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Abstract

Stability Properties of Disease Models Under Economic Expectations

Wisdom Stallone Avusuglo

Comprehending the dynamics of infectious diseases is very important in formu-

lating public health policies to tackling their prevalence. Mathematical epidemiology

(ME) has played a very vital role in achieving the above. Nevertheless, classical math-

ematical epidemiological models do not explicitly model the behavioural responses of

individuals in the presence of prevalence of these diseases. Economic epidemiology

(EE) as a field has stepped in to fill this gap by integrating economic and mathemat-

ical concepts within one framework. This thesis investigated two issues in this area.

The methods employed are the standard linear analysis of stability of dynamical sys-

tems and numerical simulation. Below are the investigations and the findings of this

thesis:

Firstly, an investigation into the stability properties of the equilibria of EE

models is carried out. We investigated the stability properties of modified EE systems

studied by Aadland et al. [6] by introducing a parametric quadratic utility function

into the model, thus making it possible to model the maximum number of contacts

made by rational individuals to be determined by a parameter. This parameter in

particular influences the level of utility of rational individuals. We have shown that

if rational individuals have a range of possible contacts to choose from, with the

maximum of the number of contacts allowable for these individuals being dependent

on a parameter, the variation in this parameter tends to affect the stability properties
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of the system. We also showed that under the assumption of permanent recovery for

disease coupled with individuals observing or not observing their immunity, death

and birth rates can affect the stability of the system. These parameters also have

effect on the dynamics of the EE SIS system.

Secondly, an EE model of syphilis infectivity among “men who have sex with

men” (MSM) in detention centres is developed in an attempt at looking at the effect

of behavioural responses on the disease dynamics among MSM. This was done by

explicitly incorporating the interplay of the biology of the disease and the behaviour

of the inmates. We investigated the stability properties of the system under rational

expectations where we showed that: (1) Behavioural responses to the prevalence of

the disease affect the stability of the system. Therefore, public health policies have

the tendency of putting the system on indeterminate paths if rational MSM have

complete knowledge of the laws governing the motion of the disease states as well

as a complete understanding on how others behave in the system when faced with

risk-benefit trade-offs. (2) The prevalence of the disease in the long run is influenced

by incentives that drive the utility of the MSM inmates. (3) The interplay between

the dynamics of the biology of the disease and the behavioural responses of rational

MSM tends to put the system at equilibrium quickly as compared to its counterpart

(that is when the system is solely dependent on the biology of the disease) when

subjected to small perturbation.

Keywords: economic and mathematical epidemiology models, syphilis, Saddle-

path stability, explosive path, indeterminate-path stability, numerical solution, health

gap.
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Chapter 1

Introduction

1.1 Background of Study

The rise of infectious or communicable diseases is a threat to the existence of

humanity. This is a challenge to public health officials. The epidemics of cholera,

malaria, tuberculosis, sexually transmitted diseases and other infectious diseases in

some jurisdictions is a concern. For instance, cholera claims about 100,000 to 120,000

lives each year out of an estimated number of 3-5 million cases; malaria and tubercu-

losis related death is estimated at 660,000 out of about 219 million and 1.4 million out

of about 8.7 million respectively [48]. The World Health Organization has reported

that in 2011 that about 34 million people were living with HIV/AIDS with adults

constituting about 0.8% of the figure [49]. Understanding, predicting and tracking the

development of these diseases is very vital if we are to make head way in formulating

the right policies to effectively control the spread of these diseases. Thus, there exists

the need to develop a method to tackle this.
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Mathematical modelling has not only become an effective tool in understanding

the dynamics of the epidemiology of diseases, it has also shed more light on the various

control mechanisms that can be employed to tackle disease spread. Documentation

of the above can be found in [17],[18],[22]. Even though, this approach has been

helpful, it comes with its own limitations, in that, the behavioural aspect of the

population is not explicitly modelled. Thus, in the presence of a disease prevalence,

it is assumed that individuals behave in the same fashion. We are aware that in

reality this is not applicable. Therefore, a different approach is needed. This has led

to a new area in disease modelling – the Economic Epidemiology (EE) . This area

incorporates economic choices in epidemic models, hence accounting for the effect(s)

of behavioural responses on disease prevalence. The EE models take into account

the role of externalities. That is, given a choice made by a rational individual, what

bearing does it have on the total population? Will it be positive or negative? In the

works of Aadland et al. [5], they pointed out that, given a disease prevalence, the

choice to engage in a risky behaviour while infected imposes negative externalities on

the rest of the population, in that, it forces the susceptible group in the population to

choose a suboptimal number of contacts since the decision by the infected will promote

the spread of the disease rapidly. Kaplan [33] investigated how the number of sexual

contacts by individuals affects HIV infection rates. Philipson et al. also investigated

the effects of private choices on public policy [40]. This provided good understanding

to how infectious diseases spread given behavioural choices as well as their effect(s)

on public health policy. An individual’s ability to access quality information about

disease prevalence also drives disease dynamics; it determines whether the disease

prevalence will be stable or cyclical over time, since behavioural changes are dependent

on the availability of information to individuals [19]. Therefore, we can not rule out

the need to understand behavioural influence on disease spread.

It must be pointed out that apart from the method we employed in incorporating
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behavioural responses into the models studied in this thesis, one can employ game

theory. For instance, Schroeder et al. [42] made use of this method in looking at

the influence of behaviour on STDs epidemics. They look at the contribution of

game theory to sexual behaviour and the dynamics of the infection rate. Also they

investigated as to whether or not a mere looking at the behavioural patterns of a

potential sexual partner, one can tell his or her HIV status.

1.2 Method of Investigation

Various approaches can be used to study disease epidemiology; we can employ

mathematical method (modelling) and statistical method (which we will not throw

light on). With the mathematical method, we can develop a model for a particu-

lar infectious disease either by developing the model in discrete or continuous time

interval. The thesis employs discrete dynamical systems.

1.2.1 Discrete modelling

Discrete models describe the time evolution of a system expressed by difference

equations. In other words, we have a discrete system when time, t ∈ Z acts on the

system. This approach of modelling sets the relationship between the future state of

the system on the present state of the system at discrete intervals. An example is

the study by Zhang [52], which is on the stability properties for innovation diffusion

systems. There are other examples found in [21]. Discrete models can also depend

on history [30], [47],. Discrete models can take stochastic and deterministic forms.
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1.3 Motivation of Research

1.3.1 A modified EE model studied by Aadland et al.

Aadland et al. [6], investigated the dynamics of economic epidemiology equilib-

ria in which they established rich properties of the EE versions of the compartmental

disease models and various underlying behavioural implications on public policies were

pointed out. Their analysis digs into the behavioural influences on dynamic properties

of the system they considered. They further showed that a well-intentioned policy

can create instability and indeterminacy when individuals behave rationally and in

selfish manner. In their model, they made the following assumptions: a constant

population was assumed, a utility function that is logarithmic in nature and others

that will be outlined in the body of the thesis. Based on the assumptions that they

made, the following questions come to mind: What happens if (1) population is not

constant? That is to say birth and death rate are not the same? (2) The utility

function they considered implies that there is no limit on the maximum number of

contacts. If the maximum number of contacts depends on a parameter, how will this

parameter affect the dynamics of the system?

This thesis attempts to look into the above questions. Hence, the thesis con-

sidered a model that has a population that is not constant and a parametric utility

function that is quadratic. The choice of the the utility function is to make the

maximum number of contacts dependent on a parameter which may influence the

dynamics of the system.
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1.3.2 Syphilis infectivity among “men who have sex with

men”(MSM) inmates

STDs have become part and parcel of our human development. Almost every

country is saddled with this problem. It has been estimated in 2011 that about 34

million people were living with HIV/AIDS with adults constituting about 0.8% of the

figure [49]. How to address this issue is a challenge to public health policy makers.

The increase in the incidence of the STDs is not limited to HIV/AIDS but to other

STDs such as syphilis, chlamydia, genital warts and others. For instance, records

have it that the prevalence of syphilis was reduced drastically after the introduction

of penicillin, but the disease has resurfaced in recent years [5]. Recent surveys show

that an estimated 10 million new infections occur every year [50].

These phenomena have struck detention centres (prisons), thus posing very chal-

lenging problems to the authorities in charge of these facilities. For instance, statistics

show that the HIV prevalence among prisoners is more than fifty times higher than

that of the general adult population [39]. In the USA for instance, it is believed that

the ratio is as 6 to 1; in France, 10 to 1; and in Mauritius, 50 to 1 [46]. As the world’s

population is growing rapidly, so is the prison population . For instance, the incar-

ceration rate for USA is about 756 per 100,000 of the national population [44]. In

Sub-Sahara Africa, about 668,000 men and women are imprisoned with South Africa

recording the highest – 157,402 prisoners with 335 per 100,000 imprisoned from the

national population [39].

With high levels of incarceration rates, it is undoubted that the detention centres

are becoming overcrowded. It is evident that some of these detention centres are in

poor shape to accommodate this number of prisoners. This poses a serious threat

to the health of these inmates, as authorities responsible in managing these facilities
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will find it difficult to put in place effective control mechanisms to control the spread

of communicable diseases among them.

The spread of STDs in detention centres is not limited to HIV/AIDS but also to

other STDs such as syphilis, gonorrhoea etc.. In fact there are researches that confirm

the high level of syphilis prevalence among detainees in prisons. Vaz et al. pointed

out that syphilis and HIV are common among the inmates in prisons in Maputo [45].

Work by other researchers in the field also confirms this [8],[27],[51].

Most prisons are dominated by men. Some of these detainees become involved

in sexual activities [39]. These activities could take the form of prisoner to prisoner

or prison-guard to prisoner [39]. It is also pointed out in [39] that about 10 to

60 percent of prisoners in Zomba prison in Malawi have had at least one anal sex

encounter. Sexual activities among theses individuals could be by consent or by

force. In 2001, Human Rights Watch reported that those inmates who are involved

in this act appeared to be in agreement with the supposed partners [2]. In some

jurisdictions, MSM is regarded as illegal. This may be one of the contributing factors

to the rapid spread of these diseases since protection is not given to this section of

people in the population. Prisoners in Africa are sometimes seen as outcasts and are

left without protection. The prison guards sometimes take advantage of this situation

and sexually abuse these inmates with impunity : Sexual abuse is one of the means

by which inmates are disciplined [39]. This situation is not only applicable to prisons

in Africa but to other parts of the world. For instance, there are incidence of rape

in USA prisons [46]. Thus, anal intercourse either by rape or consent has remained

one of the key transmission media of STDs and for that matter syphilis among male

inmates.

There have been models on the spread of HIV among inmates in prisons [23],[39].
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Since at times there is transfer or movement of prisoners to and from within the

system of prisons; there has been work on the epidemiology of diseases within this

framework. For instance, Ching et al. looked into this issue [20]. Nevertheless, none

of these works have looked into the stability properties of syphilis among inmates and

its possible relation to public health policy by combining mathematical and economic

concepts in formulating an Economic Epidemiology (EE) model where there is the

interplay of the biology of the disease and behavioural choices. This thesis attempts

to address this issue. To the best of our knowledge, this is the first attempt made to

understand this phenomenon among inmates.

1.4 Thesis Outline

This thesis studied the economic version of mathematical compartmental epi-

demiology models. Two studies were carried out: a modified model of the earlier

works by Aadland et al. [6] as well as a model on syphilis infectivity among MSM

inmates. We apply the standard linearization method to investigate the dynamic

paths of the system around the endemic steady state under economic expectations.

In order to compare the results from the former model to that of Aadland et al.,

we used the same parameter values they used in their studies and then vary them

to check whether our model will yield a different result. Below is the outline of the

thesis:

Chapter 2 discusses the background of the concepts we applied in our study.

It gives some insight into epidemiology, mathematical epidemic and economic epi-

demiological models, and dynamical models, where discussion is held on the stability

conditions for both deterministic and stochastic discrete models. Also the notion of

utility functions and dynamic programming was visited.
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Chapter 3 is on the development of the modified model on Aadland et al. works

and its analysis. We first provided the underlying framework for the model studied by

Aadland et al. and then modified it to the one of interest. We made use of a quadratic

utility function. Our choice for this utility function is motivated by the fact that it

provides the necessary limit on the number of contacts rational individuals can make

unlike the utility function considered by Aadland et al. which is a logarithmic utility

function. It also adds a new dimension to the behaviour of the system. In that, the

maximum number of contacts made by individuals is determined by a parameter.

We talked about the economic versions of the compartmental disease models where

we considered the following cases: When individuals observed their immunity and

when they did not observe their immunity. We carried out stability analysis of our

model. We derived a matrix system of equations by linearizing the system around the

endemic steady states and then carried out simulations. We assumed that individuals

make choices based on rational expectations by imposing a perfect foresight on the

system. Due to the complex nature of the system, there were no analytical solution

provided. Thus, we carried out numerical simulation and based our discussion on the

results. We showed that (1) if individuals behave in a self centred manner but have

their maximum number contacts dependent on a parameter, this parameter influences

the dynamics of the system. (2) Public policy has the tendency to drive the dynamics

of the system.

Chapter 4 is on a model on syphilis infectivity among MSM inmates. We de-

veloped a compartmental disease model. Economic concepts are introduced into the

analysis of the system where MSM inmates are assumed to behave in a self centred

manner without taking into consideration the welfare of the other inmates. We em-

ployed the same approach outlined in chapter 3 in the analysis of the system. We

investigated the dynamic properties of the model under rational expectations. We

have shown that if rational individual inmates behave in a self-centred manner, their

8



behavioural responses to disease prevalence affect the dynamic properties of the sys-

tem. This result holds for the case under rational expectations where individuals

are assumed to have perfect knowledge of the system and are aware of the risk and

benefits faced by the other inmates as they make a choice. On the other hand, under

naive expectations, public policy has no effect on the stability properties of the sys-

tem. It is also shown that the prevalence of the disease in the long run is influenced

by incentives that drive the utility of the MSM inmates. Furthermore, we compared

the dynamics of the EE and the ME systems. We found out that the EE system

gravitates towards the equilibrium more quickly than its counterpart.

Chapter 5 summarizes our results as well as explains the contribution of the

thesis to this area of study. Future work is also outlined.

9



Chapter 2

Literature Review

This chapter talks about several basic concepts related to this thesis which

includes (just to mention a few): epidemic models, stability analysis of dynamical

systems, utility and objective functions and Bellman equations, etc.. Specific exam-

ples are given to buttress the discussion on these concepts.

2.1 Epidemiology

Epidemiology has played a vital role in health policy formulation, as it has

helped provide an informed public decision in disease outbreak. Through the devel-

opment of methodologies, epidemiology as a field has helped in identifying the manner

in which infectious diseases are contracted [4].

In literal terms, epidemiology is coined from the Greek words epi, meaning “on

or upon,”demos, meaning “the common people,” and logy, meaning “study.” By

putting these words together one can define epidemiology as “the study of that which

10



falls upon the common people” [4]. The earth bears records of infectious diseases that

suddenly infect a particular population and suddenly disappear and then resurface

again. Some (infectious diseases) also reside within a particular population. An

example includes, the spread of smallpox across many parts of Europe that resulted

in the death of about 10% of young children [22]. There are biblical accounts of

plaques suffered by a particular population. An example is the plagues of Egypt

[1]. One can argue that early marriages coupled with technological advancements

that helped to improve the supply and distribution of food contributed to the sharp

increase in the population in the eighteenth century (China’s population increased

from 150 million to 313 million between 1760 and 1794 and in Europe; in increased

from 118 million to 187 million between 1700 and 1800 [18]). However, one can not

rule out the fact that the reduction in communicable diseases contributed to a lower

death rate. As well, the improvement in medicine and the development of a strong

immunity against these diseases also contributed to the trend in rising population

rates.

An epidemic, which acts on a short duration, can be described as a sudden

outbreak of disease that infects a great proportion of the population in an area (or

region) before disappearing. Epidemic attacks are of a recurrent nature with intervals

of several years between outbreaks.

Thus, epidemiology can be regarded as a chain of reasoning concerned with bio-

logical inferences stemming from the observations of disease(s) occurrence and related

phenomena in human population groups [36]. Therefore, one can view epidemiology

as an integrated field deriving and borrowing its concepts and methods from other

disciplines such as mathematics, statistics, sociology and others for the study of dis-

ease(s) in a population. For instance, mathematical methods were introduced to this

effect in the twentieth century. The works by McKendrick et al. relates to that
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[34], where a disease model was developed to look at the behaviour of outbreaks of

infectious diseases.

Epidemiologists are primarily concerned about the occurrence of disease as

grouped by time, place, and persons. They endeavour to determine whether or not

there has been a reduction or an increment in the prevalence of a disease over the

years, whether one geographical area has a higher prevalence of the disease than the

other, as well as whether the characteristics of person(s) with a particular disease or

condition differentiate them from those without it [36]. The next section talks about

the mathematical methods employed in epidemiology.

2.2 Mathematical Epidemic Models

An epidemic model is a simplified way of explaining the transmission of commu-

nicable disease(s) such as Sexually Transmitted Diseases (STD s) through individuals.

Being able to know or to predict the behaviour of a disease could aid scientists in

evaluating inoculation (the process of artificial induction of immunity against infec-

tious disease) or isolation plans. This could have a tremendous effect on the death

rate associated with a particular epidemic [14]. The modelling of infectious disease

can be seen as a tool which has been used to study the mechanisms by which dis-

ease spread, to predict the future course of an outbreak and to evaluate strategies

to control an epidemic [22]. The first record of mathematical modelling of infectious

disease was carried out by Daniel Bernoulli in 1766 [22]. He defended the practice of

inoculating against smallpox by using a mathematical model to evaluate the efficacy

of the method of variolation [31]. During those times, smallpox spread across many

parts of Europe where a large part of the population was affected. The disease related

death was about 10% among young children [22].
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In order to put in place better public policies to curb the spread of these diseases,

there is the need to know the intensity of the epidemic of the disease in question. In

order to achieve the above, questions such as the following need to be answered: how

many people will suffer from the disease outbreak? What is the peak number of people

to be infected? and others. For instance, in [34], the behaviour of the outbreak of

infectious disease was investigated and a prediction was made which is in line with

the above questions.

