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Abstract 
 

Determinants of breeding bird diversity in Ontario’s far north  

 

Timothy R. Irvin 

 

 

190 species of birds are known to breed in Ontario’s far north making the region an important 

nursery for boreal birds. Digital point count data were collected using two different autonomous 

recording units (ARUs): one model with two standard microphones to detect birds and anurans, 

and one model with one standard microphone and one ultrasonic microphone for detecting bats. 

ARUs were deployed either in short or long-term plots, which were four to six days or 

approximately 10 weeks, respectively. I assessed differences in breeding bird richness detections 

between ARU and plot types. I also tested the relative impact of the habitat heterogeneity and 

species-energy hypotheses in relation to breeding birds and created predictive maps of breeding 

bird diversity for Ontario’s far north. I found no difference in species richness estimates between 

the two ARU models but found that long-term plots detected about 7 more bird species and 1.5 

more anuran species than short-term plots. I found support for both the species-energy and 

habitat heterogeneity hypotheses, but support for each hypothesis varied with the resolution of 

the analysis. Species-energy models were better predictors of breeding bird diversity at coarser 

resolutions and habitat heterogeneity models were better predictors at finer resolutions. Breeding 

bird diversity was highest in the Ontario Shield Ecozone compared with the Hudson Bay 

Lowlands Ecozone, but concentrated areas of higher diversity found in the Lowlands were 

associated with large rivers and the associated coastlines.  

Keywords: 

Hill diversity, biodiversity, diversity index, species richness, autonomous recording unit, 

breeding birds, Ontario, boreal forest, species-energy hypothesis, habitat heterogeneity 

hypothesis, Hudson Bay Lowlands, Ontario Shield.  
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Chapter 1 – Introduction 

 

 

1.1 General introduction 
 

Global biodiversity loss impacts the functioning of ecosystems and human well-being (Johnson 

et al., 2017). By signing the Convention on Biological Diversity in 2002, world leaders 

committed to achieve a significant reduction in the rate of biodiversity loss by 2010. However, in 

spite of this global commitment, and some local and regional successes, there has been little 

reduction in the rate of loss in global biodiversity (Butchart et al., 2010; Johnson et al., 2017). 

Birds are part of this decline.  Rosenberg et al. (2019) suggested North America may have lost 3 

billion birds, or 29% of 1970’s abundance, representing a substantial loss of biodiversity.  

 

Approximately 300 species of the continent’s birds breed in the boreal forest, which has been 

referred to as North America’s “bird nursery” (Stralberg et al., 2019; Wells et al., 2014). The 

boreal forest is the largest terrestrial ecosystem on Earth representing 25 percent of the world’s 

remaining frontier forests (Bryant et al., 1997). Vast tracts of this biome are found in Canada, 

representing 30 percent of the biome’s total global range (Gauthier et al., 2021). Compared to 

Nordic regions, large parts of the Canadian boreal landscape remain largely undeveloped  

(Östlund et al., 1997; Lee et al., 2007). In Canada there are still large pristine areas where forest 

fires, insect outbreaks, wind and beaver activity are the dominant disturbances, rather than 

human industry (Hansson, 1992; Krawchuk et al., 2006). This is particularly true of the northern 

reaches of the boreal where forests are too remote and sparse to support a forestry industry 

(Bryant et al., 1997). To ensure the boreal forest remains ecologically intact it has been 

recommended that large portions of it be protected from industrial disturbance (Locke, 2013), 
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and the International Boreal Conservation Science Panel has recommended that at least half of 

the boreal be protected from industrial disturbance (Badiou et al., 2013). 

 

The dominant tree species in Canada’s boreal forest include black and white spruce (Picea 

mariana, Picea glauca,), jack pine (Pinus banksiana), aspen (Populus tremuloides), tamarack 

(Larix laricina) and white birch, (Betula papyrifera) which are highly influenced by disturbance 

regimes (The Far North Science Advisory Panel, 2010). Fire is the dominant disturbance in the 

more remote reaches of the forest where there is no fire suppression (Kirk et al., 1996), whereas 

in the southern areas of the forest where fire suppression is practiced, human forestry activities 

are the dominant disturbance  (Telfer, 1993;  Kirk et al., 1996). These disturbances create a 

mosaic of habitat patterns and age-classes that have important impacts on wildlife (Helle & 

Monkkonen, 1990).  

