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Abstract

THE ROLE OF DIELECTRIC SCREENING IN SrTiO3-BASED INTERFACES

Amany Raslan

We build a theoretical model for exploring the electronic properties of the two-

dimensional (2D) electron gas that forms at the interface between insulating SrTiO3

(STO) and a number of perovskite materials including LaTiO3, LaAlO3, and GdTiO3.

The model treats conduction electrons within a tight-binding approximation, and the

dielectric polarization via a Landau-Devonshire free energy that incorporates STO’s

strongly nonlinear, nonlocal, field- , and temperature-dependent dielectric response.

We consider three models for the dielectric polarization at the interface: an ideal-

interface model in which the interface has the same permittivity as the bulk, a di-

electric dead-layer model in which the interface has permittivity lower that the bulk,

and an interfacial-strain model in which the strain effects are included.

The ideal-interface model band structure comprises a mix of quantum 2D states

that are tightly bound to the interface, and quasi-three-dimensional (3D) states that

extend hundreds of unit cells into the STO substrate. We find that there is a sub-

stantial shift of electrons away from the interface into the 3D tails as temperature

is lowered from 300 K to 10 K. We speculate that the quasi-3D tails form the low-

density high-mobility component of the interfacial electron gas that is widely inferred
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from magnetoresistance measurements.

Multiple experiments have observed a sharp Lifshitz transition in the band struc-

ture of STO interfaces as a function of applied gate voltage. To understand this

transition, we first propose a dielectric dead-layer model. It successfully predicts the

Lifshitz transition at a critical charge density close to the measured one, but does not

give a complete description for the transition. Second, we use an interfacial-strain

model in which we consider the electrostrictive and flexoelectric coupling between

the strain and polarization. This coupling generates a thin polarized layer whose

direction reverses at a critical density. The transition occurs concomitantly with the

polarization reversal. In addition, we find that the model captures the two main fea-

tures of the transition: the transition from one occupied band to multiple occupied

bands, and the abrupt change in the slope of lowest energy band with doping.

Keywords: Two-dimensional electron gas, permittivity, dead layer, strain, flexo-

electric, Lifshitz transition.
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Chapter 1

Introduction

Much of modern technology is enabled by the discovery and development of advanced

materials that make these technologies work. These include nanodevices, such as

quantum dotes, whose properties are different from in the bulk. Here in this thesis,

we are interested in a new application of an old material, strontium titanate (SrTiO3).

The focus of this thesis is the quantitative modeling of the electronic structure of

SrTiO3 (STO)-based interfaces taking into account the role of the STO dielectric

properties.

STO interfaces have received extensive attention since Ohtomo and Hwang [1]

discovered the existence of a highly conductive layer at the interface between two

insulating oxides, STO and lanthanum aluminate (LaAlO3). This conductive layer is

a two-dimensional electron gas (2DEG) with a high electron density, 1013−1014 cm−2

[1, 2], and that is confined to within ∼ 4− 7 nm of the interface [3]. By comparison,

the 2DEG in silicon devices typically has a density around 1010 − 1012 cm−2 and

is confined to within ∼ 10 nm of the interface [4]. The 2DEG mobility at STO

interfaces is found to be nearly 104 cm2/Vs, which is somewhat less than the value of

∼ 107 cm2/Vs [4] at semiconductor interfaces. In many ways STO-based interfaces are
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comparable to semiconductor interfaces; interest in STO interfaces is mainly driven

by the possibility of new functionality [5, 6, 4, 7, 8].

Interfaces have been made between STO and a number of perovskite materi-

als, (see Fig. 1.1), such as LaTiO3 [9], GdTiO3 [10], LaVO3[11], LaGaO3[12], and

KTaO3 [13]. However, the most celebrated and studied interface is between STO

and LaAlO3 (LAO). In addition to being conducting, this interface has a supercon-

ducting state below 200mK [14] and ferromagnetism that can be controlled at room

temperature[15, 16, 17]. The ability to tune LAO/STO interfaces through metal-

insulator [2] and superconductor-insulator transitions by application of a gate voltage

makes LAO/STO interfaces promising for potential electronic devices such as tunnel

junctions and field-effect transistors [5].

1.1 Mechanisms of 2DEG Formation at STO Interfaces

To date, the origin of the 2DEG at STO interfaces remains unclear. Depending on

the growth conditions, there are three main mechanisms that have been proposed as

the source of the 2DEG: the polar nature of the cap material, oxygen vacancies, and

cation intermixing. We review each scenario, and the experiments that support it.

1.1.1 Electronic Reconstruction

The most popular scenario is an electronic reconstruction that comes from a “polar

catastrophe”. A polar catastrophe happens when a polar material is attached to a

non-polar material. This results in an electric field inside the polar material that

creates a large potential difference across it. As the thickness of the polar material

increases, this large potential difference leads to electronic and structural instabilities.
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Figure 1.1: Unit cell of ABO3 perovskite crystals. The A atom here represents stron-
tium (Sr), B is for titanium (Ti), and O for oxygen (O). Arrows show
the motion of the Ti and O atoms in the optical soft mode. Figure taken
from [18].

For example, at semiconductor GaAs/Ge interfaces, Ge is non-polar, while GaAs is

polar. To compensate for the buildup of the electric field, a surface roughening and

intermixing of the Ge and Ga at the interface takes place. This is called an atomic

reconstruction [4].

In LAO/STO, the electronic instabilty involves a charge transfer between the LAO

surface and the interface. This happens due to the perovskite structure of the STO: a

perovskite has chemical formula ABO3, where A and B are cations and the oxygen is

the anion. In the case of STO, A = Sr and B = Ti (see Fig. 1.1). In the (001) direction

the ABO3 lattice consists of layers of AO and BO2 planes. To keep ABO3 neutral,



1.1. MECHANISMS OF 2DEG FORMATION AT STO INTERFACES4

the cations A and B may have formal valence A+2B+4, A+4B+2 or A+3B+3, because

oxygen has a formal valence of O−2. In LAO/STO interfaces, the cation valences are

Sr+2Ti+4, and La+3Al+3. Accordingly, STO (Sr+2Ti+4O−6
3 ) is stacked in alternating

layers of Sr+2O−2(AO) and Ti+4O−4
2 (BO2), which are neutral planes, having no net

charges. On the other hand, LAO (A+2B+4O−6
3 ) has planes of La+3O−2(AO) and

Al+3O−4
2 (BO2), with net charge +1 and -1, respectively. Thus, the interface of LAO

and STO is between polar LAO and non-polar STO, leading to a polar discontinuity

at the interface. If we imagine LAO as a chain of capacitors in series, then a potential

will grow through each capacitor leading to a voltage difference between the LAO

surface and interface, as illustrated in Fig. 1.2.(a). The growth of this voltage with

LAO thickness is known as a “polar catastrophe”.

The existence of Ti at the interface gives the possibility for an electronic re-

construction because Ti has a multivalent nature, Ti+3 or Ti+4. Thus, if a half-

electron per unit cell is transferred from the top layer of the LAO, it will find ac-

commodation in a Ti atom at the interface, which will become Ti+3.5, as shown in

Fig. 1.2.(b). This electronic reconstruction compensates the electric field in the LAO

layers [Fig. 1.2.(b)], and solves the polar catastrophe problem. This scenario is valid

for n-type STO interfaces in which the STO surface has to be TiO2-terminated in

the (001) direction. However, for the p-type interface, for which the STO surface has

to be SrO-terminated in the (001) direction, the electronic reconstruction occurs by

transferring a half-hole from the surface of LAO layers. Since there is no possibility

to form Ti+4.5, the holes are trapped by oxygen vacancies at the interface, which leads

the p-interface to be insulating [19, 1].

The polar catastrophe scenario was proposed first by Ohtomo and Hwang in their
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Figure 1.2: Polar catastrophe scenario.(a) shows the origin of the polar catastrophe.
0’s, +1’s, and -1’s represent the net charge per layer which generates a
corresponding electric field E, and potential V along the z-direction. The
potential difference between the surface and interface grows with LAO
thickness. (b) shows that a transfer of 0.5 electron per unit cell to the
interface eliminates the diverging potential. Figure taken from [18].

seminal paper [1]. Later, it was supported experimentally by Thiel et al.[2]. They

found that there is a critical LAO thickness, after which the LAO/STO interface

is conducting. This means that, when the thickness of the LAO layer is small, the

potential difference between LAO surface and the interface is small. Once the LAO

thickness exceeds a critical value, ∼ 4 unit cells [2], the potential becomes larger than

the LAO band gap. As a result, charges are transferred to the interface.

On the other hand, the polar catastrophe scenario is not able to explain multiple

observations of conductive interfaces for which there is no polar discontinuity, such as

amorphous LAO on STO [20], and interfaces in the (110) direction [21]. In addition,

according to this scenario the electron density has to be in order of 3×1014 cm−2, but
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the experimentally measured density (from the Hall effect) is an order of magnitude

lower (∼ 2− 6× 1013 cm−2). All of this raises doubts that the polar discontinuity is

the only scenario for the 2DEG at STO-based interfaces.

1.1.2 Oxygen Vacancies

A second possible scenario for the 2DEG formation is oxygen vacancies. These are

a common type of defect in oxide materials, and they are created during sample

growth, especially at low oxygen pressure, and act as electron donors. In bulk STO,

oxygen vacancies can create electron concentrations exceeding ∼ 1017 cm−3 [22, 7]. In

the case of LAO/STO interfaces, the vacancy concentration depends on the oxygen

partial pressure and the temperature during growth [23, 24]. Oxygen vacancies can

form both on the STO side of the interface and at the LAO surface [25]. Experiments

reported that oxygen vacancies in the STO substrate can give electron densities that

are up to 1000 times larger than predicted by the polar catastrophe model [1, 7].

However, while it seems likely that oxygen vacancies contribute to the 2DEG, they

can not by themselves explain why the conducting interface is formed only after a

critical LAO thickness [2].

1.1.3 Cation Intermixing

Cation intermixing is considered as another scenario for the 2DEG formation [26].

It takes place when the STO substrate is doped with La: Zaid el al. [27] reported

that the exchange between Sr+2 and La+3 results in the formation of a conducting

LaxSr1−xTiO3 layer at the interface. Despite the experimental evidence of cation

intermixing, it can not for example explain the critical thickness for a metal-insulation
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transition, or why LAO/STO alloys are found to be insulating [7].

In summary, there is no consensus on the origin of the 2DEG at STO interfaces. It

is possible, in fact, that a combination of these scenarios controls the 2DEG formation,

and that this combination depends on the interface geometry and growth conditions.

For the (001) LAO/STO interface, the existence of a metal-insulator transition at 4

unit cells of LAO suggests that the polar catastrophe mechanism is dominant in this

case.

1.2 STO Interface Band Structure

Bulk STO is a band insulator with 3.25 eV band gap, and it can be electron-doped

with Nb, La, or oxygen vacancies [7]. Its valence band is composed of 2p oxygen

orbitals, while the conduction band is composed of Ti 3d orbitals. Due to crystal

fields, the 3d orbitals split into t2g and eg symmetries. In bulk STO, the t2g orbitals

(dxy, dxz and dyz) are degenerate at the Brillouin-zone center Γ-point [28], as shown

in Fig. 1.3.

Although the band structure in bulk STO is well known, the interface adds compli-

cations that lead to uncertainty in the detailed band structure of the 2DEG. Notably,

the electric fields that confine the 2DEG to the interface are shaped by STO’s dielec-

tric permittivity. In the next section, we review what is known about the permittivity.

Many theoretical methods have been used to study the interface band structure,

including density functional theory (DFT)[29, 30], tight-binding models [31, 32, 33],

and Poisson-Schrodinger models [3, 34]. Early DFT calculations were done to explain

the origin of the 2DEG [29]. Popovic et al. [29] reported that the occupied conduction

bands are derived from Ti t2g orbitals, with the band minimum at the Γ point. Figure



1.2. STO INTERFACE BAND STRUCTURE 8

Figure 1.3: The band structure of bulk STO. At the Γ point, the lowest three con-
duction bands have Ti t2g character, while the top three valence bands
have O 2p character. Reprinted from [28], with the permission of AIP
Publishing.

1.4 shows the resulting subband structure that forms at the interface. The lowest

energy band has xy character with the wave function localized in the first Ti layer

at the interface [Ti1(xy) in Fig. 1.4]. Above the first band at the Γ point, there are

bands with xz and yz character [Ti1, Ti2, Ti3 (xz)], and high-energy xy bands whose

wavefunctions spread over several layers. Popovic et al. suggested that the first xy

band is sensitive to interface disorder, and that its charges are localized and do not

contribute to transport. They proposed that this can explain why the measured Hall

charge density (∼ 2−6.×1013 cm−2) is much smaller than the theoretically proposed

one (∼ 3.× 1014 cm−2) obtained from the polar catastrophe scenario. This proposal



1.2. STO INTERFACE BAND STRUCTURE 9

Figure 1.4: The calculated subband structure for LAO/STO interface and their
predominant orbital characters. Band dispersions are shown along
the interface (xy plane) with X = π/a(1, 0, 0) and M = π/a(1, 1, 0),
where a is the in-plane lattice constant. The inset shows the
resulting Fermi surface in the xy-plane. Figure taken from
[29][https://link.aps.org/doi/10.1103/PhysRevLett.101.256801].

has not, however, been verified experimentally.

Popovic’s calculations, as well as other DFT calculations, suffer from the limited

thickness of the STO layer used in simulations. The DFT computational cost increases

with system size, which leads to finite-size effects in the DFT results. Son et al.[30]

studied the effect of STO thickness on the charge distribution using thicknesses up to

30 unit cells. They reported that as the STO thickness increases, the charges move

from the interface region to inside the STO. This demonstrates that finite size effects

can be an important factor in simulations. Stengel [35] has compared first-principles
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methods with a model Hamiltonian, and found that both give similar band structures

[36]. This opens the door for the use of tight-binding and Poisson-Schrodinger models:

these simplified models can be used to study large systems extending hundreds of nm

away from the interface.

Tight-binding and Poisson-Schrodinger models are mostly used to study the doping-

dependent band structure. References [32] and [31] found that the charge density has

a big effect on the shape of the quantum well, and consequently on the band structure.

Reference [31]’s results are discussed in detail in the next section.

Experimentally, angle resolved photo-emission spectroscopy (ARPES) is the most-

used technique to directly measure the band structure. ARPES is a surface-sensitive

probe, and its measurements can give information about band masses and signatures

of spin-orbital coupling. Although ARPES seems not to be convenient for study-

ing STO-based interfaces, where the interesting part is buried under the surface,

Santander-Syro1 and co-workers successfully applied ARPES to investigate the sur-

face states of vacuum-cleaved STO [37]. They made the surface of STO metallic by

oxygen vacancy doping, and found that there is a 2DEG confined within a few unit

cells of the surface. Their results showed that t2g bands split into multiple subbands

at the surface, similar to what is shown in Fig. 1.4. The authors argued that the

2DEGs at STO surfaces and STO-based interfaces are not very different [28].

In summary, both calculations and experiments suggest that the 2DEGs occupy

the Ti t2g orbitals. The band structure consists of subbands with different orbital

symmetries. The lowest energy band has xy character and is confined to the interface.

The higher energy bands have xy, xz and yz character and spread across many Ti

layers. This picture applies at high density. The question of why the measured charge
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density is so much lower than predicted by DFT has not been answered, and it is not

clear whether this picture applies at all dopings.

1.3 Dielectric Properties of STO

STO is well known for its high dielectric permittivity [38, 39], which is a strong func-

tion of both the temperature and electric field. Figure 1.5 shows measurements of the

temperature dependence of the dielectric constant (ε) at different bias fields ranging

from 0 − 500 V/mm. At high T and zero field, ε(T)∼(T-Tc)
−1, where Tc ∼ 30 K

[40]. This equation implies that there is a ferroelectric transition at Tc; however,

the dielectric constant saturates before it diverges because quantum fluctuations sup-

presses the ferrolectric transition [41]. For this reason STO is known as a quantum

paraelectric.

The strong increase of dielectric permittivity at low temperatures was demon-

strated to be associated with the softening of a transverse optical phonon mode [42].

The optical mode involves the titanium and oxygen atoms moving in opposite direc-

tions (see Fig. 1.1). The frequency of this optical mode is found to be temperature-

dependent [42], and as the temperature decreases, the mode frequency decreases.

This is known as mode softening. The optical mode is also sensitive to the electric

field.

There are two important points about Fig. 1.5: first, the dielectric constant in-

creases non-linearly when both temperature and electric field are lowered; second, the

electric field-dependence of the permittivity disappears for temperatures greater than

50 K. Any dielectric model must be consistent with these two observations.

Several calculations have been made based on tight-binding or continuum models
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Figure 1.5: Temperature dependence of the real part of dielectric constant in ε′ STO
for various fields between 0 V/mm and 500 V/mm. ε′ is the real part of
the component εzz of the permittivity tensor. The solid lines represent
the fitting of experimental data to mean field equations. Figure taken
from [39][https://link.aps.org/doi/10.1103/PhysRevB.52.13159].

that build in relevant properties of the dielectric function [3, 31, 32, 34, 43]. These

phenomenological approaches have tended to focus on the nonlinear response of ε to

the electric field as a way to understand the doping-dependence of the charge profile

near the interface.

For example, Copie et al.[3] performed conductive-tip atomic force microscopy

experiments to study the charge density profile in cross-section LAO/STO samples

at high (300 K) and low (10 K) temperatures. They modeled their results by solving

the Poisson-Schrodinger equation for the interfacial charge distribution. They found

that a correct description of the charge profile depends on including the nonlinear
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field response in their model.

A more realistic treatment of the dielectric properties has been made by Khalsa

and MacDonald [31]. They used a tight-binding approach to study the effect of the

charge density on the electronic structure and charge confinement. They treated

the lattice polarization within a Landau-Devonshire approximation that inherently

includes nonlocal effects. In addition, they included a quartic term in the lattice

energy that represents the nonlinear response of the lattice to strong electric fields.

