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ABSTRACT

Utilizing Class-Specific Thresholds Discovered by Outlier Detection

Richard Arthur Conan Branch

We investigated if the performance of selected supervised machine-learning

techniques could be improved by combining univariate outlier-detection tech-

niques and machine-learning methods. We developed a framework to discover

class-specific thresholds in class probability estimates using univariate out-

lier detection and proposed two novel techniques to utilize these class-specific

thresholds. These proposed techniques were applied to various data sets and

the results were evaluated. Our experimental results suggest that some of

our techniques may improve recall in the base learner. Additional results

suggest that one technique may produce higher accuracy and precision than

AdaBoost.M1, while another may produce higher recall. Finally, our results
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suggest that we can achieve higher accuracy, precision, or recall when Ad-

aBoost.M1 fails to produce higher metric values than the base learner.

Keywords: Machine Learning, Classification, Outliers, Outlier Detection,

Boosting, Probability Estimates, Class-Specific Thresholds, GenThresh, Out-

Boost, AdaBoost
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Chapter 1

Introduction

1.1 Preliminaries

We have entered an era of Big Data where it is estimated that we create 2.5

Exabytes of data each day [18–20]. We are called to increase our employment

of automated methods of analyzing and discovering knowledge in data in order

to handle this large volume of data [22]. Machine learning responds to this call

by providing methods for automatically finding patterns in data, patterns that

enable us to make decisions when dealing with uncertainty [22]. In essence,

machine learning enables us to learn from data in order to make predictions

regarding the future.

Outlier detection and outlier analysis explore the underlying abnormal
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characteristics of data while playing an important role in our ability to gain

insight into data [2]. Outliers in data often translate to significant and critical

information for a wide variety of application domains in science and industry

[4].

1.2 Thesis Statement

In this thesis, we ask if the performance of supervised machine-learning tech-

niques can be improved by combining univariate outlier detection and tradi-

tional machine-learning methods. Specifically, we investigate if we can apply

univariate outlier detection to estimated class probabilities in order to con-

struct class-specific thresholds. We then investigate if we can utilize these

thresholds to improve the performance of machine-learning methods.

1.3 Objectives and Goals

We defined the following three general objectives for this thesis:

1. To create a framework to define outliers in class probability estimates.

2. To propose two techniques to utilize the outliers defined in the class

probability estimates in the form of class-specific thresholds.
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3. To determine if these proposed techniques can improve the performance

of a variety of classification techniques on a variety of data sets.

1.4 General Outline

We provide a general outline of our thesis in the following section and describe

the contents of each chapter.

Chapter 1 briefly introduces machine learning and outlier detection, de-

scribing the inspiration for our research, our research question, our key objec-

tives, and our research goals.

We give a brief background of the relevant concepts, algorithms, and ter-

minology used in our thesis in Chapter 2. We focus primarily on supervised

machine learning, classification, outliers, and detection of outliers. A brief

introduction is provided for probability estimates, thresholds, and techniques

for measuring performance in supervised machine-learning tasks.

Chapter 3 outlines and presents the methods used during this research. We

present how we established a framework for utilizing estimated class probabil-

ities in order to determine class-specific thresholds, then outline our proposed

techniques for utilizing those thresholds. We describe how we implemented

GenThresh, OutBoost, and their unique variations, and how we evaluated the

proposed techniques, the base learners we used, and the data sets that we

3



applied the techniques to.

We present the results of our evaluation in Chapter 4. We compare the

results produced by GenThresh to the results produced by the base learners

and discuss the comparison. Additionally, we compare the results of OutBoost

to AdaBoost.M1 and its associated base learner. Finally, we explore some of

the behavior demonstrated with OutBoost by examining the results produced

by OutBoost.B1Man.

Our thesis is concluded with a description of our conclusions in Chapter 5,

including possibilities for future research.
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Chapter 2

Background

The following chapter describes the background of our thesis and introduces

our reader to key concepts, relevant terminology, and algorithms used in our

thesis. We begin by describing machine learning, classification, and outlier

detection, then outline probability estimates, thresholds, and methods of mea-

suring performance.

2.1 Data Mining

Data Mining is the process of automatically discovering unexpected, non-

trivial, and useful knowledge in data [28]. This definition is partially shared

with the field of Knowledge Discovery in Databases (KDD) where the end goal

of KDD is the acquisition of useful information [8]. Data mining is an essen-
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tial part of the KDD process, which includes data selection, preprocessing,

transformation, data mining, interpretation and evaluation [8]. The process of

data mining can include multiple components such as exploration, prediction,

description, and visualization of data [28]. Data mining relies on the combi-

nation of multiple disciplines, including statistics, machine learning, program-

ming, and domain knowledge [28]. Specifically, data mining relies on different

variations of machine-learning techniques in order to both make predictions

and describe the data under examination [8].

2.2 Machine Learning

Machine Learning may be described as the set of methods that can be utilized

to automatically detect patterns in data [22]. Once detected, those patterns

can be leveraged for decision making when dealing with uncertainty [22]. Ma-

chine learning-techniques learn through experience, and that experience takes

the form of data [9]. Machine-learning techniques are categorized as either

predictive or descriptive in nature and are also referred to as supervised for

the former and unsupervised for the later [22]. The goal of predictive learning

is to map a set of inputs to a set of outputs given a predefined set of input-

output pairs [9, 22]. Examples of predictive learning include classification and

regression, where classification involves predicating values that are categorical,

6



while regression is focused on predicting real-valued results [9, 22]. The goal of

descriptive learning is to find interesting patterns in data given a set of inputs.

An example of a descriptive learning approach would be clustering [9, 22].

2.3 Classification

Classification is a predictive machine-learning task where the formal goal is

to learn a mapping from inputs x to outputs y, given a labeled set of input-

output pairs defined as D = (xi, yi)
N
i=1, where D is the training set, N is the

number of training examples, yi is the class for xi, y ∈ {0, 1, 2, . . . , C − 1},

and C is the number of classes [22]. When C = 2, this scenario is referred to

as binary classification [22]. When C > 2, scenario is referred to as multiclass

classification [22].

The inputs (x) may be described as a collection of instances (observations,

records, points, vectors, etc.) where each instance is described by attributes

(characteristics, features, fields, dimensions) [4]. Attributes may be composed

of many different types of data (such as categorical or continuous) and the

input may be described by a single attribute (univariate) or multiple attributes

(multivariate) [4].

The problem of classification may be formalized as function approximation,

where it is assumed that y = f(x) for some unknown function (f) [22]. The

7



goal is to learn an estimate of f given a labeled training set and use ŷ = f̂(x) to

make predictions for novel inputs [22]. Numerous machine-learning techniques

exist that can be used to estimate this function [9, 22, 28]. Regardless of

how classification is formally defined, the process of classification is that of

modelling, where a model is the final result [9].

The primary goal of classification is to train models that generalize well

when making predictions for previously unseen inputs [22]. This concept is

referred to as generalization, where the goal is to generalize beyond the training

set [22]. If the model does not generalize well to novel inputs, this problem

may be one of overfitting, where minor variations of the input are modeled

that do not lend improvements to the predictive power of the model [22].

In certain scenarios, a training set is provided where an imbalance exists

between the number of examples of one class compared to the number of ex-

amples of another class [28]. In such a scenario, there is a minority class and

a majority class [28]. The problem of classification in the face of an imbal-

anced class distribution in a training set is defined as imbalanced classification

[28]. Creating models that generalize well using an imbalanced training set is

a challenging problem and numerous methods of performance evaluation have

been proposed for this scenario (further discussed in Section 2.7.4) [28]. Addi-

tionally, the process of training classification models using imbalanced training

8



sets is closely related to the problem of outlier detection [2].

2.3.1 Decision Trees

Decision Trees (DTs) are a recursive machine-learning technique that are best

used to approximate discrete-valued target functions [9, 21]. DTs have been

popular in the past due to their Divide-and-Conquer nature [9, 21]. DTs are

particularly useful for learning scenarios where the attributes of the training

set are composed of a small number of discrete values, but are also easily

adapted to continuous attributes [21].

In general, a DT is composed of nodes and branches where the first node

in the tree is referred to as the root [28]. Each node uses a splitting criteria for

a specific attribute and each branch extending from a node is a specific value

or value range for that attribute [21]. Instances are classified by sorting the

instances down the tree, from root to leaf [21].

Beginning at the root node, DTs are constructed in a top-down fashion

[21]. For each node, DTs perform tests on the set of instances associated with

the node in order to determine which attribute should be used as a splitting

criteria [21]. A DT creates a branch for each value, set of values, or value

range, corresponding to the chosen splitting criteria, and descendant nodes

are attached to each branch [21]. The training examples are then allocated to

9



the descendant nodes, depending on their attribute values [21]. This process

is repeated for each descendant node until a leaf node has been found [21].

Once a DT has been built, instances that require classification start at the

root node, where the DT tests the instance’s attribute value for the splitting

criteria of that node [21]. The observation then moves down the branch that

corresponds to its value [21]. This process is than repeated for each subtree

[21]. This process ends when an instance reaches a leaf node, at that point,

the DT assigns the instance to the class associated with the leaf node [28].

2.3.2 Naive Bayes Classifier

Naive Bayes Classifiers (NBCs) are a probabilistic method of classification

where predictions for an observation are made by assigning the observation

the most probable class given the attribute-value combination of the observa-

tion [21]. In order to determine the most probable class for an observation, the

class-conditional distribution must be determined, thus making this a genera-

tive approach [22]. With NBCs, determining the class-conditional distribution

of the training set is simplified by assuming that the features are conditionally

independent given the class label [22].

In practical terms, we do not expect the features to be independent, even

conditional on the class labels, so we consider this model to be naive [22].
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However, even in situations where the conditional-independence assumption

does not hold it has been observed that a NBC will still perform well [6]. This

is most likely due to the simplicity of the model [22].

The particular form of the class-conditional distribution varies depending

on the type of features present in the training set [22]. The models themselves

are generally fitted by computing the Maximum a Posteriori (MAP) Estimate,

combined with a Bayesian approach to compute the full posterior [22].

2.3.3 Bayesian Belief Networks

Bayesian Belief Networks (BBNs) are a flexible alternative to NBCs, as they

allow the conditional-independence assumption of NBCs to be broken, by mod-

elling conditional probabilities between attributes [21, 28]. BBNs work by de-

scribing the probability distributions, which govern a set of variables, through

combining a set of conditional-independence assumptions with a set of condi-

tional probabilities [21]. This allows conditional-independence assumptions to

be specified for a specific subset of variables [21].

NBCs graphically represent the probabilistic relationships among the set

of random variables with a directed acyclic graph and a table of conditional

probabilities [21, 28]. The graphical representation is in the form of nodes and

arcs, where the nodes are the variables being modeled [21].
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The directed arcs in the graph represent the dependence relationships be-

tween variables, and the assertion that a variable is conditionally independent

of its non-descendants given its parent [21]. Conditional-probability tables ex-

ist for each variable and describe the probability distribution of the variable

given the parent node, associating each node to its immediate parent [21].

The set of local conditional probabilities in combination with the conditional-

independence assumptions describe the complete joint-probability distribution

of the network [21].

There are numerous ways to learn the structure of the network (including

manually creating it) and numerous ways to make inferences using the network

once the network structure has been learned [21, 28].

2.3.4 Support Vector Machines

Support Vector Machines (SVMs) are a popular machine-learning technique,

which determine the largest margin between parallel hyperplanes, in order to

find a decision boundary [28]. A hyperplane is a higher-dimensional coun-

terpart to a plane in three-dimensional space [23]. Predictions using a SVM

depend on a subset of the training data, where the decision boundary is rep-

resented by support vectors [22, 27].

In their basic form, SVMs are not probabilistic in nature and do not result
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in probabilistic outputs, however, they can be modified to produce probabilities

through the application of a Logistic Regression (LR) to the outputs of the

SVM [9, 22]. A LR operates by passing a linear combination of its inputs

through a sigmoid function (otherwise known as a Logistic or Logit function),

where a sigmoid function is a function that maps the whole real-number line

to [0, 1] [22].

2.3.5 Artificial Neural Networks

An Artificial Neural Network (ANN) is a machine-learning technique that can

learn real and discrete-valued functions [21]. The design of ANNs was inspired

by biological learning systems, which are built of dense collections of neurons.

ANNs are constructed from densely connected simple units, each producing

a single value [21]. In order to adjust the network to fit the training set,

Backpropagation can be used to tune the network parameters [21].

The Perceptron is the most basic form of threshold unit in a neural network

[21]. Multiple inputs are provided to a perceptron where the inputs are com-

bined in a linear fashion before being passed through an activation function

[21]. The activation function produces an output of either a 0 or 1 depend-

ing upon whether linearly combining the input values result in a value that is

greater or equal to a certain threshold [21]. In essence, each input is adjusted
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to have a certain weight in terms of the final output [21].

In order to represent a wide variety of nonlinear functions, the general ap-

proach is to combine a number of threshold units together to form a multilayer

network. The activation function is replaced with a nonlinear function of its

inputs, which produces a continuous output [21]. A multilayer neural network

is a combination of an input layer, intermediate layers (hidden layers), and

an output layer [28]. Numerous network topologies and threshold units exist

[21, 28].

Backpropagation learns the weights of a multilayer network and is a prac-

tical application of the chain rule for derivatives [21]. Backpropagation de-

termines the gradient of an objective function with respect to the weights of

the multilayer network [21]. Backpropagation is a two-step process where the

inputs are propagated forward in the network, and the errors are propagated

backwards [21].

2.3.6 Boosting

Boosting is a greedy method of combining numerous weak learners (or base

learners) in order to produce a single ensemble classifier that theoretically

exhibits high levels of accuracy providing that the weak learners exhibit per-

formance that is better than the performance achieved by random guessing
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[11, 12, 22]. A base learner is a learning method (e.g. DT, NBC, BBN, etc...)

that is treated like a black box by the Boosting technique, where we are only

concerned with the output produced by the base learner [26]. Boosting oper-

ates by adaptively modifying the distribution of the training examples used

during classification, by adjusting the importance of instances that are difficult

to classify. This allows the weak learners to place more emphasis on properly

classifying difficult instances [28].

In order for Boosting to improve the performance of a weak learner, the

training set must be modified in some way [26]. The key to Boosting is to force

the base learner to use a new training set during each iteration in order to infer

something new about the data [26]. Numerous iterations of Boosting methods

exist, one of the commonly used Boosting methods is AdaBoost [11, 12, 26].

AdaBoost

The AdaBoost algorithm initially assigns each instance an equal weight of

1

m
, where m is the number of training instances [11, 12]. Next, the assigned

weights are used as a sampling distribution to draw a new training set for

classification [26]. The goal of AdaBoost is to use a base learner to determine

a weak hypothesis that will minimalize the training error (see Section 2.7.3 for

a definition of error) at each iteration [26].
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At each iteration of AdaBoost, the error of the weak learner is utilized to

increase the weights of misclassified instances while decreasing the weights of

those instances that are easy to classify [26]. The combined weights for each

iteration of the classifier are normalized to sum to 1, allowing for the weights to

once again be used as a sampling distribution where the probability of selecting

an instance at random is proportional to the weight of the instance [26]. In

some cases, the weights assigned to the training set may be used directly by

the base learner [26].

After multiple iterations, AdaBoost combines the different results of the

base learners into a final classifier, using a weighted voting scheme where the

weighted majority of the base learner’s predicted class determines the final

predicted class for each instance to be classified [26].

2.4 Outliers

Outliers are known by numerous names (anomalies, discordant observations,

exceptions, aberrations, surprises, peculiarities, or contaminants) [4]. The

following section introduces some basics concepts regarding outliers.
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2.4.1 Outlier Definition

The definition of an outlier varies depending upon the domain under study and

the nature of the data under investigation [4]. However, in broad terms, an

outlier is something that is considered surprising [3]. When speaking in terms

of continuous data, this may be an unusually high or low value in comparison

to other values under examination [3]. Although vague, this definition does

illustrate the subjective and complicated nature of outliers [3]. It is usual to

assume that the number of outliers does not outnumber the number of normal

observations [3].

For the purposes of this thesis we define an outlier as a point or pattern

found in data that does not conform to what is considered normal [4]. More

formally, we can define an outlier as an observation that deviates so much from

other observations that we find the observation suspicious [15]. The degree of

deviation can be defined through the use of statistical techniques (parametric

and non-parametric), machine-learning methods, or subjective observation [3,

4].

2.4.2 Applications Of Outlier Detection

Outlier detection is applicable to many different fields and is used in applica-

tions such as intrusion detection, fraud detection, medical and public health,
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industrial damage, image processing, and sensor networks [4]. Some examples

of the applications of outlier detection include:

• Detecting malicious activities on computer systems from both a host-

based and network-based perspective [4].

• Identifying malicious and criminal activity for organizations such as

banks, credit card companies, and insurance agencies [4].

• Medical diagnosis, such as electrocardiograms, and epidemiology [4].

• Industrial damage detection to detect faulty equipment or structural

problems [4].

• Image processing such as motion detection [4].

• Detecting interesting events or faulty sensors in sensor networks [4].

2.4.3 Types of Outliers

Outliers may appear in data that is univariate or multivariate in nature [3].

In general, outliers can be broken down into three distinct types: point, con-

textual, and collective [4]. A point outlier is one where a specific instance is

unusual when compared to the other observations under study [4]. An ex-

ample of a point outlier might be an unusually high value in a collection of
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measurements. Given a sample, there may be multiple observations that are

considered point outliers; however, each point is considered an outlier in its

own right rather than as a group [4]. A point outlier may be univariate or

multivariate in nature [2].

A contextual outlier is an outlier where a specific observation is unusual

when compared to the other observations under study, in relation to the specific

context under which it is being examined [4]. Consider a sample of sensor

readings of recorded daily temperatures in a specific region for an entire year

[4]. A contextual outlier is an usual temperature reading given a specific

month [4]. Contextual outliers are multivariate in nature as there must be a

minimum of two attributes, a contextual attribute and a behavioral attribute

[4]. The contextual attribute defines the context, which the observations are

being examined under, and the behavior attribute defines the behavior of the

observation under study [4]. In the case of the previous example, the contextual

attribute is the month of the year and the behavioral attribute is the daily

temperature [4]. Multiple contextual and behavioral attributes may exist for

a given observation [4].

