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CHAPTER 1

INTRODUCTION

Transform techniques offer many advantages to chemists because
they can provide a variety of simple procedures for manipulating
digitized data. The Fourier transform has gained distinction in
chemical analysis particularly in spectroscopic applications. The
advantages of this transform were first exploited in the 1950's by
astronomers to improve the otherwise poor signal-to-noise ratio of
their infrared spectra.! The computations required for data
reduction, however, were extremely slow and required a large
computer. In 1965, Cooley and Tukey? published a fast Fourier
transform (FFT) algorithm that significantly shortened computation
time. A calculation that took six hours on a large computer using
a conventional algorithm could now be performed in ten seconds on
a mini-computer using the FFT algorithm.! Analog-to-digital
converters with suitable speed and accuracy were already available
at this time and commercial stand-alone Fourier transform infrared
(FT-IR) and Fourier transform nuclear magnetic resonance (FT-NMR)
spectrometers were available within three years.

The application of transform methods to other spectroscopic
techniques required additional theoretical and/or technical

developments. As an example, the first commercially available



Fourier transform mass spectrometer was not marketed until 1981}
because of demands on the analog-to-digital converter. Other
transforms have alsc found applications in spectroscopy. Hadamard
transform methods for IR3 and Hilbert transform methods for NMR“
were both introduced in 1968.

Although transform methods have been exploited chiefly for
spectroscopy, they also have applications in other analytical

techniques. For instance, many transform techniques have been

applied to electrochemistry. Some of these applications will be
discussed more thoroughly in a later chapter. In addition, an
application of the Hilbert transform will be developed for a

specific type of electrochemical analysis. After this transform
technique is validated theoretically, some investigations of its
implementation with digitized data will be reported and

conclusions concerning its success will be drawn.



CHAPTER 2

TRANSFORM ANALYSIS

What is a Transform?

Many simple mathematical operations may be classified as
transformations.> The multiplication of a function F(t) by a
constant or by a second function is a transformation of F(t). The
operation of differentiation transforms F(t) into its image, or
transform, F'(t). |If this mathematical operator is represented by

the letter D then the transform can be written

D{F(t)} = F'(t) (2.1)

Similarly, the operation of integration, represented by the letter

I, transforms F(t) into a function f(x) where

I{F(t)} = JZF(t)dt = f(x) (2.2)

If a transform, T, of a function F gives the image G, then an

inverse transform, T—], exists such that
ey = F (2.3)

Table 2.1 summarizes the transforms that have been discussed thus

far along with their corresponding inverse transforms.



T 7]
multiplication division
differentiation integration
integration differentiation

Table 2.1 Some transforms and their inverses.

Why use a Transform?

There is a wide variety of transforms that have been studied
extensively and whose properties are well established. The
analysis of a problem can often be simplified by employing one of
these transforms. A comparison between transform analysis and
conventional analysis is presented in Figure 2.1. It can be seen
from this flowchart that although the route to the solution can
involve more operations, the overall analysis can be simplified

significantly with the aid of a transform.

Conventional Analysis Transform Analysis

Problem posed in terms ] Equivalent equations
of F(t) ; difficult to |— Transform — | posed in terms of
solve | f(s) ; easy to solve
v ! ¥
complex | simplified
analysis ‘ analysis
¥ | \
Inverse

Solution for F(t) Solution for f(s)

Transform

Figure 2.1 Flowchart for both conventional and transform analysis.



The analysis can only be simplified, however, if the
appropriate transform is chosen. As an analogy, assume that two
numbers are to be divided but a calculator is not available. The
conventional analysis would be to perform long division, which
can be tedious. Another approach would be to subfract the
logarithm of the denominator from that of the numerator, and then
take the antilogarithm of this difference. The logarithm
transforms multiplications and divisions into additions and
subtractions. This is an operation specific to the logarithm
which simplifies the analysis for this particular type of problem.
The transform is easy to implement since tables of logarithms and
antilogarithms may be easily looked up and hence an awkward
division may be evaluated without the aid of a cglculator.

What distinguishes an Integral Transform?

Integral transforms are simply transforms that require the
evaluation of an integral. Equation (2.2) illustrates the
simplest integral transform. These transforms are commonly
encountered in calculus, but usuaily they incorporate the
following conditions. Often the function F(t) is limited to an
interval as<tsb and hence the integration is performed between
these limits. Usually F(t) is also multiplied by a second
function K(t,x) known as the kernel. The integral transformation

of F(t) with respect to the kernel K(t,x) may be represented by



the equation

b
T{F(t)} = )( K(t,x)F(t)dt (2.4)
a
which will yield a function f(x). Any integral transform can be

described in the form of equation (2.4) given the appropriate
limits and kernel.

Examples of Integral Transforms

(i) Fourier Transformation

The use of integral transforms dates back to the middle of
the nineteenth century when the interference of light was first
used to obtain spectra. Lord Rayleigh demonstrated that a unique
spectral distribution could not be obtained from the visibility
curve itself and that it was necessary to perform a Fourier
transformation.? The calculation of a digital Fourier transform
was beyond the technology of that age, but Michelson did manage to
build a harmonic synthesizer which was capable of outputting the
Fourier transform of a synthetic input signal.® This was the
first Fourier transform computer and it was a remarkable
achievement. |t would be forty years before the same operation
would be performed on a digital computer.*

The processing of data with a Fourier transform was used
extensively in the past by electrical engineers for circuit
analysis® and only recently have chemists begun to incorporate this

procedure to compliment classical analytical techniques. The



development of the on-line fast Fourier transform (FFT) has lead
to a rapid growth in Fourier transform methods since 1973.% This
FFT algorithm allows a computer to resolve the response obtained
from an experiment in which several excitation frequencies are
applied simul taneously. This capacity for simultaneous
measurement is sometimes called the multiplex advantage of
transform methods.’

In spectroscopic analysis, one is concerned with the
frequency or spectral response of a system to a pulse or complex
distribution of amplitudes with time. The Fourier transform
relates the distribution of the signal expressed in terms of time

with its distribution in terms of frequency. It is defined by

H(f) = J h(t)exp(-j2nft)dt (2.5)

oo

with its inverse given by

h(t) = JmH(f)exp(jZth)df (2.6)

-0

where j=(-l)%, H(f) is the frequency-domain function, and h(t) is
the time-domain function.

The Fourier transform possesses properties that are extremely
useful for signal processing. A common application is for noise
reduction. |If a signal is monitored in which there is information
at a few low frequencies, but noise at higher frequencies, the

transformation of the signal will yield a frequency spectrum in



which the amplitudes of high-frequency components may be set to
zero. Inverse transformation will then yield smoothed time-domain
data. Other operations permit integration and differentiation,
correlations between two signals, or correlation of a signal with
itself.®

The application of the Fourier transform has become a routine
procedure to obtain high-resolution IR and NMR spectra. Similar
analytical methods are presently being developed for mass
spectrometry and microwave spectroscopy. A number of Fourier
transform techniques have also been successfully applied in
several areas of electrochemistry.?

(ii) Laplace Transformation

Tne Laplace transform is a valuable mathematical tool for
solving linear differential equations. |t was developed over 150
years ago by P.S. de Laplace but it has only recently achieved
widespread use. "

The application of this transform was pioneered by Heaviside
in the 1890's. His earlywork revolived around ordinary linear
differential equations that were applicable to electric circuit
theory. He later studied partial differential equations that were
characteristic of diffusion systems. The validity of Heaviside's
solutions was doubted by pure mathematicians since much of his

work was based on empirical concepts. In 1916, however, Browich



proved the necessary mathematics to validate Heaviside's methods.!!

This is a rare example of the application of a mathematical
procedure preceding the development of a sound theoretical base.

The Laplace transform is defined as
L{F(t)} = f(s) = J F{t)exp(-st)dt (2.7)
0

in which the independent variable, often being time, is replaced
with the "dummy'' variable s. This transformation converts
differential equations in t into algebraic equations in s. The
initial conditions and boundary values of the differential
equation may also be transformed and then incorporated into the
algebraic equations so that a solution may be obtained that
satisfies these conditions.

The solution to the algebraic equations is then inverse
transformed to give a solution in t for the original differential

equation. The inverse transform is given by

-1 | (AT
EHE)) = PO = e J " f(s)exp(st)ds (2.8)
a-jw

where "a'" is chosen to the right of any singularity of f(s).

2715 3nd these

Extensive tables of Laplace transforms are available
usually permit one to avoid the arduous task of evaluating these
integral transforms. Sometimes, however, the inversion may only

be accomplished by transforming a product of two functions of s

for which the individual inverse transforms are known. |If



L-]{f(s)} = F(t) and L-l{g(s)} = G(t), then the inverse
transformation of the product f(s)g(s) is given by the convolution

theorem, 1°

t
L-l{f(s)g(s)} = JOG(T)F(t‘T)dT (2.9)

where 1 is a dummy variable of integration. The form of this
equation does not demand an analytical solution since, if
necessary, the integral may be evaluated numerically. This
procedure is particularly useful in the treatment of transient
techniques that involve continuously varying perturbations {(e.g.
cyclic voltammetry).
(iii) Hilbert Transformation

This transform was developed from a study of the Fourier

7

transform. ¥ The transform is given by

g(y) ='}r-)[—%)—dx (2.10)
with its inverse given by
f(X)=--1]T—I{—3—_(E)—dy (2.11)

where f denotes the Cauchy Principal Value of the integral. This
relationship is skew reciprocal because, apart from sign, the same
rules that govern transformation also govern the inversion of the

transform. |t is necessary to calculate the Cauchy Principal
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Value of these integrals because the integrands have singularities
when x and y are equal. 1In general, if the integrand has a

singularity at c, a<c<b, then the Cauchy Principal Value of

-b
J F(x)dx (2.12)
a
P18
b c-¢ b 7
f F(x)dx = 1im J F(x)dx + [ F(x)dx (2.13)
a a c+e 5

where £ is positive and approaches zero.
The Hilbert transform has rarely been applied to aid in the

analysis of physical systems. |t has been used, however, to

13

reduce distortion in optical systems and to calculate potential

0

functions for circuit analysis.? It also has important

applications in aerodynamics.?® This transform has also been used

for the automatic phase correction of magnetic resonance spectra.

Implementation of Integral Transforms

The evaluation of an integral transform requires that the
function within the integral be analytic between the limits of
integration. This would enable the function to be calculated at
any point between these limits. Data obtained experimentally,
however, is often digital and hence the function within the
integrand are defined only at specific locations. Approximations,

therefore, must be made to evaluate the transform.
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Experimental data are often obtained at regularly spaced
intervals. This permits the integral transform to be approximated
by a summation. |If data described by a function F{t) are known at
intervals of 2t, then

[b J-1

j F(t) = at ) F(a+jat) , J o=
a i=0

(2.14)

This method does not require that an analytical expression be
known; only that the value of F(t) be known at intervals of _t
starting at the initial value a.

An alternative method is to fit the experimental data to an
analytical expression and then calculate the transform by
integration. A combination of several analytical functions may be
required to fit the data accurately. Each of these functions
would be transformed individually and then the overall transform
would be obtained from their sum.

(i) Curve Fitting

|f dataare to be fitted to an analytical function, the first
step is to select an appropriate function or set of functions.
Although this may at first appear to be a simple task, the number
of analytical functions at hand is virtually endless and often

several functions must be tested before a suitable fit will be

obtained for the experimental response.
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The selection of appropriate fitting functions may be
simplified if an expression is known that describes the
experimental response under ideal conditions. Additional functions
are then added to deal with the non-ideal contributions to the
response. These additional functions are usually selected so as
to form a power series; that is, if the ideal response is dependent

p

upon x°, where p need not be an integer, -then the equation used

for the fit is often of the form

- P 2p .. np
F(x) ag tax’ +ayxt o+ +a x (2.15)

in which there are n+1 terms. The precision of the fit can be
improved by selecting n to be large, but this can introduce terms
of questionable significance as well as complicating the calcula-
tion of coefficients for the fit.

If an expression is not known for the ideal response, the
curve may still be approximated by a power series like equation
(2.15). If p is chosen to be unity, then the power series

becomes a polynomial in x; that is,

2 n
F(x) = ag +ax a4 + a x (2.16)
where n is the degree of the polynomial.
fn general, a polynomial fitting routine will yield values

for the coefficients that are dependent upon the degree of the

polynomial to which the fit is made. Consider, for instance, the
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calculation of ag, the intercept of the curve with the ordinal
axis. The coefficient aj represents the slope of the curve at ag,
and the other coefficients represent higher order derivatives at
the same intercept point. |f the data are not clustered about
this intercept point, its location could be highly dependent upon
the degree of the polvnomial used to fit the data.

It might be possible to extract more meaningful information
from the data by determining the average value, the average slope,
the average curvature, etc., of the data. Such coefficients would
represent physical characteristics of the data.

Any polynomial, such as equation (2.16) may be reformulated

as a sum of orthogonal polynomials
n
F(x) = b, +k§] kak(x):, (2.17)

for k#m. This reformulation will permit coefficients to be

calculated that are independent of the degree of the polynomial.??
One set of orthogonal polynomials that often arise in

descriptions of physical systems are the Legendre polynomials.

These polynomials are solutions of the differential equation

(1-x2)y"" = 2xy' + n{n#l)y = 0 (2.19)



which is Legendre's differential equation of degree n. This
equation occurs, for example, in the process of obtaining
solutions to Laplace's equation in spherical coordinates. The
Laplace equation is perhaps the most important partial differential
equation in applied mathematics. It can be used to describe
physical systems such as:

(i) the gravitational potential in regions not occupied by
attracting matter

(ii) the electrostatic potential in a uniform dielectric
(iii) the magnetic potential in free space

(iv) the temperature, in the theory of thermal equilibrium of

solids.
The first few Legendre polynomials are

2

Po(x) = 1 PZ(X) = 5 (3x"-1)
P](X) = x P3(X) = 55(5x3-3><) (2.20)

where the subscript on P is the value of n used in equation

(2.19). Higher-order polynomials may be obtained from the iteration

formula?®
P {x) = ;]]- [(Zn-l)xPn_l(x) - (n-l)Pn_Z(x)jl (2.21)

These polynomials are restricted to values of x that lie
within -1sxs1. The general solution of Legendre's equation,

however, may be written as
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y = APn(x) + BQn(x) (2.22)

where A and B are arbitrary constants and Q,(x) is Legendre's

function of the second kind. This function is not a polynomial

and it has different definitions in the regions |x|>1and |x|<1, as

can be readily seen from Qg(x):?®

1 1 -
Q,(x) =5 Rn{ zf] ] = coth Tx) , |x]>1 (2.23a)
Q.(x) = l-lnr I+x ) = tanh™ ! (x) |x|<I (2.23b)
0 7 M%) ’ +23

Higher-order functions may be calculated from the equation?’

0 (x) = P_(x)Qy(x) -

n

IZE
l_.
-
>
-
<

pm m-1 n-m (2.2k)

which is valid for all values of x.

The Legendre polynomial and the Legendre function of the

second kind may alternatively be expressed as?®

Pn(x) = ZFI[—n,n+I;I;l%§J , x|« (2.25)
and
n 2
Q (x) = 2 (n!) i zFl{n+l,n+l;2n+2;T%;J , |x|>l (2.26)
n (2n+1) ! (x-1)

These equations establish a link to another useful fitting

function, Gauss' hypergeometric function. This function is
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defined by?®

oF1(a,bscsx) = | ————T— x" (2.27)
n=0 (C)n(])
where
(a)n = a(a+l)(a+2) " (a+n-1) (2.28)

This is a very versatile function that can be used to describe
many other analytical functions.

Consider the differential equation

(l-xz)y” + [B-a-(a+8+2)x]y' + n(n+a+p+l)y = 0 (2.29)

which is very similar to the differential equation (2.19). The

general solution to this differential equation may be written as

y = APn(a’B)(X) + BQn(a’B)(X) (2.30)

(,8) () (68) (x) are the

where Pp are the Jacobi polynomials and Qp

Jacobi functions of the second kind. The Jacobi polynomials may

be calculated from the recurrence formula?3®

2n(n+a+8)(2n+a+8-2)Pn(a’8)(x)

= (2n+a+8'l){(2n+a+8)(2n+a+8-2)x+a2-82)}P (a’s)(x)

(0"8) (X)

n-1

'2<n+a'])(n+8-])(2n+a+B)Pn_2 ’ n = 2,3’1'*)”' (2.3])

given



P, () =1

P](G’B)(X)

(2.32)

3\

L(a+B8+2)x + L(a-8)

Another method would be to evaluate these polynomials from®»3

3
t

(a,8) _ _I(n+a+1) f o] o dTX (9 22
P (x) = 2 NET) 2F1{ n,nta+d+liat];— ) (2.33)
where 1(n) is the gamma function for which?®
I'(n+1) = nr(n) = n! (2.34)
and
1
r(s) =n° (2.35)

are just a few of its properties. The Jacobi function of the

second kind may be expressed similarly as

2 T (n+a+1)T (n+p+1])
n (x-1)"F i) B (2ntars+2)
2

X oFy n+],n+a+];2n+a+8+2;Tj;j (2.36)

n+a+8
0 (G,B)(x) -

Both equations (2.33) and (2.36) simplify to the analogous
expressions for their Legendre counterparts when both « and 3 are
zero. This shows that any property derived for the Jacobi funct.,ons

may be applied to the Legendre functions by setting = and 3 to zero.
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The functions Qn x) satisfy the same recurrence formula

~ Q
as the functions Pn(u’“)(x)[i.e. equation (2.31)]. The functions

for n=0 and n=1 are required as seeds for this recurrence formula.
Both of these functions could be determined from equation 2.36, or
Qo<a’6)(x) could be determined from this equation and Q1(J’¢)(x)

could be evaluated from

(Q)B)(X) - P (Q,B) (X)Q

)
N ]

(a,B)(x)

1 0

T(d+])F(B+]) /
I (a+B+2) '

S+ET x=1) "% (x+1)7F (2.37)

a+B+2)

which requires less manipulation. The calculation of higher order
Jacobi functions of the second kind may be simplified with the aid

. 3¢
of the expression”™

Qn(a,B)(x)
- Pn(a’B)(X)Qo(a’B)(X)
| ) i ] ; p ((1,6) (X) - p (G,B)<t>
- (x=1) T (1) (1-£) % (1+¢) "—= : -
J X =t
=1
a,B) (a,B) (a,8)
= Pn( (x)Q, (x) = q (x) (2.38)
where qn(u’g)(x) incorporates a finite Hilbert transform. Since
the recurrence formula is applicable to both Qn(u’g)(x) and

=
P

Pn(a’s)(x), it must also be applicable tc Qn(u )(x). This
function can be expressed in simpler terms than the Qn\l’:>(x)

function and thus it is easier to manipulate within the recurrence
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formula. The calculation of Qn(&’e)(x) may be simplified,

Tid

therefore, by evaluating Qo(a’g)(x), Pn(a")(x), and qn(@’“)(x).

The functions that have been described here are but a few of
the countless analytical expressions that can be used to fit
experimental data. They have illustrated the fitting expressions
may be as simple as a power series, or as complex as a family of
elaborate transcendental functions. It would clearly be best to
use analytical expressions upon which the ideal response is
dependent, but for many experiments, such expressions are not
known. Sometimes this problem can be sidestepped by selecting
functions that have the same general shape as the response.
Usually if a family of these functions is used, the response can
be described very accurately. |If, however, a fitting routine is
desired which will describe a response of any shape, a power
series that converges rapidly, or a Fourier series, would be a
good choice. Clearly the selection of fitting functions is

largely intuitive, but knowledge of the physical nature of the

response carries much of the weight in this decision.



CHAPTER 3

ELECTROCHEMICAL CONCEPTS

It may be beneficial to discuss briefly some electrochemical
concepts before considering how transforms may be used to aid in
the analysis of electrochemical experiments.

1,

Heterogeneous Reaction Kinetics

Electrochemical reactions that involve the transfer of an
electron at an electrode/solution interface are examples of a
class of reactions known as heterogeneous reactions. The kinetics
of heterogeneous reactions are normally part of a sequence of
steps involving both transport through the solution and transfer
of charge at the interface.