The charge profile and band structure were obtained by solving the tight-binding

Hamiltonian and the Poisson equation self-consistently. Their calculations have been

performed with 60 layers of STO, at fixed temperature (90K), and for different dop-

ings.

For low carrier densities (doping ≤ 1014 cm−2), they found that the charges spread

deeply into the STO (up to ∼ 50 layers). As the doping increases, the spread of the

charges decreases, and at very high doing (> 5 × 1014cm−2) half of the total charge

is confined in the first layer of STO. The behaviour of the charge confinement can

be understood from the relation between the electric field and dielectric permittivity.

At low doping, the electric field is too weak to confine the electrons. At high doping,

the electric field is strong enough that the nonlinear term is important and confines

strongly the 2DEG to the interface. These calculations demonstrate the interplay

between the dielectric permittivity and the band structure.

1.4 Outlook

In this thesis, we study the effect of dielectric screening on the electronic structure

of STO interfaces. Previous treatments of the STO dielectric function have ignored
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its temperature dependence, and have assumed that the response at the interface is

the same as in the bulk. In Chapter 2, we present our model for the interface. We

start with Khalsa and MacDonald’s model, and expand it to include temperature-

dependence. This model is for “ideal interfaces”, since we assume that the dielectric

permittivity is the same as in the bulk. Results for this model are presented in

Chapter 3. These results were published in Ref. [33].

Chapter 4 is motivated by an observed Lifshitz transition at low doping in the

STO-based interfaces. To explain the transition, we modify our polarization model

to accommodate a dead layer at the interface. The results for the doping-dependent

band structure are presented and are compared with experiments. Discrepancies be-

tween these calculations and experiments motivate us to study the effect of interfacial

strain on the dielectric function. In Chapter 5, we explore strain effects on the band

structure, and show that this may be the origin of the observed Lifshitz transition.

These results were published in Ref. [44]. Finally, a conclusion is presented in Chapter

6.
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Chapter 2

The Ideal Interface Model

This chapter gives a comprehensive description of our ideal-interface model for STO-

based interfaces. The word ideal here means that the interface has the same dielectric

properties as bulk STO. The interface model has two distinct pieces: a self-consistent

tight-binding description of the electronic bands and a Landau-Devonshire descrip-

tion of the polarization. The electronic Hamiltonian is used throughout this thesis,

while the polarization model is updated from chapter to chapter to accommodate

certain interface features. We begin with an overview of the model’s structure and

boundary conditions. Then, we discuss the model’s two pieces in more detail. Next,

we discuss both nonlocal and nonlinear contributions to the polarization in our ideal

dielectric model. At the end, we review our calculation methodology, and discuss

code convergence and acceleration.

2.1 Model Sketch and Boundary Conditions

Figure 2.1 shows the model’s structure. We consider a thick film of N STO layers

stacked in the [001] direction beneath an insulating cap layer. LAO is a typical cap

layer, (see Fig. 2.1), because it has a wider band gap than STO, 5.6 eV and 3.3 eV
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Figure 2.1: Sketch of a model STO/LAO interface. N unit cells of STO are stacked
below an insulating LAO film in alternating TiO2 and SrO layers in the
[001] direction. Electronic reconstruction, gating, and surface O vacancies
transfer charge from the top AlO2 layer to the interface, leaving a residual
2D charge density σs on the AlO2 surface that attracts STO conduction
electrons to the interface. The model is discretized along the z direction,
and assumes that the conducting TiO2 layers are separated by blocks of
dielectric; the polarization Piz and electric field Eiz are therefore defined
in the regions between the TiO2 layers. The conduction electrons in layer
iz have 2D charge density σfiz , while the bound charge density due to the
polarization is σbiz = Piz − Piz+1. We assume translational invariance in
the planes, so the polarization, field, and electron density depend only
on the layer index iz. An extra fictitious dielectric layer (iz = N + 1)
is added to facilitate handling the boundary condition PN+1 = 0 at the
bottom of the STO substrate.
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respectively. We assume that there is a residual positive charge σs (indicated by “+”

signs) on the AlO2 surface originating from any of the possible doping scenarios that

are discussed in the previous chapter, such as electronic reconstruction. This residual

charge creates an electric field that confines the STO conduction electrons to the

interface.

In order to properly define the electric field and polarization inside the STO, the

model is discretized along the z direction (perpendicular to the interface). We treat

the STO as a set of conducting TiO2 planes separated by layers of dielectric. As shown

in Fig. 2.1, the polarization and electric field are defined in the dielectric layers, while

the charge density is confined to the 2D TiO2 planes.

We assume that we have translational invariance in the planar directions, so that

the polarization, electric field, and charge density depend only on the layer index iz.

Then, by symmetry, the polarization and electric field vectors P and E must point

in the z direction. The surface bound charge is defined as σb = P · n. Thus, the 2D

charge density in the izth TiO2 plane has two contributions: a free charge density σfiz

due to the conduction electrons and a bound charge density σbiz = Piz − Piz−1 due to

the polarization gradients.

We require boundary conditions for both the electric field and the polarization. In

the layered geometry, and for a fixed σs, the electric field in the STO is independent

of the dielectric permittivity of the cap layer. For simplicity, then, we take the

polarization to be zero above the interface (ie. P0 = 0) and the electric field above

the first STO layer is therefore (by Gauss’ law) E0 = σs/ε0. At large z, we expect

the electric field and the polarization to be screened by the free charge density: to

handle this, the electric field in the Nth STO layer is zero (ie. EN = 0), and we add
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a fictitious (N + 1)th layer in which σfN+1 = PN+1 = 0.

2.2 Electronic Hamiltonian

The model assumes that there are three types of charge density: the positive surface

charge density σs at the LAO surface, the free electron charge density σfiz and 2D

bound charge density σbiz . Thus we can write the effective Hamiltonian for the STO

conduction electrons

Ĥeff = Ĥ0 + V̂ ext + V̂ SC[σf , σb], (2.1)

where Ĥ0 is the tight-binding Hamiltonian for the inter-orbital hopping, V̂ ext is the

external potential energy due to the charge at the LAO surface, and V̂ SC[σf , σb]

represents the self-consistent electrostatic potential energy due to both the free charge

density σfiz and the bound charge density σbiz at the TiO2 planes, respectively.

2.2.1 The Tight-binding term

STO has a 3.3 eV band gap between filled O 2p orbitals and empty Ti t2g orbitals. For

an electron-doped interface we therefore include only the t2g orbitals in our model.

We adopt a tight-binding Hamiltonian with three orbitals per unit cell, having dxy,

dxz, and dyz symmetry. We emphasize here that although the t2g orbitals appear

explicitly in our Hamiltonian, the p− d oxygen bonding orbitals appear implicitly, as

all the hopping between neighboring t2g orbitals occurs through the O 2p orbitals.

We start here with a noninteracting Hamiltonian for the STO

Ĥ0 =
∑
i,j

∑
αβσ

c†iασtiα,jβcjβσ, (2.2)
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where i, j labels unit cells, and α, β are for orbital type (dxy,dxz,dyz). ciβσ is the

annihilation operator for an electron with spin σ in unit cell i and orbital type β, and

c†iασ is the corresponding creation operator. tiα,jβ = 〈iα|H0|jβ〉 is the hopping matrix

element of the periodic crystal Hamiltonian H0 = −~2
2m
∇2 + V (r) between orbital α in

unit cell i and orbital β in unit cell j, where V (r) is the lattice potential.

We assume we have translational invariance with periodic boundary conditions

in the x and y directions, and apply open (hard-wall) boundary conditions in the z

direction. This means there is no hopping through the interface. To diagonalize the

Hamiltonian, by Fourier transforming in two dimensions (x and y) to go to k-space,

we define

cjβσ =
1√
Nk

∑
k

eik·rβcjzkβσ

c†iασ =
1√
Nk

∑
k′

eik
′·rαcizk′ασ, (2.3)

with Nk is the number of k-points in the x- and y-direction, k = (kx, ky) is a 2D

wavevector, and rβ is a 2D vector in real-space such that rβ = a(xjβ, yjβ).

Since i = (ix, ix, iz), we replace
∑

i with
∑

ixiyiz
. Substituting Eq. (2.3) in

Eq. (2.2), and considering nearest neighbors, the tight-binding term is

Ĥ0 =
∑
iz ,jz

∑
k

∑
αβσ

c†izkασtizα,jzβ(k)cjzkβσ, (2.4)

where iz is layer index, and tizα,jzβ(k) is now an element of the the tight-binding
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matrix,

t(k) =



E(k) T . . .

T E(k)

. . .

E(k) T

T E(k)


, (2.5)

where E(k) and T(k) are matrices in the orbital basis. Considering only hopping

between the same orbital types, we obtain

E(k) =


ε′xy(k) 0 0

0 ε′xz(k) 0

0 0 ε′yz(k)

 (2.6)

T =


−t⊥ 0 0

0 −t‖ 0

0 0 −t‖

 , (2.7)

and

ε′xy(k) = εt2g − 2t‖(cos kxa+ cos kya),

ε′xz(k) = εt2g − 2t‖ cos kxa− 2t⊥ cos kya, (2.8)

ε′yz(k) = εt2g − 2t⊥ cos kxa− 2t‖ cos kya,

are planar dispersions. Here, εt2g is the on-site orbital energy (which can be set to

0), and a is the STO lattice constant. For a given symmetry of t2g orbital there

are two distinct hopping processes between nearest-neighbour Ti atoms: the hopping
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Model parameters

t‖ 0.236 eV
t⊥ 0.035 eV
a 3.9 Å
M 24 amu
Q 8.33e
ω0 2.5× 1013 s−1

ω1 1.7× 1013 s−1

α1 1.15a
α2 5a
ε∞ 5.5ε0
T0 1.46× 104 K
Ts 15 K
λ 1.45
γ 63 eV·Å−4

Table 2.1: Model parameters used in our calculations. Values are taken from
Ref. [31] except for T0, ξ, Ts, and γ, which are obtained by fitting to
the temperature- and field-dependence of the experimental dielectric sus-
ceptibility (Appendix B).

amplitude is t‖ between Ti atoms in the same plane as the orbital (eg. the x-y plane

for dxy orbitals), while it is t⊥ perpendicular to the plane of the orbitals (eg. along the

z direction for dxy orbitals). Since nearest-neighbor dxy orbital wavefunctions overlap

more in the x-y plane than along the z-axis, t‖ � t⊥. Values for t‖, t⊥, and other

model parameters are given in Table 2.1.

2.2.2 The Potential Energy term

The charges at the LAO surface (σs) create an electrostatic potential inside the STO,

which is called in our model the external potential energy V ext. Assuming that

this surface charge is uniformly distributed, we obtain a simple description for the
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potential energy of an electron in the confining field,

V̂ ext =
σse

2ε∞

∑
k

∑
izασ

(z + dLAO)c†izkασcizkασ, (2.9)

where ε∞ is the high frequency dielectric constant due to electronic screening (dis-

cussed in the next section), z = iza is the distance from layer iz to the interface, and

dLAO is the thickness of the LAO film.

The self-consistent Hartree potential energy V̂ [σf , σb] due to σfiz and σbiz can be

represented as

V̂ SC[σf , σb] = e
∑
iασ

φiασn̂iασ, (2.10)

where φiασ = 1
4πε∞

∑
j

a2

|ri−rj |σj is the electron-electron potential with σj = σfj + σbj

is the total 2D charge density, and n̂iασ = c†iασciασ is the charge density operator for

unit cell index i, orbital type α and electron spin σ.

We simplify φiασ by assuming that each layer has a homogeneous charge distribu-

tion. This means that the potential in each plane is constant and depends only on

the layer index. This leads us to write the potential as

φizασ =
∑
jz

∑
ρ

1

4πε∞

a2√
ρ2 + (iz − jz)2a2

σjz , (2.11)

where ~ρ is a 2D vector in the x and y-direction. Then,

φizασ =
1

4πε∞

∑
jz

[ ∫ 2π

0

dθ

∫ R

0

1√
ρ2 + (iz − jz)2a2

ρdρ
]
σjz . (2.12)

where R is a cutoff. We add a constant to Eq. (2.12) to make the interface the zero
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of potential. Then, we integrate Eq. (2.12), and take R→∞, giving

φizασ =
a

2ε∞

∑
jz

(|iz − jz| − jz)σjz , (2.13)

and the potential energy due to free charges in k-space is

V̂ SC[σf , σb] =
ea

2ε∞

∑
k

∑
izασ

∑
jz

(|iz − jz| − jz)σjz n̂kizασ,

The total 2D charge density σjz is obtained by calculating both the bound and

free charge densities. The 2D bound charge in layer jz is

σbjz = Pjz − Pjz+1 (2.14)

where the polarization Pjz is obtained from the Landau-Devonshire model discussed

in the next section.

The 2D free charge density in layer jz is σfjz = −e∑β njzβ/a
2, where njzβ is the

electron occupation number for orbitals of type β in layer jz. The charge density

(Appendix A) is calculated self-consistently from

njzβ =
2

Nk

∑
k

∑
n

|ψjzβ,n(k)|2f(εnk), (2.15)

where the factor of 2 is for spin, εnk and ψjzβ,n(k) are the energy eigenvalues and

eigenstates of Ĥeff (Eq. (2.1)) respectively, and f(εnk) is the Fermi-Dirac distribution

function

f(εnk) =
1

1 + exp
[
(εnk − µ)/kBT

] (2.16)
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with kB the Boltzmann constant, T the temperature of the STO in Kelvin and µ the

chemical potential.

2.3 Polarization Model

The high polarizability of STO is due to the presence of a soft transverse optical

phonon mode that is associated with an incipient ferroelectric transition. The tran-

sition is suppressed by quantum fluctuations, so that the dielectric susceptibility

saturates at a characteristic temperature Ts ∼ 15 K (see Fig. 1.5). Here, the induced

polarization Pi is defined for unit cell i = (ix, iy, iz) as

Pi =
Qui
a3

, (2.17)

where Q is the effective charge associated with the soft mode, and ui is the normal-

mode coordinate representing the amplitude of the lattice distortion, projected onto

the soft optical phonon eigenvector [45]. We assume that this polarization is uniform

within each atomic layer, and depends only on iz.

To obtain the polarization, we use a simple quartic free energy, which has the

form[31]

U =
1

2

∑
i,j

ui ·Dij · uj −Q
∑
i

Ei · ui +
γ

4

∑
i

|ui|4 (2.18)

where Dij is a matrix that contains the force constants between the unit cells located

at i = (ix, iy, iz) and j = (jx, jy, jz), and γ is constant of proportionality for the non-

linear response. This latter term is important only at high electron densities where

the electric field is very strong. In Eq. (2.18), the first term represents the linear

response of the lattice to an external electric field, the second term represents the
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interaction between polarization and the electric field, and the third term represents

the non-linear response to the electric field. The term Dij includes the nonlocal

response of the polarization, which means that the dielectric function is nonlocal (the

local case is discussed in the next section).

The electric field Ei is the total electric field inside the STO. To obtain it, we

start from Poisson’s equation

ε0∇ · E(z) = ρ(z)−∇ ·P(z), (2.19)

where ε0 is the permittivity of free space, and ρ(z) is the charge density. The po-

larization here has two contributions: the lattice polarization Plat, and the atomic

polarization Pat [46]. Assuming that the atomic polarization is frequency indepen-

dent, i.e.

Pat = ε0χ
atE, (2.20)

where χat is a frequency-independent susceptibility, we obtain

ε0(1 + χat)∇ · E(z) = ρ(z)−∇ ·Plat(z). (2.21)

We identify ε0(1 + χat) = ε∞ as the optical dielectric constant and write

ε∞∇ · E(z) = σsδ(z − zs) +
∑
jz

σfjz(z − zjz)−∇ ·Plat(z). (2.22)

where zs = dLAO is the location of the LAO surface, z = iza, and zjz = jza. Equation

(2.22) tells us that the total electric field in the STO has three sources: the surface

charge density (σs), the free charge density (σf ), and the bound charge density,
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−∇ ·Plat(z). Because the field −Plat(z)/ε∞ is opposite to Plat, it is often referred to

as the depolarizing field.

Assuming translational invariance, we can write

U =
NxNy

2

∑
izjz

uizDizjzujz −NxNyQ
∑
iz

uizEiz +
γNxNy

4

∑
iz

u4
iz (2.23)

where Nx is the number of unit cells in the x-direction, Ny is the number of unit cells

in the y-direction, and Dizjz = Dk=0,izjz . The free energy equation can be written as

U

N2D

=
1

2

∑
izjz

uizDizjzujz −Q
∑
iz

uizEiz +
γ

4

∑
iz

u4
iz , (2.24)

where N2D = NxNy .

The potential energy can be then minimized by taking the derivative with respect

to ulz and setting it equal to zero, from which we obtain the constituent equation

QElz =
∑
jz

Dlzjzujz + γu3
lz . (2.25)

for ulz . We then use Eq. (2.17) to calculate the polarization.

Dizjz can be determined by performing the inverse Fourier transform as

Dizjz =
1

N

∑
kz

eikz(zi−zj)D(k = 0, kz), (2.26)

where D(k = 0, kz) is defined by fitting the measured soft-mode phonon dispersion to

the empirical formula

D(k = 0, kz) = M
[
ω2

0 − ω2
1e
−α

2
1k

2
z

2 − ω2
2e
−α

2
2k

2
z

2

]
, (2.27)
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Figure 2.2: Equation (2.27) as function of kz at low (10 K), and high (300 K) tem-
peratures.

where M is the reduced mass for the mode [31], the constants ω0, ω1, and α1 are

fitting parameters used to reproduce the measured phonon dispersion, and ω2 and

α2 are used to fit the low temperature phonon dispersion, shown in Table 2.1 . This

formula was originally proposed by Khalsa and MacDonald [31].

