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Abstract

TWO-DIMENSIONAL CONDUCTIVITY AT LaAlO3/SrTiO3

INTERFACES

Amany Raslan

Experiments have observed a two-dimensional electron gas at the interface of two

insulating oxides: strontium titanate (SrTiO3) and lanthanum aluminate (LaAlO3).

These interfaces exhibit metallic, superconducting, and magnetic behaviours, which

are strongly affected by impurities. Motivated by experiments, we introduce a simple

model in which impurities lie at the interface. We treat the LaAlO3 as an insulator

and model the SrTiO3 film. By solving a set of self-consistent Hartree equations

for the charge density, we obtain the band structure of the SrTiO3 film. We then

study the relative contributions made by the occupied bands to the two-dimensional

conductivity of the LaAlO3/SrTiO3 interface. We find that the fractional conductivity

of each band depends on several parameters: the mass anisotropy, the filling, and the

impurity potential.

Keywords: Two-dimensional electron gases, insulating oxides, impurities, conduc-

tivity.
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Chapter 1

Introduction
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Throughout human history on earth, human development was related to our un-

derstanding of the materials around us. This understanding appeared in the devel-

opment of tools through the Stone, Bronze and Iron Ages. Ultimately, the electron’s

discovery and the development of quantum mechanics permitted the understanding

of the electronic structure of materials, whose manipulation brought us to the sili-

con age. Silicon technology has grown very fast, and has improved the shape of our

world. One goal of modern research is to find new materials with different function-

alities than semiconductors. Recent attention has focused on transition metal oxides

because they have strongly correlated electrons, and therefore have a greater variety

of functionalities than conventional semiconductors. Examples of these functional-

ities include high-temperature superconductivity in YBa2Cu3O7, a metal-insulator

transition in VO2, and magnetism in MnO.

Interfaces and surfaces are considered birthplaces for new and interesting phenom-

ena because there may be structural, electronic, spin, and orbital reconstructions due

to broken symmetries associated with the interface [1]. These reconstructions produce

many fascinating physical properties, for example the two-dimensional electron gas

that forms at semiconductor interfaces, and which is key to devices like transistors,

lasers or solar cells [2]. For that reason, it was expected that oxide interfaces will pro-

vide new and interesting phenomena, especially for oxides whose bulk phases already

have interesting functionalities. Historically, this research was limited by difficulties

in growing epitaxial oxide heterostructures. Recently, these difficulties were overcome

after the development of new deposition techniques like molecular beam epitaxy and

pulsed laser deposition. Thus, it is becoming possible to grow high-quality oxide

heterostructures with atomically sharp interfaces [3].

In 2004, Ohtomo and Hwang grew heterointerfaces between two insulating oxide

materials, strontium titanate (SrTiO3) and lanthanum aluminate (LaAlO3), by using
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the pulsed laser deposition method. Surprisingly, they observed a high-mobility two-

dimensional electron gas at the interface [4]. Since then, this amazing property has

attracted worldwide attention, and is confirmed experimentally by many studies [5–

11]. Two-dimensional electron gases (2DEG) have been formed at different oxide

interfaces, including LaTiO3/SrTiO3 [12], LaVO3/SrTiO3 [13], LaGaO3/SrTiO3 [14],

and KTaO3/SrTiO3 [15] interfaces. It is found that, at the interface, the 2DEG has a

mobility, up to 104cm2/V s [4], a density of nearly 1014/cm2 and a short confinement

length ≈ 7nm [16, 17]. These interesting properties make 2DEG at oxide interfaces

a new candidate for future technology.

1.1 LaAlO3/SrTiO3 Interface

Our concern in this dissertation is the interface between SrTiO3 and LaAlO3. SrTiO3

is a perovskite oxide material whose structure is shown in Fig. 1.1. It has a lattice

constant (3.905Å) near to many other oxides, and it is chemically inert and does not

interact with the deposited materials. These properties allow for epitaxial growth

of oxides on SrTiO3 substrates. For that reason, SrTiO3 is known as a workhorse

oxide [18]. Electronically, SrTiO3 is an insulator with a wide band gap of ≈ 3.25eV .

However, it can be made conducting by introducing oxygen vacancies during synthesis

or by doping with elements like La. LaAlO3 is a band insulator with a wide band

gap of ≈ 5.6eV . It has a perovskite structure, and has a lattice constant of 3.791Å.

There is a lattice mismatch of ≈ 3% with SrTiO3, which allows the epitaxial growth

of LaAlO3 on SrTiO3 to obtain high-quality LaAlO3/SrTiO3 heterostructures [4].

Ohtomo and Hwang [4] observed that to get a conducting LaAlO3/SrTiO3 inter-

face, the interface has to be between LaO and TiO2 layers, which is called an n-type

interface because it is doped by electrons. Conversely, if the interface is between AlO2
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and SrO layers, the LaAlO3/SrTiO3 interface is p-type because it is doped by holes.

However, unlike the n-type interface, it is found to be insulating [4]. Hence, most

work has focused on growing LaAlO3 on TiO2-terminated SrTiO3 substrates.

Figure 1.1: The perovskite unit cell for ABO3. A, B are cations and O is Oxygen.

The LaAlO3/SrTiO3 interface is considered to be the most interesting epitaxial

oxide heterostructure. S. Thiel et al. [6] observed a large electric-field response of the

2DEG, which can be tuned from an insulating to a metallic state. In addition, [19] and

[20] report a transition to a two-dimensional superconducting state at a temperature≈

200mK. Moreover, even though bulk LaAlO3 and SrTiO3 are nonmagnetic materials,

a magnetic ordering is induced at the LaAlO3/SrTiO3 interface [21]. These properties

suggest that LaAlO3/SrTiO3 interfaces may be useful as field-effect [22] or spintronic

devices [23].
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1.1.1 Origin of the 2DEG at the LaAlO3/SrTiO3 interface

The most challenging question which is not fully answered yet is what is the origin of

the 2DEG at the oxide interfaces? Indeed, there are a lot of experimental and theoret-

ical studies which try to answer that question, but there is still no unified mechanism

for the doping at the oxide interfaces. Depending on the growth conditions, there

are three main mechanisms which have been proposed in these studies for the source

of the 2DEG: the polar nature of the LaAlO3 atomic planes (polar discontinuity),

oxygen vacancies, and cation intermixing.

Polar Discontinuity

As mentioned before, LaAlO3 and SrTiO3 have perovskite structures, shown in Fig.

1.1. In the (001) direction, the ABO3 perovskite structure consists of layers of AO

and BO2 planes. To keep ABO3 neutral, the cations A and B may have formal

valence A+2B+4, A+4B+2 or A+3B+3, because oxygen has a formal valence of O−2. In

LaAlO3/SrTiO3 heterostructures, the cation valences are Sr+2, Ti+4, La+3 and Al+3.

Accordingly, SrTiO3 (A+2B+4O−6
3 ) is stacked in alternating layers of Sr+2O−2(AO)

and Ti+4O−4
2 (BO2), which are neutral planes, having no net charges. On the other

hand, LaAlO3(A
+3B+3O−6

3 ) has planes of La+3O−2(AO) and Al+3O−4
2 (BO2), with net

charge +1 and −1, respectively. Thus, the interface of LaAlO3 and SrTiO3 is between

polar LaAlO3 and non-polar SrTiO3 materials, leading to a polar discontinuity at the

interface. If we imagine LaAlO3 as a chain of capacitors in series, then a potential

will grow through each capacitor leading to a polar catastrophe, as illustrated in Fig.

1.2. The polar catastrophe was observed previously in conventional semiconductors

when a polar film, GaAs, was deposited on a non-polar material, Ge or Si. In this

case, an atomic reconstruction occurred, which eliminated the potential divergence

[24, 25].
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Nakagawa et al. proposed that “If the electrons can move, the atoms do not have

to” [18]. The existence of Ti at the interface gives the possibility of an electronic

reconstruction because Ti has a multivalent nature, Ti+3 or Ti+4. Accordingly, if

a half-electron per unit cell is transferred from the top layer of the LaAlO3 to the

interface, it will find accommodation in a Ti atom at the interface, which will become

Ti+3.5, as shown in Fig. 1.2. This electronic reconstruction compensates the electric

field in the LaAlO3 layers (Fig. 1.2), and solves the polar catastrophe problem.