In disease modelling, there are cases that affect the nature and the underlying

assumptions of the model. For instance, if one is dealing with a large population,

a deterministic mathematical model is made use of. An example is the studying

of the epidemics of whooping cough (pertussis) which is highly contagious. Also,

the manner in which disease(s) spread is random. This is due to the unpredictable

nature of the interaction(s) between individuals. Therefore, there is the need for this

random process to be accounted for in the model. For instance, if a new infectious

disease hits a population, at the early stage of the outbreak (because there may be

a small number of cases recorded), one cannot predict the very dynamic nature of

the disease. It may or may not affect a large portion of the total population before

dying out. To account for this, one needs to specify the model “stochastically”. Thus,

in mathematical epidemiology modelling, we have two types of models to consider:

deterministic and stochastic mathematical epidemiology models. The next sections

will delve briefly into these types of models.

2.2.1 Deterministic mathematical epidemiology models

In deterministic models, the formulation is done by first dividing the popu-

lation under study into mutually exclusive subgroups(compartments) such that the
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transition rate from moving from one compartment to another is specified. This tran-

sition rate is done via differential or difference equations. Because of the groupings

of the population into various subgroups, the deterministic models are also known as

compartmental models. Each of the subgroups describes a disease category. The as-

sumption is that the compartmental size of each disease category changes with respect

to time. There is a different compartmental structure for studying the epidemiology

of every disease. For instance, the diseases that no immunity can be built against

have a structure different from the one in which an immunity can be built against and

also from those that are transmitted by vectors [17]. In [11] for example, models that

involve vector transmissions are considered. These are diseases that are transmitted

from human to human indirectly as malaria which is spread by mosquitoes. In this

case, the model must include both humans and mosquitoes which mostly requires

creation of a lot of compartments. Below is an example of a simple epidemic model .

Example 1

This particular example is a model that describes the transmission of communicable

diseases. It is a special case of those studied by Kermack and Mckendrick (1927, 1932,

1933) [18]. The model describes three mutually exclusive disease compartments in a

population: the susceptible compartment (S), where individuals in the population are

susceptible to the disease, the infective compartment (I), where those infected with

the disease in question belong and the recovered compartment (R), where those who

have recovered from the disease are grouped. Terminologically, we call this model the

SIR model. We have other cases which we can also term the SIRS, SIS, and the

SI. These models are considered in [17], [18]. Also, there are many extensions of the

SIR. Examples are SEIR and SEIRS. The E is the category for individuals exposed

to the disease but not yet infectious themselves.
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Suppose the probability that an infected person coming in contact with a sus-

ceptible person who can transmit the infection at period t is St

Nt
. Let the contacts

enough to make transmission of infection by the average member of the population

with others be cNt per unit time. Then we have the number of new infections in unit

time to be (cNt)(
St

Nt
)It = cStIt, where c and N are the contact rate and population

size respectively. Let the rate at which the infected leaves the infective class be b and

finally, we suppose that the population is constant with no entry or departure except

where there is disease related death. What this means is that, the duration of the

disease is so short that the effect of birth and death rate on the demographics of the

population can be ignored. Based on this assumption we have the following difference

equations explaining the model:


St+1 = St − cStIt,

It+1 = It + cStIt − bIt,

Rt+1 = Rt + bIt.

(2.1)

To make biological sense, at t = 0, S0, I0, R0 > 0. An attempt will not be made at

analyzing the model. The main idea is to give an example.

2.2.2 Stochastic mathematical epidemiological models

As we hinted earlier, looking at the random nature of disease transmission, it

is imperative to include the stochastic behaviour in our model. Stochastic modelling

involves the incorporation of the variation of chance into the disease transmission

process such that a provision is made for the possible ranges of outcomes which are

based on probability. When one is considering a small or isolated population in dis-

ease modelling and the chance of fluctuations is needed to be accounted for, then
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this type of modelling is very useful [43]. Stochastic models preserve unique proper-

ties from the deterministic models: probability of disease extinction, probability of

disease outbreak, quasi stationary probability distribution, final size distribution and

expected duration of an endemic. These properties are well documented in [18]. For

the purpose of my thesis we will not throw more light on stochastic models.

2.3 Economic Epidemiology (EE)

The field of economic epidemiology incorporates economic choices in epidemi-

ology models. The main theme of this field is to study the interaction of how the

health state of an individual and the way he or she responds to a disease’s outbreak

in the epidemiological context. The notion that the way individuals behave in the

presence of an infectious disease is dependent on the disease prevalence gave rise to

this field. For instance, in the emergence of the AIDS epidemic, there has been a lot

of economic research in order to understand how the behavioural pattern affects the

spread of the disease [40]. EE models also take into account other factors such as

externalities, global diseases such as AIDS, syphilis, malaria and cholera, the effects

of individuals’ incentives on the epidemiology of disease(s) and the cost of curbing it.

Disease treatment and prevention depend heavily on the volatility in the behaviour of

individuals in the presence of disease outbreak(s). Their decisions also have tremen-

dous bearing on the entire population. For instance, Kaplan showed that the number

of sexual contacts by individuals affects HIV infectivity [33].

Behavioural responses have the potential of affecting the prevalence of an in-

fectious disease. An example is shown in the works by Blower et al., where they

demonstrated that the reduction in the risk of contracting HIV as a result of the

introduction of vaccine could lead to an increase in the incidence of the disease [16].
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Timing of public policies in the presence of a disease outbreak is very crucial. For

instance, in the works of Geoffard et al. [28], they found out that, due to competition

between public policies and behaviours on the part of individuals in a population hit

by an infectious disease, it becomes futile for a public policy directed at providing

subsidies if the the prevalence of the disease makes individuals to take protective

measures. Thus, the policy has no effect. Behavioural response does not only some-

times render public policy futile, but also may have bearing on the vaccine policy

formulation. In [10], the authors pointed out that the manner in which individuals

respond to the introduction of vaccine to control the HIV epidemic will rather lead to

an increase in the incidence of the disease, in that, the introduction of the vaccine will

promote risky behaviour on the part of individuals. Since decision making is based

on individual choices, vaccination policy may contribute less than maximum social

outcome that the policy sought to achieve. The reason is that, individuals are mostly

concerned about their immediate benefit not the benefit of the society as a whole.

Availability of information on the prevalence level of a disease either in the present

or in the future affects the behavioural pattern of individuals, in that, if individuals

perceive that the prevalence level of a disease is very high, the likelihood that they

will reduce their contact rate is high. If the converse happens, they involve in risky

behaviour which may even lead to a high prevalence level in the long-run. Thus, a

myopic behaviour on the part of individuals may trigger a disease outbreak.

The above and others are some of the issues EE seeks to address. What we

ought to know is that “economic and biological epidemiology can make different

predictions about diseases occurrence mainly due to their different predictions about

the relationship between prevention and prevalence”[40].
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2.4 The Notion of Utility Functions

This section is devoted to a brief discussion on utility theory and expected

utility. Specific examples are given for illustration purposes.

2.4.1 Utility theory

Firms, households and governments make decisions and choices. There are re-

wards associated with these decisions or choices. These decision makers make choices

or decisions such that the possible optimal reward is ascertained. These rewards are

what is termed utility or satisfaction. Thus, utility theory gives a framework for

evaluating the associated utility with a particular choice. The underlying assumption

is that, every choice or decision made is based on the principle of utility maximiza-

tion. Therefore, decision makers should be concerned with making the best possible

choice(s) that will yield the optimal utility. Utility theory is applicable in many fields

in economics, such as finance and behavioural economics.

Utility is measured by a function called the utility function. This function

measures the associated reward with a specific choice or decision made by a decision

maker. For instance, the reward can be measured in monetary terms, services or

quantity of goods. In disease modelling, utility can be measured in terms of the

number of contacts by decision makers (in this case individuals).
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Utility functions

A continuous function that satisfies the following conditions is a utility function:

U ′(x) > 0 and U ′′(x) < 0,

where x is a variable the decision maker is interested in. For instance, it could be a

monetary amount, or the number of contacts etc.. The mathematical interpretation

of the above condition is that the function U is a concave function on x. For economic

interpretation, the utility of a decision maker increases with respect to x. But as his

utility increases, it will get to a point where an additional demand for x will yield a

decrease in the additional level of his utility. U ′(x) > 0 also means the representative

agents will always prefer more to less. As an example, let us consider an individual

who is very thirsty. His utility will increase as he consumes more cups of water but

will get to a point where an additional consumption of a cup of water will yield a

decrease in his utility. The additional utility derived as a result of consuming an

additional unit of x is what is termed as marginal utility. Utility functions can be

expressed in logarithmic, quadratic, exponential, power form etc., depending on the

objective of study.

2.4.2 Expected utility

We are always faced with uncertainties when it comes to choice making. The

way a decision is valued in a particular instance is different from another instance.

Therefore, if one places a value on a particular decision in a particular state as com-

pared to another possible state, then there must be a probability that the state of

interest will actually occur. Therefore, in economic theory, in the presence of uncer-
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tainty, the decision process should be based on expected utility [32]. For instance,

in the presence of a disease epidemic, say HIV, a representative agent may decide to

have an incident of unprotected sex with a random partner; since this agent is not

certain about his/her decision (whether he will be infected with HIV or not after the

act), the utility should be expressed as an expected utility, taken into account the

average of utility he/she may get when remaining uninfected and when infected.

Constructing expected utility

For the purpose of my work, we will discuss two states.

Let us consider two mutually exclusive states, such that the probability of being

in state A and B is denoted by p1 and p2 respectively. Let the associated utility in

A and B be u1(x) and u2(x) respectively. Then our expected utility U(x) will be

U(x) = p1u1(x) + (1− p1)u2(x),

where p2 = 1−p1. It must be noted here that, the probabilities could be dependent on

other variables in the model under study. What the above relation means is that, the

expected utility will be a function of the utility in each state, and the probabilities.

Therefore, in our example in 2.4.2, if we let u1(x) and u2(x) denote the associated

utility for the individual being infected and not being infected after making x number

of contacts respectively, then we expect the individual’s expected utility to be as the

above equation with it respective probabilities.
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2.5 Dynamic Programming and Bellman’s Equa-

tion

This section briefly discusses some concepts on dynamic programming and Bell-

man equation as related to this thesis. Before we touch on the Bellman’s equation,

let us first talk about the following analytical concepts as pertaining to dynamic

programming.

2.5.1 The underlying concepts

Firms, households or governments are faced with many problems in which deci-

sions have to be made to address them. For instance, households will have to decide

how much they spend on their livelihood and how much they must save for their

future. Another instance could be an individual who in the prevalence of HIV may

decide to have unprotected sex or not. Given a resource constraint, a government

may decide to make education more affordable by giving free or subsidized eduction

to its citizens or making education more accessible by investing in educational in-

frastructure close to the citizens. All these choices involve decision processes that

involve cost-benefit trade off. These decisions can be broken down in such a way that

each is tackled over time. The process of doing this is what is referred to as dynamic

programming or optimization. This presupposes that time plays a crucial role.

In solving an optimization problem, there are objectives that we seek to meet.

The goal of a firm, for instance, is how to combine resources (for example, capital and

labour) to achieve the possible maximum production level so as to maximize profit.

In general, minimizing cost and maximizing utility (satisfaction), are the objectives
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of any representative agent(s). These objectives can be described mathematically.

The function describing these objectives is what is termed the objective function.

In dynamic optimization, one needs to know the information for the period in

question before a right decision can be arrived at. In other words, the state of the

system must be known. To illustrate this, let us consider a representative agent, say a

firm, to give dividends to its shareholders, must have information, for instance, about

its profit margin at the current period (of course, other factors also play a crucial role

in determining dividend). The profit margin is therefore one of the state variables

and the amount of dividends to issue out is the control variable. The control variables

are therefore those variables chosen at any point in time. Thus, the rule that helps

determine the control variables is the policy function. In our case, if we assumed that

the amount of dividends to be issued is only determined by the profit margin of the

firm, then the function D(p) is the policy function which the firm seeks to find. D is

the amount of dividend and p is the profit margin.

By definition, optimal policy is “a policy which maximizes a preassigned function

of the final state variables” [13].

2.5.2 Derivation of the Bellman’s equation

Let us suppose a representative agent makes a decision at discrete points in time

such that time t ∈ Γ, where


Γ = {0, 1, ..., T},

T ≤ ∞.
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The above expression means that, the decision process could have an infinite or finite

horizon. Suppose an initial state s0 is given. The representative agent chooses an

action a0 which is dependent upon the current state of the system (that is a0 ∈ η(s0)).

η(s0) is the possible set of feasible actions available to the agent. In general, an action

taken in time t can be related to the state by at ∈ η(st). Therefore, an action at taken

at state st yields a one-period reward to the agent. Let Ut(at, st) denote the reward.

Note that, if the agent’s decision process assumes a finite horizon, then it is assumed

that the agent will not take any action at the last period. Therefore, the reward he

or she may get at the terminal period will be dependent on only the state in that

period.

Now, from the above, given the initial state s0 with the corresponding action a0

taken by the agent, state s1 will be dependent upon s0 and a0. The agent will then take

an action a1 dependent on s1. Therefore, action at will be dependent on st which is also

dependent on previous actions and states. These actions must satisfy some optimality

criteria. Actions chosen at any period may be randomly or deterministically chosen.

Let us now define a function called the value function, v(so) which is defined

as the optimal value of the objective function defined as the discounted value of the

sum of all future values given an initial state at time t = 0. Let us also assume the

decision process has an infinite horizon. Therefore, we have the following:

v(s0) = max
{at}∞t=0

∞∑
t=0

βtU(st, at), (2.2)

subject to 
at ∈ η(st),

st+1 = >(st, at), for t ≥ 0.
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β ∈ (0, 1) is the discount factor that satisfies the assumption that representative

agents place less value on future values of the action taken today. This means that

at t = 1, the optimal value of the objective function subjected to the constraint will

be given as v(s1) and βv(s1) is the value v(s1) discounted back to period t = 0.

The above problem can be solved by breaking the problem into sub ones such

that we have the following :

v(s0) = max
a0

[
U(s0, a0) + max

{at}∞t=1

∞∑
t=1

βtU(st, at)

]
, (2.3)

subject to 
at ∈ η(st),

st+1 = >(st, at) for t = 1, 2...T.

Also, Eq. (2.3) is subjected to the constraint


a0 ∈ η(s0),

s1 = >(s0, a0).

The decomposition of (2.2) into (2.3) is governed by the principle of optimality which

states that “An optimal policy has the property that whatever the initial state and

initial decision are, the remaining decisions must constitute an optimal policy with

regard to the state resulting from the first decision” [13]. Thus, equation (2.3) can

be further written into the form:

v(s0) = max{U(s0, a0) + βν(s1)}, (2.4)
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subject to 
a0 ∈ η(s0),

s1 = >(a0, s0).

The above equation is what is termed Bellman’s equation. In general we have

v(st) = max{U(st, at) + βv(st+1)}, (2.5)

subject to 
at ∈ η(st),

st+1 = >(at, st).

Deriving the first order condition

We demonstrate how to derive the first order condition with this specific problem

in economics. Suppose a representative agent has the following problem to solve:

max
{at}

∞∑
t=0

βtU(at), (2.6)

subject to

at + st+1 = f(st).

Where U(at) denotes a utility function, a and s are variables to be determined. The

state variable is st . The control variable is at. Therefore, we have the following as

the Bellman’s equation:

v(st) = max
{at}
{U(at) + βv(st+1)}, (2.7)

25



subject to

at + st+1 = f(st).

Assume the representative agent lives in two periods; period t and t + 1. To get the

optimal behaviour of the agent, we make use of the Lagrangian principle. Therefore,

let λt be the associated multiplier. Thus, we have

v(st) = max
{at}
{U(at) + βv(st+1)}+ λt(f(st)− st+1 − at)}. (2.8)

For the first order conditions involving at and st+1 associated with the above equation,

we have: 
U ′(at) = λt,

βv′(st+1) = λt.

(2.9)

Where 
U ′(at) = dU

dat
,

v′(st+1) = dv
dst+1

.

(2.10)

Thus, we have

U ′(at) = βv′(st+1). (2.11)

Also, from Eq. (2.8), we have

v′(st) = λtf
′(st).

From U ′(at) = λt, we therefore have

v′(st) = U ′(at)f
′(st). (2.12)
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Thus, moving Eq. (2.12) one period forward and making use of Eq. (2.11), we have

the following equation:

U ′(at) = β[U ′(at+1)f ′(st+1)].

The above equation is the first order necessary condition. This equation coupled

with the constraint depicts the optimal behaviour of the agent. This method can be

extended to problems involving stochastic processes.

2.6 Dynamical Systems

A dynamical system can be seen as any system that evolves over time. It is a

system that is specified by points in geometrical space, say X ∈ Rn and a rule or a

function , say F : Rn → Rn that conveys the behaviour of a system as it evolves over

time. Therefore, one can say that, a dynamical system is basically made up of two

parts: the state vector which gives the exact description of the state of the system in

question and a rule that describes the future state of the system given its initial state.

To some extent, knowing the state vector of any system explaining a phenomenon (be

it a physical, biological, economical etc. system) is enough to determine the future

state of that system in question. Thus, one can say that “the state vector is the

numerical description of the current configuration of a system” [41].

Theories on dynamical systems are employed in the analysis of phenomena in

several fields outside of mathematics: one can talk of disease modelling, dynamic

optimization as pertaining to mathematical economics and others. An interval for

data acquisition takes primarily two forms: discrete and continuous. For instance, a

report on the price of gold every two weeks only is an example of data acquisition at

discrete intervals. On the other hand, a ball thrown in the air has no time interval.
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The time the ball is in motion is continuous. Thus, dynamical systems are categorized

into continuous and discrete systems. Due to the scope of this thesis, focus would be

made only on discrete dynamical systems.

2.6.1 Discrete dynamical systems

A discrete dynamical system describes the time evolution of a system expressed

by difference equations. In other words, we have a discrete system when time, t ∈ Z

acts on the system . A discrete dynamical system can be written in the following

form:

Xt+1 = AXt +B,

where X is an (n × 1) vector of variables, and X(0) = X0, A is an n × n matrix

of parameters which can be constant or vary across time, and B is an n-dimension

column vector of parameters which can be constant or vary with respect to time.

In [21] there are models studied in which difference equations are applied to

practical problems: we have the model for beetle population, disease epidemiology

and others. Discrete dynamical systems can be studied in two forms: the stochastic

and the deterministic form. Below is the stability analysis of difference equations of

each respective type.

2.6.2 Deterministic difference (discrete) equations

This section is devoted to discussing the stability conditions of the above type

of systems. We will only be dwelling on First-order Linear systems.
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Stability analysis

Suppose a general system takes the following form:

AXt+1 = BXt + CZt, Xt=0 = X0. (2.13)

Where X is an (n × 1) vector of endogenous variables and Zt is an (k × 1) vector

of exogenous variables. A, B and C are conformable matrices. Let us suppose the

following:

Assumption 1 There exists α such that det(Aα−B) 6= 0.