In our model, we propose that ω2 is responsible for the temperature dependence

of D(k) at k = 0, and accordingly, we obtain a formula (Appendix B) for ω2 as a

function of temperature

ω2
2 = ω2

0 − ω2
1 −

Q2(TQ)λ

Mε0a3C
, (2.28)

where TQ is an effective temperature, C is a constant, and the power λ = 1.45 is
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chosen to improve the quantitative fit to experiments. Table 2.1 shows the fitting

parameters [31]. Figure 2.2 shows Eq. (2.27) at low and high temperatures.

2.4 Local and Nonlocal Dielectric Functions

In the previous section, we introduced the interface model. In the remainder of

this chapter, we discuss some of the assumptions behind the model. The dielectric

response, Eq. (2.25), contains both nonlocal and nonlinear contributions to the polar-

ization. The nonlinearity has been discussed previously [31, 47, 43] and was generally

found to be important only near the interface for σs ≥ 1014 e/cm2, consistent with

our findings in Chapter 3. The nonlocal contribution to the polarization has been

included previously only by Khalsa and MacDonald [31]. Other studies such as [43]

included only the local dielectric response, due to its simplicity in calculations. Here,

we illustrate the importance of the nonlocal response by comparing to a local dielectric

model.

We compare the charge density profile obtained from the nonlocal matrix of force

constants Dizjz , defined previously, with the one obtained from a local matrix D̃izjz =

D̃izδiz ,jz . For purposes of comparison, we choose D̃iz such that it gives the same

linear response for a uniform electric field as Dizjz . If the electric field Elz and normal

coordinate ujz are independent of position in Eq. (2.25), we obtain in the weak-field

limit

QE =
∑
jz

Dizjzu

= Dkz=0u, (2.29)
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Figure 2.3: Comparison of local and nonlocal models for the dielectric response. The
charge density (n(z) per unit cell with z = iza) profile for the two models
is shown at temperatures (a) T = 300 K, (b) 100 K, (c) 50 K, and (d)
10 K with σs = 0.1e/a2. The first 60 layers of an L = 200 layer thick
STO slab are shown.

and we therefore define D̃iz = Dkz=0.

Figure 2.3 shows the charge density profile (calculated as described in sec. 2.5) at

different temperatures for local and nonlocal force constants. At 300 K, the two give

nearly the same charge density profile [Fig. 2.3(a)]. However, as the temperature is

lowered, charge moves away from the interface more rapidly for the local case than

for the nonlocal case [Fig. 2.3(b)-(d)]. Far from the interface, both cases yield nearly

identical results as found in Ref. [43]; this is because we defined D̃iz such that it gives

same homogeneous response as Dizjz .
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The behavior shown in Fig. 2.3 can be understood simply. The dielectric response

is connected to a soft optical phonon mode with dispersion ωk satisfying Dk = Mω2
k

where M is the effective mass of the mode. At high temperatures, ωk has a relatively

smooth dispersion as shown in Fig. 2.2; however the dispersion, and consequently

Dk, develops a sharp feature at low T as the mode softens near k = 0 [42] [see

Fig. 2.2]. From the properties of Fourier transforms, it follows that the range of Dizjz

is therefore greater at low T than at high T , or equivalently that the response is more

local at high T . This accounts for the similarity between the two models at 300 K.

The different charge profiles that emerge at low T indicate that the local dielectric

function is more effective at screening the electric field in regions where there are

strong field gradients.

In summary, Fig. 2.3 shows that the local approximation for Dizjz is not suitable

at low temperature. Therefore, nonlocal corrections can not be ignored.

2.5 Numerical Calculations

In our calculations, we perform a self-consistency cycle for σfiz and σbiz , which involves

solving Eqs. (2.15) and (2.25) for a given electric field to obtain the electron den-

sity and lattice polarization, and then updating the electric field from the resulting

potential [see Fig. 2.4]. Here, our calculation methodology aims to minimize the com-

putational time and accelerate the self-consistency cycle. There are many factors that

influence the calculations such as the number of k-points, the thickness of the STO,

and the structure of the self-consistency calculations.
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Initial Guesses (φr(z), ur(z)), (r=0)

Calculate the electric field Er[φr]

Calculate ur(z) using Eq.(2.25)

Calculate σb[ur] using Eqs. (2.14 & 2.17)

Calculate σf [φr] using Eq.(2.15)

Calculate φout[σf , σb] using Eq.(2.13)

|φout(z)− φr(z)| < acc?

Mix the potential, φr+1 = φr + ν[φout − φr]

End

yes

No

Figure 2.4: Flow chart for self-consistent calculations. Chart shows simple mixing.

2.5.1 Number of k-points and Atomic Spin-Orbit Coupling

To solve Eq. (2.15), we use a LAPACK subroutine (DSYEV) [48] to get the Hamilto-

nian eigenvalues and eigenvectors. Calling this subroutine for each k-point consumes

a lot of time, and the number of k-points becomes a major factor. However, the

k-dependence becomes trivial if we ignore atomic spin-orbit coupling (ASOC). This

eliminates mixing of the t2g orbitals and makes the eigenvectors independent of k
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[49, 50, 31, 36]. (The derivation of the ASOC term is shown in Appendix C.) Ig-

noring the contributions to the Hamiltonian that mix different orbital symmetries

means that each band has a well-defined orbital character. As a consequence, the

band index n can be written in the form ñα where α is one of xy, xz, or yz and ñ

is an integer labeling bands of type α (the 1xy band is the lowest-energy xy orbital

character band, etc.) [see Fig. 2.5.(a) and (c)].

Figure 2.5 compares the band structure for the STO thin film with and without

ASOC at low doping (σs = 0.03 e/a2) and intermediate doping (σs = 0.1 e/a2). We

performed theses calculations at low temperature (T=10 K) and with the strength of

the ASOC set to ξSOC= 19.3 meV [36].

Figure 2.5.(a) and (c) show the band structure without ASOC. The key features

of these figures are (i) the lowest-energy band has xy character, (ii) as the doping

increases, the 1xy band splits from the other bands, which form a quasi-continuum.

These features will be discussed at length in Chapter 3.

Figure 2.5.(b) and (d) show that, while the details of the band structure are

modified by ASOC, the two key features listed above are not. For this reason, ignoring

ASOC in our calculations does not affect our conclusions in Chapter 3.

We ignore also Rashba spin-orbit coupling in our calculations. Caviglia et. al

[50] found that there is Rashba SOC. Its strength depends on gate voltage, and is

maximum near the Lifshitz transition. Zhong et. al [36] showed that the Rashba SOC

comes from a combination of ASOC and lattice deformations at the interface. The

calculated spin splitting is only a few meV, but becomes important for transport when

the Fermi level lies near the bottom of a sub-band with low weight at the interface.

Again, the neglect of Rashba SOC will not affect on conclusions in Chapter 3.
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Figure 2.5: (a) and (c) show the band structure for STO thin film without ASOC
for doping σs = 0.03 e/a2 and σs = 0.1 e/a2, respectively. (b) and (d)
show the corresponding band structure with ASOC. The results are for a
30-layer STO thin film, with 36 k-points, and at T=10 K.

By ignoring ASOC, we gain a large computational advantage. The lack of orbital

mixing leads to a particularly simple form of the Hamiltonian such that the eigenvec-

tors ψjzβ,n(k) are independent of k. In this form, we break the Hamiltonian [Eq. (2.1)]

into three terms that are block diagonal in the orbital type α,

Ĥeff =
∑
iz ,jz

∑
k

∑
ασ

c†izkασ[Heff
α ]cjzkασ, (2.30)
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with

Heff
α = H1α +H2α(k), (2.31)

where H1α is k-independent, but depends on the layer potentials

H1α =



φ1 −t 0 . . .

t φ2 0 . . .

. . .

−t φn


, (2.32)

with φi the potential in layer i, and t either t‖ or t⊥ depending on orbital type.

H2α is k-dependent, but doesn’t depend on the potential

H2α(k) = ε′α(k)



1 0 0 . . .

0 1 0 . . .

. . .

0 1


, (2.33)

with ε′α(k) given by Eq. (2.8), and depends on orbital α.

Let S be the matrix that diagonalizes the Hamiltonian H1α, then

S†[H1α +H2α(k)]S = S†H1αS + ε′α(k)S†IS = εñα + ε′α(k)I, (2.34)

where I is the identity matrix. Thus, once S and εñα are obtained from H1α, we can

obtain eigenvalues for any k from

εñαk = εñα + ε′α(k). (2.35)
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Figure 2.6: Finite-size effects on the electron density n(z), z = iza. Results are shown
for (a) 300 K and (b) 10 K. The electron density is given in units of
electrons per unit cell. Results are shown for STO thicknesses of N = 60,
100, and 200 layers. The 2D charge density is σs = 6.5 × 1013 e/cm2

(corresponding to 0.1 e/a2). Inset. A zoom-in of the charge profile at
300K is shown.

We therefore only need to diagonalize the Hamiltonian once per k-sum. The resulting

speed-up allows us to study large system sizes of up to 200 layers with 200× 200 k-

points. By comparison, DFT calculations are typically restricted to small system

sizes, in the range of 5 to 30 unit cells, and 8× 8 k-points.
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2.5.2 Finite-Size Effects: STO Film Thickness

Most previous numerical simulations (including DFT and tight-binding models) have

been restricted to a few tens of STO layers, and it is unclear to what extent they

are affected by the thickness of the STO slab[29]. Figure 2.6 compares the electron

density n(z) inside the STO slab for different slab thicknesses (L = 60, 100, and 200

layers) at high and low temperatures. For qualitative purposes, we can divide the

charge profile to two regions: one is close to the interface (z < 10a) and has most of

the total charge, and the other (z > 10a) contains a long tail that extends deeply into

the STO slab. Near to the interface, the distribution of charges is nearly identical

for all thicknesses at 300 K [Fig. 2.6(a)], and depends only weakly on thickness at

10 K [Fig. 2.6(b)]. In contrast, the shape of the long tail changes with the system

size, particularly at low T . We note, however, that the total amount of charge in the

tail region is roughly independent of slab thickness. Finite-size effects are therefore

important when the detailed structure of the tails is of interest.

2.5.3 Anderson Mixing

As mentioned before, the charge density and the normal mode displacement are ob-

tained self-consistently, and both of them depend on each other. This complicates the

calculations and makes them numerically unstable [31]. To overcome this problem,

mixing methods are often used. Mixing processes, which are known also as accelera-

tion methods, are applied to iterative calculations to improve the rate of convergence.

This is especially important given that the convergence of many iterative problems

is slow [51]. In our case, we simply do not obtain convergence at all without mixing.

We discuss here two methods: simple and Anderson mixing.



2.5. NUMERICAL CALCULATIONS 37

In our calculations, simple mixing is applied to the potential energy. In the simple

mixing method, the input energy for the forthcoming iteration (r + 1) is calculated

by linearly mixing the input from the current iteration, φr, with the output from

Eq. (2.13), φout, [see Fig. 2.4]

φr+1 = φr + ν[φout − φr]. (2.36)

where ν is the mixing parameter. In Eq. (2.36), ν = 0 means that φr+1 is not

updated, and ν = 1 means that φr+1 is given by Eq. (2.13). Thus, the value of ν in

our calculation is between 0 and 1.

We find that simple mixing is useful for small numbers of STO layers and low

doping. However, once we increase N or σs, the code becomes unstable and does not

converge. This leads us to try Anderson mixing. Anderson mixing is a well known

method in self-consistent calculations. It obtains φr+1 by mixing φout with a small

number of previous iterations. This decreases the code instability.

In this method, we construct two m×N arrays, where N is the number of layers,

and m is the number of recent values of φr and φout to keep (Typically we take m = 4).

From these, we calculate a so-called optimal input value

φ̄r = φr +
m∑
i=1

θri (φ
r−i − φr), (2.37)

and the associated difference

F̄ r = F r +
m∑
i=1

θri (F
r−i − F r). (2.38)

where F r = φout−φr is a measure of how close one is to convergence. The coefficients
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θri are obtained by minimizing the norm 〈F̄ r|F̄ r〉. Minimizing with respect to θri leads

to the linear equation [52]

m∑
i=1

〈F r − F r−j|F r − F r−i〉θri = 〈F r − F r−j|F r〉 ∀j=1,...,m. (2.39)

Equation (2.39) is then solved for θri by using a LAPACK subroutine (dgesv). We

linearly combine these two optimal input and difference values to calculate the new

input for the subsequent iteration as

φr+1 = φ̄r + νF̄ r. (2.40)

By using this method, we find that our code becomes stable and converges quickly.

2.6 Summary

This chapter discussed the ideal interface model. The model employs a tight-binding

approximation for the electrons, in which interactions are treated within a self-

consistent field approximation. The electrons couple to the polarization charge density

−∇·P where the polarization P is calculated from a Landau-Devonshire energy that

depends explicitly on temperature and electric field. We included both the nonlocal

and nonlinear contributions to the polarization. The nonlocal contribution was shown

to be important for describing the charge density accurately near the interface.

The main approximation in our model is the neglect of atomic spin-orbit coupling.

While details of the band structure are affected by this approximation, the broad

trends are not.

Our model ignores also the renormalization of the band masses by electron-phonon
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[53] and electron-electron interactions [54], and the effects of antiferrodistortive ro-

tations of the unit cell below temperatures of 105 K [55, 56]. While these will affect

our results quantitatively, the qualitative aspects of the results should be robust.

The next chapter, Chapter 3 discusses results for the ideal interface model at

different temperatures and doping. In Chapters 4 and 5, the polarization model will

be modified to include the effects of structural distortions at the interface.
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Chapter 3

Temperature-Dependent Band Structure of Ideal

STO Interfaces

This chapter shows and discusses results of the ideal interface model that is given in

Chapter 2. First, the temperature-dependence of the charge distribution is described

in Sec. 3.1 for low, intermediate, and high electron densities (relative to typical exper-

imental densities). These results are then discussed in the context of the temperature-

and doping-dependent band structure in Sec. 3.2. One direct experimental measure of

the band structure is angle-resolved photoemission (ARPES), and in Sec. 3.3 we focus

on the implications of our calculations for ARPES. Finally, in Sec. 3.4 we propose

that 3D tail states, which are ubiquitous in our calculations, form the high-mobility

component of the electron gas that is widely observed in magnetotransport experi-

ments.

Early DFT calculations established [34] that the interface breaks the cubic sym-

metry of the ideal STO lattice, so that a qualitative difference emerges between dxy

orbitals (which are oriented parallel to the interface) and dxz/yz orbitals. The hop-

ping amplitude along the z axis is t⊥ for dxy orbitals and t‖ for dxz and dyz orbitals.



41

Since t‖ ∼ 10t⊥, this corresponds to an effective mass along the z direction that is

10 times larger for xy bands (so they are called heavy bands in the z-direction) than

for xz or yz bands (so-called light bands in the z-direction). This difference sets the

energy ordering of the bands, such that the lowest-energy band has xy symmetry and

is tightly confined to within a few unit cells of the interface; the lowest dxz/yz bands

are higher in energy and extend farther from the interface.

In an ideal polar catastrophe model, a charge transfer of 0.5 electrons per unit

cell is needed to suppress the potential divergence in the polar cap material. The

ideal value of 0.5 e/a2 has been measured for GdTiO3/STO interfaces [57], and only

sporadically in LAO/STO interfaces [58, 59]; in most conducting interfaces typical

experimental values of the electron density measured by the Hall effect [60, 61] range

from 1013 to 1014 e/cm2. The charge density can be further modulated by a gate

voltage, and we therefore perform calculations for three different doping levels that

cover common experimental and theoretical values of the 2D charge density: σs =

0.5 e/a2 (3.3×1014 e/cm2), as predicted by the polar catastrophe model; σs = 0.1 e/a2

(6.5 × 1013 e/cm2), which is a typical doping found in LAO/STO interfaces; and

σs = 0.05 e/a2 (3.3×1013 e/cm2), which is approaching the metal insulator transition

that is observed at ∼ 1013 e/cm2. Several calculations have explored the doping

dependence of the electronic structure at low T [3, 35, 31, 32, 34], and we observe

similar trends with doping in our low-T calculations. The main new results in this

chapter refer to how the T-dependence of the electronic structure evolves with doping.
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3.1 Effect of Temperature on the Charge Distribution

In this section, we examine the temperature-dependence of the charge distribution

for the three representative cases listed above. To minimize finite-size effects, all

calculations are for an STO slab of thickness N = 200 layers (see Section 2.5.2). We

show that there is a pronounced shift of charge density from 2D quantum states that

are confined to within ∼ 4 nm of the interface into 3D tail states that extend hundreds

of unit cells into the STO; the degree of this shift depends strongly on doping.

Figure 3.1(a)-(c) shows the electron density, n(z) =
∑

β nizβ (where z = iza), for

10 K and 300 K and for low (0.05 e/a2), intermediate (0.1 e/a2), and high (0.5 e/a2)

electron densities. As we discuss below, the charge distribution is a mix of surface

states with strongly 2D character and tails with 3D character. This is particularly

evident in the low-T results in Fig. 3.1, which show a clear distinction between surface

and tail regions. At high T , the distinction blurs, and n(z) drops off rapidly in the

tail region. The crossover between surface and tail occurs at z ≈ 10a (z ≈ 4 nm), and

for discussion purposes we divide the profile into region A (z ≤ 10a) and region B

(z > 10a). The charge densities nA and nB for each region are plotted as a function

of T in Fig. 3.1(d)-(f).

There are two key points made by Fig. 3.1. The first is that the fraction of the

total electron density in region A depends on σs. At 300 K, about 90% of the charge

lies in region A for high σs, whereas only about half of the total charge lies in region

A at low σs.