Consider an electrode reaction

(VS
N
—_

~—

0 + ne 7=~ R (
in which a dissolved oxidized species, 0, is converted to a
soluble reduced form, R, by the transfer of n electrons. At least
five separate steps are required for the conversion of 0 to R:

1) transport of 0 from the bulk solution to the interface

adsorption of 0 onto the surface

(1)
(2)
(3) charge transfer at the electrode to form R
(4) desorption of R from the surface

(5) transport of R from the interface into the bulk solution.

Steps (2) through (4) are commonly referred to as the activation
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process, whereas steps (1) and (5) are known as mass transport
processes. For the simplest electrochemical reactions, the effect
of adsorption/desorption is negligible and the rate of the
activation process is dependent upon the standard heterogeneous
charge-transfer rate constant ks and the transfer coefficient a.
As ks becomes larger, the overall rate becomes progressively more
dependent upon the mass transport processes. |If kS is very large,
then the charge-transfer occurs very quickly and the reaction is
said to be reversible or nernstian.

Mass Transport

There are three mechanisms for mass transport in solution.
These are convection, migration, and diffusion.
i) Convection

This is a very efficient means of mass transport in which the
solute is moved by moving the whole solution. This, however, is
not a very reproducible process and hence it is usually avoided for
quantitative analysis. The exceptions to this are studies with a
rotating disc electrode in which the convection is reproducible.
Convection may be inhibited by not stirring the solution and also
by performing rapid experiments so that natural convection does
not have sufficient time to become established.
ii) Migration

This process arises from the interaction of ions with an
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electric field within the solution. This is a relatively slow
process for the fields commonly encountered in electrochemical
experiments. This mechanism is also undesirable for quantitative
analysis. The contribution from migration may be rendered
insignificant by using relatively large concentrations of a
supporting electrolyte that serves to decrease the cell resistance.
iii) Diffusion

Diffusion occurs in a fluid whenever there is a concentration
gradient. It is a slow process that attempts to equalize the
concentration throughout the solution. The mathematics of
diffusion has been studied in a number of physical systems and it
is well established. Thus, for many electrochemical experiments,
the idealized reaction is often considered under diffusion control
since other mass transport mechanisms may be successfully
inhibited.

Fick's Laws of Diffusion

Fick's laws are partial differential equations that describe
the flux of a substance and its concentration as functions of time
and position. Consider the case of linear diffusion in which
species 0 diffuses along an axis normal to the electrode surface.
The flux of species 0 at a given location x at a time t may be
written as Jo(x,t) with units of mol s™Im™2. Thus J,(x,t)

represents the number of moles of species O that passes a given
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location per second per m? of area normal to the axis of diffusion.
Fick's first law states that this flux is proportional to the

concentration gradient, 3C,/dx:
_Jo(x’t) — Do aco(x,t) (3.2)
X
where D, is the diffusion coefficient of species 0 with units of

2

m2s~1

and the direction of positive flux is taken to be away from
the electrode. The current that flows across the electrode

interface is given by

~3a(0,8) = ) o[—"?-c——(i‘—t)—} (3.3)

since the total number of electrons transferred at the electrode
in a unit time must be proportional to the quantity of 0 that
reaches the electrode in that time period.

Fick's second law, an extension of the first law, states

3Co (x,t) _

32C, (x,t)
T R (3.4)

Do >

Ox
which relates the change in the concentration with distance to the
change in concentration with time.

Partial differential equations, such as Fick's laws, can be
very difficult to solve; but solutions are given in the next

chapter by simplifying the mathematics with the Laplace transform.
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The Nernst Equation

The potential of an electrode is given by the Nernst equation!

as

o _ RT
E = E° - —= 2n(2R/3) (3.5)

where E° is the standard potential of the half-reaction

0 + ne == R (3.6)
and 'a' denotes the activity of species 0 or R at the electrode
surface. The calculation of the electrode potential would not
normally be possible with equation (3.5) because the activities of
0 and R are rarely known. However, this equation may be rewritten

as

_ po! _ RT S S
E=E = ln[CR /co] (3.7)

where E°' is the formal potential of the half-reaction and C;
represents the surface concentration of species j. The formal

1

potential is given® by

o ° RT
E° = E° - ;F-ln(YR/Yo) (3.8)

where y denotes an activity coefficient. Therefore the electrode
potential may be calculated with equation (3.7) if the formal
potential and the concentrations of 0 and R are known.

Faradaic and Nonfaradaic Processes

There are two types of processes that can occur at an
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electrode. One kind obeys Faraday's law which states that the
amount of chemical reaction caused by the flow of current is
proportional to the amount of electricity passed. These are known
as faradaic processes. An example of such a process is the
transfer of an electron across a metal-solution interface which
causes an oxidation or reduction to occur. Under some conditions,
the pctential across an electrode-solution interface may be varied
over a range without permitting charge transfer processes to occur.
These reactions may not occur because they are either thermo-
dynamically or kinetically unfavorable. However, processes such
as adsorption and desorption can occur and the structure of the
electrode-solution interface can change significantly with
potential or solution composition. These processes are examples
of nonfaradaic processes. Although a charge does not cross the
interface for any of these processes, external currents can flow,
if only transiently.

Both faradaic and nonfaradaic processes occur cduring an
electrode reaction. Usually the information of primary interest
is contained within the faradaic current which must be separated
from the nonfaradaic current. One of the major contrituticns to
the nonfaradaic current is a charging current asscociated with the
electrode double layer. This double layer forms because the

charge that is distributed on the electrode surface will be
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counterbalanced by ions within the solution. This gives the

electrode-solution interface the properties of a capacitor and
hence when the potential is changed, a current will flow. Two
techniques, both of which rely on Riemann-Liouville transforms,
will be presented in the next chapter to illustrate methods by
which the currents from faradaic and nonfaradaic processes may

be separated.
3.4

Polarization ’

When a current is passed across on electrode-solution inter-
face, the potential of the electrode is shifted from the
equilibrium value before current flowed. This phenomenon is known
as polarization and it arises from the slow rate of some of the
partial processes that are required to convert 0 to R. If this
rate-determining process is mass transport, then the electrode is
concentration polarized. Similarly, if the rate-determining
process is the charge-transfer reaction, the electrode is
activation polarized. Still another form of polarization can
arise, namely ohmic polarization, when resistance within the cell
is a limiting factor.

The effect of ohmic polarization is usually minimized by
using a supporting electrolyte. Since activation polarization is
dependent upon the value of the rate constant ks’ it is not easily

adjustable. Concentration polarization can be easily obtained by
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applying a potential at which all of species O that is in contact
with the electrode will be immediately reduced to species R. This
will limit the current to the rate at which 0 can be transported
to the electrode surface.

If an electrode is very polarized, then the current resulting
from the electrode reaction will change only slightly as the
potential of the electrode undergoes a relatively large variation.
Thus a small variation in potential within the range of
concentration polarization will have a negligible effect on the
current response. This property can often be exploited to relax
restrictions placed upon a potential waveform within the region

of polarization.



CHAPTER 4

PREVIOUS APPLICATIONS OF TRANSFORMS IN ELECTROCHEMISTRY

The nature of electrochemistry makes it a prime candidate for
analysis by a wide variety of mathematical techniques. The
interrelationships between current, potential, and time seem
endless since each parameter can be varied in a number of ways to
affect the other two. Some of these relationships can become
rather complicated and they can only be deciphered with the aid of
higher order mathematics. Many of these mathematical techniques
have been applied in other chemical disciplines, especially in the
realm of spectroscopy, but the variety and versatility of these
techniques will be illustrated by considering only electrochemical
applications.

Fick's Second Law and the Laplace Transform

Many physical systems may be described by equations that
require the evaluation of derivatives or integrals. The method by
which a solution to these equations is found can often be
simplified with the aid of the Laplace transform. The Laplace

transform of a derivative, is given in the equation

‘LET— F(t)} = sf(s) - F(0) (4.1)

This transforms the complicated operation of differentiation in
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the time domain into the simpler operations of multiplication and
subtraction in the s-domain. Similarly, the Laplace transform of

an integral,

t /
L[ J( F(t)dt } - fis) (4.2)

simplifies the operation of integration in the time domain into
division.?

Although equations comprised of derivatives can be difficult
to solve, partial differential equations present even greater
difficulties. The Laplace transform may be applied here to
transform these partial differential equations into ordinary
differential equations. As an example, consider Fick's second law
[i.e. equation (3.4)]. This equation relates the first derivative
of concentration with respect to time to the second derivative of
concentration with respect to distance. The Laplace transform of

Fick's second law with respect to time is?

— 2F
sCo(x,s) - Co(x,0) = D, d%Co(x,5) (4.3)
dx?

in which the bar over the C denotes that it is a transformed
function. |If the system starts at equilibrium, the initial

condition is

Co(x,0) = c (4.4)
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where Ci is the bulk concentration of species 0. Equation (4.3)

now becomes

— E 2
SCQ(X,S) - Co = Do m.’i)
dx2
which is a second order ordinary differential equation in

distance. This equation may then be solved to yield

Col(x,s) = Ci/s + A(s)exp[-(s/D)%x] + B(s)exp[(s/D)%x] (4.6)

where A(s) and B(s) are independent of x. The evaluation of A(s)
and B(s) requires two boundary conditions; that is, Co{x,s) must
be known at two values of x. A common boundary condition is that
the concentration of species 0 at an infinite distance from the
electrode remains at the bulk concentration. This forces B{s) to

be zero and hence equation (4.6) becomes

Colx,s) = Ci/s + A(S)exP[-(s/D)I/ZX] (4.7)

The second boundary condition usually pertains to behaviour at the
electrode surface which will then complete the solution to
equation (4.5).

The solution to Fick's second law will describe the
concentration as a function of distance and time. It is generally
more useful, however, to determine the current that flows across

the electrode-solution interface. The relationship between
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current and the flux of species 0 was given in equation (3.3).

Its Laplace transform is

i(s) _ DO[HE;(X,S)} (4.8)
x=0

nAF dx

in which i(s) is the Laplace transform of the current from
the time domain.

An experiment that is often performed is one in which the
electrode is concentration polarized. This condition may be
established by applying a potential at which any of species 0 that
is in contact with the electrode will immediately be reduced to

species R. Equation (4.7) now becomes

Colx,s) = Co/s - (Ca/s)expl-(s/D) ] (4.9)

upon application of this second boundary condition. Equation
(4.8) may be evaluated by substitution of the x-derivation of

equation (4.9) to yield

—_— L % 1
i(s) = nAFDZC,/s ? (4.10)

for which inversion yields the current-time response

. *(D, E
i(t) = nAFCo[ﬁ] (4.11)

which is known as the Cottrell equation. Note that the effect of

depleting the electroactive species near the electrode surface is
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-1
2 function. This form of time dependence is

characterized by a t
frequently encountered in other experiments that are controlled by
diffusion.

The same technique that was outlined above can often be used
for the analysis of systems in which the electron transfer
reaction is perturbed by homogeneous chemical reactions that
involve 0 or R.°?

Analysis in the Laplace Plane*”

The Laplace transform of the current, i(s), is often a much
simpler function than the time domain current, i{(t). Therefore,
for cases in which the functionality of the time domain current
cannot be determined, or when it can only be approximated, it may
be advantageous to analyze the experimental data in the Laplace
plane. This technique, in which the data must be Laplace
transformed, has not been used extensively even though its utility
has been demonstrated.®

The most convenient method of performing the Laplace transform
of the data is to multiply each data point i(t) by exp(-st) and
then to perform a numerical integration of the resulting curve.
This process is repeated for a number of desired values of s until
a new collection of data points describing i(s) is obtained.

As an illustration of the application of this method, consider

the response to a potential step perturbation of the irreversible
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reaction

0 + ne =& R (4.12)

where k is the rate constant corresponding to the final potential.
The Laplace transform of the current response for this reaction is
found by methods similar to those discussed in the previous
section to be

o ]/)

nAFkC,D4 (4. 13)

1 1 1
sé(k+séD?)

T(s) =

which upon rearrangement yields

e

B N - (4.14)
i(s)s® nAFCoDo°  nAFkC,
_ 1. 1,

Thus, a plot of 1/i(s)s * against s * will yield a straight line

with a slope of 1/nAFkC% from which k may be determined.

The current response in the time domain for the reaction is

i 1
i (t) = nAFkCoexplk?/Dotlerfclk/(Dot) "] (4.15)

where erfc is the complement of the error function. This
expression can be used for quantitative kinetic analysis only by
expanding the product of the exponential and error function
compiement in terms for either small or large values of t. This
approximation, therefore, neglects data from intermediate times.

Analysis in the Laplace plane, however, does not suffer from this



|

35

limitation since all of the data are used in the calculation of
the Laplace transform.

Analysis in the Laplace plane would be particularly valuable
for systems in which the electrochemical reaction is coupled to
chemical processes. |In these systems, the inverse transformation
of 7(s) is often difficult, whereas the function i(s) itself is
commonly a simple algebraic function of s.

Faradaic Admittance °

In many electrochemical experiments, the system is subjected
to a large perturbation which drives the electrode to a condition
far from equilibrium. A response is then observed, usually in the
form of a transient signal. A useful alternative is to perturb
the cell with a small alternating signal and then to observe the
way in which the system follows the perturbation. This technique
permits measurements of high precision to be made since the
response may be periodic indefinitely and therefore may be
averaged over a long time. Also, since the experiment is performed
close to equilibrium, important simplifications can be made in the
treatment of kinetics and diffusion. This technique has been
applied chiefly to quasi-reversible systems in which the response
is dependent upon both diffusion and heterogeneous charge-transfer
kinetics. For such reactions, as kg becomes larger, the reaction

rate becomes progressively more diffusion controlled.
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In such experiments, a dc mean potential value, Eg4., is
imposed on the working electrode. This dc potential is then

scanned slowly with time. A sinusoidal component, E of perhaps

ac’
5 mV peak-to-peak amplitude is superimposed upon the dc potential.
The responses that are measured are Igc, the magnitude of the ac
component of the current at the frequency of Esc, and &, the phase
angle of the ac current with respect to Eac. The role of the dc
potential is to set the mean surface concentrations of 0 and R.
This potential usually differs from the equilibrium value and
hence a thin layer next to the electrode will be established
through which 0 and R must diffuse. This layer grows with time
and it soon exceeds the zone affected by the rapid sinusoidal
perturbations. Therefore, the mean surface concentrations of 0
and R resemble bulk concentrations to the ac part of the
experiment. Hence the ac current response has the same period as
Eac but it will lag by the phase angle ¢ which is dependent upon
the rate of the electrode reactions.

This method of analysis is referred to as either a faradaic
admittance or faradaic impedance technique. Impedance is the
total ""effective resistance' to an ac current and admittance is
the reciprocal of this quantity. However, neither of these
quantities need be determined since the parameters of interest may

. N
be obtained from the expression
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1
2

cot(¢) - 1 = (%Dw) */k (4L.16)

s
where w is the frequency of the ac modulation and D is a diffusion

coefficient given by

@ (L.17)

in which a is the charge transfer coefficient representing the

fraction of the potential that favors the reduction reaction.

1
2 should be linear with an

Hence a plot of cot(¢) against w
intercept of unity and a slope from which kS can be calculated for
a known D.

Faradaic admittance measurements depend on the linearity of
current-overpotential relations at low overpotentials. This
linear behaviour is established when the electrochemical response
is diffusion controlled. 1In a linear system, excitation at a
frequency w provides a current that is also of frequency w. The
current-overpotential function for an electrode reaction may be
nonlinear, however, over moderate ranges of overpotential producing
a distorted response that is not purely sinusoidal. Even so, the
response will be periodic and can be represented by a Fourier

synthesis of signals at frequencies w, 2w, 3w,..., etc. The

Fourier synthesis is performed with a Fourier series such as

i1~ 8

a
%
E(t) = >+
n

[a cos(nwt) + b sin(nwt)] (4.18)
pon n
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or, alternatively

E(t) = Ky + nE]Knsin(nwt+¢n) (4.19)

where Ko is the dc level and K, is the amplitude of the component
with frequency nw and phase angle ¢,.

Although the advantage of ac measurements were recognized in
the late 1940's and early 1950's, ac techniques have made their
most significant advances since the introduction of the Fast
Fourier Transform in the past decade which revolutionized
instrumentation for faradaic admittance measurements. The use of
the FFT in faradaic admittance studies is particularly useful when
the electrochemical response is not diffusion controlled or the
current-overpotential function is nonlinear.

The complete characterization of an electrochemical process
by admittance methods is a tedious operation because information
is required at a set of frequencies ranging over 2 to 3 decades
and at a set of potentials ranging over E°' * 100 mV. The time
required for this analysis may be reduced by applying an
excitation signal comprised of a Fourier synthesis of all of the
desired frequencies. This excitation signal is often a noise
waveform rather than a pure sinusoid. The best choice for this
signal is an odd-harmonic, phase-varying pseudorandom white

noise.'' This noise is produced by the superposition of several
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frequencies, all of which have equal amplitude so that they carry
the same weight. The phase angles are randomized so that there
will not be large swings in the amplitude of the total excitation
signal. The frequencies selected for the excitation signal are
all odd harmonics of the lowest frequency. This choice ensures
that second-harmonic components will not appear in the currents
measured for the fundamental frequencies.

The application of this excitation signal will induce a
current that will show related ''noisy' variations. The response
is monitored with the aid of computer interfaced instrumentation
and then Fourier transformation yields the distribution of
harmonics embodied within the response. The faradaic admittance
may then be calculated at the frequency of each Fourier component
for a potential E4c. Changing E4. after each complete set of
measurements will then permit the faradaic admittance to be
determined as a function of both Edc and w.

The efficiency of this technique has been enhanced by the
ability of the Fourier transform to resolve a complex waveform
into its components. This has made it possible to apply as many
as 15 frequencies at oncell instead of only one as was the
conventional method. This capacity for simultaneous measurement

illustrates the multiplex advantage that was mentioned in a

previous chapter.
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Spectroelectrochemistry -1

In recent years there has been much interest in studying
electrode processes by experiments that involve more than the
usual electrochemical variables of current and potential. Part of
the motivation for this work has been to provide ways to obtain
information about electrochemical systems that could not be
obtained from purely electrochemical experiments.

fn the 1960's, experiments were developed that combined
ultraviolet-visible spectroscopy with conventional electrochemical
techniques. These methods have proved to be very valuable for the
characterization and monitoring of electrogenerated species.

Electrochemistry has long served as a means of generating
and monitoring reactive species in solution, usually on a time
scale of a few seconds down to the submillisecond range. In most
electrochemical experiments, the potential is controlled and a
current is monitored to obtain mechanistic and thermodynamic
information. Methods based on the measurement of current have
been used with significant success but they often lack selectivity
since the observed current may reflect reactions from several
species in solution.

The information gained from an electrochemical experiment can
often be enhanced by the addition of an optical probe to gather

spectral information about the material generated at the
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electrode. This modification also increases the selectivity of
the experiment.

Several spectroelectrochemical methods have been developed
which combine a variety of spectroscopic and electrochemical
techniques. Some of the configurations that have been used for
absorption spectroelectrochemistry include passing light through
an optically transparent electrode,lsreflecting light off an
electrode,16 and passing light parallel to a planar electrode.'’
These techniques have been employed successfully for a number of
systems and have increased the utility of spectroelectrochemistry
for studies of fast reactions.

There are some limitations, however, when these techniques
are applied to systems with short-1lived or weakly absorbing
electrogenerated species. In all electrochemical experiments, the
events of interest occur within a thin layer of solution close to
the electrode surface. If the dominant mode of mass transport is
diffusion, then this region is referred to as the diffusion layer.
This region is very thin [~(Dt)1/2 or ~100 pm at 10s] which places
restrictions on the optical methods that can be applied. One
restriction is that the effective path length for a beam passing
through a transparent electrode is determined by the thickness of
the diffusion layer. This technique, therefore, would only be

sensitive to strong absorbers with relatively long lifetimes.
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Absorption spectroelectrochemistry is generally limited to

“ M whereas the detection limit should be

concentrations above 10~
in the order of 107% M or 107 M to make it a more generally
useful analytical tool.