 

Defined as Ontario’s Far North by the Far North Act, 2010, S.O. 2010, c.18 s.2 (Fig. 1), the 

northern part of the province encompassing over 450 000 square kilometers of intact ecosystems, 

is composed predominantly of boreal forest, including swamps, bogs and fens, plus a zone of 

taiga and tundra at its highest latitudes (The Far North Science Advisory Panel, 2010). Unlike 

other parts of the province, the far north has very little industrial development (The Far North 

Science Advisory Panel, 2010). The region is characterized by two major ecozones: the Hudson 

Bay Lowlands (HBL) and the Ontario Shield (Crins et al., 2009). Limestone bedrock underlies 

the HBL which represents 54 percent of the far north (The Far North Science Advisory Panel, 

2010). The Lowlands extend inland from the shores of Hudson and James Bay forming the third 

largest wetland in the world (Abraham & Keddy, 2005). The HBL area is dominated by vast 
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expanses of wetlands and poorly drained muskeg. Marshes, tidal flats and shallow water 

dominate the 1900 kilometers of salt-water shoreline along the coasts of Hudson Bay and James 

Bay (Ecological Stratification Working Group, 1995). Inland from the HBL, the Ontario Shield 

Ecozone represents the remaining 46 percent of the far north region and is underlain with 

Precambrian Shield, composed mostly of gneisses and granites (The Far North Science Advisory 

Panel, 2010). Collectively, the forests of the HBL and the Ontario Shield, and the adjacent 

forests of Manitoba, Quebec and Nunavut, represent the largest remaining block of boreal forest 

free from large-scale human disturbance in the world (The Far North Science Advisory Panel, 

2010; World Resources Institute, 2010).  

 
Figure 1.1. Far north location map (Far North Science Advisory Panel, 2010) 
 



  

 

 

 

4 

 

The human population of the Far north region is approximately 24 000 people spread over 31 

small First Nation communities (The Far North Science Advisory Panel, 2010), which are not 

linked to each other or to the south by all-season roads. These Indigenous people still rely on the 

land for parts of their livelihood and engaging in traditional cultural practices including trapping, 

hunting, fishing, and gathering (e.g., Berkes et al., 1995, Tsuji et al., 2007). The lack of human 

disturbance across the vast ecosystems of the far north that are home to an intact suite of wildlife 

species, also makes the region globally unique from an ecological standpoint (Chetkiewicz & 

Lintner, 2014). However, because of the expense of conducting research in this remote area, few 

large-scale studies of the region’s biota have been completed. In addition, the increasing 

industrial interest in this region means the opportunity for proactive conservation planning is 

time-limited.  

 

Currently, Newmont’s Musselwhite gold mine is the only operational mine in the region, since 

DeBeer’s Victor diamond mine closed in 2019. However, plans to expand mineral extraction are 

progressing including the proposed development of the “Ring of Fire,” a very large chromite 

deposit in the Hudson Bay Lowlands, which has been called the economic equivalent of the 

Athabasca oil sands with the potential to generate 120 billion dollars in economic benefits 

(Tencer, 2013). Partially in response to increasing industrial interests, the Ontario government 

created the Far North Act, which commits the province to engage with First Nations in a 

comprehensive land use planning process for the region. The Act adopted the recommendation of 

the International Boreal Conservation Science Panel to set aside at least half of the far north in 

protected areas, but also leaves provisions for enabling sustainable development (Ontario 

Ministry of Natural Resources, 2009). 
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1.2 Far north Biodiversity Project 
 

In 2009, the Far North Biodiversity Project (FNBP), was initiated by the Ontario Ministry of 

Natural Resources (OMNR) to provide baseline data on the area’s biodiversity, in support of the 

local First Nations’ community-based land use planning activities and the provinces regulatory 

mandate for conservation. Over the course of six field seasons (2009-2014), the FNBP conducted 

a systematic multispecies inventory of birds, insects, fish, vegetation, reptiles, amphibians, and 

small and large mammals across the far north. While this five-year research project has 

generated data on numerous taxa, my study focused primarily on analyzing the avian data it 

produced, with some examination of anuran data in Chapter 2. 

 

Canada-wide, most bird conservation is managed under the Migratory Birds Convention Act 

1994 (MBCA) (non-migratory species are managed by the province’s under provincial 

legislation (e.g., Ontario's Fish and Wildlife Conservation Act, 1997, c. 41). Canada is also part 

of the North American Bird Conservation Initiative and has designated Bird Conservation 

Regions nation-wide, which form the foundation of bird conservation planning across the 

country (Cooke, 2003; Rich et al., 2004). Collectively, these programs are critical for national 

and continent-level conservation planning (Cumming et al., 2010). 

 

Three hundred and forty species of birds are known to be supported by Ontario’s far north 

ecosystems during some point in their annual cycle (Abraham and McKinnon, 2011). Of those, 

190 species have been documented breeding in the far north (Far North Science Advisory Panel, 

2010), representing approximately one third of the species that breed north of Mexico in North 
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America (Blancher, 2003; Berlanga et al., 2010).  Birds that breed in the far north including 

landbirds, waterbirds, waterfowl and shorebirds that have recognizable vocalizations are the 

focus of this study. 

 

Birds occupy diverse niches across the northern landscape. This suggests that not only do they 

have large inherent ecological value, but they can be a link to understanding the ecosystems 

themselves (Niemi et al., 1997; Cumming et al., 2010). They may also act as indicators of 

ecosystem health (Diamond & Filion, 1987; Furness & Greenwood, 1993) and even biodiversity 

in general (Freedman et al., 1994). Thus, studying the distribution of breeding birds in Ontario’s 

far north, may give us new insights into northern ecosystems and help identify areas of particular 

biological value in this region.   