The second point is that, except at the highest doping levels, n(z) depends strongly

on T : the charge density near the interface decreases as the temperature is lowered

while it increases in the tails. The contrast between low and high charge densities is
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Figure 3.1: Electron density n(z) per unit cell inside an STO slab at different tem-
peratures and dopings. Results are for (a) σs = 0.05 e/a2, (b) 0.1 e/a2,
and (c) 0.5e/a2 at T = 10 K and T = 300 K. The vertical dashed lines
define regions A (z ≤ 10a) and B (z > 10a), which roughly correspond
to the interface and tail regions. (d)-(f) The total 2D electron density in
regions A and B as a function of temperature. The figure shows the first
60 layers of an L = 200 layer STO slab. Figure from [33].

striking: nA doubles between 300 K and 10 K for low charge density (σs = 0.05e/a2),

but changes by only 10% for high charge density (σs = 0.5e/a2). Focusing on the

middle “typical” value of σs = 0.1e/a2, we note that about 70% of the total electron

density lies in region A at 300 K, in agreement with Ref. [3], and slightly under half

remains at 10 K.

One of the most striking features of Fig. 3.1 is that the profile of n(z) near the

interface is almost independent of T at the highest charge density, but is strongly
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T -dependent at the lowest charge density. This trend is connected to the nonlinearity

of the dielectric response in strong electric fields. When σs is large, the electric fields

near the interface are large, and the nonlinear term (γu3
lz

) in Eq. (2.25) dominates

the linear term (
∑

jz
Dlzjzujz). Because we have taken γ to be T -independent, n(z)

is also T -independent in this region. The electric field decreases both as one moves

away from the interface, and as one decreases σs; in both regimes, n(z) becomes

temperature-dependent because the nonlinear contribution to the dielectric response

is small.

It should be noted that in the nonlinear regime, the lattice polarization due to

an electric field is proportional to γ−1/3 [from Eq. (2.25)], so that γ must change

by a relatively large amount to have a significant effect on the charge distribution.

Indeed, γ has been measured experimentally[38] below 60 K and was found to be

roughly constant down to 30 K, and then to increase by about 50% as the system was

further cooled. This corresponds to a change of only 15% in the nonlinear dielectric

screening. Unless γ changes significantly at higher T , the assumption of constant γ

is reasonable.

To understand better the charge deconfinement that occurs at low temperatures,

we plot the electronic potential energy, the electric field, and the polarization at high

and low temperatures in Fig. 3.2 for the intermediate value of σs. Figure 3.2(a) shows

that, in region A, there is a triangular quantum well that confines electrons in 2D

quantum states near the interface at all temperatures. In contrast, the potential in

region B is strongly temperature dependent, with a crossover from a deep well at high

temperature to a nearly flat potential at 10K. This strong T -dependence is connected

to the linear dielectric function, which changes by two orders of magnitude between
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Figure 3.2: Details of the self-consistent solution at low and high temperature for
σs = 0.1e/a2. (a) The self-consistent potential energy, (b) the electric
field, and (c) the polarization are shown at 300 K and 10 K. Figure from
[33].

300 K (ε ≈ 300ε0) and 10 K (ε ∼ 104ε0).

For comparison, we have performed calculations with a constant permittivity ε =

300ε0 (Fig. 3.3). This is obtained by replacing Plat(z) by εE(z) in Eq. (2.22). As

shown in Fig. 3.3, the temperature has no effect at high doping, but it matters at

low doping. However, the charge density in Fig. 3.3.(a) is more confined at low

temperature, which is opposite to what is shown in Fig. 3.1.(a). This shows that the

temperature-dependence in Fig. 3.1.(a) comes mainly from the dielectric function

Because of the large value of ε, the electric field is strongly screened in region B
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Figure 3.3: Electron density n(z) per unit cell inside an STO slab at different tem-
peratures and dopings with constant ε = 300ε0. Results are for (a)
σs = 0.05e/a2, (b) 0.1e/a2, and (c) 0.5e/a2 at T = 10 K and T = 300 K.

at low temperature [Fig. 3.2(b)]. According to Gauss’ law,

ε∞
∂E(z)

∂z
= −en(z)− ∂P (z)

∂z
(3.1)

where P (z) is the lattice polarization, E(z) is the electric field, and ε∞ = 5.5ε0 the
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optical dielectric constant. Because the electric field is small in region B, we have

en(z) ≈ −∂P
∂z

, (3.2)

at T = 10 K.

This means that the electric field generated by the conduction electrons in region

B is nearly compensated by the lattice polarization. The polarization P (z), which

is related to the normal coordinate u(z) for the soft phonon mode by Eq. (2.17), is

shown in Fig. 3.2(c). Here, we see that P (z) decays with z more slowly at low T than

it does at high T , consistent with enhanced dielectric screening at low T .

For completeness, we plot the charge density for intermediate doping as a function

of orbital type in Fig. 3.4. This figure shows that, while the interfacial dxy electron

density nxy(z) is weakly temperature dependent, nxz(z) and nyz(z) evolve strongly

with T near the interface. In particular, the dxz and dyz bands combined account for

80% of the charge transfer out of the first 10 layers as the temperature decreases. The

different sensitivities of nxy(z) and nxz/yz(z) to temperature follow from the different

mass anisotropies of the three bands: both the xz and yz bands are light along the

z direction while the xy bands are heavy; the xz and yz wavefunctions are therefore

more extended along z than the xy wavefunctions. It is unsurprising that the xz and

yz bands are most affected as the confining potential weakens when T is reduced.

In summary, we arrive at the following scenario: at room temperature, a majority

of electrons is confined to quantum states within ∼ 4 nm of the interface by strong

electric fields associated with the surface charge σs; however, as T is reduced, this

electric field is increasingly screened by the dielectric response of the STO, causing

a partial deconfinement of the electron gas. This deconfinement is most pronounced
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at the lowest σs, where approximately half of the interfacial electron density moves

into the tail region. Despite the large fraction of electrons in the tails, the associated

electric fields are vanishingly small because of the strong dielectric screening.

3.2 Effect of Temperature on the Band Structure

The temperature-dependent band dispersions εnk are shown in Fig. 3.5 for interme-

diate charge density. The t2g orbital degeneracy is broken by the interface, resulting

in multiple orbitally polarized sub-bands.[29] The sub-bands consist of light bands
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(black lines) with dxy orbital character, and two anisotropic bands (blue and red

lines) with dxz and dyz orbital character. At all temperatures, the two lowest-energy

sub-bands at k = 0 have dxy orbital character, while dxz and dyz sub-bands appear at

higher energies. This structure is consistent with previous DFT calculations [35, 36]

and with photoemission experiments[62].

Figure 3.5(a) shows the 1xy, 2xy, 1xz, and 1yz sub-bands at 300 K. We note

that while the chemical potential µ lies below all but the 1xy band at 300 K, the

thermal energy is sufficient that all bands shown in Fig. 3.5(a) have significant electron

occupation. The 1xy band has the highest occupancy, containing about 20% of the
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total electron density, while the first four bands combined contain approximately half

of the total charge.

Two significant changes occur as the temperature is lowered: first, there is a

significant shift of µ between 300 K and 100 K; second, while the gap between the

1xy and 2xy bands evolves very little with T , the spacing between the remaining

bands shrinks significantly.

Coincident with this change in the spectrum, there is a shift of the occupied

eigenstates towards three-dimensionality. At 300 K, the bands shown in Fig. 3.5(a)

have strong 2D character, and the eigenstates are localized within the first 10 STO

layers. This is illustrated in Fig. 3.6, which shows the projected weight |ψjzα,n|2 of the

first few sub-bands. Figure 3.6 shows that the 1xy band is localized within 5 layers

of the interface at all temperatures, but that the 2xy and 1xz/yz bands extend twice

as far into the STO at 10 K as at 300 K. Higher bands are affected even more by

temperature, and the 10xy band extends four times as far into the STO at 10 K as

it does at 300 K.

The distribution of charge amongst the bands is also T -dependent. At 300 K,

57% of the charge is contained in the first 4 bands (1xy, 2xy, 1xz/yz); at 10 K, this

charge is shared amongst the lowest 5 bands (including 3xy). Thus, charge spreads

away from the interface as T is lowered for two reasons: first, occupied bands become

less confined; and second, the density of bands increases, such that higher bands with

larger spatial extent become occupied.

In particular, the band structure in Fig. 3.5(d) shows evidence for coexisting 2D

and 3D components to the electron gas: states that are confined to the interface region

are characterized by bands that are clearly separated from each other at k = 0, while
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Figure 3.6: Projected band weights at 10 K (main panel) and 300 K (inset). The
figure shows the band weights of the lowest five bands at 10 K and the
lowest four bands at 300 K; these bands contain slightly more than half of
the total charge. For illustration, the band weight of a high-energy 10xy
band is also shown at each temperature. The projected weight of band
n in layer jz = z/a for orbital type α is |ψjzα,n|2, where the ψjzα,n is the
electronic wavefunction. Note that the xz and yz band weights are the
same. Results are for σs = 0.1e/a2. Figure from [33].

3D states are characterized by a dense continuum of bands. Indeed, we have found

that the first half-dozen bands do not change much with the STO slab thickness L,

indicative of quantum interface states; however, the sub-band structure at energies

≥ µ becomes denser as N increases, indicating that these states extend to the back

wall of the STO slab, even for N = 200. Figure 3.5 thus reinforces the narrative that

there is a transfer of electrons from 2D quantum states localized within ∼ 10 unit
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Figure 3.7: Doping- and temperature-dependent band structure of a STO interface.
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σs = 0.05e/a2; (b), (e) σs = 0.1e/a2; (c), (f) σs = 0.5e/a2. Figure from
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cells of the interface to extended 3D tails as T is lowered.

Figure 3.7 compares the calculated band structures at low and high temperature

for low, intermediate, and high doping. At all electron densities, the visible portions of

the spectra comprise a set of distinct bands with 2D character at 300 K. At 10 K, the

spectra consist of a small number of low-energy 2D bands that are clearly separated

from a 3D continuum with εnk ≥ µ. The low-energy bands are the source of the

interfacial component of the charge density in Fig. 3.1. Consistent with Fig. 3.1, the

2D bands at high doping [Fig. 3.7(c) and (f)] are nearly independent of T .

In summary, we find that there is a discrete spectrum of quantum 2D states that
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are confined to within 10 unit cells of the interface, and a higher energy continuum

of 3D states that extend hundreds of unit cells into the STO. The principal result of

this section is that the 3D states lead to a partial deconfinement of the electrons from

the interface at low T , and that this deconfinement becomes more pronounced as the

total 2D electron density is reduced.

3.3 Spectral Function

The temperature-dependent band structure can be observed by ARPES, and indeed

recent ARPES experiments at low temperature have found features consistent with

the predicted band structure.[53, 61] ARPES is a surface-sensitive technique that

measures the projection of the spectral function onto the top STO layer; furthermore,

photon polarization can be used to selectively probe different orbital symmetries. For

direct comparison we therefore calculate Aiz ,α(ω,k), the projected spectral function

in layer iz for orbital type α. This is given by

Aiz ,α(ω,k) =
∑
n

|ψizα,n(k)|2δ(ω − εnk), (3.3)

where |ψizα,n(k)|2 is the weight of the nth band in layer iz for orbital type α, and εnk

is the dispersion of the nth band. The delta-function has a Lorentzian broadening

of 0.01 eV, which is comparable to the energy resolution of high-resolution ARPES

experiments.

We are principally concerned with two main points about the spectral function:

the intensity of the various features of the band structure, which is nominally related

to the weight of the different bands at the surface; and the size of the apparent Fermi
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Figure 3.8: Projected spectral function at the interface for quasiparticle energy µ.
The left panels show A1,xy(µ,k) for xy bands at (a) 300 K, (c) 100 K, (e)
50 K, and (g) 10 K. The right panels present the corresponding spectral
function A1,xz(µ,k). Results are for σs = 0.1e/a2. Figure from [33].

surfaces, which is nominally related to the filling of each band. Because both the band

weight and band dispersion change with temperature, as shown in Figs. 3.5 and 3.6,

we expect that the projected spectral function must also change with temperature.

We begin with the case of intermediate electron density. Figure 3.8 shows the

temperature-dependent spectral function A1,α(µ,k) at the interface (iz = 1) for quasi-

particles at the electrochemical potential µ. The left panels present the evolution of

the projected spectral function for the xy bands; the right panels show the corre-

sponding spectral function for the xz bands. (The spectral functions for the yz bands
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can be obtained by rotating the xz image by π/2.)

At 300 K, we observe an intense ring with xy symmetry, corresponding to the

1xy band [Fig. 3.8(a)], and a very weak cigar-shaped feature associated with the 1xz

band [Fig. 3.8(b)]. The disparity between the xy and xz/yz intensities is consistent

with the fact that only the 1xy band crosses µ at this high temperature. Indeed, the

bottom of the 1xz band is ∼ 0.035 eV above µ, and is only observable in Fig. 3.8(b)

because of the finite energy resolution in Eq. (3.3).

At 100 K, the intensity of the 1xy band decreases slightly, and an intense disk

centered at k = 0 appears [Fig. 3.8(c)]. This change in the spectral function reflects

both changes in the band structure and a shift of the chemical potential to higher

energies [c.f. Fig. 3.5(b) and (c)]. At this temperature, multiple xy bands pass within

0.01 eV of the chemical potential; while the 1xy band appears as a distinct ring,

these remaining xy bands blur together to form a disk. The 1xz band [Fig. 3.8(d)]

continues to be an order of magnitude less intense than the xy bands, despite the fact

that the 1xz band dispersion crosses µ at 100 K. This is because of the small weight

of the 1xz band at the interface [Fig. 3.6].

Below 50 K, the intensity of the 1xy ring does not change [Fig. 3.8(e) and (g)], but

the disk intensity increases slightly because higher energy xy bands shift downwards

as T decreases, as shown in Figs. 3.5(c) and (d). At the lowest temperatures, this

disk represents the projection of the 3D tail states onto the surface. The intensity

of the xz bands remains an order of magnitude smaller than that of the xy bands

[Fig. 3.8(f)]. There is very little change to the apparent spectrum below 50 K.

Focusing on bands of xy symmetry, we note that the apparent filling as determined

from the area of the 1xy ring is temperature-dependent, and changes by ∼ 20%
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Figure 3.9: Projected spectral function at low, intermediate, and high electron den-
sities, and at T = 10 K and T = 300 K. Results are shown for xy bands
(rows 1 and 3) and xz bands (rows 2 and 4) bands. Figure from [33].

between 300 K and 100 K. This change does not reflect a 20% change in the filling of

the 1xy band however, because of the rather large change in µ, which shifts upwards

by almost 0.02 eV as T is lowered. Below 100 K, the ring’s surface area does not

significantly change with temperature.

Next, the doping-dependence of the spectral function is shown in Fig. 3.9. As

expected, the surface area of the bands increases with σs, in agreement with Ref.

[61]; however, it is the temperature-dependence of the intensity that is most striking.

The spectral function is almost independent of T at σs = 0.5e/a2, which is a direct

result of the strongly nonlinear dielectric response in the interface region at high

doping. In contrast, at low doping, the intensity of the spectral function at µ is

strongly T -dependent, primarily because of the strong T -dependence of the chemical
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potential.

Several groups have performed ARPES experiments on STO interfaces at low tem-

peratures, and the shapes and surface areas of our calculations are in good agreement

with the measured Fermi surfaces for approximately the same doping.[63, 61, 53] No-

tably the xz (and yz) bands are more than an order of magnitude weaker than the xy

bands in our calculations; and while the relative intensities of the bands observed in

ARPES depend on matrix elements, the dxz/yz bands are indeed considerably weaker

than the dxy bands.[63]

In summary, our calculations agree with ARPES experiments at low tempera-

tures, and we make two predictions regarding spectral function A1,α(µ,k) at high

temperatures: first that the area of the 1xy ring should shrink as T is raised above

100 K; and second that the intensity of the dxz/yz bands should drop dramatically

above 100 K.

3.4 Discussion

Unlike conventional semiconductors, the STO dielectric function is strongly temperature-

and electric field-dependent. This leads to counterintuitive behavior at STO inter-

faces; namely, that the electron gas is more strongly confined at high temperatures

and electron densities than at low temperatures and electron densities. Consequently,

our calculations make predictions that differ from commonly held views regarding the

electron distribution in STO interfaces. The conventional view is that the electronic

properties are dominated by quantum 2D states, and indeed experiments find that

the majority of the charge is bound to within ∼ 10 nm of the interface [64, 3, 65, 60].

Measurements of the nonlinear Hall coefficient have been modeled by two occupied



3.4. DISCUSSION 58

sub-bands: a low-mobility band containing most of the conduction electrons, and

a high-mobility band containing a minority of carriers. The mobilities of the two

components vary from sample to sample, and may differ by orders of magnitude

[66, 67, 59, 68, 58]. While the two-band interpretation is conceptually useful, it has

been noted that inconsistencies within the two-band analysis suggest a more compli-

cated band structure [66]. At low electron densities, the picture is clearer: experiments

have found a Lifshitz transition near electron densities of 1.5× 1013 cm−2 [66], which

is slightly above the metal-insulator transition at ≈ 1013 cm−2. Below the Lifshitz

transition, the magnetic field-dependence of the Hall resistivity is linear, indicating

that only a single band is occupied. A full discussion of the Lifshitz transition is

presented in the following chapter.