One technique that has displayed many advantages over previous
methods is diffractive spectroelectrochemistry. This method

analyses the diffraction of UV-visible light by an electrode.

Consider a beam of light impinging on an electrode as shown in

Figure 4.1.
g!ass screen
shields
/\ diffracted

electrode

Z undiffracted

laser
beam ___0

light
diffusion \L )
layer solution diffracted
light
Figure 4.1 General experimental configuration for monitoring

light diffracted by an electrode. Diffracted intensity is
distributed symmetrically above and below the undiffracted

beam.

Part of the beam strikes the electrode and part of it travels
parallel to the electrode surface. Diffraction by the electrode
will scatter light away from the main beam. Some diffracted

intensity will appear in the shadow of the electrode as well as in

the region below the beam. The major contribution to the
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diffracted intensity comes from light passing close to the
electrode surface. Light that passes far from the electrode will
not be diffracted appreciably, and hence, to a first approxima-
tion, all the diffracted light has passed through the thin layer
of interest close to the electrode surface. Thus monitoring of
diffracted intensity during the generation of a chromophore will
be sensitive to the concentration of that chromophore.

The diffraction pattern obtained from such an experiment is a
spatial Fourier transform of the intensity distribution of the
light that passes the electrode after interaction with the
chromophore. Therefore, the relationship between the generation
of the chromophore and the diffracted intensity is embedded in the
Fourier transform. Thus, information can be gained about the
chromophore generation with the aid of Fourier transform
techniques.?3

There are many advantages to this diffractive approach over
absorption spectroelectrochemical methods. This method provides
high sensitivity since the effective path length is limited by the
electrode length rather than the thickness of the diffusion layer.
Fast response times are also possible, especially if a high-
powered laser is used in conjunction with a highly efficient
photon receptor. Finally, a unique feature of this technique is

that Fourier inversion of the diffraction pattern will yield the
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chromophore distribution as a function of time. Experimental
concentration profiles could be obtained with resolution on the
order of the wavelength of the light employed. These profiles
could be obtained under a variety of experimental conditions to
establish the basis for a number of mass transport processes.
Diffractive spectroelectrochemistry is a technique which is only
in its infancy but it promises to evolve into an excellent probe
for the diffusion layer. This is a region of extreme importance
but it has been difficult to probe with conventional methods.

Riemann-Liouville Transformation?'®

The surface concentration of species 0, for any electro-
chemical technique, is given by the expression

t
* 1 ] i (u)

Co(t) = C, - = |— - du (4.20)
nAFD, % | 7° 0(t-u)2

The only restriction built into this expression is that the
experiment is performed under conditions of semi-infinite linear
diffusion and with an equilibrium existing prior to t=0. No
assumptions have been made concerning the reversibility of the
charge transfer reaction or even the dependence of surface
concentrations on potential. Hence this expression is applicable

for any form of excitation signal.
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The bracketed term in equation (4.20) may be obtained by
either of two methods. One method uses the convolution integral
of Laplace transformation which has been discussed earlier. The
other method uses the Riemann-Liouville transform of order -%.
This operation is known as semiintegration and is denoted as
The equivalence that exists between the semiintegral
and the convolution integral does not extend to Riemann-Liouville
transforms in general.

(i) Riemann-Liouville Transform Polarography!?

Riemann-Liouville transforms are employed in the fractional

calculus in which the differential operator d%/dt9 may be

evaluated for any value of q.2° The form of the Riemann-Liouville

integral that is employed depends upon the magnitude of gq. For

q<0,
q t
d I ] 'F(U)
— {f(t)) = == > du (4.21)
4td r(-q) O(t_u)qﬂ
and for 0gq<l1,
t
49 dl— i f(u) ,
— (f(t)) = === du (4.22)
4t9 dtLF(l q) (t-u) 9

0

Algorithms have been derived which enable these expressions to be

evaluated numerically.?
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An attractive property of the Riemann-Liouville transform is
its ability to render variable functions of time invariant; that

is,

q
4 (ke

kI (q+1) (4.23)
dtd

which is valid for all values of q. This property may be
exploited to enable the faradaic and capacitative components to be
separated from a current that flows at a dropping mercury

electrode. This current is described by the equation

. I : - 1/6 -1/3
i(t) = lf(t) + lc(t) = kft + kct / (4.24)
in which??
1 ]E
_ *[7mDo|2) 3m |3
kf = hnFco[ 3 ] (hﬂdH ) (4.25)
and
; 1 2
L Y3( m )3
k =EJE£)—@[—% (4.26)
c iz l3 ng

where m is the rate of mercury flow for the dropping mercury, ng
is the density of mercury, C; is the integral capacitance of the
double layer, and E, is the potential of zero charge. Various

methods have been developed in an attempt to separate if(t) from
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ic(t) but the simplicity of the Riemann-Liouville transform was
only introduced recently by Soong and Maloy.” Transformations of
order -%; and +% were applied repetitively on i(t) to determine
kf and k.. This method enabled a linear calibration curve to be
obtained for Cd”** over a concentration range of 0.1 uM to 0.1 mM.
This procedure has the advantage that sophisticated instrumenta-
tion required for other separation techniques may be replaced by a
more versatile and less costly computer while maintaining high
sensitivity.
(ii) Cottrell Filtering

Another method that uses Riemann-Liouville transforms to
separate faradaic and non-faradaic currents is the Cottrell
filter. This technique was developed and studied by Hempstead and
Oldham but as yet remains unpublished. This method is applicable

to a Cottrell experiment for which the current response is given

by
. _ 7':([)0 1/2
i(t) = nAFCol—M + f?(t) (4.27)

where fo(t) is a current extraneous to the faradaic process under

study. The Riemann-Liouville transform possesses the convenient

properties

=0 (4.28)



48

and
=L
d ? k
dt | (mt)”
5 %5 . -k L
where d?/dt® is the semidifferentiation operator and d 2/dt 2 is

the semiintegration operator. These properties may be employed in

1
the scheme outlined in Figure 4.2 to obtain nAf—"x'Zi'iDo/2 which

enables the faradaic compecnent of the current to be analyzed.

-4
( S+ 7 () DN
semi integrate ‘
k b
— + f(t) subtract k

(mt)™
|

semidifferentiate

\\\::::::::>f§%)(t) integrate :>>f§-%)(t)

% L
Figure 4.2 Outline for Cottrell filtering where k = nAFC,D,".




CHAPTER 5

REVERSAL TECHNIQUES IN ELECTROCHEMISTRY

It will be useful to describe some electrochemical reversal
techniques so as to lay the groundwork for the study that will be
described in subsequent chapters. Reversal techniques comprise a
large and growing class of experiments that feature the generation
of an electrochemical product followed by the reversal of
electrolysis which permits the product to be examined electro-

chemically. These procedures are summarized by

0 + ne — R , generation phase (5.1a)

R - ne—0 , reversal phase (5.1b)
or alternatively

R - ne—0 , generation phase (5.1a")

0 + ne — R , reversal phase (5.1b")

Reversal techniques are especially useful for studies of

complex electrode kinetics.! An example of a kinetic complication

is illustrated in the mechanism
0 + ne = R (5.2a)
R E+ X (5.2b)

The product, R, of the electrode reaction reacts to produce a
species which is not electroactive at potentials where the
reduction of 0 is occurring. This mechanism may be denoted ErCi

to indicate a reversible electron transfer followed by an
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irreversible homogeneous chemical reaction.?

A number of diverse reversal techniques are examined in this
chapter and the effect of an Erci mechanism on each is discussed.

Double Step Chronoamperometry

The simplest reversal technique is probably double step
chronoamperometry. The method is illustrated in Figure 5.1. An
electrode is immersed in a solution containing species O that is
reversibly reduced in the vicinity of the potential E°'. The
initial potential, Ei’ is much more positive than E°' and hence no
electrolysis occurs. At t=0 the potential is changed abruptly to
Eg’ which is far more negative than E°'. This induces the
generation of species R under concentration polarized conditions
for a period T. At t=T a second potential step shifts the
electrode to the more positive value Er' (In many cases Erin')
This reverses the electrolysis; hence species R is reoxidized to
species 0. The direct "observation'' of species R after its
electrogeneration permits an evaluation of R's participation in
homogeneous chemical reactions on a time scale comparable to T.

The current response during the generation phase is given by

the Cottrell equation3

. DQI/2 ]
i (t) = nAFC, — | ,  0<t<T (5.3)

1
2

whereas the current response during the reversal phase in the
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absence of a homogeneous reaction such as (5.2b) is described by

the equation first derived by Kambara"

! )

. 72
-i (1) =nAFco{g°] e (5.4)
| (t-T)7 t?!
These responses are illustrated in Figure 5.2.
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Figure 5.1 General waveform for a double step experiment
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Figure 5.2 Current response for a double step experiment
The generation and reversal currents are both proportional to

1.

C:ADo , which is often unknown. Therefore, it is more convenient
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to use a ratio of these currents, rather than their absolute

values, when comparing a real experiment to the prediction. If tg

and tr are the times at which the current measurements are made,

then
1 i
ir(tr) t9 2 tq 2
i (t.) - t -T| E‘- (5.5)
g\'g Lr LT

A simple check for a stable system is that —ir(ZT)/ig(T)=O.293.
Departures from this ratio indicate kinetic complications in the
electrode reaction.” Ffor example, an ErCi mechanism would cause
the reversal current to be less than predicted by equation (5.4)
and hence the current ratio would also be smaller.

Double Step Chronocoulometry

The double step chronocoulometric experiment resembles the
double step chronoamperometric experiment in many ways, the
potential waveform being the same. The way in which these
experiments differ is that chronocoulometric experiments integrate
the current over time so that the charge passed, Q(t), is obtained.
This method offers many advantages over the widely used chrono-
amperometric mode:

i) the measured signal grows with time and hence the later parts

of the current transient, which are usually minute, are more

accessible

ii) the operation of integration smooths random noise on the

current transients and hence the signal is ''cleaner"
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iii) contributions to Q(t) from double-layer charging can be
distinguished from those due to diffusing electroreagents. The

analogous separation for chronoamperometry is not feasible.®
The simplest chronocoulometric experiment is analogous to the
double step experiment described previously. |f the double-layer

charge is much smaller than Q(t), then

1

Qg(t) 2nAFCf{D;t] , 0<t<T (5.6a)

1

#( D) % % L ,
2nAFC, ﬂ°] [T2+(t-T)“-t2—, , t>T (5.6b)

-

Qr(t)

in the absence of homogeneous reactions. The shapes of these

response functions are shown in Figure 5.3.
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Figure 5.3 Chronocoulometric response for a double step experiment
The stability of the product species can be tested by the

ratio
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If the product species is stable, then Qr(2T)/Qg(T):O.586. The
ratio defined by equation (5.7) is simply the fraction of the
electrogenerated species that has been recaptured at the electrode.
Thus, at t=2T, 58.6% of the electrogenerated species has been
converted back to its precursor.

Collection Experiments

Collection experiments performed with a rotating ring-disc
electrode (RRDE) incorporate similar concepts to the double step
experiment except that two electrodes are used so that the
reactions may occur simultaneously. A species is generated
electrolytically at the disc and then collected by the ring that
surrounds it (see Figure 5.4). Both processes are performed under
conditions of concentration polarization.

The collection efficiency, N, is defined as

N - (5.8)
D
where i. and i, are the currents at the ring and disc respectively.

R D

[f the generated species is stable, the collection efficiency is
constant for any RRDE regardless of angular velocity, Cg, DO’ or
DR' If the generated species reacts homogeneously at a rate

sufficiently high that some is lost in its passage from the disc

to the ring, then the measured kinetic collection efficiency, Nk’

will be less than N. Information about the rate and mechanism of
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the decomposition may then be obtained by the application of

=9 For typical experimental conditions,

steady-state kinetics.
this technique is effective in measuring first order rate constants

over the 0.03s '<k<103s™] range. !0

L Insulator
=

Insulatorf KF\\

\Ring’ Ring]

“’ N N “

\\ ) N

R - ne » 040 + Qﬁ‘* R R=-ne=+20
5 ]

T

Figure 5.4 Schematic operation of RRDE. Concentration of species
R increases proceeding from contours 1 to 4.

Concentration
Contours

Current Reversal Potentiometry

In the previous experimental techniques, the potential was
controlled and a current or charge response was monitored.
Chronopotentiometric techniques control the current and monitor
the potential.

The most common chronopotentiometric technique is the

galvanostatic experiment in which a constant current flows through
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the cell. For the electrode process, 0 + ne — R,
i = nAFDo(2C°} (5.9)
LoX ) =0

where Do(aco/ax)x=0 denotes the flux of species 0 at the electrode
surface. !l Therefore, if a constant current flows, there must be
a constant flux of species 0, and hence the reduction occurs at a
constant rate.

A galvanostatic experiment may be regarded as a ''titration'
of an electroactive species by a continuous flux of electrons.
The concentration of the electroactive species will eventually
drop to zero at the electrode surface and the flux of species 0
will become insufficient to accept all of the electrons that are
being forced across the interface. The electrode potential will
then change rapidly until a new reduction process begins. The
time required before this transition occurs is denoted T, as
illustrated in Figure 5.6(a). The transition time T is related to

the concentration and diffusion coefficient of the electroactive

species by the Sand equationl!?

1

. ok ks
itT" = nAFC,D, “n

e

/2 (5.10)
If the current was reversed, an oxidation reaction would
occur. Species R would eventually become depleted at the electrode
surface and the potential would rapidly become more positive until

another oxidation process begins. This requires a second
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transition time T,, as illustrated in Figure 5.6(b). It can be
shownl3 that for a time t taken prior to the first transition

time, T

T, = t1/3 (5.11)

for stable R. Hence only L@ of the generated species R returns to

the electrode up to the time t The remaining R diffuses into

0"

the bulk solution.

Excitation Response
I E
(a)
T
-
0 t 0 t
i E ( -
(b) l
t
0 t] t] I?z
0 t
Figure 5.5 Two controlled current techniques. (a) Constant

current potentiometry. (b) Current reversal potentiometry.
If kinetic complications arise in the form of an Erci

mechanism, then equation (5.11) becomes replaced by,1*

I T 512

where erf is the error function. |If kt] is small (i.e. R E+ X is
negligible), then equation (5.12) reduces to equation (5.11). If

kt. is large (i.e. R decomposes rapidly), then T, approaches zero.

1
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Hence the value of k may be determined by varying t] and
determining the ratio Tz/t]. This technique is applicable over

the 0.]<kt]<5 range. 1%

Cyclic Vol tammetry

Cyclic voltammetry is often used to investigate intermediates
in an electrochemical reaction. The electrode potential is varied
in a triangular waveform as described by!®

E
E

Il

E.-vt , 0<t<h (5.13a)
Ei-2vk+vt , t>X (5.13b)

where Ei is the initial potential, v is the ramp rate, and X is
the switching time. Usually the current is plotted against
potential, as shown in Figure 5.6(b). The product of the cathodic
""hump'' becomes the reactant for the anodic one. The rising current
leading to the hump is caused by more favorable potentials for the
electrode reaction. The falling current after the hump reflects
the depletion of the reactant near the electrode surface.l®

The current may also be plotted against time, as shown in
Figure 5.7(b). Prior to t=\ the current-time relationship is
described by the Randles-Sevcik equationl7’18

(1/nAFCS) (RT/nFDov) ? = Tr]/zx(x) (5.14)

where R is the universal gas constant, T is the thermodynamic
temperature, E, is the polarographic half-wave potential of

h

species 0, and x is an abbreviation for nF[Eh—E]/RT. Re inmuth
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Figure 5.6 Cyclic voltammetry. {(a) variation of potential with
time. (b) variation of current with potential.
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Figure 5.7 Cyclic voltammetry. (a) variation of potential with
time. (b) variation of current with time. Solid line designates
current for cyclic voltammogram; dashed line designates current
for a linear voltage scan E=Ei—vt.

1
showed that for a reversible process the m%(x) could be described

simply asl®

oy (x) = le(-)j JZexp (jx) (5.15)
J=

which converges rapidly for negative vaiues of x but diverges for
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X>0. An expression that is valid for all values of x is20

1

mox(x) = L + Mx - Nx2

+{3}% E [kB-x)%(B+2x) _ 8b2 + 12bx - leél (5.16)
%) k= g3 8b 72 ]

where L=0.380104813, M=0.118680871, N=0.043920560, b=(2k-1)m, and
B=[b2+x2]%.

For times beyond t=X the expression for the current-time
relationship is considerably more complicated. This complication
arises because the electrochemical conditions upon which the
current is dependent are characterized not only by E--Eh but also
by the total excursion that the potential has made since it first
encountered Eh' This excursion may be expressed as Eh-ZEr+E,
where Er is the reversal potential. The nomenclature for the
following relationships differ from that used for equations (5.14)
and (5.16). The current prior to t=X is denoted T and the current

after t=\ is 1. The current-time relationship for the entire

reversible cyclic voltammogram is described?! by the equations

:'tr 1/2 - -\ 2
T R0 10 - 2o - Bl )

i ]

J - - Hy.-

N L T 1s(y ) U | YT (5.17)
IS I RCE SRR T i)

and
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* L + 2
+ _ nAFC,(DonFv|™? L 3 151y 7
‘=T { 2RT ] ik(%é) - mlen)® - () - M%)
J L + + 2 L s
Sy L8t 3y ds(y)” ,p 8%y
3 L 2
=1 % nj° 2j72  8j72  s=x vyztyj
s slh) s s] s s si4l s s s
YTy yj+2y Y=Y, YLty y.=2y yty.
- o J arccos J + J -~ arccosh
sn[y. s0°> n[y?J3 0>
J) J J J
(5.18)
where y = nF(E-Er)/nRT
A = nF(E, -€_)/mRT
yS =y + sA

~<
1]
[——
)
+
—
~
wn
——
™
N

o5 = [i%(0) 7]

and the summation index j takes odd integer values. The function

Mp) is described?? by

v .-p _ 2P .
AMp) =) jF ==—1t(p) y J=1,3,5,++¢ , p>I (5.19)
j=1 2P

where ¢ is Riemann's zeta function. The relevant values of A (p)
are given in the referenced article. Although equations (5.16)

and (5.17) differ substantially in appearance, substituting

equation (5.16) into equation (5.14) gives an expression that is
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equivalent to equation (5.17).

A parameter of interest in a cyclic voltammogram is the ratio
of the anodic peak current to the cathodic peak current (i.e.
i /i ). The measurment of i and i is illustrated in
pa  pc pa pc
Figure 5.7(b). For a reversible electrode process, this ratio is
unity regardless of scan rate, switching potential, or diffusion
coefficients. Deviations from one indicate kinetic complications

in the electrode process.

Stripping Analysis

This technique utilizes a bulk electrolysis step, commonly
termed preelectrolysis, to preconcentrate an electroactive species
into the small volume of a mercury electrode. After this electro-
deposition step, the electroactive species is "stripped' from the
electrode by some voltammetric method, usually linear sweep
voltammetry. Exhaustive electrolysis of the solution may be
avoided by proper calibration of the preelectrolysis step. |f the
conditions of the electrodeposition are maintained constant, then
the voltammetric response (e.g. peak current) may be employed to
determine the solution concentration. The principles of a
stripping experiment are given schematically in Figure 5.8.23

Stripping analysis is most frequently used for the deter-
mination of metal ions by cathodic deposition followed by anodic

stripping with a linear potential scan. This technique is often
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called anodic stripping voltammetry or inverse polarography.
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Figure 5.8 Schematic representation of an anodic stripping

experiment. (a) Preelectrolysis at Eq; stirred solution.
(c) Anodic scan (v=10-100mV/s).

(b) Rest period; stirrer off.

The electrodeposition step is carried out in a stirred

solution at a potential Ed which is several tenths of a volt more

negative than E°' for the least easily reduced metal ion to be

determined. |If the electrolysis is not exhaustive, the deposition
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conditions must be the same for the sample and the standards.