Assumption 2 There exists T > 0 such that Zt = Z∗ for all t ≥ T.

Assumption 3 {Zt} is a stable sequence.

Let us also consider the following definitions:

Definition 1 A steady state point, X∗ of a sequence {Xt} is a point such that Xt =

X∗, then Xs = X∗ for all s > t.

Definition 2 A sequence {Xt} is stable if there exists M > 0 such that ‖Xt‖max <

M for all t, where ‖Xt‖max = max|Xj| for all X ∈ Rn.

Definition 3 A point X∗ is said to be stable asymptotically if the sequence {Xt} is

such that limt→∞Xt = X∗ for some initial value of X (that is Xt=0 = X0).

Definition 4 A point X∗ is said to be stable globally if the sequence {Xt} is such

that

limt→∞Xt = X∗ (2.14)

for all initial values of X.
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The next section is for discussion on the stability conditions of Eq.(2.13).

Let us employ the method proposed by Blanchard and Khan to analyse the

above system. [15]. Suppose A is a non-singular matrix. Then Eq. (2.13) can be

rewritten in the form

Xt+1 = A−1BXt + A−1CZt. (2.15)

Let us suppose assumption 1 is satisfied. Also let W = A−1B such that by trans-

forming W into Jordan canonical form , we have W = P−1JP, where J is the Jordan

matrix having its diagonal element being the eigenvalues λ of W . P is an invert-

ible matrix which consists of the eigenvectors of W. J can be decomposed into the

following:

J =



J1

J2

...

Jk


,

where

Ji =



λi 1

λi 1

... 1

λi


ni×ni

,

such that for each λ, det (W − λI) = 0 is satisfied. Also for all i = 1, ...k, λi has ni

repeated values.

Definition 5 If |λ| < 1 then we say λ is stable. If |λ| > 1 then we say λ is unstable.

We have a stable matrix if all the eigenvalues of that matrix have a modulus less

than one. In other words, we have a stable (unstable) matrix if all its eigenvalues are

within (outside) the unit circle.

30



Theorem 1 Let A and I−W be non-singular matrices. Suppose assumption 2 holds

and (A−B)−1 exists then by definition 1, X∗ can be expressed as

X∗ = (A−B)−1CZ∗,

such that for all X0, there exists a solution {Xt} such that

limt→∞Xt = X∗

if and only if all λ of W are stable.

See [38] for the proof.

If the above theorem holds, then the steady state is referred to as a sink or

indeterminate. If all λ of W is unstable, then the steady state is referred to as a

source (explosion).

Theorem 1 was ascertained by deriving a backward-looking solution for Eq.

(2.13) by assuming that all the initial values X0 are given. At times not all the

components of the initial value X0 are given. In this case, the above theorem is not

applicable. The reason is that, we can not solve Eq. (2.13) using the backward-

looking solution in this case. Thus, we employed a different approach. This takes us

to our next subtopic.

The notion of predetermined and non-predetermined variables

For deterministic systems, predetermined variables are variables whose initial

values are exogenously given whilst for non-predetermined (jump) variables, their

initial values are not exogenously given.
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Now, let us rewrite Eq. (2.15) in the following form :

Xt+1

Yt+1

 = W

Xt

Yt

+ γZt, (2.16)

where 
W = A−1B,

γ = A−1C.

X is an (n × 1) vector of predetermined variables, Y is an (m × 1) vector of non-

predetermined variables. Let us partition the Jordan matrix as follows:

J =

J1

J2

 , (2.17)

where J1 is an n1×n1 matrix having all its eigenvalues as stable and J2 is an n2×n2

matrix having all its eigenvalues as unstable. Let us consider the following theorem.

See [15] for the proof.

Theorem 2 If the number of unstable eigenvalues is equal to the number of non-

predetermined variables, then given X0, there exists a unique stable solution for all

stable sequence {Zt} satisfying Eq. (2.16).1

It follows that if theorem 2 and assumption 2 are satisfied, then it is sufficient

to say the solution to Eq. (2.16 ) satisfies

limt→∞Xt = X∗,

where X∗ is defined in theorem 1. In this case, the steady state is referred to as

saddle [38].

1The proof of the above is well detailed in [38] by Miao
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There is no solution to Eq.(2.16) if the number of unstable eigenvalues is more

than the number of non-predetermined variables. If the number of unstable eigenval-

ues is less than the number of non-predetermined variables, then there are infinitely

many solutions to Eq.(2.16).

Example 3

Let us consider the neoclassical growth model with constant relative risk aversion

preferences. Suppose a single agent who lives within an infinite time period chooses a

control variable c (level of consumption) at a time period t, such that his/her choice

is to maximize an objective function of the form:

max
{ct}

∞∑
t=∞

βt
( c1−σ

t

1− σ

)
, (2.18)

subject to

ct + kt = kαt−1 + (1− δ)kt−1. (2.19)

Where β, δ ∈ (0, 1) denotes a discount factor and depreciation rate of capital respec-

tively. σ is the coefficient of relative risk aversion. k denotes capital. Let us further

assume that utility is time-separable (that is to mean marginal utility of consumption

today depends only on the level of consumption today). We seek for the stability of

the equilibrium of the agent’s consumption and capital as time passes by. The first

order condition of the objective function is as follows:


c−σt = βc−σt+1(αkα−1

t+1 + (1− δ)),

kt+1 = kαt − ct + (1− δ)kt.
(2.20)

Below is the time-invariant version of the above equations in c and k, which represent

the steady state value for consumption level of the representative agent and capital
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respectively which ought to be solved for.


c−σ = βc−σ(αkα−1 + (1− δ)),

k = kα − c+ (1− δ)k,

By log-linearizing2 Eq. (2.20) about the steady state, we have the following:


−σĉt = σĉt+1 + β(α− 1)F k̂t+1,

k̂t+1 = 1
β
k̂t − c

k
ĉt.

where c
k

and F = αk(α−1) are the ratio of consumption to capital and marginal

product of capital respectively. Hat, ∧ on top of the variables indicates the deviation

of the variables from the steady state value of the variables. We therefore have the

following as the linearized matrix system from the above equation:

−σ β(α− 1)

0 1


ĉt+1

k̂t+1

 =

−σ 0

− c
k

1
β


ĉt
k̂t

 .
So that we have ĉt+1

k̂t+1

 = M

ĉt
k̂t

 , (2.21)

where

M =

1− cβ(α−1)F
kσ

(α−1)F
σ

− c
k

1
β

 .

We have one predetermined variable {k} and one non-predetermined variable

{c}. The interpretation is that, if the eigenvalues of M is such a way that, one is

2The concept of log-linearization is well explained in [38].
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stable and the other one is unstable then we have a saddle path stability. If all the

two eigenvalues are not stable then we have a source and if all the eigenvalues are

stable, then we have an indeterminate path stability.

Stochastic discrete models: Rational expectation

There are several definitions of rational expectation. We have the broad, mid

and weak definition. The weak definition is what is mostly accepted. Therefore, the

discussion on this section will be based on the definition below.

Definition 6 “Agents formulate expectations in such a way that their subjective prob-

ability distribution of economic variables (conditional on the available information)

coincides with the objective probability distribution of the same variable(the state of

nature) in an equilibrium.”[3]

The above definition can be expressed mathematically as follows:

Y e
t+1 = E(Yt+1|Ωt), (2.22)

where E(.) is the mathematical expectation operator, Ωt is the information set avail-

able to the agents at time t and Y e
t+1 is the equilibrium at time, t + 1. In this thesis

we will use the following notation:

Et(Yt+1) = E(Yt+1|Ωt).

From the above definition, it is imperative we consider the following proposition:
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Proposition 1 Suppose Ŷt = Yt − Y e
t , which is the expectation error. The following

holds:

Et(Ŷt+1) = 0.

The above proposition means, individuals do not make systemic error when

forming rational expectations.

Proposition 2 Expectation errors do not exhibit any serial correlation.

Proposition 3 Let us consider the following information sets: Ωt and Ωt−1 such that

Ωt−1 ⊃ Ωt, then the following holds:

EtYt+1 = Et(Et−1Yt+1).

The following section discusses the solution to linear difference (discrete) models under

rational expectations.

The general model

Let us recall Eq. (2.16):

 Xt+1

EtYt+1

 = W

Xt

Yt

+ γZt, Xt=0 = X0,

where X is an (n × 1) vector of predetermined variables, Y is an (m × 1) vector of

non-predetermined variables. Here, because we are dealing with the stochastic case

of the model, predetermined and non-predetermined is defined differently. According

to Blanchard and Kahn [15], a stochastic variable is predetermined if EtXt+1 = Xt+1

whatever the realization of the variables (actual observed value) in the information
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set at time t+ 1. Also the initial value, X0 is given exogenously. On the other hand,

a stochastic variable is said to be non-predetermined if EtYt+1 = Yt+1 such that only

the realizations of all variables in Ωt+1 are the same as their expectations conditional

on Ωt [15]. Note that Ωt is made up of current and past values of X, Y and Z. To

rule out the possibility of the exogenous variable Z from exploding too fast, let us

impose the following restriction on its value(s)3:

For all t there exist Z̄t ∈ Rk, θt ∈ R such that

−(1 + i)θtZ̄t ≤ E(Zt+1|Ωt) ≤ (1 + i)θtZ̄t (2.23)

for all i ≥ 0 [15]. As in the deterministic case, the same conditions for the stability

of the system are applicable to the stochastic case.

Example 4 .

Let us consider the following log-linearized systems of equation:


πt = kxt + βEtπt+1,

xt = Etxt+1 − 1
σ
(it − Etπt+1) + et,

it = ρrit−1 + εt,

(2.24)

where k > 0, β > 0, and σ > 0 are constants and |ρr| < 1 and εt are random numbers

that are independent and identically distributed (i.i.d). et is an exogenous i.i.d shocks.

3For a detailed explanation on the above concept, visit [15].
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Writing the above system of equations in matrix form yields the following:


1 0 0

−σ−1 1 σ−1

0 0 β




it

Etxt+1

Etπt+1

 =


ρr 0 0

0 1 0

0 −k 1



it−1

xt

πt

+


εt

−et

0

 .

The above matrix can be rewritten into the form
it

Etxt+1

Etπt+1

 = W


it−1

xt

πt

+M


εt

−et

0

 ,

where

W =


ρr 0 0

1
σ

1 + k
βσ
− 1
βσ

0 − k
β

1
β

 (2.25)

and

M =


1 0 0

−σ−1 1 σ−1

0 0 β


−1

. (2.26)

If the number of unstable eigenvalues for W is equal to the number of non-

predetermined variables (in this case are x and π) the above system will have a unique

stable solution. On the other hand, there will be an indeterminate or infinite solution

if the number of unstable eigenvalues is less than the number of non-predetermined

variables and an explosion when we have unstable eigenvalues more than the number

of non-predetermined variables. Now, in our case, when we find the expression for

the eigenvalues (not included), we will have only one unstable eigenvalue, since we

assumed that |ρr| < 1. Thus, the system’s equilibrium path is indeterminate.
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Chapter 3

The Stability Properties of SIR(S)

and SI(S) Economic

Epidemiological Models

This chapter discusses the model investigated by Aadland et al [6]. Descrip-

tion of the modified model is presented and its stability properties investigated by

employing numerical analysis.

3.1 The Model considered by Aadland et al.

3.1.1 Epidemiology

The epidemiology part of the model considered three mutually exclusive disease

categories: Susceptible(S), infected(I) and recovered with immunity(R). The mech-
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anism involved in transitioning from one disease category to the other is as follows:

an individual infected by a disease will migrate from the susceptible category to the

infected category and then when treated and immune against the disease, will migrate

from the infected category to the recovered category and then back to the suscepti-

ble category when he or she becomes prone to the disease again. This explains the

classical SIRS model. If there is permanent recovery such that the individual will not

be prone to disease, then we have the classical SIR model [11].

Let pt be the probability that susceptible individuals become infected after com-

ing into contact with infected individual(s) so that (1− pt) is the probability of sus-

ceptible individuals remaining susceptible after coming into contact with infected

individual(s). Suppose that individuals in the recovered category have recovery rate

as ν, then there will be recovery of νI individuals from the infected category and

(1 − ν)I individuals remaining in the infected category. Also, let γ be the rate at

which individuals in the recovered category become susceptible so that 1
γ

is the average

duration of immunity (the assumption is that the immunity period is exponentially

distributed) and (1− γ) is the rate at which individuals remain in the recovered cat-

egory. In this case, the number of individuals entering the susceptible category is γR

and those remaining in the recovered category is (1−γ)R. Finally, let us assume that

the population is constant such that the birth and death rate are the same and are

given as µ and µ respectively. The epidemiological model is described by Fig. 3.1.

Therefore, we have the following discrete equations explaining the model:


St+1 = µNt + (1− pt − µ)St + γRt,

It+1 = (1− ν − µ)It + ptSt,

Rt+1 = (1− γ − µ)Rt + νIt.

(3.1)
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Figure 3.1: The flow chart for the SIRS model.

Let Nt+1 = St+1 + It+1 + Rt+1. Then we have Nt+1 = Nt. Writing Eq. (3.1) as a

proportion of Nt+1, we have the following:


st+1 = µ+ (1− pt − µ)st + γrt,

it+1 = (1− ν − µ)it + ptst,

rt+1 = (1− µ− γ)rt + νit,

(3.2)

where 

st+1 = St+1

Nt+1
,

st = St

Nt
,

it+1 = It+1

Nt+1
,

it = It
Nt
,

rt+1 = Rt+1

Nt+1
,

rt = Rt

Nt
.

Suppose individuals independently choose xt contacts and that the probability

of an uninfected individual becoming infected follows Bernoulli process. Let λp be the

chance of becoming infected with each contact. Then the probability of a susceptible
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individual becoming infected is

pt = 1− (1− λpit)xt , (3.3)

where

λp = 1− (1− λa)a

denotes the probability of contracting the disease from a single infected contact.

λa denotes the probability of an individual contracting the disease from a single

interaction with an infected contact.

3.2 Introducing Economics into the Model

Let the representative agent (individual) n utility at time t be u(xn,t, hn,t), where

hn,t is a parameter that captures the agent’s health status at time t. This parameter

plays a very important role in the individual’s choice of a number of contacts, in that,

if the individual is infected with the infectious disease in question, the individual

experiences a low value for h. Because the additional contacts made by an individual

bring immediate satisfaction or a risk of getting infected by the disease in question,

any additional contact(s) the individual makes either affect(s) the level of utility

positively or negatively. For instance, a contact made by an individual that resulted

in contracting the disease will cause a deterioration in the individual’s health, thus

reducing the value of the parameter h at the given period, hence affecting the utility

of the individual inversely. Utility is assumed to be concave. Aadland et al. [6]

considered a logarithmic utility function. Thus, if we suppose that the representative

agent n maximizes expected lifetime utility by choosing the number of contacts, xn,t,
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then we have the following as the objective function of the agent :

Et

∞∑
j=0

βj[ln(xn,t+j) + hn,t+j], (3.4)

where 0 < β < 1 is the discount factor, Et is the expectation operator at t.

The above is the description of the model studied by Aadland et al. [6]. The

next section is on the discussion of my modification to their model.

3.3 The Model of Interest: The SIR(S) Model

This model considers a population that has a birth and death rate not necessarily

equal. It also assumes a quadratic utility function.

The epidemiological model

As in the case of Aadland et al. [6], we followed the same chain of reasoning.

Below are the equations explaining the model:


St+1 = ωNt + (1− pt − µ)St + γRt,

It+1 = (1− ν − µ)It + ptSt,

Rt+1 = (1− γ − µ)Rt + νIt,

(3.5)

where ω and µ are birth and death rate respectively. Again, let Nt+1 = St+1 + It+1 +

Rt+1, so that we have

Nt+1 = (1 + ω − µ)Nt. (3.6)
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If ω = µ in the above equation, then the model reduces to the one studied by Aadland

et al. [6]. That is, we have a constant population. Writing model (3.5) as a proportion

of Nt+1, gives us 
st+1 = Aω + A(1− pt − µ)st + Aγrt,

it+1 = A(1− ν − µ)it + Aptst,

rt+1 = A(1− µ− γ)rt + Aνit,

(3.7)

where 

st+1 = St+1

Nt+1
,

st = St

Nt
,

it+1 = It+1

Nt+1
,

it = It
Nt
,

rt+1 = Rt+1

Nt+1
,

rt = Rt

Nt

A = 1
1+ω−µ .

Let α be the chance of becoming infected with each contact. Then the proba-

bility of a susceptible individual becoming infected is

pt = Pr(infection) = 1− (1− αit)xt . (3.8)

The dependence of the probability of infection on the chosen number of contacts

differentiates the analysis from the standard (classical) mathematical epidemiology

(ME) [5]. For instance, if individuals under study do not take into account the health

consequences of their risky behaviour, thus going for the maximum number of contacts

x̄ in any given period, then we have the EE model collapsing to the standard ME
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with infection probability being

pt = 1− (1− αit)x̄ . (3.9)

Because individuals in this case do not value their health, the ME model sets h = 0,

hence depicting a constant infection parameter. Even if the EE model has h = 0, the

infection parameter varies with it [5].

3.3.1 Introducing economics into the model

With regards to the objective function, we considered a utility function that

is quadratic in nature so that there will be a restriction on the possible number of

contacts individuals can make. In our work we used

u(xn,t, hn,t) = xn,t − δx2
n,t + hn,t, (3.10)

where 0 < δ < 1 is a fixed parameter. The introduction of δ into the utility function

plays very crucial role, in that, the availability of drugs and vaccination will cause

δ to assume a small value. The converse holds when there is unavailability of vacci-

nation or treatments. Therefore, public policy direction can influence the dynamics

of the system via δ. As you will notice later, the maximum number of contacts is

dependent on this parameter: The low values this parameter takes, the higher the

possible number of maximum contacts. This implies that, as δ decreases, the utility

of individuals increases. If one thinks his choice of contacts have no bearing on his

probability of transitioning to another health state, then he has a static optimization
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problem such that his optimality condition becomes

∂u

∂xn,t
= 0. (3.11)

In such a case, the utility maximizing number of contacts is xn,t = 1
2δ
. This is the

optimal choice of number of contacts for an individual in either the infected or re-

covered category [24]. Clearly, you will notice that xn,t is dependent on δ. Thus, a

decrease in δ means an increase in xn,t and an increase in δ means a decrease in xn,t.