In contrast, the results reported in this chapter find a large number of occupied

bands at all doping levels, similar to previous calculations [3, 35, 31, 32]. A significant

fraction of the occupied bands corresponds to the quasi-3D tail states that extend

hundreds of unit cells into the STO substrate. While the fraction of charge contained

in the tails is small at high electron densities, it is over 50% at low electron densities

(Fig. 3.1). Perhaps more interestingly, we have found a strong temperature depen-

dence to the charge distribution at intermediate electron densities, with a pronounced

shift of charge into the tails as T is lowered. The general trend that the charge spreads

out as T decreases was observed experimentally [3]; however, experimental confirma-

tion of quasi-3D tails remains lacking. Indeed, direct observation of the tails may

be difficult because, except at the lowest doping levels, the electron density n(z) in

the tails is at least an order of magnitude smaller than in the 2D component of the

electron gas (Fig. 3.1).
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The tails may be most relevant to transport experiments, since interfacial disorder

(eg. cation intermixing) is thought to severely reduce the mobility of 2D states near

the interface. A proper comparison between theory and experiment requires a detailed

disorder model, which is beyond the scope of this work. Nonetheless, we can make

a few simple observations based on a crude model for the mobility µn of the first

few bands (n = 1xy, 1xz/yz, 2xy). This model assumes that interfacial disorder

(eg. cation intermixing) is the dominant scattering mechanism and that interband

scattering can be neglected. These assumptions break down at low doping, first

because the interband spacing becomes less than the scattering rate, and second

because low-lying bands become part of the 3D continuum and are therefore subject

to scattering by defects in the STO substrate. The model is also limited because it

provides no information about the mobility of the 3D tails. For qualitative purposes,

however, we can assume that the tails behave similarly to bulk STO.

The simplest ansatz is to take a quenched disorder model in which the Ti site

potentials in the first Λ STO layers adjacent to the interface are chosen from a random

box-distribution of width W . Experimentally, cation intermixing is found to extend

over a few unit cells,[19] and for concreteness, we arbitrarily take W = 1 eV and

Λ = 2; however, the qualitative results do not depend strongly on this choice. Within

a Born approximation the electron lifetime τn in band n [Appendix D] is

~
τn

=

√
mx,nmy,nW

2a2

24~2

Λ∑
iz=1

|Ψizα,n|2, (3.4)

where mx,n and my,n are effective mass components for band n. The mobility for

transport in the x-direction is µn = eτn/mx,n. The absolute values of the mobility,

which depend on our arbitrary choice of W , are not especially meaningful; however,
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the trends with doping and temperature shown in Fig. 3.10 are.

Equation (D.10) shows that individual bands’ scattering rates depend on the pro-

jected band weight |Ψizα,n|2 onto layers adjacent to the interface. Two clear trends in

Fig. 3.10, namely that µn increases when either σs or T is reduced, can be traced back

to shifts of the band weight away from the interface (recall, for example, Fig. 3.6).
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Similarly, Fig. 3.10 shows that at fixed T and σs the mobilities of different 2D bands

may differ by an order of magnitude or more because of they have different band

weights at the interface.

While significant, the differences in mobilities between bands that are shown in

Fig. 3.10 are much less than the three orders of magnitude difference between high-

and low-mobility electrons reported in Refs. [58, 59]. Those experiments instead sug-

gest that the two electronic components live in different environments. With this in

mind, we speculate that the low-density high-mobility component of the electron gas

observed over a wide range of electron dopings [66, 67, 59, 68, 58], may in fact corre-

spond to the 3D tails in our calculations. These tails have very little overlap with the

interface, and the scattering of conduction electrons will be determined by the defect

density in the STO substrate. The remaining high-density low-mobility component

of the electron gas then must correspond to the 2D interface states, whose mobility

is limited by interfacial disorder. We point to three experimental observations that

are broadly consistent with this proposed scenario:

• First, our calculated charge densities in the interface and tail regions roughly

correspond to the observed fractions of low and high mobility charges. Ref. [58]

reports that for high electron densities, the high-mobility component of their

electron gas comprises less than 10% of the total electron density, while Ref. [67]

found that at intermediate densities the high-mobility component contains a

third of the total electron density. Similarly, Fig. 3.1 shows that the fraction

of the total charge in the tail region at 10 K rises from less than 10% at high

electron density to roughly 50% at intermediate density.

• Second, the predicted temperature dependence of the mobility is qualitatively
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consistent with available experiments. At intermediate electron densities, Ref. [67]

found that the conductivity of the high-density component is nearly indepen-

dent of T (up to 30 K), while the conductivity of the low-density component

drops by an order of magnitude. Similarly, Fig. 3.10 shows that the mobilities

of the interface states are almost constant between 10 K and 30 K, owing to

modest changes in the confinement of their wavefunctions to the interface. Con-

versely, we expect the tail states to exhibit a strong temperature-dependence,

assuming that they follow the behavior of bulk STO [69, 70].

• Third, at low electron densities, Ref. [66] argued that the chemical potential is

pinned to the bottom of a heavy band that acts as a charge reservoir. They

speculated that this reservoir consists of interfacial dxz/yz bands; however, our

calculations find that at 10 K the chemical potential is pinned to the bottom

of the quasi-3D tail bands (Fig. 3.7). Because the density of states in the tails

is extremely high compared to the 2D interface states, we argue that the tails

provide a more natural explanation for the observed charge reservoir.

We note that there are open questions that are not addressed by the simple argu-

ments presented here. Our model does not predict the Lifshitz transition observed by

Ref. [66] at low electron density, for example. Instead, the 1xy band in our calcula-

tions continuously merges with the 3D continuum as the electron density is lowered.

In the next chapter, we discuss how to modify our dielectric model to obtain the

observed Lifshitz transition.

In summary, we have explored the temperature-dependent band structure of ideal

interface model. The calculations presented in this chapter suggest a significant role

for quasi-3D tail states, contrary to a widely held perception that the interfaces are
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dominated by 2D states. These tail states extend hundreds of unit cells into the STO

substrate, and are extremely sensitive to both electron doping and temperature. We

have shown that photoemission experiments can be used to probe the temperature-

dependent band structure; however, the tail states exist far from the interface and are

therefore invisible to ARPES. We speculate, however, that the tail states are key to

understanding transport experiments, and have provided some qualitative evidence

to support this idea.
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Chapter 4

Effect of a dead layer on the doping-dependent

band structure

This chapter is motivated by recent experiments that show there is a Lifshitz tran-

sition in LAO/STO interfaces [66, 71, 72, 73]. We start the chapter by introducing

the Lifshitz transition, and the experiments that observed it. Then, we explore the

doping-dependent band structure in the case of an ideal-interface model and show

that it does not reproduce the observed Lifshitz transition. Next, we introduce a

dielectric dead layer to our model, and repeat the calculations. Finally, we compare

our results with experiments.

4.1 The Lifshitz Transition

The previous chapter studied the effect of the STO dielectric function on the electronic

properties of 2DEGs at STO interfaces. We found that the calculated band structure

has a mix of 2D states that are tightly bound to the interface, and quasi-3D states

that extend into the STO substrate. As the temperature is lowered, the charges

spread out into the STO bulk into a quasi-3D tail. This spreading is less important
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at high electron densities, but becomes substantial at low densities.

The low-density regime, defined here as σs =0.01– 0.1e/a2, has recently attracted

attention due to the existence of fascinating properties such as superconductivity

[14, 74], strong spin-orbit coupling [50], and an observed Lifshitz transition [66]. In

this regime in particular, near the Lifshitz transition, it was reported that the su-

perconducting transition temperature and spin-orbit coupling strength are maximum

[50, 66, 75, 73].

A Lifshitz transition is defined as an abrupt change of topology of a Fermi sur-

face [76]. To our knowledge, the Lifshiz transition in STO-based interfaces was first

mentioned in Ref. [66] by Joshua and co-workers. In their work, the response of

the LAO/STO system to a magnetic field at different back-gate voltages (VG) was

measured. They showed that there is a critical gate voltage (VC) at which the mag-

netotransport properties abruptly change. When VG < VC , the Hall resistivity, ρxy,

changes linearly with magnetic field (B), while at VG ≥ VC , ρxy changes non-linearly

with the field. A nonlinear Hall effect suggests multiple types of carriers. Therefore,

the experiment suggests the Lifshitz transition is a transition from a single Fermi

surface to multiple Fermi surfaces.

These experiments are typically interpreted with a two-band model in which the

Hall resistivity as a function of magnetic field is [46, p. 240]

ρxy =
B

e

(n1µ
2
1 + n2µ

2
2) + (µ1µ2B)2(n1 + n2)

(n1µ1 + n2µ2)2 + (µ1µ2B)2(n1 + n2)2
, (4.1)

with n1(n2), and µ1(µ2) the charge densities and mobilities of the two types of carriers

respectively, and B is the magnetic field. When n2 = 0, ρxy reduces to the usual Hall

resistivity, ρxy = B
en1

, which is linear in B as expected.
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The extracted charge density as a function of gate voltage is shown in Fig. 4.1,

which is adopted from Ref. [72]. The authors applied a top-gate voltage to the

LAO/STO interface. They fitted the transverse (σxy) and longitudinal (σxx) conduc-

tivity to the two-band expressions

σxy = eB
(n1µ

2
1 + n2µ

2
2) + (µ1µ2B)2(n1 + n2)

(1 + µ2
1B

2)(1 + µ2
2B

2)
, (4.2)

σxx = e
(n1µ1 + n2µ2) + (µ1µ2B

2)(n1µ2 + n2µ1)

(1 + µ2
1B

2)(1 + µ2
2B

2)
. (4.3)

From this, they get the charge densities n1 and n2 as a function of gate voltage.

At VG <VC the density of electrons n1 grows with gate voltage and is equal to the

total density ntotal = n1 + n2 because n2 here is nearly zero. At VC , n1 deviates from

ntotal and n2 starts to rise. This marks the Lifshitz transition, and the corresponding

charge density at VC is the Lifshitz density nL ∼ 2.9 × 1013 cm−2. At VG >VC , n2

increases with gate voltage, and n1 decreases. Indeed, there are two main features in

Fig. 4.1: one is that there is a single Liftshitz transition; second is that there is an

abrupt change in the slope of n1 after the transition. The main goal of the remainder

of this thesis is to explain these features.

Most of the experiments that observed the Lifshitz transition [66, 75, 71] reported

nearly the same behaviour of charge density with gate voltage. The differences be-

tween these experiments are in the value of nL, and the slope of n1 after the tran-

sition. For example, Ref. [66] suggested that nL is a universal value and is equal

to 1.6 × 1013 cm−2. However, it was found later that nL does depend on multiple

factors, such as whether the interface is back- or top-gated, the growth conditions,

and the cap material[75, 71]. nL is now found to lie in a range 1.6 − 4 × 1013 cm−2
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Figure 4.1: The extracted charge density versus top-gate voltage (VTG) at T=2 K.
The black dashed line indicates the Lifshitz charge density (nL). The red
dashed line is obtained from a paralle-plate capacitore model in which
VTG = σdLAO/εLAO, where εLAo = 24 and dLAO = 5 nm. Figure taken
from [72][https://link.aps.org/doi/10.1103/PhysRevLett.118.106401].

[66, 75, 71, 72]. References [66, 75] applied a back-gate voltage and reported that n1

smoothly decreases with gate voltage after the transition. On the other hand, Smink

et al. [73] found that the slope of n1 abruptly changes as shown in Fig. 4.1. To

sum up, we conclude that both nL, and the slope of n1 depend on the experimental

conditions.

We mentioned that all the experiments which observed the Lifshitz transition

at STO-based interfaces used the two-band model as a way to analyze their Hall

measurements [68, 66, 75, 71, 72]. However, there are some concerns with this model.

First, the non-linear response of the Hall measurement suggests multiple types of

carriers. Given the fact that the charges in the STO are spread over multiple layers

of Ti atoms, each layer having different disorder depending on whether it is near
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or far from the interface, it is not proper to assume that there are only two distinct

mobilities. Secondly, Liang et al.[75] showed that it is difficult to obtain self-consistent

fits of the two-band model to transport data. In particular, they found that the two-

band ρxx deviates substantially from the experimental data, especially at high fields

[75]. They concluded that it is difficult to develop a model that can describe the

observed Hall measurements either quantitatively or qualitatively. The two-band

model should be considered just as an approximation.

Joshua et al.[66] proposed a scenario to understand the Lifshitz transition that

relates to the Ti 3d band structure at the STO interfaces. Due to symmetry breaking

at the interface, the lowest energy xy band splits from the dxz and dyz bands. There-

fore, below a critical carrier density, it is suggested that all charges reside in the xy

band and only one type of carrier exists. Above the critical carrier density, as the

gate voltage increases, the Fermi level is lifted across the bottom of the xz and yz

bands. The two newly occupied bands are suggested to take up most of the added

carriers[66].

This scenario has been investigated by Maniv et al., who used a three-band tight-

binding model that includes spin-orbit coupling and on-site interactions [77]. The

three-band model considers just one TiO2 layer with three orbital types (dxy, dxz, and

dyz). Maniv et al.[77] used this model to explain the nonmontonic behaviour of the

Hall coefficient in their experiments. They emphasized the role of the Hubbard-type

interactions in redistributing the charges between bands as the gate voltage increases.

Nandy et al. [78] used the same model to study how the strength of the electron-

electron interaction (U) affects the Lifshitz transition. At U = 0, they reported a

Lifshitz transition at nL = 0.18e/a2(1.2× 1014 cm2), and as U increases, they found



4.2. DOPING-DEPENDENT BAND STRUCTURE FROM THE
IDEAL-INTERFACE MODEL 69

that nL decreases. It should be emphasized, however, that the main features of the

Lifshitz transition, especially the abrupt reduction of n1 after the transition, are not

reproduced by the model.

An important limitation of the three-band model is that it has only one layer.

This means that the charge density per unit cell is an order of magnitude larger than

the measured one for a given 2D charge density. As we show this makes the Hubbard-

type interactions more important than they should be. Also, the model ignores the

dielectric screening that has a significant effect on the STO band structure, as shown

in Chapter 3.

In fact, it is not even clear that the three-band model scenario is supported by

more realistic models [79, 31, 32, 33]. The goal of the reminder of this thesis is

to develop a realistic model that explains the transition. In the next section, we

investigate the doping-dependent band structure using our ideal-interface model, and

compare it with experiments. We find that the model does not capture the important

features of the transition. This motivates us to modify the model in Sec. 4.3.

4.2 Doping-Dependent Band Structure from the Ideal-Interface Model

In this section, we use the ideal-interface model, discussed in Chapter 3, to obtain

the doping-dependent band structure in the very low-doping regime. First, we plot

the potential energy and charge density as a function of layer index for doping σs =

0.01, 0.02, 0.04e/a2 and at temperature 1 K. As seen in Fig. 4.2(a), the triangular

quantum well is very shallow at σs =0.01e/a2, and the charge spreads into the STO.

As the doping increases, the quantum well becomes deeper, which confines a greater

fraction of the electrons to the interface creating 2D states along with the quasi-3D
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Figure 4.2: Potential energy (a) and charge density (b) per unit cell inside STO at
low temperature (1 K) and dopings σs = 0.01e/a2, σs = 0.02e/a2, and
σs = 0.04e/a2. Results are for 100 layers and at T=1 K.

tails, Fig. 4.2(b).

Figure 4.3 shows the associated doping-dependent band structure for the ideal

model along the kx-direction. As the doping increases, the splitting between the 1xy

band and the other bands gradually increases, which is consistent with the deeper

quantum well shown in Fig. 4.2(b).

Our result for low doping, that multiple bands cross the Fermi level, does not
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Figure 4.3: Doping-dependent band structure of a STO interface for (a) σs =
0.01e/a2, (b) σs = 0.02e/a2, and (c) σs = 0.04e/a2. Results are for
100 layers, and at 1 K. Black lines are for the xy-character bands, blue
for the xz-character bands, and red for the yz-character bands.

agree with experiments, where a single occupied band has been observed at low doping

[66, 72]. Also, the ideal-interface model does not predict the sharp Lifshitz transition,

discussed in the previous section, at which the electronic properties of the 2DEGs

change.

Therefore, our proposal to obtain a single occupied band at low doping is to modify
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the ideal-interface model to produce a deep quantum well that confines the electrons

to one band. Then, as the doping increases, we expect a Lifshitz transition when

higher energy bands become occupied. A deep quantum well is obtained here by a

reduction in the permittivity at interface, namely a dielectric dead layer. In the next

section, we adapt our model to accommodate a low permittivity near the interface.

4.3 Dielectric Dead-Layer Model

The presence of a dielectric dead layer at STO interfaces is well known. The high

dielectric constant of STO makes it a good candidate for nanoscale capacitors, but

experimentally, the capacitance of thin STO films is found to be much smaller than

expected from bulk properties [80, 81, 82]. The reason for this is the existence of a

low-permittivity layer at the STO interfaces, which is known as a “dead layer”. The

origin of the dead layer is still a controversial issue. Some results suggest that dead

layers could arise from strains and defects [82], while other work [83] has reported

that the reduction in the permittivity is an intrinsic property, i.e that the induced

depolarizing field [the depolarizing field is defined in Eq. (2.22)] hardens the soft

mode. The origin of the dead layer in nanoscale STO capacitors is beyond the scope

this thesis. Here, we simply assume there is a dead layer, modeled by a reduction of

the dielectric susceptibility, and study its effect on the electronic structure.

In order to include the dead layer, we need to modify our dielectric model. The

dielectric susceptibility (Appendix B) is

χ(T,E) =
Q2

ε0a3

1

Dq=0 + 3γu2
, (4.4)

where u is obtained from Eq. (2.25), and Dq=0 =
∑

jz
Dizjz .
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In the weak-field limit, where u is small, Eq. (4.4) shows that the susceptibility is

inversely proportional to the matrix of force elements [χ ∝ (Dq=0)−1]. Therefore, in-

creasing the values of the diagonal elements, Diziz , lowers the dielectric susceptibility.

To include a dead layer, we therefore add a correction term

D̃iziz = Diziz + δDe−(zi/d)4 , (4.5)

with δD > 0, zi = iza, and d the thickness of the dead layer. The stretched exponen-

tial function, e−(zi/d)4 , is a convenient way to smoothly connect the dielectric function

to its bulk value. We plot the diagonal elements Diziz of the force constant matrix

versus distance from the interface in Fig. 4.4 for δD = 180 kgs−2 and d = 4a . As

shown, Diziz falls to its bulk value within 6 unit cells of the interface.