After the deposition a rest period with the stirrer turned
off is observed during which the solution is allowed to become
quiescent, and the concentration of the metal in the amalgam
becomes more uniform.

The stripping step is then initiated by scanning the potential
linearly towards more positive values. If the sweep rate, v, is
sufficiently high (i.e. v>20mV/s) then the concentration of
amalgamated metal stays constant at the center of a hanging mercury
drop electrode (HMDE). The analysis may therefore assume semi-
infinite diffusion with a correction term for the sphericity of

the HMDE. The peak current is then described by?2"

. 1/2 % 3/2 1/2_ 1/2
i = A0, e (an® v gno, " “/r.) (5.20)
where CK is the concentration of the metal at the center of the

M
drop, ro is the drop radius, and o and B are constants equal to

-1
2

2.69x10° Cmol-]V and 7.25X10" Cmol-] respectively.
The major advantage of stripping analysis compared to direct
voltammetric analysis is the preconcentration of the analyte

within the electrode (by factors of 100 to more than 1000) so that

the voltammetric (stripping) current is less perturbed by residual

5

impurity or charging currents.?> This is especially useful for

the analysis of very dilute solutions (~10710 M),



CHAPTER 6

GENERATION/RECAPTURE ANALYSIS

Consider the following electroanalytical problem. An electro-
active analyte reduces, although not necessarily in a reversible
manner, in the same range of potential as some interfering oxidant,
such as oxygen, that it is either inconvenient or impossible to
remove. The reduction current of the analyte will be obscured by
that of the interferant thereby hindering analysis. [f, however,
the reduction product of the analyte is a soluble species that can
be reoxidized under diffusion-controlled conditions at some
potential at which there are no interferences, then a reoxidation
current could be obtained that must be related somehow to the
initial reduction current of the analyte. |[If the general relation-
ship between the reduction current and the reoxidation current
could be established, it should be possible to reconstruct the
interference-free reduction current of the analyte from the inter-
ference free reoxidation current.

The problem may be restated, in a somewhat more general form,
as follows. A solution containing an analyte, X, initially contains
none of X's reduction product Y. Starting at time t=0, a potential

is applied that induces the production of species Y. This reaction

may be denoted
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X+ne—Y (6.1)
9

in which ng is the number of electrons consumed in the generation
of Y. A faradaic current ig(t) will flow as Y diffuses, by semi-
infinite planar diffusion, away from the electrode-solution inter-
face. This generation phase ends at time t=T. After t=T the
electrode is held at a potential (or in a range of potentials) at
which species Y is reconsumed under conditions of complete
concentration polarization. This reaction may similarly be denoted

Y + ne—Z (6.2)
where Z is the recapture product of Y and n is the number of
electrons consumed in the recapture of Y. A faradaic current i (t)
will flow during this recapture phase of the experiment, t>T. The
aim now is to determine a relationship between the currents ig(t)
and ir(t). Establishment of such a relationship would enable the
reconstruction of the generation current from the measured recapture
current. The most versatile form for such a relationship would be
one which does not place restrictions on the details of the
generation process. However, the lack of restrictions will be
reflected in the complexity of both the relationship and its
development.

The simplest generation/recapture schemes are those in which

the recapture reaction is the converse of the generation reaction,

so that X=Z and ng+nr=0' These schemes are analogous to the
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generation/reversal reactions discussed in the previous chapter
with the restriction that the reversal phase must be treated as a
recapture phase. [Recall that ''reversal' simply implies that
reaction (6.1) is followed by reaction (6.2) whereas ''recapture'
implies that the latter reaction occurs under conditions of
complete concentration polarization and that Y is transported by
semiinfinite planar diffusion]. A less common generation/recapture
scheme is possible in which species Y is generated by a reduction
process in one range of potential, and then further reduced in a
recapture process at a more negative potential. A generation/
recapture scheme of this nature would require that X be in the
highest of three oxidation states. A similar scheme would be to
perform successive oxidations of a species that is in the lowest
of three oxidation states.

The combinations possible for reactions (6.1) and (6.2) are
given in Table 6.1. The first two schemes correspond to the
generation/recapture reactions in which Z corresponds to X and
hence n. is the negative of ng. For the final two schemes,
however, the generation/recapture proceeds by successive reductions,
or successive oxidations, and hence Z differs from X. Therefore,
both ng and n. would have the same sign but not necessarily the

same magni tude.
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generation| recapture i .
reaction reaction g 'r “r
reduction | oxidation { cathodic anodic -
oxidation reduction anodic cathodic +
reduction reductiqn cathodic | cathodic +
oxidation | oxidation anodic anodic -
Table 6.1 Generation/recapture schemes with associated parameters

Interrelationship of the Currents

The recapture current is related to the generation current by

the definite integral

r

1

mn (t-T)*
g()

i (t) =
which is applicable for any time t greater than T. The only
restrictions embodied within this expression are that

(i) both the generation and recapture reactions must be electro-

chemical,
(ii) species Y must initially be absent from solution,

(iii) the recapture reaction must occur under conditions of

complete concentration polarization, and

(iv) transport must be by semiinfinite planar diffusion.

The proof for this expression is provided in appendix A by a
rather lengthy exercise in Laplace transformation. Although the

development of the interrelationship between the generation and

recapture currents is rather involved, the final expression lacks
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the complexity that one might have anticipated for such a general
relationship. This simplicity, moreover, makes it easier to see
the versatility of equation (6.3). Note that this expression
enables the recapture current to be calculated by knowing only
(i) the generation current as a function of time
(ii) the duration of the generation phase, and
(iii) the ratio n /n
r g

Restrictions have not been placed on the potential waveform that
can be imposed during the generation phase or on the electrochemical
reversibility of the generation or recapture reactions. Thus
equation (6.3) is more versatile than most current relationships
encountered in electrochemistry.

An expression, equivalent to equation (6.3), which is valid

for the first two generation/recapture schemes listed in Table 6.1

is

ir(t) = - = dt (6.14)

m(t-T)? 0 t -1

since the ratio nr/ng is minus one for both of these reaction
schemes. This expression is proven easily in appendix B with the
aid of the fractional calculus. Although this second proof was
not necessary to obtain equation (6.4), it illustrates that the

fractional calculus can often offer advantages over ''conventional'!

methods.
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Since most generation/recapture experiments follow the
reaction schemes in which the ratio nr/ng is minus one, the
mathematical development that follows will be based on equation
(6.4) rather than the more general equation (6.3). The assumption
that the ratio nr/ng be minus one is not an essential restriction
to this development but rather it will serve only to simplify many
of the expressions that follow.

A generation/recapture experiment may be divided into three
time periods. Initially, that is, for t<0, the system is at
equilibrium during which nothing happens. Then, during 0<t<T,
species Y is created in the generation phase. Finally, for t>T,
species Y is consumed in the recapture phase. The symmetry of the
problem may be enhanced by considering the middle of the generation
phase, that is, t=T/2, as the time origin. This new origin is

established by the definition

g=r=5F -] (6.5)

which also undimensionalizes the independent variables g and r.
Although g and r are identical, it will be convenient to use g as
the independent variable of the generation current and r as the
independent variable of the recapture process.

Equation (6.4) may be expressed in terms of the new independent

variables as
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Vi (9) (1-9) "
J dg (6.6)

ir(r) = - ]

m(r-1)72

r-g

-

in which r must be greater than one to describe the current in the

recapture phase. It is convenient to define a ''generation function'

by the tripartite definition

[ 0 ’ g<-]
G(g) = (l-g)ﬁig(g) , —l<g<l (6.7)
0 , g>1

where the three periods correspond to the three phases of the
experiment: equilibrium, generation, and recapture. Combination

of this definition with equation (6.6) leads to

(r—l)%ir(r>l) = %—J gé%l-dg (6.8)

Thus, by referring to equation (2.10), it may be seen that the
left~-hand side of equation (6.8) equals the Hilbert transform of
G(g) in the region r>I.

Recall that our ultimate intention is to devise a relationship
which will enable the generation current to be reconstructed from
the recapture current. Equation (6.8) establishes that the
recapture current is proportional to the Hilbert transform of the
generation function and equation (6.7) illustrates the simple
manner in which the generation function is related to the

generation current. The skew-reciprocity of the Hilbert transform
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dictates that the generation function is described by the negative
Hilbert transform of the left-hand side of equation (6.8).
Calculation of the generation function will then enable the
generation current to be reconstructed with the aid of equation
(6.7). Unfortunately this operation is not as simple to implement
as would be desired.

Consider a recapture function R(r) that is the Hilbert

transform of G(g) defined by

R](r) , r<-1
2{G(g)} = R(r) =« Rz(r) , -l<r<l ? {6.9)
(r—l)%ir(r) , r>1
where H is an operator denoting Hilbert transformation. !t was
shown in equation (6.8) that the Hilbert transform of Gig) is
(r—])%ir(r) when r is greater than one. towever, when r is less

than one, that is, during the equilibrium and generation phases of
the experiment, the recapture function is not zero and it has nc
experimental significance. Therefore R](r) and Rz(r) are unknown

functions of r which are nonzero. |If these functions were known,

the identity

“HR(F)Y = 6(g) =4 (-9)7i (g)

i
A
0
A
.
—~
ON
(@]
~

could be used to reconstruct the generation function and thereuy
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the generation current ig(t).

Before trying to deal with our ignorance of R](r) and Rz(r),
examples of generation/recapture experiments will be considered
which illustrate the validity of this Hilbert transform relation-
ship by deriving the functionality of ir(t) given ig(t). A number
of Hilbert transform pairs are also listed in Table I as examples
of recapture functions that correspond to given generation
functions.

Hilbert Transform Analysis

i) Cottrellian Generation/Recapture Relationship
The current response during the generation phase of a Cottrell

experiment, given by equation (5.3), may be expressed as

1
* 2
i (t) = nAFC [9] L Y . (6.11)
9 ™ té
This equation may be reformulated in terms of the independent

variable g as
i (g9) = — ,  ~l<g<l (6.12)

3

where k is an abbreviation for nAFC (20/7T) The generation

function, given by definition (6.7), is

1
s
G(g) = k[ﬂJ , ~l<g<l (6.13)
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The Hilbert transformation of equation (6.13) can be
accomplished by performing the appropriate integrations, or, more

effortlessly, by consulting Table I. The result is

. Y N
K+ k[_:f:] o reel
H{G(g)} = -k , =l<r<l p (6.14)
1
(r-1)7
| e kL?IT ’ is )

which is equivalent to R{r).

The first two parts of the right-hand side of equation (6.14),
in accordance with definition (6.9), correspond to the R](r) and
Rz(r) functions that lack experimental significance. However, the

1

third part of this solution corresponds to (r-1) ir(r). Hence the

recapture current is given by

i = -kﬁ/ + K , r>1

TR (re1)®

1

Ry

-nAFC F% L N . (6.15)
o (e-T) 2 2

This expression is equivalent to equation (5.4) which describes
the current response in the reversal phase of a double-step
chronoamperometric experiment. The reversal reaction in such an
experiment occurs under conditions of complete concentration
polarization and therefore satisfies the criterion for a recapture
process. Hence the equivalence between equations (5.4) and (6.15)

gives credibility to the Hilbert transform relationship.
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ii) Galvanostatic Generation/Recapture Relationship

Consider an experiment in which species Y is generated at an
electrode by a current of magnitude I that remains constant during
0<t<T. This may require the restriction that T not exceed the

transition time of the system (see current reversal potentiometry

in previous chapter). The tripartite definition of the generation

function,
0 ’ g<-1
1
G(g) = { I(1-g)* , ~l<g<Il {(6.16)
0 ’ g>1

is obtained from equation (6.10) and the definition of g.
The recapture function, as given by the Hilbert transform of
G(g) is

b
R(r) = - 2 L) ” g (6.17)

-r
_]g
The definite integral in this expression may be evaluated by the

substitution z2=(1-g)/(1-r) or z2=(1-g)/(r-1) which leads to the

tripartite result

where K is the constant 23§I/ﬂ.
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The first two parts of the right-hand side of equation (6.18)
correspond to R](r) and Rz(r) which lack experimental significance.

However, the third part yields

)

r i1 r-1
: Bk 1T 1/2:
= - % [t-TJ - tan LT_—T:] (6]9)

- .

This expression is consistent with that obtained from the

1

theory of the electrolysis of non-uniform solutions* if errors

found in that article are corrected.



CHAPTER 7

CONSTRUCTION OF ir(t) FROM ig(t)

Numerical Hiibert Transformation

Although the ultimate goal for this transform technique is to
reconstruct an interference-free generation current from the
recapture data, the construction of a recapture current from
generation data will be investigated first since the mathematics
required for this process is much simpler. The relationship
between the recapture and generation currents was given in the

previous chapter as

1
- /2 -
m(t-T) 0 t T

The integral within this relationship is easier to evaluate
numerically than are most Hilbert transforms for two reasons:

(i) the integration is performed over a finite range, whereas the
Hilbert transform extends over -wo<t<w
and

(ii) a singularity cannot arise in this integration because t is

always greater than t.

Equation (7.1) may also be written as

A ROIE
(o) = | L dy (7.2)
mo Y - P



79

where

Y=p=1t-T (7.3)

and y is the independent variable for the generation current and p
is the independent variable for the recapture process. Since y
and p are related linearly to time, equal spacing in either of
these variables is equivalent to equal spacing in t.

Let the generation currents be i],iz,-v-,iJ measured at times
t],tz,'--,tJ which correspond to Y]’Yz"°"YJ' Let the spacing
between all measurements be At but permit t] and T-tJ to be other

intervals. Equation (7.2) may be rewritten as

1
L T2 0 (y) (-y)7®
moi _(p) = J dy
Y -0
N Y 5
J=2 (Tj+1 1 (y) (-v)
+ 1 2 dy
j=2 Y-p
Y; ) |
i (y)(-y)?
+ - R (7.4)
Y - »p
Y-

The generation current may be approximated by a linear fit between

Yj and Yj+l using the expression

(i. -i.)y + .y, -0, .Y.
+1 +1 +1
ig(Y) . J J J J J

YT

ay+b
- (7.5)
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(@]

where a and b are constants. It is then convenient to make the

approximation

[0 (y) (-y)®

"9_"“"‘_dY
Y = P
L (ayn) ()
~ ay+o) {7y
T oAt Y - p dy
J
S (a0+5) | (-)”
. a _ N ap-+ =Y
J
( ) 1,
_ 2a 3% 2 (ap+b \E B (:XJ‘} -
= - 7 (-y) 7% + T {( Y) o arctan\ 2 (7.6)

3
Equation (7.4) may now be approximated by

2L (o)
2 r
J-1 -
L N [V I %]
0w LG g™ - gl
Sl . )
' JEI{\‘J+I"j]Q T T Y
1 1 Ll
(vip) - (v )e Rk
X Sk » L - arctan Sl
| (0)* S
- 1.
-Y. 2‘
+ arctan(——il (7.7)
Lo )
with the stipulations that for j=1, all Yj within sguare brackets

must be replaced by -T and for j=J-1, all Yj*l within square

brackets must be replaced by zero.
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At a time t selected such that t>T, the recapture current for
the corresponding value of p, equivalent to ir(t), may be
evaluated using equation (7.7). This evaluation was performed by
a program called '""TRNG+R' which is given in appendix C. The
success of this algorithm is illustrated in Figure 7.1.
Theoretical recapture data for a double step experiment are
plotted along with the transform of the corresponding generation
current. The agreement is so good that the difference is almost
indistinguishable. This result was encouraging enough to warrant

experimental study.
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Experimental Analysis

Chronoamperometric experiments on the systems
Fe(CN) >~ + e == Fel(CN) g~ (7.8A)
Fe(C,0,)5° + e = Fe(Cy04)s (7.88)
were performed for a variety of potential waveforms. These wave-
forms were designed to induce generation and, later, recapture.
The generation current was Hilbert transformed using equation (7.7)
to produce a curve that should correspond to the experimental
recapture response. The current, ir[T], obtained from the transform
will be compared graphically to the recapture data, ir[D].

The electrochemical reversibility of the two chemical systems
is substantially different. The transform should produce the
recapture response for a concentration polarized system regardless
of its reversibility. The agreement between the transform and the
recapture current will be compared for each system to establish
whether the nernstian behaviour of the system is pertinent to the

accuracy of this transform technique.

Reagents and Solutions

A) Fe(CN)g3~

Reagent grade chemicals and ''‘polished'' deionized water were
used throughout. A 5.0 mM solution of KiFe(CN)g was prepared in a
supporting electrolyte of 2.0 M KCl. The cell contents were

deaerated with argon for about an hour prior to use.
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B) Fe(C,04)53"

A supporting electrolyte of 1.0 M KyCy0, and 0.10 M H,C»0,
was prepared from reagent grade chemicals and ''polished' deionized
water. A 5.0 mM solution of Fe(C,0,)33” was then prepared by
dissolving triply recrystallized KsFe(C,04)2°3H50 in the supporting
electrolyte. The vessels used for this solution were shielded
from the light since the Fe(C,0,)3>  ion is known! to undergo
light-catalyzed decomposition. This solution was also deaerated
with argon for an hour prior to use.

Apparatus

The electrochemical cell consisted of a three-necked, round-
bottomed flask. The vessel's capacity was about 20C ~t but a fill
line at about 100 mL was used. A platinum inlaid disc electrode
(Pine Instrument Company, Model DT6) served as a stationary
working electrode. This electrode had a finely machined surface

consisting of a circular disc of area 46.1 mm?

surrounded by a
Teflon annulus, bringing the overall diameter to 18mm. The
auxillary electrode was constructed simply of platinum foil. A
commercially available (Beckman, Model 39403) saturated XC1/AgCi/Ac
electrode served as the reference electrode.

The experiments were performed with a Princeton Applied

Research Corporation Model 170 Electrochemistry System (hereafter

abbreviated PARC 170). The PARC 170 was calibrated with a Digetec
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Model 268 Millivoltmeter before each experiment. The PARC 170 was
linked through an HP3497A data acquisition/control unit to an HP-85
personal computer. The HP3497A performed the digital-to-analog
(D/A) and analog-to-digital (A/D) conversions which permit inter-
action between the cell and the HP-85 via an HP-1B interface. A

schematic representation of the experimental apparatus is given in

Figure 7.2.
PARC 170
Ag/AgC1 l
Reference Current Potential
Electrode \\ Monitor\, / Monitor
Purge HP-1B
Line //
HP-85
Pt Pt HP3497A
Working Counter
Electrode Electrode

Figure 7.2 Schematic representation of the experimental apparatus
The potential waveforms that were applied in these experiments
consisted of combinations of steps and linear ramps as detailed
later. They were generated by the superposition of a voltage sent
from the D/A of the HP3497A added to a waveform controlled by the
PARC 170. For both of the step experiments, the PARC 170 applied
a constant potential of -1.000 V upon which the HP3497A then
applied the steps. All of the other experiments used a ramp

controlled by the PARC 170 upon which steps could be applied by
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the D/A of the HP3497A. There was always a potential applied to
the PARC 170 from the D/A in the HP3497A, although over much of
the ramp experiments, this potential was zero.

Each of the experiments started at the same potential. This
potential was chosen in a region where the ferric complex is
stable. Since none of the ferrous complex was present initially,
the stability of the ferric complex ensures that a current cannot
arise from this redox couple during the pre-electrolysis phase.
There could have been other current sources, however, such as
double layer charging or impurities in the system.