Suppose the representative agent n maximizes expected lifetime utility by choos-

ing the number of contacts, xn,t. We have the following as the objective function of

the agent:

Et

∞∑
j=0

βj[(xn,t+j − δx2
n,t+j) + hn,t+j], (3.12)

where 0 < β < 1 is the discount factor, Et is the individual’s expectation operator at

time t

Considering our categories S, I and R, at any given time t, an individual can

only be in S, I or R. Averaging over all n, we have the proportions of susceptible,

infected and recovered individuals in the entire population. Also, we assumed that

all individuals are identical with the exception of having a different disease state and

health level. We analysed the model in terms of a single individual in each of the

disease categories. Therefore, let us drop the n subscript.

An individual belonging to the susceptible group makes a choice about contacts

on the basis of his single-period utility function and expected future utility which

depends on infection expectations. This susceptible individual’s decision will satisfy
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the Bellman’s equation

V s
t = max{

x∈X
xt − δx2

t + hs + βEt[ptV
i
t+1 + (1− pt)V s

t+1]} . (3.13)

V s
t in the equation above is the value function associated with being susceptible at

time,t. The term in the bracket is the expected future utility which depends on

expected future infection levels. The present value of the expected future utility is

the V s
t+1 if the individual remains susceptible and V i

t+1 is the present value of expected

future utility if the individual becomes infected after making a choice in period t [24].

X is the range of possible contacts. In our case we have X = [0, 1
2δ

]. From the same

reasoning we have the value function for the infected and recovered groups as follows:

V i
t = x̄− δx̄2 + hi + βEt[νV

r
t+1 + (1− ν)V i

t+1], (3.14)

V r
t = x̄− δx̄2 + hs + βEt[γV

s
t+1 + (1− γ)V r

t+1] , (3.15)

where hs > hi. hsand hi are the health status associated with an individual in the

susceptible (or recovered) and infected groups respectively.

All individuals regardless of infection status maximize Eq.(3.4) without the

concern for the general population. Infected and recovered individuals with immunity

therefore choose the maximum number of contacts, x̄ because they do not stand any

risk of immediate infection [6]. The implication of this is that, an infected individual

who is involved in the maximum possible amount of risky behaviour will spread the

disease in the population, thus causing the susceptible group to make the number of

contacts that is suboptimal [5]. The converse holds if one is dealing with an altruistic

population (In [5], the study of syphilis cycles was studied based on this assumption).

Suppose an individual in the susceptible group chooses a number of contacts, such
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that this number of contacts satisfies the first order necessary condition

(2δxt − 1) = −βpx,tEt[V s
t+1 − V i

t+1], (3.16)

where

px,t =
∂pt
∂xt

= −(1− pt)
xt

ln(1− pt).

The term on the right hand of Eq.(3.16) depicts the expected marginal damage costs

of increasing current contacts in terms of the discounted expected reduction in future

utility due to infection. On the other hand, the left hand term represents the cur-

rent period benefit as the individual increases contacts. What this means is that, an

individual who is in the susceptible group chooses xt such that his or her marginal

benefits and expected marginal cost are equal. Also, the contact level decision influ-

ences the probability of becoming infected. Furthermore, Eq.(3.16) shows that the

contact rate in EE model is based on behavioural responses to changes in disease risk

as opposed to the mathematical (classical) epidemiology models where the contact

rate is considered as being constant or can be varied deterministically. This is exhib-

ited by the expression connecting px,t. Eq.(3.16) is also known as Euler’s equation,

and henceforth will be referred to as such. In the analysis of the model, we consid-

ered two cases (following the works by Aadland et al. [6]) depending on the agent’s

observance of their own immunity.

Unobservable Host Immunity

Suppose an individual who has recovered with immunity from the disease in

question believes he is still susceptible to the disease. Then we can ignore Eq. (3.15)
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and obtain from Eq. (3.14) that

V i
t = xt − δx2

t + hi + βEt[νV
s
t+1 + (1− ν)V i

t+1]. (3.17)

From Eq. (3.13) and (3.17) we have

V s
t − V i

t = (xt − δx2
t + hs)− [(x̄− δx̄2) + hi] + βEt[ptV

i
t+1

+ (1− pt)V s
t+1 − νV s

t+1 − (1− ν)V i
t+1]

= [(xt − δx2
t )− (x̄− δx̄2)] + hs − hi + βEt[−pt(V s

t+1+

− V i
t+1) + V s

t+1 − V i
t+1 − ν(V s

t+1 − V i
t+1)]

= ψ(xt, x̄) + h+ βEt[(1− pt)(V s
t+1 − V i

t+1)− ν(V s
t+1 − V i

t+1)].

This implies

V s
t − V i

t = ψ(xt, x̄) + h+ β(1− ν − pt)Et[V s
t+1 − V i

t+1]. (3.18)

Therefore, from Eq. (3.16), Eq. (3.18) becomes

V s
t − V i

t = ψ(xt, x̄) + h− (1− ν − pt)
px,t

[2δxt − 1]. (3.19)

Let us move Eq. (3.19) one step ahead and then take Et on both sides and multiply

through by β so that we have

βEt[V
s
t+1 − V i

t+1] = βEt

[
ψ(xt+1, x̄) + h− (1− ν − pt+1)

px,t+1

[2δxt+1 − 1]

]
. (3.20)
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Substituting out V s
t+1 and V i

t+1 from the Eq. (3.20) by making use of Eq. (3.16), we

have

(2δxt − 1) = px,tβEt

[
−[ψ(xt+1, x̄) + h] +

(1− ν − pt+1)

px,t+1

[2δxt+1 − 1]

]
, (3.21)

where 
ψ(xt, x̄) = (xt − δx2

t )− (x̄− δx̄2),

ψ(xt+1, x̄) = (xt+1 − δx2
t+1)− (x̄− δx̄2),

h = hs − hi.

Observable Host Immunity

In this case, let us suppose individuals who recovered with immunity from the

disease in question, observe their own immunity and thus rationally choose the max-

imum number of contacts x̄ and have health level hs. In this case Eq. (3.13), (3.14)

and (3.15) become relevant. Therefore, from Eq. (3.14) and (3.15) we have

V r
t − V i

t = hs − hi + βEt[γV
s
t+1 + (1− γ)V r

t+1 − νV r
t+1 − (1− ν)V i

t+1]

= h+ βEt[γV
s
t+1 − γV r

t+1 − νV r
t+1 + νV i

t+1 + V r
t+1 − V i

t+1]

= h+ βEt[γV
s
t+1 − γV r

t+1 + γV i
t+1 − γV i

t+1 − νV r
t+1 + νV i

t+1 + V r
t+1 − V i

t+1]

= h+ βEt[γ(V s
t+1 − V i

t+1)− γ(V r
t+1 − V i

t+1) + (1− ν)(V r
t+1 − V i

t+1)]

= h+ βEt[γ(V s
t+1 − V i

t+1) + (1− ν − γ)(V r
t+1 − V i

t+1)]

= h+ βEt[γ(V s
t+1 − V i

t+1)] + (1− ν − γ)βEt[(V
r
t+1 − V i

t+1)].

From Eq. (3.16) we have

V r
t − V i

t = h− γ (2δxt − 1)

px,t
+ (1− ν − γ)βEt(V

r
t+1 − V i

t+1). (3.22)
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Moving Eq. (3.22) one period ahead and then taking Et−1 on both sides gives

Et−1[V r
t+1−V i

t+1] = h−γEt−1

[
(2δxt+1 − 1)

px,t+1

]
+(1−ν−γ)βEt−1[(V r

t+2−V i
t+2)]. (3.23)

From Eq. (3.13), (3.14) and (3.16) we have

V s
t − V i

t = ψ(xt, x̄) + h+ βEt[ptV
i
t+1 + (1− pt)V s

t+1 − νV r
t+1 − (1− ν)V i

t+1]

= ψ(xt, x̄) + h+ βEt[(1− pt)(V s
t+1 − V i

t+1)− ν(V r
t+1 − V i

t+1)]

= ψ(xt, x̄) + h+ β(1− pt)Et[(V s
t+1 − V i

t+1)]− νβEt[(V r
t+1 − V i

t+1)].

(3.24)

Therefore,

V s
t − V i

t = ψ(xt, x̄) + h− (1− pt)
(2δxt − 1)

px,t
− νβEt[(V r

t+1 − V i
t+1)]. (3.25)

Eq. (3.16) can be re-written as

Et−1[V s
t − V i

t ] = −(2δxt−1 − 1)

βpx,t−1

. (3.26)

Therefore, taking Et−1 on both sides of Eq. (3.25) and making use of Eq. (3.26) and

rearranging, we have

βνEt−1[V r
t+1 − V i

t+1] = Et−1

[
ψ(xt, x̄) + h− (1− pt)

(2δxt − 1)

px,t
− (V s

t − V i
t )

]

= Et−1

[
ψ(xt, x̄) + h− (1− pt)

(2δxt − 1)

px,t

]
− Et−1[V s

t − V i
t ].

(3.27)
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This implies that

Et−1[V r
t+1 − V i

t+1] =
1

βν
Et−1

[
ψ(xt, x̄) + h− (1− pt)

(2δxt − 1)

px,t

]

+
1

β2ν

[
(2δxt−1 − 1)

px,t−1

]
. (3.28)

Imposing perfect foresight (that is Etx̂t+1 = x̂t+1) and moving one period ahead and

then taking Et−1 on both sides of Eq. (3.28) gives

Et−1[V r
t+2−V i

t+2] =
1

βν
Et−1

[
ψ(xt+1, x̄)+h−(1−pt+1)

(2δxt+1 − 1)

px,t+1

]
+

1

β2ν

[
(2δxt − 1)

px,t

]
.

(3.29)

Thus, from Eq. (3.22), (3.28) and (3.29) we have

1

βν
Et−1

[
ψ(xt, x̄) + h− (1− pt)

(2δxt − 1)

px,t

]
− 1

β2ν

[
(2δxt−1 − 1)

px,t−1

]

= h− γEt−1

[
(2δxt+1 − 1)

px,t+1

]
+ (1− ν − γ)β

1

βν
Et−1

[
ψ(xt+1, x̄)

+h− (1− pt+1)
(2δxt+1 − 1)

px,t+1

]
+

1

β

[
(2δxt − 1)

px,t

]]
. (3.30)

By imposing perfect foresight on both sides of Eq. (3.30) and multiplying through

by βν gives

[
ψ(xt, x̄) + h− (1− pt)

(2δxt − 1)

px,t

]
− 1

β

[
(2δxt−1 − 1)

px,t−1

]

= βνh− βνγ

[
(2δxt+1 − 1)

px,t+1

]
+ (1− ν − γ)β

[
ψ(xt+1, x̄)

+h− (1− pt+1)
(2δxt+1 − 1)

px,t+1

+
1

β

[
(2δxt − 1)

px,t

]]
.
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Hence,

ψ(xt, x̄) + h− (1− ν − pt)
(2δxt − 1)

px,t
+

1

β

[
(2δxt−1 − 1)

px,t−1

]

= (1− ν − γ)β

[
ψ(xt+1, x̄)− (1− pt+1)

(2δxt+1 − 1)

px,t+1

]

+(1− γ)β

[
h+

(2δxt − 1)

βpx,t

]
− βνγ

[
(2δxt+1 − 1)

px,t+1

]
.

Move one period ahead, then rearrange and take Et on both sides of the above equa-

tion so that we have

Et

[
(2δxt − 1)

βpx,t

]
= Et

[
−ψ(xt+1, x̄)− h+ (1− ν − pt+1)

(2δxt+1 − 1)

px,t+1

+ (1− ν − γ)β

[
ψ(xt+2, x̄)− (1− pt+2)

(2δxt+2 − 1)

px,t+2

]

+ (1− γ)β

[
h+

(2δxt+1 − 1)

βpx,t+1

]
− βνγ

[
(2δxt+2 − 1)

px,t+2

]]
.

(3.31)

Therefore,

(2δxt − 1) = βpx,tEt

[
−[ψ(xt+1, x̄) + h] + (1− ν − pt+1)

(2δxt+1 − 1)

px,t+1

+ βτt+2

]
.

where

τt+2 = (1− ν − γ)

[
ψ(xt+2, x̄)− (1− pt+2)(2δxt+2 − 1)

px,t+2

]

+ (1− γ)

[
h+

(2δxt+1 − 1)

βpx,t+1

]
− νγ

[
(2δxt+2 − 1)

px,t+2

]

and

ψ(xt+2, x̄) = (xt+2 − δx2
t+2)− (x̄− δx̄2).
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Hence, susceptible individuals will choose xt to satisfy the Euler’s equation

(2δxt− 1) = βpx,tEt

[
−[ψ(xt+1, x̄) + h] + (1− ν − pt+1)

(2δxt+1 − 1)

px,t+1

+ βτt+2

]
. (3.32)

Eq. (3.21) and (3.32) are identical except for τt+2 in Eq.(3.32). The term τt+2

captures the expected future “costs” of an individual infected but can observe ac-

quired immunity [6]. The term, τt+2 captures the expected future “costs” of infection

associated with observed acquired immunity. If τt+2 happens to be less than zero

(τt+2 < 0 ), the possibility of future immunity will be a benefit of becoming infected

since it will have an adverse effect on the marginal cost. On the other hand, if τt+1 is

positive (i.e τt+2 > 0), becoming infected will be a cost even under the possibility of

future immunity.

3.4 The SI(S) model

The SIS and the SI model consider two mutually exclusive disease categories:

susceptible (S) and Infected (I). An individual in the susceptible category makes a

transition to the infected category when he or she becomes infected and then back

to the susceptible category immediately after recovering, the reason being there is

no recovery region. That is, the disease in question does not confer any long lasting

immunity so there is no need to create the recovered region. An example is the

common cold. Fig. 3.2 describes the model. ν in this case is the rate of migrating

from the infected group to the susceptible. The other parameters in the model denote

those that we explained earlier on. That is, the birth and death rate, probability of

infection and the chance of becoming infected with each contact. We therefore have
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Figure 3.2: The flow chart for the SIS model.

the following equations explaining the model:


st+1 = Aω + A(1− pt − µ)st + AνIt,

it+1 = A(1− ν − µ)it + Aptst.

(3.33)

Where 

st+1 = St+1

Nt+1
,

st = St

Nt
,

it+1 = It+1

Nt+1
,

it = It
Nt
,

A = 1
1+ω−µ ,

(3.34)

and

Nt+1 = (1 + ω − µ)Nt,

which is explained in the SIR(S) model. If ν = 0 we have the SI model. The SI

model is used to study diseases that impose permanent infections. An example is

HIV/AIDS. The economic part of the model follows the same reasoning as from the
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earlier model. In this model we have the Euler’s equation as follows

(2δxt − 1) = px,tβEt

[
−[ψ(xt+1, x̄) + h] +

(1− ν − pt+1)

px,t+1

[2δxt+1 − 1]

]
, (3.35)

where 
ψ(xt, x̄) = (xt − δx2

t )− (x̄− δx̄2),

ψ(xt+1, x̄) = (xt+1 − δx2
t+1)− (x̄− δx̄2),

h = hs − hi,

(3.36)

which is similar to the SIR(S) model when individuals do not observe their immunity.

3.5 Analysis Under Rational Expectations

We assumed that the agents or individuals have complete information about the

laws of motion for disease states and how their risky activities influence the behaviour

of others.1 Thus, they understand the effect of their risky behaviour on their health

status and that of others. In other words, the risk-benefit trade-off faced by others as

a result of their behaviour is completely understood. For instance, in the outbreak of

HIV, an individual is fully knowledgeable of the risk and the benefit associated with

others who are involved in an unprotected sexual act.

3.6 Equilibria

Due to the complex nature of the EE system, we can not have a closed form

solution. Therefore, we examined the stability of the system by solving for the steady

1The law of motion tells us how the state variable changes over time.
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state values of the variables and then linearized around each steady state to eval-

uate the stability and transition dynamics of the system. The sequence of values

{st, it, rt, xt}∞t=0 that solve the representative individuals optimization problem and

satisfy models (3.7) and (3.33) for all t given the initial values s0, i0 and r0 consti-

tute the equilibrium for the EE systems. The next section is an examination of the

long-run equilibrium.

3.6.1 Long-run equilibrium

In the long-run, the EE system has no disturbances and is allowed to converge

to its steady state. Therefore, the equilibrium is when changes in time do not have an

effect on the values of the variables in the model. Since an infectious disease can be

endemic in or may be eradicated from a population, generally there are two possible

steady state equilibria: the endemic equilibrium and the eradication equilibrium. For

the eradication steady state equilibrium, s = 1, i = r = 0, and x = x̄. Below are

the equations relating to the endemic steady state equilibrium for the SIR(S) and the

SI(S) 2:

2Aadland et al. pointed out in [6] that the disease eradication steady state for the EE system is
locally unstable since individuals do not have any incentive to curb their number of contacts. They
choose their number of contacts without any fear of contracting the disease.
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The endemic steady state for the EE SIR(S) model

At the endemic steady state, we assume time is invariant. Therefore, we have

the following system of equations in four unknown variables (s, i, r, x):



s = A(ω+γr)
1−A(1−p−µ)

,

i = Asp
1−A(1−ν−µ)

,

r = Aνi
1−A(1−µ−γ)

,

x = β
2δ

[
px[φβτ − (ψ(x, x̄) + h)] + (1− ν − p)(2δx− 1)

]
+ 1

2δ
.

. (3.37)

where the Euler Equation either takes the form (3.21) when the indicator variable

φ = 0 or the form (3.32), when φ = 1.

τ =
1

px

[
(2δx− 1)

[(1− γ)

β
− (1− ν− γ)(1− p)− νγ

]]
+ (1− γ)h+ (1− ν− γ)ψ(x, x̄),

where ψ(x, x̄) = (x− δx2)− (x̄− δx̄2).

The endemic steady state for the EE SI(S) model

From the same reasoning as in the case of the E-SIR(S), we have


s = A(ω+νi)

1−A(1−p−µ)
,

i = Asp
1−A(1−ν−µ)

,

x = β
2δ

[
px[−(ψ(x, x̄) + h)] + (1− ν − p)(2δx− 1)

]
+ 1

2δ
,

(3.38)

to solve for {s, i, x}.
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3.6.2 Short-run equilibrium and transition dynamics for the

EE SIR(S)

To investigate the stability or the transition paths of the system, we linearized

around the endemic steady state by employing first-order Taylor series approximation.