Ohtomo and Hwang [4] explained their discovery of the 2DEG at the LaAlO3/SrTiO3

interface by proposing the polar discontinuity scenario. They proposed that the n-

type interface is conducting because it is possible to form Ti+3.5. However, in case

of the p-type interface, the electronic reconstruction occurs by transferring a half-

hole from the LaAlO3 surface layer. Since there is no possibility to form Ti+4.5, the

holes are trapped by oxygen vacancies at the interface, which leads the p-interface

to be insulating. The polar catastrophe scenario was supported experimentally by

Thiel et al. [6], who found that there is a minimum LaAlO3 thickness, beyond which

the LaAlO3/SrTiO3 interface is conducting. This means that, when the thickness

of LaAlO3 layers is small, the potential difference between LaAlO3 surface and the

interface is small. Once the LaAlO3 thickness exceeds a critical value, ≈ 4 unit cells

[6], the potential becomes larger than the LaAlO3 band gap. As a result, charges

are transferred to the interface. However, the measured 2DEG density is much

smaller (. 1.8x1014cm−2) than is expected from the electronic reconstruction sce-

nario (≈ 3.3x1014cm−2). This raises doubts that the polar discontinuity is the only

mechanism for the 2DEG formation at the LaAlO3/SrTiO3 interfaces.
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Figure 1.2: (a) A schematic picture of how the polar catastrophe occurs in the
LaAlO3/SrTiO3 structure, and (b) a schematic picture showing the electronic re-
construction at the LaAlO3/SrTiO3 interface. ρ is the net charge density for each
layer, and the arrows show the ρ’s magnitude and sign. E is the electric field and V
is the potential inside the LaAlO3 layers.
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Oxygen Vacancies

Oxygen vacancies are a common type of defect in oxide materials, which are created

during sample growth, especially at low oxygen pressure, and act as electron donors.

Thus, they are proposed as a source of the 2DEG at the LaAlO3/SrTiO3 interface.

Extensive studies have explored oxygen vacancies in LaAlO3/SrTiO3 heterostructure

systems: some of them have shown that oxygen vacancies contribute to the 2DEG

[8, 26, 27], while others suggest that magnetic ordering at the interface is due to

oxygen vacancies [28–30]. On the other hand, some studies point out that the oxygen

vacancies alone can’t explain why the conducting interface is formed only after a

critical LaAlO3 thickness [31]. In conclusion, these studies can’t affirm that the

oxygen vacancies alone can explain the origin of the 2DEG but suggest that they

may play a role.

Cation intermixing

Cation intermixing at the the LaAlO3/SrTiO3 interface was first observed by Naka-

gawa et al. [18]. It occurs through redistribution of the Sr+2 and La+3 at the interface,

which dopes the interface. Cation intermixing also disorders the interface layers. By

using atomic-resolution electron energy loss spectroscopy, Nakagawa et al. found that

the roughness of the n-type interface (1.9 unit cells) is larger than the roughness of

p-type interface (0.77 unit cells). This means more cation intermixing at the n-type

interface than the p-type interface. For that reason, the authors argued that the

n-type interface is more doped than the p-type, and that explains why the n-type

interface is conducting and the p-type is insulating. Later work confirmed that cation

intermixing is one source of the 2DEG [32–38].

In summary, the doping sources of the 2DEG at the LaAlO3/SrTiO3 interface es-

sentially depend on the growth conditions. Three mechanisms, electronic reconstruc-
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tion, oxygen vacancies, and cation intermixing, together contribute to the 2DEG

formation. In fact, it was found that samples which are grown under low oxygen

pressure (. 106mbar) have oxygen vacancies as the dominant mechanism for the con-

ductivity, while samples which are grown under higher oxygen pressure (& 105mbar)

have the polar discontinuity as the dominant mechanism.

1.2 Conductivity at the LaAlO3/SrTiO3 interface

From our previous discussion, we conclude that the conductivity of the LaAlO3/SrTiO3

interfaces depends on the substrate termination [4], the LaAlO3 thickness [6], and im-

purities and defects [39]. As is known, impurities play a crucial role in understating

and controlling the conductivity of LaAlO3/SrTiO3 interfaces. These impurities can

be oxygen vacancies that are created during the growth processing, or dislocations due

to cation intermixing or lattice distortion at the interface [18,38]. Their effect on the

electronic and magnetic properties of the LaAlO3/SrTiO3 hetetrostructres has been

explored by many experimental and theoretical studies. The results of these studies

depends strongly on the position of the impurities in the heterostructures. For exam-

ple, it is predicted that oxygen vacancies at the LaAlO3 surface [40–42] are an impor-

tant source of the 2DEG at the interface. Oxygen vacancies at the LaAlO3/SrTiO3

interfaces can also increase the density and mobility of the 2DEG [15]. Other kinds of

impurities may trap or scatter the carriers and lead to a lower 2DEG mobility [18,38].

Oxygen vacancies in the SrTiO3 bulk create a three-dimensional gas in SrTiO3 sub-

strate [40].

Experimental studies [43, 44] that give evidence for the existence of impurities at

the interface motivated us to introduce a simple model to study the interface conduc-

tivity. Our model assumes that the impurities lie in the TiO2 layer adjacent to the
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interface. The impurity density is assumed low, so we can use a dilute approximation,

and we focus on n-type interfaces. Then, the goal of this thesis is to calculate the

contributions of occupied bands to the total interface conductivity.

1.3 Thesis Outline

The goal of this thesis is to study the two-dimensional conductivity at LaAlO3/SrTiO3

interfaces. In chapter 2, we will introduce a simple model to study the contributions of

occupied bands to the 2D conductivity. This will done in two steps: first we will write

the tight-binding model to describe the SrTiO3 band Structure, and then develop the

model for impurities to study the interface conductivity. In chapter 3, we will explore

and analyze model results in detail. Finally, in chapter 4, we will provide conclusions

about our calculations.
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Chapter 2

Theoretical Model



Theoretical Model: Introduction 12

2.1 Introduction

In this chapter, we introduce our simple model for the LaAlO3/SrTiO3 interface.

The goal of the model is to describe the effect of impurities on the LaAlO3/SrTiO3

interface by calculating the contribution of partially filled bands to the conductivity.

This leads us later to compare our model to experimental data. The model is built

on the following assumptions:

• Because LaAlO3 has a wider band gap than SrTiO3 (5.6eV and 3.3eV respec-

tively), see Fig. 2.1, the two-dimensional electron gas energetically prefers to

occupy the SrTiO3 conduction band than the LaAlO3 conduction band. Thus,

we treat the LaAlO3 as an insulator and don’t include any orbitals from it in

our model.

Figure 2.1: Sketch of LaAlO3 and SrTiO3 band gaps. CB denotes the conduction
band and VB denotes valence band.

• The SrTiO3 band gap is between an O2p orbital valence band and a Ti t2g

conduction band [45]. Thus, we exclude O atoms and model only Ti t2g orbitals

using the tight-binding model.
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• We assume that there are three t2g orbitals per unit cell, dxy, dxz and dyz, as

shown in Fig. 2.2.

Figure 2.2: Schematic representation of the Ti t2g orbitals, dxy, dxz and dyz.

We begin by calculating the band structure of bulk SrTiO3, which is included

as a simple case to help understand the more complicated LaAlO3/SrTiO3 interface.

Then we build the Hamiltonian of the LaAlO3/SrTiO3 interface and finally include

impurities at the interface.
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2.2 Theoretical Model

2.2.1 Bulk SrTiO3

To introduce the model, we begin with the simplest case in which we impose periodic

boundary conditions in the x, y and z directions. The noninteracting Hamiltonian for

SrTiO3 is

Ĥ3D =
∑

ij

∑

α,β

∑

σ

c†iασtiα,jβcjβσ (2.1)

where

• cjβσ is the annihilation operator for an electron with spin σ in unit cell j in

orbital type α.

• c†iασ is the corresponding creation operator.

• tiα,jβ is the hopping matrix element of the periodic crystal Hamiltonian H =

−~
2

2m
∇2 + V (r) between orbital α in unit cell i and orbital β in unit cell j,

tiα,jβ = 〈iα|H |jβ〉. (2.2)

• α = 1, 2 and 3 for dxy, dxz and dyz orbitals, respectively.

We diagonalize the Hamiltonian by Fourier transforming in all three dimensions

(x,y and z) to go to k-space. Explicitly, we can define

cjβσ =
1√
Nk

∑

k

eik·rjβckβσ (2.3)

c†iασ =
1√
Nk

∑

k′

e−ik′·riαc†k′ασ (2.4)

where

• k = (kx, ky, kz) is the k-space coordinate,
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• riα = (xiα, yiα, ziα) is a 3-dimensional position vector of orbital α in the ith unit

cell. Because we include only the Ti t2g orbitals, the riα is independent of α in

our model.

• Nk is the number of unit cells.