Collective outliers are groups of observations that are unusual compared

to the other observations under study [4]. Collective outliers are considered

anomalous when the observations are examined as a group, but not when ex-
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amined on an individual basis [4]. They form a distinct pattern when observed

in series, where this pattern is surprisingly distinct from the overall pattern

exhibited by the entire series [4]. In the medical field, an example of a collec-

tive outlier is an unusually low value, for a long period of time, in the output

of an electrocardiogram, where a low value on its own is not unusual [4].

2.4.4 Typical Response to Outliers

When an observation or group of observations are determined to be outliers,

one of three typical responses can occur: removal, accommodation, or explana-

tion [3]. Removal generally occurs when the source of the outliers is some sort

of error, for example, if a value was entered incorrectly or a sensor malfunc-

tioned in it’s reading, resulting in spurious value [3]. Accommodation occurs

when the goal is to work with the data in spite of the outliers [3]. Statistically

robust methods of analyzing data focus more on accommodation rather than

removal, where the techniques are robust to presence of the outliers [3]. An ex-

ample of this would be using the median rather than the mean, as an estimate

of central tendency [10]. Explanation occurs when we are more interested in

the outlier itself and wish to know why it occurs [3].

20



2.4.5 Outliers in Data Mining

Within data mining, outliers are generally divided into two different categories:

noise and anomalies [2]. Noise can be considered a form of weak outlier while

an anomaly can be considered a strong outlier [2]. Anomaly detection, noise

removal, and noise accommodation are treated as distinct and separate tasks

within the data-mining community [4]. In such instances, noise is considered

a phenomenon that is not interesting to the data analyst and may stymie

the data analysis task [4]. The importance of anomaly detection cannot be

understated as discovered anomalies can lead to significant and actionable

knowledge discovery [4]. As an example, an anomalous traffic pattern on a

computer network could reveal that a computer has been compromised and is

transmitting sensitive information to an outside attacker [4].

2.4.6 Outliers in Univariate Statistics

Outliers and outlier detection have been studied in the statistical domain since

as least as early as the late 19th century, where the studies focused primarily

on univariate outlier detection [3, 7]. An outlier in univariate statistics is a

point or group of points, which deviate so much from the other observations

that we are suspicious regarding the generating mechanism of the observation

[15]. The degree of the deviation, which defines an outlier, depends greatly
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on the outlier detection technique and the underlying distribution of the data

from which the sample containing the outlier was drawn [2–4].

2.4.7 Outliers in Multivariate Statistics

Outliers in multivariate statistics are more complicated to define and are not

as well explored in statistical literature [3]. The underlying definition of an

outlier holds, where an instance deviates so much from the other observations

that we suspect the observation; however, this deviation is now from the per-

spective of an instance with multiple attributes [3]. The outlier itself may

be apparent when examining a multivariate observation using its dimensions

in combination, but may not be apparent when examining the observation in

terms of its component parts [2, 3]. The task of detecting multivariate outliers

increases in complexity as the number of dimensions increase [2].

2.4.8 Outlier Labels and Scores

When observations or groups of observations are examined, those observations

that are considered outliers may be represented in one of two ways: labels or

scores [4]. When labels are utilized, an observation or group of observations

are labeled as either being an outlier or not [4]. When scores are used, an

observation or group of observations are assigned a value that represents the
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degree of anomalous character an observation demonstrates [4]. In the case of

scores, either a threshold can be used to determine when a score indicates that

an observation is or is not an outlier, or the top k number of observations can

be identified as outliers [4].

2.4.9 Univariate Outlier Detection

Univariate outlier detection is generally the domain of statistics and has been

extensively studied in terms of literature and research [3, 4]. Univariate outlier

detection techniques can be broken down into parametric and non-parametric

methods [4]. Parametric methods make some sort of assumption regarding the

underlying distribution (Gaussian, Exponential, Beta, etc.) and usually take

into account sample statistics or population parameters in order to determine if

an observation is an outlier [3, 4]. Parametric outlier detection techniques may

test for outliers individually or as a block [3]. If tested as a block, the number

of suspected outliers may be included in the test [3]. Numerous tests have

been developed, each making different assumptions regarding what defines an

outlier, although many parametric outlier detection techniques developed are

focused on observations that come from a normal distribution [2–4].

Non-parametric outlier detection techniques do not make any assumptions

regarding the underlying distribution of the sample being tested [4]. An ex-
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ample of a non-parametric outlier detection technique could include the use of

a histogram, which is a non-parametric method of examining the distribution

of a sample [4].

2.4.10 Walsh’s Outlier Test

Walsh’s Outlier Test is a non-parametric block outlier test that may be applied

to samples that contain more than 60 observations [1, 29–31].

Let X1, X2, X3, ..., Xn be an ordered set of values. The lower r values can

be considered outliers, with a significance level α, if the following inequality

holds true [1, 29–31]

Xr − (1 + a)Xr+1 + aXk < 0 (2.1)

Where

c =
⌈√

2n
⌉

k = r + c

b2 =
1

α

a =
1 + b

√
(c−b2)
c−1

c− b2 − 1
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and the significance level α = .10 if 60 < n <= 220 or α = .05 if 220 < n

[1, 29–31].

The r upper values can be considered outliers, with a significance level α,

if the following inequality holds true [1, 29–31]

Xn+1−r − (1 + a)Xn−r + aXn+1−k > 0 (2.2)

Both the r upper and lower values can be considered outliers, with a signifi-

cance level α, if both Inequality 2.1 and Inequality 2.2 hold true [1, 29–31].

In essence, Walsh’s Outlier Test compares the distance between specific

observations in an ordered sample in order to determine if the uppermost

value in the lower r values being tested (Xr) is far enough away from its

neighboring observation (Xr+1) to be declared outlying, in comparison to the

distance between the neighboring observation and another observation higher

in the sample (Xk) [1, 29–31]. Xk is chosen in order to consider an observation

that is c observations away from the r observations being tested, where c

specifies an observation that is a fair distance away from the uppermost value

in the r lower observations, but not too far away as the sample size (n) grows

[1, 29–31].

The parameter b2 is predetermined by the significance level required for
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the number of observations examined, and a is a product of the pre-specified

significance level and the sample size being examined, in order to allow the

inequality to say with some significance that the r lower observations are out-

liers [1, 29–31]. As the sample size increases a→ 1, which means the distance

between Xr and Xr+1 must be greater in comparison to the distance between

Xr+1 and Xk. As the sample size decreases a increases in size, allowing for a

smaller spread between the afore mentioned observations.

2.5 Probability Estimates

The probability distribution over possible classes, given the input vector x

and training set D is denoted as P (y|x,D) and represents a vector of length

C [9]. In a classification task, P (y = 0|x,D) is the estimated probability of

Class 0 given an instance (x) and a data set (D) [9]. Probability estimates

range in value from [0, 1], and in a binary classification scenario P (y = 0|x,D)

is equal to one minus the probability of an observation being of the other

class P (y = 1|x,D) = 1 − P (y = 0|x,D), and vice versa [9]. The methods

used to determine the probability estimate vary depending on the classification

technique and its implementation.

In certain cases, a probability estimate may be a direct result of the classi-

fier being utilized (in the case of NBCs or BBNs) or may be interpreted from
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scores or ranks assigned to each observation [9]. In other cases, the classifica-

tion technique may not naturally create useful probability estimates and a LR

may need be applied to the output of the classifier (such as the case of a SVM)

[22]. DTs tend to assign a raw training frequency to each leaf and may utilize

these values as the probability estimate [22]. In the case of many ANNs, the

classifier may naturally produce good probability estimates [22].

2.6 Thresholds

A threshold (τ) is a boundary (or value) on a real-number line where some

decision is made when a given value (a) is smaller or equal to a certain threshold

(a ≤ τ), or when that value is larger then a certain threshold (a > τ). A

threshold may be used to define whether an instance is an outlier or not, or

may be used to define whether an instance is of one class or another.

2.7 Measuring Performance

The following section describes common performance measures and techniques

employed for estimating the generalization performance of a model or method.
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2.7.1 Test Set

Good generalization is an important goal for models, so a method of evaluating

how well the models generalize is required [22]. The performance of the model

could be computed using the training set but this would only indicate how well

the model performs on the training set, not how well it generalizes to novel

inputs [22]. Therefor, once a classification model (f̂) has been learned from

a training set (D) a test set (T ) may be used to estimate the generalization

performance of the model, where the test set and the training set should be

disjoint sets [21]. The test set (T ) is defined as T = (xi, yi)
N
i=1, where N is the

number of instances in the test set, yi is the class for xi, y ∈ {0, 1, 2, . . . , C − 1},

and C is the number of classes [22]. It is assumed that the training set and

the test set are both drawn from the same unknown distribution [21].

2.7.2 The Confusion Matrix

The performance of a learned model may be represented by a confusion matrix

(or contingency table) (See Table 2.1) [9, 28]. Each row in a confusion matrix

represents the actual class of the observations, while each column represents

the predicted class [9, 28]. In a binary classification problem, it is common

practice to denote the minority class as the positive class (+) and the majority

class as the negative class (−) [28].
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Table 2.1: Definition of a confusion matrix [28].

Predicted (+) Predicted (−)
Actual (+) TP FN
Actual (−) FP TN

In terms of the confusion matrix, True Positives (TP) are observations

that belong to the positive class and are predicted to belong to the positive

class [28]. True Negatives (TN) are observations that belong to the negative

class and are predicted to belong to the negative class [28]. False Negatives

(FN) are observations that belong to positive class but are falsely predicted to

belong to the negative class [28]. False Positives (FP) are observations that

belong to the negative class but are falsely predicted to belong to the positive

class [28].

2.7.3 Accuracy and Error

Given a learned model (f̂), the accuracy of a model can be defined as the

fraction of instances in the test set (T ) that were properly classified, and may

be denoted as

accT (f̂) ≡ 1

N

∑
x∈T

δ(f(x), f̂(x)) (2.3)
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such that

δ(f(x), f̂(x)) =


1 if f(x) = f̂(x)

0 otherwise

(2.4)

where N is the number of instances in the test set [21].

Accuracy may also be defined in terms of the confusion matrix and denoted

as [28]

accT =
TP + TN

TP + TN + FN + FP
=
TP + TN

N
(2.5)

Given a learned model (f̂), the error of a model is defined as the fraction

of instances in the test set (T ) that were not properly classified, and may be

defined as

errT (f̂) ≡ 1

N

∑
x∈T

δ(f(x), f̂(x)) (2.6)

such that

δ(f(x), f̂(x)) =


1 if f(x) 6= f̂(x)

0 otherwise

(2.7)

where N is the number of instances in the test set [21].

Error may also be defined in terms of the confusion matrix and be denoted

as [28]

errT =
FP + FN

TP + TN + FN + FP
=
FP + FN

N
(2.8)
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Additionally, error can be defined in terms of accuracy such that [9]

errT = 1− accT (2.9)

Accuracy may also be interpreted as an estimate of the probability of a ran-

dom observation (x) being classified properly Px(f̂(x) = f(x)) [9]. Conversely,

error may be interpreted as an estimate of the probability that a random ob-

servation will be classified improperly Px(f̂(x) 6= f(x)) [9].

2.7.4 Alternative Performance Measures

Other metrics may be more appropriate to evaluate the performance of a clas-

sifier in an imbalanced classification scenario [28]. Accuracy and error are not

always appropriate evaluation measures when the class imbalance is large, as

both measures will be biased towards proper classification of the majority class

over the minority class [9]. To give an extreme example, consider a classifi-

cation task for a sample where 98% of the instances belong to the majority

class and 2% of the instances belong to the minority class. A learned model

could classify every instance in the sample as the majority class and still have

an accuracy of 98%, or conversely an error rate of 2%. As such, accuracy and

error are not always proper performance measures if the minority class is of
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interest [9].

In order to address the problem of majority bias in accuracy and error

measures, additional evaluation measures such as Precision and Recall may

be adopted [5, 16, 24].

2.7.5 Precision and Recall

Precision for the minority class is the fraction of the classified examples that

are of the minority class [28],

p =
TP

TP + FP
(2.10)

Recall for the minority class is the fraction of the minority class that we prop-

erly classified [28],

r =
TP

TP + FN
(2.11)

Additionally, recall may be considered the probability of a predicting that a

randomly selected observation of the positive class is the positive class [9].

Recall is also known in the literature as the True Positive Rate (TPR) [9].
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2.7.6 Cross Validation

The generalization performance of a model can be approximated by applying

it to a large independent test set (T ), which was not used during the training

of the model [22]. However, in practice this test set may not be available [22].

Instead, the training set can be split into two disjoint sets of different sizes,

where the first set is used for training the model and the second set is used to

estimate the future performance [22]. The performance of each model can then

be compared to determine which one performs better in terms of generalization

performance [22].

In k-fold Cross Validation (CV), the training set of size m is split into k

partitions (otherwise denoted as k-folds) where each fold is approximately of

size m
k

[21, 28]. The process of training and testing is iterated k times and

for each iteration, one of the k folds is held back in a round-robin fashion to

be used as the test set, while the other k − 1 folds are used for training [22].

Every instance in the original training set is used the same number of times

for training and only once for testing [22, 28]. A proxy for the generalization

performance can be determined by combining the results and averaging the

error (or other performance measure) over the folds [28]. It is common to use

k=5 or k=10, where the former is refereed to as 5-fold CV and the later is

referred to as 10-fold CV [22, 28]. If the process of k-fold CV is repeated, and
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the folds are re-sampled for each iteration, the results of the repeated k-fold

CV can be averaged in order to produce a performance estimate [32].

Stratified k-fold CV is a slight modification to the above technique and

operates identically to k-fold CV except for one difference [9]. In stratified

k-fold CV each fold keeps the same class distribution as the class distribution

in the overall data set [9]. This ensures that in the case of an imbalanced class

distribution the minority and majority class will be represented in each fold

with equal frequency as in the original data set [9].

2.8 Chapter Summary

In this chapter we introduced the reader to key concepts, relevant terminology,

and algorithms used in our thesis. We specifically focused on data mining, ma-

chine learning, boosting, outlier detection, evaluation measures, and methods

of evaluating machine learning techniques. The reader was also introduced

to key concepts regarding probability estimates, which will play an important

role in the proposed techniques discussed in the following chapter.
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Chapter 3

Methods

This chapter describes the methodologies used in our thesis. We begin by

outlining a framework that utilizes univariate outlier detection to find class-

specific thresholds in probability estimates. We then illustrate the different

scenarios that may arise once we have found the class-specific thresholds, pro-

pose two methods of using these class-specific thresholds for classification tasks,

and discuss how we implemented and evaluated them.

In general terms, class-specific thresholds were selected by applying a uni-

variate outlier detection technique to the ordered set of probability estimates

determined for each class. We placed particular emphasis on finding the lower

outliers present in the probability estimates. Two methods were proposed to

utilize the thresholds, which we refer to as GenThresh and OutBoost.
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3.1 Refined Goals

We fashioned our approach with restrictions in mind in order to limit the

breadth of this exploration. Specifically, our methods were formulated to work

with a binary classification scenario. As such, we chose data sets with two

classes in order to evaluate our techniques.

We refined our third general objective (introduced in Section 1.3) to include

the following goals for GenThresh:

1. To determine if GenThresh could improve the accuracy achieved by its

base learner.

2. Failing this, to determine if GenThresh could exceed the precision or

recall of its base learner for the minority class of imbalanced data sets.

Additionally, we refined our third general objective to include the following

goals for OutBoost:

1. To determine if OutBoost could exceed the accuracy of AdaBoost.M1.

2. Failing this, to determine if OutBoost could exceed the precision or recall

of AdaBoost.M1 for the minority class of imbalanced data sets.

3. Finally, to determine if OutBoost could exceed the performance of Ad-

aBoost.M1 when AdaBoost.M1 failed to exceed the performance of its
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base learner.

3.2 Thresholds

The following section defines class-specific thresholds and introduces the con-

cept of a cutoff.

3.2.1 Finding Thresholds

S is the set of m training examples (xi, y1), . . . , (xm, ym) where xi ∈ X , yi ∈

{0, 1}. We define Pij as the estimated probability (Pr(y = j|xi, S)) of class j

given training example xi and the training set S. A threshold (τ) is a point

on a real number line that delineates normal training examples from outlying

training examples. We specify a threshold for each class where τj is the class-

specific threshold for Class j. The real number line contains values that range

from 0 to 1, such that 0 ≤ τj ≤ 1. Any observation with an estimated

probability (Pr(y = j|xi, S)) of belonging to class j that fell on or below τj

(Pij ≤ τj) was designated as an outlier for Class j, while any observation with

an estimated probability that fell above τj (Pij > τj) was designated as normal

for Class j.

Ej is the ordered set of probability estimates for the m training examples,
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where each probability estimate is the estimated probability of class j given

the training example. The process of determining the class-specific thresh-

old (τj) for each Class j proceeded as follows. We applied Walsh’s outlier

test to the probability estimates for Class j (Ej) starting with the bm
2
c lower

probability estimates, where the bm
2
c probability estimates are the lower half

of the probability estimates. Next, we applied Walsh’s outlier test to the

bm
2
c − 1, bm

2
c − 2, ..., 1 lower probability estimates, decreasing the number of

lower probability estimates tested until we found lower outliers or until all

of the lower probability estimates had been tested. If outliers were discov-

ered during this procedure and the i lower probability estimates were deemed

outliers, then the value of the highest probability estimate of the i lower prob-

ability estimates became the threshold, such that τj = Eji, where Eji was

deemed an outlier.

3.2.2 Cutoffs

Given the above, it is possible to encounter a scenario where one could not

detect τj but still wished to define τj. Additionally, one could want to pre-

trim the probability estimates provided to the outlier detection test in order

to subjectively define outliers. We introduced the concept of the cutoff α in

order to meet these requirements.
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We define the cutoff α as a predefined parameter that pre-trims the proba-

bility estimates Ej for each Class j before applying a univariate outlier detec-

tion test to Ej. Unlike the thresholds defined in Section 3.2, we only specify a

single cutoff (α) that we used for all classes. The default choice for the cutoff

was 0, in order to use all of the probability estimates to find the class-specific

thresholds.