With this modification, we calculate the normal coordinate uiz [see Eq. (2.25)] and

the electron density self-consistently, following the same procedures as in Chapter 2.

In Fig. 4.5, we plot the potential energy [φ(z)], and the electron density [n(z)]

as functions of distance from the interface at T= 1 K, and σs = 0.01e/a2 for several

δD values. At δD = 0, the triangular quantum well is very shallow, while it becomes

deeper when δD increases as shown in Fig. 4.5.(a). This behavior is caused by the

reduction in the dielectric screening at the interface. This dead layer causes electrons

to move towards the interface, and when δD is big, most of the electrons are confined

to the interface, as shown in Fig. 4.5.(b).

The evolution of the band structure with different δD values is shown in Fig. 4.6.

When δD = 0, we have the same results as in Fig. 4.3.(a) for σs = 0.01 e/a2, namely

a 3D continuum of states due to the strong dielectric screening. As δD increases, the

splitting between the 1xy-band and the continuum increases. At extremely large δD,
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Figure 4.4: The diagonal elements Diziz of the force constant matrix for δD =
180 kgs−2, and d = 4a.

the 1xy band becomes the only band crossing the Fermi level [Fig. 4.6.(d)].

In summary, this simple model for the dielectric dead layer changes the shape of

the confining potential. 2D states develop as δD increases, and eventually only one

occupied band is obtained at large δD. This is consistent with Hall measurements[66,

72] that reported a single occupied band at low doping.

4.4 Relevance of the Dead Layer to the Lifshitz Transition

The consistency of the band structure for large δD at low doping with experiments

induces us to explore the doping-dependent band structure. The band structure at
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Figure 4.5: The potential energy (a), and the charge density (b) profiles in STO with
a dead layer for 0.01 e/a2 doping, at T= 1 K and for 100 layers. Results
are for δD=0 to 9980 kgs−2.

fixed δD = 9980 kgs−2 for various doping is shown in Fig. 4.7. Generally speaking,

as the doping grows, we see a crossover between one and multiple occupied bands.

At low doping, the 1xy band is the only band crossing the Fermi level [Fig. 4.7.(a)].

When we increase the doping, other bands cross the Fermi level in a series of Lifshitz

transitions. The first transition happens when the 2xy band crosses the Fermi level

at σs =0.03 e/a2, as shown in Fig. 4.7.(b). The second transition takes place when

the 1xz and 1yz bands separate from the continuum and cross the Fermi level at

σs =0.07 e/a2 [Fig. 4.7.(d)]. An important feature of Fig. 4.7 is that the 1xy band

keeps moving to lower energies as the doping increases.
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Figure 4.6: Band structure including dead layer for σs = 0.01e/a2, at T= 1 K and
for 100 layers. (a)-(d) for δD=0 to 9980 kgs−2

To compare to Fig. 4.1, we calculate the filling of the lowest four bands as a

function of doping, as shown in Fig. 4.8. At low doping, the filling of the 1xy

band coincides with the total charge σs (dashed line) which indicates that nearly all

electrons reside in the 1xy band. As the doping increases (σs ≥ 0.03 e/a2), the 1xy

band filling shifts away from the total charge as the other bands become occupied.

However, there are important differences between Fig. 4.1 and Fig. 4.8. First, the

slope of the 1xy band filling in Fig. 4.8 changes gradually. Second, there are multiple

Lifshitz transitions (nL1 and nL2) in Fig. 4.8 but not in Fig. 4.1.

This leads us to look for another ingredient to add to our dielectric dead-layer
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Figure 4.7: Band structure as a function of doping for δD = 9980 kgs−2 and at
T=1 K. Results are for σs = 0.01 (a), 0.03 (b), 0.05 (c), 0.07 (d), 0.09
(e), and 0.1 e/a2 (f).

model. Motivated by previous theoretical work, we add short-range Coulomb inter-

actions to the model [77].

4.4.1 Short Range Electron-Electron Interactions

We consider short-range interactions between electrons on the same Ti atom through

a Hubbard term, Hhub. The detailed derivation of the Hubbard term in the mean-field
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Figure 4.8: The band filling as a function of doping for δD = 9980 kgs−2 and at
T=1 K.

approximation is given in Appendix E. The final mean-field expression is

ĤMF
hub =

∑
izασ

U0nizασn̂izα−σ +
∑
izσ

∑
β 6=α

(2U − J)nizβσn̂izα−σ, (4.6)

where iz is the layer index, σ =↑ or ↓, α and β label the orbital types. n̂izασ is the

occupation number operator, and nizασ represents the average electron occupation

number [Eq. (2.15)]. U0 represents the intra-orbital interaction, U is the inter-orbital
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interaction, and J is the exchange interaction. We assume here that nizα↑ = nizα↓.

The d-orbital symmetry imposes [84] a relationship between the interactions:

U0 = U + 2J . Considering this constraint, along with the observation that nizxyσ �

nizxzσ, nizxzσ as shown in Fig.3.4, we can show that there are two distinct behaviours

depending on how J is chosen. First, we need to write the mean-field Hubbard terms

explicitly for each orbital type

(ĤMF
hub )xy =

∑
izσ

U0nizxyσn̂izxy−σ +
∑
izσ

(2U0 − 5J)[nizxzσ + nizyzσ]n̂izxy−σ, (4.7)

(ĤMF
hub )xz =

∑
izσ

U0nizxzσn̂izxz−σ +
∑
izσ

(2U0 − 5J)[nizxyσ + nizyzσ]n̂izxz−σ. (4.8)

Since nizxyσ � nizxzσ in the first few layers,

(ĤMF
hub )xy ≈

∑
izσ

U0nizxyσn̂izxy−σ, (4.9)

(ĤMF
hub )xz ≈

∑
izσ

(2U0 − 5J)[nizxyσ + nizyzσ]n̂izxz−σ. (4.10)

Therefore, we have one behaviour where the Hubbard term shifts electrons towards

the dxy orbitals if (2U0−5J) > U0, i.e J < U0

5
, and a second behaviour where electrons

prefer to occupy dxz and dyz orbitals if J > U0

5
.

We plot the band filling as function of doping at several J values in Fig. 4.9. At

J=0 eV, it is clear from Eqs. (4.9) and (4.10) that the (ĤMF
hub )xz term is greater than
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Figure 4.9: The band filling as a function of doping at different values of J, (a)
J=0 eV, and U=4 eV, (b) J=0.4 eV, and U=3.2 eV , and (c) J=1.6 eV
and U=0.8 eV. Results are for 100 layers, δD = 9980 kgs−2, U0=4 eV,
and at T=1 K.

(ĤMF
hub )xy by a factor of two, which means that the electrons prefer to occupy the

xy bands as shown in Fig. 4.9.(a). At J=0.4 eV, the (ĤMF
hub )xz term is still greater

than (ĤMF
hub )xy, and we have nearly the same band filling [see Fig. 4.9.(b)]. At a

unphysically large value of J=1.6 eV, the (HMF
hub )xz term equals zero, and we see that

the xz and yz bands start to be occupied, Fig. 4.9.(c). Therefore, the competition
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between the two Hubbard terms, (ĤMF
hub )xy and (ĤMF

hub )xz, controls the filling of the

different bands.

Figure 4.10 compares the band filling as a function of doping with and without the

interaction term ĤMF
hub . At J=0.8 eV, the probability of occupying the xy, and xz, yz

bands is equal. As shown, we have the same qualitative behaviour as without the

interaction term: we see only a small change in the slope of the 1xy band filling after

the Lifshitz transition, which is not consistent with experiments. This is so because at

low electron densities, the effect of the Hubbard interactions is small compared with

other terms in the Hamiltonian. To sum up, these results indicate that including

short-range Coulomb interactions only weakly affects the band structure.

4.5 Summary

In this chapter, we attempted to explain the observed Lifshitz transition with a real-

istic model interface. The ideal-interface model failed to predict the transition, and

it was imperative to modify the model to observe this transition. We introduced a di-

electric dead layer in which we assumed a low premittivity at the interface. We found

a single occupied band at low doping and predicted a Lifshitz transition at a similar

nL to what is found experimentally [75, 71, 72]. However, we found that the 1xy-band

filling always grows with the doping, even when correlations are considered, which is

not consistent with the reported results [see Fig. 4.1]. We conclude that the dielectric

dead-layer model does not give a complete explanation for the Lifshitz transition.
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Figure 4.10: The band filling as a function of doping with and without Hubbard term.
Results for δD = 9980 kgs−2, U0 = 4eV , J = 0.8eV , and U = 2.4eV .
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Chapter 5

Flexoelectric Origin of the Lifshitz Transition in

LAO/STO Interfaces

This chapter explores the effects of strain and strain gradients on the STO band

structure. First, we modify the Landau-Devonshire energy to accommodate the strain

effects. Then, we study the doping-dependent electronic properties, and compare the

obtained results with experiments.

In the previous chapters, we started with an ideal interface, where the interface

has the same dielectric properties as the bulk, and we obtained the temperature-

dependent band structure. We found that the doping-dependent band structure is

not consistent with experiments at low doping. We then modified our model to include

a dielectric dead-layer. This case was successful in obtaining the band structure at

low doping and predicted a sequence of Lifshitz transitions, but did not predict the

reported abrupt change in the filling of the lowest band at nL. This leads us to

consider other models for the Lifshitz transition.

As will be discussed in the following sections, many experiments reported strain

in the STO thin films, and showed that strain changes the dielectric properties of the
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films. This motivates us to investigate the strain effects on the band structure.

5.1 Strain

Strain commonly happens at interfaces due to the lattice mismatch between a thin

film and substrate during growth of the film. This results in a strained thin film. The

strain may be used to engineer interfaces. For instance, strain controls the mobility

in semiconductors by increasing the subband splitting and hence decreasing the inter-

subband phonon scattering rate [85]. For thin films of perovskite materials such as

SrRuO3[86], it was found that biaxial strain (tensile and compressive) modifies and

controls the RuO6 octahedral rotations, which consequently changes the Ru-O-Ru

angle. This affects the orbital overlap and modifies transport properties of SrRuO3;

the conductivity in SrRuO3 thin films under tensile stress is much lower than films

under compressive stress. As another example, it is found that strain can enhance

the transition temperature in thin films of ferroelectric materials such as BaTiO3

[87]. For these reasons, strain is considered a useful tool for the manipulation of the

electronic properties of thin films.

Strain as well is key in controlling ferroelectricity in STO. Strained STO can

be obtained by applying mechanical stress to bulk STO, or by epitaxially growing

STO on substrates that have a small lattice mismatch with it. It was observed that

by applying uniaxial mechanical stress to bulk STO, ferroelectric polarization can

be induced along the z-direction at low temperature [88], while by growing STO

epitaxially on DyScO3 substrates, Haneni et. al [89] reported ferroelectricity in STO

thin films at room temperature.

Indeed, strain does not only control ferrelectricity in STO thin films, but it also
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has a dramatic effect on the 2DEGs at STO interfaces. Bark et al. [90] grew STO

on substrates with different lattice mismatches, and then deposited LAO thin films

to create LAO/STO interfaces. This produced biaxially strained STO. The results

revealed that tensile-strained STO has no conducting 2DEG, i.e. it is an insulating

interface, while compressively-strained STO has a 2DEG with total charge density

less than the unstrained interface. The tensile strain effect on 2DEGs was later

confirmed by Huang et. al [91]; however, they found that the charge density increases

and mobility decreases under compressive strain. In addition, they reported that

the charge mobility is more sensitive to strain than the charge density. Overall, the

results of these studies show that the strain can tailor the 2DEGs at STO interfaces.

Figure 5.1: The c-axis lattice constant and unit cell volume changes in LAO/STO.
The SXRD results are for of heterostructures with various LAO thick-
nesses. Grey dotted (dotted dashed) line, lattice constant of bulk STO
(LAO). The different curves show the results for several LAO thicknesses.
Figure taken from [92].

The strain in the preceding discussion was uniform throughout the STO thin films.
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However, even in nominally unstrained films, strain is observed in the first few layers

near to the interface [93, 92]. Figure 5.1 shows an example of this interfacial strain.

The c-axis variations of the LAO/STO lattice constants are observed by using surface

X-ray diffraction (SXRD). As shown in Fig. 5.1, the c-axis on the STO side elongates

in the first five layers and then relaxes back to its bulk value of c0 = 3.905 Å. For

example, in the case of 5 unit cells of LAO (red curve), the (tensile) strain in the first

layer of STO is about ∆c0/c0 = +0.02 as shown in Fig. 5.1.

The observed interfacial strain in Fig. 5.1 motivates us to consider strain effects.

Generally speaking, the strain affects the polarization. As will be seen in the next

sections, the strain couples to the polarization in the free energy equation. In addi-

tion, the c-axis strain gradients at the interface linearly couple with the polarization

through a flexoelectric term. These two terms change the dielectric function at the

interface.

In the following sections, we extend the ideal interface model to accommodate

the strain effects. First, we include the strain-polarization coupling term, and then

investigate its effect on the band structure. Second, we add the coupling between the

strain gradient and the polarization.

5.1.1 Coupling to Strain: Electrostriction

To understand how the strain affects the dielectric properties, we need to include the

contribution of the strain to the free energy equation. First, the strain (η) is defined

by how the displacement of an atom ~ζ(~R) from its unstrained position ~R varies

ηij =
1

2
(
∂ζi
∂Rj

+
∂ζj
∂Ri

), (5.1)
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where i, j correspond to x, y, z-directions. The strain is a second rank tensor, its

diagonal elements are referred to as normal and the off-diagonal elements as shear.

In Voigt notation, the subscripts of η can be simplified as ηxx → η1, ηyy → η2,

ηzz → η3, ηyz → η4, ηxz → η5, and ηxy → η6 [46, p.445].

Neglecting strain gradients for the moment, the general full free energy in terms

of polarization and strain [88] is

U(P, η) = α1(P 2
1 + P 2

2 + P 2
3 ) + α11(P 4

1 + P 4
2 + P 4

3 ) + α12(P 2
1P

2
2 + P 2

1P
2
3 + P 2

2P
2
3 )

+
1

2
c11(η2

1 + η2
2 + η2

3) + c12(η1η2 + η1η3 + η2η3) +
1

2
c44(η2

4 + η2
5 + η2

6)

− g11(η1P
2
1 + η2P

2
2 + η3P

2
3 )− g12[η1(P 2

2 + P 2
3 ) + η2(P 2

1 + P 2
3 ) + η3(P 2

1 + P 2
2 )]

− g44(η4P2P3 + η5P1P3 + η6P1P2), (5.2)

where α1 = 1
2
a3

Q2

∑
j Dij is the dielectric stiffness, α11, α12 are the higher-order stiffness

coefficients at a constant strain, cnl are the elastic stiffness at constant polarization,

and gnl are the electrostrictive constants that describe the coupling between the polar-

ization and the strain. Equation (5.2) applies to a cubic system where g11 = g22 = g33,

g12 = g13 = g23 and g44 = g55 = g66. Note also, α1 = α2 = α3, α11 = α22 = α33,

and α12 = α13 = α23. In the Voigt notation, g11 means that both the strain and the

polarization are along the same axis, while g12 represents the coupling between strain

and polarization along different axes.
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The strain in our case is not an order parameter but is imposed to match experi-

ments. Thus, the free energy is only a function of polarization,

U(P ) = α1(P 2
1 + P 2

2 + P 2
3 ) + α11(P 4

1 + P 4
2 + P 4

3 ) + α12(P 2
1P

2
2 + P 2

1P
2
3 + P 2

2P
2
3 )

− g11(η1P
2
1 + η2P

2
2 + η3P

2
3 )− g12[η1(P 2

2 + P 2
3 ) + η2(P 2

1 + P 2
3 ) + η3(P 2

1 + P 2
2 )]

− g44(η4P2P3 + η5P1P3 + η6P1P2). (5.3)

For the interface, the polarization points in the z-direction, i.e. P1 = P2 = 0. This

gives

U(P ) = α1P
2
3 + α11P

4
3 − g11η3P

2
3 − g12[η1P

2
3 + η2P

2
3 ]. (5.4)

In case of the bulk STO, the reported value for g12 = −1×109 JmC−2, which is much

smaller that g11 = 1.33× 1010 JmC−2, i.e |g12| � g11. This yields

U(P ) ∼= [α1 − g11η3]P 2
3 + α11P

4
3 . (5.5)

For STO interfaces, neither the polarization nor the strain is homogeneous through

the STO [92]. This leads us to extend Eq. (5.5) to include a layer dependence

U

N2D

=
1

2

∑
izjz

uiz [Dizjz − 2g̃11δizjzηiz ]ujz −Q
∑
iz

Eizuiz +
γ

4

∑
iz

u4
iz , (5.6)

with g̃11 = g11
Q2

a3
, and where δizjz is the Kronecker delta function.

As seen in Eq. (5.6), the electrostrictive term, −2g̃11δizjzηiz , modifies Dizjz . From

Eq. (4.4), the susceptibility is inversely proportional to the matrix of force elements

Dizjz in the low electric field limit. Thus, since the experimental value of g11 is positive

[88] a positive (tensile) strain increases the susceptibility.
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In order to model the strain profile shown in Fig. 5.1, we choose an empirical

expression for the strain ηiz

ηiz = η0 exp[−(zi/d)4], (5.7)

where η0 = ∆c0/c0 is the strain at the top STO layer, zi = (iz − 1)a, and d = 4a the

thickness of the strained layer at the interface. This form qualitatively captures the

shape of the strain profile. Thus, the modified D̃ij elements are

D̃izjz = Dizjz − 2g̃11δizjzη0 exp[−(zi/d)4]. (5.8)

5.1.2 Results

Figure 5.2 shows a comparison between the potential energy, charge density profile,

and band structure for the case of an ideal interface (g11 = 0) and for the case

where electrostrictive coupling is included (g11 = 1.33 × 1010 Jm/C2 [88]). As seen,

electrostrictive coupling reduces the confining potential relative to the ideal interface,

which therefore deconfines the electron gas [Fig. 5.2(a) and (b)]. The band structure

does not change much with the strain coupling; it forms a quasi-3D continuum at σs =

0.01 e/a2, as in the ideal-interface case [Fig. 5.2(c) and (d)] that is not consistent with

experiments. We repeated our calculations at g11 = 0.8× 1010 and 2.0× 1010 Jm/C2

values and different strain sizes η0, and found similar qualitative results as in Fig.