 

Overall, the distribution and abundance of boreal birds is not well documented in the northern 

boreal region, including Ontario’s far north (Cumming et al., 2010). By comparison, much more 

is known about avian communities in the southern reaches of the boreal (Schmiegelow & 

Monkkonen, 2002; Blancher, 2003; Stralberg et al., 2019). Most boreal bird research to date has 

been constrained by accessibility, primarily by road networks which are sparse or absent in much 

of the boreal, and almost completely absent in the far north. Thus, road-accessed research by 

itself does not provide adequate baseline data of the far north’s boreal bird populations. 

Additionally, findings on bird distribution in southern boreal landscapes that are subject to heavy 

human disturbance, may not apply to the fire and wetland-dominated ecosystems of far north 

(Venier et al., 2004). Likewise, latitudinal climatic variability may also have direct or indirect 
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impacts on the distribution of bird communities in southern versus northern reaches of the boreal 

forest (Venier et al., 1999).  

 

The Ontario Breeding Bird Atlas (OBBA) is the largest and most comprehensive survey of 

breeding birds conducted in the province. Atlases were carried out between 1981-1985, 2001-

2005 (Cadman et al., 1987; Cadman et al., 2007) and is currently being updated (2021-2025) 

again. The Atlases provide detailed information on the distribution and population status of 

Ontario birds including distribution maps for individual species. Until the FNBP was initiated, 

the two Atlases were the best available single source of information for far north avifauna. 

However, for the purposes of these Atlases, most research squares were accessed by road, or by 

canoe from a road access point. In the far north where this was not possible, researchers were 

flown into rivers, lakes or settlements to access survey points. Although efforts were made to 

sample the far north as widely as possible, sampling effort in this region was clustered around 

the lakes, rivers and settlements that provided access (Cadman et al., 2007). Because of these 

challenges, the far north region had the lowest sampling effort of any part of the province in the 

Atlas. In this context, the avian data produced by the FNBP is a particularly valuable addition to 

existing avian data resources for the far north.  

 

1.3 Modeling bird diversity in Ontario’s far north 
 

Historical approaches to bird research and management have concentrated on single species or 

simple community-level studies measured over small areas (Freemark et al., 1995). However, 

given the scale of northern landscapes and industrial activities, researchers are shifting their 

focus to expand the scale of their research to address emerging landscape-level conservation 
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needs (Cumming et al., 2010; Stralberg et al., 2018; Stralberg et al., 2019). Some of this work is 

being tackled using modeling techniques that predict avian distribution based on multiple 

biophysical variables. 

 

Energy, as derived from the sun, is thought to be largely responsible for patterns in distribution 

and productivity of terrestrial plants across the globe (Holdridge, 1967). This, in turn, influences 

patterns of other taxa, including vertebrates (Hawkins et al., 2003; Field et al., 2009) with 

variables like temperature directly limiting animal distributions by excluding individuals from 

regions where their physiological tolerances are exceeded (Root,1988; Currie, 1991). Energy 

may also act indirectly on species distributions through energetic limitations on plant growth and 

food web development (Wright, 1983). Consequently, vegetation composition and structure are 

well-documented drivers of local and regional abundance and community composition of bird 

populations (MacArthur, 1966; Rotenberry & Wiens, 1980; Cody, 1981; Davidowitz & 

Rosenzweig, 1998). Beyond influencing bird habitat, energy variables also influence the 

distribution and abundance of insects (Venier et al., 1999). Since most boreal birds are 

insectivorous, this may be another mechanism by which energy influences avian distribution 

across the landscape (Venier et al., 1999; Kirk et al., 1996).  

 

Years of research have illustrated how vegetation composition and structure influence bird 

distribution, abundance, and community composition in numerous ways (Willson, 1974; 

Anderson, 1981; Cody, 1985; Urban & Smith 1989; Lichstein et al., 2002). For example, at the 

level of a forest stand, birds respond to vegetation structure, foliage volume, and the proportions 

of deciduous and coniferous tree species (Willson 1974; Collins et al., 1982; James & Wamer., 
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1982; Clark et al., 1983). In the boreal landscape specifically, the patterns and diversity of 

successional stages created by large-scale natural or human disturbances are major influences on 

avian species assemblages (Venier et al.,1999; Drapeau, 2000). Remote-sensed sources of land 

cover data can provide good information on these variables, and are improving all the time 

(Cummings et al., 2010). 

 

Studies have shown strong associations between species distributions and energetic variables 

(Connell & Orias, 1964; Wright, 1983; Cumming et al., 2014; Stralberg et al., 2019). Venier et 

al. (1999) used data from the 1981-1985 OBBA (Cadman et al., 1987) and numerous macro-

climate variables to model the distribution of five species of boreal songbirds. Results showed 

strong associations between the distributions of the five species in the study and the energy 

variables that were examined.  This work suggests that macro-climate is an important factor 

influencing the distribution of breeding birds in Ontario’s boreal forest. More recently, Cumming 

et al. (2010) and Stralberg et al. (2018) have also modeled boreal bird distributions across North 

America using variables related to energy available for biological productivity.  

