6
4

6
2

1
0
0

1
0
0

0
0

0
1
0
0

0
(0

)
0

(0
)

0
(0

)
0

(0
)

0
(0

)
0

P
N

O
R

M
F
U

L
L
:

3
4
3

1
9
7
0
6

2
.8

9
E

-0
4

4
.0

5
E

-0
1

1
.2

9
E

+
0
0

8
8

6
3

4
7
.9

4
6
5

6
3

9
5

8
5

7
2

7
3

4
3

4
3

0
0

0
4
3

1
0
0

(9
2
)

5
0

(4
)

0
(0

)
0

(0
)

0
(0

)
9
7

A
n
a
ly

si
s

re
su

lt
s

fo
r

P
a
t

1
1
0
0

1
1
2
1

6
.

117



P
a
t

1
1
2
6

1
0
6
9

1
0

S
P

I
E

L
N

E
D

U
n
k
n
o
w
n
s

N
E
D

K
n
o
w
n
s

T
r
a
in

in
g

s
a
m

p
le

s
iz

e
:

8
8

8
8

8
T
r
a
in

in
g

(
u
n
iq

u
e

g
a
la

x
ie

s
)
:

8
7

5
1

6
F
u
ll

d
a
t
a
s
e
t
:

1
0
2
8

7
9

1
6

1
0

1
0
5
1

%
M

o
r
p
h
.:

9
7
.8

1
0
.6

7
0
.8

6
0
.1

0
0
.5

7

O
b
s
e
r
v
e
d

F
r
e
q
u
e
n
c
ie

s
:1

0
F
r
e
q
u
e
n
c
y

B
a
n
d

O
b
s
e
r
v
e
d

F
r
e
q
u
e
n
c
ie

s

R
a
d
io

M
il
li
m

e
t
e
r

S
u
b
M

il
li
m

e
t
e
r

F
I
R

M
I
R

N
I
R

1
3
8
0
0
0
0
0
0
0
0
0
0
0
0
,

1
8
2
0
0
0
0
0
0
0
0
0
0
0
0
,

2
4
0
0
0
0
0
0
0
0
0
0
0
0
0

V
is
u
a
l

3
2
5
0
0
0
0
0
0
0
0
0
0
0
0
,3

8
9
0
0
0
0
0
0
0
0
0
0
0
0
,3

9
1
0
0
0
0
0
0
0
0
0
0
0
0
,

4
7
7
0
0
0
0
0
0
0
0
0
0
0
0
,4

7
9
0
0
0
0
0
0
0
0
0
0
0
0
,6

1
7
0
0
0
0
0
0
0
0
0
0
0
0
,

8
3
6
0
0
0
0
0
0
0
0
0
0
0
0

U
lt
r
a
v
io

le
t

X
-r

a
y

G
a
m

m
a
-r

a
y

A
n
a
ly

s
is

T
e
c
h
n
iq

u
e

S
P

I
E

L
O

v
e
r
a
ll

%
∆ B
M

U
C
P
U

S
e
c
o
n
d
s

Q
E

T
E

T
E

(
d
is
t
)

S
in

g
le

M
o
r
p
h
.

M
u
lt
i

M
o
r
p
h
.

%
M

a
p

C
o
v
e
r
a
g
e

A
D

A
T
A

C
U

B
E
:

0
1
2
6
5

1
.0

2
E

+
3
1

1
.0

0
E

-0
1

4
.8

1
E

-0
1

2
9

0
9
.2

1
1
0
0

1
0
0

1
0
0

1
0
0

1
0
0

1
0
0

0
0

0
0

0
0

1
0
0

(9
7
9
)

0
(0

)
5
0

(4
)

0
(0

)
0

(0
)

9
9

A
D

A
T
A

C
U

T
O

F
F
:

0
1
3
4
6

2
.3

2
E

+
2
0

1
.7

5
E

-0
1

4
.1

0
E

-0
1

2
7

0
8
.5

7
1
0
0

1
0
0

1
0
0

1
0
0

1
0
0

1
0
0

3
3

0
0

0
0

3
3

1
0
0

(9
7
7
)

0
(0

)
0

(4
)

0
(0

)
0

(0
)

9
9

A
D

A
T
A

F
U

L
L
:

0
1
2
6
5

3
.0

0
E

+
2
0

1
.5

0
E

-0
1

5
.3

7
E

-0
1

2
7

0
8
.5

7
1
0
0

1
0
0

1
0
0

1
0
0

1
0
0

1
0
0

3
5

0
0

0
0

3
5

1
0
0

(9
0
6
)

0
(0

)
0

(4
)

0
(0

)
0

(0
)

9
9

N
O

N
E

C
U

B
E
:

0
1
2
6
3

8
.0

1
E

+
3
2

2
.0

0
E

-0
1

4
.7

0
E

-0
1

2
5

1
8
.2

5
1
0
0

1
0
0

8
0

1
0
0

8
3

9
3

1
2

0
0

0
0

1
2

1
0
0

(9
3
2
)

0
(0

)
0

(3
)

0
(0

)
0

(0
)

9
9

N
O

N
E

C
U

T
O

F
F
:

0
1
3
5
6

2
.5

3
E

+
2
0

2
.7

5
E

-0
1

7
.0

5
E

-0
1

2
7

0
8
.5

7
1
0
0

1
0
0

1
0
0

1
0
0

1
0
0

1
0
0

7
0

0
0

0
7

1
0
0

(9
6
3
)

0
(0

)
2
5

(4
)

0
(0

)
0

(0
)

9
9

N
O

N
E

F
U

L
L
:

0
1
2
4
9

7
.3

9
E

-0
0
4

2
.7

5
E

-0
0
1

8
.6

5
E

-0
0
1

2
5

1
8
.2

5
1
0
0

1
0
0

1
0
0

1
0
0

1
0
0

1
0
0

4
9

0
0

0
0

4
9

1
0
0

(8
9
2
)

0
(0

)
2
5

(4
)

0
(0

)
0

(0
)

9
9

P
N

O
R

M
C
U

B
E
:

0
1
2
9
6

6
.4

6
E

-0
4

5
.0

0
E

-0
2

1
.3

9
E

-0
1

2
7

0
8
.5

7
1
0
0

1
0
0

1
0
0

1
0
0

1
0
0

1
0
0

1
4

0
0

0
0

1
4

1
0
0

(8
5
1
)

0
(0

)
0

(4
)

0
(0

)
0

(0
)

9
9

P
N

O
R

M
C
U

T
O

F
F
:

4
0

1
8
9
0

7
.0

8
E

+
0
4

2
.5

0
E

-0
2

5
.5

9
E

-0
2

2
7

0
8
.5

7
1
0
0

1
0
0

1
0
0

1
0
0

1
0
0

1
0
0

0
0

0
0

0
0

0
(0

)
0

(0
)

0
(0

)
0

(0
)

0
(0

)
0

P
N

O
R

M
F
U

L
L
:

0
1
2
6
1

6
.6

2
E

-0
4

4
.5

0
E

-0
1

1
.3

3
E

+
0
0

2
7

0
8
.5

7
7

1
0
0

1
0
0

1
0
0

1
0
0

1
0
0

1
0
0

3
5

0
0

0
0

3
5

1
0
0

(9
8
9
)

0
(0

)
0

(4
)

0
(0

)
0

(0
)

9
9

A
n
a
ly

si
s

re
su

lt
s

fo
r

P
a
t

1
1
2
6

1
0
6
9

1
0
.

118



P
a
t

V
is
u
a
l
4
2

1
1
6
4
1

S
P

I
E

L
N

E
D

U
n
k
n
o
w
n
s

N
E
D

K
n
o
w
n
s

T
r
a
in

in
g

s
a
m

p
le

s
iz

e
:

2
4
0

2
4
0

2
4
0

2
4
0

2
4
0

T
r
a
in

in
g

(
u
n
iq

u
e

g
a
la

x
ie

s
)
:

2
1
2

1
1
2

6
7

1
6
5

1
4
2

F
u
ll

d
a
t
a
s
e
t
:

1
2
6
7

1
1
2

6
7

3
1
9

2
8
7

6
5
8
0

2
0
5
2

%
M

o
r
p
h
.:

6
1
.7

4
5
.4

6
3
.2

7
1
5
.5

5
1
3
.9

9

O
b
s
e
r
v
e
d

F
r
e
q
u
e
n
c
ie

s
:

6
F
r
e
q
u
e
n
c
y

B
a
n
d

O
b
s
e
r
v
e
d

F
r
e
q
u
e
n
c
ie

s

R
a
d
io

M
il
li
m

e
t
e
r

S
u
b
M

il
li
m

e
t
e
r

F
I
R

M
I
R

N
I
R

V
is
u
a
l

3
2
5
0
0
0
0
0
0
0
0
0
0
0
0
,3

8
9
0
0
0
0
0
0
0
0
0
0
0
0
,4

7
7
0
0
0
0
0
0
0
0
0
0
0
0
,

6
1
7
0
0
0
0
0
0
0
0
0
0
0
0
,6

4
1
0
0
0
0
0
0
0
0
0
0
0
0
,8

3
6
0
0
0
0
0
0
0
0
0
0
0
0

U
lt
r
a
v
io

le
t

X
-r

a
y

G
a
m

m
a
-r

a
y

A
n
a
ly

s
is

T
e
c
h
n
iq

u
e

S
P

I
E

L
O

v
e
r
a
ll

%
∆ B
M

U
C
P
U

S
e
c
o
n
d
s

Q
E

T
E

T
E

(
d
is
t
)

S
in

g
le

M
o
r
p
h
.

M
u
lt
i

M
o
r
p
h
.