Therefore, we have

ŝt+1 = A(1− p− µ)ŝt + Aγr̂t − Asp̂t, (3.39)

ît+1 = A(1− ν − µ)̂it + Asp̂t + Apŝt, (3.40)

r̂t+1 = A(1− µ− γ)r̂t + Aνt̂t . (3.41)

The hat (∧) over the variables denotes deviation from the endemic steady state. The

linearized Euler equation is below:

2δpxx̂t − (2δx− 1)p̂x,t = βpx[px(2δx− 1) + 2δ(1− ν − p)]Etx̂t+1

−β(1− ν − p)(2δx− 1)Etp̂x,t+1

−βpx(2δx− 1)Etp̂t+1

+φβ2
[2δpx(1− γ)

β
Etx̂t+1 −

(1− γ)(2δx− 1)

β
Etp̂x,t+1

+px[(1− ν − γ)[px(1− 2δx)− 2δ(1− p)]− 2δνγ]Etx̂t+2

+[(1− ν − γ)(1− p) + νγ](2δx− 1)Etp̂x,t+2

+px(2δx− 1)(1− ν − γ)Etp̂t+2

]
, (3.42)

where

p̂t = piît + pxx̂t, (3.43)

p̂x,t =
[1 + ln[1− p]

x
p̂t −

px
x
x̂t, (3.44)
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and

pi =
∂p

∂i
= xα(1− αi)x−1, (3.45)

px = −(1− p)
x

ln(1− p). (3.46)

For the case of unobservable immunity, we set φ = 0. Coupled with the relation

ŝt = −r̂t − ît, and imposing perfect foresight (that is Etx̂t+1 = x̂t+1) we have the

following EE matrix systems:


0 A(1− ν − µ− p) −Ap

0 Aν A(1− µ− γ)

2δpx 0 0



x̂t

ît

r̂t


︸ ︷︷ ︸

M1

+


As 0

0 0

0 −(2δx− 1)


︸ ︷︷ ︸

M2

 p̂t

p̂x,t

 =


0 1 0

0 0 1

βpx[px(2δx− 1) + 2δ(1− ν − p)] 0 0


︸ ︷︷ ︸


x̂t+1

ît+1

r̂t+1


M3

(3.47)

+


0 0

0 0

−βpx(2δx− 1) −β(1− ν − p)(2δx− 1)


︸ ︷︷ ︸

M4

 p̂t+1

p̂x,t+1


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and  1 0

−
[

1+ln(1−p)
]

x
1


︸ ︷︷ ︸

M5

 p̂t

p̂x,t

 =

 px pi 0

−px
x

0 0


︸ ︷︷ ︸

M6


x̂t

ît

r̂t

 . (3.48)

Similarly, for observable immunity we set φ = 1. Eq.(3.42) after simplification reduces

to

2δpxx̂t − (2δx− 1)p̂x,t = βpx[px(2δx− 1) + 2δ(2− ν − p− γ)]Etx̂t+1 +

β2px[(1− ν − γ)[px(1− 2δx)− 2δ(1− p)]− 2δνγ]Etx̂t+2

−βpx(2δx− 1)Etp̂t+1 − β(2− ν − p− γ)(2δx− 1)Etp̂x,t+1

+β2px(2δx− 1)(1− ν − γ)Etp̂t+2 + β2[(1− ν − γ)(1− p)

+νγ](2δx− 1)Etp̂x,t+2. (3.49)

Therefore, imposing perfect foresight (that is Etxt+1 = xt+1), we have the following

as the linearized EE matrix system:
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

0 A(1− ν − µ− p) −Ap 0 0

0 Aν A(1− µ− γ) 0 0

2δpx 0 0 0 0

0 0 0 1 0

0 0 0 0 1


︸ ︷︷ ︸



x̂t

ît

r̂t

x̂t+1

ît+1


M1

+



As 0 0 0

0 0 0 0

0 −(2δx− 1) 0 0

0 0 0 0

0 0 0 0


︸ ︷︷ ︸



p̂t

p̂x,t

p̂t+1

p̂x,t+1


M2

=



0 1 0 0 0

0 0 1 0 0

βpx[px(2δx− 1) + 2δ(2− ν − p− γ)] 0 0 β2px[(1− ν − γ)[px(1− 2δx)− 2δ(1− p)]− 2δνγ] 0

1 0 0 0 0

0 1 0 0 0


︸ ︷︷ ︸



x̂t+1

ît+1

r̂t+1

x̂t+2

ît+2


M3

+

(2δx− 1)



0 0 0 0

0 0 0 0

−βpx −β(2− ν − p− γ) β2px(1− ν − γ) β2[(1− ν − γ)(1− p) + νγ]

0 0 0 0

0 0 0 0


︸ ︷︷ ︸



p̂t+1

p̂x,t+1

p̂t+2

p̂x,t+2


M4

(3.50)

and



1 0 0 0

− (1+ln(1−p)
x

1 0 0

0 0 1 0

0 0 − (1+ln(1−p)
x

1


︸ ︷︷ ︸

M5



p̂t

p̂x,t

p̂t+1

p̂x,t+1


=



px pi 0 0 0

−px
x

0 0 0 0

0 0 0 px pi

0 0 0 −px
x

0


︸ ︷︷ ︸



x̂t

ît

r̂t

x̂t+1

ît+1


M6

.

(3.51)

If we let Ẑt = (x̂t, ît, r̂t)
T

or Ẑt = (x̂t, ît, r̂t,x̂t+1, ît+1)T and P̂t = (p̂t, p̂x,t)
T or

P̂t = (p̂t, p̂x,t, p̂t+1, p̂x,t+1)T then we have

M1Ẑt +M2P̂t = M3Ẑt+1 +M4P̂t+1 (3.52)
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and

M5P̂t = M6Ẑt. (3.53)

Therefore, the EE system reduces to

Ẑt = JẐt+1, (3.54)

where

J = (M1 +M2M
−1
5 M6)−1(M3 +M4M

−1
5 M6).

The method proposed by Blanchard and Kahn [15] was employed in the analysis of the

stability of the linearized EE system around the endemic steady state. Considering

the three-variable system, Eq.(3.54), we have one non-predetermined, x̂t and two

predetermined (̂it and r̂t) variables. If we have exactly two eigenvalues of J outside

the unit circle, the system exhibits a stable saddle-path. On the other hand, the

system will exhibit indeterminate multiple stable paths or a sink if all the eigenvalues

of J are unstable (that is, are more than one) and explosive paths if the forward

stable eigenvalues (eigenvalues less than the unit circle) of J are more than one.

The five-variable system has three non-predetermined (x̂t, x̂t+1, and ît+1) and two

predetermined (it and r̂t) variables. Following the same chain of analysis: the system

will exhibit a saddle-path stability if we have exactly two eigenvalues outside the

unit circle, indeterminate multiple path stability if we have more than two unstable

eigenvalues, and explosive paths if we have less than two unstable eigenvalues.

We must note here that Eq.(3.54) could take the following form:

Zt+1 = J−1Zt , (3.55)
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where

J−1 = (M3 +M4M
−1
5 M6)−1(M1 +M2M

−1
5 M6).

In this case, the eigenvalues for the matrix J will be the reciprocal of the one consid-

ered in Eq.(3.54). The stability condition will be as follows: For the three variables

system, if the number of the unstable eigenvalue is one, then we have a stable-path

stability. If we have no unstable eigenvalue, then we have indeterminate multiple

path stability, and an explosive path if we have more than one unstable eigenvalue.

With the five variable systems, if we have exactly three unstable eigenvalues, then we

have a saddle-path stability. If we have less than three unstable eigenvalues then we

have indeterminate multiple paths stability and if we have more than three unstable

eigenvalues, then we have explosive paths.

3.6.3 Short-Run Equilibrium and Transition Dynamics for

the EE SI(S)

Similarly, the linearized system around the endemic steady state is as follows:

ŝt+1 = A(1− µ− p)ŝt + Aνît − Asp̂t, (3.56)

ît+1 = A(1− ν − µ)̂it + Asp̂t + Apŝt. (3.57)

The following is the linearized Euler equation :

2δpxx̂t − (2δx− 1)p̂x,t = βpx[px(2δx− 1) + 2δ(1− ν − p)]Etx̂t+1

− β(1− ν − p)(2δx− 1)Etp̂x,t+1

− βpx(2δx− 1)Etp̂t+1. (3.58)
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Using the relation ŝt + ît = 0 we have Eq.(14) as

ît+1 = A(1− ν − µ− p)̂it + A(1− i)p̂t, from s+ i = 1. (3.59)

For the same reason as from earlier discussions we have the following as the EE

matrices:

 0 A(1− ν − µ− p)

2δpx 0


︸ ︷︷ ︸

x̂t
ît


N1

+

A(1− i) 0

0 −(2δx− 1)


︸ ︷︷ ︸

 p̂t

p̂x,t


N2 0 1

βpx[px(2δx− 1) + 2δ(1− ν − p)] 0


︸ ︷︷ ︸

N3

x̂t+1

ît+1

 +

 0 0

−βpx(2δx− 1) −β(1− ν − p)(2δx− 1)


︸ ︷︷ ︸

 ˆpt+1

p̂x,t+1


N4

(3.60)

and  1 0

− (1−ln(1−p)
x

1


︸ ︷︷ ︸

 p̂t
p̂x,t


N5

=

 px pi

−px
x

0


︸ ︷︷ ︸

N6

x̂t
ît

 . (3.61)

Let Ẑt = (x̂t, ît)
T and Q̂t = (p̂t, p̂x,t)

T so that the system reduces to

Ẑt = JẐt+1. (3.62)

where

J = (N1 +N2N
−1
5 N6)−1(N3 +N4N

−1
5 N6).

From the above equation, we have one non-predetermined {x̂t}and predetermined{ît}

variable. If we have exactly one unstable eigenvalue, then we have saddle-path stabil-

ity. If there are two unstable eigenvalues, then the system will exhibit indeterminate

multiple paths stability. And if there is no unstable eigenvalue, then we have explosive
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paths.

In the same way, Eq. (3.62) could be written as Eq. (3.55). Also, in this case,

if we have exactly one eigenvalue outside the unit circle we have stable saddle-path.

If there is no eigenvalue outside the unit circle then we have indeterminate multiple

stable paths. Finally, if the two eigenvalues are unstable, then we have a source

(explosive paths). In other words there is no solution.

3.7 Numerical Solution

We employed Maple in our simulation for the various types of the EE models.

The simulation carried out is to find out the effects of the health gap (h = hs − hi)

and the infection parameter (α) on the dynamics of the system. We simulate for the

various values for δ (determinant of maximum contacts) coupled with the birth and

death rate, ω and µ respectively. What we did was to vary δ whilst we hold µ and ω

constant. We did the converse.

We found the steady state values for the disease categories for the range of

parameter values for α and h and then determined their dynamic paths by finding

the eigenvalues for J . We then plotted the point (α, h).

These two parameters mentioned above are the possible public health policy

targets, in that, a high h means the health gap of individuals within the population is

high. This raises concern. Therefore, for h to be maintained at a low level, investment

could be made into drugs or medication. Also, α can also be maintained low by the

introduction of vaccines or a new way of protecting the population from being infected

[26]. A high α means the disease can spread quickly among the population.
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This section discusses the dynamic paths of the EE models around the endemic

steady state. As we said earlier on that, if i = r = 0, then we have s = 1. This case

demonstrates unstable steady path dynamics, indicating that individuals do not have

any incentive to curb their number of contacts as they face no risk.

The red, green, yellow and black color in the figures indicate the region for

saddle-path equilibria (stability), indeterminate multiple paths stability, explosive

paths and where individuals are going for maximum contacts. The selection of the

values for β, ν and γ (see Table 3.1) implies that the annual discount rate is 4%, 100%

recovery rate within a year of infection, and an expected 5-year immunity duration

respectively. β is found by using the following relation:

β =
1

(1 + r)t
, (3.63)

where r is the annual discount rate. Based on the assumption that individuals live

within a single period ,we can set time t to one.

Table 3.1: Parameter values for numerical analysis

Parameters β ν γ

Values 0.96 1 0.2yr−1

3.7.1 Unobservable host immunity

Simulations and policy implications for the EE SIR model

The EE SIR model is a special case of the EE SIRS when γ = 0 (confirming

permanent immunity). We simulate for various combinations for birth rate ω and

death rate µ.
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Figs. 3.3a and 3.3b show the dynamic paths for ω > µ and ω = µ at δ =

0.025 respectively. The system exhibits saddle-paths equilibria (red region) for all

combinations for h and α. It implies that individuals have contact levels less than

the maximum allowable, x̄. Therefore, public policy targeted at reducing the health

gap (or improving the health of infected individuals) would not affect the stability of

the system.

Figs. 3.3c and 3.3d shows the dynamic paths for ω > µ and ω = µ at δ = 0.05

respectively. For ω > µ, at very low values for α, individuals are going for the

maximum number of contacts (black region). This indicates that because there is

permanent cure or immunity for disease, coupled with low probability of infection,

individuals are involving in risky behaviour. This is also attributed to the fact that

individuals are aware that future cost of contracting the disease is low. The rest of

the region exhibits saddle-path equilibria (red region). For ω = µ (Fig. 3.3d), the sys-

tem shows similar pattern, but with a smaller maximum–contact region. Therefore,

policy direction towards the reduction of the level of contacts may not be effective

as individuals will place much importance on the benefit associated with going for

maximum number of contacts.

These results show that δ plays a significant role in determining the stability of

the system. The only case for which µ and ω has a somewhat significant effect on the

EE SIR system is when δ = 0.05. This shows that further increase in δ will produce

maximum contact3 region for wide parameter values for h and α.

3We simulated for δ = 0.04 and the pattern shows that as we increase the values for δ, the region
for individuals going for x̄ becomes wider.
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(a) δ = 0.025, ω = 0.06, µ = 0.05 (b) δ = 0.025, ω = 0.05, µ = 0.05

(c) δ = 0.05, ω = 0.06, µ = 0.05 (d) δ = 0.05, ω = 0.05, µ = 0.05

Figure 3.3: Dynamic paths for the EE SIR model for unobservable host immunity.

Simulation and policy implication for EE SIRS model

Assume an average duration of immunity is five years (γ = 0.2). Figs. 3.4a and

3.4b shows simulation for the dynamic paths for ω > µ and ω = µ at δ = 0.025

respectively. As in the case for the EE SIR system discussed above, the system

exhibits saddle-paths equilibria (red region) for the entire parameter combination for

h and α, indicating that when individuals behave rationally, they will always go for

contact levels less than x̄.

Figs. 3.4c and 3.4d show simulation for the dynamic paths for ω > µ and ω = µ

at δ = 0.05 respectively. It is noticed that the system exhibited saddle-path stability

(red region) for all values of h and low range of values for α and low values for h and
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the entire range of values for α. It also exhibits some indeterminate path dynamics

(green region) for parameter values for high values for α and moderate values for

h. Finally, when ω ≥ µ and both α and h are high, explosive paths (yellow region)

are expressed. It is noticed that, since there is no permanent immunity, rational

individuals are going for a number of contacts less than the maximum.

The above discussion implies that the birth and death rate do not have an effect

on the dynamic paths of this system. On the other hand, it is evident that δ does have

significant effect, thus the assumption of x depending on a parameter led a different

outlook for the dynamic paths.

(a) δ = 0.025, ω = 0.06, µ = 0.05 (b) δ = 0.025, ω = 0.05, µ = 0.05

(c) δ = 0.05, ω = 0.06, µ = 0.05 (d) δ = 0.05, ω = 0.05, µ = 0.05

Figure 3.4: Dynamic paths for the EE SIRS model for unobservable host immunity
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3.7.2 Observable host immunity

Just as in the case for unobservable host immunity, we carried out simulations

for EE SIR(S) under the assumption that individuals observe their immunity.

Simulations for EE SIR(S) model and policy implication

Figs. 3.5c–3.5d show the dynamic paths for the EE SIR system. For unequal

birth and death rate and δ set at 0.05, the system exhibits saddle-paths stability (red

region) for all the parameter combinations of h and α. The same pattern holds when

we simulated for equal birth and death rates. But it is observed that individuals

are going for x̄ at very low values for α. Both cases (that is ω ≥ µ) indicate that

as rational individuals observe their immunity against a particular infectious disease,

they are still conscious of the health status of others and themselves and thus will

opt to go for a number of contact less than the maximum allowable. Figs. 3.5c and

3.5d indicate these dynamics. Figs. 3.5a and 3.5b exhibit the same dynamic paths as

in the case for ω > µ with δ set at 0.05.

Figs. 3.6a-3.6d show the dynamic paths for the EE SIRS system. All the

parameter combinations yielded the same dynamic paths. That is, they exhibited

saddle-paths equilibria (red region) for all the possible combinations of h and α given

the respective values for ω and µ. These results mean that public policy direction

(whether to reduce h or α or both) will not have any bearing on the stability prop-

erties of the system.
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(a) δ = 0.025, ω = 0.06, µ = 0.05 (b) δ = 0.025, ω = 0.05, µ = 0.05

(c) δ = 0.05, ω = 0.06, µ = 0.05 (d) δ = 0.05, ω = 0.05, µ = 0.05

Figure 3.5: Dynamic paths for the EE SIR model for observable host immunity

3.7.3 Simulation for the SI(S) model

Simulation for the EE SI model

For the simulation for the EE SI system, we set ν = 0, which is indicative of no

treatment being available for the disease. We can talk of HIV as an example in this

case. Figs. 3.7a and 3.7b show the dynamic paths of this system at δ = 0.025 with

ω > µ and ω = µ respectively. Both cases show that rational individuals will go for

x̄ irrespective of the level of infection parameter and health gap. Thus, public health

policy will have no effect on the number of contacts made by these individuals.