 

The interest in analysis of spatial data to support regional, national, and continental conservation 

planning has been increasing (Cumming et al., 2010; Stralberg et al., 2018; Stralberg et al., 

2019). Cummings et al. (2010) and Stralberg et al. (2018) have modelled individual bird species 

distributions across North America’s boreal forest. Their work covers Ontario’s far north but 

they did not have access to the avian data collected during the FNBP, which represents the most 

comprehensive coverage of bird distribution data ever assembled for Ontario’s far north. Using 

this dataset, I explore how to optimize collection of breeding bird data using autonomous 
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recording units (ARUs) over a large study area (Chapter 2). I also examine the relative 

contributions of the habitat heterogeneity and the species-energy hypotheses to the distribution of 

breeding birds across the far north and create predictive maps of avian diversity for my study 

area. Using FNBP data this study has the potential to provide the best available predictions of 

breeding bird diversity across the far north and contribute to conservation planning in the region 

(Chapter 3).  
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Chapter 2 – Optimizing use of autonomous recording units for breeding 
birds and anurans in a large and remote study area 
 

 

2.1 Introduction 
 

In today’s world, most natural ecosystems have been reduced in size and are highly fragmented 

by human activities. The few large intact ecosystems that remain have high value for long-term 

biodiversity conservation (Noss et al., 2011; Watson & Venter, 2017; Stralberg et al., 2018;). 

Large intact landscapes provide high quality habitat for wildlife–especially for wide-ranging 

species–and may provide refugia from invasive species and pathogens and protect species from 

the impacts of climate change (Caro et al., 2012; Watson et al., 2018). Despite their value to 

wildlife conservation, many large remote regions have been under-studied by biologists because 

of the difficulty and expense involved in accessing and conducting research in these places 

(Cumming et al., 2010). There is often a lack of baseline biological data available to inform 

conservation planning for large remote areas compared with smaller and more readily accessible 

regions (Cumming et al., 2010; Stralberg et al., 2018). The far north of Ontario, Canada is an 

example of such a large and understudied region (Far North Science Advisory Panel, 2010).  

 

Defined by Ontario’s Far North Act, 2010, S.O. 2010, c. 18 s.2, the far north of Ontario 

encompasses over 450 000 square kilometres of intact ecosystems composed predominantly of 

boreal forest, swamp, bogs and fens (Figure 1.1, Far North Science Advisory Panel, 2010). 

Unlike other parts of the province, this region has had very little industrial development (Far 

North Science Advisory Panel 2010). 
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The region is comprised of two major ecozones: the Hudson Bay Lowlands and the Ontario 

Shield, which are further divided into 13 ecodistricts based on biogeoclimatic characteristics 

(Wester et al., 2018). The Hudson Bay Lowlands comprise the third largest wetland in the world 

(Abraham & Keddy, 2005). This region is also the second-largest peatland in the world, making 

it a globally significant carbon sink (Far North Science Advisory Panel, 2010). In conjunction 

with neighbouring parts of Manitoba, Nunavut and Quebec, the far north of Ontario forms one of 

the largest pieces of intact forest in the world (The Far North Science Advisory Panel, 2010; 

World Resources Institute, 2010). The far north provides habitat for species at risk including 

woodland caribou (Rangifer tarandus), polar bears (Ursus maritimus), wolverines (Gulo gulo), 

olive-sided flycatchers (Contopus cooperi), rusty blackbirds (Euphagus carolinus), common 

nighthawks (Chordeiles minor), golden eagles (Aquila chrysaetos), peregrine falcons (Falco 

peregrinus) and more (FNBP preliminary report, 2014). This region is also an important nursery 

for North American boreal birds, which live in low densities across the landscape (Stralberg et 

al., 2018). Three hundred and forty species of birds are known to be supported by Ontario’s far 

north ecosystems during some point in their annual cycle (Abraham and McKinnon, 2011). Of 

those, 190 species have been documented breeding in the region (Far North Science Advisory 

Panel, 2010), representing approximately one third of the species that breed north of Mexico in 

North America (Blancher, 2003; Berlanga et al., 2010).  

 

The vast ecosystems of Ontario’s far north and the substantial wildlife populations in the region 

represent an opportunity for proactive conservation planning that is no longer possible in regions 

where industrial activities have fragmented their landscapes (Cumming et al., 2010). However, 

there are significant mineral deposits in the region and the opportunity for comprehensive land 
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use planning before large-scale mining operations are developed may be time-limited (Far North 

Science Advisory Panel, 2010).  

 

With the importance of intact large landscapes to long-term wildlife conservation – and the 

necessity for baseline biological data to inform conservation planning - it is valuable to explore 

the most efficient and cost-effective ways to sample large remote regions. In 2009, the Ontario 

Ministry of Natural Resources (OMNR) initiated the Far North Biodiversity Project (FNBP) - a 

five-year multi-species biological inventory project aimed at collecting baseline biodiversity data 

to help inform land use planning for the region. The project collected data on the distribution and 

abundance of numerous taxa including vertebrate, plant, insect and lichen species. 