Es is a subset of E (Es ⊂ E) where Es is the set of probability estimates

found in E that are greater or equal to the cutoff. Given the ordered set of

probability estimates (Esj , where
{
Esj1 , Esj2 , . . . , Esj

}
∈ Es), we define Esj as

the ordered set of probability estimates for Class j where Eji ≥ α. Given that

∀Esji ∈ Esj α ≤ Esji ≤ 1, it was observed that Es contains the same values

as E (Es = E) when the pre-defined cutoff is the default value.

Given our introduction of α, we substituted Es for E when searching for

the class-specific thresholds. The cutoff was also used as the default threshold

for each class if the threshold was not detected via a univariate outlier test.

We labeled any training example with an estimated probability (Esji) that was

equal to the cutoff (α) an outlier, even if they were not detected as outliers

by an outlier test. Given the choice of α, any probability estimate that was

smaller than the cutoff (Esji < α) was considered an outlier or simply part of

another distribution.
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3.2.3 Threshold Scenarios

Once a threshold (τj) was found for each Class j, we defined a set of thresholds

(τ) that resulted in training examples falling in different positions relative to

each threshold, depending upon the estimated probability of class j given the

training example. Given a training example (xi) with an estimated probability

of belonging to class j given xi (Pij), three different situations could occur:

a. The training example may fall below a class-specific threshold (Pij < τj)

b. The training example may fall above a class-specific threshold (Pij > τj)

c. The training example may fall on a class-specific threshold (Pij = τj)

A training example that fell on or below a class-specific threshold (τj)

was designated an outlier for Class j (Pij ≤ τj), and a training example that

fell above a class-specific threshold (τj) was designated as normal for Class j

(Pij > τj). We find two class-specific thresholds (τ0 and τ1) given a binary

classification scenario, where Pi0 is the estimated probability of belonging to

Class 0 given xi, and Pi1 is the estimated probability of belonging to Class 1

given xi . This leaves us with four specific possibilities for xi given the values

of the probability estimates for xi and the class-specific thresholds:

1. The training example may fall below two class-specific thresholds ((Pi0 ≤

τ0) ∧ (Pi1 ≤ τ1))
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2. The training example may fall above two class-specific thresholds ((Pi0 >

τ0) ∧ (Pi1 > τ1))

3. The training example may fall above the first class-specific threshold and

below the second class-specific threshold ((Pi0 > τ0) ∧ (Pi1 ≤ τ1))

4. The training example may fall below the first class-specific threshold and

above the second class-specific threshold ((Pi0 ≤ τ0) ∧ (Pi1 > τ1))

This was translated directly into outlier terms, where we detail each of the

following mutually exclusive scenarios for binary classification:

1. A training example may be considered an outlier for both classes

2. A training example may be considered normal for both classes

3. A training example may be considered normal for the one class but an

outlier for the other

We illustrate an example of class-specific thresholds in Figure 3.1, as well

as the different regions of probability estimates where the above three scenar-

ios could occur relative to the class-specific thresholds. Figure 3.1 (a) demon-

strates the relative positions of the class-specific thresholds (τ0 and τ1) required

for a region of normal probability estimates to exist between the thresholds.

Figure 3.1 (b) demonstrates a similar concept, showing the relative positions
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Figure 3.1: Examples of different class-specific thresholds and the different
regions of probability estimates where Scenario 1, 2, and 3 may occur. (a)
All of the training instances would be considered an outlier for both classes
or considered an outlier for one class but normal for the other. (b) All of the
training instances would be considered normal for both classes or considered
an outlier for one class but normal for the other.
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required for a region of outlying probability estimates to exist between the

thresholds.

As P (y = 0|x,S) = 1 − P (y = 1|x,S), we visualize the potential values

of the probability estimates for Class 0 in ascending order and Class 1 in

descending order. Both (a) and (b) demonstrate the class-specific thresholds

on their own and relative to the other class (indicated by the dashed line). To

illustrate Scenario 3, consider Figure 3.1 (a) and a training example with a

probability estimate for Class 0, which is smaller than τ0, and a probability

estimate for Class 1, which is larger than τ1. The probability estimate for

Class 1 must be larger than 1− τ0. Based on Figure 3.1 (a), this hypothetical

training example would be an outlier for Class 0 and normal for Class 1, falling

into Scenario 3.

3.2.4 Implementation

Our framework for discovering class-specific thresholds was implemented in

Find-Thresholds (Algorithm 1) and Find-Threshold (Algorithm 2). We used

the notation introduced in Section 3.2.1 and Section 3.2.2 and employed Walsh’s

Outlier Test to determine if a probability estimate and the probability esti-

mates below it, were outliers.
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Algorithm 1 Find-Thresholds operates by determining the class-specific
thresholds (τ) given the estimated probabilities (P ) of a training set. Find-
Thresholds uses the probability estimates (Ej) to determine the class-specific
threshold (τj) for each class (j), where C is the number of classes. Find-
Thresholds sorts the probability estimates for Class j in ascending order and
finds the class-specific threshold for Class j by calling Find-Threshold (Algo-
rithm 2)

1: function Find-Thresholds(P, α)
2: for j = 1 to C do
3: for i = 1 to m do
4: Eji = Pij
5: end for
6: Sort(Ej)
7: τj = Find-Threshold(Ej, α)
8: end for
9: return τ

10: end function

3.3 GenThresh

In the following section, we propose and outline the GenThresh (short for

general threshold) algorithm and its variations. We devised GenThresh to

take advantage of the class-specific thresholds, cutoffs, and threshold scenarios

which we defined in the previous sections.

GenThresh was fashioned to be part of a class of machine-learning tech-

niques that assumes the availability of a base learner, where the goal is to im-

prove the performance of the base learner. GenThresh treats the base learner

much like a black box, where GenThresh ignores the internal workings of the

base learner and only uses the results. In order for GenThresh to improve the
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Algorithm 2 Find-Threshold operates by finding the class-specific threshold
(τ) given a set of sorted probability estimates (P ). Find-Threshold begins by
ignoring any probability estimates that are less then the cutoff (α). Is-Outlier
is a place holder for any outlier test. In this case, Is-Outlier is configured for
a block outlier test that checks the j lower probability estimates to determine
if they are outliers. The class-specific threshold is defined as the highest lower
outlier found in the pre-trimmed probability estimates (Es).

1: function Find-Threshold(P, α)
2: for i = 1 to P.length do
3: if Pi ≥ α then
4: Esi = Pi
5: end if
6: end for
7: for j =

⌊
Es.length

2

⌋
downto 1 do

8: if Is-Outlier(Es, j) then
9: τ = Esj

10: return τ
11: end if
12: end for
13: τ = α
14: return τ . The threshold is the cutoff
15: end function
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performance of the base learner, GenThresh has to use the results of the base

learner and modify them in some way. In general terms, GenThresh utilizes

the thresholds generated via the application of FindThresholds (Algorithm 1)

and combines them in order to create a general threshold. GenThresh then

shifts the probability estimates based on the general threshold, as outlined in

the following sections.

We proposed two variations of the GenThresh technique, which we named

GenThresh.B1 and GenThresh.B2. The “B” in the name indicates that the

algorithm applied to binary classification only, while the “1” and “2” simply

indicates the variations of similar methods.

3.3.1 GenThresh.B1

As previously mentioned, GenThresh.B1 (Algorithm 3) was based on a class of

machine-learning techniques that assumes the availability of a base learner. We

designed GenThresh.B1 to operate solely on a binary classification problem.

Given a training set (S) composed of m examples (x1, y1), . . . , (xm, ym), where

xi ∈ X and yi ∈ {0, 1}, GenThresh.B1 begins execution by applying a base

learner to a training set (S) in order to determine a hypothesis, distinguished

by h.

Once GenThresh.B1 has the hypothesis, it finds the estimated probability
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Algorithm 3 GenThresh.B1 operates by training a base learner in order to
determine the probability estimates for each class. GenThresh.B1 generates
class-specific thresholds for each class and utilizes these thresholds to create a
general threshold (τg), which is the average of (1− τ1) and τ0. GenThresh.B1
finds the final classifier by determining the MAP estimate of the newly cali-
brated probability estimates, which is the most likely class given the input.

1: function GenThresh.B1
2: Train-Learner(S)
3: Get hypothesis h : X → {0, 1}
4: for i = 1 to m do
5: Pi = Pr(y|xi, S)
6: end for
7: τ = Find-Thresholds(P )

8: τg = τ0+(1−τ1)
2

9: H(x) = arg maxy∈YCalibrate(Pr(y|x, S, h), τg, y)
10: end function

(Pi) of each class (y) for each training example (xi). We define Pi as a vec-

tor of length C, where C is the number of classes. GenThresh.B1 finds the

class-specific thresholds (τ0 and τ1) by applying Find-Thresholds (Algorithm

1) to the estimated probabilities (P ). After which, GenThresh.B1 determines

a general threshold (τg) (see Figure 3.2) and finds the final classifier by deter-

mining the MAP estimate of the newly calibrated probability estimates, which

is simply the most likely class given the input.

The goal behind the development of GenThresh.B1 was to improve the

performance of the base classifier by shifting the underlying estimated prob-

ability distribution for each class. We created Calibrate (Algorithm 4) with

this goal in mind. Calibrate takes the general threshold (τg) and shifts the

estimated probability of class y given observation xi, either to the left or the
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Figure 3.2: Visualization of how GenThresh.B1 (Algorithm 3) creates the
general threshold (τg), using the class-specific threshold for Class 0 (τ0) and
Class 1 (τ1), where the general threshold is the average of (1− τ1) and τ0.

right, depending on the value of the general threshold. In essence, Calibrate

uses τg as a new decision threshold for the probability estimates, but instead of

changing the original decision threshold (τd) and modifying the MAP estimate

to accommodate τg, Calibrate modifies the estimated probability landscape for

each class.

Calibrate shifts the estimated probability Pr of class y given xi, based on

the original class decision threshold (τd) and the new general threshold (τg).

Although the MAP estimate does not explicitly use a decision threshold to

choose the class of a specific observation, given a binary classification scenario

there is an implicit decision threshold of τd = 0.5. To demonstrate this, con-

sider that Pr(y = 0|x, S) = 1−Pr(y = 1|x, S). If we found the MAP estimate

for observation x with the Pr(y = 0|x, S) ≥ .5, then the MAP estimate would

48



Algorithm 4 Calibrate shifts the estimated probability (Pr) of class y given
an observation, based on the original class decision threshold (τd) and the new
general threshold (τg.)

1: function Calibrate(Pr, τg, y)
2: if y = 0 then
3: Pr = Pr − (τg − τd)
4: else
5: Pr = Pr − ((1− τg)− τd)
6: end if
7: if Pr < 0 then
8: Pr = 0
9: end if

10: if Pr > 1 then
11: Pr = 1
12: end if
13: return Pr
14: end function

label observation x as Class 0.

Calibrate operates differently depending upon which class the probability

estimate belongs. The new probability estimate (Pr) is the difference between

the original probability estimate and the difference between the general thresh-

old (τg) and the original decision threshold (τd), if the probability estimate is

for Class 0. Calibrate shifts the probability estimate to the right if τg < τd

or shifts the probability estimate to the left if τg > τd. The new probability

estimate (Pr) is the difference between the original probability estimate and

the difference between 1 − τg and the original decision threshold (τd), if the

probability estimate is for Class 1. Calibrate shifts the probability estimate

to the right if (1 − τg) < τd or shifts the probability estimate to the left if

(1− τg) > τd.
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The goal behind this shift was to modify the performance of a base learner

by shifting potentially misclassified training examples, which may be close

to the original decision threshold, across the original decision threshold. Es-

sentially, GenThresh.B1 classifies any observations as Class 0 if its original

probability estimate for Class 0 fell to the right of τg and classifies any obser-

vations as Class 1 if its original probability estimate for Class 0 fell to the left

of τg.

3.3.2 GenThresh.B2

We constructed GenThresh.B2 (Algorithm 5) to operate almost the same as

GenThresh.B1. The only difference between GenThresh.B1 and GenThresh.B2

is how the general threshold (τg) is determined. Instead of taking the average

of the two class-specific thresholds (τ0 and (1− τ1)), GenThresh.B2 computes

the average probability estimate (in terms of Class 0) of the training examples

that fall between τ0 and (1− τ1) (Algorithm 6).

We consider two different cases, depending upon the value of the thresholds

(τ). If outlying observations may fall between the thresholds, then the gen-

eral threshold (τg) is the average of the estimated probabilities of the outlying

observations on and between the thresholds. If normal observations may fall

between the thresholds then the general threshold (τg) is the average of the
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Algorithm 5 GenThresh.B2 operates by training a base learner in order to
determine the probability estimates for each class. GenThresh.B2 generates
class-specific thresholds for each class and utilizes these thresholds to create
a general threshold (τg), which is the average probability estimate (in terms
of Class 0) of the training examples that fall between τ0 and (1 − τ1). Gen-
Thresh.B2 finds the final classifier by determining the MAP estimate of the
newly calibrated probability estimates, which is simply the most likely class
given the input.

1: function GenThresh.B2
2: Train-Learner(S)
3: Get hypothesis h : X → {0, 1}
4: for i = 1 to m do
5: Pi = Pr(y|xi, S, h)
6: end for
7: τ = Find-Thresholds(P )
8: τg = AvgPrBetweenThresholds(P, τ)
9: H(x) = arg maxy∈YCallibrate(Pr(y|x, S, h), τg)

10: end function

Algorithm 6 AvgPrBetweenThresholds creates a general threshold (τg) by
finding the average of the probability estimates that fall between τ0 and (1−τ1).

1: function AvgPrBetweenThresholds(P, τ)
2: for i = 1 to m do
3: if τ0 − (1− τ1) ≥ 0 then . outlier between thresholds
4: if Pi(y = 0) ≤ τ0 and Pi(y = 0) ≥ (1− τ1) then
5: sum+ = Pi(y = 0)
6: count+ +
7: end if
8: else . normal between thresholds
9: if Pi(y = 0) > τ0 and Pi(y = 0) < (1− τ1) then

10: sum+ = Pi(y = 0)
11: count+ +
12: end if
13: end if
14: end for
15: if count 6= 0 then
16: τg = sum

count
17: else
18: τg = τ0+(1−τ1)

2
19: end if
20: return τg
21: end function
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estimated probabilities of the normal observations falling between the thresh-

olds. Essentially, we were only interested in the estimated probabilities of

those training examples that fell into Scenario 1 or 2 (See Section 3.2.3).

3.4 OutBoost

In the following section, we propose and outline OutBoost (short for Outlier

Boosting), which is based heavily on the AdaBoost.M1 algorithm. We created

OutBoost by modifying AdaBoost.M11 to take advantage of the thresholds,

cutoffs, and threshold scenarios outlined previously, in order to increase the

weight of those observations that were misclassified and fell into the different

threshold scenarios.

Like GenThresh, OutBoost was created to be part of a class of machine-

learning techniques that assumes the availability of a base learner. This class

of machine-learning technique treats the base learner like a black box that

can be called numerous times in order to classify the training examples [26].

The goal is to improve the performance of the base learner over the numerous

1 One of the primary benefits of Boosting is the theoretical guarantee that it will improve

the performance of a weak learner for any weak learner that arbitrarily exceeds 50% in

accuracy [25]. These theoretical guarantees may not extend to the proposed OutBoost

techniques, as it is possible that the sampling distribution of the training examples may

stay the same, depending upon the value of the cutoff, the class-specific thresholds, and the

probability estimates generated by the base learner.
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Table 3.1: Comparison of OutBoost Techniques

OutBoost Method Thresholds Details
OutBoost.B1 Automatic Increases the weight of those misclassified training

instances that are outliers for one class
OutBoost.B1Man Manual Increases the weight of those misclassified training

instances that are outliers for one class
OutBoost.B2 Automatic Increases the weight of those misclassified training

instances that are normal for both classes or
outliers for both classes

iterations, and combine the results of the numerous base learners in order to

produce a single classifier with improved performance [26]. In order to improve

the performance of the base learner over each iteration, the machine-learning

technique must force the base learner to produce new results that are different

than the previous results [26]. In general terms, OutBoost utilizes the threshold

scenarios illustrated in Section 3.2.3 in order to place more importance on

those training examples that are improperly classified during each iteration,

conditional on where they fall relative to the different threshold scenarios, in

terms of their estimated probabilities.

We proposed three variations of the OutBoost technique that we denom-

inated OutBoost.B1Man, OutBoost.B1, and OutBoost.B2. The “B” in the

name again indicates that the algorithm applies to binary classification only,

while the “1” and “2” simply indicate the variations on similar methods.

“Man” implies that we manually specify the class-specific thresholds. Table

3.1 describes the differences between the three techniques.
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3.4.1 AdaBoost.M1

We begin by describing AdaBoost.M1 in further detail in order to properly

discuss the different variations of OutBoost.

Algorithm 7 AdaBoost.M1 operates by training a base learner, where the
goal of the base learner is to minimalize the weighted error [12]. AdaBoost.M1
decreases the weight of properly classified observations in order to focus the
base leaner on the misclassified observations during the next iteration of Ad-
aBoost.M1 [12]. The weights of all the observations are normalized to sum
to one and used as a sampling distribution for the next iteration of the
base learner [12]. AdaBoost.M1 combines the results of each iteration with
a weighted voting scheme in order to build a final classifier [12].

1: function AdaBoost.M1
2: for i = 1 to m do
3: D1(i) = 1

m
4: end for
5: for t = 1 to T do
6: TrainWeakLearner(Dt)
7: Get weak hypothesis ht : X → Y
8: εt =

∑
i : ht(xi)6=yi

Dt(i)

9: if εt ≥ 1
2

then
10: T = t− 1
11: Exit Loop
12: end if
13: βt = εt

1−εt
14: for i = 1 to m do

15: Dt+1(i) = Dt(i)
Zt
×
{
βt if ht(xi) = yi
1 otherwise

16: end for
17: end for
18: H(x) = arg maxy∈Y

∑
t : ht(x)=y log

1
βt

19: end function

AdaBoost.M1 (Algorithm 7) operates in a multiclass classification scenario,

hence the M [12, 26]. Given a training set (S) ofm examples (x1, y1), . . . , (xm, ym)

where xi ∈ X , yi ∈ Y , the distribution Dt is the distribution over the training
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set (S) for iteration t and Dt(i) is the weight assigned to example xi [12].