The initial potential, comprised of potentials from the
PARC 170 and the D/A of the HP3497A, was applied to the cell by
switching the selector switch on the PARC 170 from "Off'' to
""External Cell'', While this initial potential was being applied,
the program which controlled the experiment was waiting for a
dummy input that would designate the start of data sampling, or
time zero. A period of about ten seconds was allowed to elapse to
permit the system to recover from stray currents, and then the
dummy input was sent. For experiments that incorporated a ramp,
the HP-85 would then send a command to the HP3497A to close a
switch which grounded the external trigger on the PARC 170 thereby
starting the ramp. A similar operation was not required for the

step experiments. A timer within the HP-85 was then set which
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provided a program interrupt whenever a data transfer across the
interfacing was required. The data transfer was the most complex
part of the program. A buffer containing the voltage sent by the
D/A of the HP3497A was created in the HP-85. A portion of this
buffer representative of a single voltage command was sent to the
D/A of the HP3497A and at the same time another command was sent
for the A/D of the HP3497A to take a current measurement.
Calibration of the instrumentation indicated that the time between
the application of the voltage and the measurement of a current
was 20 ms (see appendix D). The current reading was then sent to
a buffer in the HP-85. The data were stored in a packed format to
improve execution time. Pointers were assigned to establish the
portion of the voltage command buffer that would be sent next, and
then the program waited for another timer interrupt. The duration
of the data transfer routine was established at 140 ms and hence
this was the fastest sampling rate (see appendix D). Upon
completion of the experiment, the selector switch on the PARC 170
was returned to "0ff''. The current data were then unpacked and
the corresponding times were calculated.

Experimental

The study of each chemical system followed a standard
procedure. First a cyclic voltammogram was run to determine a

suitable potential range for experimentation. Data taken from the
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peaks on the cyclic voltammograms were also used to give an
indication of the electrochemical reversibility of the system
(see Figures 7.3A and 7.38B).

Each of the potential waveforms was applied to a solution
containing first the ferricyanide or ferrioxalate, and then to the
supporting electrolyte alone. ''Background'' was removed by
subtracting the contribution from the supporting electrolyte.
These background-corrected data were then Hilbert transformed
using equation (7.7).

The data for each experiment were checked for consistency.
Repetitive runs were performed until the experiment yielded a
reproducible response. The data from this run were then stored on
an HP magnetic tape cartridge for later analysis. The data for
the ferricyanide or ferrioxalate only needed to be sampled two or
three times to establish consistent behaviour but the data for the
background took up to seven runs before a reproducible response
was obtained.

A comparison between the transform and the recapture data
will be presented graphically after a brief description of each
experiment. The labelling adopted for these diagrams gives the
experiment number followed by an '"A" or a ''B'"' to designate the
system described by either equation 7.8A or 7.8B respectively.

Although the experiments lasted between 42 and 56 seconds,
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only data from the first 30 seconds were plotted. The current
changes the most drastically over this time period and the current
at later times was not plotted since it was not as interesting.
The current scale on each graph spans -600 pA to +600 pA. This
range was fixed to permit variations in the current responses to
be detected more easily. The data and Hilbert transform were
plotted in sharply contrasting colours because, in many cases, the
transform matches the recapture data so well that they are
indistinguishable. In an attempt to better resolve the discrepancy
between the transform and the recapture data, the later portion of
the recapture graph was replotted on a scale spanning -100 uA to

0 uwA. This 6:1 expansion provides sufficient magnification to
show up most discrepancies,

The first few experiments implement conventional potential
waveforms which were used to test the effect of electrochemical
reversibility on the accuracy of this transform techrnicue. There-
fore , results from both system "A'" and system '"'B" will be
presented., Later experiments, however, were designed to illustrate
the versatility of this transform technigue by implementing
unusual potential waveforms. The effect of electrochemical
reversibility was not of interest in these experiments and hence

only one system, namely system "A'", was studied.
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El : Double Step Experiment
This experiment was controlled by the program ''DSCHEM'' (see
appendix C). The potential waveform that was applied is

illustrated in Figqure 7.4,

1 0 —

m

!
!

|
?
0 3.40 time (s)

Figure 7.4 Potential waveform for double step experiment

The potentials E] and E2 designate the initial and reversal

potentials utilized for the cyclic voltammograms. These potentials
are in the regicns of concentration polarization for the redox

reactions of the ferric/ferrous couples. At the potential E the

1 3
ferric complex is electrochemically stabie; whereas it is the
ferrous complex that is stable at EZ'

After time zero, designated by the application of £ the

2 ’

L

ferric complex was reduced to its ferrous partner. The generation
of the ferrous complex proceeded for 8.4 seconds and then the
potential was restored to E]. The ferric complex was thereby

recaptured under concentration polarized conditions., The results
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of the double step experiment are presented in Figures EIA and EIB.
E2 : Ramp-Step Experiment
This experiment was controlled by the program '"RSCHEM" (see
appendix C). The potential waveform that was applied is shown in

Figure 7.5.

Ramp Rate = -98.6 mV/s

>

time

Figure 7.5 Potential waveform for ramp-step experiment

The step was applied just before the potential reached E2'
This was necessary to avoid a plateau. The step pushed the
potential slightly beyond E] but the system responded the same as

it would at E] since it was in the region of concentration

polarization.

As the potential was ramped from E] to EZ’ the ferrous
complex was generated under increasingly more favourable conditions.
The application of the step then induced recapture.

Since the potential range for the two systems differed and

and the ramp rate was constant, the value of T (see Figure 7.5)
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differed for the two systems. For the Fe(CN)¢3™ system, the ramp
must span 0.8 volts and T was selected as 7.00 seconds. For the
Fe(C204)33' system, the ramp only needed to span 0.6 volts and
hence T was shortened to 6.02 seconds.

The results of the ramp-step experiments are presented in
Figures E2A and E2B.

E3,E4,E5 : Cyclic Ramp Experiments

These experiments were also controlled by the program
""RSCHEM!''. In each experiment the potential was ramped through one
cycle and then held at the initial value. The symmetry of the
potential waveform was varied between experiments. The waveform
symmetry is expressed as the ratio of the backward ramp rate to
the forward ramp rate. The normal mode for a cyclic voltammogram
is to use a symmetry of I:1, but, in addition to this ratio,
symmetries of 5:1 and 10:1 were also tested. As this ratio
increases, the potential waveform deviates from that typical of a
cyclic ramp experiment towards that of a ramp-step experiment.
This transition is illustrated in Figure 7.6.

As with the ramp-step experiments, the value of T was changed
between systems. In an attempt to optimize performance, T was
selected at the earliest possible time that would correspond to a
potential within the concentration polarization range. Therefore,

T occurs slightly before the end of the ramping cycle.



dE -1
rr -98.6 mV/s E3 - 1:1 symmetry

dE

k////,—a?-= 98.6 mv/s

|
| |
| |
0 T time

Eh - 5:1 symmetry

%%-= ~98.6 mV/s

dE
Fra 493 mV/s

Figure 7.6

time

E5 - 10:1 symmetry

Q.
m

= -98.6 mV/s

I

Qo
+

3
)

time

—g - -

[
!
]
0

Potential waveforms for cyclic ramp experiments

99















104

The results of these experiments are presented in Figures E3A
through ES5A.

E6 : Ramp-Hold-Step Experiment

This experiment was very similar to the ramp-step experiment
except that the step was applied after the ramp had stopped at E2.

The potential waveform is shown in Figure 7.7.

Ramp Rate = -98.6 mV/s

—10—]

|
|
)
L =
0 8.40 time (s)
Figure 7.7 Potential waveform for ramp-hold-step experiment

The value chosen for T was 8.40 seconds. This selection was
made for comparitive purposes with the double step experiment.
Figure E6A shows the result of this experiment.

E7 : Multistep Experiment

The waveform applied in this experiment was the most unusual
of all. It is illustrated in Figure 7.8. This waveform was
applied by the program "DSCHEM" with a manually open-circuited
period in the middle of the generation phase. While the cell

was open-circuited, no current could flow and hence the cell would
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be at En’ the null potential, which varies with time.

o]

i
~—

A
!

i
L .
0 .40 time

193]

Figure 7.8 Potential waveform for multistep experiment

The cell was open-circuited by switching the selector switch
on the PARC 170 from "External Cell' to "Off''., The timing for
this manual operation could not be reproduced accurately enouah to

enable a background correction to be performed and therefore these

data are presented uncorrected.

The data and transform are presented in Figure E7A.

The cottrellian dependence of the generation current was

1.
studied by testing the constancy of ig(t)t“. The variation

in
this parameter was limited to 1% demostrating that the contri-

bution from extraneous sources, such as non-linear diffusion
3

was very small.
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Error Analysis

The preceding graphs, Figures E1A through E7A, clearly
illustrate the success of this transform technique. The curve
obtained by Hilbert transformation matches the recapture data so
well that for many of the experiments, discrepancies can only be
detected on the expanded scale. This degree of precision is
encouraging since, in addition to the usual experimental errors,
an error is imposed by an approximation made within the algorithm.
The contributions from each of these error sources has been
investigated to determine their weighting.

The algorithmic error was investigated with synthetic data
representative of a double potential step. The choice of this
experiment was necessitated by the lack of analytical solutions
for recapture following other waveforms. The synthetic data were
generated with the same time parameters that were used for
sampling the experimental systems. The ratio of the current,
ir[T], obtained from the transform compared to the recapture data,
ir[D], is presented in Figure 7.9 to illustrate the relative error
introduced by the transform algorithm.

The line denoted ir[D]/ir[D] serves as a reference against
which the transforms can be compared. The curve "ALL(0O)"
designates the relative error for the transform of the data set

that contains all 400 points that were generated. The error in
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this transform was only 0.6% at the time 5T. The curve "ALL(1)"
was derived from the same data set that was used for '"'ALL(0)'
except that the first generation point was omitted. This data set
formulation is similar to that used for both of the double step
experiments in which the first data point was beyond the range of
the measuring instrument and therefore unknown. Hence the "ALL(1)"
curve reflects the algorithmic error inherent in the experimental
transforms. Ignorance of the first data point increased the
algorithmic error at the time 5T to 7%. This increase by an order
of magnitude was apparently caused by the linear fitting routine
within the algorithm. The algorithm approximates the curve by
fitting straight lines between consecutive points. At both ends
of the curve, the fit to the boundaries of the generation region
is obtained by extrapolating the line described by the two closest

points.

The current for a double step experiment is proportional to
t-% and hence it falls rapidly from an initial value of infinity.
This produces a curve which looks like the falliing edge of a
spike. A linear fit between two points on such a curve will
describe a line which will lie above the curve for all intervening
points. An extrapolation of such a fit, however, will define an

endpoint that is too low. Therefore, a linear fit establishes a

delicate balance between high and low approximations to the curve.
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For the "ALL(0)'" data set, the overall fit must have been slightly
high whereas the fit for the "ALL(1)" data set was too low. The
lowering of the overall fit to the "ALL(1)'" data set could have
been predicted since the omission of the first data point woulc
lower the extrapolation at time zero. The magnitude of this
effect, however, was a surprise. Even so, the error is still less
than seven percent.

Two new data sets were formed by teking alternate points from
the original data set. One data set consisted of the odd-numberad
points and the relative error in its transform is designated
“ODD(0)''. The other data set consisted of the even-numbered oocints
and the relative error in its transform is designated by "EVEN{0)'".
The ""0DD(0)'" and '"'ALL(0)'' data sets have the same initial data
point but the sampling interval, At, for the former data set is
twice that of the latter. The "EVEN(0)'" and "ALL(1)" are related
in a similar fashion.

Incorporated into the transform algorithm is the assumpticn
that At is small. The approximation made by this assumption
improves as At approaches zero and hence the increased error in
nopD(0)' over "ALL(C)" reflects this dependence. Another derend-
ence, that of the extrapolation at time zero, is reinforced ty the
similarities of the curves "EVEN(D)' and "ALL{1)".

The spikes encountered in the generation reacion of the couble
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step and multistep experiments are approximated very poorly by the
linear fit used in the transform algorithm. A linear approximation
of the peaks for the various ramp experiments would also not be
very accurate, but this error could still not approach that
encountered for an extrapolation over a spike. Based on this
assumption, the algorithmic error in the ramp experiments should
be less than the 7% found for the double step experiment. The
error in the multistep experiment, however, would surely be more
than this since two spikes must be approximated; one without the
benefit of an extrapolation. The error in the transform for the
multistep experiment does appear to be larger than that found in
any other experiment, but this could also be due to background-
uncorrected data being analysed.

The errors attributed to experimental measurements would be
difficult to segregate but at least some idea of the reproduc-
ibility of the data may be gained from Figure 7.10. [In this
diagram, data are presented for five distinct ramp experiments
with the cyanide system. Over the first seven seconds of these
experiments, the potential was ramped at the same rate and over
the same range. Hence the data for these experiments should be
identical over this region.

The timing for the sampling of this data appears to be quite

reproducible since the peak location remains constant. However
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there is some variation in the currents that were measured. The
current data presented in Figure 7.10 are background-corrected and
hence reflect errors incorporated into measurements on two
solutions.

At any given time, the current displays a variation of about
8% over the five sets of data. Each of the signals, however,
intermingles with the others and none is consistently high or low.
As an example, the current for experiment ES5A crosses all the
other experimental currents. |Initially it was the largest, near
the peak it obtained a median value and then, on the tail extending
beyond the peak, it became the smallest current.

Since the experimental error outweighs the algorithmic error,
most of the discrepancy between the transform and recapture data
must have arisen from experimental sources. These sources would
include capacitative currents that are produced by the charging
and discharging of the electrode double layer, currents that
originate from non-linear diffusion, and stray currents that are
the result of instrumental noise. Background subtraction would
help to remove some of these extraneous currents but the correction
would not be perfect. A technique that could have improved the
agreement would have been to average the output signal over several
runs. This would have improved the correction for the capacitative

currents although other components may have still been a problem.
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Even though this averaging technique was not used, the similarity
between the transform and recapture data is still satisfactory.

Discussion

As mentioned earlier, these seven experiments were divided
into two classes, each with its own purpose. The first three were
intended to test the dependence of the transform on the electro-
chemical reversibility of the system whereas the last four were
designed to illustrate the versatility of this transform technique.

The extent of the reversibility of each of the systems was
established by comparison of parameters taken from the cyclic
voltammograms {Figures 7.3A and 7.3B) with those predicted by
reversible theory.? The values are provided in Table 7.1. The

theoretical values assume that the system is completely reversible.

System %;{EP-EF] Parameter | Experiment Re¥ﬁ;;:5]e
D_F_/# -E] 2 . ’ 23
| R [Cp p) 33
A 16.074
T ~0.758 -0.788
PP
no|E 2| 8.76 2.27
RTLUp 7PJ
B 5.955
T /77 ~0.548 ~0.687
P’ p

Table 7.1 Reversibility parameters for the experimental systems.,
The peak current and peak potential are denoted by i, and E
respectively. The ramp direction at the peak is denoted by the

arrow.
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The parameters for system ""A'"' are in much better agreement with
theory than are the parameters for system 'B'' and hence the
Fe(CN)SE"/Fe(CN)gq- couple was more reversible than the
Fe(C,04) 337 /Fe(Cy04) 3%~ couple at the platinum electrode. Table 7.1
also illustrates that the peak separation is more sensitive to the
electrochemical reversibility than is the ratio of the peak heights.

If the transform is dependent upon electrochemical revers-
ibility, then the results for system '"A" should be better than
those for system '"'B'"., This was true for the double step experiment
in which the agreement for system "'B' was good but that for system
""A'"" was even better. For the ramp-step experiment, however, the
roles are reversed. The transform for system 'B' was very good
whereas the error in the system '"'A'' transform was about the largest
of any experiment. The transform for the 1:1 ramp experiment was
excellent for both systems but the shape of the curve for system
""B'" was slightly better than that for system "A'". A probable
source of error for the transform of system "A'" was an unexplained
"dip' in the current that occurred near the reversal potential.
It would appear that, based on these three experiments, the
transform has no dependence on the electrochemical reversibility
since each system scored a win, a loss, and a tie.

The discrepancy between ir[T] and ir[D] for the remaining four

~experiments was still fairly small but it appeared to be a function



. of the quality of the backqround correcticn. The data for the
ramp-hold-step experiment were the smoothest of the four
experimental curves and therefore appear to have bpeen corrected
the most efficiently. The discrepancy between Ir[T] and ir{UJ was
also smaller for this experiment than for any other. As mentioned
earlier, the technique by which the multistep waveform was applied
prevented background subtraction. The lack of this correction was
apparently responsible for the relatively large discrepancy between
ir[T] and ir[D] for this experiment. The discrepancies between
ir[T] and ir[D] for these four experiments were larger than those
for the conventional waveforms. The recapture current for each of
these experiments, however, was still described quite accurately
by the Hilbert transform.

Comments

The versatility of this transform technique has been
illustrated by the lack of dependence on both the nernstian
behaviour of the system and the potential waveform that is asoiied
to it. As suggested earlier, a method incorporating signai
averaging could be used to improve the signal cuality anc therefcre
increase the accuracy of the Hilbert transform. This procedure

would be the most beneficial for experiments in which the transtorr

was to be applied for analytical purposes.



CHAPTER 8

RECONSTRUCTION OF ig(t) FROM i,(t)

I't was shown in chapter 6 that the negative Hilbert transform
of the recapture function, R(r), will give the generation
function, G(g), from which ig(t) may be calculated. Recall,

however, that the recapture function was defined as

(
R, (r) , r<-1

R(r) =4 R, (r) ,  ~l<r<] (8.1)
U, e

where R](r) and Rz(r) are unknown functions of r which have no
experimental significance. Since the Hilbert transform spans
-o<r<o  R(r) must be known over this range to permit the transform
to be performed. Hence a method had to be devised that could deal
with the ignorance of R1(r) and Rz(r) to exploit the Hilbert
transform as a means of reconstructing the generation current.

I) Curve Fitting

The recapture function in the recapture phase, denoted R3(r),

and the generation function in the generation phase, denoted

Gz(g), are given by
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and

1
e

Gz(g) = (1-g) ng(g) (8.3)

Hence R,(r) may be calculated from the recapture current and Gz(g)

3

may be used to calculate the generation current.

If the functional form of Gz(g) was set, then, since the

generation function is zero elsewhere, the functions R](r), R

Z(r),

and R3(r) would be known from the Hilbert transform of Gz(g). | f

a weighting was applied to G,(g) then the same weighting would be

2

applied to each of the functions R, (r), R2(r), and R, (r).

1 3
Similarly, if Gz(g) was composed of a series of functions with
given weightings, the functions R](r), Rz(r), and R3(r) could be

determined by Hilbert transformation of these functions followed

by application of the corresponding weightings. However, the

(r).

only Rn(r) function which has experimental significance is R

3
I f R3(r) is fitted to a series of functions which are Hilbert
transforms of functions used to describe Gz(g) then it may be
possible to extract the weightings which are reguired to
reconstruct Gz(g) and thence the generation current,

A curve fitting routine was designed to fit R3(r) to

analytical functions that were Hilbert transforms of functions

selected to describe Gz(g). The function R, (r) was approximated

3
by
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A f (r) (8.4)

nn

o~z

R,{r) =
3
n=1

for which the N coefficients An were determined for the functions
f (r) by a program given in appendix C. Once these coefficients

n

were determined, the function G,(g) could be approximated by

N
Gz(g) x nZlAnhn(g) (8.5)

where hn(g) are analytical functions selected with the
functionality of the generation current in mind. The domains for

fn(r) and hn(g) are shown in Table 8.1.

G(g) R(r)

O ’ g<-1 R](r) ’ r<-]
h (9) , —l<g<i Rz(r) , —i<r<l

o , g>! fn(r) ,  r>l

Table 8.1 Domains of analytical functions that comprise the
generation and recapture functions.

Although the functions R](r) and Rz(r) will be known for a given
hn(g), these functions did not participate in the fitting
operation since only data in experimentally significant regions
were fitted.

The selection of fitting functions was limited to those for

which the Hilbert transform relationship was known. Hence there



was not a great deal of choice in this selection. The selection

of functions was based on assumptions about the form of GZ(Q)~

The results for two sets of fitting functions follow.

(i) Power Series

It has been shown previously that the generation current for

N

a Cottrell experiment is dependent upon t

appropriate power series to describe ig(t) would be

-1 :
. ~ 2 P
ug(t) =a_jt “+aytat +at+

[N}

This expression may be rewritten as

e
o

ig(g) = A (1+g) 2+ Ay + A (T+g) = + A (1+g) + -
" where
A = [Zlqéa
n T, “n
Therefore, from equation (8.3),
6, (a) = jZIAj_2(1+g)i/2"(]_g)%

The Hilbert transform of equation (8.9) may be found

This establishes R3(r) as

and hence an

(8.7)

(8.9)

in Table T.
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The functionality of hn(g) and fn(r) as dictated by equations
(8.9) and (8.10) was determined for the first five members of
these series. The derivations are presented in the first part of
appendix E and the corresponding curves are plotted in Figures 8.1
and 8.2.