%
M

a
p

C
o
v
e
r
a
g
e

A
D

A
T
A

C
U

B
E
:

9
6

6
2
3
6
5

1
.4

1
E

+
3
4

2
.3

4
E

-0
1

6
.2

5
E

-0
1

9
6

8
0

5
5
.8

7
5
1

5
5

8
5

5
0

6
5

5
8

3
1

0
0

2
3

4
8

3
2

1
0
0

(1
0
5
)

0
(0

)
0

(0
)

7
3

(1
1
)

8
6

(7
)

9
6

A
D

A
T
A

C
U

T
O

F
F
:

1
0
7

6
4
6
1
9

1
.0

3
E

+
3
4

2
.6

8
E

-0
1

8
.4

4
E

-0
1

1
1
6

1
1
8

7
4
.2

9
5
6

6
8

9
7

4
5

8
0

6
4

2
3

0
0

2
4

5
0

2
6

1
0
0

(1
1
5
)

0
(0

)
0

(0
)

5
5

(1
1
)

5
7

(7
)

9
3

A
D

A
T
A

F
U

L
L
:

2
2
5

6
2
8
1
9

2
.5

8
E

+
3
4

1
.8

2
E

-0
1

6
.7

4
E

-0
1

1
2
9

5
3

5
7
.7

8
4
0

3
8

9
3

4
6

7
0

5
2

1
8

0
0

2
0

4
0

2
0

9
8

(1
2
7
)

0
(0

)
0

(0
)

9
5

(2
0
)

9
2

(1
3
)

9
7

N
O

N
E

C
U

B
E
:

1
8
6

6
4
4
8
3

1
.6

3
E

+
3
4

3
.0

8
E

-0
1

9
.7

4
E

-0
1

1
1
2

9
4

6
5
.4

0
5
4

5
4

9
1

4
3

7
2

5
9

2
6

0
0

1
7

4
5

2
7

9
9

(1
1
8
)

0
(0

)
0

(0
)

5
0

(1
0
)

7
0

(1
0
)

9
3

N
O

N
E

C
U

T
O

F
F
:

1
8
5

6
3
3
9
8

3
.0

7
E

+
3
4

3
.4

6
E

-0
1

1
.4

1
E

+
0
0

8
6

1
5
4

7
6
.1

9
5
9

6
2

9
1

4
8

8
0

6
4

3
3

0
0

1
8

5
7

3
4

1
0
0

(7
5
)

0
(0

)
0

(0
)

4
0

(1
0
)

7
1

(7
)

9
1

N
O

N
E

F
U

L
L
:

3
7
5

6
3
5
3
6

1
.1

1
E

+
3
4

3
.2

9
E

-0
1

9
.0

6
E

-0
1

1
1
4

7
4

5
9
.6

8
5
3

5
4

8
8

4
7

6
4

5
7

3
6

0
0

3
2

4
2

3
6

1
0
0

(1
1
9
)

0
(0

)
0

(0
)

6
2

(2
1
)

8
3

(1
2
)

9
3

P
N

O
R

M
C
U

B
E
:

2
9
4

4
4
0
3
0

5
.9

3
E

-0
4

2
.3

0
E

-0
1

7
.0

8
E

-0
1

9
1

8
7

5
6
.5

1
4
3

5
6

9
4

3
9

7
0

5
5

1
5

0
0

1
4

3
7

1
7

9
9

(8
2
)

0
(0

)
0

(0
)

4
0

(1
0
)

8
3

(6
)

9
1

P
N

O
R

M
C
U

T
O

F
F
:

4
5
6

6
2
5
3
5

6
.7

9
E

-0
0
4

2
.8

3
E

-0
0
1

8
.6

8
E

-0
0
1

8
9

1
0
7

6
2
.2

2
5
1

5
1

8
5

4
7

6
8

5
7

0
0

0
0

0
0

0
(0

)
0

(0
)

0
(0

)
0

(0
)

0
(0

)
0

P
N

O
R

M
F
U

L
L
:

4
2
8

6
2
5
6
2

1
.0

3
E

-0
3

3
.0

4
E

-0
1

1
.3

5
E

+
0
0

9
6

8
7

5
8
.1

0
4
5

5
4

9
6

4
4

6
4

5
5

2
5

0
0

2
3

3
4

2
6

9
9

(1
1
1
)

0
(0

)
0

(0
)

5
0

(1
2
)

3
3

(9
)

9
0

A
n
a
ly

si
s

re
su

lt
s

fo
r

P
a
t

V
is

u
a
l

4
2

1
1
6
4
1
.

119



P
a
t

1
0
5
2

1
2
2
6

1
2

S
P

I
E

L
N

E
D

U
n
k
n
o
w
n
s

N
E
D

K
n
o
w
n
s

T
r
a
in

in
g

s
a
m

p
le

s
iz

e
:

4
3

4
3

4
3

4
3

4
3

T
r
a
in

in
g

(
u
n
iq

u
e

g
a
la

x
ie

s
)
:

4
1

2
8

1
6

1
7

2
6

F
u
ll

d
a
t
a
s
e
t
:

7
9
0

6
2

1
6

1
7

4
9

2
9
0

9
3
4

%
M

o
r
p
h
.:

8
4
.5

8
6
.6

4
1
.7

1
1
.8

2
5
.2

5

O
b
s
e
r
v
e
d

F
r
e
q
u
e
n
c
ie

s
:

1
2

F
r
e
q
u
e
n
c
y

B
a
n
d

O
b
s
e
r
v
e
d

F
r
e
q
u
e
n
c
ie

s

R
a
d
io

1
4
0
0
0
0
0
0
0
0

M
il
li
m

e
t
e
r

S
u
b
M

il
li
m

e
t
e
r

F
I
R

3
0
0
0
0
0
0
0
0
0
0
0
0
,

5
0
0
0
0
0
0
0
0
0
0
0
0

M
I
R

N
I
R

1
3
8
0
0
0
0
0
0
0
0
0
0
0
0
,

1
8
2
0
0
0
0
0
0
0
0
0
0
0
0
,

2
4
0
0
0
0
0
0
0
0
0
0
0
0
0

V
is
u
a
l

3
2
5
0
0
0
0
0
0
0
0
0
0
0
0
,3

8
9
0
0
0
0
0
0
0
0
0
0
0
0
,4

7
7
0
0
0
0
0
0
0
0
0
0
0
0
,

6
1
7
0
0
0
0
0
0
0
0
0
0
0
0
,6

8
1
0
0
0
0
0
0
0
0
0
0
0
0
,8

3
6
0
0
0
0
0
0
0
0
0
0
0
0

U
lt
r
a
v
io

le
t

X
-r

a
y

G
a
m

m
a
-r

a
y

A
n
a
ly

s
is

T
e
c
h
n
iq

u
e

S
P

I
E

L
O

v
e
r
a
ll

%
∆ B
M

U
C
P
U

S
e
c
o
n
d
s

Q
E

T
E

T
E

(
d
is
t
)

S
in

g
le

M
o
r
p
h
.

M
u
lt
i

M
o
r
p
h
.

%
M

a
p

C
o
v
e
r
a
g
e

A
D

A
T
A

C
U

B
E
:

0
1
0
0
3
1

2
.7

7
E

+
3
4

2
.1

4
E

-0
1

7
.3

2
E

-0
1

7
5

1
7

2
9
.2

1
7
3

8
6

9
4

8
8

9
2

8
4

3
8

2
5

0
0

2
5

3
7

1
0
0

(2
8
1
)

1
0

(1
0
)

0
(0

)
0

(0
)

2
7

(1
1
)

9
4

A
D

A
T
A

C
U

T
O

F
F
:

1
3

1
0
7
5
4

5
.1

3
E

+
3
4

1
.4

9
E

-0
1

4
.8

4
E

-0
1

5
6

2
0

2
4
.1

3
7
6

7
1

1
0
0

7
6

8
8

8
0

4
8

1
2

0
0

2
0

4
6

1
0
0

(2
3
3
)

2
0

(1
0
)

0
(0

)
0

(0
)

1
2

(8
)

9
4

A
D

A
T
A

F
U

L
L
:

0
1
0
7
6
4

2
.5

3
E

+
3
4

2
.1

4
E

-0
1

5
.9

3
E

-0
1

7
1

1
3

2
6
.6

7
7
8

7
9

8
8

9
4

8
1

8
2

3
9

2
4

0
0

2
3

3
8

1
0
0

(2
9
3
)

2
3

(1
3
)

0
(0

)
0

(0
)

3
0

(1
0
)

9
4

N
O

N
E

C
U

B
E
:

1
1
0
3
3
2

5
.9

1
E

+
3
4

2
.1

4
E

-0
1

5
.4

2
E

-0
1

5
3

1
2

2
0
.6

3
5
1

6
1

1
0
0

7
1

6
5

6
5

2
1

1
5

0
0

1
2

2
0

1
0
0

(1
8
4
)

0
(8

)
0

(0
)

0
(0

)
0

(7
)

9
2

N
O

N
E

C
U

T
O

F
F
:

1
4

1
1
5
6
4

6
.0

8
E

+
3
4

2
.0

5
E

-0
1

5
.7

0
E

-0
1

5
4

1
7

2
2
.5

4
6
3

7
1

9
4

7
6

7
3

7
3

3
4

2
3

0
0

2
9

3
3

1
0
0

(2
4
4
)

1
2

(8
)

0
(0

)
0

(0
)

2
2

(9
)

9
4

N
O

N
E

F
U

L
L
:

4
1
0
9
4
4

2
.3

2
E

+
3
4

2
.0

9
E

-0
1

6
.4

6
E

-0
1

6
5

1
9

2
6
.6

7
7
3

7
5

8
8

8
8

9
2

8
1

3
1

2
5

0
0

2
9

3
1

1
0
0

(2
9
6
)

1
0

(1
0
)

0
(0

)
0

(0
)

0
(9

)
9
4

P
N

O
R

M
C
U

B
E
:

9
1
0
2
4
3

6
.2

6
E

-0
3

2
.3

3
E

-0
1

7
.1

0
E

-0
1

7
2

1
2

2
6
.6

7
6
8

8
6

1
0
0

8
2

7
3

7
9

0
0

0
0

0
0

1
0
0

(7
4
7
)

0
(3

4
)

0
(0

)
0

(0
)

0
(2

3
)

9
2

P
N

O
R

M
C
U

T
O

F
F
:

2
1
0
6
3
8

9
.4

6
E

-0
3

1
.4

4
E

-0
1

4
.5

3
E

-0
1

6
0

9
2
1
.9

0
5
9

7
5

8
8

7
6

6
5

7
0

0
0

0
0

0
0

1
0
0

(1
)

0
(0

)
0

(0
)

0
(0

)
0

(0
)

1
0
0

P
N

O
R

M
F
U

L
L
:

6
1
0
5
5
7

1
.8

8
E

-0
2

1
.4

4
E

-0
1

3
.9

6
E

-0
1

5
7

1
5

2
2
.8

6
6
8

6
4

8
8

8
2

8
8

7
6

0
0

0
0

0
0

1
0
0

(2
)

0
(0

)
0

(0
)

0
(0

)
0

(0
)

1
0
0

A
n
a
ly

si
s

re
su

lt
s

fo
r

P
a
t

1
0
5
2

1
2
2
6

1
2
.