AdaBoost.M1 assigns each example an initial weight (D1(i)) of 1
m

before the

first iteration. For each iteration (t from 1 . . . T ) AdaBoost.M1 trains a base

learner using the training set (S) given the distribution Dt and obtains hy-

pothesis ht via the base learner [12]. The goal of the base learner is to find

a hypothesis that minimalizes the training error (εt), which is the error of ht

given the distribution Dt [12].

AdaBoost.M1 calculates βt, where βt ∈ [0, 1) and uses βt as a weighting

factor for each example (xi) that is classified properly by ht (ht(xi) = yi) [12].

Next, AdaBoost.M1 determines the weight of each example for the following

iteration (Dt+1(i)) by multiplying the current weight of the training example

(Dt(i)) by βt if the training example was classified properly (ht(xi) = yi) [12].

Zt is the normalization factor for iteration t so that Dt+1 may be used as a

distribution over S [12]. This process repeats for T iterations, or until εt ≥ .5

[26].

In essence, those examples that are properly classified are assigned a lower

weight, while those observations that are harder to classify are assigned a

higher weight [12]. This enables the base learner to focus on those examples

that are hard to classify [12]. A final classifier is then formed as a weighted

vote of the base hypotheses [12].
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WEKA’s implementation of AdaBoost.M1 (Algorithm 8) is a slight mod-

ification of the Adaboost.M1 algorithm [14]. It differs in assigning βt a value

where βt ∈ (1, 100) and determines the weight of each example for the next

iteration Dt+1(i) by multiplying the current weight of the training example

Dt(i) by βt if the training example was incorrectly classified [14]. WEKA’s

implementation is also modified so that the weighted vote uses log βt as the

weight for each base learner instead of log 1
βt

[14]. We modified WEKA’s im-

plementation of AdaBoost.M1 in order to create OutBoost.

Algorithm 8 AdaBoost.M1 (WEKA Implementation) operates almost iden-
tically to AdaBoost.M1 but instead increases the weight of misclassified obser-
vations. WEKA’s implementation also modifies how βt is calculated and used
for reweighing observations, and how βt is used in the final vote. [12, 14].

1: function AdaBoost.M1
2: for i = 1 to m do
3: D1(i) = 1

m
4: end for
5: for t = 1 to T do
6: TrainWeakLearner(Dt)
7: Get weak hypothesis ht : X → Y
8: εt =

∑
i : ht(xi)6=yi

Dt(i)

9: if εt ≥ 1
2

then
10: T = t− 1
11: Exit Loop
12: end if
13: βt = 1−εt

εt
14: for i = 1 to m do

15: Dt+1(i) = Dt(i)
Zt
×
{
βt if ht(xi) 6= yi
1 otherwise

16: end for
17: end for
18: H(x) = arg maxy∈Y

∑
t : ht(x)=y

logβt
19: end function
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3.4.2 OutBoost.B1Man

Although we developed OutBoost.B1Man (Algorithm 9) as a final OutBoost

variation, we describe it here first given its description helps form the basic

building blocks for the remaining methods.

OutBoost.B1Man is very similar to AdaBoost.M1 (Algorithm 8), however,

there are a few key differences. OutBoost.B1Man operates on data sets pos-

sessing only two classes while AdaBoost.M1 operates on data sets with mul-

tiple classes. Additionally, OutBoost.B1Man uses class-specific thresholds τ ,

where τ0 is the class-specific threshold for Class 0 and τ1 is the class-specific

thresholds for Class 1. Finally, OutBoost.B1Man was created so that we could

manually specify the class-specific thresholds, which then remains the same

for each iteration.

As with AdaBoost.M1, OutBoost.B1Man trains the base learner using the

distribution Dt over the training examples S, determines the base hypothesis

ht, and calculates the error (εt) and βt. OutBoost.B1Man differs by checking

if outliers or normal training examples could fall between the class-specific

thresholds before OutBoost.B1Man updates the weights of the training exam-

ples, creating distribution Dt+1.

If OutBoost.B1Man discovers that there may be normal training examples

between both class-specific thresholds (τ) we know that Scenario 1 or 3 (see

57



Algorithm 9 OutBoost.B1Man is a modification of AdaBoost.M1 that op-
erates on data sets with two classes. OutBoost.B1 operates by training a
base learner, where the goal of the base learner is to minimalize the weighted
error. OutBoost.B1Man enables the user to manually specify class-specific
thresholds. OutBoost.B1Man increases the weight of an observation that is
misclassified and considered an outlier for one class and normal for the other
class given the class-specific thresholds. The weights of all the observations
are normalized to sum to one and used as a sampling distribution for the next
iteration of the base learner. OutBoost.B1Man combines the results of each
iteration with a weighted voting scheme in order to build a final classifier.

1: function OutBoost.B1Man
2: for i = 1 to n do
3: D1(i) = 1

n
4: end for
5: for t = 1 to T do
6: TrainBaseLearner(Dt)
7: Get base hypothesis ht : X → {0, 1}
8: εt =

∑
i : ht(xi)6=yi Dt(i)

9: if εt ≥ 1
2

then . error is too large
10: T = t− 1
11: Exit Loop
12: end if
13: βt = 1−εt

εt
14: for i = 1 to n do
15: if τ0 − (1− τ1) ≥ 0 then . outlier between thresholds

16: Dt+1(i) = Dt(i)
Zt
×

βt if ht(xi) 6= yi and
((Pr(y = ŷi|xi, Dt) > τŷi)

1 otherwise
17: else . normal between thresholds

18: Dt+1(i) = Dt(i)
Zt
×

βt if (ht(xi) 6= yi) and
((Pr(y = yi|xi, Dt)) ≤ τyi

1 otherwise
19: end if
20: end for
21: end for
22: H(x) = arg maxy∈Y

∑
t : ht(x)=y

logβt
23: end function

58



Section 3.2.3) is in effect for all training examples. OutBoost.B1Man is not

concerned with those training examples that are considered normal for both

classes. If OutBoost.B1Man finds that there may be outlying training exam-

ples between the thresholds, this indicates that Scenario 1 or 3 (see Section

3.2.3) is in effect for all training examples. Similarly, OutBoostM1.Man is not

concerned with those training examples that are considered outliers by both

classes. OutBoostM1.Man was tailored to only increase the weights of those

observations that are affected by Scenario 3. In other words, it increases the

weights of observations that are misclassified and an outlier for one class but

not the other.

If OutBoost.B1Man finds that normal training examples may be present

between the thresholds, OutBoost.B1Man determines the weight of each ex-

ample for the next iteration (Dt+1(i)) by multiplying the current weight of

the training example (Dt(i)) by βt if the training example was misclassified

(ht(xi) 6= yi) and if the estimated probability of being the true class is lower

than or equal to the class threshold of the true class (Pr(yi|xi, Dt) ≤ τyi). Like

AdaBoost.M1, OutBoost.B1 divides the weights by Zt, which is the normal-

ization factor for iteration t, so that Dt+1 may be used as a distribution over

S. In effect, OutBoost.B1Man increases the weights of those observations that

are misclassified and considered an outlier for one class but not the other, and
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Figure 3.3: Visualizes the regions of probability estimates where Out-
Boost.B1Man and OutBoost.B1 will increase the weight of a misclassified
training example, given the class-specific thresholds and the probability es-
timate produced by the base learner for the training instance.
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decreases the weights of the other observations.

As a final case, if OutBoost.B1Man discovers that outlying training exam-

ples may be present between the thresholds, OutBoost.B1Man instead multi-

plies the current weight of the training example (Dt(i)) by βt if the training

example was misclassified (ht(xi) 6= yi) and if the estimated probability of

being the estimated class is greater than the class threshold of the estimated

class (Pr(ŷi|xi, Dt) > τŷi). Again, OutBoost.B1Man increases the weights of

those observations that are misclassified and considered an outlier for one class

but not the other and decreases the weights of the other observations.

We illustrate both of these cases in Figure 3.3 by visualizing the regions

where a training example must fall relative to the class-specific thresholds in

terms of its probability estimates, in order for the weight of the observation

to be increased if it is misclassified. Where (a) demonstrates the first case,

where observations may be present that are considered outliers by both classes,

and (b) shows the second case, where observations may be present that are

considered normal by both classes.

In essence, OutBoostM1.Man forces the base learner to focus on those

training examples that are misclassified and have probabilities estimates that

are considered outliers for one class but normal for the other. In other words,

OutBoostM1.Man forces the base learner to place more importance on those
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examples that are especially difficult to classify, similar to AdaBoost.M1. As

with AdaBoost.M1 this process is repeated for T iterations, or until εt ≥

0.5. After which, a final classifier is formed as a weighted vote of the base

hypotheses.

3.4.3 OutBoost.B1

OutBoost.B1 (Algorithm 10) operates almost identically to OutBoost.B1Man

except for one key difference: instead of manually specifying the thresholds (τ)

before execution, OutBoost.B1 determines class-specific thresholds by applying

a univariate outlier detection technique to the probability estimates generated

by the base learner. OutBoost.B1 finds the estimated probabilities for each

training example (Pi) and automatically generates a class-specific threshold

for each class during each iteration by applying Find-Thresholds (Algorithm

1) to the estimated probabilities (P ) of the training examples for iteration t.

3.4.4 OutBoost.B2

OutBoost.B2 (Algorithm 11) is similar to OutBoost.B1 except for another

key difference: OutBoost.B2 increases the weight of those observations that

are considered normal or outliers by both classes instead of increasing the

weight of those observations that are misclassified and considered outliers for
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Algorithm 10 OutBoost.B1 is a modification of AdaBoost.M1 that requires
two classes. OutBoost.B1 operates by training a base learner, where the goal of
the base learner is to minimalize the weighted error. OutBoost.B1 determines
class-specific thresholds by applying a univariate outlier detection technique to
the probability estimates generated by the base learner. OutBoost.B1 increases
the weight of an observation that is misclassified and considered an outlier for
one class and normal for the other class, given the class-specific thresholds.
The weights of all the observations are normalized to sum to one and used as a
sampling distribution for the next iteration of the base learner. OutBoost.B1
combines the results of each iteration with a weighted voting scheme in order
to build a final classifier.

1: function OutBoost.B1
2: for i = 1 to n do
3: D1(i) = 1

n
4: end for
5: for t = 1 to T do
6: TrainBaseLearner(Dt)
7: Get base hypothesis ht : X → {0, 1}
8: εt =

∑
i : ht(xi)6=yi Dt(i)

9: if εt ≥ 1
2

then . error is too large
10: T = t− 1
11: Exit Loop
12: end if
13: βt = 1−εt

εt
14: for i = 1 to n do
15: Pi = Pr(y|xi, Dt)
16: end for
17: τ = FindThresholds(P )
18: for i = 1 to n do
19: if τ0 − (1− τ1) ≥ 0 then . outlier between thresholds

20: Dt+1(i) = Dt(i)
Zt
×

βt if ht(xi) 6= yi and
((Pr(y = ŷi|xi, Dt) > τŷi)

1 otherwise
21: else . normal between thresholds

22: Dt+1(i) = Dt(i)
Zt
×

βt if (ht(xi) 6= yi) and
((Pr(y = yi|xi, Dt) ≤ τyi

1 otherwise
23: end if
24: end for
25: end for
26: H(x) = arg maxy∈Y

∑
t : ht(x)=y

logβt
27: end function
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Algorithm 11 OutBoost.B2 is a modification of AdaBoost.M1 and Out-
Boost.B1 [12]. OutBoost.B2 operates by training a base learner, where the
goal of the base learner is to minimalize the weighted error. OutBoost.B2
determines class-specific thresholds by applying a univariate outlier detection
technique to the probability estimates generated by the base learner. Out-
Boost.B2 increases the weight of an observation that is misclassified and con-
sidered an outlier or normal by both classes, given the class-specific thresholds.
The weights of all the observations are normalized to sum to one and used as a
sampling distribution for the next iteration of the base learner. OutBoost.B2
combines the results of each iteration with a weighted voting scheme in order
to build a final classifier.

1: function OutBoost.B2
2: for i = 1 to n do
3: D1(i) = 1

n
4: end for
5: for t = 1 to T do
6: TrainBaseLearner(Dt)
7: Get base hypothesis ht : X → {0, 1}
8: εt =

∑
i : ht(xi)6=yi Dt(i)

9: if εt ≥ 1
2

then . error is too large
10: T = t− 1
11: Exit Loop
12: end if
13: βt = 1−εt

εt
14: for i = 1 to n do
15: Pi = Pr(y|xi, Dt)
16: end for
17: τ = FindThresholds(P )
18: for i = 1 to n do
19: if τ0 − (1− τ1) ≥ 0 then . outlier between thresholds

20: Dt+1(i) = Dt(i)
Zt
×

βt if (ht(xi) 6= yi) and
((Pr(y = yi|xi, Dt)) ≤ τyi

1 otherwise
21: else . normal between thresholds

22: Dt+1(i) = Dt(i)
Zt
×

βt if ht(xi) 6= yi and
((Pr(y = ŷi|xi, Dt) > τŷi)

1 otherwise
23: end if
24: end for
25: end for
26: H(x) = arg maxy∈Y

∑
t : ht(x)=y

logβt
27: end function
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Figure 3.4: Visualizes the regions of probability estimates where OutBoost.B2
will increase the weight of a misclassified training example, given the class-
specific thresholds and the probability estimate produced by the base learner
for the training instance.
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one class and normal for the other class. Both cases are illustrated in Figure

3.4, which shows the regions where a training example must fall relative to

the class-specific thresholds in terms of its probability estimates, in order for

the weight of the observation to be increased. In essence, OutBoost.B2 treats

those observations that are especially difficult to classify the same as it treats

observations that were properly classified.

3.5 Implementation

We implemented and evaluated our proposed machine-learning techniques with

the WEKA 3.7.12 Software Workbench [14]. Developed using the Java pro-

gramming language, WEKA is licensed under the GNU General Public License

and as such is open source [14]. WEKA is a collection of machine-learning al-

gorithms, which includes tools for classification, clustering, and visualization

[14]. We chose to implement our techniques in WEKA due to it being open

source and it offering a wide variety of pre-programmed classes that facilitated

the creation and evaluation of classification models [14].
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3.5.1 Proposed Techniques

We implemented GenThresh.B1 and GenThresh.B2 using the SingleClassi-

fierEnhancer superclass provided by the WEKA 3.7.12 software workbench.

OutBoost.B1, OutBoost.B2, and OutBoost.B1Man were implemented by mod-

ifying WEKA’s version of AdaBoost.M1, which used the RandomizableSingle-

ClassifierEnhancer superclass, to include the changes outlined in Section 3.4.

3.5.2 Base Learners

In order to explore the performance of our proposed machine-learning tech-

niques we tested a wide range of supervised machine-learning methods as base

learners. Table 3.2 details the machine-learning methods selected for our eval-

uation and the names of WEKA’s implementations for the chosen techniques.

No changes were made to WEKA’s implementations and they were utilized

with their default configuration. The general concepts of these base learners

were described in Section 2.3.

3.5.3 AdaBoost.M1

During our evaluation, we used WEKA’s pre-implemented version of Ad-

aBoost.M1 [14].
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Table 3.2: List of supervised machine-learning algorithms used as base learners,
which were used to explore the performance of GenThresh and OutBoost. All
base learners are available pre-implemented in the WEKA 3.7.12 Software
Workbench [14].

Machine-Learning Technique WEKA Implementation
DT J48
NBC NiaveBayes
BBN BayesNet
SVM SMO
SVM + LR SMO with LR
ANN MultilayerPerceptron

3.6 Data

We selected five different data sets to use as benchmarks for our proposed

techniques. Details regarding the data sets can be found in Table 3.3, while

Table 3.4 outlines the class distribution and number of features. We acquired

all but the Corot data set from the UCI Machine Learning Repository and

created two new data sets from the Disease and Madelon data sets to use as

benchmarks for GenThresh.B1 and GenThresh.B2 [17]. The new data sets

were created by taking each of the original data sets and randomly sampling

a subset of the minority class without replacement in order to create an im-

balanced class distribution for each data set. The new sample of the minority

class was combined with the observations of the majority class in order to cre-

ate two new data sets, where the minority class of the observations represented

approximately 25% of the observations in the data set.
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Table 3.3: List of data sets that were used as benchmarks for the evaluation
of our proposed techniques.

Data Description
Adult The Adult data set is composed of features and observations ex-

tracted from the 1994 United States Census database and may be
found on the UCI Machine Learning Repository [17]. We are tasked
with predicting whether or not an individual makes over $50,000 a
year [17].

Cancer Dr. William H. Wolberg, W. Nick Street, and Olvi L. Mangasarian
created the Breast Cancer Wisconsin (Diagnostic) Data Set data
set found on the UCI Machine Learning Repository [17]. We are
tasked with predicting if an observation is malignant or benign [17].

Corot The Corot Problem 1 Magnitude Limited Data Set is an unpub-
lished data set where we are given the task of predicting which
observations are planetary candidates.

disease Robert Detrano, M.D., Ph.D. of the V.A. Medical Center, Long
Beach and Cleveland Clinic Foundation created the Heart Disease
data set found on the UCI Machine Learning Repository [17]. We
are tasked with predicting the presence or absence of heart disease
[17].

Madelon Isabelle Guyon, Steve R. Gunn, Asa Ben-Hur, and Gideon Dror cre-
ated the Madelon Data Set found on the Machine Learning Repos-
itory [13, 17]. A number of features are included that have no pre-
dictive power [17]. We are tasked with separating the observations
into two classes [17].

Disease Sample We created an imbalanced sample of the Heart Disease data set by
randomly sampling (without replacement) the minority class of the
Heart Disease data set.

Madelon Sample We created an imbalanced sample of the Madelon data set by ran-
domly sampling (without replacement) the minority class of the
Madelon data set.
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Table 3.4: Class distribution for the selected data sets. This includes the
number of features, number of instances for each class (count and percentage),
and total number of instances.

Data Features Class 1 Class 2 Instances

Adult 15 7841 (24.08%) 24720 (75.92%) 32561
Cancer 10 241 (34.48%) 458 (65.52%) 699
Corot 5 225 (1.45%) 15317 (98.55%) 15542
Disease 14 139 (45.87%) 164 (54.13%) 303
Madelon 501 999 (49.97%) 1000 (50.03%) 1999
Disease Sample 14 55 (25.11%) 164 (74.89%) 219
Madelon Sample 501 334 (25.04%) 1000 (74.96%) 1334

The order of the classes were switched in all of data sets where the minority

class was not the positive class. This was a necessary step to acquire minority

class performance measures from WEKA, such as precision and recall.