The functions fn(r) were evaluated over the range l<r<5 at
intervals of 0.1 and then filed on the computer to form a data
base named GUS. Synthetic recapture data were then generated from
known combinations of the fn(r) functions. The numbers within the
data base and the recapture datafiles contained fourteen
significant figures. However, experimental recapture data would
not possess any more than four significant figures. Therefore,
additional datafiles were created which possessed numbers with
only four significant figures.

The fits to the datafiles S-IT0O3 and 4S5-1T03 are given in
appendix F. These datafiles were generated by summing all five of
the fn(r) functions with equal weighting. The former of these
files contains numbers with fourteen significant figures whereas
the latter file contains numbers with only four. The coefficients

2

from these fits along with the sample variance, s?, are summarized

in Table 8.2. The sample variance, equivalent to the reduced chi-

square, is defined as
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where J is the number of data points, N is the order of the fit,
and Aj is the difference between the fit and the data at the jth

data point. Therefore a small s2 indicates a good fit to the

data.

Datafile 51703 [S-1703
A 0.999h ~-13.65
Ao 1.0055 127.59
A] 0.9875 -285.56
A, 1.0105 245, ]
A, 0.9970 -69.78
o2 8.25x10" "2 | 7.13x107°

Table 8.2 Summary of coefficients and sample variance for some
power series fits,

The s? for both of these fits is quite small and therefore
indicates that these are good fits to the data. However, the
coefficients which describe the fits differ significantly. All of
the coefficients were expected to be unity based on the manner in
which these datafiles were generated. The coefficients for the
fit to S-1T03 met this expectation quite well but those for the
fit to 4S-1TO3 were very surprising. Although the fit to 4S-1T03
matches the data very well, the coefficients which describe the
fit could be misleading if used to infer properties of the
generation process. As an example, the coefficient A_1 is related

to the contribution from a cottrellian generation current.

Although the file 4S-1T03 was generated with A equal to unity,

1
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the fit indicates that the contribution from a cottrellian
generation current is negative and far from unity. Therefore this
could induce erroneous assumptions about the generation process.
It appeared that these fitting functions could not be used to
describe data representative of experimental accuracy and
therefore another set of fitting functions was investigated.
(ii) Orthogonal Polynomials
Neither of the series described by equations (8.9) and (8.10)
is comprised of orthogonal functions. However, it may be
advantageous to consider a set of orthogonal functions for reasons

given in chapter 2. Consider the approximation
N 1
i () = §arp (50 (8.12)

(%,0)(

where Pn g) are Jacobi polynomials which are orthogonal in

the range -l<g<l. Then, from equation (8.3),

]An<1-g)%Pn(%'°)<g) (8.13)

It~ =

G,(q) =
n

The Hilbert transform of equation {8.13) is given in Table I which

lists R3(r) as

p (-0 (20 (1) (8.14)

2
R(r)‘-“—'}- n
1

3 n

Ne~—m=

-
where Q (?’O)(r) are Jacobi functions of the second kind. This
n
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expression may then be incorporated into equation (8.2) to yield

N 1 '
“Ii = fan B0 (8.15)

The fitting routine was applied to equation (8.15) rather
than equation (8.14) since it was a simpler expression to deal
with. The functional forms of the first seven members of

1
2

. L _
P ( ’O)(g) and Qn(z’o)(r) are determined in the second part of

n
appendix E. These functions have been plotted in Figures 8.3 and
8.4 as visual aids.

The functions Qn(%’o)(r) were evaluated over the range l<r<5
at intervals of 0.1 and then filed to form a data base denoted
JACOBI7. Synthetic recapture data were generated once more and
filed with both four and fourteen significant figures.

The fits for the files Q0T06 and 4QOTO6 are listed in
appendix D. These files were generated by summing all of the
Qn(%’o)(r) functions with unity weighting. The latter of these
files contained numbers with only four significant figures. The
coefficients and sample variance for these fits are summarized in
Table 8.3. The fit to QOTO6 is much better than that to 4QQT06
and the coefficients are also closer to the expected values of
unity. The fit to 4Q0T06, however, describes the recapture

current fairly accurately and hence there was still hope that the

generation current could be reconstructed with the coefficients
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Datafile | 00706 GQ0TO6
A T.0001 T.015
A, 0.9976 0.498
A2 1.0260 6.485
A, 0.8715 | -26.719
A, 1.3171 71.805
A5 0.6190 -87.554
Ag 1.1774 44,030
% 7.18x107' % | 4. 43x1072

Table 8.3 Summary of coefficients and sample variance for some
Jacobi function fits.

from the fit to the recapture current when applied to the

1
corresponding Pn<6’0)(g) functions.

Datafiles designated GALVAN-R and GALVAN-4R were built to
represent the recapture current following galvanostatic
. . (1/2’0) - . 3
generation. Since P‘0 (g) is equivalent to a galvanostatic
: (%,0) :
generation current, QO (r) would be representative of the
corresponding recapture current and hence the fit to the
forementioned datafiles should give unity for AO and zero for the
remaining coefficients. The coefficients and sample variance for
these fits are summarized in Table 8.4.
The fit to GALVAN-R adhered to our expectations with Ab being
very close to unity and all remaining coefficients being less than

10"%. These coefficients were then used to reconstruct the

generation current GALVAN-G, as shown in appendix F. The



i Datafile GALVAN-R GALVAN-4R
A 0.99999995 | 0.99579
A, 1.1869x10°7 | -0.01737
A, 1.7181x10°% | 0.44435
A, —8.6690x10:2 ~3.39992
A“ 9.7835X10 11.28159
e 0 -16.89685
Ay 0 9.34476
52 1.532x107 7 | 6.170x107 !0

Table 8.4 Summary of coefficients and sample variance for Jacobi
function fits to recapture data corresponding to galvanostatic
generation.

reconstructed generation current, denoted Fit,, along with the
exact solution are illustrated in Figure 8.5. This graph
demonstrates that this is an excellent approximation of the
generation current. The sample variance for the reconstructed
generation current was 3X107 11, Hence Figure 8.5 may also serve
as an aid for comparing previously quoted sample variances.

The coefficients for the fit to GALVAN-4R were not near those
that were expected but they were used to reconstruct the
generation current GALVAN-4G to learn how well this fitting
routine would work with data representative of experimental.
accuracy. The reconstructed generation current has been plotted

in Figure 8.6 as Fit,. The reconstructed generation current is

clearly not representative of the exact solution and it could not

be used to gain information about the generation process.
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It appears that the second selection of fitting functions was
not much better than the first for representing data that were
designed to simulate the precision of experimental measurements.
Another set of fitting functions was sought that would be
orthogonal in the recapture domain, since the coefficients for the
fit are calculated from data in this domain. (Note that the
Jacobi functions were orthogonal only in the generation domain.)
This search was unsuccessful and hence another approach was taken.
Summary of Curve Fitting

The reconstruction of the generation current based on
coefficients obtained from a fit of the recapture current has been
shown to be successful for data of high precision. However, the
level of precision is beyond instrumental capability and hence
another approach was necessary.

II) lterative Hilbert Transformation

The state of knowledge of the three regions of the generation
and recapture functions is summarized in Table II. Despite the
extensive ignorance of these functions, it may be possible to make
use of the gnown regions to improve a guessed generation function.
The procedure is represented diagrammatically by the flowcHart

given as Figure 8.7. Each step in the algorithm is described

below:
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(r) from ir(t) data

calculate R

3

R

guess ig(t) and hence approximate
Gz(g) for g values in the range

-1<g<l

¥

approximate R](r) and Rz(r) by
calculating R(r) = H{G(q)} for

r values in the range -«<r<-|

\L

improve guess of Gz(g) by
calculating G(g) = -H{R(r)} for
g values in the range -1<g<l
using the approximate R](r) and

Rz(r) but the exact experimental

R3(r)

J
has H{G(g)} evaluated over l<r<e

NO

converged on R3(r)?

YES

calculate the generation current

ig(t) from Gz(g)

END

Figure 8.7 Flowchart of an iterative scheme to calculate

i (t) from i (t)
g r
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(i) Calculate the recapture function R(r) for r>1 from the
measured recapture current i.(t). This part, R3(r), of the
recapture function is henceforth assumed to be known exactly and
precisely.

(ii) Make a guess concerning Ig(t) and hence calculate an
approximate Gz(g) function for -1<g<l. Note that the generation
function outside of this g domain is zero.

(iii) Use the approximate G,(g) function to implement the Hilbert

transformation

dg (8.16)

R(r) = H{G(qg)} =?]F

for r values in the range -«<r<l, thereby producing approximate
values for the Rl(r) and Rz(r) portions of the recapture function.
(iv) Use these Rl(r) and Rz(r) functions, together with the exact

R,(r) function to implement the negative Hilbert transformation

3

G(g) = -H{R(r)} = - ~]T Jf r;!(g)

-0

dr (8.17)

for g values in the range -1<g<l, thereby improving the Gz(g)
approximation.

(v) The convergence of Gz(g) can be tested by comparing the
Hilbert transform of Gz(g) with the exact solution of R3(r).
(vi) If Gz(g) has not converged, repeat steps (iii) and (iv).

(vii)y If Gz(g) has converged, calculate the generation current

ig(t).

This iterative approach required a numerical method for

performing the Hilbert transformtion. This necessitated a method
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that could deal with both an infinite integration range and the

singularities that arise when g and r are equal.

substitutions

Applying the

r = tan ¢ (8.18a)
and
g = tan 6 (8.18b)
to equations (8.16) and (8.17) yields
TT/!+
R{$) =T‘T— G,(8) [cot(6-¢)+tanb] db (8.19a)
_TTA+
and
T\'/2
G(e) = - %- R(4) [cot(¢-08)+tans] d¢ (8.19b)
-
where the angles are in radian measure. The integrals in these
equations may be approximated by summations giving
59 . -
R(¢) = —== ) G, {8)[cot(6-¢)+tane]l , 6 = -bhY + 1°4] (8.20a)
IZOJ.=o 2
and
| 119
6(8) = - 155 L R(¢)[cot(e-0)+tang] , ¢ = -89% + 1%5j (8.20b)

j=0
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where the angles are measured in degrees and the summations are

o

evaluated over data spaced at 1%° intervals. The singularity that
arises at 6=¢ may be compensated for by omitting the cotangent
term from these expressions. Hence the preceding equations permit
the Hilbert transformations to be evaluated by finite summations.
The iterative scheme was tested using equations (8.20a) and
(8.20b) with data generated at 1%° intervals for a cottrellian
generation/recapture scheme. The solutions for G(8) and R(¢) are
illustrated in Figure 8.8. It was discovered that after only one
iteration the new Gz(e) diverged from the true solution even
though the exact solution had been used for the guess of Gz(e).
In an attempt to learn what the transform was doing to the data,
the entire G(8) function was calculated rather than just G2(6).
The new G(8) function was slightly improved when calculated from
data at a spacing of 3,° but this was still not very satisfactory,
as illustrated in Figure 8.9. The transformation apparently
smooths the generation function at the discontinuities. This
smoothing continues with progressive iterations until G2(8)
converges to the completely erroneous shape shown in Figure 8.10.
Several generation/recapture function pairs were tested with
this algorithm and all displayed smoothing after a sudfficient

number of iterations. Therefore it was assumed that smoothing was

inherent to this particular algorithm. Since a discontinuity
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often arises in the generation function at either the beginning or
end of the generation phase, a smoothing operation is undesirable.
Summary of Iterative Hilbert Transformation

The failure of this method was very disappointing since the
idea behind it appeared to have been quite sound. However, it
may be possible to improve this iterative approach by studying new
algorithms for performing the numerical Hilbert transform. A
thorough study of such algorithms may lead to a successful method

for reconstructing the generation current.



CHAPTER 9

AN APPLICATION OF GENERATION/RECAPTURE ANALYSIS
Generation/recapture reaction schemes have rarely been
applied for analytical purposes. One technique that does use this
scheme is liquid chromatography / electrochemistry (LCEC).l In
LCEC, the analyte is transported by a mobile phase and hence the
recapture process is not controlled purely by diffusion. There-
fore this system would not be suitable for Hilbert transform
analysis. However, a description of LCEC can illustrate the
advantages that a generation/recapture scheme can offer.

LCEC versus GC/MS

Many problems arise for trace analysis in complex samples.
In biomedical research, for instance, complex samples such as
biological fluids can contain thousands of individual compounds
that are of no interest to the analysis under consideration. The
amount of sample is often limited necessitating measurements of
individual compounds in the picomole range and below.2 Recently,
established techniques have been combined to provide extremely
sensitive and selective analytical methods. For example, the
combination of gas chromatography and mass spectrometry (GC/MS)
has revolutionized the analyst's ability to handle extremely

complex mixtures. Unfortunately, this technique may not be
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suitable for involatile or thermally labile samples. |In addition,
the expense and complexity of the instrumentation can make this
system impractical for many laboratories.

The coupling of liquid chromatography with electrochemistry
provides numerous advantages.3 This technique is particularly
useful for samples that cause problems in the gas phase but are
well suited for analysis in a liquid medium. The LCEC system has
many parallels with the GC/MS system and the detection limits
achievable for both techniques are about the same.? Although
GC/MS is more versatile and has better molecular specificity,
LCEC is considerably less expensive and is more convenient for
many analyses.

There are three standard configurations for the electrodes
in a LCEC system as illustrated in Figure 9.1. The simplest
configuration incorporates a thin-layer cell with a single working
electrode whereas the remaining configurations incorporate two
working electrodes. These two working electrodes may be arranged
either in parallel, where they are side-by-side, or in series,
where one electrode is upstream of the other. Each configuration
has specific advantages, but only the dual electrode series
configuration will be discussed in more detail since it is the

only one that lends itself to the generation/recapture scheme.



Figure 9.1 Electrode configurations for LCEC systems. The
working electrode (W) is situated in a thin layer region. The
reference electrode (R) and auxillary electrode (A) are located
in a separate compartment outside the thin layer.

Elimination of Dissolved Oxygen Interference

The majority of applications for LCEC have been directed
towards analytes which are electrochemically oxidizable.
Reductive applications have been hindered by the presence of
dissolved oxygen in mobile phase mixtures and sample solutions.
Solutions in equilibrium with the atmosphere typically contain
103 to 107“M oxygen1 which can make trace analysis impossible
because of unacceptably high residual currents. The oxygen
concentration for the mobile phase caﬁ usually be lowered to

acceptable levels by appropriate methods but handling of the

sample is more restricted and hence total oxygen removal is

145



146

often impossible.

One method for removing oxygen from the sample is illustrated
in Figure 9.2, This method relies on the electrochemical
reversibility of the analyte redox couple and the irreversibility
of the oxygen/peroxide/water redox system. The upstream electrode,
which serves as a generator, is set at a potential which is
sufficiently negative to induce the reduction of the analyte and
the dissolved oxygen. The downstream electrode, which serves as a
detector, is set at a potential which is sufficiently positive to
reoxidize the analyte reduction product but not the peroxide or
water. Hence the current that flows at the detector will be free

of interference from oxygen.

Flow — o @ @

Generator Detector
0 H,0 77~
2 272
(H,0)
Figure 9.2 'Removal' of dissclved oxygen via dual series LCEC.
Although in this technique the generation and recapture

reactions occur simultaneously at separate electrodes, the concept

is essentially the same as the Hilbert transform approach.



CHAPTER 10

SUMMARY

The benefits of several transform techniques have been
presented and a new application for the Hilbert transform has been
developed. The Hilbert transform relationship was proven
theoretically and then employed numerically to demonstrate that
the recapture current could be described quite accurately by the
transform of the generation current. This operation was very
successful with closely spaced synthetic data and almost as
successful with experimental data. It was tested with experimental
data that were obtained with two chemical systems under a variety
of excitation waveforms to illustrate its versatility. However,
a successful algorithm was not devised that would enable an
interference-free generation current to be reconstructed from a
recapture current and this transform will not have fulfilled its

potential until such an algorithm is developed.



APPENDIX A

The operation of Laplace transformation is applied routinely
in electrochemistry [see reference (1) for examples]. A proof of
equation (6.3) will be provided here which relies upon this
transform.

The three phases of the experiment are summarized in

Table A.1.
Phase Electrode Reaction Time Period
Equiiibrium none —o<t<0
Generation X + nge — Y 0<t<T
Recapture Y + n.e —r Z T<t<oo

Table A.1 Summary of experimental phases.

Let C(x,t) denote the concentration of species Y at a
distance x from the electrode at a time t in the interval 0<t<T.
The following conditions can be applied to Y during the generation
phase:

(i) Y is transported in accordance with Fick's second law of

diffusion

{(ii) initially, Y is absent from solution

c(x,0) =0 (A.2)
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(iii) at a sufficient distance from the electrode, Y will remain
absent from solution
Clo,t) =0 (A.3)

(iv) the total number of electrons transferred at the electrode in
a unit time must be proportional to the quantity of Y that reaches

the electrode in that time period

I
ax

ig(t)

C(O,t) = ‘m (A.LI)
9

The Laplace transform of C(x,t) with respect to t will be
denoted C(x,s), s being a dummy variable. Transformation of

equation (A.1) followed by substitution of equation (A.2) yields

D — C(x,s) = sC{x,s) - C(x,0) = sC(x,s) (A.5)

Clw,s) =0 (A.6)
T (s)

_j_)z_f(o’s) = -9 (A.7)
ngAFD

where T;(s) is the Laplace transform of ig(t).
Equation (A.5) is a second order ordinary differential

equation that can be solved in terms of two arbitrary constants
B, (s) and B,(s) as
] 2
— L L
Clx,s) = B, (s)exp[-(s/D)*x] + B,(s)exp[(s/D)"x] (A.8)

but, if equation (A.6) is to be satisfied, Bz(s) must be zero.
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Differentiation then gives

5 Tlx,5) = =(s/0) 8 (s)exp[-(s/D) "] (A.9)

which upon comparison with equation (A.7) establishes BI(S) as

1
2

Té(s)/{ngAF(sD) ]. Equation (A.8) may now be written as
o) = et fepl(s/m ] (1.10)

2

{ nAF Jl (Ds)
Inversion of equation (A.10) is possible with the aid of the

convolution integral of Laplace transformation.? Application of

this integral to equation (A.10) gives

R A A ()
C(x,t) = : — dt
" JO n AF J{[D(t-1)]"? MG
9 t (1) 5
1 lg { =X }
E 1 1/exp _ dt (A.]l)
ngfF (D) o (=) ko (t-7)

The concentration profile during the generation phase cannot be
determined from equation (A.11) unless the functional form of
ig(t) is known. However, this equation is useful in its present
form since it is applicable to any generation current.

Now consider the recapture phase of the experiment.
Conditions (A.1) and (A.3) are still applicable but (A.2) and
(A.4) are not, and therefore must be replaced. The recapture

reaction is initiated at time t=T. At this instant, the

concentration profile is given by
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T .
C(x,T) = ! i X d
x,T) = exP\ 5Ty 97 (A.12)

according to equation (A.11). A new boundary condition,

c(o,t) =0 (A.13)
now arises as a consequence of Y being consumed under conditions
of complete concentration polarization for t>T. The recapture

current is given by
. _ d
|r(t) = n_AFD 'y c(o,t) (A.14)

which is the analogue of equation (A.4) in the recapture phase.
Therefore, the evaluation of the recapture current does not
require a complete expression C(x,t) for the concentration
profile; only the surface gradient 9C(0,t)/3x need be known.