Figs. 3.7c and 3.7d have the parameters δ = 0.05 with ω > µ and ω = µ

72



(a) δ = 0.025, ω = 0.06, µ = 0.05 (b) δ = 0.025, ω = 0.05, µ = 0.05

(c) δ = 0.05, ω = 0.06, µ = 0.05 (d) δ = 0.05, ω = 0.05, µ = 0.05

Figure 3.6: Dynamic paths for the EE SIRS model for observable host immunity

respectively. Both cases show saddle-path stability (red region) for high values of h

given the entire range of values for α. This demonstrates that, at a high level of health

gap, rational individuals are willing to choose a number of contacts less than x̄. On

the other hand, low values of h yield a case where rational individuals are choosing

x̄ (black region), indicating that, irrespective of the level of infection parameter they

are willing to involve in risky behaviour by going for the x̄. It also shows that δ has

a significant effect on the properties of the system.
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(a) δ = 0.025, ω = 0.06, µ = 0.05 (b) δ = 0.025, ω = 0.05, µ = 0.05

(c) δ = 0.05, ω = 0.06, µ = 0.05 (d) δ = 0.05, ω = 0.05, µ = 0.05

Figure 3.7: Dynamic paths for the EE SI model

Simulation for the EE SIS model

As in the case for the EE SI system, the EE SIS system shows the same property

for the parameter combination of ω > µ and ω = µ for δ = 0.025, in that, irrespec-

tive of the levels of infection and health gap, rational individuals are going for the

maximum number of contacts. Fig. 3.8a and 3.8b demonstrate the results.

Fig. 3.8c and 3.8d show the dynamic paths for the system for ω > µ and ω = µ

for δ = 0.025 respectively. For ω > µ, the system exhibited the same property for the

EE SI system. On the other hand, for ω = µ the property is different, in that, the

system exhibited explosive paths for parameter combinations of high values of h and

α.
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(a) δ = 0.025, ω = 0.06, µ = 0.05 (b) δ = 0.025, ω = 0.05, µ = 0.05

(c) δ = 0.05, ω = 0.06, µ = 0.05 (d) δ = 0.05, ω = 0.05, µ = 0.05

Figure 3.8: Dynamic paths for the EE SIS model
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Chapter 4

Stability Properties of an

Economic Epidemiology Model of

Syphilis Infectivity among Male

Inmates

4.1 Syphilis

Treponema pallidun is the bacterium that causes syphilis [5]. When one is

infected with the disease it shows mild symptoms. The disease manifests itself in four

main stages: The primary, secondary, latent and tertiary(late) stage.

First, when one comes into contact with a person with the infectious lesions

(typically through a sexual act), the point of contact becomes infected [25]. There

is the appearance of a skin lesion called ulceratic chancre at the point of contact.
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This is the primary stage of the disease. If the disease is left untreated, it then

progresses to the secondary stage where the infected person experiences symptoms

such as fatigue and loss of appetite, swollen glands, a non-itchy rash covering the

entire body and other symptoms. It must be pointed out that the disease is quite

infectious at these two stages. If the disease progresses to the secondary stage and

it is left untreated it then progresses to the latent stage where the person does not

experience any symptoms of the disease. The disease is not contagious at this stage.

The disease then progresses to the stage where it causes a lot of damage to the internal

organs of the infected person. It can affect the heart and the nervous system. This

stage is what is termed the tertiary(late) stage [25]. Syphilis can be treated.

4.2 The Epidemiological Model

We start the modelling process by first modelling the epidemiology of the disease

among the inmates. Let N be the entire population of the male inmates. We divided

the population into the following disease categories:

Snh : Susceptible non-MSM,

Sh : Susceptible MSM,

Inh : Non-MSM syphilis infectives,

Ih : MSM syphilis infectives,

Rnh : Non-MSM who attained recovery from the disease,

Rh : MSM who attained recovery from the disease.
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Therefore,

N = Snh + Sh + Inh + Ih +Rnh +Rh. (4.1)

Suppose the rate at which individuals are recruited into prison is fixed and is

given as Λ. Λ here denotes the number of recruits into prison per the total population

of a jurisdiction. The unit for prison incarceration rate is given as the number of pris-

oners per 100,000 population of a jurisdiction. For example, the incarceration rate of

the USA in 2008 is 756 per 100,000 [44]. Let π0, π1, π2, and π3 be the proportion of in-

dividuals who are recruited into Snh, Sh, Inh, and Ih. This implies that new recruits ei-

ther enter the susceptible or the infected disease categories. Let ω be the rate at which

individuals are released from the prison so that ωSnh, ωSh, ωInh, ωIh, ωRnh and ωRh

individuals leave the prison from the respective disease category (here, we assumed

that, the rate ω is fixed throughout the disease category). We assumed that the nat-

ural death rate µ is fixed throughout the disease category. Let σ denotes the recovery

rate of syphilis for infected non-MSM Inh and MSM Ih respectively. Furthermore, let

us suppose that the rate at which individuals who are not MSM become MSM is fixed

and is denoted as α. Also, let γ denotes the rate at which recovered MSM become

susceptible to the disease again (we assumed permanent recovery for non-MSM since

they will not involve in sexual activity). There is no disease related death. Finally,

the probability of susceptible MSM who after being involved in a risky behaviour

(having unprotected sex: we assumed throughout the analysis of the model on this

basis) become infected is given as pt and if remain uninfected is given as (1−pt). Fig.

4.1 shows the flow chart for the model. Based on the discussion above, the model can
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be explained by the following discrete equations:

Snht+1 = Λπ0 + (1− ω − µ− α)Snht , (4.2)

Sht+1 = Λπ1 + (1− ω − µ− pt)Sht + αSnht + γRh
t , (4.3)

Inht+1 = Λπ2 + (1− ω − µ− σ − α)Inht , (4.4)

Iht+1 = Λπ3 + ptS
h
t + (1− ω − µ− σ)Iht + αInht (4.5)

Rnh
t+1 = σInht + (1− ω − µ)Rnh

t , (4.6)

Rh
t+1 = σIht + (1− ω − µ− γ)Rh

t . (4.7)
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Figure 4.1: Model flow chart
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The summation of Eq. (4.2)–(4.7) gives the number of the host population in

the prison as follows:

Nt+1 = Nt + Λ− (ω + µ)Nt. (4.8)

Eq. (4.8) has the following solution:

Nt =
Λ(1− (1− ω − µ)t)

ω + µ
+ (1− ω − µ)tN0,

given that ω + µ < 1 and the initial value of N is N0. Based on the solution for the

number of inmates, we have

lim
t→∞

Nt =
Λ

ω + µ
,

which is independent of the initial number of the inmates. Hence, the steady state of

the population of inmates is globally stable.

Since Eq.(4.2) and (4.4) are independent of the other states variables (that is

Sht , I
h
t , R

nh
t and Rh

t ), we can analyse the model in terms of Eq. (4.3), (4.5), (4.6) and

(4.7). Therefore, we have the following:



Sht+1 = Λπ1 + (1− ω − µ− pt)Sht + αSnh + γRh
t ,

Iht+1 = Λπ3 + ptS
h
t + (1− ω − µ− σ)Iht + αInh,

Rnh
t+1 = σInh + (1− ω − µ)Rnh

t ,

Rh
t+1 = σIht + (1− ω − µ− γ)Rh

t ,

(4.9)

where 
Snh = Λπ0

ω+µ+α
and

Inh = Λπ2
ω+µ+σ+α
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are the steady states for the susceptible and infected non-MSM population.

In modelling the probability of infection, we followed the approach employed in

[6]. Let λp and λa be the probability of contracting syphilis from a single infected

partner and a single sexual act respectively. We can model λp as follows:

λp = 1− (1− λa)a. (4.10)

λp and λa are noted as natural probabilities [6]. a is the number of fixed sexual acts

by individuals. Suppose individuals (n) choose xt number of contacts at time t. Then

we have the probability of infection as

Pr(infection) = pt = 1−
(

1− λp
Iht
Nh
t

)xt
, (4.11)

where Nh
t = Iht +Sht +Rh

t is the total number of inmates who are MSM at time t. The

implication of the above expression for pt is that, unlike the classical mathematical

epidemiological models (examples are those studied in [11],[37],[39],[35]), the prob-

ability of a susceptible MSM becoming infected is endogenous and is dependent on

the natural probabilities of infection from one sexual act and from a single infected

partner as well as his number of sexual partners. A susceptible MSM who involved

in a risky behaviour and is not infected with the disease has the probability of not

being infected as follows:

Pr(remaining uninfected) =

(
1− λp

Iht
Nh
t

)xt
. (4.12)

The next section talks about the economic analysis and the optimal choice of

partners a MSM in any of the disease category would be making.
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4.3 Introducing Economics

Suppose that an individual (n) MSM goes for a number of partners xn,t such that

his expected lifetime utility is maximized. We have the following as the individual’s

objective function:

E
∞∑
j=0

βj
[
(xn,t+j − δx2

n,t+j) + hn,t+j
]
, (4.13)

where 0 < β < 1 is the discount factor, E is the mathematical expectation operator of

future outcomes. h in the objective function captures the health status of a MSM in

any of the disease categories with high and low values of h associated with the health

status for a susceptible and infected MSM respectively. The underlying trade-off in

the model is that there is an immediate satisfaction associated with any additional

number of sexual partners a MSM chooses, but associated with this choice is a risk

of future infection. Therefore, if one becomes infected, the infection deteriorates his

health. A MSM can only be in one disease category at a time. That is, either the

individual is in the susceptible, infected, recovered MSM or recovered non-MSM cate-

gory. Suppose that individual inmates are identical with the exception of their sexual

orientation and health status. Also, since the infected non-MSM receive permanent

recovery and thus will not be involving in any sexual activity in the prison, we for-

mulate the value function for only the MSM population for each disease category.

Furthermore, it is pointed out in [6] that it is difficult for one to observe syphilis

immunity and that, individuals in the recovered category can not tell whether they

are immune to syphilis. Therefore, we ignore the recovered category for the MSM.

Based on the assumption that individuals are identical with the exception of their

health status and sexual orientation, the analysis is conducted in terms of a single

individual so the index n is dropped. The value functions for the category for the
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susceptible and infected MSM are given below:

V Sh

t = xt − δx2
t + hS

h

+ βE
[
ptV

Ih

t+1 + (1− pt)V Sh

t+1

]
, (4.14)

V Ih

t = x̄− δx̄2 + hI
h

+ βE
[
σV Sh

t+1 + (1− σ)V Ih

t+1

]
, (4.15)

where hS
h

and hI
h

are the health parameters for a susceptible and a syphilis–infected

MSM respectively, hS
h
> hI

h
and x̄ = 1/2δ is the maximum number of partners.

We assume that MSM in the prison(s) do not consider the general welfare of their

fellow inmates and thus behave in a self centred manner irrespective of their health

status (that is, whether they are infected or not). Therefore, individuals in the

infected category will go for the maximum number of partners because they do not

face immediate risk of infection [29]. Eq. (4.14) and (4.15) are the value functions

associated with the optimal decision made by an individual susceptible and infected

MSM respectively. The term in Eq. (4.14) is the expected future utility which is

dependent on the expected future infection levels. The present value of the expected

future utility is V Sh

t+1 if the individual remains susceptible and V Ih

t+1 is the present value

of expected future utility if an individual becomes infected after choosing a number

of sexual partners at time t. On the other hand, the term in the bracket for the value

function for the infected MSM is the present value for expected future utility for a

syphilis infected individual: with V Sh

t+1 or V Ih

t+1 being the expected future utility in case

the individual recovers or the individual remains infected in the next period.

Suppose a susceptible MSM chooses an optimal number of partners such that

the first order necessary condition is satisfied. Then we have

2δxt − 1 = −βpx,tE
[
V Sh

t+1 − V Ih

t+1

]
, (4.16)

83



where

px,t =
∂pt
∂xt

= −1− pt
xt

ln(1− pt). (4.17)

Eq. (4.16) measures the expected marginal damage cost and benefit of a susceptible

MSM any time he increases his current number of partners. The terms on the right

and left hand side of the equation are the expected marginal damage cost and marginal

benefit respectively. The implication of this is that a susceptible MSM will choose

a number of sexual partners such that his marginal benefits and expected marginal

cost are equal. Because individuals determine the number of partners independently,

the probability of infection is dependent on their choice of number of partners. From

Eq. (4.14) and Eq. (4.15), we have

V Sh

t − V Ih

t =
(
xt − δx2

t + hS
h
)
−
(
x̄− δx̄2 + hI

h
)

+

βE
[(
ptV

Ih

t+1 + (1− pt)V Sh

t+1

)
−
(
σV Sh

t+1 + (1− σ)V Ih

t+1

)]
.

This implies that

V Sh

t − V Ih

t =
(
xt − δx2

t

)
−
(
x̄− δx̄2

)
+ h+ βE

[
(1− σ − pt)

(
V Sh

t+1 − V Ih

t+1

)]
,

(4.18)

where h = hS
h − hIh . Therefore, making use of Eq. (4.16), Eq. (4.18) becomes

V Sh

t − V Ih

t =
(
xt − δx2

t

)
−
(
x̄− δx̄2

)
+ h− 1− σ − pt

px,t
(2δxt − 1). (4.19)

Let move Eq. (4.19) one step ahead and take E on both sides and multiply through

by β so that we have

βE
[
V Sh

t+1 − V Ih

t+1

]
= βE

[(
xt+1 − δx2

t+1

)
−
(
x̄− δx̄2

)
+ h− 1− σ − pt+1

px, t+ 1
(2δxt+1 − 1)

]
.

(4.20)
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Substituting out V Sh

t+1 and V Ih

t+1 from Eq. (4.20) by making use of Eq. (4.16), we have

the following as the Euler equation:

2δxt − 1 = px,tβE

[
(x̄− δx̄2)− (xt+1 − δx2

t+1)− h+
1− σ − pt+1

px,t+1

(2δxt+1 − 1)

]
.

(4.21)

4.4 Stability Analysis of the Model

We assumed that individuals are forward–looking and concerned about future

benefits and risks [5]. The analysis of the model is carried out under two types of

economic expectations: the rational expectation under perfect foresight and naive

expectations. By perfect foresight, we mean individuals have complete information

about the laws of motion governing the disease states and how their risky activities

influence the behaviour of others. Therefore, they have complete knowledge of the

effect of their risky behaviour on their health status and that of others. On the other

hand, by naive expectation we mean individuals expect future risks of infection and

benefits to remain at their current level.

We proceed with the analysis by looking at the equilibria of the model.

4.4.1 Equilibria

The system does not have a disease–free steady state (that is a case where there

is no syphilis infection among the inmates). Thus, we proceed to finding the endemic

steady state. At the endemic steady state, we solve for the time–invariant of system

(4.9) and the Euler equation. The following equations in terms of Sh, Ih, Rh, Rnh and
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x can be obtained:

Sh = Λπ1+αSnh+γRh

ω+µ+p
,

Ih = Λπ3+pSh+αInh

ω+µ+σ
,

Rh = σIh

ω+µ+γ
,

Rnh = νInh

ω+µ
,

2δx− 1 = β(px((x̄− δx̄2)− (x− δx2)− h) + (1− σ − p)(2δx− 1)),

(4.22)

where 
p = 1−

(
1− λp I

h

Nh

)x
,

px = − (1−p)
x

ln(1− p),

Nh = Rh + Ih + Sh.

4.4.2 Transition dynamics

To investigate the Transition dynamics of the model, the system is linearized

around the endemic steady state using first-order Taylor series approximation. Again,

the hat ∧ over the variables denotes the deviation from the endemic steady state.

Below is the linearized system:



Ŝht+1 = (1− ω − µ− p)Ŝht − Shp̂t + γR̂h
t ,

Îht+1 = pŜht + Shp̂t + (1− ω − µ− σ)Îht ,

R̂h
t+1 = σÎht + (1− ω − µ− γ)R̂h

t ,

R̂nh
t+1 = (1− ω − µ)R̂nh

t .

(4.23)
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The linearized Euler equation is as follows:

2δpxx̂t − (2δx− 1)p̂x,t = βpx [px(2δx− 1) + 2δ(1− σ − p)]Ex̂t+1

− β(1− σ − p)(2δx− 1)Ep̂x,t+1

− βpx(2δx− 1)Ep̂t+1, (4.24)

where 
p̂t = (pIh + pNh)Îht + pxx̂t + pNh(Ŝht + R̂h

t ),

p̂x,t =
[

1+ln(1−p)
x

]
p̂t − px

x
x̂t,

(4.25)

and 
pIh = ∂p

∂Ih
= xλp

Nh

[
1− λp I

h

Nh

]x−1

,

pNh = ∂p
∂Nh = −xλp Ih

Nh2

[
1− λp I

h

Nh

]x−1

,

px = −1−p
x

ln(1− p).

(4.26)

Stability analysis under perfect foresight

We carry out the analysis of the system under rational expectations by imposing

perfect foresight and making use of (4.23)–(4.25). That is setting Ext+1 = xt+1. Thus,
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we have the EE system in matrix form as follows:



0 (1− ω − µ− p) 0 γ 0

0 p (1− ω − µ− σ) 0 0

0 0 σ (1− ω − µ− γ) 0

0 0 0 0 (1− ω − µ)

2δpx 0 0 0 0


︸ ︷︷ ︸

A



x̂t

Ŝht

Îht

R̂ht

R̂nht



+



−Sh 0

Sh 0

0 0

0 0

0 −(2δx− 1)


︸ ︷︷ ︸

B

 p̂t
p̂x,t

 =



0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

βpx[px(2δx− 1) + 2δ(1− σ − p)] 0 0 0 0


︸ ︷︷ ︸

C



x̂t+1

Ŝht+1

Îht+1

R̂ht+1

R̂nht+1



+



0 0

0 0

0 0

0 0

−βpx(2δx− 1) −β(1− σ − p)(2δx− 1)


︸ ︷︷ ︸

D

 p̂t+1

p̂x,t+1

 (4.27)
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and

 1 0

−
[

1+ln(1−p)
x

]
1


︸ ︷︷ ︸

E

 p̂t
p̂x,t

 =

 px pNh (pIh + pNh) pNh 0

−px
x

0 0 0 0


︸ ︷︷ ︸

F



x̂t

Ŝht

Îht

R̂h
t

R̂nh
t


. (4.28)

Based on Eq.(4.27) and (4.28) we have the following:

Ẑt = JẐt+1, (4.29)

where

J = (A+BE−1F )−1(C +DE−1F ),

and 
Ẑt = (x̂t, Ŝ

h
t , Î

h
t , R̂

h
t , R̂

nh
t )T ,

Q̂t = (p̂t, p̂x,t)
T .