3.7 Evaluation

The following section details how we achieved the performance assessment of

our proposed machine-learning techniques. It describes how the performance

of the base learners and proposed techniques were determined, as well as how

they were compared.

Our proposed techniques were assessed in the WEKA software workbench

in order to take advantage of WEKA’s built in evaluation tools and the Exper-

imenter platform [14]. Each proposed technique was evaluated using a variety

of base learners (detailed in Table 3.2) and data sets (detailed in Table 3.3),
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where the performance results were computed.

3.7.1 Baseline Creation

In order to evaluate the performance of our proposed techniques we created

a performance baseline for the selected base learners and AdaBoost.M1. The

base learners (detailed in Table 3.2) and the base learners in conjunction with

AdaBoost.M1, were applied to all of the data sets listed in Table 3.3 (aside

from the sampled data sets, which AdaBoost.M1 was not applied). We exe-

cuted AdaBoost.M1 for 1000 iterations when using a DT, NBC, and BBN as

a base learner and five iterations when using a SVM, SVM+LR, and ANN.

Additionally, 10 iterations of AdaBoost.M1 were performed on the Cancer and

Disease data sets using all of the base learners.

3.7.2 Proposed Techniques

We applied GenThresh.B1 and GenThresh.B2 in conjunction with all of the

base learners, on the same data sets used to establish the base line for the base

learners. Additionally, OutBoost.B1 and OutBoost.B2 were executed using

the same base learners, data sets, and iterations as AdaBoost.M1 (aside from

10 iterations, which we did not repeat for OutBoost.B1 and OutBoost.B2).

Each combination of base learner and proposed technique was configured
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with both a cutoff (α) of 0.0 (α = 0.0) and 0.5 (α = 0.5). A cutoff of 0.0 was

selected so that all of the probability estimates could be used to find the class-

specific thresholds. A cutoff of 0.5 was chosen with the assumption that any

training example with an estimated probability of belonging to a class given

the training example, could be an outlier for that class or part of another

distribution (i.e. the other class) if the estimated probability for that class

was smaller or equal to 0.5.

OutBoost.B1Man was executed for 10 iterations in combination with all

of the base learners on both the Cancer and Disease data sets with identical

class-specific thresholds ranging from 0.00 to 0.50 at .05 intervals. Finally,

OutBoost.B1Man was applied to the Cancer data set using a BBN base learner

for 5, 10, 15 and 20 iterations with the same class thresholds.

3.7.3 Chosen Performance Measures

Accuracy was chosen as a performance measure for the balanced data sets as

we wished to use a commonly used measure that summarized the performance

between both classes. Precision and recall was chosen for the imbalanced data

sets as we were particularly interested in examining the effect of our tech-

niques on these metrics. Other performance measures were examined but we

restricted our evaluation to these three metrics in order to focus our evalua-
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tion. Additionally, accuracy, precision, and recall are fairly intuitive metrics

in their interpretation.

3.7.4 Estimating Generalization Performance

The mean estimated generalization performance for the base learners, Ad-

aBoost.M1, and the proposed techniques were collected by applying repeated

stratified k-fold CV to each data set, the basics of which are described in

Section 2.7.6. Ten folds were utilized for the stratified CV and the process of

stratified CV was repeated five times.2 The mean performance results were cal-

culated by averaging the results of the folds for each iteration, then averaging

the results of the iterations. We also computed the sample standard deviation

for the iterations. Generalization accuracy, precision, and recall were selected

as performance metrics, where the generalization accuracy was calculated for

all of the data sets and generalization precision and recall was calculated for

the imbalanced data sets.

2 Using k-fold CV in combination with Walsh’s Outlier Test, adds additional conditions

that must be observed in order for Walsh’s Outlier Test to be effective. Specifically, Walsh’s

Outlier Test is limited to a minimum of more then 60 observations for a significance level

of 0.1. Given that k-fold CV partitions all the training instances (where N is the number

of instances) into k-folds and only utilizes k − 1 of the folds for training, the inequality
N(k−1)

k > 60 must hold true. If this inequality does not hold true the significance level must

then be reduced in order to compensate for the smaller number of observations. All of our

chosen data sets met this condition for k = 10.
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3.7.5 Comparing Performance

The mean performance of AdaBoost.M1, GenThresh.B1, and GenThresh.B2

was compared to the mean performance of its associated base learner when

applied to the same data set, and it was noted when they exceeded their base

learner’s performance for the chosen metrics.3

We also compared the performance of OutBoost.B1Man, OutBoost.B1,

and OutBoost.B2 to the performance of AdaBoost.M1 when both the pro-

posed technique and AdaBoost.M1 had the same combination of iterations,

base learner, and data set. We paid special attention to when the proposed

techniques outperformed AdaBoost.M1, AdaBoost.M1 and the its associated

base learner, and when AdaBoost.M1 failed to outperform its base learner

when the proposed technique did. The error bars in all of visualizations used

to make comparisons are one standard deviation.

3.8 Chapter Summary

In this chapter we constructed a framework for discovering class-specific thresh-

old by applying Walsh’s Outlier Test to the probability estimates produced by

3 Tests of significance were not utilized during the comparisons, due to the lack of statis-

tical tests of significance that were applicable to repeated stratified k-fold CV. It is recom-

mended in [32] to use the corrected resampled t-test, however, we were not convinced that

it was applicable given that k-fold cross validation was repeated.
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machine learning techniques, referred to as base learners. Two methods of

utilizing these class-specific thresholds were proposed and illustrated, which

we referred to as GenThresh and OutBoost, where OutBoost is a modifica-

tion of the popular boosting technique referred to as AdaBoost. Details were

provided regarding our approach to evaluating and comparing these proposed

techniques to AdaBoost.M1 (with OutBoost) and the selected base learners,

where each technique was applied to a selected group of benchmark data sets

and the results of which are presented and analyzed in the following chapter.
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Chapter 4

Results and Discussion

The following chapter presents and discuses our results as well as the potential

implications of these results. We begin by describing and examining those

results collected for the base learners and AdaBoost.M1 before moving on to

investigating the results produced by GenThresh and OutBoost.

4.1 Baseline

The following section communicates the performance results collected for the

base learners and AdaBoost.M1, where the performance results were used as

a baseline to draw comparisons between the base learners, AdaBoost.M1, and

the proposed techniques. The base learners in Table 3.2 and AdaBoost.M1

in conjunction with the base learners, were applied to the selected data sets
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listed in Table 3.3 as described in Section 3.7 of our Methods.

4.1.1 Base Learners

The mean and sample standard deviation of the accuracy of the base learners

applied to all of the data sets, and the mean and sample standard deviation of

the precision and recall of the minority class of the imbalanced data sets are

shown in Table 4.1. These results served as a base line for the performance of

AdaBoost.M1 and our proposed techniques, given the same base learners.

Referring to Table 4.1, we discerned a few trends regarding the performance

of the base learners for the given data sets. When the base learners were

applied to the Corot data set we witnessed accuracy of 98.55% for almost all

of the base learners. Given that the majority class represents 98.55% of the

training examples (the class distribution in Table 3.4), these results imply that

the base learners were not able to distinguish between the minority class and

the majority class, instead classifying all of the examples as the majority class.

Further supporting this hypothesis, we recognized that none of the observations

that were classified as the minority class were actually of the minority class

for any of the base learners, given that the recall and precision of the base

learners were zero. This poor performance likely due to the severe imbalance

of the training examples.
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Additionally, we noted that the performance of the base learners on the

Cancer data set left little room for improvement, given that the performance

ranged from 95.02% to 97.20% depending on the base learner. These results

imply that if we see increased performance for any of our proposed methods,

it will be smaller in scale than what could be seen with a data set where the

base learners did not perform as highly, such as the Disease or Adult data set.

At first glance, the increased accuracy for the Disease Sample and Madelon

Sample data sets compared to the accuracy of the base learners on the original

data sets, may appear interesting. However, we suggest this was likely due to

the new class imbalance and the majority bias of the accuracy measure, rather

than an increased ability to distinguish between classes. These thoughts are

further supported when examining the recall of the minority class, which was

fairly low for both sampled data sets. Indicating that few examples of the

minority class were classified as the minority class.

Referring to Table 4.1, we observed that the accuracy of the base learners

on the Madelon data set ranged from 54.75% to 68.60% in accuracy, in some

cases indicating that the base learner performed little better than chance when

attempting to distinguish between the classes. The results suggest that the

Madelon data set is an especially difficult classification problem, most likely

due to the numerous features without predictive powers [17].
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Examining the results in Table 4.1 revealed that using an ANN as a base

learner did not produce exceptional results. Although it performed relativity

well when compared to the other base learners, it did not perform the best for

any of the metrics examined for any of the data sets. Although this may seem

discouraging, this gave us an opportunity to observe the effect of combining

OutBoost with a weaker classifier. This is important to evaluate, given the

purpose of AdaBoost is to combine weak classifiers together to create a stronger

classifier [12].

As a final note, the Adult, Corot, and Madelon Sample data sets displayed

the greatest potential for increased recall and precision, given the low metric

values produced across all of the base learners. If we are to see increased recall

or precision in our proposed techniques it is more likely to appear in these

three data sets.

4.1.2 AdaBoost.M1

The computed mean accuracy and sample standard deviation for AdaBoost.M1

having been applied to the selected data sets in combination with the different

base learners, are shown in Table 4.2. Also displayed in Table 4.2 are the mean

and sample standard deviation of the precision and recall of the minority class

given the same base learners. The instances marked in bold demonstrated
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higher performance than the associated base learner for the given metric.

We observed nine instances of AdaBoost.M1 exhibiting higher accuracy

than the associated base learner, where three of the nine occurrences were

more than 1.00% greater, implying a substantial difference in accuracy for

those three examples. Given the potentially low number of consequential im-

provements in accuracy, our results indicate that AdaBoost.M1 does not per-

form better overall in terms of accuracy, given the chosen base learners and

data sets.

This implication was further reinforced when we plotted the accuracy of

AdaBoost.M1 against its associated base learner, as shown in Figure 4.1. In

order to interpret Figure 4.1, note that each point on each scatter plot in-

dicates the accuracy of AdaBoost.M1 vs. the accuracy of the base learner,

where points that fall above the line y = x demonstrate improvements in ac-

curacy over the base learner, and points that fall below the line indicate lower

performance than the base learner.

The scatter plots are grouped in such a way that each plot in the figure

show the same observations, but with additional details. The top left plot

displays the original comparison, while the top right plot displays error bars

for the same points. The horizontal error bars are the standard deviation

of the base learner and the vertical error bar are the standard deviation of
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Figure 4.1: Comparison of the mean accuracy of AdaBoost.M1 and its associ-
ated base learner. Mixed results were observed, with AdaBoost.M1 performing
both better and worse than its base learner, while the difference in performance
is somewhat minimal.

83



AdaBoost.M1. The bottom left and bottom right plots color code the same

points, where the former are color coded given the data set and the latter are

color coded given the base learner.

Figure 4.1 reveals a few examples where AdaBoost.M1 produced higher

accuracy than its associated base learner, where we see points that fall above

the line. However, numerous examples appear on the diagonal line indicating

the same performance, and below the line that suggest poorer performance.

This may be due to the nature of AdaBoost.M1, which was conceived to boost

the performance of a weak learner, however many of the base learners used for

AdaBoost.M1 were strong learners. Overall, these results reinforce our initial

proposition that AdaBoost.M1 produced mixed results in terms of accuracy,

which may lead to similar mixed results in our evaluation of OutBoost, given

that OutBoost is a modification of AdaBoost.M1.

Referring to Table 4.2, we note 10 instances where AdaBoost.M1 produced

higher precision than the associated base learner on the imbalanced data sets,

with a difference greater than 0.01 for six of the 10 instances, suggesting a

fairly substantial difference for the six instances. These results suggest that

AdaBoost.M1 may be very beneficial for the precision of those training exam-

ples classified as the minority class. Figure 4.2 reinforces this suggestion, where

we see that most of the points fall on or above the diagonal line, indicating
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Figure 4.2: Comparison of the mean precision of AdaBoost.M1 and its asso-
ciated base learner. Positive results were observed, with many examples of
AdaBoost.M1 performing the same or better than its base learner.
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Figure 4.3: Comparison of the mean recall of AdaBoost.M1 and its associated
base learner. Mixed results were observed, with examples of AdaBoost.M1
performing both better and worse than its base learner.
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the same or better precision than the base learner.

Finally, we observed six instances of AdaBoost.M1 exhibiting higher recall

than the associated base learner on the imbalanced data sets in Table 4.2. We

also observed a greater than 0.01 change for three of those instances, suggesting

a consequential difference in recall for those three examples. Figure 4.3 also

suggests mixed performance for the recall measure, where numerous points

fall above and below the line, suggesting that although AdaBoost.M1 may

increase the recall of the minority class for a base learner, it may also decrease

the recall.

Increased recall or precision in the minority class is somewhat expected,

as AdaBoost.M1 focuses the base learners attention on training examples that

are difficult to classify, such as those observations that are of the minority

class but are classified as the majority class. Given the results produced by

AdaBoost.M1, we could infer that if we see an improvement in the performance

of OutBoost compared to AdaBoost.M1, we may see further improvements in

precision or recall.

Overall, these results served as a base line for the performance of OutBoost.

Given that OutBoost.B1 and OutBoost.B2 are modifications of AdaBoost.M1,

these results suggest that we may also see mixed results for our evaluation

of OutBoost.B1 and OutBoost.B2. The results further suggest that we may
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expect to see only a few examples of increased performance across the observed

metrics, and even fewer instances demonstrating a large difference.

4.2 GenThresh

The following section presents our evaluation of GenThresh.B1 (Algorithm

3) and GenThresh.B2 (Algorithm 5) by describing and discussing the per-

formance results collected during the evaluation. GenThresh.B1 and Gen-

Thresh.B2 in combination with the base learners listed in Table 3.2, were ap-

plied to the selected data sets listed in Table 3.3 as described in Section 3.7 of

the Methods. Comparisons were drawn between the proposed techniques and

the base learners by determining the mean accuracy for all of the selected data

sets and the mean precision and recall of the minority class for the imbalanced

data sets.

4.2.1 GenThresh.B1

Table 4.3 displays the mean and sample standard deviation of the accuracy of

GenThresh.B1 combined with the base learners, applied to all of the data sets.

Also shown in Table 4.3, are the mean and sample standard deviation of the

precision and recall of the minority class of the imbalanced data sets. As with
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the evaluation of AdaBoost.M1, the observations marked in bold demonstrated

better performance than the associated base learner for the given metric.

Examining the results in Table 4.3 revealed 19 instances where GenThresh.-

B1 exhibited higher recall than the associated base learner on the imbalanced

data sets, where a greater than 0.01 increase was observed for 16 of those

examples, indicating a considerable improvement in the recall of the minority

class over that which was produced by the base learner in Table 4.1. Our

results suggest that GenThresh.B1 may be very beneficial in improving the

recall of the minority class.

These potentially positive ramifications are further reinforced by Figure

4.4 and Figure 4.5 where the recall of GenThresh.B1 is plotted against its

associated base learner. Figure 4.4 visualizes the results produced when a

cutoff of 0.0 (α = 0.00) was utilized and Figure 4.5 shows the results for a

cutoff of 0.5 (α = 0.50). From the data shown in both figures, we observed

that the points fall on or above the line in almost all cases, suggesting that

combining GenThresh.B1 and a base learner may produce higher recall in the

minority class than a given base learner, or at least it may have no negative

effect on the recall.

We also noted that choosing a cutoff of 0.0 rather than 0.5 produced higher

recall for more examples (fourteen vs. five), which can be easily observed when
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Table 4.3: Mean and sample standard deviation of the selected performance
metrics for GenThresh.B1.