Then we substitute Eq. (2.3) and (2.4) into Eq.(2.1) to obtain,

Ĥ3D =
1

Nk

∑

ij

∑

α,β

∑

σ

∑

k

∑

k′

e−ik′·riαc†k′ασtiα,jβe
ik·rjβckβσ. (2.5)

According to experiments [46] and density-functional theory calculations [47–49], the

hopping elements between different orbital types are very small compared to the

hopping between the same orbital types. Thus we consider only hopping tiα,jα between

the same orbital types. Also, according to the tight-binding assumption, we consider

nearest-neighbor hopping only. This leads us to define d such that

rjα = riα + d (2.6)

where d is a lattice vector connecting nearest neighbor unit cells. Then, we use the

fact that tiα,jα only depends on the displacement d between orbitals

tiα,jα = t(riα − rjα) = t(riα − riα − d) = tα,α(−d) = tα,α(d), (2.7)

so that

Ĥ3D =
1

Nk

∑

i

∑

d

∑

α

∑

σ

∑

k

∑

k′

ei(k−k′)·riαc†k′ασtα,α(d)e
ik·dckασ. (2.8)

Since

1

Nk

∑

i

ei(k−k′)·riα = δk,k′, (2.9)
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then

Ĥ3D =
∑

d

∑

α

∑

σ

∑

k

c†kασtα,α(d)e
ik·dckασ. (2.10)

Then, we define

ǫα(k) =
∑

d

tα,α(d)e
ik·d. (2.11)

Depending on the value of d, tα,α(d) takes three different values:

• When d = 0,

tα,α(0) = ǫt2g ,

where ǫt2g is the on-site orbital energy.

• When d is in the α-plane,

tα,α(d) = t‖α,

where t
‖
α is the hopping term in the α-plane between two dα orbitals. For

example, t
‖
xy is the hopping term in the x-y plane between two dxy orbitals, as

shown in Fig. 2.3.

• When d is along an axis perpendicular to the α-plane,

tα,α(d) = t⊥α ,

where t⊥α is the hopping term along the axis perpendicular to the α-plane be-

tween two dα orbitals. For example, t⊥xy is the hopping term along the z-axis

between two dxy orbitals, as shown in Fig. 2.3.

Therefore

Ĥ3D =
∑

k

∑

σ

Ψ†
kσh(k)Ψkσ, (2.12)

with Ψ†
kσ = [c†

k(xy)σ, c
†
k(xz)σ, c

†
k(yz)σ], and
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h(k) =













ǫxy(k) 0 0

0 ǫxz(k) 0

0 0 ǫyz(k)













,

with

ǫxy(k) = ǫt2g − 2t‖xy(cos kxa+ cos kya)− 2t⊥xy cos kza, (2.13)

ǫxz(k) = ǫt2g − 2t‖xz(cos kxa + cos kza)− 2t⊥xz cos kya, (2.14)

ǫyz(k) = ǫt2g − 2t‖yz(cos kya + cos kza)− 2t⊥yz cos kxa. (2.15)

Figure 2.3: Schematic representation of the parallel and perpendicular hopping terms
between dxy orbitals.

Considering the symmetry of our system, we might expect that

t‖xy = t‖xz = t‖yz = t‖, (2.16)

and

t⊥xy = t⊥xz = t⊥yz = t⊥. (2.17)

As shown in Fig. 2.3, the dxy orbital wave-function overlaps more in the x-y plane

than along the z-axis, and thus we assume in our model that the hopping in any plane
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(the parallel hopping) is greater than the hopping along the perpendicular axis (the

perpendicular hopping), namely that t‖ > t⊥ [49–51].

-1

-0.5

0

0.5
ε n (

eV
)

k
z
 =0

k
z
 = π/a

xy
xz
yz

yz
xy&xz

xy

yz

xz

(a) (b)

Γ-π/a -π/a π/aπ/a Γ
1xy

2xy

Figure 2.4: (a) The band structure of the bulk SrTiO3 along the kx-direction at two
values of kz = 0, and π/a, ky = 0. (b) The band structure of a two layer SrTiO3 film
along the kx-direction in the non-interacting case. In our calculations, t‖ = 236meV
and t⊥ = 35meV [49].

We plot Eqs.(2.13), (2.14), and (2.15) along the kx−axis at two kz values, 0 and

π
a
, and ky = 0 in Fig. 2.4(a). At k = 0, the three bands, xy, xz and yz are

degenerate because the three equations, Eqs. (2.13), (2.14), and (2.15), are equal

at kx = ky = kz = 0. Away from the Γ point, the yz band has a small dispersion

≈ 0.14eV , and the xy and the xz bands are fully degenerate with each other, with a

large dispersion ≈ 0.9eV . These behaviours are because the band structure is plotted

along the kx direction and t‖ > t⊥. This band structure shows a good agreement with

previous calculations [45, 50, 51].

At kz = π/a, the three bands are shifted from their values at kz = 0, with a small

shift for the xy band and a large shift for the xz and yz bands: the xy band is shifted

by 2t⊥, and the xz and yz bands are shifted by 2t‖ as shown in Eqs. (2.13), (2.14),

and (2.15). If we plot Eqs.(2.13), (2.14), and (2.15) along the ky−axis and kx = 0,

the xz and yz bands will switch roles.
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2.2.2 The LaAlO3/SrTiO3 Interface

The way we model the LaAlO3/SrTiO3 interface differs from the bulk case in that we

assume that one surface of the SrTiO3 thin film forms an interface with the LaAlO3

film, as shown in Fig. 2.5. Figure 2.5 shows a sketch of the LaAlO3/SrTiO3 interface

along with the electrostatic potentials generated by the surface and interface charges.

To model this, we apply open boundary conditions along the z-axis.

Figure 2.5: Sketch of the LaAlO3/SrTiO3 interface model. ϕext
izα

is the external po-
tential energy due to charges at the LaAlO3 surface, Eq. (2.39). φ

C
izα

is the Coulomb
potential energy due to charges in the SrTiO3 film, Eq. (2.52), λ is the LaAlO3, and
iz is the SrTiO3 layer index, where iz = 1 indicates the LaAlO3/SrTiO3 interface.

The Hamiltonian for the SrTiO3 thin film is

Ĥ = Ĥ0 + V̂ext + V̂C , (2.18)

where

• Ĥ0 is the noninteracting Hamiltonian.
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• V̂ext is the external potential energy in the SrTiO3 thin film due to the charge at

the LaAlO3 surface, which comes from the electronic reconstruction (Fig. 2.5).

• V̂C is the Coulomb interaction energy due to electrons in the SrT iO3 thin film,

(Fig. 2.5).

We begin with the simplest case, where there are no interactions in the SrTiO3

film, to see the effect of the interface on the SrTiO3 band structure. Then, we include

the electron interactions and external potential.

Noninteracting Hamiltonian Ĥ0

The noninteracting Hamiltonian for the SrTiO3 thin film is

Ĥ0 =
∑

ij

∑

α,β

∑

σ

c†iασtiα,jβcjβσ, (2.19)

where tiα,jβ is the same as in the bulk case, except that there is no hopping through

the LaAlO3/SrTiO3 interface. Thus the hopping matrix elements through the top

and bottom surfaces of the SrTiO3 film are zero. We perform the Fourier transform

in two dimensions (x and y), so we can define

cjβσ =
1

√

Nkxky

∑

kxky

ei
~k·~rjxjyβc

jz~kβσ
, (2.20)

c†iασ =
1

√

Nkxky

∑

k′xk
′

y

e−i~k′·~rixiyαc
iz~k′ασ

, (2.21)

where

• Nkxky is the number of kx and ky points.

• i = (ix, iy, iz) and j = (jx, jy, jz) are unit cell indices.
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• iz indicates which layer the orbital is in, where the first layer (iz = 1) is adjacent

to the interface.

• ~k is a two dimensional vector (kx, ky).

• ~rixiyα and ~rjxjyβ are two dimensional vectors, such that

~rixiyα = a(xiα, yiα), (2.22)

~rjxjyβ = a(xjβ, yjβ). (2.23)

We substitute Eq. (2.20) and Eq. (2.21) into Eq. (2.19) to obtain

Ĥ0 =
1

Nkxky

∑

ij

∑

α,β

∑

σ

∑

kxky

∑

k′xk
′

y

e−i~k′.~rixiyαc†
iz~k′ασ

tiα,jβe
i~k.~rjxjyβc

jz~kβσ
(2.24)

As before, we consider only hopping between the same orbital types and nearest-

neighbors. These imply that we can write

tiα,jα = tizα,jzα(~rixiy − ~rjxjy) = tizα,jzα(~d) (2.25)

where ~d is a two-dimensional lattice vector connecting nearest neighbor unit cells.