120



P
a
t

1
3
9

8
9
3
8

6
S

P
I

E
L

N
E
D

U
n
k
n
o
w
n
s

N
E
D

K
n
o
w
n
s

T
r
a
in

in
g

s
a
m

p
le

s
iz

e
:

3
3
1

3
3
1

3
3
1

3
3
1

3
3
1

T
r
a
in

in
g

(
u
n
iq

u
e

g
a
la

x
ie

s
)
:

3
1
5

2
5
6

1
2
3

1
8
3

2
7
8

F
u
ll

d
a
t
a
s
e
t
:

5
0
7
6

5
3
0

1
2
3

1
8
3

2
7
8

2
5
1
2

6
1
9
0

%
M

o
r
p
h
.:

8
2
.0

0
8
.5

6
1
.9

9
2
.9

6
4
.4

9

O
b
s
e
r
v
e
d

F
r
e
q
u
e
n
c
ie

s
:

6
F
r
e
q
u
e
n
c
y

B
a
n
d

O
b
s
e
r
v
e
d

F
r
e
q
u
e
n
c
ie

s

R
a
d
io

1
4
0
0
0
0
0
0
0
0

M
il
li
m

e
t
e
r

S
u
b
M

il
li
m

e
t
e
r

F
I
R

3
0
0
0
0
0
0
0
0
0
0
0
0
,

5
0
0
0
0
0
0
0
0
0
0
0
0

M
I
R

N
I
R

1
3
8
0
0
0
0
0
0
0
0
0
0
0
0
,

1
8
2
0
0
0
0
0
0
0
0
0
0
0
0
,

2
4
0
0
0
0
0
0
0
0
0
0
0
0
0

V
is
u
a
l

U
lt
r
a
v
io

le
t

X
-r

a
y

G
a
m

m
a
-r

a
y

A
n
a
ly

s
is

T
e
c
h
n
iq

u
e

S
P

I
E

L
O

v
e
r
a
ll

%
∆ B
M

U
C
P
U

S
e
c
o
n
d
s

Q
E

T
E

T
E

(
d
is
t
)

S
in

g
le

M
o
r
p
h
.

M
u
lt
i

M
o
r
p
h
.

%
M

a
p

C
o
v
e
r
a
g
e

A
D

A
T
A

C
U

B
E
:

1
8
7

9
2
3
7
7

5
.0

7
E

+
3
4

2
.6

9
E

-0
1

8
.2

2
E

-0
1

7
0

1
5
4

7
1
.1

1
4
7

3
9

7
4

5
8

5
0

5
1

3
4

2
1

0
0

0
3
3

1
0
0

(1
3
2
)

3
8

(1
6
)

0
(0

)
0

(0
)

0
(0

)
9
3

A
D

A
T
A

C
U

T
O

F
F
:

3
5

9
1
9
3
3

1
.0

6
E

+
3
5

1
.9

0
E

-0
1

5
.5

4
E

-0
1

7
4

7
8

4
8
.2

5
4
5

3
4

7
2

5
2

3
5

4
4

3
0

1
6

0
0

0
2
9

1
0
0

(6
0
)

5
0

(8
)

0
(0

)
0

(0
)

0
(0

)
9
4

A
D

A
T
A

F
U

L
L
:

7
8
5

8
9
8
8
7

1
.4

3
E

+
3
5

2
.5

0
E

-0
1

7
.3

1
E

-0
1

7
3

1
0
0

5
4
.9

2
4
6

3
9

7
2

5
4

3
9

4
7

3
2

2
1

0
0

0
3
1

1
0
0

(1
5
4
)

4
1

(1
7
)

0
(0

)
0

(0
)

0
(0

)
9
4

N
O

N
E

C
U

B
E
:

2
0
4

9
1
4
0
2

7
.1

4
E

+
3
4

2
.6

3
E

-0
1

9
.2

0
E

-0
1

8
5

1
1
7

6
4
.1

3
5
3

3
2

7
6

5
7

3
7

4
8

3
0

1
5

0
0

0
2
9

9
9

(1
7
2
)

5
8

(1
9
)

0
(0

)
0

(0
)

0
(0

)
9
5

N
O

N
E

C
U

T
O

F
F
:

1
3

9
0
6
8
5

6
.8

3
E

+
3
4

2
.2

9
E

-0
1

7
.8

7
E

-0
1

6
5

1
2
6

6
0
.6

3
5
1

3
9

7
9

5
9

3
3

4
8

4
0

1
8

0
0

0
3
9

9
9

(8
6
)

4
5

(1
1
)

0
(0

)
0

(0
)

0
(0

)
9
2

N
O

N
E

F
U

L
L
:

7
7
4

9
2
3
9
5

1
.1

0
E

+
3
5

2
.9

4
E

-0
1

8
.7

9
E

-0
1

6
6

1
0
4

5
3
.9

7
5
9

3
7

7
1

5
6

3
7

5
0

4
1

1
6

0
0

0
4
0

1
0
0

(1
0
7
)

5
0

(1
2
)

0
(0

)
0

(0
)

0
(0

)
9
4

P
N

O
R

M
C
U

B
E
:

9
2
2

5
3
5
8
5

1
.7

6
E

-0
3

4
.7

3
E

-0
1

1
.7

4
E

+
0
0

8
7

1
3
0

6
8
.8

9
4
3

3
9

7
1

4
9

4
6

4
7

2
2

8
0

0
0

2
2

1
0
0

(1
4
8
)

1
1

(1
8
)

0
(0

)
0

(0
)

0
(0

)
9
0

P
N

O
R

M
C
U

T
O

F
F
:

8
9
3

8
9
7
4
7

5
.1

5
E

-0
4

5
.2

7
E

-0
1

2
.4

5
E

+
0
0

6
7

1
6
2

7
2
.7

0
3
9

3
6

7
6

6
1

4
0

4
6

0
0

0
0

0
0

0
(0

)
0

(0
)

0
(0

)
0

(0
)

0
(0

)
0

P
N

O
R

M
F
U

L
L
:

7
5
0

9
0
0
7
6

6
.4

5
E

-0
4

3
.6

9
E

-0
1

1
.3

9
E

+
0
0

6
0

1
5
8

6
9
.2

1
5
3

3
9

8
0

5
4

4
2

5
0

3
0

1
1

0
0

0
2
9

1
0
0

(6
9
)

2
0

(1
0
)

0
(0

)
0

(0
)

0
(0

)
8
9

A
n
a
ly

si
s

re
su

lt
s

fo
r

P
a
t

1
3
9

8
9
3
8

6
.

121



P
a
t

1
9
2

6
9
3
4

5
S

P
I

E
L

N
E
D

U
n
k
n
o
w
n
s

N
E
D

K
n
o
w
n
s

T
r
a
in

in
g

s
a
m

p
le

s
iz

e
:

1
3
8

1
3
8

1
3
8

1
3
8

1
3
8

T
r
a
in

in
g

(
u
n
iq

u
e

g
a
la

x
ie

s
)
:

1
3
1

1
2
2

3
5

9
0

9
3

F
u
ll

d
a
t
a
s
e
t
:

1
4
8
9

1
2
2

3
5

1
5
0

1
4
1

1
9
4
4

1
9
3
7

%
M

o
r
p
h
.:

7
6
.8

7
6
.3

0
1
.8

1
7
.7

4
7
.2

8

O
b
s
e
r
v
e
d

F
r
e
q
u
e
n
c
ie

s
:

5
F
r
e
q
u
e
n
c
y

B
a
n
d

O
b
s
e
r
v
e
d

F
r
e
q
u
e
n
c
ie

s

R
a
d
io

1
4
0
0
0
0
0
0
0
0

M
il
li
m

e
t
e
r

S
u
b
M

il
li
m

e
t
e
r

F
I
R

M
I
R

N
I
R

V
is
u
a
l

3
2
5
0
0
0
0
0
0
0
0
0
0
0
0
,4

7
7
0
0
0
0
0
0
0
0
0
0
0
0
,6

1
7
0
0
0
0
0
0
0
0
0
0
0
0
,

8
3
6
0
0
0
0
0
0
0
0
0
0
0
0

U
lt
r
a
v
io

le
t

X
-r

a
y

G
a
m

m
a
-r

a
y

A
n
a
ly

s
is

T
e
c
h
n
iq

u
e

S
P

I
E

L
O

v
e
r
a
ll

%
∆ B
M

U
C
P
U

S
e
c
o
n
d
s

Q
E

T
E

T
E

(
d
is
t
)

S
in

g
le

M
o
r
p
h
.

M
u
lt
i

M
o
r
p
h
.

%
M

a
p

C
o
v
e
r
a
g
e

A
D

A
T
A

C
U

B
E
:

4
1

3
4
3
1
1

3
.9

3
E

+
3
4

3
.2

2
E

-0
1

9
.4

5
E

-0
1

1
0
2

7
2

5
5
.2

4
7
3

5
2

9
4

8
3

5
8

6
8

3
6

0
0

4
1

3
5

3
6

1
0
0

(3
5
2
)

0
(0

)
0

(0
)

3
3

(9
)

0
(2

)
9
7

A
D

A
T
A

C
U

T
O

F
F
:

6
5

3
4
0
6
4

1
.5

7
E

+
3
4

4
.3

0
E

-0
1

1
.7

7
E

+
0
0

9
3

1
1
0

6
4
.4

4
6
9

5
9

1
0
0

8
3

7
4

7
2

3
4

0
0

4
9

4
4

3
5

1
0
0

(2
7
0
)

0
(0

)
0

(0
)

2
0

(5
)

6
0

(5
)

9
7

A
D

A
T
A

F
U

L
L
:

2
2
7

3
4
2
2
4

1
.6

6
E

+
3
4

3
.1

7
E

-0
1

1
.0

8
E

+
0
0

8
3

8
9

5
4
.6

0
6
1

4
7

9
7

8
0

6
3

6
4

3
3

0
0

5
2

2
6

3
3

1
0
0

(1
5
1
)

0
(0

)
0

(0
)

5
0

(1
0
)

3
3

(6
)

9
4

N
O

N
E

C
U

B
E
:

8
1

3
4
6
1
2

1
.9

1
E

+
3
4

3
.8

4
E

-0
1

1
.3

1
E

+
0
0

1
0
4

8
6

6
0
.3

2
7
8

6
1

9
1

7
4

5
8

7
0

3
7

0
0

3
3

2
6

3
7

1
0
0

(2
9
6
)

0
(0

)
0

(0
)

1
7

(6
)

6
7

(6
)

9
7

N
O

N
E

C
U

T
O

F
F
:

9
0

3
5
0
0
7

3
.2

2
E

+
3
4

3
.6

1
E

-0
1

1
.4

8
E

+
0
0

9
1

9
4

5
8
.7

3
7
7

5
4

9
1

8
2

5
9

7
0

3
8

0
0

3
7

3
4

3
8

1
0
0

(2
3
3
)

0
(0

)
0

(0
)

3
3

(9
)

0
(1

)
9
7

N
O

N
E

F
U

L
L
:

2
1
1

3
3
3
7
6

4
.5

3
E

+
3
3

4
.3

5
E

-0
1

1
.3

9
E

+
0
0

1
2
5

7
0

6
1
.9

0
7
6

6
1

8
0

7
7

6
2

7
0

3
3

0
0

3
6

2
6

3
3

1
0
0

(1
7
3
)

0
(0

)
0

(0
)

6
7

(1
8
)

7
0

(1
0
)

9
5

P
N

O
R

M
C
U

B
E
:

2
5
7

3
4
7
6
8

1
.1

8
E

-0
3

2
.6

2
E

-0
1

8
.9

8
E

-0
1

1
0
8

5
0

5
0
.1

6
6
7

5
2

8
0

7
6

6
0

6
4

0
0

0
0

1
0
0

3
1
0
0

(9
)

0
(0

)
0

(0
)

0
(0

)
0

(0
)

1
0
0

P
N

O
R

M
C
U

T
O

F
F
:

2
1
9

3
4
4
6
9

1
.0

5
E

-0
3

3
.2

6
E

-0
1

9
.3

7
E

-0
1

8
3

7
2

4
9
.2

1
7
3

4
5

8
6

7
1

5
7

6
3

9
9

0
0

0
0

9
2

1
0
0

(1
3
)

0
(0

)
0

(0
)

0
(1

)
0

(0
)

9
2

P
N

O
R

M
F
U

L
L
:

1
9
2

3
4
5
2
1

7
.4

0
E

-0
4

3
.9

3
E

-0
1

1
.6

5
E

+
0
0

1
0
0

7
9

5
6
.8

3
6
7

4
2

8
0

7
3

6
6

6
2

9
8

0
0

0
0

9
1

1
0
0

(5
)

0
(0

)
0

(0
)

1
0
0

(1
)

0
(0

)
1
0
0

A
n
a
ly

si
s

re
su

lt
s

fo
r

P
a
t

1
9
2

6
9
3
4

5
.

122



P
a
t

V
is
u
a
l
4
9

8
8
3
1

S
P

I
E

L
N

E
D

U
n
k
n
o
w
n
s

N
E
D

K
n
o
w
n
s

T
r
a
in

in
g

s
a
m

p
le

s
iz

e
:

4
1
1

4
1
1

4
1
1

4
1
1

4
1
1

T
r
a
in

in
g

(
u
n
iq

u
e

g
a
la

x
ie

s
)
:

3
8
7

2
2
3

1
1
6

2
7
2

2
9
9

F
u
ll

d
a
t
a
s
e
t
:

3
7
4
1

2
2
3

1
1
6

4
8
7

5
2
2

3
5
9
3

5
0
8
9

%
M

o
r
p
h
.:

7
3
.5

1
4
.3

8
2
.2

8
9
.5

7
1
0
.2

6

O
b
s
e
r
v
e
d

F
r
e
q
u
e
n
c
ie

s
:

5
F
r
e
q
u
e
n
c
y

B
a
n
d

O
b
s
e
r
v
e
d

F
r
e
q
u
e
n
c
ie

s

R
a
d
io

M
il
li
m

e
t
e
r

S
u
b
M

il
li
m

e
t
e
r

F
I
R

M
I
R

N
I
R

V
is
u
a
l

3
2
5
0
0
0
0
0
0
0
0
0
0
0
0
,3

8
9
0
0
0
0
0
0
0
0
0
0
0
0
,4

7
7
0
0
0
0
0
0
0
0
0
0
0
0
,

6
8
1
0
0
0
0
0
0
0
0
0
0
0
0
,8

3
6
0
0
0
0
0
0
0
0
0
0
0
0

U
lt
r
a
v
io

le
t

X
-r

a
y

G
a
m

m
a
-r

a
y

A
n
a
ly

s
is

T
e
c
h
n
iq

u
e

S
P

I
E

L
O

v
e
r
a
ll

%
∆ B
M

U
C
P
U

S
e
c
o
n
d
s

Q
E

T
E

T
E

(
d
is
t
)

S
in

g
le

M
o
r
p
h
.

M
u
lt
i

M
o
r
p
h
.