Using o as the dummy variable for Laplace transformation with

respect to t-T, the transforms of equations (A.1), (A.3), and

(A.13) are
d? — -
D — C(x,0) = oC(x,0) - C(x,T) (A.15)
dx?
C(x,0) =0 (A.16)
and
c(0,0) =0 (A.17)

Equation (A.15) is an inhomogeneous second order ordinary
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differential equation that can be solved by standard methods3

to give

C{x,0) = exp[‘(G/E) & [Bl(c) + rc(o,T)exp[(c/D)I/Zp] dpJ
2(Do)™* 0

+ expl(9/) 7x] (éz(c) - (XC(D,T)exp[-(o/D)%p] do] (A.18)

2(00)% | Yo

where B;{o) and B,(c) are arbitrary. Application of condition

(A.16) establishes that

po0 . 1
By{o) = J C(p,Texpl-(a/D) %] dp (A.19)
0
while condition (A.17) establishes By(c) as the negative of

By (0). Hence equation (A.18) may be written as

5 X 1
Tix,o) = &xel=(o/D) *] j ¢(o,Texpl (/D) %] do

2 (Do) 0
_ exp[-(c/g)ZX] f C(Q’T)exp[-(c/D)%p] dp
2(po)” 0
+ 22UV [ o mexpl-(o/0) %] 60 (820
2 (Do) X

Differentiation of equation (A.20) with respect to x leads to

X

2D 9—-Exx,c) = - exp['(c/D)%x] J C(p,T)exp[(c/D)%p] dp

dx 0

a0

+ exp[-(c/D)%x] J C(p,T)eXp[-(G/D)%p] dp
0

o]

+ expl (o/0) ] J Clo,Texpl-(6/D) %] do (a.21)
X
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which simplifies to

j C(x,T)exp[-{ \O/D)l/2 ] dx (A.22)

Dl—'

d (0
ax 0

on setting x equal to zero. Substitution of C(x,T) from equation

(A.12) gives
. o 1
d — | i (1) r 5 2
-— C€(0,0) = J exp{-x 9} - = } dxdt(A.23)
dx ngAFnLéD3Q . (Ton) " . 5 ~ W0

after the order of the two integrations is reversed. The inner
integral may be more easily evaluated after a change of variable

to {o(T- T)} Zex/[2{D(T- r)l/2 }]. This leads to

N

.
L T(0,0) = —tep Joig(r)exp[o(T—r)]erfc[o(T-r)]

as the final expression for the transform of the surface

dt (A.24)

concentration gradient during the recapture phase.

Tables of Laplace transforms“ give the inversion
L

L {exp(ks)erfc(ks)l/2 = ;T%:ET@% (A.25)

for k a positive constant. Recalling that o is the dummy variable

corresponding to t-T, the inversion of equation (A.24) is

]
1
nngAFD(t-T)2

T 1L
() (T-1)°
2—-c(0,t) _ lg T T

o dt (A.26)

t -7

0

Combination of this expression with equation (A.14) leads to
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n T 1 (<) (T-1) 2

3 dt (A.27)

ir(t) - *
ﬂng(t-T) 0 t -1

which completes the proof.



APPEND X B

A proof of equation (6.4) is provided here using the
be assumed that the generation and

It will
This ceneration/recapture schenme

—~
o
R

fractional calculus.
recapture are mutual converses.
may be expressed as
X + ne — Y
where n is positive for a reductive generaticn reaction, and

initially present at a uniform

negative for an oxidative one.

If an electroactive species,
concentration C , is transported to and/or from an electrode ty

.,

semiinfinite planar diffusion, then its concentration at the

electrode surface is given by!
% + m(t)
T

C(0,t) =¢C
nAFD*
is the faradaic semiintegral and D is the diffusion
The faradaic semi-

where m(t)
coefficient of the electroactive species.

i(t)

t
i(t
~ dt = ~-

(

integral may be defined as

N
Q.
+

[

>3

T 0 (t-1)
is the faradaic cathodic current flowing at tire t.

where i(t)
For species Y in this equilibrium/generation/recapture

In addition, the recapture reaction

is zero.,

experiment, C

o

~
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proceeds under conditions of concentration polarization and hence
C(0,t>T) is also zero. Therefore, it follows from equation (B.2)
that m(t>T) must alsq be zero. The convolution integral defining
the semiintegral in equation (B.3) ﬁay be split into two

components thereby defining m(t>T) as

m(e>T) = 1 | @) g Lo | 8 g o (B.4)
T2 0 (t-1)° T2 T (t-1)7°

The second of these integrals represents the operation of semi-
integrating the current starting at time t=T and therfore it may
be referred to as the ''recapture semiintegral'. This integral may

be written in the notation of the fractional calculus as

o £t
n (0) = i) = | e (8.5)
[d(t-T)] L (t-1)°
It then follows that
1/2 T
4w =-A | g, et (8.6)
[d(t-T)] ™ Jo (t-1)*

by combining equations {B.4) and (B.5).

In the same way that the derivative of an integral of a
function is the function itself, the semiderivative of the semi-
integral of a function will also be the function itself.?

Therefore, if equation (B.6) is semidifferentiated using T as the
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lower limit, then

i{t>T)

i
[

dt (8.7)

n
!
QJ
ey r—n
-
—~
[l
~—
e e —

The term in braces may be evaluated by making the substitution

z = (t-T)/(7-1) which simplifies it to (T-r)-]d%(l+z)-%/dz%. The
semiderivative of (l+z)_1/2 may be found in standard tables? to be
[(1rz)l/i(l+z)]—I and hence the embraced term in equation (B.7) is
(T—r)%/[{n(t-T)}%(t-r)]. Equation (B.7) then becomes

T 1
' (0 (ron) g, (8.8)

i
m(t-T)* 0 t - T

i(t>T) = -

which, apart from minor notational differences, is identical to

equation (6.4) and hence completes the proof.



APPENDIX C

This appendix contains some of the programs that were
essential for this research. The first program that is given
is written in FORTRAN and was run on a Honeywell CP-5 computer.
The remaining programs are written in BASIC and were run on a
HP-85 personal computer. Comments have been embedded through-

out these programs to aid in their interpretation.
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B o e e e e e o e e i o S 2 o  an 2 e e o e o o o 3
* PROGRAM: FITMDD *
* ROM. FITMOD-ROM *
* *
# REFERENCE:. Data Reduction and Error Analvsis For the *
¥* Phvsical Scievices, by Philie R. Beuinaton +#*
# *
#* This progsram fits data up to ssuen parameters. ihe #
# datafile must be ineput with the wvalue of the araument %
# i column one and the Function value in column two. & #
# file must also be input which contains the Fitting *
#* basis comerised of ssuen columns of Fitting fFunctions #
# sualuated cuer the ranse of the arsument., *
3* A File is eventually outpPut which contains the go—
* efficients for the Fit, their standard deviations, and *
# Chi-gquare as well as data for the Fitted cutue, *
% #
3* - LAST REVISED:. AUGUST 19BZ *
* By, MikKe Hem stead 3#*
* #*
Jh o o e o e e e e o i o 4 e o e o e e o o o o o o e e e e e o e <
Sgt wariable tvyepes and storase
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
DIiMENSION DATA(BD,2),RF(BO, 7)Y NPS(Z2dD)
DIMENSION A(7),FIT(BC)Y Y {(BQ) ,8IGMAA(T7Y, F(7}
CHARACTER®+11 INFILE(ZU0) ,QUTFILE(20) RFILEIZ20),;4NS
LOGICAL EXISTLEXISTZ,EXIST3
Initialize Ffile counter
NFILE=1
Initialize arravs
i DO 2 I=1,7
F(LY=0.,0D0
2 CONTINUE
DO 3 I=1.B4
FIT(I}=0.0
3 CONTINUE

Ineput datafiie
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o000 o000

o000
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10 QUTPUT * “SO0UTPUT “INPUT-FILE NAME (MAX. 11 CHAR; ESC F

READ(103,15,END=120) INFILE(NFILE}

INQUIRE (FILE=INFILE(NFILE)  EXIST=EXIST1)

IF (.NOT. EXIST1) QUTPUT ‘FILE DOES NOT EXIST':GOTO 10
OPEN (UNIT=5S,.FILE=INFILE(NFILE)  USAGE="INPUT )

OUTPUT “ INPUT THE NUMBER OF DATA POINTS’

READ (103,53 YNPS(NFILE)

IF (NPS(NFILE).GT.BO)

1 QUTPUT % # # WARNING [ ONLY FIRST GO POINTS READ’:

2 NPS(NFILE})=GO0O
DO 10¢ I=1,NPS(NFILE)
READ(35.,65) (DATA(I.J).Jd=1,2)
100 CONTINUE
CLOSE (UNIT=35%)

Enter fitting functions

TG END)

11 oUTPUT Y “YOUTPUT "INPUT-FILE FOR FITTING FENS (MAX. 11 CHAR.)'

READ(103,15,END=120) RFILE(NFILE)
INQUIRE (FILE=RFILE(NFILE) EXIST=EXISTZ2)
IF (.NOT. EXISTZ) CUTPUT ‘FILE DOES NOT EXIST :GOTO 11
OPEN (UNIT=535,FILE=RFILE(NFILE) . .USAGE="INPUT" )
DO 200 I=1,NPS(NFILE)}
READ(35.66) (RF(L,J).J=1.,7)
200 CONTINUE
CLOSE (UNIT=855)

Prepare data for fitting
DO 4 I=1,NPS(NFILE)
Y{I)Y=DATA(I.Z2)

4 CONTINUE

Promet for order of F1it

999 QUTPUT ‘What order of fit is desired’
READ(103,35) NORDER

Zero all coefficents

DO 6 Jd=1.,7

A(J)=0.0DO

SIGMAA(J)=0.0D0C
G CONTINUE
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C Perform the fittins routine

c
CALL BETAFIT (Y,RF.NPS(NFILE),NORDER-1,0,0,F,.FITA.SIGMAA,CHISAR
c
C Outeput Chisguare
C
WRITE(10S5,90) CHISAR
c
C Test for repetitive Fit
C
QUTPUT ‘Would vou liKe a different arder of fit’
READ(1035,15) ANS
IF (ANS{1:3).EQG.’YES’} GO 70 999
c
C Outeut the fitted curve
C

20 QUTPUT ';0UTPUT 'OUTPUT-FILE NAME FOR FITTED CURVE (MAX 11 CHAR.

READ(105,15,END=120) OQUTFILE(NFILE)
INQUIRE (FILE=0OUTFILE(NFILE) EXIST=EXIST3)
IF (.NOT.EXIST3) QUTPUT * 77 GOTO 30
WRITE(108,253) CUTFILE{NFILE)
READ(103,13) ANS
IF (ANS(1:3).NE.'YES’) GOTO 20
QUTPUT * ‘:0UTPUT '# # % FILE WILL BE OUVERWRITTEN # # #’
30 OPEN (UNIT=66,FILE=QUTFILE(NFILE) USAGE='0UTPUT ")
WRITE(GG,73) INFILE(NFILE) . RFILE(NFILE)
pg 14 I=1.,7
J=I-1
WRITE(BG.,83) J,A(I),S5IGMAA(I)
14 CONTINUE
WRITE(G6,80) CHISAR
WRITE(66,93)
DO 16 I=1,NPS(NFILE)
WRITE(GGE,103} (DATA(I.J),J=1,2),FIT(I)
16 CONTINUE
CLOSE (UNIT=66)

c
C Sterp file counter
C
NFILE=NFILE+1
IF (NFILE.LT.21) WRITE(108,35) GOTO 1
OQUTPUT ‘PROGRAM CAN ONLY HANDLE TWENTY FILES AT A TIME®
C

C OQuteut analvsis summary
C
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120 NFILE=NFILE-1
WRITE(108,43) NFILE
RO 17 J=1,NFILE
WRITE(108,46) INFILE(J) .RFILE(J)  OUTFILE(J) NPS(J)
17 CONTINUE
S FORMAT(F4.2,5(1X,E14.8)
15 FORMAT(ALL}
25 FORMAT(2/,5M, “#3# WARNING  FILE ‘,;All, 'ALREADY EXISTS. '+ /.,
17 DO YOU HWANT TO OVERWRITE IT.(YES/NDO) ")
35 FORMAT(2/,40'—-"',/,1H1)
45 FORMAT(4X,G, 'FILE(S) PROCESSED (', ,//TS, "INPUT-FILE',TZ20,
1"BASIS-FILE ", T3S, ‘OUTPUT-FILE',TS0, '# OF DATA PTS'./)
468 FORMAT(TS,ALL,T20,A11,T35,411,T735,4)
o3 FORMAT(G)
65 FORMAT(ZR)
68 FORMAT(7GQ)
75 FORMAT(TS, 'This filea lists the fit for ‘.All./,
1TSS, ‘The corveszronding fFitting function data is °
Z2'qiven in ‘fA11,2/,73, ‘Coefficents’ ,T35,’S.D. AL’
85 FORMAT(TS,‘4(’,I1,’)= ‘,1PE15.8,7T31,1PE15.8)
g0 FORMAT(Z2/,TS, ‘The value of Chi-sauare is ‘,1PEL1S.8)
g5 FORMAT(2/.4X, ‘Data genevated by fFit',/,TGB, v, T189, 10’738, 'Fit’
103 FORMAT(4X,F4.2,4%,1PE15.8,4X,1PE13.8)
STOP

END
336 3E 3 3 30 30 3 30 30 3 30306 3 30 30 30 30 30 30 3 30 3030 3 30 33 3 I HHHHH A

Function fitting subroutine

oooon

D I TR AR s TR T E R R R R R TS TR
SUBROUTINE BETAFIT(Y,P,NPTS,NORDER ,NEUEN,MODE
1 FTEST,YFIT,A,SIGMAA,CHISAR)
IMPLICIT DOUBLE PRECISION (A-H,0-2Z)
DIMENSION Y(BO) ,FTEST(7)  YFIT(GO),
1 A(7),SIGMAAC7) ., B(7),SIGMAB(7)
DIMENSION P(BQ,7),BETA(7) ALPHA(T7,7)
10 NTERMS=1
NCOEFF=1
JMAX=NORDER+1
C
C Accumulate matrices ALPHA and BETA
C
120 DO 130 J=1,NTERMS
RETA(J)=0.
PO 130 K=1,NTERMS
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130 ALPHA(J,K)=0.
140 DO 150 I=1,NPTS
DO 150 J=1,NTERMS
BETA(J)I=BETA(JI+P(I,J)#Y (I}
DO 13530 K=J,NTERMS
ALPHA(J,K)=ALPHA(J  KI+P (I, J}#P(I,K)
150 ALPHA(K,J)=ALPHA(J,K)

Delete fixed coefficients

160 IF (NEVEN) 170,230,200

170 DO 190 J=3,.NTERMS.2Z
BETA(JI=0,
DO 180 K=1,NTERMS
ALPHA(J K} =0,

180 ALPHA(KR,J)=0.

180 ALPHA(GIJ,J)=1.
GO TO 230

200 DO 220 J=2,NTERMS,2
BETA(J)=0. \
DO 210 K=1,NTERMS
ALPHA(J,K)=0.

210 ALPHA(K,J)=0.

220 ALPHA(J, ) =1.

Invert curvature matrix ALPHA

230 DO 240 J=1.,JMAX
ACJ)=0.
SIGMAA(J)=0.
B(J)y=0.
240 SIGMAB(J)=0.
PO 250 I=1,NPTS
250 YFIT(I)=0.
260 CALL MATINV(ALPHA,NTERMS,DET)
IF (DET) 280,270,280
270 CHISAR=0.
GO TO 56O

Calculate coefficients, fit and Chi—-sauare

280 DO 300 J=1,NTERMS
DO 290 K=1,NTERMS

290 A(J)=A(I)I+BETA(K)Y#ALPHA(J,K)
p0o 300 I=1.,NPTS

163
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300 YFIT(I)=YFIT(I)+A(JIY*P (I, J)

310 CHISR=0.
DO 320 I=1,NPTS

320 CHISA=CHISA+(Y(I)-YFIT(IL))##2
FREE=NPTS-NCOEFF
CHISAR=CHISR/FREE

Test fFor end of Fit

330 IF (NTERMS-JMAX) 340,460,460
340 IF (NCOEFF-2) 350,360,400
350 IF (NEVEN ) 380,280,370
360 IF (NEWVEN) 370.380.370
370 NTERMS=NTERMS+Z
GO TO 390
380 NTERMS=NTERMS+1
390 NCOEFF=NCOEFF+1
CHISE1=CHISA
GO TO 120
400 FUALUYE=(CHISE1~-CHISR)/CHISAR
IF (FTEST(NTERMS)-FVALUE) 360,410,410
410 IF (NEVEN) 420,430,420
420 NTERMS=NTERMS-2
GO 70 440
430 NTERMS=NTERMS-1
440 NCOEFF=NCOEFF-1
JMAX=NTERMS
450 GO TO 1Z0

<) +=

Calculate remainder of outPut

460 IF (MCDE) 470,480,470
470 UVARNCE=1.

GO TO 490
480 VARNCE=CHISOR
490 DO 300 J=1,NTERMS
500 SIGMAA(J)=DSART (VARNCE*ALPHA(J,J))
510 IF (A(1)) 520,360,320
520 DO 550 J=Z,NTERMS

IF (A(J)) 530,350,330
S30 B(J)Y=A(JI/A(L)
5S40 SIGMAB(J)=B(J)#DSART((SIGMAA(JI/A(J) ) #=x2+(SIGMAA(L1)Y/A(1))

1 ##2 —2.#UARNCE#ALPHA(J, 1)/ (ACJI®A(CL) )
530 CONTINUE

B(iir=1.



oooo0on

OO0

OO0

C
e
C

165

260 RETURN
END
BRI AN AN IR H RN

Matrix inversion subroutine

AL LS T EE R Y IR RS LR R L
SUBROUTINE MATINV{ARRAY. NORDER. DET)
IMPLICIT DOUBLE PRECISION (A-H.0-Z)
DIMENSION ARRAY(7.7), IK(7), JK(7)
10 DET = 1.
20 DO 250 K=1!, NORDER

4

Find largest element ARRAY(I.J) in rest of matrix

AMAX = O.
3¢ DO 60 I=K. NORDER
b0 G0 J=K. NORDER
40 IF (DABS(AMAX) - DABS(ARRAY(I,J))}) 30,30.60
S0 AMAX = ARRAY(I.J)
IK(KY = 1
JR(KY = J
60 CONTINUE

\

Interchange rows and columns to put AMAXN in ARRAY{(K,K)

70 IF (AMAX) 80.,80,390
g0 DET = 0.
GO TO 330
90 I=IK(K)
IF (I-K)» 30,120,100
100 DO 110 J=1, NORDER
SAVE = ARRAY(K.J)
ARRAY (K, 1) ARRAY (I, J)
110 ARRAY (I, ) -1 .#5AVE
120 J = JK(K)
IF (J-K) 30,150,130
130 DO 140 I=1, NORDER
SAVE = ARRAY(I.K)
ARRAY (I R} = ARRAY(I.J}
140 ARRAY(I.J) = =1. % GAVE

Accumulate elements of inverse matrix

150 DO 170 I=1, NORDER
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160
170
180

180
200
210

220

IF (I-K) 160,170,160

ARRAY (I,K) = —1.#% ARRAY(I.K) / AMAX
CONT INUE
DO 210 I=1, NORDER

bo 216 J=1, NORDER

IF (I-K) 180,210,180

IF (J-K) 200,210,200

ARRAY (I, J) = ARRAY(I,J) + ARRAY(I,K}*#ARRAY(K,J)
CONTINUE

DO 240 J=1, NORDER

IF (J-K)} 230,240,230

230 ARRAY(K,J) = ARRAY(K,J}Y / AMAX
240 CONTINUE
ARRAY(K,KR) = 1. / AMAX
250 DET = DET % AMAX
Restore ordering of matrix
260 DO 320 =1, NORDER
K=NORDER-L+1
J=IK(K)
IF (J=-K)} 290,290,270
270 b0 280 I=1,, NORDER
SAVE = ARRAY(I,K)
ARRAY (I, K) = =1.#ARRAY (I, J)
280 ARRAY(I.J) = SAVE
290 I=JK (K}
IF (I-K} 320,320,300
300 DO 310 J=1. NORDER
SAVE = ARRAY(K.J)
ARRAY(K,J)} = —-1.#ARRAY (I, J)>
310 ARRAY(I.J) = SAVE
320 CONTINUE
330 RETURN

END

166
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INPUT Gi1ge 1F Glss " A6HD 21
FH"H" THEHN 358

IF L1s="H" THEHN 22@

CHARIN "TRHG*R"

CLEAR @ DISF “"Finished”

END
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APPENDIX D

It was necessary to calibrate the timing of the interfaced
instruments before experimentation could begin. There were two
times of particular interest:

i) the shortest interval between data points that could be

controlled reproducibly by the program

and ii) the inherent offset between the imposition of the

potential waveform and the sampling of the first data point.