GenThresh.B1: Accuracy (Percent)

Data α DT NBC BBN SMO SVM+LR ANN
Disease 0.00 78.37± 0.42 83.50± 0.44 82.38± 0.69 83.63± 0.63 83.37± 0.28 78.22± 0.42

0.50 79.43± 0.89 83.56± 0.46 81.92± 0.61 83.63± 0.63 83.30± 0.37 78.29± 1.11
Madelon 0.00 68.79± 1.32 58.66± 0.34 61.44± 0.63 54.75± 0.60 54.68± 0.77 59.23± 0.42

0.50 68.80± 1.32 58.66± 0.34 60.91± 0.44 54.75± 0.60 54.63± 0.90 59.12± 0.48
Cancer 0.00 91.76± 0.54 95.73± 0.34 96.22± 0.22 96.71± 0.20 96.54± 0.16 95.42± 0.92

0.50 95.02± 0.36 96.05± 0.08 97.25± 0.12 96.71± 0.20 96.54± 0.16 95.31± 0.62
Adult 0.00 67.31± 1.37 83.48± 0.02 83.71± 0.16 85.05± 0.02 85.06± 0.04 82.40± 0.65

0.50 86.14± 0.06 83.48± 0.02 83.95± 0.04 85.05± 0.02 85.06± 0.04 82.40± 0.65
Corot 0.00 98.55± 0.00 98.53± 0.02 98.55± 0.00 98.55± 0.00 96.62± 4.31 97.84± 0.43

0.50 98.55± 0.00 98.53± 0.02 98.55± 0.00 98.55± 0.00 98.55± 0.00 98.55± 0.00
Disease Sample 0.00 65.34± 4.05 86.47± 0.26 71.70± 1.52 86.58± 0.54 86.48± 0.26 78.37± 1.06

0.50 79.81± 1.33 86.47± 0.26 80.63± 1.06 86.58± 0.54 86.21± 0.49 79.10± 2.07
Madelon Sample 0.00 60.00± 1.54 68.55± 0.35 58.76± 0.91 65.20± 0.50 55.58± 1.78 67.87± 1.17

0.50 69.76± 1.12 68.55± 0.35 64.05± 0.38 65.20± 0.50 64.20± 0.96 67.93± 1.18

GenThresh.B1: Precision

Data α DT NBC BBN SVM SVM+LR ANN
Cancer 0.00 0.8311± 0.0108 0.8982± 0.0080 0.9085± 0.0059 0.9492± 0.0047 0.9504± 0.0027 0.9255± 0.0201

0.50 0.9260± 0.0054 0.9184± 0.0021 0.9407± 0.0020 0.9492± 0.0047 0.9504± 0.0027 0.9362± 0.0109
Adult 0.00 0.4210± 0.0116 0.7153± 0.0007 0.6272± 0.0034 0.7440± 0.0004 0.7380± 0.0012 0.6937± 0.0236

0.50 0.7456± 0.0028 0.7153± 0.0007 0.6336± 0.0009 0.7440± 0.0004 0.7380± 0.0012 0.6937± 0.0236
Corot 0.00 0.0000± 0.0000 0.0000± 0.0000 0.0000± 0.0000 0.0000± 0.0000 0.0003± 0.0006 0.0017± 0.0014

0.50 0.0000± 0.0000 0.0000± 0.0000 0.0000± 0.0000 0.0000± 0.0000 0.0000± 0.0000 0.0000± 0.0000
Disease Sample 0.00 0.4689± 0.0587 0.7578± 0.0108 0.4951± 0.0322 0.8339± 0.0312 0.8116± 0.0168 0.5985± 0.0439

0.50 0.6563± 0.0489 0.7578± 0.0108 0.6203± 0.0184 0.8339± 0.0312 0.8056± 0.0078 0.6118± 0.0680
Madelon Sample 0.00 0.3254± 0.0099 0.3607± 0.0046 0.3398± 0.0038 0.2877± 0.0108 0.2781± 0.0090 0.3182± 0.0259

0.50 0.3942± 0.0277 0.3607± 0.0046 0.3500± 0.0056 0.2877± 0.0108 0.2795± 0.0127 0.3194± 0.0262

GenThresh.B1: Recall

Data α DT NBC BBN SVM SVM+LR ANN
Cancer 0.00 0.9627± 0.0094 0.9918± 0.0030 0.9951± 0.0019 0.9586± 0.0031 0.9519± 0.0046 0.9485± 0.0082

0.50 0.9337± 0.0107 0.9744± 0.0019 0.9851± 0.0038 0.9586± 0.0031 0.9519± 0.0046 0.9303± 0.0091
Adult 0.00 0.9285± 0.0048 0.5217± 0.0007 0.8014± 0.0045 0.5783± 0.0012 0.5888± 0.0008 0.5765± 0.0624

0.50 0.6451± 0.0028 0.5217± 0.0007 0.7916± 0.0006 0.5783± 0.0012 0.5888± 0.0008 0.5765± 0.0624
Corot 0.00 0.0000± 0.0000 0.0000± 0.0000 0.0000± 0.0000 0.0000± 0.0000 0.0200± 0.0447 0.0105± 0.0095

0.50 0.0000± 0.0000 0.0000± 0.0000 0.0000± 0.0000 0.0000± 0.0000 0.0000± 0.0000 0.0000± 0.0000
Disease Sample 0.00 0.7380± 0.0440 0.7200± 0.0135 0.7947± 0.0240 0.6033± 0.0122 0.6213± 0.0194 0.6187± 0.0334

0.50 0.5240± 0.0196 0.7200± 0.0135 0.7113± 0.0174 0.6033± 0.0122 0.6213± 0.0194 0.5900± 0.0367
Madelon Sample 0.00 0.5364± 0.0537 0.3246± 0.0061 0.6833± 0.0273 0.2661± 0.0101 0.4907± 0.0259 0.2391± 0.0167

0.50 0.3863± 0.0487 0.3246± 0.0061 0.5101± 0.0115 0.2661± 0.0101 0.2739± 0.0104 0.2391± 0.0167
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Figure 4.4: Comparison of the mean recall of GenThresh.B1 its associated
base learner, where α = 0.0. Numerous examples were observed where Gen-
Thresh.B1 produced higher recall, indicating that GenThresh.B1 may be ben-
eficial in increasing the recall of the base learner.
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Figure 4.5: Comparison of the mean recall of GenThresh.B1 its associated
base learner, where α = 0.5. Examples of increased recall were observed,
where the difference in recall was not as dramatic as when a cutoff of α = 0.0
was specified. Suggesting that a cutoff of α = 0.5 may not be the preferred
choice, if dramatic changes in recall is the objective.
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comparing Figure 4.4 and Figure 4.4. This suggests that allowing Walsh’s

Outlier Test to use all of the probability estimates produced during training

is more beneficial for the recall of the minority class.

Overall, these results suggest that GenThesh.B1 may be useful for an im-

balanced classification scenario, where we emphasize increasing recall over in-

creasing accuracy or precision. Particularly, GenThesh.B1 may be useful in

scenarios where TP are heavily rewarded and FP are not penalized. Con-

sequently, GenThesh.B1 may be useful when faced with an outlier detection

scenario where finding the highest number of outliers possible, within reason,

is more important than confirming that all of the discovered outliers are true

outliers.

The importance of a scenario where ignoring the penalties produced by FP

is made obvious when examining the precision observed for GenThresh.B1. We

noted four instances where GenThresh.B1 produced higher precision than the

associated base learner on the imbalanced data sets, but there was less than

a 0.01 difference for all of these observations, indicating they are of little con-

sequence. This implies that GenThresh.B1 may produce more false positives,

as the recall increased but the precision did not.

Additionally, we observed eight instances of GenThresh.B1 exhibiting higher

accuracy (in Table 4.3) than the associated base learner. However, less than
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a 1.00% difference existed between GenThresh.B1 and the associated base

learner for all of these observations. Suggesting that GenThresh.B1 does not

improve the accuracy of the base learner.

4.2.2 GenThresh.B2

The results for GenThresh.B2 are presented in Table 4.4, where the mean

and sample standard deviation of the accuracy of GenThresh.B2 are provided

for each base learner and data set combination. Also included are the mean

and sample standard deviation for the precision and recall of the minority

class. As with the evaluation of GenThresh.B1, the observations marked in

bold demonstrated higher performance than the associated base learner in the

given metric.

Comparing the results produced by GenThresh.B2 in Table 4.4 to the re-

sults produced by GenThresh.B1 in Table 4.3 revealed that both techniques

produced identical results for accuracy, precision, and recall. Therefore, the

discussion of the individual results found in Section 4.2.1 applies to Gen-

Thresh.B2.

The identical results suggest that using the average of the two thresholds

vs. the average probability estimate of those observations that fall between

the two thresholds, makes little difference to the application of the general
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threshold in GenThresh. Additionally, our results imply that it may be better

to chose GenThresh.B1 over GenThresh.B2, as the complexity of determining

the general threshold τg in OutBoost.B1 is reduced in comparison to Gen-

Thresh.B2.

4.3 OutBoost

The following section describes and discusses the performance results collected

during our evaluation of OutBoost.B1 (Algorithm 10) and OutBoost.B2 (Al-

gorithm 11). OutBoost.B1 and OutBoost.B2 were applied to the selected data

sets listed in Table 3.3 in combination with the base learners in Table 3.2, as

described in Section 3.7 of the Methods. Comparisons were drawn between the

proposed techniques, AdaBoost.M1, and the base learners, by determining the

mean accuracy for all of the selected data sets and the mean precision and re-

call of the minority class for the imbalanced data sets. Additionally, we noted

when OutBoost.B1 and OutBoost.B2 produced higher performance metrics

than AdaBoost.M1 when AdaBoost.M1 failed to produce higher performance

than its associated base learner.
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Table 4.4: Mean and sample standard deviation of the selected performance
metrics for GenThresh.B2.

GenThresh.B2: Accuracy (Percent)

Data α DT NBC BBN SVM SVM+LR ANN
Disease 0.00 78.37± 0.42 83.50± 0.44 82.38± 0.69 83.63± 0.63 83.37± 0.28 78.22± 0.42

0.50 79.43± 0.89 83.56± 0.46 81.92± 0.61 83.63± 0.63 83.30± 0.37 78.29± 1.11
Madelon 0.00 68.79± 1.32 58.66± 0.34 61.44± 0.63 54.75± 0.60 54.68± 0.77 59.23± 0.42

0.50 68.80± 1.32 58.66± 0.34 60.91± 0.44 54.75± 0.60 54.63± 0.90 59.12± 0.48
Cancer 0.00 91.76± 0.54 95.73± 0.34 96.22± 0.22 96.71± 0.20 96.54± 0.16 95.42± 0.92

0.50 95.02± 0.36 96.05± 0.08 97.25± 0.12 96.71± 0.20 96.54± 0.16 95.31± 0.62
Adult 0.00 67.31± 1.37 83.48± 0.02 83.71± 0.16 85.05± 0.02 85.06± 0.04 82.40± 0.65

0.50 86.14± 0.06 83.48± 0.02 83.95± 0.04 85.05± 0.02 85.06± 0.04 82.40± 0.65
Corot 0.00 98.55± 0.00 98.53± 0.02 98.55± 0.00 98.55± 0.00 96.62± 4.31 97.84± 0.43

0.50 98.55± 0.00 98.53± 0.02 98.55± 0.00 98.55± 0.00 98.55± 0.00 98.55± 0.00
Disease Sample 0.00 65.34± 4.05 86.47± 0.26 71.70± 1.52 86.58± 0.54 86.48± 0.26 78.37± 1.06

0.50 79.81± 1.33 86.47± 0.26 80.63± 1.06 86.58± 0.54 86.21± 0.49 79.10± 2.07
Madelon Sample 0.00 60.00± 1.54 68.55± 0.35 58.76± 0.91 65.20± 0.50 55.58± 1.78 67.87± 1.17

0.50 69.76± 1.12 68.55± 0.35 64.05± 0.38 65.20± 0.50 64.20± 0.96 67.93± 1.18

GenThresh.B2: Precision

Data α DT NBC BBN SVM SVM+LR ANN
Cancer 0.00 0.8311± 0.0108 0.8982± 0.0080 0.9085± 0.0059 0.9492± 0.0047 0.9504± 0.0027 0.9255± 0.0201

0.50 0.9260± 0.0054 0.9184± 0.0021 0.9407± 0.0020 0.9492± 0.0047 0.9504± 0.0027 0.9362± 0.0109
Adult 0.00 0.4210± 0.0116 0.7153± 0.0007 0.6272± 0.0034 0.7440± 0.0004 0.7380± 0.0012 0.6937± 0.0236

0.50 0.7456± 0.0028 0.7153± 0.0007 0.6336± 0.0009 0.7440± 0.0004 0.7380± 0.0012 0.6937± 0.0236
Corot 0.00 0.0000± 0.0000 0.0000± 0.0000 0.0000± 0.0000 0.0000± 0.0000 0.0003± 0.0006 0.0017± 0.0014

0.50 0.0000± 0.0000 0.0000± 0.0000 0.0000± 0.0000 0.0000± 0.0000 0.0000± 0.0000 0.0000± 0.0000
Disease Sample 0.00 0.4689± 0.0587 0.7578± 0.0108 0.4951± 0.0322 0.8339± 0.0312 0.8116± 0.0168 0.5985± 0.0439

0.50 0.6563± 0.0489 0.7578± 0.0108 0.6203± 0.0184 0.8339± 0.0312 0.8056± 0.0078 0.6118± 0.0680
Madelon Sample 0.00 0.3254± 0.0099 0.3607± 0.0046 0.3398± 0.0038 0.2877± 0.0108 0.2781± 0.0090 0.3182± 0.0259

0.50 0.3942± 0.0277 0.3607± 0.0046 0.3500± 0.0056 0.2877± 0.0108 0.2795± 0.0127 0.3194± 0.0262

GenThresh.B2: Recall

Data α DT NBC BBN SVM SVM+LR ANN
Cancer 0.00 0.9627± 0.0094 0.9918± 0.0030 0.9951± 0.0019 0.9586± 0.0031 0.9519± 0.0046 0.9485± 0.0082

0.50 0.9337± 0.0107 0.9744± 0.0019 0.9851± 0.0038 0.9586± 0.0031 0.9519± 0.0046 0.9303± 0.0091
Adult 0.00 0.9285± 0.0048 0.5217± 0.0007 0.8014± 0.0045 0.5783± 0.0012 0.5888± 0.0008 0.5765± 0.0624

0.50 0.6451± 0.0028 0.5217± 0.0007 0.7916± 0.0006 0.5783± 0.0012 0.5888± 0.0008 0.5765± 0.0624
Corot 0.00 0.0000± 0.0000 0.0000± 0.0000 0.0000± 0.0000 0.0000± 0.0000 0.0200± 0.0447 0.0105± 0.0095

0.50 0.0000± 0.0000 0.0000± 0.0000 0.0000± 0.0000 0.0000± 0.0000 0.0000± 0.0000 0.0000± 0.0000
Disease Sample 0.00 0.7380± 0.0440 0.7200± 0.0135 0.7947± 0.0240 0.6033± 0.0122 0.6213± 0.0194 0.6187± 0.0334

0.50 0.5240± 0.0196 0.7200± 0.0135 0.7113± 0.0174 0.6033± 0.0122 0.6213± 0.0194 0.5900± 0.0367
Madelon Sample 0.00 0.5364± 0.0537 0.3246± 0.0061 0.6833± 0.0273 0.2661± 0.0101 0.4907± 0.0259 0.2391± 0.0167

0.50 0.3863± 0.0487 0.3246± 0.0061 0.5101± 0.0115 0.2661± 0.0101 0.2739± 0.0104 0.2391± 0.0167
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4.3.1 OutBoost.B1

The mean and sample standard deviation of the accuracy of each OutBoost.B1

and base learner combination applied to each of the selected data sets, are

presented in Table 4.5. Additionally, the mean and sample standard deviation

of the precision and recall for the minority class are contained in the same

table.

The instances in bold demonstrated higher performance than AdaBoost.M1

and the associated base learner, while the italicized instances demonstrated

higher performance than AdaBoost.M1 but not the associated base learner.

The instances in bold with an asterisk exhibited higher performance than

AdaBoost.M1 and its associated base learner when AdaBoost.M1 failed to

produce higher performance metrics than its base learner.

Table 4.6 reveals eight instances of OutBoost.B1 exhibiting higher precision

than AdaBoost.M1 and its associated base learner, where we observed a greater

than 0.01 difference between OutBoost.B1 and AdaBoost.M1 for four of the

instances, indicating a substantial difference. Figure 4.6 compares the precision

of OutBoost.B1, AdaBoost.M1, and its associated base learners and reinforces

this suggestion. Of particular interest, we noted that there were numerous

cases where OutBoost.B1 was applied to the Cancer data set and produced

precision for the minority class that was higher than any of the evaluated base
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Table 4.5: Mean and sample standard deviation of the selected performance
metrics for OutBoost.B1.

OutBoost.B1: Accuracy (Percent)

Data α DT NBC BBN SVM SVM+LR ANN
T = 1000 T = 1000 T = 1000 T = 5 T = 5 T = 5

heart 0.00 75.99± 2.72 83 .50 ± 0 .44 81.65± 2.02 83.63± 0.63 83 .37 ± 0 .28 81.07± 0.77
0.50 68.76± 2.85 81.98± 0.77 82.06± 0.72 83.63± 0.63 83.30± 0.37 78.76± 1.17

Madelon 0.00 63 .66 ± 0 .47 58 .66 ± 0 .34 50.24± 0.60 53.01± 0.91 53.46± 0.95 59.20± 0.36
0.50 68.86± 1.13* 54.60± 0.87 61.74± 0.70 53.01± 0.91 53.40± 0.45 59.20± 0.36

Cancer 0.00 96.68± 0.27 94.25± 0.41 69.59± 6.14 96.62± 0.13 96.54± 0.16 94.42± 0.83
0.50 92.08± 0.98 95.42± 0.30 92.65± 1.00 96.62± 0.13 96.54± 0.16 95.62± 0.58

Adult 0.00 78.14± 2.02 83.48± 0.02 83.87± 0.15 85.07± 0.02 85 .06 ± 0 .04 83.98± 0.14
0.50 82.43± 0.39 83.48± 0.02 85.45± 0.17 85.07± 0.02 85.05± 0.03 82.55± 0.61

Corot 0.00 98.55± 0.00 98.53± 0.02 98 .55 ± 0 .01 98.55± 0.00 98.55± 0.00 98.55± 0.00
0.50 97.98± 0.15 98.53± 0.02 98.07± 0.04 98.55± 0.00 98.55± 0.00 98.55± 0.00

OutBoost.B1: Precision

Data α DT NBC BBN SVM SVM+LR ANN
T = 1000 T = 1000 T = 1000 T = 5 T = 5 T = 5

Cancer 0.00 0.9488± 0.0061 0.9615± 0.0044 0.6527± 0.0983 0.9489± 0.0044 0.9504± 0.0027 0.9619± 0.0055
0.50 0.9010± 0.0109 0.9489± 0.0048 0.9507± 0.0047 0.9489± 0.0044 0.9504± 0.0027 0.9420± 0.0086

Adult 0.00 0.6590± 0.1230 0.7153± 0.0007 0.6364± 0.0095 0.7450± 0.0006 0 .7380 ± 0 .0012 0.6951± 0.0119
0.50 0.6714± 0.0097 0.7153± 0.0007 0.6893± 0.0097 0.7450± 0.0006 0.7376± 0.0007 0.7039± 0.0198

Corot 0.00 0.0000± 0.0000 0.0000± 0.0000 0.0000± 0.0000 0.0000± 0.0000 0.0000± 0.0000 0.0000± 0.0000
0.50 0.1304± 0.0901 0.0000± 0.0000 0.0907± 0.0226 0.0000± 0.0000 0.0000± 0.0000 0.0000± 0.0000

OutBoost.B1: Recall

Data α DT NBC BBN SVM SVM+LR ANN
T = 1000 T = 1000 T = 1000 T = 5 T = 5 T = 5

Cancer 0.00 0.9577± 0.0017 0.8697± 0.0096 0.8544± 0.0900 0.9561± 0.0036 0.9519± 0.0046 0.8746± 0.0209
0.50 0.8681± 0.0197 0.9187± 0.0081 0.8306± 0.0295 0.9561± 0.0036 0.9519± 0.0046 0.9336± 0.0126

Adult 0.00 0.3999± 0.0711 0.5217± 0.0007 0 .7860 ± 0 .0170 0.5778± 0.0017 0.5888± 0.0008 0.6140± 0.0213
0.50 0.5304± 0.0098 0.5217± 0.0007 0.7287± 0.0162 0.5778± 0.0017 0.5891± 0.0013 0.5456± 0.0543

Corot 0.00 0.0000± 0.0000 0.0000± 0.0000 0.0000± 0.0000 0.0000± 0.0000 0.0000± 0.0000 0.0000± 0.0000
0.50 0.0144± 0.0097 0.0000± 0.0000 0.0357± 0.0033 0.0000± 0.0000 0.0000± 0.0000 0.0000± 0.0000
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learners or AdaBoost.M1. Not only do these results imply that OutBoost.B1

can produce higher precision than AdaBoost.M1 when AdaBoost.M1 produces

higher precision than its base learner, it can also produce higher precision then

all of the base learners and AdaBoost.M1 and base learner combinations.