The stability of the above system is analysed by employing the Blanchard and

Kahn condition [15]. The system has one non-predetermined variable (x̂t) and four

predetermined variables (Ŝht , Î
h
t , R̂

h
t , R̂

nh
t ). Therefore, if we have exactly four eigen-

values of J outside the unit circle, the system exhibits saddle-path stability. If all

the eigenvalues of J are outside the unit circle, we have indeterminate multiple stable

paths and explosive paths if there is more than one eigenvalues inside the unit circle.
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Stability analysis under naive expectations

Under naive expectations, we set Ext+1 = xt. Making use of Eq. (4.24) and

(4.25) we have the linearized Euler equation under naive expectation as

x̂t =
C2

C1

Îht +
C3

C1

(
Ŝht + R̂h

t

)
, (4.30)

where



C1 = px
x

(1− β(1− σ − p)) [2δx− (2δx− 1) ln(1− p)] ,

C2 = (2δx− 1)
[

1+ln(1−p)
x

(1− β(1− σ − p)− βpx
]

(pIh + pNh),

C3 = (2δx− 1)
[

1+ln(1−p)
x

(1− β(1− σ − p)− βpx
]
pNh .

(4.31)

Therefore, we have the linearized EE system as follows:



Ŝht+1 = (1− ω − µ− p− Shθ1)Ŝht − Shθ2Î
h
t + (γ − Shθ1)R̂h

t ,

Îht+1 = (p+ Shθ1)Ŝht + (1− ω − µ− σ + Shθ2)Îht + Shθ1R̂
h
t ,

R̂h
t+1 = σÎht + (1− ω − µ− γ)R̂h

t ,

R̂nh
t+1 = (1− ω − µ)Rnh

t ,

(4.32)

where 
θ1 = pNh + pxC3

C1
,

θ2 = pIh + pNh + pxC2

C1
.

(4.33)
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We have Eq. (4.32) in Matrix form as



Ŝh
t+1

Îht+1

R̂h
t+1

R̂nh
t+1


=



1− ω − µ− p− Shθ1 −Shθ2 γ − Shθ1 0

p+ Shθ1 1− ω − µ− σ + Shθ2 Shθ1 0

0 σ 1− ω − µ− γ 0

0 0 0 1− ω − µ


︸ ︷︷ ︸

Y



Ŝh
t

Îht

R̂h
t

R̂nh
t


. (4.34)

The condition for stability for the above system is as follows: If all the eigen-

values for Y are inside the unit circle, we have the system to be stable. The system

returns to the endemic steady state after small disturbances. If one of the eigenvalues

is outside the unit circle then the system is unstable; the system does not return to

the endemic steady state after small perturbation.

4.4.3 Stability analysis of the ME system

In the ME system, individuals do not have control over the number of sexual

partners. Therefore, the dynamics of the system is dependent only on the biology of

the disease. We fixed the number of sexual partners for individuals at x̄. Below is

the linearized Matrix for the ME system:


Ŝh
t+1

Îht+1

R̂h
t+1

R̂nh
t+1

 =



1− ω − µ− p− ShpNh −Sh(pIh + pNh ) γ − ShpNh 0

p+ ShpNh 1− ω − µ− σ + Sh(pIh + pNh ) ShpNh 0

0 σ 1− ω − µ− γ 0

0 0 0 1− ω − µ


︸ ︷︷ ︸

Y


Ŝh
t

Îht

R̂h
t

R̂nh
t

 .

(4.35)
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The stability condition for the above system is the same as the one given for

system (4.34). Let us proceed to the numerical analysis of the systems.

4.5 Numerical Solution

Due to the complex nature of the system, there is no analytical solution for

it. Thus, we carried out the analysis of the system numerically. The simulation

carried out is to look at the effect of the parameter combination of the health gap,

(h = hsh − hIh) and the infection parameter, λp. The variation in λp could be due to

a variation in the natural rate of infection λa of the disease or the number of sexual

acts per partner a. Thus, given a fixed λa and an increasing(decreasing) number of

sexual acts per partner will cause λp to increase(decrease). The converse holds for a

fixed a and a varying λa. These parameters are the possible policy targets. A high

h can be lowered between the inmates by administering treatments to the infected

MSM while λp can be lowered by educating the inmates about the consequences of

their risky behaviour. Perhaps, the introduction of condom usage can be an effective

way to reduce this parameter. Below are the parameter values used for the numerical

analysis. It must be pointed out that these values are not calibrated to a particular

detention center in any jurisdiction.

The value for Λ indicates the fixed rate at which law offenders are recruited into

prison. We have 5500 per total population of recruits. The value for β implies that

the annual discount rate is 4% whilst the value for σ implies 100% recovery rate of

syphilis. γ implies the average duration of immunity against syphilis is 5-years. The

value for α indicates that on the average, 4% of non-MSM become MSM from the

non-MSM susceptible and infected disease category respectively, ω and µ gives 4% and

2% rate at which inmates are released and the natural mortality rate respectively.
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Table 4.1: Fixed Parameter values for the numerical analysis

Parameter Symbol Value Source

Recruitment rate Λ 5500 Assumed
Discount factor β 0.96 [6]
Recovery rate σ 1 [6]

Rate of a Rh becoming susceptible γ 0.2yr−1 [6]
Proportion of a non-MSM becoming a MSM α 0.04yr−1 Assumed

Rate of release from prison ω 0.04yr−1 Assumed
Natural mortality rate µ 0.02yr−1 Assumed

Proportion recruited into Snh categories π0 0.6 Assumed
Proportion recruited into Sh categories π1 0.2 Assumed
Proportion recruited into Inh categories π2 0.1 Assumed
Proportion recruited into Ih categories π3 0.1 Assumed

Determinant of maximum contacts δ 0.05 Assumed

60%, 20%, 10% and 10% for π0, π1, π2, and π3 respectively are the percentages of

recruits that enter the respective disease categories. Finally, the value for δ gives the

maximum number of partners to be 10.

4.6 Result and Discussion

Fig. 4.2a shows the dynamic paths for the EE system (4.29) under perfect

foresight. The regions indicated by color red, green and yellow denote the region

for saddle-path stability, indeterminate paths and explosive paths respectively. The

system exhibits saddle-paths stability (red) for low values of λp and indeterminate

multiple stable paths (green) for high values of λp. Also, for very high values of h and

λp, the system exhibit explosive path (yellow region). In carrying out the simulation,

we investigated whether there would be a situation where individuals will be going

for the maximum number of partners. As it is shown in the figure, such a case

did not happen, thus indicating that rational individuals are going for a number of
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partners less than the maximum allowable partners. Thus, policy direction towards

the reduction of the infection parameter would lead to a saddle–path stability whilst

poor policy direction that would lead to an increase in the infection parameter would

cause the system to exhibit indeterminate multiple stable paths and explosive paths.

Fig. 4.2b shows the dynamic paths for the system under naive expectations

(4.34). The red region indicates that the system is stable for all the combinations

of the parameter range for h and the infection parameter. This means that a small

perturbation in the system would bring the system back to the equilibrium paths. The

possible policy implication of the result is that, a policy direction at improving the

health status of the inmates or reducing the infection parameter of syphilis will not

affect the stability of the system. In other words, given the parameter range, health

policies have no potential of putting the system on unstable paths if individuals

formulate expectations in a naive manner. It must also be noted that, individuals are

going for the number of partners less than the possible maximum number.

(a) Perfect Foresight (b) Naive Expectations

Figure 4.2: Dynamic paths for the EE system

Fig. 4.3a shows the stability region for the ME system (4.35). We obtained this

by setting a fixed value for the number of partners x. We set x to be equal to the

maximum number of contacts (that is, x = 1
2δ

). In this case, we have x = 10. The
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simulation shows stability of the system for all the parameter combinations of h and

the infection parameter. The ME system is independent of h.

(a) Number of contacts x̄ = 10

Figure 4.3: The dynamic paths for the ME system

4.7 Discussions on the Stability Region

We compared the dynamics of the ME and EE systems ((4.35) and (4.29) and

(4.34)) in the stability region by making use of the values for the parameters in table

4.1. We chose the value for the infection parameter and the health gap h that gave

the stability of the system after a small perturbation. We assumed that there is a one

time exogenous increase in the number of MSM infected with syphilis by 5%. Below

are the baseline parameters and the corresponding endemic steady state values:

Table 4.2: Parameter values

Parameters a λa λp

Values 20yr−1 0.0448 0.6002
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Table 4.3: Endemic steady states for EE when h = 12 and δ = 0.05

Sh Ih Rh x

16545.6 6868.9 26418.8 6.02469

Table 4.4: Endemic steady states for EE when h = 6 and δ = 0.05

Sh Ih Rh x

13435.3 7510.7 28887.3 8.42558

Figs. 4.4 and 4.5 show the graph for h = 12 and h = 6 respectively. The

respective Figures show that an initial increase in disease prevalence 1 coupled with

a high value of h causes susceptible individuals to reduce the number of partners.

The reason is that, with the above condition there is a high risk of one becoming

infected with the disease. Due to this, the endemic steady state is characterized with

a low prevalence rate and number of sexual partners. Specifically, considering our

values for h in our simulation, we have h = 6 giving the number of partners and

its associated disease prevalence higher than that of h = 12. Thus, policy directed

at reducing the health gap will, in the long run, cause the disease to shoot up as

rational individuals, knowing that the health gap has decreased (implying treatment

for the infected population) and thereby lowering the risk of infection, will increase

their number of sexual partners. This result shows some of the reasons why it will be

very difficult to eradicate STDs in a population. The behavioural factor is significant

in understanding disease dynamics.

The simulation also shows that, as the health gap increases, the system gravi-

tates toward the equilibrium paths quickly. This is shown by comparing Figs. 4.5 and

4.4. Thus, if the system is subjected to a small perturbation it reaches its equilibrium

quickly for high values of h.

Furthermore, we simulated for δ = 0.05 and δ = 0.025, coupled with h = 6.

1Prevalence is the percentage or proportion of the inmates infected with syphilis at a given period.
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(a) Number of infected MSM (b) Number of sexual partners

(c) Number of susceptible MSM (d) Number of recovered MSM

Figure 4.4: The graph for the EE system when h = 12 and δ = 0.05

In the simulation result, it is noticed that, in the long run, MSM inmates have a

number of sexual partners for δ = 0.025 more than when δ = 0.05. This is exhibited

by Figs. 4.5 and 4.6. As pointed out in chapter 3 the role δ plays, the low value for δ

implies high level of utility. Thus, MSM inmates have the incentive to increase their

number of sexual partners even though this decision also comes with its side effect.

In that, as a result of the high level of partners, the prevalence of the disease will also

increase. Which is why the simulation result gives a high steady state value for the

infective class for δ = 0.025 as compared to δ = 0.05. This is shown in Tabs. 4.5 and

4.4 respectively. This shows that incentives that can influence the utilities of MSM

inmates will in the long run influence the prevalence of the disease in prisons.

For the comparison of the dynamics of the EE and the ME systems consider
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Table 4.5: Endemic steady states for EE when h = 6 and δ = 0.025

Sh Ih Rh x

9512.6 8320.15 32000.6 19.1214

(a) Number of infected MSM (b) Number of sexual partners

(c) Number of susceptible MSM (d) Number of recovered MSM

Figure 4.5: The graph for the EE system when h = 6 and δ = 0.05

Figs. 4.4 and 4.7. You will notice that the EE system gravitates towards equilibrium

quickly as compared to the ME system. This shows that if the number of partners is

fixed (implying that the system is dependent only on the biology dynamics), a small

perturbation of the system will take a longer period before the system comes back to

the steady state. On the other hand, if MSM can freely choose the number of partners

they desire, the system reaches stability quickly. This is due to the fact that an initial

increase in disease prevalence causes rational susceptible MSM to reduce their number

of partners since the associated probability of being infected with the disease is high

at that state. This action imposes downward pressure on the rising prevalence of

the disease among the inmates. As the newly infected inmates subject themselves
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(a) Number of infected MSM (b) Number of sexual partners

(c) Number of susceptible MSM (d) Number of recovered MSM

Figure 4.6: The graph for the EE system when h = 6 and δ = 0.025

to treatment, they migrate to the recovered category, thus causing the number of

infected MSM to decrease. As this happens the risk of infection reduces. This will

cause a rational susceptible individual to increase his number of partners. This action

will then cause the number of infections to shoot up. This cycle will continue till the

system reaches equilibrium2. This behaviour puts the system at equilibrium quickly

as compared to when the system is solely dependent on the biological dynamics of

the disease.

Table 4.6: Endemic steady states for ME when h = 12 and δ = 0.05

Sh Ih Rh x

16545.6 6868.9 26418.8 6.02469

2In [5] it is shown that syphilis cycles are smaller and less persistent when there is an interplay
between human responses and biological dynamics.
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(a) Number of infected MSM (b) Number of sexual partners

(c) Number of susceptible MSM (d) Number of recovered MSM

Figure 4.7: The graph for the ME system when h = 12 and δ = 0.05
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Chapter 5

Conclusion and Future Work

As the emergence of infectious diseases has become a thorn in the flesh of hu-

manity, it is imperative to understand the mechanisms involved in the transmission of

these diseases so that health policies targeted at controlling their spread are effective.

Classical mathematical epidemiological models provide a fair framework to achiev-

ing this purpose [18]. However, it has the limitation of not explicitly modelling the

behavioural influence of individuals on the spread of the diseases. Economic Epidemi-

ology aims to fill this gap since disease treatment and prevention depends heavily on

the behaviour of individuals [24].

This thesis studied a modified version of the EE models that was recently intro-

duced in [7] within an optimization framework. As a new space variable, the maximum

number of contacts is introduced. In addition, we extended the previous model by

considering the case of dynamic population (different birth and death rates). Our

assumption in particular, is practical at the beginning of the spread of a disease since

the maximum number of contacts can be controlled by isolation or limiting contacts.
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Furthermore, an EE model on syphilis infectivity among MSM in detention

centres was proposed and an investigation on the stability properties was carried

out. We employed numerical simulation to get an insight into the various types of

dynamic paths of the system; the saddle-paths stability, indeterminate paths stability

and explosive paths.

We investigated the stability properties of the EE models by assuming that

individual agents have perfect understanding of the system and thus know completely

the disease dynamics and the risk and benefits faced by other individuals in the

system. Naive expectations is also assumed, where individuals expect future benefit

and risk to remain at their current level.

This chapter summarizes the contribution of the thesis to this area. Some

directions and future work are proposed.

5.1 The Modified EE Model Studied by Aadland

et al.

5.1.1 Conclusion

We investigated the dynamic paths of the EE systems when the maximum

number of contacts is dependent on a parameter (δ). Thus, variation in this parameter

affected the dynamics of the system. We made use of a quadratic utility function in

formulating the model. We further assumed that birth and death rates were not

necessarily equal. We demonstrated that
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• If the maximum contacts are dependent on a parameter, this parameter has the

potential to drive the dynamics of the system.

• The birth and death rates do not have significant effects on the system with

exception of some extreme cases where we have high levels of the health gap

and infection parameter.

• Public policy has the potential to affect the stability(dynamic paths) of the

system.

5.1.2 Future work

The simulation carried out in the work focuses on abstract description of the

model. It will be interesting if future research could be tailored to applying real world

data on a specific disease to the model so as to ascertain precise policy recommenda-

tions.

The model studied assumed that every disease category has equal death rate

and there is no death related disease, thus oversimplifying the model. Future research

could be look at a more general model where these parameters are considered.

103



5.2 EE Model on Syphilis Infectivity among MSM

Inmates

5.2.1 Conclusion

In this thesis, we have developed a model that enabled us to investigate the sta-

bility properties of an Economic Epidemiology(EE) disease model for syphilis infec-

tivity among male inmates. The investigation was carried out under perfect foresight

and naive expectations. We have shown that

• Under perfect foresight, if individual inmates behave in a self–centred manner,

their behaviours have the tendency of affecting the stability of the system. This

result shows that public health policy direction contributes to the dynamic

properties of the system.

• If we assume a fixed number of partners for individuals (that is if the system

is independent of the number of partners), policy direction has no effect on the

stability properties of the system.

• The health gap has effect on the prevalence of syphilis among MSM inmates.

• The prevalence of the disease in the long run is influenced by incentives that

drive the utility of the MSM inmates.