Then, it useful to replace the unit cell index i with the triplet (ix, iy, iz), such that

∑

i

=
∑

ix,iy,iz

=
∑

ix,iy

∑

iz

. (2.26)

Since

1

Nkxky

∑

ix,iy

ei(
~k−~k′)·~rixiyα = δ~k,~k′, (2.27)

then

Ĥ0 =
∑

iz ,jz

∑

d

∑

α

∑

σ

∑

kxky

c†
iz~kασ

tizα,jzα(~d)e
i~k·~dc

jz~kβσ
. (2.28)
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We define

ǫ′α(
~k) =

∑

iz ,jz

∑

d

tizα,jzα(~d)e
−i~k·~d, (2.29)

so that the Hamiltonian can be written as

Ĥ0 =
∑

~k

∑

σ

Ψ†
~kσ
h0(~k)Ψ~kσ

(2.30)

with Ψ†
~kσ

= [c†
1~k(xy)σ

, c†
1~k(xz)σ

, c†
1~k(yz)σ

, c†
2~k(xy)σ

, . . . , c†
M~k(yz)σ

], where M is the number of

SrTiO3 layers, and

h0(~k) =

























E(~k) T . . .

T E(~k)

. . .

E(~k) T

T E(~k)

























, (2.31)

where

E(~k) =













ǫ′xy(
~k) 0 0

0 ǫ′xz(
~k) 0

0 0 ǫ′yz(
~k)













, T =













t⊥xy 0 0

0 t
‖
xz 0

0 0 t
‖
yz













, (2.32)

with

ǫ′xy(
~k) = ǫt2g − 2t‖xy(cos kxa + cos kya), (2.33)

ǫ′xz(
~k) = ǫt2g − 2t‖xz cos kxa− 2t⊥xz cos kya, (2.34)

ǫ′yz(
~k) = ǫt2g − 2t⊥yz cos kxa− 2t‖yz cos kya. (2.35)

To compare with the bulk case, we plot the eigenvalues of the noninteracting

Hamiltonian, Eq. (2.31), along the kx-direction for a two layer SrTiO3 film, at ky = 0,
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in Fig. 2.4.(b). At the Γ point, the xz and yz bands are degenerate with each other,

and the lowest xy band is split from them. This splitting is due to the interface,

which disrupts the hopping along the z-axis. This disruption is more important for

the xz and yz bands than the xy band, and pushes the xz and yz bands up relative

to the xy band. Therefore, this splitting is a feature of the interface [52], and leads

the dxy orbitals to be occupied first.

The External Potential Energy V̂ext

As we discussed before, there is a potential divergence inside the LaAlO3 due to its

polarity (the polar catastrophe). To overcome this divergence, a half-electron per

unit cell (σs) is transfered from the surface of the LaAlO3 to the interface. Then, the

remaining charges at the LaAlO3 surface create an electrostatic potential inside the

SrTiO3 film, which is called in our model the external potential energy, Fig. 2.5.

We represent the external potential energy as

V̂ext =
∑

izασ

ϕext
izα
n̂izασ (2.36)

with the charge density operator

n̂izασ = c†izασcizασ, (2.37)

and the potential

ϕext
izα

=
−σse
2ǫ0κ

(zizα + λ), (2.38)

where

• σs =
0.5e
a2

is the surface charge density at the top layer of the LaAlO3.

• ǫ0 is the permittivity constant.
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• λ is the thickness of the LaAlO3 film.

• κ is the SrTiO3 dielectric constant. It is known that the SrTiO3 dielectric

constant is a complicated function of electric field and temperature, so it is

different from layer to layer inside the SrTiO3 film. For simplification, we have

fixed κ to a single value in our model. We choose κ = 15 based on Ref. [53],

which claims that this value reproduces the density functional theory band

structure.

• zizα is the distance from the interface to the orbital α in unit cell iz.

Because the thickness of the LaAlO3 film, λ, is constant in our model, it shifts the

potential by a constant, which can be absorbed in the chemical potential. Therefore,

we take

ϕext
izα

=
−σse
2ǫ0κ

zizα. (2.39)

The Coulomb Interaction Energy V̂C

The Coulomb interaction inside the SrTiO3 thin film is the summation of the electron-

electron interaction energy and the electron-ion interaction energy,

V̂C = V̂ee + V̂e−ion. (2.40)

The electron-electron interaction energy is

V̂ee =
∑

iασ,jβσ′

Viα,jβn̂iασn̂jβσ′ (2.41)

where the electron-electron potential is

Viα,jβ =
e2

4πǫ0κ

1

|~riα − ~rjβ|
, (2.42)
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and n̂iασ = c†iασciασ is the charge density operator for unit cell index i, orbital type α

and electron spin σ. We can write n̂iασ as

n̂iασ = 〈n̂iασ〉+ δn̂iασ

where δn̂iασ is the charge fluctuation about the mean value 〈n̂iασ〉. Let niασ = 〈n̂iασ〉

is the charge density for unit cell i, orbital type α and electron spin σ, then

n̂iασn̂jβσ′ = niασnjβσ′ + niασδn̂jβσ′ + njβσ′δn̂iασ + δn̂iασδn̂jβσ′.

In Hatree approximation, the fluctuation in charge density δn̂iασδn̂jβσ′ can be ignored.

And since,

δn̂iασ = n̂iασ − 〈n̂iασ〉 = n̂iασ − niασ

therefore the electron-electron interaction energy is simplified as

V̂ee =
∑

iασ,jβσ′

Viα,jβn̂iασnjβσ′ (2.43)

The electron-ion interaction energy is

V̂e−ion = −
∑

iασ

∑

l

ZlViα,ln̂iασ (2.44)

where

• l is the index of each ion,

• Zl is the ionic core charge,

• Viα,l is the potential of electron at unit cell i with orbital type α due to the ionic

core at location ~Rl, which represents as

Viα,l =
e2

4πǫ0κ

1

|~riα − ~Rl|
. (2.45)



Theoretical Model 26

We substitute Eq. (2.43) and Eq. (2.44) into Eq. (2.40) to obtain the Coulomb

energy,

V̂C =
∑

iασ,jβσ

Viα,jβn̂iασnjβσ −
∑

iασ

∑

l

ZlViα,ln̂iασ, (2.46)

or

V̂C =
∑

iασ

n̂iασφ
C,tot
iα , (2.47)

with

φC,tot
iα =

∑

jβσ

Viα,jβnjβσ −
∑

l

Viα,lZl. (2.48)

We can represent the Coulomb potential φC,tot
iα as

φC
iα = φbulk

ασ + φC
iα (2.49)

with

φbulk
α =

∑

jβσ

Viα,jβn
bulk
βσ −

∑

l

Viα,lZl, φC
iα =

∑

jβσ

Viα,jβδnjβσ. (2.50)

Here, φbulk
α is the potential at the Ti sites far from the interface, and φC

iα is the

residual Coulomb potential due to the interface. φbulk
α shifts the orbital energy at all

sites equally, and thus it can be absorbed into ǫt2g , which is a parameter in our model.

Therefore,

φC,tot
iα → φC

iα =
∑

jβσ

Viα,jβδnjβ (2.51)

Here, δnjβσ is defined as the difference between the charge density in orbital type β

with electron spin σ at unit cell j and the charge density for an orbital of the same

type in the bulk. Since, the bulk SrTiO3 is insulator, the t2g orbitals are empty in

the bulk, so we have δnjβσ = njβσ − nbulk
βσ ≈ njβσ. Thus, the Coulomb potential is

φC
iα =

∑

jβσ

Viα,jβnjβσ. (2.52)
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To obtain φC
iα, we assume that each layer has a homogeneous charge distribution.

After some algebraic steps, shown in Appendix A, the total potential is

φC
izα

=
−e2a
2ǫ0k

∑

jz

∑

βσ

(|iz − jz| − jz)njzβσ, (2.53)

where φizα here is the potential in layer iz due to the charge distribution in the SrTiO3

film (see Appendix A for its derivation).

The effective Hamiltonian matrix is then

hHF (~k) =

























E(~k) + Φ1 T . . .

T E(~k) + Φ2

. . .

E(~k) + ΦM−1 T

T E(~k) + ΦM

























, (2.54)

with

Φiz =













ϕext
izxy

+ φC
izxy

0 0

0 ϕext
izxz

+ φC
izxz

0

0 0 ϕext
izyz

+ φC
izyz













, (2.55)

where iz takes values from 1 to M , the number of SrTiO3 layers. This means that

when iz = 1, we obtain the matrix Φ1 and so on. Then the effective Hamiltonian can

be diagonalized numerically to obtain eigenvalues, ε
n~k
, and eigenvectors, ψizαn(~k).