5.2(c) and (d).

Our conclusion is that the electrostrictive coupling term by itself has a very small

effect on the interface electronic properties compared with the ideal-interface case.

Next, we consider coupling to the strain gradient.
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Figure 5.2: Effect of electrostrictive coupling on electronic structure. (a) and (b)
show the potential energy φ(z), and charge density profiles for g11 = 0
(ideal interface) and g11 = 1.33 × 1010 Jm/C2. (c) and (d) show the
corresponding band structures. The results are for σs = 0.01 e/a2, 100
layers and at T=1 K.

5.2 Coupling to Stain Gradients: Flexoelectricity

In addition to an interfacial strain, Fig. 5.1 shows that STO interfaces have large

strain gradients. The strain gradient contributes to the free energy equation through
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a flexoelectric term −f̃11

∑
iz

∂ηiz
∂zi

uiz . Here, f̃11 = f11
Q
a

, where f11 is the flexoelec-

tric coefficient that represents coupling between the strain gradients (∂ηiz
∂zi

) and the

polarization. Flexoelectricity is a property of materials whereby they polarize when

subject to nonuniform strain. It makes these materials a good choice for electrome-

chanical sensors and actuators [94]. Also, strain gradients can mimic an electric field,

and can switch the spontaneous polarization of a ferroelectric material [94].

The full Landau-Devonshire energy including flexoelectricitiy is

U

N2D

=
1

2

∑
izjz

uiz [Dizjz − 2g̃11δizjzηiz ]ujz −
∑
iz

[
QEiz + f̃11

∂ηiz
∂zi

]
uiz +

γ

4

∑
iz

u4
iz (5.9)

where the strain gradient ∂ηiz
∂zi

is calculated using Eq. (5.7). There is no consensus

about the reported value of the flexoelectric coefficient of STO. Most DFT studies

predict a wide range for this value of 1-10 V [94]. Here, we perform our calculations

using f11 values in range of 1-3 V. We repeated our calculations for values bigger than

3 V, and found that the results do not change qualitatively.

The polarization is obtained by minimizing Eq. (5.9) with respect to ulz ,

∑
jz

[Dlzjz − 2g̃11δlzjzηlz ]ujz + γu3
lz = QElz + f̃11

∂ηlz
∂zi
|zi=zl . (5.10)

At low doping, the electric field is small and Eq. 5.10 tells us that, for negative ∂ηiz
∂z

,

and f11 > 0, one may have polarization that points opposite to the electric field.

As the electric field increases, by increasing the doping, the polarization switches its

direction and points in the same direction as the electric field.

We perform the same self-consistent calculations that were discussed in Chapter

2 to obtain the band structure. However, we note that in this case our code is not
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stable and it is hard to obtain convergence. This is because the flexoelectric term

switches the polarization direction from one iteration to the next. To stabilize the

code, we changed how the polarization was calculated, as discussed in Appendix F.

5.2.1 Results

Figure 5.3 shows the band structure at low and intermediate doping for f11 = 2 V,

and η0 = 0.02. At σs = 0.01 e/a2, there is only one band crossing the Fermi level,

consistent with experiments. At σs = 0.06 e/a2, a transition to multiple occupied

bands takes place, which is an indication of a Lifshitz transition. These results quali-

tatively agree with both the dielectric dead layer case [Fig. 4.7], and with experiments

[72]. In addition, we see a second Lifshitz transition when the 3D tail states cross the

Fermi level as shown in Fig. 5.3.(b).

In order to compare with Fig. 4.1, we plot the filling of lowest four energy bands

(1xy, 2xy, 1xz/1yz) as a function of doping Fig. 5.4. This figure has two main features.

First, there are two Lifshitz transitions: one when the 2xy and 1xz/yz bands begin

to be occupied at nL1 ≈ 0.015 e/a2, and the other when the 3D tail bands begin to

be occupied at nL2 ≈ 0.025 e/a2. The second main feature is that the slope of the

1xy band filling changes with doping: at low doping it is constant, then it becomes

nearly zero after the transition, and finally it increases with doping. This abrupt

change in the 1xy slope is consistent with the reported results in [66, 75, 72]. Indeed,

Fig 5.4 captures the two main features reported by Smink et al. [72]: one is that there

is a Liftshitz transition at critical charge density; second is that there is an abrupt

reduction in n1 after the transition [see Fig. 4.1]. To date, this is the only physically

plausible model that captures the abrupt change in the slope at nL1.
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Figure 5.3: Band structure for a strained interface at σs = 0.01 (a) and 0.06 e/a2 (b).
Results are for η0 = 0.02, f11 = 2 V, at T=1 K, g11 = 1.33× 1010 JmC−2,
and for 100 STO layers.

Figure 5.5 shows the layer-dependent polarization [P (z)] and charge density [n(z)].

The main point of this figure is that for σs < nL1, there is a thin layer of negative

polarization extending over 3a ≤ z ≤ 6a [Fig. 5.5.(a)], where the strain gradient is

largest [see Fig. 5.1]. In this thin layer, the polarization points towards the interface,

and opposite to the electric field. This increases the confining potential, and pushes

the electrons to be confined in the first five layers, as shown in Fig. 5.5.(b). At

σs > nL1, the polarization switches its direction abruptly (it becomes positive), and

it points away from the interface, as shown in Fig. 5.5.(a). This drives the electrons

away from the interface to occupy other bands and spread between more layers [see

Fig. 5.5.(b)].
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Figure 5.4: Occupation of the four lowest energy bands and tails as function of doping.
Results are for η0 = 0.02, f11 = 2 V, at T=1 K, g11 = 1.33× 1010 JmC−2,
and for 100 layers.

To understand Fig. 5.5, we should refer to Eq. (5.10). At low doping, the elec-

tric field is weak and smaller than the flexelectric term, which results in a negative

polarization, where the strain gradient is large. As the doping increases, the electric

field becomes strong enough to overcome the flexelectric effect, and yields a positive

polarization. We therefore conclude that the switching of the polarization direction

is responsible for the Lifshitz transition in our model.
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Figure 5.5: Layer-dependent polarization (a) and charge density (b) at different
doping. Results are for η0 = 0.02, f11 = 2 V, at T=1 K, g11 =
1.33× 1010 JmC−2, and for 100 STO layers.

5.2.2 Effect of Model Parameters on Band Filling

There are many factors in our model that affect the band filling, such as η and f11.

Experiments showed that the size of the interfacial strain η0 ranges from 0.01-0.03

[92, 95]. In Fig. 5.6.(a), we plot the 1xy-band filling (n1xy) for different strains, and

f11 = 2 V. As η0 increases, nL1 increases. This can explain the variations in the

Lifshitz charge density between different experiments [66, 75, 72]. Because there is

uncertainty in the value of f11, Fig. 5.6.(b) shows n1xy for several f11, and η0 = 0.02.

We can see that f11 has a similar effect on nL1 as η0. This can be understood from

Eq. (5.10), where both f11 and η0 determine the size of the flexoelectric term, and

control its weight with respect to the electric field.
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Figure 5.6: The lowest band filling as a function of doping for different strain and f11

values. Results of (a) are for f11 = 2 V, at T=1 K, and for 100 layers.
Results of (b) are for η0 = 0.02

On the other hand, we see that both γ and g11 do not affect the value of nL1.

Figure 5.7.(a) shows n1xy at different γ values. We see that γ determines the behaviour

of the 1xy filling at high doping. This is because, at high doping, the non-linear term

in Eq. (5.10) reduces the dielectric screening, and is responsible for an upturn in n1xy.

In Fig. 5.7.(b), we show n1xy as a function of g11. It is clear that g11 changes the slope

of the 1xy filling after the transition; small g11 gives a negative slope, similar to what

Smink el al. reported [72].

For completeness, we repeat our calculations including the Hubbard term [Eq. (E.10)]

for η0 = 0.02, f11 = 2 V, and at T=1 K, Fig. 5.8.(a). As shown, the Lifshitz transition

happens at a smaller nL1 in this case. However, overall the change is quantitative
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Figure 5.7: The lowest band filling as a function of doping for different γ, and g11

values. (a) shows the n1xy at g11 = 1.33 × 1010 JmC−2 for γ, γ/2, and
γ/10 where γ is given in Table 2.1. (b) shows nL1 for several g11 values.
Results of (a) and (b) are for f11 = 2 V, η0 = 0.02s, at T=1 K, and for
100 layers.

rather than qualitative. This implies, similar to what we found in Chapter 4, that

the short-range interactions do not have a big effect on the band structure.

We discussed before the strong dependence of the STO permittivity on tempera-

ture. In Fig. 5.8.(b), we study the effect of temperature on the Lifshitz transition. At

T≤ 20 K, n1xy changes slightly, because Dizjz is nearly constant in this temperature
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Figure 5.8: (a) shows n1xy with and without Hubbard term, U0 = 4, U = 2.4, and
J = 0.8 eV. (b) shows n1xy as a function of temperature. Results are for
η0 = 0.02, f11 = 2 V and for 100 STO layers.

range: it is a reminder that the saturation temperature in our model is 15 K. As

the temperature increases, the transition gradually disappears. The reason for that

is, the STO permittivity decreases, which increases the field strength and reduces

the importance of the flexoelectric effect. We therefore do not see switching of the

polarization direction.
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5.3 Summary

It is well known that strain has a big effect on the electronic properties of thin films.

In our model, we included strain effects in the the Landau-Devonshire equations in

two steps. First, we included the strain coupling to the polarization, which gave the

same band structure as in the ideal-interface case. We can understand this behaviour

by looking to Eq. (5.6). g11 increases the permittivity in the interface region, which

results in increased screening of the electric field. This effect spreads the electrons

into the STO bulk, which does not agree with previous experimental studies.

The second step was to include the strain gradient in the Landau-Devonshire

energy. The results show that at low doping there is only one occupied band with dxy

character. As the doping increases, there a Lifshitz transition to multiple occupied

bands with different orbital character. We showed that the transition takes place

when the polarization changes its direction, as shown in Fig. 5.5. The filling at which

this happens depends on the flexoelectric term. If this term is bigger than the electric

field, the polarization is opposite to the field, but if it is smaller than the electric field,

the polarization points in the same direction as the field [Eq.(5.10)]. We have seen

that both f11 and strains control the flexoelectric term and consequently the value of

nL1 . On the other hand, the value of g11 control the slope of n1xy after transition.

To date, our interfacial-strain model is the only realistic model that predicted

the two main features of the observed Lifshitz transition. This model can be tested

by atomic-resolution probes that can resolve the interface polarization. Lee et al.

[92] observed a head-to-head polarization in ungated LAO/STO samples. In their

measurements, the reversed polarization on the STO side of the interface extends

over 5 unit cells into the substrate, similar to what we propose. Therefore, it would
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be interesting to use this technique to see whether the polarization can be switched

by an external gate voltage, and to determine whether this correlates with a Lifshitz

transition.
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Chapter 6

Conclusion

STO-based interfaces have attracted attention due to their promising properties for

applications. Many studies explored the relation between the interface properties

and the dielectric permittivity of STO, and found that including the field-response

of the dielectric function is essential to obtain a good description for the electron

distribution, in particular at low doping. In this thesis, we made a careful exploration

of the role of the dielectric function on the STO interface.

We started with an ideal-interface model, in which the interface dielectric is simi-

lar to the bulk. We calculated the band structure and charge distribution as functions

of both doping and temperature. In Chapter 3, we showed that the dielectric screen-

ing shapes the band structure and electron distribution, and is responsible for the

strong dependence of the interface on doping and temperature. Our calculations

agree with experiments that reported an increasing width of the conducting region

with decreasing temperature [3, 96].

However, there were differences with experiments. Our simple model does not

agree with observations of a Lifshitz transition at low doping and low temperature.

The observed Lifshitz transition has two important features: one is the transition
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from one occupied band to multiple occupied bands at a critical charge density; the

other is the change in the slope of the filling of the lowest band (n1xy) with doping.

To understand the transition, we modified our model at the interface permittivity.

Motivated by experiments, we first assumed a dead layer at the interface. The weak

screening due to low the permittivity at the interface confines the electrons to one

band at low doping, and allows a crossover to multiple occupied bands at higher

doping. Although the model predicted a Lifshitz transition at a critical charge density

in the same range as the experimental one, it does not observe an abrupt slope change

of n1xy with doping. We found that the dielectric dead-layer model does not provide

a complete description of the observed Lifshitz transition. This led us to change our

treatment of the interface dielectric.

Strain is a common feature of interfaces, and its effect on the dielectric properties

of STO is well studied. We included the interfacial-strain effects in our model by

considering the coupling of the strain and strain gradients with polarization. The

interfacial-strain model predicted the two main features of the observed Lifshitz tran-

sition, and it is the first realistic model to do that. In addition, this model gives a

mechanism for the transition in which the strain creates a thin polarized layer whose

direction reverses at a critical density.

Although, our interfacial-strain model captures the main features of the transi-

tion, differences with experiments remain on the high-doping side of the transition.

Indeed, our simple model ignores some features of STO-based interfaces which may

be helpful in reproducing the experimental results. For example, we ignored the effect

of LAO polarization on the STO. In principle, one also can calculate the strain self-

consistently using the extension of Landau-Devonshire model. However, the boundary
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condition at LAO/STO interfaces is not obvious. In addition, we neglected cation

intermixing, oxygen vacancies, and other defects at the interface, which influence the

doping-dependent band structure. Ferromagnatism has been observed in some stud-

ies, if it is present, it must also affect the doping-dependent band structure. In future,

it will be interesting to see whether including one or two of these features can improve

the agreement with experiments.
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of charge carriers in LaAlO3/SrTiO3 heterostructures. Nature Mater., 7(8):621–

625, June 2008.

[66] Arjun Joshua, S. Pecker, J. Ruhman, E. Altman, and S. Ilani. A universal criti-

cal density underlying the physics of electrons at the LaAlO3/SrTiO3 interface.

Nature Comm., 3:1129–, October 2012.



BIBLIOGRAPHY 114

[67] S Lerer, M Ben Shalom, G Deutscher, and Y. Dagan. Low-temperature de-

pendence of the thermomagnetic transport properties of the SrTiO3/LaAlO3

interface. Phys. Rev. B, 84(7):075423, August 2011.

[68] J S Kim, S S A Seo, M F Chisholm, R K Kremer, H U Habermeier, B Keimer, and

H N Lee. Nonlinear Hall effect and multichannel conduction in LaTiO3/SrTiO3

superlattices. Phys. Rev. B, 82(20):201407, November 2010.

[69] A Spinelli, M A Torija, C Liu, C Jan, and C Leighton. Electronic transport in

doped SrTiO3: Conduction mechanisms and potential applications. Phys. Rev.

B, 81(15):155110, April 2010.

[70] A Faridi, R Asgari, and A Langari. Electron mobility of a two-dimensional

electron gas at the interface of SrTiO3 and LaAlO3. Phys. Rev. B, 93:235306,

2016.

[71] Wei Niu, Yu Zhang, Yulin Gan, Dennis V. Christensen, Merlin V. Soosten, Ed-

uardo J. Garcia-Suarez, Anders Riisager, Xuefeng Wang, Yongbing Xu, Rong

Zhang, Nini Pryds, and Yunzhong Chen. Giant tunability of the two-dimensional

electron gas at the interface of γ-Al2O3/SrTiO3. Nano Letters, 17(11):6878–6885,

2017.

[72] A. E. M. Smink, J. C. de Boer, M. P. Stehno, A. Brinkman, W. G. van der

Wiel, and H. Hilgenkamp. Gate-tunable band structure of the LaAlO3-SrTiO3

interface. Phys. Rev. Lett., 118:106401, Mar 2017.

[73] A. E. M. Smink, M. P. Stehno, J. C. de Boer, A. Brinkman, W. G. van der Wiel,

and H. Hilgenkamp. Correlation between superconductivity, band filling, and



BIBLIOGRAPHY 115

electron confinement at the LaAlO3/SrTiO3 interface. Phys. Rev. B, 97:245113,

Jun 2018.

[74] S Gariglio, N Reyren, A D Caviglia, and J-M Triscone. Superconductivity at the

LaAlO3/SrTiO3 interface. Journal of Physics: Condensed Matter, 21(16):164213,

2009.

[75] Haixing Liang, Long Cheng, Laiming Wei, Zhenlin Luo, Guolin Yu, Chang-

gan Zeng, and Zhenyu Zhang. Nonmonotonically tunable rashba spin-orbit cou-

pling by multiple-band filling control in SrTiO3-based interfacial d-electron gases.

Phys. Rev. B, 92:075309, Aug 2015.

[76] G. E. Volovik. Topological lifshitz transitions. Low Temperature Physics,

43(1):47–55, 2017.

[77] E. Maniv, M. Ben Shalom, A. Ron, M. Mograbi, A. Palevski, M. Goldstein,

and Y. Dagan. Strong correlations elucidate the electronic structure and phase

diagram of LaAlO3/SrTiO3 interface. Nature Communications, 6:8239, 2015.

[78] S. Nandy, N. Mohanta, S. Acharya, and A. Taraphder. Anomalous transport near

the lifshitz transition at the LaAlO3/SrTiO3 interface. Phys. Rev. B, 94:155103,

Oct 2016.