 

Point counts are used for collection of bird data because they provide a reasonable index of 

songbird abundance in boreal forest (Toms et al., 2005) and are among the most standardized of 

surveys methods (Cummings et al., 2010). Bioacoustic monitoring using autonomous recording 

units (ARUs) has become recognized as an efficient means of collecting species observations ( 

L. A. Venier et al., 2012; R. Rempel, 2014; Shonfield & Bayne, 2017). Bioacoustic monitoring 

using ARUs has become recognized as an efficient means of collecting species observations 

(Rempel, 2014; Shonfield & Bayne, 2017; L. A. Venier et al., 2012), especially in remote areas 

where it is often more cost effective to leave a recording device in the field for an extended 

period of time, than to have a biologist return to a sampling site multiple times to conduct point 

counts (Shonfield & Bayne, 2017). Moreover, interpreting recordings from ARUs yields 

comparable results to conducting point counts in the field (Darras et al., 2018;  Rempel et al., 

2013) and can provide additional benefits for detecting rare species (Venier et al., 2012). As the 



  

 

 

 

14 

 

technology develops, automatic identification of birds from ARU recordings, using artificial 

intelligence (or machine learning) techniques may make interpretation of ARU data more 

efficient while reducing listener bias (Barath, 2021).  Nonetheless, there are numerous makes and 

models of ARUs and these can be used in different configurations. With the increased 

application of these units, questions have arisen regarding the efficacy of different units in 

detecting birds (Rempel & Jackson, 2014). Rempel et al. (2013) investigated several 

commercially available units, including the Wildlife Acoustics SM2 songmeters used by the 

FNBP. Results indicated the SM2s performed as well as much more expensive units with respect 

to detection of birds.   

 

Data from the FNBP provides an opportunity to test the efficacy of different Wildlife Acoustics 

ARUs in a large and remote study area and during two different sampling protocols. This study 

focuses on breeding birds, including landbirds, waterbirds, waterfowl and shorebirds that have 

recognizable calls used to defend territories and attract females throughout the breeding season. 

Since it was available, I also used anuran data produced by the FNBP. I analyzed breeding bird 

and anuran richness detections from two different ARU models (SM2 units that detect birds and 

anurans, and SM2BAT units that detect birds, anurans, and bats) and two different field 

protocols (long and short-term plots) to test the hypothesis that there are differences in species 

richness detections depending on the ARU model and plot types used.  
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2.2 Methods 
 

Study Design 

 

Sample plots across the far north of Ontario were located at the centre of randomly selected 20 

km by 20 km grids taken from the National Forest Inventory (Gillis et al., 2005). Plots were 

stratified to ensure representative coverage for all 13 ecodistricts in the region. Plots were 

accessed by helicopter and restricted to a 150 km radius from the closest staging community 

which was the maximum one-way flight distance for a helicopter loaded with field crews and 

equipment. If the designated random point location was too wet, too forested or otherwise 

inaccessible for helicopter landings, plots were relocated to the nearest possible landing area of 

similar habitat type. FNBP staff collected data from 2009 to 2014. However, because of different 

sampling methods across years, and technical problems with equipment, I only use data from 

2012 and 2014 in these comparisons. 

 

Recording Units 

 

Two types of autonomous recording units (ARUs) were used to collect audio recordings of bird 

vocalizations: SM2 and SM2BAT units, both made by Wildlife Acoustics Inc. SM2 units have 

two microphones – one on each side of the device – to record bird and anuran vocalizations 

(Figure 2.1).  SM2BAT units look identical but have one standard microphone for birds and 

anurans and one ultrasonic microphone to record bats.  I did not analyze bat data in this study. 

All ARUs were programmed to record 10-minute point counts daily at 05:30, 06:00, 06:30, 
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07:30 to capture the dawn chorus, and at 22:00 and 23:00, to specifically target anurans and birds 

that vocalize at night.  

 

ARUs were fixed to tree trunks or posts at each sampling station approximately 1.5 m off the 

ground. Care was taken to remove any vegetation within a one-metre radius of the microphones 

and to avoid setting up ARUs near moving water to reduce sound interference.  

 

 

Figure 2.1. Example of a Wildlife Acoustics, Inc. ARU showing microphones on opposite sides of 
device. 

 

Plot types 

 

ARUs were deployed in two different configurations: long-term and short-term plots. These 

configurations were adapted from the Multiple Species Inventory and Monitoring (MSIM) 

Protocol developed by the US Forest Service (Manley et al., 1997). On long-term plots, four 

ARUs (three SM2 and one SM2BAT) were deployed in a 500m square configuration with one 
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ARU at a sampling station at each corner (Figure 2.2). Whenever possible SM2BAT units were 

placed at an aquatic, or other ecological edge, to target anurans, aquatic birds, and bats.  