From this, the charge density, whose derivation is shown in Appendix B, may be

calculated as

njzβσ =
1

N

∑

~k

∑

n

|ψjzβσ,n(
~k)|2f(ε

n~k
) (2.56)

where
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• n is the band index.

• ψjzβσn(~k) is the nth eigenvector of the SrTiO3 Hamiltonian.

• f(εnk) is the Fermi-Dirac distribution function, which is

f(ε
n~k
) =

1

2
[1− tanh(

1

2kBT
(ε

n~k
− µ))], (2.57)

where kB is the Boltzmann constant and T is the temperature of the SrTiO3

film system in Kelvin.

Finally, the Coulomb energy is

V̂C =
−e2a
2ǫ0k

∑

izασ

∑

jz

∑

β

(|iz − jz| − jz)njzβσn̂izασ (2.58)

As we see from Eq. (2.58), to calculate the total interaction energy of the electrons,

we need to know the charge density njzβσ. To get that, we perform the self-consistency

calculations according to flowchart shown in Fig. 2.6. These calculations yield the

self-consistent potential which is used to calculate the SrTiO3 Hamiltonian. The

self-consistent results will discussed in details in the next chapter.

2.2.3 Impurities at the LaAlO3/SrTiO3 Interface

The goal of this section is to calculate the interface conductivity. As is well-known,

the conductivity is related to the scattering rate due to impurities. Thus, we include

impurities in our model and calculate the resultant scattering rate. To understand

the many-impurity problem, we start by including a single impurity. In this case the

tight-binding Hamiltonian is

Ĥtot = Ĥ + Ĥimp (2.59)
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Initialize Coulomb
Potential φC

izα

Ĥ = Ĥ0 + V̂ext + V̂C

Compute eigenvalues ǫ
n~k

and eigenvectors ψizασ,n(
~k)

Compute charge densityφC
izα

= aφnew
izα

+ (1 − a)φold
izα

Update φC
izα

|φnew
izα

− φold
izα

| < acc?

End

yes

no

Figure 2.6: Flowchart of the self-consistent calculations.
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where Ĥ is the SrTiO3 thin film Hamiltonian shown in Eq. (2.18), and Ĥimp is the

perturbation due to an impurity at site i [54],

Ĥimp =
∑

ασ

Ṽimpc
†
iασciασ, (2.60)

where i = (ix, iy, iz) is the impurity site. We have two-dimensional translational

invariance in the model, thus we get the same answer for any (ix, iy). Economou [54]

solves the total Hamiltonian by finding the corresponding Green function G, which

in the case of one impurity is

Guα,υβ(ω) = G0
uα,υβ(ω) +G0

uα,iα(ω)Tiα,iα(ω)G
0
iα,υβ(ω), (2.61)

where uα and υβ are site/orbital indices. G0 is the Green function corresponding to

Ĥ , and the t-matrix Tiα,iα(ω) gives the exact correction to the Green function due

to the impurity of site i. If an impurity is in layer iz with potential Ṽimp, then the

t-matrix as a function of energy ω [54] is

Tizα,izα(ω) =
Ṽimp

1− Ṽimpg0izα,izα(ω)
, (2.62)

with

g0izα,izα(ω) =
1

Nk

∑

k

G0
izα,izα

(ω,~k), (2.63)

is the local Green function, and

G0
izα,izα

(ω,~k) =
∑

n

|ψizα,n(
~k)|2 1

ω + iη − εn(~k)
, (2.64)

where η is a positive infinitessimal number.

In the case of a non-zero density of impurities, we use the average t-matrix ap-

proximation, which is discussed by Economou [55]. This approximation neglects

interference which is caused by multiple scattering from impurities. Thus the Green
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function in matrix representation is

G(ω,~k) = G0(ω,~k) +G0(ω,~k)Σ(ω)G(ω,~k), (2.65)

where boldface symbols indicate matrices with rows izα, and columns jzβ. Σ is the

self-energy, and in the case of low impurity density c (the dilute limit),

Σizα,jzβ(ω) = cTizα,izα(ω)δizα,jzβ. (2.66)

For convenience, we transform the self-energy to the band basis, and neglect inter-

band scattering by impurities. Thus

Σn(ω,~k) = c
∑

izα

|ψizαn(~k)|2Tizα,izα(ω). (2.67)

Since ψizαn doesn’t depend on ~k in our model, the self-energy at ~k is the same as at

the Γ point,

Σn(ω) = c
∑

izα

|ψizαn(Γ)|2Tizα,izα(ω). (2.68)

The scattering rate for electrons in band n is given in terms of the self-energy [56] as

γn(ω) = −ImΣn(ω). (2.69)

Thus, in terms of the t-matrix, the scattering rate is

γn(ω) = −cIm
∑

izα

|ψizαn(Γ)|2Tizα,izα(ω). (2.70)

From Eq. (2.70), we can obtain the conductivity under the assumption that there is

a low density of point-like impurities at the LaAlO3/SrTiO3 interface. This means
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Tizα,izα(ω) = 0 unless iz = 1, and thus the scattering is

γn(ω) = −cIm
∑

α

|ψ1αn(Γ)|2T1α,1α(ω). (2.71)

Derivation of The Interface Conductivity

We begin our derivation by using Ashcroft and Mermin’s Eq. (13.24) and Eq. (13.25)

for the semi-classical DC conductivity tensor σ [57]. They derived σ under some

assumptions: they neglect inter-band transitions, assume the system temperature is

uniform, and that the electric field and temperature don’t change with time. Thus

the three-dimensional conductivity is

σ3D =
∑

n

σ
(n)
3D , (2.72)

where σ
(n)
3D is the contribution of band n to the three-dimensional conductivity,

σ
(n)
3D = e2

∫

dk

4π3
τn(εn(k))vn(k)vn(k)(−

∂f

∂ε
)ε=εn(k), (2.73)

where

• τn(εn(k)) is the collision time, which is independent of k in our model and equals

~/γ(n)(εf), and εf is the Fermi energy.

• vn(k) is the velocity of electrons and equals 1
~

∂εn(k)
∂k

.

The two-dimensional conductivity, σ
(n)
2D is obatained by a simple modification of Eq.

(2.73),

σ
(n)
2D = e2τn

∫

d2k

2π2
vn(~k)vn(~k)(−

∂f

∂ε
)ε=εn(~k)

. (2.74)

Figure 2.7 shows the Fermi function at T = 0 and it’s derivative −∂f

∂ε
. As shown, −∂f

∂ε

is a δ−function peaked at εf . Therefore,
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Figure 2.7: Fermi function at T = 0 and its derivative.

σ
(n)
2D =

e2τn
2π2

∫

d2kvn(~k)vn(~k)δ(εn − εf). (2.75)

Here, we focus on the conductivity σxx, so we need the vx-compound for band n,

vnx(~k) =
1

~

∂ǫn(~k)

∂kx
. (2.76)

To obtain a simple expression for the conductivity, we approximate the dispersions

near the Γ point by their quadratic forms

ǫn(~k) =
~
2

2
(
k2x
mn

x

+
k2y
mn

y

) + εn0, (2.77)

where εn0 is the band bottom energy, which comes from the self-consistent bands

at the Γ point, and mn
x and mn

y are the effective masses in the x- and y-direction,

respectively. The effective mass m∗ is

1

m∗
x,y

=
1

~2

d2ǫn(~k)

d2kx,y
|~k=0, (2.78)
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so by using Eqs. (2.33), (2.34) and (2.35), the approximate effective masses in the x

and y directions for the xy bands are

mxy
x = mxy

y =
~
2

2at‖
, (2.79)

for the xz bands are

mxz
x =

~
2

2at‖
, mxz

y =
~
2

2at⊥
, (2.80)

and for the yz band are

myz
x =

~
2

2at⊥
, myz

y =
~
2

2at‖
. (2.81)

To calculate the integral over ~k, we let

ξx =
~kx√
mx

, ξy =
~ky√
my

. (2.82)

This gives

∫

d2k →
√
mxmy

~2

∫

dξxξy →
√
mxmy

~2

∫ 2π

0

dθ

∫ ∞

0

ξdξ. (2.83)

Then

vnx =
1√
mx

ξx =
1

mx

ξ2 cos2 θ. (2.84)

The two dimensional band conductivity in the x−direction is

σ(n)
xx =

e2τn
2π2

√

mn
xm

n
y

~2

∫ 2π

0

dθ

∫ ∞

0

ξdξ
1

mn
x

ξ2 cos2 θδ(εn − εf), (2.85)

or

σ(n)
xx =

e2τn
4π2~2

√

mn
y

mn
x

∫

ξdξξ2δ(εn − εf). (2.86)

Since,

εn − εn0 =
ξ2

2
, (2.87)
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and

dεn = ξdξ. (2.88)

Therefore,

σ(n)
xx =

e2τn
4π2~2

√

mn
y

mn
x

∫ ∞

εn0

dεn(εn − εn0)δ(εn − εf). (2.89)

Finally,

σ(n)
xx =

e2τn
4π2~2

√

mn
y

mn
x

(εf − εn0), (2.90)

or

σ(n)
xx =











e2

4π2~2

√

mn
y

mn
x

ǫn
f

γn when ǫnf > 0,

0 when ǫnf < 0,
(2.91)

with εnf = (εf − εn0).