• Behavioural responses affect the duration by which the system converges back

to its equilibrium position when subjected to a small perturbation. Therefore, it

is imperative for policy makers to formulate policies that take into consideration

the behavioural factor of MSM inmates.
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5.2.2 Future work

Since this study did not consider a particular detention centre, future research

should be tailored to making use of data from a particular detention center, where

data could be collected on the key parameters so as to provide a precise policy rec-

ommendation.
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Appendix A

Simulation Code for Stability

Analysis

A.1 Simulation Code for Stability Analysis for SIR

EE system

We employed Maple in studying the stability of the system by solving for the

endemic steady state values for the variables x, r, s, and i respectively. We then eval-

uated the corresponding matrices gotten from the linearized system at the endemic

steady state. After this we found the eigenvalues of the matrices at these values and

then categorized the dynamic paths of the system by employing the stability condi-

tions outlined in chapter 3. The idea is to investigate the effects of the health gap

h and the infection parameter α on the stability of the system when subjected to

variations. The final step is to plot the point (α, h). For illustration purposes the

Maple code below gives the dynamic paths or stability properties for the SIR EE
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system:

restart :

General Inputs:

beta := .96 : mu := 0.5e− 1 : omega := 0.5e− 1 :

delta := 0.5e− 1 : nu := 1 : g := 0 : phi := 0 :

Specific Inputs:

hx := 0.02 : hp := 0.01 : np := 70 : nh := 600 :

lp0 := 0.1 : h0 := 5 : NHP := np ∗ nh :

XL := array(0..np, 0..nh) :

IL := array(0..np, 0..nh) :

RL := array(0..np, 0..nh) :

INDETERMINATE := array(0..NHP );

SADDLE := array(0..NHP );

EXPLOSIV E := array(0..NHP );

XLM := array(0..np, 0..nh) :

ILM := array(0..np, 0..nh) :

RLM := array(0..np, 0..nh) :

alpha := lp0 : Xb := 1/(2 ∗ delta) : A := 1/(1 + omega−mu) :

h := h0 :

Initial endemic steady state values

p1 := 1− (1− alpha ∗ i1)x1 :

px := −(1− p1) ∗ ln(1− p1)/x1 :

psi := x1− delta ∗ x12 −Xb+ delta ∗Xb2 + h :

tor := (2 ∗ delta ∗ x1− 1) ∗ ((1− g)/beta− (1− nu− g) ∗ (1− p)− nu ∗ g)/px+ (1−

nu− g) ∗ (psi− h) + h ∗ (1− g) :

eqn1 := s1 = A ∗ (omega+ g ∗ r1)/(1− A ∗ (1− p1−mu)) :

eqn2 := i1− A ∗ s1 ∗ p1/(1− A ∗ (1− nu−mu)) = 0 :
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eqn3 := r1 = A ∗ nu ∗ i1/(1− A ∗ (1−mu− g)) :

eqnforx := beta∗ (px∗ (phi∗ beta∗ tor−psi)+(1−nu−p1)∗ (2∗delta∗x1−1))/(2∗

delta) + 1/(2 ∗ delta) :

eqn4 := x1− eqnforx = 0 :

steadystates := fsolve(eqn1, eqn2, eqn3, eqn4, i1 = .1, r1 = .8, s1 = .1, x1 = 19) :

i := eval(i1, steadystates) : x := eval(x1, steadystates) :

s := eval(s1, steadystates) : r := eval(r1, steadystates) :

Eigenvalues calculation and stability analysis

with(linalg) :

with(plots) :

printlevel := 6 :

KI := 0;KE := 0;KS := 0;KM := 0;h := h0;KN := 0;

for jp from 0 to np− 1 do

alpha := lp0 + jp ∗ hp;

if (h0 < h)then hsign := −1; else hsign := 1; end if ;

h0 := h;

for jh from 0 to nh− 1 do

h := h0 + jh ∗ hx ∗ hsign;

p1 := 1− (1− alpha ∗ i1)x1 :

px := −(1− p1) ∗ ln(1− p1)/x1 :

psi := x1− delta ∗ x12 −Xb+ delta ∗Xb2 + h :

tor := (2 ∗ delta ∗ x1− 1) ∗ ((1− g)/beta− (1− nu− g) ∗ (1− p)− nu ∗ g)/px+ (1−

nu− g) ∗ (psi− h) + h ∗ (1− g) :

eqn1 := s1 = A ∗ (omega+ g ∗ r1)/(1− A ∗ (1− p1−mu)) :

eqn2 := i1− A ∗ s1 ∗ p1/(1− A ∗ (1− nu−mu)) = 0 :

eqn3 := r1 = A ∗ nu ∗ i1/(1− A ∗ (1−mu− g)) :

eqnforx := beta∗ (px∗ (phi∗ beta∗ tor−psi)+(1−nu−p1)∗ (2∗delta∗x1−1))/(2∗
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delta) + 1/(2 ∗ delta) :

eqn4 := x1− eqnforx = 0 :

steadystates := fsolve(eqn1, eqn2, eqn3, eqn4, i1 = 0.1, r1 = 0.8, s1 = 0.1, x1 = 5) :

i := eval(i1, steadystates);x := eval(x1, steadystates);

s := eval(s1, steadystates); r := eval(r1, steadystates);

if (x < Xb and i > 0 and s > 0 and r > 0 and x > 0) then

p := 1− (1− alpha ∗ i)x :

px := −(1− p) ∗ ln(1− p)/x :

pin := x ∗ alpha ∗ (1− alpha ∗ i)(x− 1) :

M1 :=<< 0|A ∗ (1 − nu − mu − p)| − A ∗ p >,< 0|A ∗ nu|A ∗ (1 − g − mu) >,<

2 ∗ delta ∗ px|0|0 >>:

M2 :=<< A ∗ s|0 >,< 0|0 >,< 0| − (2 ∗ delta ∗ x− 1) >>:

M3 :=<< 0|1|0 >,< 0|0|1 >,< beta ∗ px ∗ (px ∗ (2 ∗ delta ∗ x− 1) + 2 ∗ delta ∗ (1−

nu− p))|0|0 >>:

M4 :=<< 0|0 >,< 0|0 >,< −beta ∗ px ∗ (2 ∗ delta ∗ x− 1)| − beta ∗ (1−nu− p) ∗ (2 ∗

delta ∗ x− 1) >>:

M5 :=<< 1|0 >,< −(1 + ln(1− p))/x|1 >>:

M6 :=<< px|pin|0 >,< −px/x|0|0 >>:

J1 := inverse(M1 +M2.inverse(M5).M6) :

J2 := (M3 +M4.inverse(M5).M6) :

J := J1.J2 :

lambda := eigenvalues(J) :

EIGEN [jp, jh] := lambda;

XL[jp, jh] := lambda[1]; IL[jp, jh] := lambda[2];RL[jp, jh] := lambda[3];

XLM [jp, jh] := abs(lambda[1]); ILM [jp, jh] := abs(lambda[2]);RLM [jp, jh] := abs(lambda[3]);

Stability conditions

if ((XLM [jp, jh] > 1) and (ILM [jp, jh] > 1) and (RLM [jp, jh] > 1))
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then KI := KI + 1; INDETERMINATE[KI] := [alpha, h];

elif (((XLM [jp, jh] < 1) and ((ILM [jp, jh] > 1) and

(RLM [jp, jh] > 1))) or((ILM [jp, jh] < 1) and

((XLM [jp, jh] > 1) and (RLM [jp, jh] > 1))) or ((RLM [jp, jh] < 1)

and ((ILM [jp, jh] > 1) and

(XLM [jp, jh] > 1)))) then KS := KS + 1; SADDLE[KS] := [alpha, h];

else KE := KE + 1; EXPLOSIV E[KE] := [alpha, h];

end if ;

elif (i < 0 or s < 0 or r < 0 or x < 0)

then KN := KN + 1; NEGATIV ECASE[KN ] := [alpha, h] :

else KM := KM + 1; MAXCONTACT [KM ] := [alpha, h];

end if ;

end do :

end do :

ptssaddle := [seq(SADDLE[j1], j1 = 1..KS)] :

Plotsaddle := pointplot(ptssaddle, thickness = 5, color = red,

symbol = diamond, symbolsize = 15, gridlines = true) :

ptsintermediate := [seq(INDETERMINATE[j1], j1 = 1..KI)] :

Plotindeterminate := pointplot(ptsintermediate, thickness = 5,

color = green, symbol = asterisk, symbolsize = 15, gridlines = true) :

ptsexplosive := [seq(EXPLOSIV E[j1], j1 = 1..KE)] :

Plotexplosive := pointplot(ptsexplosive, thickness = 5,

color = yellow, symbol = circle, symbolsize = 15, gridlines = true) :

ptsmaxcontact := [seq(MAXCONTACT [j1], j1 = 1..KM)] :

Plotmaxcontact := pointplot(ptsmaxcontact, thickness = 5, color = black, symbol =

circle,

symbolsize = 15, gridlines = true) :
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ptsnegative := [seq(NEGATIV ECASE[j1], j1 = 1..KN)] :

Plotnegative := pointplot(ptsnegative, thickness = 5, color = blue,

symbol = diamond, symbolsize = 15, gridlines = true) :

display(Plotsaddle, P lotindeterminate, P lotexplosive, P lotmaxcontact, P lotnegative);
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Appendix B

Numerical Solution with Dynare

In investigating the effects of small perturbation on the systems, we employed

Dynare. Dynare is a software that provides the platform for solving or simulating

economic models such as Dynamic Stochastic General Equilibrium models and Over-

lapping Generation Models (OGM), where economic agents such as productive firms,

consumers, governments, monetary authorities and others are assumed to formulate

expectations about future outcome consistent with the model. In short, the software

solves models that are based on the rational expectations hypothesis [9]. It can also

solve both linear and non-linear deterministic models.

The software employs applied mathematics and computer science concepts such

as multivariate nonlinear solving and optimization, matrix factorizations, local func-

tional approximation, MCMC techniques for Bayesian estimation, graph algorithms,

optimal control, Kalman filters and smoothers and others [9].

The program is made up of five blocks:
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• The preamble block where the variables in the models are declared. The dis-

tinction is made between predetermined and non-predetermined and exogenous

variables. The parameters are also declared, and the parameters in the model

are also declared.

• The model block: Here the model is specified. The dynamic equations linking

the variables and the parameters are specified.

• The steady state or initial values block: The initial values of the variables are

specified in this block.

• Shocks: If one wants to study the impacts of a temporary shock to the model,

it is specified in this block.

• Computation block: Here the number of simulation periods for the model is

specified.

Due to the scope of this thesis, we would only discuss briefly, the basic idea behind

the software and then provide the codes for the models studied in this thesis.

B.1 Deterministic Models and Dynare

Suppose we have the following non-linear equation to solve:

f(yt+1, yt, et) = 0, (B.1)

where the function f is defined as follows:

f : R2n × Rn → Rn.
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yt ∈ Rn and et ∈ Rne are vectors of endogenous and exogenous variables respectively.

Furthermore, let yt =

Ct
Xt

 , where Ct is a vector of (n× 1) predetermined variables

at time t. Therefore, we can assume that the initial value for C is given. We have

Ct=0 = C0. Xt is a vector of (m × 1) non-predetermined variables at time t. Let

suppose that the terminal value for X is known. Then we have the following unknown

variables to solve for: C0, C1, ..., CT+1;X0, ..., XT . Where T + 1 is the terminal time.

This means that we have a total number of (T + 1) × (n + m) non-linear equations

to worry about. We can employ the Newton-type root finding method to solve for

these variables [38]. If one is dealing with an infinite horizon problem, then we have

to write the terminal condition as a transversality conditions1.

Based on the above information, let specify an equation of the following form:

F (Ct, Xt, Ct+1, Xt+1, et) = 0, t = 0, 1, 2, ..., T. (B.2)

T can be finite or infinite. The next step is to solve for the stable solution by employing

the shooting algorithm [38]. This is done by specifying a time T+1 which is indicative

that the system is at the steady state. In this case we have

F (C̄, X̄, C̄, X̄, ē) = 0. (B.3)

We then set XT+1 = X̄ and then make use of the shooting algorithm [38]. The last

step is by adjusting T till (CT , XT , CT+1) is very close to the steady state values

(k̄, ȳ, k̄). Here, XT+1 is set at X̄. For the algorithm to find a stable solution, the

Blanchard and Kahn condition ought to be satisfied.

1The requirement for the tranversality condition is that the present value of the state variables
should converge to zero as time approaches infinite [12].
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In a more general form, Eq. (B.1) can take the following form:

EtF (y+
t+1, yt, y

−
t−1, ut) = 0, (B.4)

where yt, and y−t−1 are vectors of endogenous variables and a subset of predetermined

variables. yt+1 is a subset of variables with a lead and ut is a vector of exogenous

variables. Dynare can solve a model of the above form.

B.2 Dynare Code for Simulating the Model on

Syphilis

We assumed a 5% exogenous increase in the infected MSM population. This is

denoted by z. Below are the codes for the EE and ME systems respectively.

B.2.1 The EE system

The following Dynare code gives the simulation results for the EE system under

both perfect foresight and naive expectations:

Declare variables

var Snh Sh Inh Ih Rnh Rh

x N Snh1 Sh1 Inh1 Ih1 Rnh1 Rh1 x1 N1;

Declare predetermined variables

predetermined variables Snh Sh Inh Ih Rnh Rh N

Snh1 Sh1 Inh1 Ih1 Rnh1 Rh1 N1;

Declare exogenous variables
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varexo z;

Declare parameters

parameters quad Lam cbeta nu sig gamma alp ome mu pi0

pi1

pi2 pi3 del lam xbar h a lama;

Lam=5500;

cbeta=0.96;

nu=1;

sig=1;

gamma=0.2;

alp=0.04;

ome=0.04;

mu=0.02;

pi0=0.6;

pi1=0.2;

pi2=0.1;

pi3=0.1;

del=0.05;

a=20;

lama=0.0448;

lam=1-(1-lama) ∧ (a);

xbar=1/(2*del);

h=12;

model;

The model for the EE system under naive expectations

N(+1)=Lam+(1-ome-mu)*N;

Snh(+1)=Lam*pi0+(1-ome-mu-alp)*Snh;
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Sh(+1)=Lam*pi1+(1-ome-mu-(

1-(1-lam*Ih/(Sh+Rh+Ih))∧(x)))*Sh+alp*Snh+gamma*Rh;

Inh(+1)=Lam*pi2+(1-ome-mu-nu-alp)*Inh;

Ih(+1)=Lam*pi3+( 1

-(1-lam*Ih/(Sh+Rh+Ih))∧(x))*Sh+(1+z-ome-mu-sig)*Ih+alp*Inh;

Rnh(+1)=nu*Inh+(1-ome-mu)*Rnh;

Rh(+1)=sig*Ih+(1-ome-mu-gamma)*Rh;

2*del*x-1=(-(1-(1-(1-lam*Ih/(Sh+Rh+Ih))

∧(x)))*(ln(1-(1-(1-lam*Ih/(Sh+Rh+Ih))∧(x))))/x)*

cbeta*((xbar-del*(xbar)∧ 2)-(x-del*(x)∧ 2)-h+

(1-sig-(1-(1-lam*Ih/(Sh+Rh+Ih))∧ (x)))*(2*del*x-1)/(-(1-(1-(1-lam*Ih/(Sh+Rh

+ Ih))∧(x)))*(ln(1-(1-(1-lam*Ih/(Sh+Rh+Ih))∧ (x))))/x));

The model for the EE system under perfect foresight

N1(+1)=Lam+(1-ome-mu)*N1;

Snh1(+1)=Lam*pi0+(1-ome-mu-alp)*Snh1;

Sh1(+1)=Lam*pi1+(1-ome-mu-(

1-(1-lam*Ih1/(Sh1+Rh1+Ih1))∧(x)))*Sh1+alp*Snh1+gamma*Rh1;

Inh1(+1)=Lam*pi2+(1-ome-mu-nu-alp)*Inh1;

Ih1(+1)=Lam*pi3+( 1

-(1-lam*Ih1/(Sh1+Rh1+Ih1))∧(x))*Sh1+(1+z-ome-mu-sig)*Ih1+alp*Inh1;

Rnh1(+1)=nu*Inh1+(1-ome-mu)*Rnh1;

Rh1(+1)=sig*Ih1+(1-ome-mu-gamma)*Rh1;

2*del*x1-1=(-(1-(1-(1-lam*Ih1/(Sh1+Rh1+Ih1))∧(x1)))*(ln(1-(1-(1-

lam*Ih1/(Sh1+Rh1+Ih1))∧(x1))))/ x1)*cbeta*((xbar-del*(xbar)∧

2)-(x1(+1)-del*(x1(+1))∧ 2)-h+

(1-sig-(1-(1-lam*Ih1(+1)/(Sh1(+1)+Rh1(+1)+Ih1(+1)))∧ (x1(+1))))*
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(2*del*x1(+1)-1)/(-(1-(1-(1-lam*Ih1(+1)/(Sh1(+1)+Rh1(+1)+Ih1(+1)))∧

(x1(+1))))*

(ln(1-(1-(1-lam*Ih1(+1)/(Sh1(+1)+Rh1(+1)+Ih1(+1)))∧

(x1(+1)))))/x1(+1)));

end;

initval;

x=9.19958;

N=91666.7;

Snh=33000;

Sh=27090.8;

Inh=500;

Ih=4692.91;

Rnh=8333.33;

Rh=18049.7;

x1=9.19958;

N1=91666.7;

Snh1=33000;

Sh1=27090.8;

Inh1=500;

Ih1=4692.91;

Rnh1=8333.33;

Rh1=18049.7;

end;

steady;

check;

shocks;

var z;
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periods 1;

values 0.05;

end;

simul(periods=60);

B.2.2 ME system

Declare variables

var Snh Sh Inh Ih Rnh Rh N ;

Declare predetermined variables

predetermined variables Snh Sh Inh Ih Rnh Rh N ;

Declare exogeneous variables

varexo z;

Declare parameters

parameters Lam cbeta nu sig gamma alp

ome mu pi0 pi1 pi2 pi3 del lam xbar x;

Lam=5500;

cbeta=0.96;

nu=1;

sig=1;

gamma=0.2;

alp=0.04;

ome=0.04;

mu=0.02;

pi0=0.6;

pi1=0.2;
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pi2=0.1;

pi3=0.1;

del=0.05;

a=20;

lama=0.0448;

lam=1-(1-lama)∧(a);

x=6.02469;

model;

N(+1)=Lam+(1-ome-mu)*N;

Snh(+1)=Lam*pi0+(1-ome-mu-alp)*Snh;

Sh(+1)=Lam*pi1+(1-ome-mu-(

1-(1-lam*Ih/(Sh+Rh+Ih))∧(x)))*Sh+alp*Snh+gamma*Rh;

Inh(+1)=Lam*pi2+(1-ome-mu-nu-alp)*Inh;

Ih(+1)=Lam*pi3+( 1 -(1-lam*Ih/(Sh+Rh+Ih))∧

(x))*Sh+(1+z-ome-mu-sig)*Ih+alp*Inh;

Rnh(+1)=nu*Inh+(1-ome-mu)*Rnh;

Rh(+1)=sig*Ih+(1-ome-mu-gamma)*Rh;

end;

Declare initial values for the variables

initval;

N=91666.6;

Snh=22000;

Sh=20753;

Inh=750;

Ih=2385.953729;

Rnh=12500;

Rh=28304;
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end;

steady;

check;

shocks;

var z;

periods 1;

values 0.05;

end;

simul(periods=50);
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Appendix C

Abbreviations and Definitions

AIDS Acquired Immune Deficiency Syndrome.

EE Economic Epidemiology.

ME Mathematical Epidemiology.

MSM Men who have Sex with men (can be interpreted as Man who have sex with

men).

SI Susceptible Infected.

SIR Susceptible Infected Recovered.

SIS Susceptible Infected Susceptible.

SIRS Susceptible Infected Recovered Susceptible.

STDs Sexually Transmitted Diseases.

Birth rate The number of live births per year for every thousand of population.

Disease prevalence The percentage of of individuals infected by the disease at a

given period.
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Death rate The number of deaths per year for every thousand of population.

Health gap The difference between the health status of susceptible and infected

individuals.

Probability of infection The probability of individuals becoming infected by an

infectious disease after coming in contact with infected person(s).

Marginal damage cost The damage incurred in terms of health as a result of an

individual going for an additional contact.

Marginal utility It is the additional satisfaction or utility an individual get as a

result of making one more contact.

Naive expectations Individuals are assumed not to have perfect knowledge about

the system.

Perfect foresight Individuals are assumed to have perfect knowledge of the system.

Recovery rate The rate at which infected individuals become recovered.

Syphilis A STD caused by a bacterium called treponema pallidum.

Utility function The function that measures the level of utility associated with a

specific choice by a decision maker.

Value function It measures the best possible objective written as a function of the

state of the system.

δ Determinant of maximum number of contacts.

ν Recovery rate.

γ Rate of recovered individuals becoming susceptible.

λp The natural rate of becoming infected by an infected contact.
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λa The natural rate of becoming infected by a single interaction.

a Fixed number of interaction.
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