 

Figure 2.2. Long-term plot configuration used during the Far North Biodiversity Project in 
Ontario’s far north showing SM2 and SM2BAT units at each sampling station. 
 

The MSIM protocol prescribed 1000 m by 1000 m squares for sampling ((Manley et al., 1997). 

However, because of the large size of our study area and the expense of helicopter time, the 

FNBP opted for 500 m by 500 m squares. This arrangement allowed for faster plot set up, and 

enabled the deployment of extra plots, while still maintaining a sufficient distance between 

ARUs to avoid overlapping acoustic samples. Long-term plots were deployed in late May or 

early June at the beginning of the bird and anuran breeding season and left at the same location 

for the duration of the spring and summer before being collected in August. 
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On short-term plots, ARU were deployed in a 400 m diameter hexagon. Whereas each ARU on 

long-term plots was deployed in one location for weeks at a time, short-term plots were deployed 

for 6 days (2012) or 4 days (2014), and then relocated to sample a new area.  Like long-term 

plots, short-term plots used ARUs to collect avian, anuran and bat data, but they also included 

extensive sampling of other taxa (plants, fish, insects, small mammals etc) by field crews who 

remained on site for the duration of the plots, which took place in June and July. ARUs were 

deployed in a 400 m diameter hexagon. Hexagons were oriented towards north with SM2 units 

placed at stations at the north, southeast, southwest and center locations (Figure 2.3). The center 

station was intended as backup in case other units failed and was offset 100 m from plot center to 

avoid disturbance by field crews conducting surveys of other taxa near plot centre. Lastly, an 

SM2BAT unit was placed at least 200 metres away from the other units at an ecological edge 

(edge of stream, lake, pond or interface between bog and forest or fen and forest) at the 

discretion of field crews, to target anurans, aquatic birds and bats.  
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Figure 2.3. Short-term plot showing configuration used during the Far North Biodiversity Project 
in Ontario’s far north showing SM2 and SM2BAT units at sampling stations. 
 

The MSIM protocol specifies point counts at all seven hexagon stations. However, given the 

weight restrictions for helicopters and workload limitations of field crews, the FNBP used four 

ARUs as described above, plus the extra SM2BAT unit. Previous research has shown that 

recorders set up at all seven MSIM layout stations had a high degree sampling overlap among 

stations placed at 200 m intervals at each point of the hexagon (G. Holborn, personal 

communication, OMNR NW Region unpublished data 2010, 2011). Whereas ARU in each long-
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term plot were active in one location for an entire sampling season, those in short-term plots 

were deployed for 6 days (2012) or 4 days (2014), and then relocated to sample a new area.   

 

Interpretation of ARU recordings 

 

The bird and anuran species vocalizations captured on each recording were identified aurally by 

experts and the results were then used in this study. The bat data were not used in this study. 

Selected recordings from all stations within long-term plots (001, 008, 009, 010, Figure 2.2) 

were interpreted and recordings from stations 002, 004, 006 and 901 for short-term plots were 

interpreted (Figure 2.3). The interpreter ranked the sound quality of recordings on a scale of 0-5, 

where 0 denoted recordings that were unusable because of wind, rain or other sound interference 

and 5 denoted excellent recording quality with no distracting noise. Only recordings with of 

sound quality 4 or better were analyzed. If a recording selected for interpretation was of poor 

quality, the next available high-quality recording was interpreted. Interpreters also rated their 

confidence in the identification of each species; only species identified with 80% confidence or 

better were used in the analysis. Recordings made at 05:30 were prioritized to capture the dawn 

chorus, and a smaller number of 22:00 recordings were interpreted to specifically target anurans 

and night-calling birds. For long-term plots, 05:30 recordings from each ARU were interpreted at 

five-day intervals; 22:00 recordings were interpreted at 10-day intervals. For each short-term 

plot, 05:30 recordings were interpreted for days 1, 3 and either day 4 (2014), or day 5 (2012); a 

22:00 recording was interpreted for day 2. The number of interpreted recordings used in the 

analysis varied with the type of comparison.  
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Plot type comparisons (2012 data) 

 

Since both plot types were deployed in Albany Ecodistrict over the same length of time, I can 

compare the efficacy of these two plot types in detecting bird and anuran richness within that 

year of the study. In 2012, 12 short-term plots were deployed in the Albany Ecodistrict (Crins et 

al., 2009) between June 7 to July 15. Two plots were established and monitored for six days, 

then two new plots were establishing for the next six days and so on. This strategy let us sample 

12 distinct areas while collecting data across the ecodistrict for the core of the breeding season. 

Concurrently, long-term plots were deployed and left at 12 different locations for the duration of 

the breeding season.  

 

In two cases where an SM2 unit failed at one of the point stations on a short-term plot, data from 

an extra SM2 unit at station 201 were used to keep the total count of SM units for each plot at 

four (total n = 48). Six SM2 units failed on long-term plots, but substitution was not an option 

for long-term plots which did not have the redundancy of extra ARUs, leaving a total of 42 

ARUs to analyze for long-term plots compared with 48 for short-term plots. For short-term plots, 

two 05:30 (Days 1 and 3) and one 22:00 (Day 2) recordings were used for each of the 48 ARUs. 