Summing over occupied bands gives

σxx =
e2

4π2~2

′
∑

n

√

mn
y

mn
x

ǫnf
γn
, (2.92)

where
∑′ is only over occupied bands.

As we see from Eq. (2.91), the band conductivity depends on the impurity potential

Ṽimp and impurity density c. For the dilute limit assumption, the scattering rate is

linearly proportional to c. Thus, to remove the dependence on c, we calculate the

fractional conductivity

σ
(n)
xx (Ṽimp)

σxx(Ṽimp)
=

√

mn
y

mn
x

ǫn
f

γn

∑′
n

√

mn
y

mn
x

ǫn
f

γn

. (2.93)

Equation (2.93) gives the relative contribution of each occupied band to the two-

dimensional conductivity as a function in Ṽimp . As shown, there are three parameters

that control the fractional conductivity: the impurity potential, the effective mass

ratios, and the filling. In the next chapter, we will discuss how these parameters
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affect the interface conductivity in detail.
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Chapter 3

Results and Discussion
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3.1 Introduction

In this chapter, we will discuss the results of calculations based on the LaAlO3/SrTiO3

interface model. We model the SrTiO3 as a thin film. To choose the proper SrTiO3

film thickness, we calculated the self-consistent charge density for different SrTiO3

thicknesses.
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Figure 3.1: The calculated self-consistent charge density for different SrTiO3 thick-
nesses: (a) 5 layers, (b) 10 layers and (c) 20 layers.

As shown in Fig. 3.1, the charge density is vanishingly small after the fifth or

sixth layer in the SrTiO3 film. Hence, we decided to make all our model calculations

using a 10 layer film. Table 3.1 shows the model parameters used in our calculations.

We will discuss the self-consistent calculations and compare them with previously

published calculations. Then, we will discuss the results for the interface conductivity.
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Parameter Value

SrTiO3 lattice constant a 3.904 Å
SrTiO3 dielectric constant κ 15 [53]
System temperature T 90 K [49]

Parallel hopping terms t‖ 236 meV [49]
Perpendicular hopping terms t⊥ 35 meV [49]
On-site t2g orbital energy ǫt2g 0.0 eV

Table 3.1: Model parameters used in the calculations.

3.2 Self-consistent Calculations

Our model assumes that the electronic reconstruction is the only mechanism for the

2DEG formation at the interface. Thus, as we discussed before, a half-electron per

unit cell is transfered from the top layer of LaAlO3 to the SrTiO3 film. This is the

starting point in the self-consistent calculations; we run the self-consistency code for

different chemical potential values µ until the total charge density inside the SrTiO3

is a half-electron per 2D unit cell.

Figure 3.2 shows the self-consistent potential and charge density in the SrTiO3

thin film, and the resultant band structure is shown in Fig. 3.3. After the fourth

layer, as shown in Fig. 3.2(a), when the charge density inside the SrTiO3 thin film

equals a half-electron per 2D unit cell, the electric field due to the SrTiO3 cancels

the electric field due to the surface charge density at the LaAlO3 top layer. Thus the

total potential inside the SrTiO3 thin film is nearly constant after the fourth layer.

The potential forms a quantum well in the first four layers, with approximately 0.4eV

depth, which confines the electrons to the interface; consequently, most of the charge

(≈ 78%) is concentrated in the first SrTiO3 layer, as shown in Fig. 3.2(b).

Figure 3.2(b) shows the charge density in each orbital type (dxy, dxz and dyz) as

a function of layer index. The dxy orbital in the first layer has most of the total

charge density (≈ 46%), while the dxy orbital in the second layer is only slightly
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Figure 3.2: The self-consistent solutions for (a) the total potential energy and (b) the
charge density inside the SrTiO3 thin film. The total charge density is 0.50 electrons
per 2D unit cell. The chemical potential is µ = 0.15eV. Inset shows the total potential
in the first four layers.

occupied, and the remaining dxy orbitals are nearly empty. The dxz and dyz orbitals

have identical charge density distributions, contributing together about 32% of the

total charge density in the first layer. The charge density extends smoothly until the

fifth layer and is negligible after that.

Figure 3.3 shows the self-consistent band structure for the 10 layer SrTiO3 film.

The band structure is plotted along Γ-X and Γ-M in the Brillouin zone (shown in

the inset Fig. 3.3). Along X-Γ, there are four bands below the Fermi level: the 1xy

band has the lowest energy, which is a signature of the interface; the 1xz and 1yz

bands, which are degenerate at the Γ point, disperse differently away from it, with

more dispersion for the 1xz band; the 2xy band is a little below the Fermi level at

the Γ point. The features are similar to what was found in Fig. 2.4(b) for the non
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Figure 3.3: The self-consistent band structure for a 10 layer SrTiO3 thin film along
Γ−X and Γ−M directions. The total charge density is 0.50 electrons per 2D unit
cell. The chemical potential is µ = 0.15eV. Inset shows the Brillouin zone with Γ, X ,
and M points indicated.

interacting model, except that here, the splitting between the 1xy and 2xy bands is

much bigger than in Fig. 2.4(b) due to the quantum well at the interface. Along Γ-M ,

the same four bands cross the Fermi level, but the 1xz and 1yz bands are completely

degenerate.

Figure 3.4 plots the Fermi surfaces at the Fermi energy (Ef = 0.15eV) in the kx-ky

plane. As shown, there are two circles corresponding to the 1xy and 2xy bands, and

two ellipses for the 1xz and 1yz bands. Also, we note that the area of the 2xy Fermi

surface, which gives the band occupation, is very small because the bottom of 2xy

band lies just 0.001eV below the Fermi energy.

We have calculated the projected band weights (PBW) ψ2
izα,n

(Γ) of the four oc-

cupied bands at the Γ point, where ψizα,n is the eigenvector of the SrTiO3 thin film

Hamiltonian. In general, the PBW depends on ~k, however, in our model it does not.
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Figure 3.4: Fermi surfaces for a Fermi energy Ef = 0.15eV.
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Figure 3.5: The projected weight of the first four bands in Fig. 3.3. (a) the band
weight for 1xy band, (b) the band weight for 1yz band, (c) the band weight for 1xz
band, and (d) the band weight for 2xy band.

The PBW is shown in Fig. 3.5. In Fig. 3.5(a), the lowest band has dxy character,

and its projected weight comes almost entirely from the first layer and drops quickly
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along z-axis. This explains the distribution of the dxy charge density shown in Fig.

3.2(b) because most of the charge density resides in the 1xy band. This behaviour

implies that the 1xy band forms a strongly two-dimensional electron gas (2DEG) at

the interface.

The second and third bands have dyz and dxz orbital character, respectively. In

Figs. 3.5(b) and (c), they have about 60% of their weight in the first layer, and spread

along the z-axis out to the sixth layer. This behaviour is the same as the distribution

of the charge density in the dyz and dxz orbitals in Fig. 3.2(b). This shows that the

charge density is less confined than in the 1xy band. This leads the 1xz and 1yz

bands to be less affected by impurities at the interface than the 1xy band.

By referring to Eq. (2.54), the difference between the 1xy, 1xz and 1yz bands

can be explained. The hopping along the z-direction for the dxz and dyz orbitals

is proportional to the parallel hopping term t‖, while the hopping between the dxy

orbitals is proportional to the perpendicular hopping term t⊥. Since t‖ ≫ t⊥, the 1xz

and 1yz bands are much lighter than the 1xy band along the z-direction, and the 1xz

and 1yz bands are less confined by the quantum well than the 1xy band.

Figure 3.5(d) shows the weight of the 2xy band. Its projected weight comes mostly

from the second layer (80%) and spreads for a few layers along the z-axis. Here, we

note that the 2xy band spreads along the z-axis more than the 1xy band because it

is higher energy and consequently it is less confined by the quantum well than the

1xy band.

The self-consistent band structures in Fig. 3.3 are compatible with published band

structure calculations [58]: the lowest band has xy character, the yz bands have small

dispersion along X-Γ direction, the splitting between 1xy, and 1yz bands is nearly

0.25eV, and the energy difference between the lowest two xy bands is about 0.3eV.