Our results suggest that OutBoost.B1 may be useful for an imbalanced clas-

sification scenario where we emphasize increasing the precision over increas-

ing the recall. Particularly, OutBoost.B1 may be useful in machine-learning

scenarios where FP are heavily punished and TP are heavily rewarded. Con-

sequently, OutBoost.B1 may be useful when faced with an outlier detection

scenario where finding outliers that we are certain are outliers is more impor-

tant than finding all of the possible outliers.

Additionally, it was observed that when the precision increased for both

cutoffs, a cutoff of 0.0 produced higher precision when compared to a cutoff

of 0.5. However, we also observed several instances where a cutoff of 0.5

demonstrated higher precision than AdaBoost.M1, when a cutoff α = 0.00 did

not. Regardless, these results suggest that a cutoff of 0.0 may be recommended.

Comparing the accuracy of OutBoost.B1 to the accuracy produced by Ad-

aBoost.M1, revealed seven instances of OutBoost.B1 exhibiting higher accu-

racy than AdaBoost.M1 and its associated base learner. Of these seven obser-

vations we observed a greater than 1.00% difference for three of the instances,
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Figure 4.6: Comparison of the mean precision of OutBoost.B1, AdaBoost.M1,
and its associated base learner for each data set. The number of examples
where OutBoost.B1 outperforms the base learner and AdaBoost.M1 imply
that OutBoost.B1 is beneficial in increasing the recall of the base learner.
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indicating a considerable difference in the accuracy for at least three of the

examples. Not only do these results suggest that OutBoost.B1 may produce

higher accuracy than AdaBoost.M1 using the same base learner, but that

OutBoost.B1 may be more accurate than AdaBoost.M1 when AdaBoost.M1

is more accurate than its associated base learner.

Figure 4.7 compares the accuracy of OutBoost.B1, AdaBoost.M1 and the

associated base learner, where both cutoffs of 0.0 and 0.5 are represented.

The number of examples where OutBoost.B1 produced an improvement in

accuracy over AdaBoost.M1 and its associated base learner, is similar to the

number of examples where AdaBoost.M1 produced higher accuracy than its

base learner. Even though OutBoost.B1 produced mixed results in terms of

accuracy, it produced similar mixed results to AdaBoost.M1, while at the same

time exceeding the performance of AdaBoost in certain situations, which bodes

well for the applications of OutBoost.B1.

The results displayed in Figure 4.7 also suggest that OutBoost.B1 may

be more robust in certain situations where AdaBoost.M1 suffers in terms of

accuracy, with OutBoost.B1 producing accuracy that was greater than the

accuracy of AdaBoost.M1 when there was a noted decline in the accuracy

of AdaBoost.M1. Seven examples of OutBoost.B1 producing higher accuracy

than AdaBoost.M1 when AdaBoost.M1 failed to produce higher accuracy than
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the associated base learner were observed, where we witnessed a greater than

1.00% difference in three of the instances, indicating a substantial difference.

Additionally, we observed many cases where a cutoff of 0.0 produced identi-

cal accuracy as the base learner. We explore this specific scenario and the

possible mechanism behind it in Section 4.3.2, during our evaluation of Out-

Boost.B1Man.

One example of OutBoost.B1 produced higher accuracy than AdaBoost.M1

and the base learner when AdaBoost.M1 failed to produce higher accuracy

than its base learner. Although it produced a greater than 1.00% difference

between OutBoost.B1 and AdaBoost.M1 we also observed a less than 1.00%

difference between OutBoost.B1 and the base learner. This indicates that

although increased accuracy is observed, it may not be consequential.

We also observed that using a DT as a base learner in combination with

OutBoost.B1 produced low accuracy for six instances, compared to the accu-

racy of AdaBoost.M1 and its associated base learner. Additionally, we ob-

served that using a BBN as a base learner with OutBoost.B1 produced a

similar decline in accuracy for three examples. We noted a similar trend in the

precision of OutBoost.B1 when using a BBN or DT as a base learner. This is

most likely correlated to the drop in accuracy, as the dip in precision occurs

where the dip in accuracy was observed with the same base learners. This de-
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cline in accuracy and the potential reasons behind it are further investigated

in Section 4.3.2.

4.3.2 OutBoost.B1Man

OutBoost.B1Man was applied to the Disease and Cancer data sets with varying

identical thresholds (τ0 = τ1), in combination with the base learners listed in

Table 3.2. Threshold values ranging from 0.00 to 0.50 at 0.05 intervals were

chosen in order to explore the effect of varying the threshold on the mean

accuracy for both data sets, and the mean precision and recall of the minority

class for the imbalanced data sets. The tabular results presented in this section

follow the same formating conventions introduced in Section 4.3.1.

In order to make comparisons, the mean and sample standard deviation of

the accuracy was computed for each AdaBoost.M1 and base learner combina-

tion that was applied to the Disease and Cancer data sets, where the results

are available in Table 1 of the Appendix. Reported on the same table are the

mean and sample standard deviation of the precision and recall of the minority

class for the Cancer data set.

The mean and sample standard deviation of the accuracy of OutBoost.B1-

Man for the Disease data set are presented in Table 4.6 and the mean and sam-

ple standard deviation of accuracy, precision and recall for the Cancer data
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Table 4.7: Mean and sample standard deviation of the accuracy for Out-
Boost.B1Man on the breast Cancer data set. Various identical class-specific
thresholds were selected, ranging from 0.00 to 0.50, at .05 intervals.

OutBoost.B1Man: Breast Cancer Accuracy (Percent)

τ DT NBC BBN SVM SVM+LR ANN
T = 10 T = 10 T = 10 T = 10 T = 10 T = 10

0.00 95.02 ± 0.36 96.05 ± 0.08 97.20 ± 0.16 96.65 ± 0.13 96.54 ± 0.16 95.62 ± 0.69
0.05 95.79 ± 0.48 95.34 ± 0.63 92.08 ± 0.39 96.65 ± 0.13 93.74 ± 0.31 95.39 ± 0.67
0.10 96.08 ± 0.33 95.59 ± 0.27 93.65 ± 0.96 96.65 ± 0.13 91.59 ± 1.11 95.65 ± 0.72
0.15 96.11 ± 0.31 95.68 ± 0.12 94.25 ± 0.71 96.65 ± 0.13 93.36 ± 0.72 95.51 ± 0.67
0.20 95.88 ± 0.29 95.71 ± 0.42 95.34 ± 0.48 96.65 ± 0.13 92.53 ± 0.77 95.57 ± 0.61
0.25 95.80 ± 0.30 95.94 ± 0.16 95.71 ± 0.47 96.65 ± 0.13 94.77 ± 0.77 95.45 ± 0.51
0.30 95.74 ± 0.37 95.94 ± 0.28 95.88 ± 0.43 96.65 ± 0.13 95.94 ± 0.60 95.62 ± 0.65
0.35 95.80 ± 0.24 95.76 ± 0.45 95.74 ± 0.49 96.65 ± 0.13 96.42 ± 0.18 95.57 ± 0.65
0.40 95.88 ± 0.37 95.77 ± 0.36 95.85 ± 0.34 96.65 ± 0.13 96.40 ± 0.28 95.82 ± 0.58
0.45 95.97 ± 0.31 95.91 ± 0.16 96.14 ± 0.23 96.65 ± 0.13 96.51 ± 0.13 95.62 ± 0.53
0.50 95.94 ± 0.26 95.51 ± 0.30 95.85 ± 0.29 96.65 ± 0.13 96.54 ± 0.16 95.62 ± 0.68

OutBoost.B1Man: Breast Cancer Precision

τ DT NBC BBN SVM SVM+LR ANN
T = 10 T = 10 T = 10 T = 10 T = 10 T = 10

0.00 0.9260 ± 0.0054 0.9184 ± 0.0021 0.9407 ± 0.0020 0.9490 ± 0.0045 0.9504 ± 0.0027 0.9374 ± 0.0092
0.05 0.9348 ± 0.0089 0.9471 ± 0.0016 0.9021 ± 0.0040 0.9490 ± 0.0045 0.9700 ± 0.0027* 0.9436 ± 0.0099
0.10 0.9382 ± 0.0052 0.9307 ± 0.0062 0.8946 ± 0.0187 0.9490 ± 0.0045 0.9694 ± 0.0122* 0.9420 ± 0.0109
0.15 0.9418 ± 0.0079 0.9315 ± 0.0047 0.9149 ± 0.0143 0.9490 ± 0.0045 0.9703 ± 0.0098* 0.9382 ± 0.0083
0.20 0.9389 ± 0.0066 0.9271 ± 0.0046 0.9296 ± 0.0036 0.9490 ± 0.0045 0.9550 ± 0.0107* 0.9403 ± 0.0090
0.25 0.9381 ± 0.0070 0.9245 ± 0.0025 0.9372 ± 0.0087 0.9490 ± 0.0045 0.9593 ± 0.0074* 0.9369 ± 0.0066
0.30 0.9392 ± 0.0066 0.9218 ± 0.0017 0.9420 ± 0.0048 0.9490 ± 0.0045 0.9545 ± 0.0049* 0.9390 ± 0.0083
0.35 0.9383 ± 0.0049 0.9265 ± 0.0055 0.9411 ± 0.0048 0.9490 ± 0.0045 0.9500 ± 0.0032 0.9396 ± 0.0093
0.40 0.9376 ± 0.0048 0.9341 ± 0.0033 0.9435 ± 0.0042 0.9490 ± 0.0045 0.9500 ± 0.0041 0.9421 ± 0.0086
0.45 0.9401 ± 0.0031 0.9389 ± 0.0082 0.9449 ± 0.0072 0.9490 ± 0.0045 0.9504 ± 0.0027 0.9396 ± 0.0044
0.50 0.9403 ± 0.0029 0.9379 ± 0.0048 0.9444 ± 0.0038 0.9490 ± 0.0045 0.9504 ± 0.0027 0.9402 ± 0.0096

OutBoost.B1Man: Breast Cancer Recall

τ DT NBC BBN SVM SVM+LR ANN
T = 10 T = 10 T = 10 T = 10 T = 10 T = 10

0.00 0.9337 ± 0.0107 0.9744 ± 0.0019 0.9834 ± 0.0042 0.9569 ± 0.0022 0.9519 ± 0.0046 0.9385 ± 0.0140
0.05 0.9468 ± 0.0116 0.9197 ± 0.0198 0.8705 ± 0.0122 0.9569 ± 0.0022 0.8456 ± 0.0090 0.9253 ± 0.0169
0.10 0.9518 ± 0.0082 0.9453 ± 0.0147 0.9311 ± 0.0095 0.9569 ± 0.0022 0.7852 ± 0.0317 0.9345 ± 0.0133
0.15 0.9477 ± 0.0085 0.9471 ± 0.0078 0.9245 ± 0.0072 0.9569 ± 0.0022 0.8350 ± 0.0237 0.9344 ± 0.0122
0.20 0.9453 ± 0.0068 0.9528 ± 0.0131 0.9395 ± 0.0135 0.9569 ± 0.0022 0.8249 ± 0.0219 0.9336 ± 0.0110
0.25 0.9436 ± 0.0127 0.9627 ± 0.0064 0.9420 ± 0.0064 0.9569 ± 0.0022 0.8879 ± 0.0206 0.9336 ± 0.0129
0.30 0.9403 ± 0.0054 0.9661 ± 0.0091 0.9411 ± 0.0106 0.9569 ± 0.0022 0.9296 ± 0.0183 0.9370 ± 0.0154
0.35 0.9427 ± 0.0089 0.9562 ± 0.0097 0.9386 ± 0.0170 0.9569 ± 0.0022 0.9486 ± 0.0048 0.9345 ± 0.0131
0.40 0.9461 ± 0.0076 0.9471 ± 0.0128 0.9386 ± 0.0091 0.9569 ± 0.0022 0.9478 ± 0.0099 0.9394 ± 0.0125
0.45 0.9461 ± 0.0077 0.9454 ± 0.0042 0.9460 ± 0.0111 0.9569 ± 0.0022 0.9511 ± 0.0034 0.9361 ± 0.0134
0.50 0.9453 ± 0.0099 0.9337 ± 0.0074 0.9378 ± 0.0089 0.9569 ± 0.0022 0.9519 ± 0.0046 0.9353 ± 0.0120
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set are displayed in Table 4.7. An interesting pattern was discovered when

we used an identical class-specific threshold of 0.00 (τ0 = τ1 = 0.00) and 0.50

(τ0 = τ1 = 0.50), where it was observed that identical class-specific thresholds

of 0.00 produced the same accuracy, precision and recall as the base learner,

except when combining OutBoost.B1Man with a SVM or ANN. Additionally,

identical class-specific thresholds of 0.50 produced the same results as Ad-

aBoost.M1 when we applied AdaBoost.M1 to the same data set with the same

base learner.

When an identical class-specific threshold of 0.00 caused OutBoost.B1Man

to produce the same performance as the base learner, it may have been the

product of an absence of training examples misclassified with an estimated

probability of 1.00. If this were to occur, OutBoost.B1Man would not adjust

the weight of any observations, which would result in the same behavior as the

base learner, given that the base learner would be provided the same training

examples for each iterations, where each training example would have the

same initial weight. These results may also suggest why numerous examples

of OutBoost.B1 producing the same performance results as the base learner

were observed, as a similar scenario may have occurred.

We expected the identical class-specific threshold of 0.50 to produce similar

results as AdaBoost.M1 as OutBoost.B1Man increases the weight of training
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examples that are misclassified when the estimated probability of the true class

for the training example is smaller or equal to the class-specific threshold of the

true class (Pr(y = yi|xi, Dt) ≤ 0.50). This implies an identical class-specific

threshold of 0.50 would increase the weight of any misclassified observation,

as for an observation to be misclassified it must have an estimated probability

of the true class that is smaller than or equal to 0.5, otherwise it would not

be misclassified. In other words, OutBoost.B1Man would increase the weight

of the same training examples that would be re-weighted by AdaBoost.M1,

producing the same results.

Comparing the precision of OutBoost.B1Man to AdaBoost.M1 revealed 14

instances of OutBoost.B1Man exhibiting higher precision than AdaBoost.M1

and its associated base learner. However, we only observed a greater than 0.01

difference between OutBoost.B1 and AdaBoost.M1 for three of the fourteen

instances, indicating that most of the examples are not considerably different.

We also observed six instances of OutBoost.B1Man exhibiting higher precision

than AdaBoost.M1 when AdaBoost.M1 failed to produce higher precision then

the base learner when the base learner was a SVM+LR. However, we observed

that only three of the six instances produced precision that was greater than

a .01 difference then the precision of the base learner, once more indicating

that the difference is not very substantial. Regardless, given that some of
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the improvements noted for the precision are substantial, we could infer that

OutBoost.B1Man may have potential for improving the precision produced by

a base learner much like OutBoost.B1, but allowing a researcher to preselect

an optimum threshold.

Surprisingly, we observed that OutBoost.B1Man utilizing a SVM+LR base

learner on the Cancer data set produced the highest precision observed for

this data set in our entire evaluation. However, this may be an optimistic

performance estimate given that essentially, the test set was used to select the

best threshold [21]. Additionally, it was noted that choosing different identical

class-specific thresholds did not affect the accuracy, precision, or recall when

combining OutBoost.B1Man and a SVM. We suggest that this is likely due

to SVMs not producing useful probability estimates without the addition of a

LR to the output [22], as such we would not recommended using a SVM with

our techniques without the addition of a LR.

In order to investigate the decline in accuracy produced by a BBN base

learner in our evaluation of OutBoost.B1, OutBoost.B1Man was combined

with a BBN base learner and applied at 5, 10, 15 and 20 iterations to the

Cancer data set at varying identical class-specific thresholds ranging from 0.00

to 0.50 at intervals of 0.05. We computed the mean and sample standard

deviation of the accuracy, presented in Table 4.8, and discovered that as the
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Table 4.8: Mean and sample standard deviation of the accuracy (percentage) of
OutBoost.B1Man with a BBN base learner on the Cancer data set, at different
identical thresholds and boosting iterations (T ).

τ T = 5 T = 10 T = 15 T = 20
0.00 97.20 ± 0.16 97.20 ± 0.16 97.20 ± 0.16 97.20 ± 0.16
0.05 95.22 ± 0.46 92.08 ± 0.39 90.93 ± 1.09 90.59 ± 1.15
0.10 95.65 ± 0.44 93.65 ± 0.96 92.05 ± 0.89 90.99 ± 0.86
0.15 95.48 ± 0.30 94.25 ± 0.71 92.73 ± 0.74 91.33 ± 0.88
0.20 95.77 ± 0.28 95.34 ± 0.48 94.51 ± 0.16 93.22 ± 0.68
0.25 96.05 ± 0.30 95.71 ± 0.47 94.74 ± 0.25 93.85 ± 0.51
0.30 95.97 ± 0.50 95.88 ± 0.43 95.28 ± 0.56 94.68 ± 1.06
0.35 95.77 ± 0.58 95.74 ± 0.49 95.51 ± 0.88 95.05 ± 0.97
0.40 95.74 ± 0.25 95.85 ± 0.34 95.79 ± 0.40 95.62 ± 0.36
0.45 95.82 ± 0.19 96.14 ± 0.23 96.11 ± 0.19 95.91 ± 0.26
0.50 95.74 ± 0.43 95.85 ± 0.29 95.94 ± 0.28 95.94 ± 0.28

number of iterations increased the number of examples of declining accuracy

increased.

The accuracy decreased when compared to the performance of AdaBoost.M-

1, at five iterations for identical class-specific thresholds ranging from 0.05 to

0.15 and at 10 iterations for identical class-specific thresholds ranging from

0.05 to 0.25. Additionally, the accuracy declined at 15 iterations for identical

class-specific thresholds ranging 0.05 to 0.40 and at 20 iterations for identical

class-specific threshold from ranging from 0.05 to 0.45. These results indicate

that the accuracy of OutBoost.B1Man appears to rely on the class-specific

thresholds selected and the number of boosting iterations performed. We also

recognized that the accuracy decreased further as the number of iterations
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increased.