[79] W. A. Atkinson, P. Lafleur, and A. Raslan. Influence of the ferroelectric quantum

critical point on SrTiO3 interfaces. Phys. Rev. B, 95:054107, Feb 2017.

[80] Li-Wu Chang, Marin Alexe, James F. Scott, and J. Marty Gregg. Settling the

dead layer debate in nanoscale capacitors. Advanced Materials, 21(48):4911–

4914.



BIBLIOGRAPHY 116

[81] M. S. Majdoub, R. Maranganti, and P. Sharma. Understanding the origins of

the intrinsic dead layer effect in nanocapacitors. Phys. Rev. B, 79:115412, Mar

2009.

[82] A. A. Sirenko, C. Bernhard, A. Golnik, Anna M. Clark, Jianhua Hao, Weidong

Si, and X. X. Xi. Soft-mode hardening in SrTiO3 thin films. Nature, 404:373,

2000.

[83] Massimiliano Stengel and Nicola A. Spaldin. Origin of the dielectric dead layer

in nanoscale capacitors. Nature, 443:679, 10 2006.
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Appendix A

Derivation of the Electron Density njzβ

The charge density for a site j = (jx, jy, jz) and orbital type β could be expressed as,

njβ = 〈c†jβcjβ〉, (A.1)

where

cjβ =
1√
Nk

∑
k

eik·rβcjzkβ. (A.2)

where jz layer index, and rβ a 2D vector in the x− y plane.

njβ =
1

Nk

∑
kk′

e−ik
′·rβeik·rβ〈c†jzk′βcjzkβ〉, (A.3)

where 〈c†jzk′βcjzkβ〉 = n̂jzkβ is the number of electrons in certain eigenstate. Since

there is a translational invariance in the x and y direction, njβ only depends on layer

index jz, then we write

njzβ =
1

Nk

∑
kk′

e−ik
′·rβeik·rβ〈c†jzk′βcjzkβ〉. (A.4)
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We then transform to basis in which the Hamiltonian Ĥeff is diagonalize, since

Heff(k)ψ(k) = ψ(k)E(k), (A.5)

where ψ is the unitary matrix that diagonalizes Heff , so

Heff(k) = ψ(k)E(k)ψ†(k). (A.6)

Since

Ĥeff(k) =
∑
izα,jzβ

c†jzβk′Hjzβ,izαcizαk, (A.7)

then define

Ĥeff(k) =
∑
l

∑
izα,jzβ

c†jzβk′ψjzlElψ
†
liz
cizαk, (A.8)

where l = βkn with n is band index. We define

γl =
∑
iz

ψ†lizcizαk. (A.9)

If ψ is real, then ∑
l

ψlizγl = cizαk. (A.10)

Therefore,

njzβ =
1

Nk

∑
k

∑
MP

ψ∗IM〈γ†MγP 〉ψIP , (A.11)

where I = kjz, then

njzβ =
1

Nk

∑
k

∑
n

|ψjzβn(k)|2〈nnkβ〉, (A.12)
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njzβ =
1

Nk

∑
k

∑
n

|ψjzβn(k)|2f(εnk), (A.13)

where njzβ is the charge density at layer jz and orbital type β, n represents the band

index, ψjzβn(k) is the eigenvector element and f(εnk) is the Fermi-Dirac distribution

function.
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Appendix B

Fitting the Dielectric Model to Experiments

This appendix describes work done by Patrick Lafleur to fit our Landau-Devonshire

parameters to experiments. This was his contribution to Ref. [33]. It is included here

for completeness.

In this appendix, we outline the process by which the model parameters were fit-

ted to experimental measurements of the field- and temperature-dependent dielectric

susceptibility

χij(T,E) =
1

ε0

∂Pi
∂Ej

, (B.1)

where i and j label unit cells. For a uniform electric field, the polarization and normal

coordinate u are also uniform, and from Eq. (2.17),

χ(T,E) =
Q

ε0a3

∂u

∂E
(B.2)

From Eq. (2.25), we then obtain

Dq=0u+ γu3 = QE, (B.3)
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Figure B.1: Comparison of the uniform dielectric susceptibility χ(T,E) to the experi-
mental results of Dec et al.[97] Symbols are experimental data, solid lines
are theory. Results are shown as a function of temperature for different
electric field strengths.

where Dq=0 =
∑

j Dij. Differentiating Eq. (B.3) with respect to E, we obtain

χ(T,E) =
Q2

ε0a3

1

Dq=0 + 3γu2
, (B.4)

where u is obtained from Eq. (B.3).

Dec et al.[97] showed that the zero-field dielectric susceptibility can be fitted

empirically by

χ(T, 0) =

(
T0

TQ

)λ
(B.5)
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where T0 is a constant and TQ = Ts coth(Ts
T

) is the quantum analogue of the tem-

perature: when T � Ts, TQ → T and when T � Ts, TQ → Ts. We note that λ was

found to be 2 at low temperatures and 1 at high temperatures; to reduce the number

of fitting parameters, we take 1 < λ < 2 to be constant over the entire temperature

range. This improves the quantitative fit to the data, but means that we do not

reproduce the correct critical exponents at low T .

Equating Eq. (B.5) to Eq. (B.4) in the zero-field limit yields

Dq=0 =
Q2

ε0a3

(
TQ
T0

)λ
. (B.6)

Reinserting this into Eq. (B.4) gives us an equation for the nonlinear susceptibility

at finite fields with the fitting parameters Ts, T0, Q, λ, and γ. We fit this expression

to the experimental data of Ref. [97], and the result is shown in Fig. B.1. The model

reproduces the data at both low and room temperatures and a range of electric fields

from 0 V/mm to 500 V/mm with a maximum relative error of 16%. The best fit

parameters are given in Table 2.1.

To extend this model to finite q, we take the empirical expression[31]

Dq = M [ω2
0 − ω2

1e
−(α1q)

2

2 − ω2
2(T )e

−(α2q)
2

2 ], (B.7)

where M is the reduced mass for the soft mode, ω0, ω1, and α1 are used to reproduce

the measured phonon dispersion [42] at 90 K, and ω2(T ) and α2 are used to capture the

low-temperature phonon dispersion. Equation (2.28) for the temperature-dependence

of ω2(T ) can be obtained by setting q = 0 in Eq. (B.7) and equating it to Eq. (B.6).
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Appendix C

Atomic Spin-Orbit Coupling

In this appendix, we drive the Atomic spin-orbit coupling (ASOC) Hamiltonian. The

spin-orbit coupling Hamiltonian is written as

ĤSOC = ξSOC ~̂l ·~̂s = ξ [l̂xŝx + l̂yŝy + l̂z ŝz], (C.1)

with ξSOC is the atomic SOC strength, l is the orbital angluar momentum of the

electron, and s is the spin.

We express the ASOC Hamiltonian terms of ladder operator as

ĤSOC = ξSOC [
1

2
l̂−ŝ+ +

1

2
l̂+ŝ− + l̂z ŝz]. (C.2)

Because the orbital and spin angular momentum operators only act on the in-

dividual orbital and spin functions, the matrix elements of the product operators

l̂−ŝ+, l̂+ŝ−, and l̂z ŝz can be formulated as a product of matrix elements, for example

〈lmsms|l̂−ŝ+|l′m′s′m′s〉 = 〈lm|l̂−|l′m′〉〈sms|ŝ+|s′m′s〉
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These matrix elements can be evaluated using

〈lm|l̂±|l′m′〉 = ~[(l′ ∓m′)(l′ ±m′ + 1)]1/2δll′δm,m′±1,

〈lm|l̂z|l′m′〉 = ~m′δll′δmm′ ,

and similary for ŝ±, and ŝz.

In our case we construct the ASOC Hamiltonian for the 3d Ti t2g orbitals, dxy,

dxz, and dyz as

ĤSOC =
ξSOC

2
~2



0 0 0 0 −i 1

0 0 −i i 0 0

0 i 0 −1 0 0

0 −i −1 0 0 0

i 0 0 0 0 i

1 0 0 0 −i 0





xy ↑

xz ↑

yz ↑

xy ↓

xz ↓

yz ↓



. (C.3)
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Appendix D

Derivation of the Electron Lifetime τn

Here, we include interface disorder in our model and calculate the resultant scattering

rate within the Born approximation. In this case the Hamiltonian is

Ĥtot = Ĥeff + Ĥ imp, (D.1)

where Ĥeff is given in Eq. (2.1), Ĥ imp is the perturbation due to impurities [98, ch.

6]

Ĥ imp =
∑
iασ

εic
†
iασciασ, (D.2)

where i = (ix, iy, iz) is lattice site, and εi ∈ [−Wi

2
, Wi

2
] is the impurity potential with

Wi the distribution width of the impurity potential at that site.

Economou [98, ch. 6] solves the total Hamiltonian by finding the corresponding

Green function G,

[iω −Heff −Himp]G = I (D.3)

(G0)−1[1−G0Himp]G = I (D.4)
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where G0 is is the Green function corresponding to Ĥeff . To second order in the

impurity potential, we solve Eq. (D.4)

Gijα(ω) = G0
ijα +

∑
l

G0
ilαεlG

0
ljα +

∑
lm

G0
ilαεlG

0
lmαεmG

0
mjα. (D.5)

Taking the average over the impurity potential, we get

εl =
1

W

∫ Wl
2

−Wl
2

dεlεl = 0,

εlεm = δlm ×
1

W

∫ Wl
2

−Wl
2

dεlε
2
l =

W 2
l

12
,

and

Gijα(ω) = G0
ijα +

∑
l

G0
ilα

W 2
l

12
G0
llαG

0
ljα. (D.6)

We define self-energy Σi as

Σiα =
W 2
i

12
G0
iiα. (D.7)

We assume that the impurity strength Wi depends on the layer iz but is independent

of position in the layer. Then

Σiα =
W 2
iz

12
G0
iiα, (D.8)

with

G0
iiα =

1

Nk

∑
k

∑
n

|ψizαn(k)|2 1

ω − iη − ε′n(k)
,

where η is a positive infinitesimal number.
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We approximate the dispersions, Eqs. (2.8), near the Γ point by their quadratic

forms

ε′n(k) =
~2

2
(
k2
x

mn
x

+
k2
y

mn
y

) + εn0,

where εn0 is the band bottom energy, and mn
x and mn

y are the effective masses in

the x- and y-direction, respectively. The effective mass is

1

mx,y

=
1

~2

d2ε′n(k)

dk2
,

then by using Eqs. (2.8), the effective masses in the x and y directions for the xy

bands are

mxy
x = mxy

y =
~2

2at‖
,

for the xz bands are

mxz
x =

~2

2at
, mxz

y =
~2

2at⊥
,

and for the yz bands are

myz
x =

~2

2at⊥
, myz

y =
~2

2at‖
.

To calculate the sum over k, we convert it to integration as

∑
k

→
∫
d2k→

√
mn
xm

n
y

~2

∫
dξxξy →

√
mn
xm

n
y

~2

∫ 2π

0

dθ

∫
ξdξ,

where ξx = ~kx√
mx

, and ξy = ~ky√
my

. Then

G0
iziz =

1

Nk

∑
n

|ψizαn(k)|2
√
mn
xm

n
y

~2

∫ 2π

0

dθ

∫
ξdξ

1

ω − iη − ξ2 − εn0

,
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where we have used the fact that ψizαn does not depend on k.

The scattering rate for electrons in band n is given in terms of the self-energy as

γn = −ImΣn.

Therefore,

γn =

√
mn
xm

n
y

~2

∑
iz

|ψizαn|2
W 2
iza

2

24
. (D.9)

Here, we assume that Wiz = W in the first Λ layers, and is zero further from the

interface. Then, the electron lifetime τn in band n is

~
τn

=

√
mx,nmy,nW

2a2

24~2

Λ∑
iz=1

|Ψizα,n|2. (D.10)
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Appendix E

Derivation of Hubbard Model for Short-Range

Interactions

In this appendix, we introduce our derivation for the short-range electron-electron

interactions. This derivation comes from Ref. [84], here we provide details that are

not given in the original article [84].

The Hubbard term is given

Ĥhub =
1

2

∑
σ

∫
d3rd3r′Ψ†σ(r)Ψ†σ′(r

′)V (r− r′)Ψσ̄(r′)Ψσ(r) (E.1)

where

Ψσ(r) =
∑
i

∑
α

ψiα(r)ciασ, (E.2)

and

Ψ†σ(r) =
∑
i′

∑
α′

ψ∗i′α′(r)c†i′α′σ. (E.3)
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Then,

Ĥhub =
1

2

∑
σ

∑
ij,i′j′

∑
αβ,α′β′

∫
d3rd3r′ψ∗i′α′(r)ψ∗j′β′(r

′)V (r−r′)ψjβ(r′)ψiα(r)c†i′α′σc
†
j′β′σ̄cjβσ̄ciασ,

(E.4)

with σ is the electron spin, i, j labels the unit cell, and α, β is the orbital type. Assume

that the interactions taking place at the same site are more important than different

sites, i.e i = i′ = j = j′, therefore,

Ĥhub =
1

2

∑
σ

∑
i

∑
αβ,α′β′

∫
d3rd3r′ψ∗iα′(r)ψ∗iβ′(r

′)V (r− r′)ψiβ(r′)ψiα(r)c†iα′σc
†
iβ′σ̄ciβσ̄ciασ.

(E.5)

We now define interaction parameters, U0, U , and J as

U0α =

∫
d3rd3r′|ψiα(r)|2V (r− r′)|ψiα(r′)|2, (E.6)

Uαβ =

∫
d3rd3r′|ψiα(r)|2(r′)V (r− r′)|ψiβ(r′)|2, (E.7)

Jαβ =

∫
d3rd3r′ψ∗iβ(r)ψ∗iα(r′)V (r− r′)ψiβ(r′)ψiα(r). (E.8)

Therefore, the Hubbard Hamiltonian in terms of thes interaction parameters is
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Ĥhub =
∑
i

∑
α

U0αn̂iα↑n̂iα↓ +
1

2

∑
σ

∑
i

∑
αβ

Uαβn̂iασn̂iβσ̄ +
∑
σ

∑
i

∑
α<β

Uαβn̂iασn̂iβσ

−
∑
σ

∑
i

∑
α<β

Jαβn̂iασn̂iβσ −
∑
σ

∑
i

∑
α<β

Jαβc
†
iβσciβσ̄c

†
iασ̄ciασ

+
1

2

∑
σ

∑
i

∑
αβ

Jαβc
†
iασc

†
iασ̄ciβσ̄ciβσ, (E.9)

where n̂iασ = c†iασciασ. α < β is here to avoid double counting over the orbital type.

In the mean field theory, the charge density operator (c†iασciασ) deviates from its

average value, 〈c†iασciασ〉 as

δniασ = c†iασciασ − 〈c†iασciασ〉,

therefore, the Hubbard Hamiltonian in mean-field approximation is

ĤMF
hub =

∑
i

∑
α

U0αn̄iα↓n̂iα↑ +
∑
i

∑
α

U0αn̄iα↑n̂iα↓ −
∑
i

∑
α

U0αn̄iα↑n̄iα↓

+
∑
σ

∑
i

∑
α<β

Uαβn̄iβσ̄n̂iασ +
∑
σ

∑
i

∑
α<β

Uαβn̄iασn̂iβσ̄ −
∑
σ

∑
i

∑
α<β

Uαβn̄iασn̄iβσ̄

+
∑
σ

∑
i

∑
α<β

Uαβn̄iβσn̂iασ +
∑
σ

∑
i

∑
α<β

Uαβn̄iασn̂iβσ −
∑
σ

∑
i

∑
α<β

Uαβn̄iασn̄iβσ

−
∑
σ

∑
i

∑
α<β

Jαβn̄iβσn̂iασ −
∑
σ

∑
i

∑
α<β

Jαβn̄iασn̂iβσ +
∑
σ

∑
i

∑
α<β

Jαβn̄iασn̄iβσ,

where n̄iβσ = 〈c†iασciασ〉 is the occupation of a single orbital (α, σ) in layer i.

By assuming that n̄iα↓ = n̄iα↑, and Uαβ = U , then the final Hubbard Hamiltonian

is
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ĤMF
hub =

∑
iασ

U0n̄iασn̂iασ̄ +
∑
iσ

∑
β 6=α

(2U − J)n̄iβσn̂iασ̄, (E.10)
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Appendix F

Numerical Solution of the Interfacial-Strain Model

We find that, for the interfacial-strain model, self-consistent calculations are not sta-

ble, and it is hard to make the code converge. This is that because the flexoelectric

term leads to a rapid switching of the polarization direction from one iteration to the

next. To overcome this problem, we find that the calculations are easily controlled if

we work in a basis in which the matrix D is diagonal. The Landau- Devonshire free

energy is

U

N2D

=
1

2

∑
izjz

uizD̃izjzujz −
∑
iz

Ẽizuiz +
γ

4

∑
iz

u4
iz (F.1)

where

D̃izjz = Dizjz − 2g̃11δizjzηiz ,

and

Ẽiz = QEiz + f̃11
∂ηiz
∂zi

.

Letting λ and S be the eigenvalues and the matrix of eigenvectors of D̃, the energy
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equation in mode index basis n is

U =
1

2

∑
n

λna
2
n −

∑
n

Ẽnan +
γ

4

∑
n

a4
n, (F.2)

where an =
∑

i uiSin, and Ẽn =
∑

iEiSin. The first two terms in Eq. (F.2) are

formally equivalent to Eq. (F.1), while the final term is an ansatz.

To stabilize the calculations, we rearrange Eq. (F.2) such that we group the

depolarizing fields (given in Eq. (2.22)) with λn. This gives

(λl +
Q2

ε∞a3
)al − Ẽother

l + γa3
l = 0. (F.3)

Because λl +
Q2

ε∞a3
> 0, This helps stabilize the iterative cycle. We solve Eq. (F.3) for

al, and then find ui =
∑

n Sinan.