The rate of data sampling was limited by the time required
to perform a loop within the program. External to this loop there
was a BASIC command

ON TIMERAI, T (D.1)
which controlled the rate of sampiing. The time parameter, T, was
varied until it was shorter than the time required to perform the
data sampling commands. This threshold was detected quite easily
by the onset of a variety of errors in program execution. The
time parameter was then increased gradually until these errors
desisted. This yielded a sampling time of 140 ms.

The inherent offset was determined by another calibration
technique. This method used the TRIGGER command which increments
the sampling channel on the HP3497A and then signals the voltmeter
to take a reading. It was assumed that the voltmeter integration

period began immediately after the channel was closed. The
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HP3497A was manually set to output zero volts and then, under
program control, the voltage was changed to some positive value.
The new voltage was used to trigger a Tektronix 5103N Oscilloscope
System so that the duration of the channel-closed-pulse could be
monitored. The time that was measured was approximately 11% ms.
The time for the integration period was calculated from information
in the HP3497A manual and was determined to be 16 ms. Therefore,
if the calibration is taken to the middle of the integration
period, then the offset is about 20 ms (for measurements of 5k
digit accuracy).

The program ''RSCHEM'' was executed for a ramp of 98.6 mv/s and
a step of 5 mV as a means of testing the calibration. The step
was applied near the beginning of the ramp and the output was
displayed on the oscilloscope. The time between the imposition
of the step and the current value obtained by the HP3L497A was
20 ms to 21 ms for 5% digit accuracy. The offset was therefore

assigned the value 20 ms.



APPENDIX E

Part I

The evaluation of

M (p-1) @) = (179)° 71 (1-g) " (E1.1)
and
p-%
o1y (1) = 2 L) r 1, %0 %:- F%Tl (EI1.2)
P (r-1)7°T (p+%) J

will be provided for pe{%,1,%,2,%}. The evaluation of equation

(EI.1) is straightforward and the results are summarized in

The evaluation of equation (EI.2), however, is more

2
r-1
in which the functionality of Kz(p_])(r) may be determined from

2(0—1)(r)

The evaluation of the

Table EI,2.

difficult. Equation (EI.2) may be rewritten as

1 (F) X 2F1[1,35;9+36;- (EI1.3)

FZ(o—l)(r) = K2 (p-

elementary properties of the gamma function. The K

functions are summarized in Table EI.I.
Gauss hypergeometric functions is somewhat more laborious and

therefore will be presented in more detail.

0 1/2 i 3/2 2 5/2
1 1
_K | h(2)% | 16(2)% | 1
2(p-1) r-1 3n(r=1)| 2{r-1) [15w(r=-1){ 2{r-1)

Table EI.I

Functionality of K

2(p

(-1 (1)
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D=1/2

The function ZFI[I,%Q;Z;- F%Tq may be determined by a simple

relationshipl which yields

[
2 2(r-
zFlll,%_;Z;- r_]] = z(r l) (EI.4)
(ro=1)"+r+1
p=1
. 3,.5,.. 2] :
The evaluation of ,F{|1,%;%;- ?:7] is a little more
difficult. It requires the use of the recurrence formula?
3/2(r+1)2F1[1,3/2;3/2;- ———rf,] - 3/7_(r-1)2F1[|,1/2;3/2;' ri])
I's
2 )
- ZFIIKI’%";%;_ 7] = O (EI.5)

and a knowledge of the functions 2F1[],§@;§@;_ r%l] and

2F1[I,BQ;%@;- F%TJ' The first of these functions may be shown3 to

be
zFl(l,%é;%é;_ ?%T} = (%i%} (E1.6)
and the second is givenL+ by
1 1
2F1["1/2;3/2;' F%T] = {_r_;l_] 2arctan{-r—%—J' 2 (E1.7)

Therefore it can be shown that

2F1[I,%@;§Q;- 2 ] = 3(5-]) {l - [I%lJ arctan{F%TJ } (EI.8)

r=1j =

which can be verified for r=3 by the expression®

2P (1, %3%5-1) = %) - w(3)] (E1.9)

where ¥ is the digamma function.
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O=3/2

The function 2F1[l,%§;3;— ?%TJ is also desribed by a simple

relationship® which establishes that

2 L
133 A - 20t - (1.10)
This expression may be verified for r=-1 by the relationship’
.y _ Ie)r(c-a-b)
2F1(a,b,C,]) = T(C"E])T(C"b) (EI.]])

p=2

—

The determination of 2F1[1,%@;Z@;- F%TJ requires another

recurrence formula® which can be expressed as

-§ﬁ(r+l)zF1(l,3é;§é;- F%T% + ?ﬁ(r+l)2F1[1,%é;5ﬁ;- F%TJ
- ZFI[]’%;%;- -r—%]—J =0 (EI.12)

It then follows from previously determined functions that

arctanLJiJ ] - I} (E1.13)
r-1

2F1\1,%6;Z5;- F%TJ
5(r-1) [3(r+1) r-1
- 2 PO - (5

Ne

O=5/2

The general recurrence formula® for equation (EI.12) may also

be manipulated into the form

2 2
-(r+l)2F1[l,%§;2;— F:TJ + %@(2r+3)2F1l1,%§;3;— F:TJ
2
- 2F1[]’3/2;l+;- .__.._.r_]J =0 (EI.]L*)

It may then be shown that
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2 2 1
2F1[1,%6;4;- ?:TJ = (r=D){2(r+1) [r - (r"-1)7] - 1} (EI.15)
which can be verified for r=-1 by equation (EI.11)
The functions fz(o_])(r) may now be determined from equation

(EI.3). These functions, along with the corresponding hz(p_l)(g)

functions, are summarized in Table EI.2.

p hy (-1 (9) oty ()
g - ()
et | el

3/2 (1-92)" S {r - (f2-1)F

2| 00 |- B (S el - 42
/2| (1+9) (1-g7) S D) [ - (f2-1)7] - )

Table EI.2 Functional forms of the fitting functions described by
equations (EI.1) and (EI.2).
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Part II

(%’O)(g) and Qn(%’o)(r) were

(12’0) (

(g) was aided

The functional forms of Pn
established for 0<n<6, The determination of P
by an appropriate table® and is summarized in Table EIT.1. All of

these functions were tested with the orthogonality relationship

! L (y 5
| 00" (grp 40 (g) ag =0, w0 (err.1)
-1
. s o (%,0)
to check their validity. The determination of the Qn (r)
functions could not be performed as simply. It relied heavily on

relationships that are given in chapter 2.

ECRON

n

q)

0|1
1| (M) (5g+1)

2 | (Y52) (6397 +1kg-17)

3 | (Y2g) (4299°+999°-225g-23)

b | (Yaous) (121559428609~ 9438¢° - 1364g+827)

5 | (Y192) (88179g°+20995g-90610g°-15210g%+17615g+1207)

6 | (Uessag) (13000759°+312018g°-1661835g -303620g°
+51280592+5h9309-22181)

(%,o)(

Table EIT.1 Functionality of P_ g) for 0<n<6.



It follows from the recurrence formula (2.29) that

n=0
(%,0) , , )
The function O (r) may be obtained from equation (2.34).
This retationship establishes that
3/ N
5,0 2) 2 -3 2 )
Qo(z’ )(r) = igl' (r-1) 2 2F1[],?é;%@;' F:j] (EI11.2)
This expression may be simplified by substitution from equation
(E1.8) to yield
(5,00 y _ (2 )% (2 ,
Qq (r) = o arctanL T, (E11.3)
n=1
It may be shown with the aid of equation (2.35) that
4 5,0 (,0) 5( 2 1- (ETTLH)
O_](Z’O)(r) = P](Z’ )(r)QO 2 (r) - .é-—-—]-' (cili.H)
(1/2’0) . ~ - (;,’O) \
where P, (r) may be obtained from Table EII.! and 0, (r)
is given immediately above.
2<n<b
Fquation (2.36) dictates that
(35,0) (v _p (5,0) yg (5,00 iy _ o 050) (£71.3)
0 (r) =P, (r)Q, (F) - a, s
which upon application to equations (EII.3) and (EIL.L4) vield
1. .
qo(c,O)(r) =0 (£11.6)
and
L0 2 1° st o
q,("’ ) (1) =’?§'r'—"|'I (£11.7)
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n(zn+1) (in-3)a_ 2% (1)

= Y (4n-1){(kn+1) (4n-3)r + I}qn_l(%’O)(r)
- (n-l)(2n—1)(hn+])qn_2(y
(%,o)(r)

which enables higher order a,

(1,0

Hence the remaining Qn functions are given by

QZ(%,O)(r) _ PZ(%,O)(r)QO(%.O)(rP
; {77@](14&“){;%—} (EIL.
0, 20 (r) = p 5 0 (1)) 2V (1) 1
1 ]( 2 2 )?
- |53 (5005r +154r-1283) = (EII.
Ql_*<2’0)(l‘) = 1/2’0 (r)o ( 0) (r)

1
2

{?’l§35J 1160251 >+4095r>-59085r - 787)( } (EIT

(,0) r)Qo(Z’ )(r)
s

) (1), %09 (1)

o
—~~
N
-
(=]
~—
—~~
=
~—
]

1
2y
]

Ps

Y

A~
W

Pe

~~
Ne
o
N
—
=
j—
it

f (( 1 (1
: {—%—-g]ﬂ?}—}(525r+l)q5(2’°)(r)—l375qh“’°)(r)}(m.

163 4

1 1
where the expressions for qs("o)(r) and q, 2

0 (r) were left in
the form of the recurrence formula because the coefficients for
the embedded polynomial became too large to be handled

conveniently.

$0) (1) n=2,3,4, 00 (EIL.

functions to be calculated.

(
{( 9 (357r+1)q (1/2’0)(r) 6q3( )(r)} (EII.

L11)

13)



APPENDIX F

This appendix lists fits for a number of datafiles which are
described in chapter 8. The coefficients of the fits and their
standard deviations are provided. The quality of the fit may be
judged by the magnitude of the reduced chi-square or by comparing

the approximation given by the fit to the raw data that is listed.
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TABLE 1!

This table lists some properties of Hilbert transformation

as well as examples of Hilbert transform pairs.

_ _ 1 (Ta(q)
G(g) R(r) = #{G(g)} = - | o+ dg
R(qg) -G{r)
cG{atbg) , b>0 cR(a+br)
Go(_g) - —Go(g) 2 gG(g) q an even
i.e. G_ an odd function of ¢ B 2 ' function of r
o 0 9T
Ge(_g) - Ge(g) 2r G(qg) q an odd
i.e. G_ an even function of g i 2 2 99 7 function of r
e 09"
sin(ag) , a>0 cos(ar)
g a
7 5 o 20 2 2
g +a r +a
0 y ~®<g<a
1 |b-r
1 , a<g<b ;-QH‘E:F
0 y b<g<e
L
0 , ~©<g<-a -r - (r2-a?)” , =©<r<-a
L
(a ~92)2 , -a<g<a -r , -a<r<a
1
0 y A<g<e ! -r + (r2_a2) 2 , a<r<e

(cont.)



TABLE I (cont.)
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= _ 1 [Tele)
G(g) R(r) = #{G(g)} = I - d
Y
0 y —®<g<-a -1 + [-r+aJ , —©<r<-a
-r=a
5
[:;g] » Tacg<a -1 , -a<r<a
1
0 <g<e -1+ !—_E-/Z <r<e
, a<g s , a
|
| r(p)T (o) (b-a)P*0"!
0 , ~®<g<a (b"r)WF(O"“O?J—
X oFq1]1 o-p+o'——51
251 A *b-r
p-l o-l -o<r<a or b<r<w
(g-a)” " (b-g) , a<g<b
(r“a)p—](b'r)c_]ctn(on)
_I(p)T(o-1) (,.__\pto-2
0 y b<g<e T (p+o-1 (b-a)
b-r
X 2F1L],2‘O'O’,2"O’,b—_—a—}
p>0, B0 a<r<b
0 | —ocgel | = (2/m) (1) (1) By (0B (1)
—e<r<-] or l<r<e
(1-9)%(1+9) % _(#+B) () | “1<gl (c,8)
- (Z/H)(]-r)a(]+r)BQn a,B (r)
0 , l<g<e

=l<r<l




TABLE II

This table summarizes the state of knowledge of the three

regions of the generation and recapture functions.

\

value of g or r

between between between
-o and -1 -1 and 1 ] and =
unknown and
sought as a
G(g) known to means of known to
be zero reconstructing be zero
the generation
current i (t)
g
known from the
R{r) unknown unknown measured values

of the recapture
current ir(t)




A/D

A(s)

LIST OF SYMBOLS

electrode area (m2)

auxillary electrode

a coefficient in a series of fitting functions
analog-to-digital converter

arbitrary constant independent of x

a constant proportional to the slope of a linear
fit between consecutive data points (A)

a location to the right of any singularity of f(s)
a coefficient in a series approximation

activity of species j

a coefficient in a series describing ig(t)
Pochhammer's symbol

arbitrary constant independent of x

arbitrary constants independent of x

a constant proportional to the intercept of a
linear fit between consecutive data points (As)

a dimensionless parameter
a coefficient for a fit to orthogonal polynomials
integral capacitance of the double layer (Fm™2)

concentration of species j (mol m~3)

concentration of species j at the electrode
surface (mol m™3)

bulk concentration of species j (mol m~3)
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concentration of species j at a distance x and
time t (mol m™3)

location of a singularity in F(x)
operator denoting differentiation
diffusion coefficient (m2s™!)

diffusion coefficient of species j (m?s~1)

-1
semidifferentiation operator (s ?)

. . . 3 - 3 1/
semiintegration operator with lower limit zero (s?)

1
2

)

semiintegration operator with lower limit T (s

ramp rate (Vs~—!)
density of mercury {gm~3)

peak potential for forward scan of a cyclic
vol tammogram (V)

peak potential for backward scan of a cyclic
vol tammogram (V)

standard potential (V)
formal potential (V)

initial potential for experimental cyclic
voltammograms (V)

final potential for experimental cyclic
vol tammograms (V)

ac component of potential (V)

depositing potential (V)



Edc dc component of potential (V)

Eg generation potential (V)

Eh half-wave potential (V)

Ei initial potential (V)

En null potential (V)

Ep peak potential (V)

Er reversal potential (V)

Er ‘ recapture potential (V)

Erci mechanism in which a reversible electron transfer
is followed by an irreversible homogeneous
chemical reaction

EZ potential of zero charge (V)

e an electron

erf(x) error function

erfc(x) complementary error function

F Faraday's costant (96,485 Cmol~?)

F(s) Laplace transform of F(t)

5F1(a,bscsx) Gauss' hypergeometric function

FFT fast Fourier transform

FT-IR Fourier transform infrared

FT-NMR Fourier transform nuclear magnetic resonance

f frequency {s—1)

f7(t) a function which varies unpredictably with time (%)

£ o(r) fitting functions for R_(r) (A)

n 3



f(s)

G(g)

G(8)

g(s)
H
HMDE

H(f)

h{t)

)

-t
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Laplace transform of F(t)

image of the function F

generation function in terms of g (A)
generation function in terms of 8 (A)
generation function in the domain -1<g<l (A)
gas chromatography / mass spectrometry

a polynomial in an orthogonal series

undimensionalized time variable in the generation
domain

Laplace transform of G(t)
operator denoting Hilbert transformation
hanging mercury drop electrode

a function of frequency defined by Fourier
transformation

a function of time defined by inverse Fourier
transformation

fitting functions for Gz(g)

operator denoting integration

magnitude of a constant current (A)
magnitude of ac component of a current (A)
infrared

current for the forward going ramp (A)
current for the backward going ramp (A)
peak current for the forward going ramp (A)

peak current for the backward going ramp (A)



==

N
D
O

current at a disc electrode (A)
current at a ring electrode (A)
capacitative current (A)

faradaic current (A)

generation current (A)

current at a specific data point (A)
anodic peak current (A)

cathodic peak current (A)

recapture current (A)

reversal current (A)

recapture current as described by experimental
data (A)

recapture current as described by the Hilbert
transform of the generation current (&)

number of data points

flux of species | (mol s™im=<)
flux of species | at a distance x and time t

(mol s™im=2)

a loop counter

dc level (V)

amplitude of a pctential with frequency no (V)
kernel of an integral! transform of F{t) which

will vield a function f(x)

)

a homogenecus rate constant (s

a heterogeneous rate constant (ms™}!)
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% 1 1L
k abbreviation for nAFC.D, 2 (As?)
% 1
k abbreviation for nAFC (2D/7T)™ (A)
kC constant associated with capacitative current at a

dropping mercury electrode (As!”3)

kf constant associated with faradaic current at a
dropping mercury electrode (As™17%)

kS standard heterogeneous charge-transfer rate
constant (ms—!)

L operator denoting Laplace transformation

L_] operator denoting inverse Laplace Transformation

LCEC liquid chromatography / electrochemistry

m a loop counter

m rate of mercury flow in a dropping mercury

electrode (gs~!)

-1
2

m(t) faradaic semiintegral (s ?)
.. -5
mr(t) "'recapture semiintegral' (s ?)
N order of fit
N collection efficiency
NMR nuclear magnetic resonance
n number of electrons transferred in an oxidation

or reduction process

n degree of a polynomial

n a loop counter

n number of electrons consumed in the generation of
g ay

n number of electrons consumed in the recapture of

r ay



R

R(r)

oxidized form of R

Legendre polynomial of degree n

Jacobi polynomial of degree n

a factor which is common to all exponents in a
power series

charge passed as a function of time (C)
charge passed during the generation phase ()

Legendre's function of the second kind

Jacobi's function of the second kind
charge passed during the reversal phase (C)

order of differentiation

a function which aids in the evaluation of
Qn(a,B) (x)

the reduced form of 0

universal gas constant (8.3143 Jmol-lk-1)
reference electrode

recapture funtion in terms of r (A)
recapture function in the domain r<-1 (A)
recapture function in the domain -l<r<l (A)
recapture function in the domain r>1 (A)

recapture function in terms of ¢ (A)

rotating ring-disc electrode



203

undimensionalized time variable in the recapture
domain

radius of a mercury drop (m)

dummy variable of Laplace Transformation with
respect to t {(s~1)

reduced chi-square (A2)

operator denoting transformation
operator denoting inverse transformation
thermodynamic temperature (K)

duration of the generation phase (s)

a time prior to the transition time (s)
a time in the generation phase (s)

a time in the reversal phase (s)
ultraviolet

dummy variable of integration (s)
working electrode

species which is the precursor to Y
absolute value of x

species produced in the generation phase
a dimensionless parameter

derivative of y with respect to x

second derivative of y with respect to x
a dimensionless parameter

a dimensionless parameter
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VA species produced in the recapture phase

a a parameter used in the description of Jacobi
functions

a transfer coefficient

g a parameter used in the description of Jacobi

functions

e a dimensionless parameter

T (x) gamma function

Y time variable in the generaticn domain (s)

Yj v at the data point j

Yj activity coefficient of species j

Aj difference between the fit and the data at Yj (A)

At interval between data points (s)

€ a small positive number

z(p) zeta function

8 time variable in the generation domain (radians,
degrees)

X duration of the forward scan of a cyclic

voltammogram (s)
x{p) lamda function
v ramp rate (Vs™1)

time variable in the recapture domain (s)

o

o dummy variable for Laplace transformation with
respect to t-T (s™1)

dummy variable of integration

Ls]

- transition time



e

second transition time (s)
phase angle of ac current with respect to E“c
a

time variable in the recapture domain (radians,
degrees)

chi function
digamma function

rotational frequency (s7!)

a dimensionless parameter

Cauchy Principal Value of an intearal
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