For long-term plots, nine 10-minute recordings from 05:30 and five from 22:00 recordings were 

used for each of the 42 ARUs (at 5 and 10-day intervals, respectively) for a sampling effort (the 

number of interpreted recordings per richness estimate per station) of three recordings for short-

term plots and 14 for long-term plots. This yielded a total of 144 recordings for short-term plots 

and 588 recordings for long-term plots (Table 2.1). In total, 528 recordings were from SM2 units 
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and 204 from SM2BAT units, for an average sampling effort of 8 versus 8.5 recordings for SM2 

and SM2BAT units, respectively (Table 2.2). 

 

Table 2.1. Bird species richness sample effort and yield by plot type in the Albany Ecodistrict of 
Ontario's far north in 2012.  

 

Plot Type 

 

Plots 

established 

 

Units 

analyzed 

Total 

recordings 

interpreted  

 

Sampling 

effort * 

Long-term 12 42 588 14 

Short-term 12 48 144 3 

*number of recordings per richness estimate at a station 

Table 2.2 Bird species richness sample effort, distribution among plot types and total recordings 
by autonomous recording unit type in the Albany Ecodistrict of Ontario's far north in 2012. 
Unit type Units on long-

term plots 

Units on short-

term plots 

Total 

recordings 

analyzed 

 

Sampling 

effort* 

SM2BAT 12 12 204 8.5 

SM2 30  36 528 8 

*number of recordings per richness estimate per ARU 

ARU type data comparisons using (2012 & 2014 data) 

 

To more rigorously assess any sampling bias between ARU unit types (SM2 and SM2BAT), 

additional comparisons were made for long-term plots using a larger sample size that included 

data from three additional ecodistricts sampled in 2014 (Wood Creek, Winisk River and Dickey 

River). Short-term plots were excluded from this comparison since temporal coverage in 2014 

for short-term plots was not comparable with long-term plots that year. As with the comparison 

of 2012 long-term and short-term plots, this analysis used 05:30 recordings interpreted at five-

day intervals and 22:00 recordings interpreted at 10-day intervals. In the analysis, 738 recordings 

were included from SM2 and 261 recordings from SM2BAT units from all ecodistricts sampled 
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in 2012 and 2014 with an average sampling effort of 12 versus 10 for SM2 and SM2BAT units 

(Table 2.3). 

Table 2.3. Bird species richness sample effort and total recordings by Automated Recording Unit 
type using 2012 and 2014 data from the Albany River, Winisk River, Wood Creek and Dickey 
River ecodistricts in Ontario's far north. 

Unit type 

 

Units 

deployed 

Failed 

units 

Total recordings 

analyzed  

Average sampling 

effort*  

 

SM2 76 12 738 12 

SM2BAT 27 1 261 10 

   *number of recordings per richness estimate per ARU 

Statistical analysis  

 

Using generalized linear mixed models and the “lme4” package in R version 3.3.1 (R Core 

Team, 2016), I tested whether plot types and ARU types detected species richness equally well, 

or if one plot type or ARU detected more species that the alternative. A Poisson link function 

was chosen a priori, as recommended for count data by Zuur et al. (2009). The predictors were 

plot type (long-term and short-term) and unit type (SM2 and SM2BAT). NFI plot was included 

as a random factor in all comparisons to account for any lack of independence caused by 

clustering of sampling units around individual NFI plots. The broader unit type comparison 

(SM2 vs SM2BAT) included 2012 and 2014 data, and models included Ecodistrict as an additive 

or interaction term. Using AICc model selection (Sugiura, 1978; Hurvich & Tsai, 1991), these 

models were compared against a base model containing only the unit type parameter. To assess 

model fit and the assumption of linearity and homoscedasticity for all models, I visually 
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inspected plots of residuals versus fitted values to ensure that there were no patterns in the 

residuals. R squared values were also considered to assess model fit.  

 

2.3 Results 
 

Bird species richness  

Between 2010 and 2014, the ARUs from the FNBP detected 125 species of breeding birds (Table 

1A, Appendix 1). In Albany River Ecodistrict in 2012, long-term plots captured an average of 

seven more bird species–or 1.5 times as many species–than short-term plots (p <0.001) (Figure 

2.5). There was no difference in the number of bird species detected between SM2 and SM2BAT 

unit types (p = 0.359, Figure 2.4, Table 2.4). When 2014 long-term plot data were combined with 

2012 data to increase sample size, there was still no difference in the number of bird species 

detected between SM2 and SM2BAT units (p = 0.17, Figure 2.5, Table 2.4). 
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Figure 2.4. Median bird richness (horizontal line), with the interquartile values (within box) and 
minimum and maximum range (vertical lines) by plot type and ARU unit type in the Albany river 
Ecodistrict of Ontario’s far north in 2012. 
 