However, there is a difference between the band structure in Fig. 3.3 and that in Ref.
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[58]: the energy difference between the bottom of lowest band, the 1xy band, and the

Fermi level is slightly bigger in [58] than that in Fig. 3.3. This leads Ref. [58] to have

more xy Fermi surfaces than in Fig. 3.4. We note that the Fermi surface structure is

highly sensitive to details and has not been fully resolved.

The band structure in Fig. 3.3 is consistent with experimental study [59]. Ref.

[59] used x-ray absorption spectroscopy to investigate the LaAlO3/SrTiO3 electronic

properties, and found that the lowest band has xy character, and that there is no

degeneracy around the Γ point between the xy, and yz or xz bands, as in Fig. 3.3.

We find also that self-consistent charge density calculations agree with previous

calculations [60]. Ref. [60] used the first-principles density functional method to

calculate the charge density for a 7.5 and 8.5 layer SrTiO3 film. They found that the

dxy electrons make the major contribution to the charge density profile and extend

only 2 or 3 layers into the SrTiO3 film, as in Fig. 3.2. Also, they showed that the

dxz and dyz charge density spread through the SrTiO3 film and have the same density

profile, as in Fig. 3.2. The agreements between our model and published work shows

that, while simple, our model captures the essential features of the LaAlO3/SrTiO3

interface.

3.3 Impurities at the LaAlO3/SrTiO3 Interface

We now discuss what happens when we include impurities at the LaAlO3/SrTiO3

interface. In chapter 2, we obtained an equation for the two dimensional band con-

ductivity, (2.91). As we mentioned before, this equation is a function of two variables:

the impurity density c and the impurity potential Ṽimp. For dilute impurities, the

conductivity is a function of 1/c. To remove the dependence on c, we calculate the
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Band
√

my

mx
ǫnf (eV)

1xy 1 0.319
1yz 0.385 0.069
1xz 2.597 0.069
2xy 1 0.001

Table 3.2: The ratio of effective masses in the x- and y-directions,
√

my

mx
, for the four

occupied bands, and their band filling, ǫnf . Data are for the case where the SrTiO3

film is 10 layers thick.

fractional conductivity (2.93),

σ
(n)
xx (Ṽimp)

σxx(Ṽimp)
=

√

mn
y

mn
x

ǫn
f

γn

∑′
n

√

mn
y

mn
x

ǫn
f

γn

. (3.1)

which gives the contribution of each occupied band to the total two dimensional

conductivity as a function of Ṽimp. From Figs. 3.3 and 3.4, there are four occupied

bands, two with dxy orbital character, and one each with dxz and dyz orbital character.

There are three parameters in Eq. (3.1) which control the contribution of each

band to the total two dimensional conductivity. These parameters are the ratio of

effective masses in the x- and y-directions for each band (Table 3.2), the difference ǫnf

between the Fermi energy and band bottom, and the scattering rate γn for each band

(plotted in Fig. 3.6). We will discuss in detail the role of these parameters in the

fractional conductivity. First, we will study how the scattering rate for occupied bands

behaves as a function of impurity potential Ṽimp. This will require a discussion of the

t-matrix and how it relates to the local Green function. Then, we will study how the

scattering rate, along with the other parameters, affects the fractional conductivity.

The first step to understand the fractional conductivity is to look at the scattering

rate. Figure 3.6 gives the scattering rates for the four occupied bands as a function

of Ṽimp for a 10 layer SrTiO3 film. As shown, the 1xy band has the biggest scattering
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Figure 3.6: The scattering rates as a function of Ṽimp for occupied bands: the 1xy
band, the 1xz band, the 1yz band, and the 2xy. The SrTiO3 film thickness is 10
layers.

rate, while the 2xy has the lowest one. The 1xz and 1yz have identical scattering rates.

We note also that all the bands have similar dependences on the impurity potential

Ṽimp, and we can divide this dependence into two regimes: a weak scattering regime,

−1eV . Ṽimp . 1eV, and strong scattering regime, Ṽimp & 1eV or Ṽimp . −1eV.

To analyze Fig. 3.6, we refer to Eq. (2.70),

γn(ω) = −c
∑

α

|ψ1αn(Γ)|2Im T1α,1α(ω). (3.2)

Equation (3.2) then shows that γn is proportional to the projected weight |ψ1αn(Γ)|2.

As shown in Fig 3.5, the projected band weight for the four occupied bands is different

at the first layer. This explains in part why the 1xy, 2xy, and 1xz bands have different

scattering rates, while the scattering rate of the 1xz and 1yz bands are identical.

To understand the dependence of scattering rate on Ṽimp, we have to look at the
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detailed structure of t-matrix. Since the t-matrix, Eq. (2.62), is

Tizα,izα(ω) =
Ṽimp

1− Ṽimpg0izα,izα(ω)
, (3.3)

then the imaginary part of the t-matrix is

T ′′
izα,izα

(ω) =
g0′′izα,izα

(ω)

(V −1
imp − g0′izα,izα(ω))

2 + (g0′′izα,izα
(ω))2

, (3.4)

where, g0′′izα,izα
and g0′izα,izα are the imaginary and real parts of g0izα,izα(ω), respectively.

Equation (3.4) is plotted in Figs. 3.7 and 3.8 at two specific Ṽimp values, Ṽimp =

−0.2eV and Ṽimp = −1.5eV. These correspond to the weak scattering and strong

scattering cases mentioned previously.
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Figure 3.7: Imaginary part of the t-matrix, and imaginary and real parts of the local
Green function for (a) the dxy orbital, and (b) the dxz and dyz orbitals in layer one at
impurity potential Ṽimp = −0.2eV.

Figure 3.7 shows the negative of T ′′
izα,izα

(ω), the negative of g0′′izα,izα
(ω) , and
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g0′izα,izα(ω) as a function of the energy ω for the dxy orbital and the dxz,yz orbitals

in layer one at Ṽimp = −0.2eV . At the Fermi energy, g0′′izα,izα
and g0′izα,izα are different

for the dxy and dxz,yz orbitals. In bulk SrTiO3, g
0
izα,izα

is the same for all three orbital

types; however, the interface breaks this symmetry, and consequently the t-matrix is

different for the dxy and dxz,yz orbitals. This is an important reason why the xy, xz

and yz bands have different scattering rates.

We note that |Ṽ −1
imp| = 5eV−1 is greater than |g0′′izα,izα

| and |g0′izα,izα| at ω = εf , so

that the denominator in Eq. (3.4) is not small. This situation can be approximately

understood by the Born Limit for weak scattering: when

|V −1
imp| ≫ |g0′′|, |g0′|,

the imaginary part of t-matrix is, from Eq. (3.4),

Im T ≈ g0′′Ṽ 2
imp.

This explains the structure of the scattering rate in the weak regime, where the

scattering rate is nearly proportional to Ṽ 2
imp, as shown in Fig. 3.6.

Figure 3.8 plots Eq. (3.4) at Ṽimp = −1.5eV. There are two important points

about Fig. 3.8. First, the imaginary part of the t-matrix is peaked outside the

band edges at ω ≈ −0.9eV. At this value of ω, g0′izα,izα = Ṽ −1
imp and −g0′′izα,izα

is

infinitessimally small, so there is a pole in the t-matrix, as can be seen from Eq.

(3.4). There is therefore a pole in Guα,υβ as shown in Eq. (2.61), which corresponds to

bound state at ω ≈ −0.9eV, as shown in inset of Fig. 3.8. Second is that at the Fermi

energy, |Ṽ −1
imp| = 0.67eV−1 is less than |g0′′izα,izα

| and |g0′izα,izα|, which corresponding to

the strong scattering limit. When
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impurity potential Ṽimp = −1.5eV.

|V −1
imp| ≪ |g0′′|, |g0′|,

the imaginary part of t-matrix is

Im T ≈ g0′′

(g0′)2 + (g0′′)2
,

which is independent of Ṽimp. This explains the structure of the scattering rate in

the strong scattering regime, where the scattering rate is nearly constant, as shown

in Fig. 3.6.

To summarize, there are two scattering regimes, one in which the scattering rate

strongly depends on Ṽimp, and the other in which the scattering rate weakly depends

on Ṽimp. To understand how the fractional conductivity behaves in theses two regimes,
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we plot the fractional conductivity Eq. (3.1) for the four occupied bands as a function

of Ṽimp for different film thicknesses in Fig. 3.9.

As shown in Fig. 3.9, in the weak scattering regime the fractional conductivities

depend strongly on Ṽimp, as with the scattering rate. When the SrTiO3 film thickness

is less than 5 layers, the 2xy band makes the biggest contribution to the 2D conduc-

tivity. When the thickness is greater than 5 layers, the 1xy band contribution is the

biggest. The 1yz band makes the lowest contribution for all SrTiO3 film thicknesses.