%
M

a
p

C
o
v
e
r
a
g
e

A
D

A
T
A

C
U

B
E
:

3
7
7

1
1
6
0
6
0

2
.6

9
E

+
3
4

3
.7

6
E

-0
1

1
.3

1
E

+
0
0

8
2

1
7
5

8
1
.5

9
5
1

5
3

8
5

4
3

6
2

5
5

3
5

0
0

2
2

3
9

3
4

1
0
0

(4
3
)

0
(0

)
0

(0
)

8
0

(5
)

6
2

(8
)

9
2

A
D

A
T
A

C
U

T
O

F
F
:

5
2
1

1
1
6
2
5
0

3
.3

6
E

+
3
4

2
.7

3
E

-0
1

8
.7

0
E

-0
1

1
1
0

1
2
9

7
5
.8

7
4
9

3
9

8
1

3
8

6
8

5
2

3
1

0
0

2
2

4
5

3
2

9
9

(1
0
8
)

0
(0

)
0

(0
)

5
6

(1
6
)

7
5

(1
2
)

9
1

A
D

A
T
A

F
U

L
L
:

1
4
0
4

1
1
7
4
1
4

5
.6

8
E

+
3
4

4
.1

7
E

-0
1

1
.5

2
E

+
0
0

9
6

1
3
1

7
2
.0

6
5
1

3
5

8
0

4
8

6
0

5
2

3
5

0
0

2
3

3
4

3
4

1
0
0

(1
2
3
)

0
(0

)
0

(0
)

6
2

(1
3
)

4
2

(1
2
)

9
1

N
O

N
E

C
U

B
E
:

3
7
5

1
1
4
8
6
9

3
.4

1
E

+
3
4

3
.9

7
E

-0
1

1
.3

8
E

+
0
0

7
7

1
5
6

7
3
.9

7
5
1

4
9

8
4

4
3

5
8

5
3

3
8

0
0

2
9

4
2

3
8

9
4

(6
4
)

0
(0

)
0

(0
)

7
9

(1
4
)

5
6

(1
6
)

8
5

N
O

N
E

C
U

T
O

F
F
:

5
0
0

1
1
5
9
2
5

4
.8

5
E

+
3
4

4
.6

6
E

-0
1

1
.6

9
E

+
0
0

6
6

2
0
0

8
4
.4

4
5
3

5
7

7
1

5
3

6
6

5
8

3
7

0
0

4
2

4
9

3
8

1
0
0

(5
7
)

0
(0

)
0

(0
)

0
(1

)
5
0

(2
)

9
6

N
O

N
E

F
U

L
L
:

6
8
0

1
1
4
0
1
3

5
.3

2
E

+
3
4

2
.7

1
E

-0
1

8
.5

7
E

-0
1

1
1
6

1
4
0

8
1
.2

7
4
9

3
6

8
9

4
4

5
5

5
1

2
9

0
0

2
7

3
0

2
9

9
9

(1
2
1
)

0
(0

)
0

(0
)

6
2

(1
3
)

2
9

(1
7
)

8
8

P
N

O
R

M
C
U

B
E
:

1
0
3
0

4
2
5
2
2

1
.3

3
E

-0
3

4
.5

1
E

-0
1

1
.6

4
E

+
0
0

6
0

2
1
4

8
6
.9

8
5
7

5
5

7
3

5
5

5
6

5
8

3
8

0
0

2
9

2
6

3
7

1
0
0

(2
8
1
)

0
(0

)
0

(0
)

1
(7

6
)

5
(2

1
)

7
4

P
N

O
R

M
C
U

T
O

F
F
:

7
8
9

1
1
3
8
6
3

1
.4

2
E

-0
0
3

3
.0

7
E

-0
0
1

1
.2

0
E

+
0
0
0

9
1

1
1
8

6
6
.3

5
4
8

3
0

8
4

3
8

5
1

4
7

0
0

0
0

0
0

0
(0

)
0

(0
)

0
(0

)
0

(0
)

0
(0

)
0

P
N

O
R

M
F
U

L
L
:

8
4
4

1
1
9
6
8
7

2
.2

2
E

-0
3

2
.6

5
E

-0
1

9
.9

3
E

-0
1

5
9

8
8

4
6
.6

7
4
6

4
0

7
8

3
8

5
2

4
8

1
4

0
0

2
0

5
4

1
7

1
0
0

(1
8
7
)

0
(0

)
0

(0
)

4
(7

7
)

6
(1

6
)

6
8

A
n
a
ly

si
s

re
su

lt
s

fo
r

P
a
t

V
is

u
a
l

4
9

8
8
3
1
.

123



Appendix D

Predictions

For the dataset processed in this thesis, multiple approaches were taken to create

an effective morphological classifier for galaxies.

The present appendix combines the results obtained in Appendix C. The tech-

nique uses an Ensemble method to combine the morphology predictions (for each

unknown galaxy) of each separate model. Galaxies that are present in multi-

ple models receive a morphology vote for each predicted morphology. Using a

majority vote process, the various models are combined to forecast a combined

morphological prediction.

Since the original snapshot date of the database used in this work, NED has

updated morphologies for a significant portion of the galaxies for which we did

not know the morphology. Additional downloads were performed to update the

database for these previously unclassified galaxies in order that we may compare

our model’s predictions.

The following tables show results for each of the major classes used in this

study: S, P, I, E and L. Results for the spiral and elliptical galaxies are the most

promising. This is not surprising since these two classes represent the bulk of the

data present in the study. These two classes also make up the majority of the

original Hubble diagram. Morphology predictions for the other threes classes were

not as successful.
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