Given these results, OutBoost.B1Man with a BBN base learner may be

susceptible to over-fitting depending upon the number of iterations and the

class-specific thresholds selected, or it may be sensitive to the choice of class

specific thresholds and the number of iterations executed. These results may

help explain why OutBoost.B1 experienced a declining accuracy when com-

bined with a BBN base learner.

4.3.3 OutBoost.B2

The mean and sample standard deviation of the accuracy was computed for

each of the OutBoost.B2 and base learner combinations applied to each of the

selected data sets and are presented in Table 4.9. Additionally provided in

Table 4.9 are the mean and sample standard deviation of the precision and

recall for minority class of the selected imbalanced data sets, where the results

follow the same formating convention introduced in Section 4.3.1.

Referring to Table 4.9, comparisons were made between the recall of Out-

Boost.B2 to AdaBoost.M1, where seven instances of OutBoost.B2 exhibiting

higher recall than AdaBoost.M1 and its associated base learner were revealed.

We observed a greater than 0.01 difference between OutBoost.B2 and Ad-

aBoost.M1 for six of the seven instances, suggesting a considerable difference
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Table 4.9: Mean and sample standard deviation of the selected performance
metrics for OutBoost.B2.

OutBoost.B2: Accuracy (Percent)

Data α DT NBC BBN SVM SVM+LR ANN
T = 1000 T = 1000 T = 1000 T = 5 T = 5 T = 5

Disease 0.00 66.46± 2.92 82 .05 ± 0 .70 79.55± 1.16 83.63± 0.63 83.30± 0.37 79.48± 1.47
0.50 69.96± 3.42 83 .50 ± 0 .44 77.25± 2.26 83.63± 0.63 83.30± 0.37 80.81± 0.85

Madelon 0.00 56.98± 4.23 54.60± 0.87 60.33± 1.14 54 .75 ± 0 .60 53 .97 ± 0 .88 59.19± 0.31
0.50 60.86± 0.82 58 .66 ± 0 .34 54.79± 1.57 54 .75 ± 0 .60 53 .92 ± 0 .71 59.42± 0.68*

cancer 0.00 95.25± 0.99 95.45± 0.18 96 .34 ± 0 .50 96 .71 ± 0 .20 96.57± 0.14 95.45± 0.36
0.50 84.66± 3.16 95.31± 0.33 96 .22 ± 0 .75 96 .71 ± 0 .20 96.54± 0.16 95.48± 0.96

Adult 0.00 82.09± 0.23 83.48± 0.02 85.36± 0.14 85.05± 0.02 85.05± 0.03 82.46± 0.58
0.50 68.77± 5.63 83.48± 0.02 84.26± 0.08 85.05± 0.02 85 .06 ± 0 .04 83.98± 0.14

Corot 0.00 95.56± 0.06 98.53± 0.02 82.61± 3.70 98.55± 0.00 98.55± 0.00 98.55± 0.00
0.50 98.55± 0.00 98.53± 0.02 98 .55 ± 0 .00 98.55± 0.00 98.55± 0.00 98.55± 0.00

OutBoost.B2: Precision

Data α DT NBC BBN SVM SVM+LR ANN
T = 1000 T = 1000 T = 1000 T = 5 T = 5 T = 5

Cancer 0.00 0.9185± 0.0130 0.8932± 0.0055 0.9257± 0.0075 0 .9492 ± 0 .0047 0.9510± 0.0038 0.9378± 0.0076
0.50 0.8215± 0.0502 0.9127± 0.0038 0.9253± 0.0149 0 .9492 ± 0 .0047 0.9504± 0.0027 0.9367± 0.0090

Adult 0.00 0.6208± 0.0054 0.7153± 0.0007 0.6807± 0.0069 0.7440± 0.0004 0.7375± 0.0007 0.7146± 0.0309
0.50 0.4869± 0.0301 0.7153± 0.0007 0.6441± 0.0026 0.7440± 0.0004 0 .7380 ± 0 .0012 0.6951± 0.0119

Corot 0.00 0.0282± 0.0040 0.0000± 0.0000 0.0327± 0.0086 0.0000± 0.0000 0.0000± 0.0000 0.0000± 0.0000
0.50 0.0000± 0.0000 0.0000± 0.0000 0.0000± 0.0000 0.0000± 0.0000 0.0000± 0.0000 0.0000± 0.0000

OutBoost.B2: Recall

Data α DT NBC BBN SVM SVM+LR ANN
T = 1000 T = 1000 T = 1000 T = 5 T = 5 T = 5

Cancer 0.00 0.9493± 0.0182 0.9901± 0.0021* 0 .9751 ± 0 .0106 0 .9586 ± 0 .0031 0.9519± 0.0046 0.9328± 0.0046
0.50 0.8565± 0.0319 0 .9577 ± 0 .013 1 0 .9751 ± 0 .0028 0 .9586 ± 0 .0031 0.9519± 0.0046 0.9353± 0.0229

Adult 0.00 0.6599± 0.0108 0.5217± 0.0007 0.7443± 0.0118 0 .5783 ± 0 .0012 0.5891± 0.0013 0.5229± 0.0690
0.50 0.7652± 0.0499 0.5217± 0.0007 0 .7776 ± 0 .0036 0 .5783 ± 0 .0012 0.5888± 0.0008 0.6140± 0.0213

Corot 0.00 0.0623± 0.0088 0.0000± 0.0000 0.1982± 0.0510 0.0000± 0.0000 0.0000± 0.0000 0.0000± 0.0000
0.50 0.0000± 0.0000 0.0000± 0.0000 0.0000± 0.0000 0.0000± 0.0000 0.0000± 0.0000 0.0000± 0.0000
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Figure 4.8: Comparison of the mean recall of OutBoost.B2, AdaBoost.M1,
and its associated base learner for each data set, where we observed examples
of OutBoost.B2 producing higher recall in the minority class than the base
learner or AdaBoost.M1.
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in recall for most of the observed improvements. Figure 4.8 supports these

implications by comparing the recall of OutBoost.B1, AdaBoost.M1, and its

associated base learners, revealing numerous examples of substantial improve-

ments.

We observed examples where OutBoost.B2 was applied to the Cancer and

Corot data set and produced recall of the minority class that was higher then

any of the evaluated base learners or AdaBoost.M1. Not only do these results

imply that OutBoost.B2 can produce higher recall than AdaBoost.M1 when

AdaBoost.M1 produces higher recall than its base learner, it can also produce

higher recall then all of the base learners and AdaBoost.M1 and base learner

combinations.

The results displayed in Figure 4.8 also suggest that OutBoost.B1 may

be more robust in certain situations where AdaBoost.M1 suffers in terms of

recall, where nine examples were noted where OutBoost.B2 produced higher

recall than AdaBoost.M1 when AdaBoost.M1 failed to produce higher recall

than its associated base learner. Additionally, a greater than 0.01% difference

was witnessed for five of the eight instances, suggesting a substantial difference

once again.

Overall, our results suggest that OutBoost.B2 may be useful for an im-

balanced classification scenario where we emphasize increasing the recall over
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increasing the precision. Particularly, OutBoost.B2 may be useful in machine-

learning scenarios where TP are heavily rewarded and FP are not as damaging.

Consequently, OutBoost.B2 may be useful when faced with an outlier detec-

tion scenario where finding the highest number of outliers possible, within

reason, is more important than making certain all of the discovered outliers

are true outliers.

Comparing the accuracy of OutBoost.B2 to AdaBoost.M1 revealed four in-

stances of OutBoost.B2 exhibiting higher accuracy than AdaBoost.M1 and its

associated base learner. However, we only observed a greater than 1.00% dif-

ference between OutBoost.B2 and AdaBoost.M1 for two of the four instances,

suggesting that two of these observations may not have produced a meaning-

ful difference. Regardless, these results suggest that OutBoost.B2 can produce

accuracy that is higher than AdaBoost.M1 and its associated base learner, al-

though with less frequency than OutBoost.B1.

Figure 4.9 compares the accuracy of OutBoost.B1, AdaBoost.M1 and the

associated base learner, where both cutoffs of 0.0 and 0.5 are included. Like

OutBoost.B1, using a DT as a base learner produced a number of examples

of lower accuracy when compared to AdaBoost.M1 and its associated base

learner. Additionally, we observed that using a BBN as a base learner with

OutBoost.B2 produced a similar decline in accuracy for a number of examples,
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once again comparable to OutBoost.B1. We suggest that this is likely due to

the same underlying mechanism that produced this behavior in OutBoost.B1,

which was explored further in Section 4.3.2.

We observed 14 examples of OutBoost.B2 producing higher accuracy than

AdaBoost.M1 when AdaBoost.M1 failed to produce higher accuracy than the

associated base learner. However, we only observed a greater than 1.00%

difference between OutBoost.B2 and AdaBoost.M1 for four of the 14 instances.

Our results imply that OutBoost.B2 may be more robust in certain situations

where AdaBoost.M1 suffers in terms of accuracy.

Referring to Figure 4.9, we observe that choosing a cutoff of 0.5 (α = 0.50)

caused the above scenario to occur more frequently than choosing a cutoff of 0.0

(α = 0.00). Additionally, there were many cases where a cutoff of 0.5 produced

identical accuracy as the base learner. It is likely that these results are related

to the phenomenon that was observed with OutBoost.B1 and was explored

in Section 4.3.2. However, selecting a cutoff of 0.5 rather than 0.0 produced

identical results to the base learner, due to the differences in OutBoost.B2 and

which training examples would have their weights increased.

We also noted one example of OutBoost.B2 producing higher accuracy

than AdaBoost.M1 and the base learner when AdaBoost.M1 failed to produce

higher accuracy than its base learner. However, this instance did not produce
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a greater than 1.00% difference between OutBoost.B2 and AdaBoost.M1 or

the associated base leaner, raising suspicions regarding how consequential this

result may be.
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Chapter 5

Conclusions

Machine learning may be described as a group of methods used to automat-

ically detect patterns in data in order to make decisions when dealing with

uncertainty [22]. Supervised machine learning focuses on taking a set of in-

puts and outputs and given the input-output pairs makes predictions regarding

previously unseen inputs [22]. In other words, if we can accurately predict an

output given a set of inputs we can, in essence, predict the future. Conse-

quently, this enables decision making that can be an asset to scientific, com-

mercial, industrial, and medical fields.

Developing new and innovative ways of making predictions is key to the

continued advancement of supervised machine learning, which is why we choose

to investigate how the performance of machine-learning methods could be im-
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pacted by combining those methods with outlier detection. Outlier analysis

can be described as the study of detecting, exploring, and reacting to outliers

in an effort to gain insight regarding the data that contains the outliers [2–4].

Given that machine learning and outlier analysis both share the same goal of

gaining insight from data we felt it was only natural to combine the two fields

in order to better enable machine-learning techniques to make predictions.

We set out in this thesis to discover if we could combine univariate outlier

detection and machine-learning techniques in ways that could improve the per-

formance of the machine-learning techniques involved. A framework was con-

structed where the class probability estimates could be examined for outliers,

where discovered outliers could be used to construct class-specific thresholds.

We then proposed two techniques, with a number of different variations, to

employee this framework. Our evaluation was tailored to include the primary

objective of increasing the accuracy of the selected machine learning methods,

while our secondary objective was to increase the precision or recall of the

minority class in an imbalanced data set.

We obtained mixed results for our proposed techniques, where the various

techniques demonstrated gains and losses depending on the technique, base

learner, data set, and metric observed. This could interpreted as discourag-

ing, however a similar behavior is noted in the performance of AdaBoost.M1,
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which is a well used and adopted technique. Although we did not observe

overly compelling results for each technique with each base learner and data

set combination, we should keep in mind the No Free Lunch Theorem: all

models are wrong, however, some are useful [22]. In other words, no model

will work well for all problems [22].

5.1 General Conclusions

Given the evaluation of our proposed techniques for utilizing class-specific

thresholds presented in Chapter 4, we are prepared to make the following

conclusions based on our results. Our results suggest that:

1. GenThresh.B1 and GenThresh.B2 behave similarly for accuracy, preci-

sion, and recall.

2. GenThresh.B1 and GenThresh.B2 can produce higher recall than their

associated base learner.

3. OutBoost.B1 can produce higher accuracy than its associated base learner

and AdaBoost.M1 with the same base learner.

4. OutBoost.B1 can produce higher precision than its associated base learner

and AdaBoost.M1 with the same base learner.
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5. OutBoost.B2 can produce higher recall than its associated base learner

and AdaBoost.M1 with the same base learner.

6. OutBoost.B1 and OutBoost.B2 can produce higher accuracy, precision,

and recall than AdaBoost.M1 (with the same base learner) when Ad-

aBoost.M1 fails to produce higher accuracy, precision, and recall than

its base learner.

7. The choice of the class-specific threshold and the number of boosting

iterations can negatively impact accuracy for OutBoost.B1Man, which

suggests that OutBoost.B1 and OutBoost.B2 may be similarly affected.

In more abstract terms, our results also suggest that class-specific thresh-

olds determined via outlier detection can be utilized to improve certain metrics

for machine-learning techniques.

5.2 Future Work

Based on our work, we recommend the following research be explored in order

to better understand the algorithms proposed in this thesis.
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5.2.1 Number of Iterations

Boosting techniques are sensitive to the number of iterations performed and

OutBoost may overfit the training data when too many iterations are per-

formed [26]. We observed this sensitivity when we applied OutBoost.B1Man

to the Cancer data set when the accuracy decreased as the number of itera-

tions increased. An investigation into the effect of varying the iterations for a

few chosen base learners and data sets would better help us understand how

the choice of iterations effects the proposed boosting techniques.

5.2.2 Error Break Point

AdaBoost.M1 operates by using an error break point (ε ≥ 0.5) that halts the

operation of AdaBoost.M1 when the base learner exceeds the maximum error

[26]. It may be possible that the maximum error that prevents AdaBoost.M1

from increasing the performance of the base learner could be different than the

maximum error preventing OutBoost.B1 from increasing the performance of

the base learner. We recommend examining the effect of changing the value of

the epsilon break point for OutBoost with the hope of better understanding

how the break point impacts performance OutBoost.
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5.2.3 Other Outlier Detection Techniques

Walsh’s Outlier Test is one of a number of available non-parametric univariate

outlier detection techniques. It would be interesting to exchange Walsh’s Out-

lier Test with other non-parametric outlier detection methods and evaluating

the results. Examples of techniques that could be evaluated are histogram and

kernel function based methods [4].

5.2.4 Modification of Probability Values Used

We also support evaluating another approach to finding outliers in the proba-

bility estimates. Instead of applying univariate outlier detection to all of the

estimated probabilities for each class we could instead apply univariate out-

lier detection to those observations for each class where the observations truly

belong to that class.

5.2.5 Simplification and Multiclass Extension

Another possible research area would be to implement and evaluate a multi-

class extension of OutBoost.B1 (referred to as OutBoost.M1 (Algorithm 12).

OutBoost.M1 is also a simplification of OutBoost.B1 as it does not check for

normal or outlying observations between the class-specific thresholds. Out-

Boost.M1 will perform identically to AdaBoost.M1 if outlying observations

124



Algorithm 12 OutBoost.M1 is a modification of AdaBoost.M1 [12] and Out-
Boost.B1. OutBoost.M1 can work with multiple classes and operates by train-
ing a base learner with the goal of minimalizing the weighted error at each
iteration. OutBoost.M1 determines class-specific thresholds by applying a uni-
variate outlier detection technique to the probability estimates generated by
the base learner. The weight of an observation that is misclassified and whose
probability estimate falls below the class-specific threshold of its true class,
is increased by the weighted error. The weights of all the observations are
normalized to sum to one and used as a sampling distribution for the next it-
eration of the base learner. OutBoost.M1 combines the results of each iteration
using a weighted voting scheme in order to build a final classifier.

1: function OutBoost.M1
2: for i = 1 to m do
3: D1(i) = 1

m
4: end for
5: for t = 1 to T do
6: TrainWeakLearner(Dt)
7: Get weak hypothesis ht : X → Y
8: εt =

∑
i : ht(xi)6=yi Dt(i)

9: if εt ≥ 1
2

then
10: T = t− 1
11: Exit Loop
12: end if
13: βt = 1−εt

εt
14: for i = 1 to m do
15: Pi = Pr(y|xi, Dt)
16: end for
17: τ = FindThresholds(P )
18: for i = 1 to m do

19: Dt+1(i) = Dt(i)
Zt
×

βt if (ht(xi) 6= yi) and
(Pr(y = yi|xi, Dt) ≤ τyi)

1 otherwise
20: end for
21: end for
22: H(x) = arg maxy∈Y

∑
t : ht(x)=y

logβt
23: end function
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fall between the class-specific thresholds.

5.2.6 Other Boosting Algorithms

Finally, another interesting avenue of research would be an investigation of

other contemporary boosting algorithms in order to determine if those boosting

algorithms may be modified in a similar fashion as AdaBoost.M1.
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Figure 1: Comparison of the mean accuracy of GenThresh.B1 and its associ-
ated base learner, where α = 0.0.
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Figure 2: Comparison of the mean accuracy of GenThresh.B1 and its associ-
ated base learner, where α = 0.5.
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Figure 3: Comparison of the mean precision of GenThresh.B1 and its associ-
ated base learner, where α = 0.0.

131



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

0.00 0.25 0.50 0.75
Base Learner Precision

G
en

T
hr

es
h.

B
1 

P
re

ci
si

on

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

0.00 0.25 0.50 0.75
Base Learner Precision

G
en

T
hr

es
h.

B
1 

P
re

ci
si

on

data
●

●

●

●

●

adult
cancer
corot
disease sample
madelon sample

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Base Learner Precision

G
en

T
hr

es
h.

B
1 

P
re

ci
si

on

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

0.00 0.25 0.50 0.75
Base Learner Precision

G
en

T
hr

es
h.

B
1 

P
re

ci
si

on

base
●

●

●

●

●

●

ANN
BBN
DT
NBC
SVM
SVM+LR

Figure 4: Comparison of the mean precision of GenThresh.B1 and its associ-
ated base learner, where α = 0.5.
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