For all thicknesses, the 1xy and 2xy bands have their maximum contribution, and

the 1xz and 1yz bands have their minimum contribution, at Ṽimp = −0.2eV .

In the strong scattering limit, the fractional conductivities weakly depend on Ṽimp,
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as with the scattering rate. The 1xz band contribution is dominant, except for the

4-layer film, where the 2xy band makes the biggest contribution.

To explain how the fractional conductivity of each band behaves, we look at the

three parameters in Eq. (3.1) we discussed before. The large 2xy band contribution

is because the scattering rate γ2xy is two orders of magnitude smaller than γ1xy, γ1xz

or γ1yz , as shown in Fig. 3.6. The dependence of the 2xy band contribution on the

film thickness is because the filling parameter ǫ2xyf changes slightly when the number

of SrTiO3 layers increases. ε2xyf = 0.007, 0.003, 0.0029, 0.0016eV for the 4, 5, 6 and 10

layers, respectively, and thus ǫ2xyf decreases with increasing film thickness. The 2xy

contribution to the two dimensional conductivity therefore decreases. This continues

as the SrTiO3 layer thickness increases.

Although the 1xz and 1yz bands have similar scattering rates (Fig. 3.6) and filling

(Fig. 3.3 and Table 3.2), the fractional conductivity of the 1xz band is 20 times bigger

than the 1yz band due to their effective mass ratios (Table 3.2). To sum up, this

discussion illustrates how the three parameters together( γn, ǫnf and
√

my

mx
) influence

the magnitude and structure of the contribution of each band to the 2D conductivity.

In summary, by proposing a simple model for the impurities at the LaAlO3/SrTiO3

interface, we have studied the contribution of the occupied bands to the interface

conductivity. It was found that

• even though most of the charge density is confined at the first layer in the 1xy

band, the three other occupied bands make an essential contribution to the 2D

conductivity,

• the 2xy band makes a remarkably large contribution to the 2D conductivity,

even though it has the smallest Fermi surface,

• there are two scattering regimes: the weak scattering regime in which the 1xy
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and 2xy band contributions are dominant, and the strong scattering regime in

which the 1xz band has the largest fractional conductivity,

• the fractional conductivities depend on three main parameters: the filling, the

effective mass ratios, and the impurity potential.
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Chapter 4

Conclusion
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In this thesis, we introduced a simple model to answer questions about the role

of disorder in interface properties, with which we can study the contributions from

occupied bands to the interface conductivity.

We solved the self-consistent Hatree equations for the interacting potential and

charge density to obtain the band structure of the SrTiO3 film. As a result, there were

four occupied bands: the 1xy, the 1xz, the 1yz and the 2xy bands. By assuming that

there is a low density of point-like impurities, we calculated the scattering rate for each

band. Then, beginning with the semi-classical DC conductivity formula, we derived

an expression for the two-dimensional conductivity at the interface. Accordingly, we

calculated the relative contributions of the occupied bands to the two-dimensional

conductivity, namely the fractional conductivity, as a function of impurity potential.

Our results imply that there are two scattering regimes: the weak scattering

regime where the scattering rate and corresponding fractional conductivity depend

significantly on the impurity potential, and the strong scattering regime where the

scattering rate and the fractional conductivity are less dependent on the impurity

potential. We found that there are three parameters that affect the fractional con-

ductivity: the scattering rate, the effective mass ratios and the filling. In the weak

scattering region, for a 10 layer SrTiO3 film, the 1xy band makes the biggest contribu-

tion to the 2D conductivity because it has the biggest filling, ǫ1xyf = 0.319eV. The 2xy

band makes the second largest contribution to the 2D conductivity because it has the

lowest scattering rate. The third largest contribution comes from the 1xz band due

to both its scattering rate and filling, while the 1yz band has the lowest conductivity

due to its small effective mass ratio,
√

my

mx
= 0.385. In the strong scattering region,

the 1xz band is dominant due to its high effective mass ratio,
√

my

mx
= 2.597. It is

noted here that we calculated the conductivity in the x-direction, and that in the

y-direction, the 1xz and 1yz will exchange their contributions. The most surprising
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result is that the 2xy band makes a significant contribution to the 2D conductivity,

although it has the smallest Fermi surface area.

As we noted, the band structure of the SrTiO3 film is very sensitive to any small

changes. For example, a small change in the filling changes the number of occupied

bands and consequently the fractional conductivity. Experimentally, the filling can

be controlled by gating the interface. In future work, we will study our model for

different fillings to understand how the conductivity changes. Another issue is that

the dielectric constant of the SrTiO3 film plays a significant role in the conductivity at

the interface. In our model we fixed the dielectric constant, but in fact it is a strong

function of electric field and changes from layer to layer through the SrTiO3 film.

Future work will include this nonlinearity. Finally, we will consider the spin-orbit

interaction, which is known to be significant at the interface, and study its effect on

the conductivity.
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The Coulomb potential in the SrTiO3 film is

φC
iα =

∑

jβσ

Viα,jβnjβσ, (1)

or

φiα =
∑

jβσ

V (ix − jx, iy − jy, iz − jz)njβσ. (2)

We assume that each layer has a homogeneous charge distribution; so that the

potential in the x-y plane is constant. Hence, the Coulomb potential is

φiα =
∑

βσ

Ṽ (iz − jz)njzβσ, (3)

where

Ṽ (iz − jz) =
∑

jxjy

V (jx, jy, iz − jz). (4)

Explicitly,

Ṽ (iz − jz) =
∑

~ρ6=0

e2

4πǫ0κ

1
√

ρ2 + (iz − jz)2a2
, (5)

where ρ is a two-dimensional vector in the x and y-direction. To calculate Ṽ (iz − jz),

we imagine the layer is a disk of radius R, so that

Ṽ (iz − jz) =

∫ R

0

ρdρ

∫ 2π

0

dθ
e2

4πǫ0κ

1
√

ρ2 + (iz − jz)2a2
, (6)

Ṽ (iz − jz) =
2πe2

4πǫ0κ

√

ρ2 + (iz − jz)2a2|R0 , (7)

Ṽ (iz − jz) =
e2

2ǫ0κ
(R − |iz − jz|a). (8)
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Since the potential,

e2R

2ǫ0κ
,

is constant, it can be dropped from Ṽ , and we let

Ṽ (iz − jz) =
−e2
2ǫ0k

|iz − jz|a. (9)

Therefore, the Coulomb potential is

φizα =
−e2a
2ǫ0k

∑

jz

∑

βσ

|iz − jz|njzβσ. (10)

For computational convenience, we redefine φizα as

φizα → φizα − φiz=0,α.

Finally, the Coulomb potential is

φizα =
−e2a
2ǫ0k

∑

jz

∑

β

(|iz − jz| − jz)njzβσ. (11)
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The charge density for a certain layer j, orbital type β, and spin σ can be expressed

as,

njβσ = 〈c†jβσcjβσ〉, (12)

then we perform the Fourier transform in the x and y-direction

cjβσ =
1√
N

∑

kxky

ei
~k·~rjxjy c

jzβσ~k
, (13)

then

∴ njβσ =
1

N

∑

~k,~k′

ei(
~k−~k′)·~rjxjy 〈c†

jzβσ~k′
c
jzβσ~k

〉. (14)

Then, we transform to a basis in which the Hamiltonian ĤHF is diagonal. Since

ψizασ,n(
~k) diagonalizes H(~k), then

Hizασ,jzβσ(~k) =
∑

n

ψizασ,n(~k)En(~k)ψ
∗
jzβσ,n

(~k). (15)

Define

a
n~k

=
∑

jzβσ

ψ∗
jzβσ,n

(~k)cjzβσ, (16)

then

ĤHF =
∑

n~k

En(~k)a
†

n~k
a
n~k
. (17)

Substituting Eq. (16) into Eq. (14), we obtain

njzβσ =
1

N

∑

~k~k′

ei(
~k−~k′)·~rjxjy

∑

nm

ψ∗
jzβσ,n

〈a†
n~k
a
m~k′

〉ψjzβσ,m. (18)

Since the expectation values 〈a†
n~k
a
m~k′

〉 are with respect to eigenstates of ĤHF ,
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then

〈a†
n~k
a
m~k′

〉 = δn,mδ~k~k′f(εn~k), (19)

equals zero unless m = n and ~k = ~k′.

Finally, the charge density njzβσ is

njzβσ =
1

N

∑

~k

∑

n

|ψjzβσ,n(~k)|2f(εn~k). (20)
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