 

 
Figure 2.5. Median bird richness (horizontal line), with the interquartile values (within box) and 
minimum and maximum range (vertical lines) by ARU unit type in Albany River Ecodistrict (2012) 
combined with Winisk River, Wood Creek and Dickey River Ecodistricts (2014) in Ontario's far 
north. 
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Table 2.4. Model results by A) plot type and ARU unit type in Albany River Ecodistrict of Ontario's 
far north in 2012 and B) ARU unit type in Albany Ecodistrict (2011) and Wood Creek, Dickey 
River, Winisk River Ecodistricts (2014).  

Response 

Variable 

Predictor Coefficient Std Error z- value p-value 

A. Bird Richness 

(Albany River 

Ecodistrict - 2012)  

Intercept 3.02914 0.06253 0.06253 <0.0001 

SM2 Units -0.05336 0.05821 -0.92 0.359 

Comprehe-

ensive plots 

-0.42459 0.06997 -6.07 <0.0001 

 

B. Bird Richness  

 

(All Ecodistricts  

2012 & 2014) 

Intercept 2.91839 0.05590 52.21 <0.0001 

Wood Cr 0.07775 0.07658 1.02 0.3100 

Dickey R 0.14589 0.07187 2.03 0.0424 

Winisk R 0.14170 0.07547 1.88 0.0605 

SM2 Units 0.06966 0.05067 1.37 0.1692 

 

For the overall unit type comparison using 2012 and 2014 data (Table 2.5), the base model 

containing only unit type with no term for Ecodistrict was the most parsimonious model; 

however, patterns in the residuals indicated unacceptable deviance from linearity. Although the 

residual plot for the additive model had a slight pattern not present in the interaction model, the 

increase in explained variance in the interaction model was negligible, and none of the 

interactions were significant. I report on the additive model since it was favored over the 

interaction model by AICc model selection and it was within 1.5 AICc points of the base model.  
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Table 2.5. AICc results for the base, additive and interaction models of bird species richness in 
Albany Ecodistrict (2012) and Dickey River, Winisk River and Wood Creek Ecodistricts (2014) in 
Ontario's far north. 

 AICc ΔAICc AICcWt Cum.wt 

Base 560.78 0.00 0.64 0.64 

Additive 562.26 1.48 0.30 0.94 

Interaction 565.50 4.72 0.06 1.00 

 

Anuran species richness 

 

Six anuran species were detected in this study (B. americanus, American toad; R. sylvatica, 

wood frog; R. clamitans, green frog; P. crucifer, spring peeper; L. septentrionalis, mink frog; P. 

maculate, boreal chorus frog).  In Albany Ecodistrict in 2012, an average of approximately 1.5 

more species were detected in long-term plots than short-term plots (p < 0.001). As with the bird 

data, no difference was found in anuran detections between SM2 and SM2BAT units (p = 0.78, 

Figure 2.6, Table 2.6). No difference was found in the number of anurans detected between unit 

types when the sample size was increased by adding the long-term plot data from the 2014 

Ecodistricts (p = 0.43, Figure 2.7, Table 2.6).  For this comparison, plots of residuals versus 

fitted values indicated some lack of fit. However, examination of model predictions indicated 

that our model was conservative; a better fitting model would likely produce greater differences 

between treatments.  

 

The difference in explained variance between the interaction and additive models was negligible, 

and both models had acceptable residual plots. The base model was within 2 AICc points of the 
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additive model, but the residual plot exhibited patterns not present in the additive model. Thus, I 

report on the additive model since it was favored by AICc as the most parsimonious (Table 2.7).  

 

 
Figure 2.6. Median anuran richness (horizontal line), with the interquartile values (within box) 
and minimum and maximum range (vertical lines) by plot type and ARU unit type in Albany River 
Ecodistrict (2012). 
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Figure 2.7.  Median anuran richness (horizontal line), with the interquartile values (within box) 
and minimum and maximum range (vertical lines) for long-term plots by ARU unit type in Albany 
River Ecodistrict (2012) combined with Winisk River, Wood Creek and Dickey River Ecodistricts 
(2014). 

 

Table 2.6. Model results by A). plot type and ARU unit type in Albany River Ecodistrict (2012) and 
B). ARU unit type in Albany Ecodistrict combined with Wood Creek, Dickey River, Winisk River 
Ecodistricts (2014). 

Response 

Variable 

Predictor Coefficient Std Error z- value p-value 

A.  

Anuran 

Species Richness 

(Albany River 

Ecodistrict 2012) 

 

Intercept 0.57227 0.32134 1.781 0.0749 

SM2 Units -0.06151 0.21835 -0.282 0.7782 

 

Comprehen-

sive plots 
-2.09266 0.52385 -3.995 6.47e-05 

B.  

 

 

Anuran 

Species 

Richness 

(All Ecodistricts 

2012 & 2014) 

Intercept 0.3859 0.2517 1.533 0.125 

Dickey River -0.2964 0.3210 -0.924 0.356 

Winisk River 0.1044 0.3183 0.328 0.743 

Albany River 
0.3911 0.2500 1.564 0.118 

SM2 Units -0.1414 0.1780 -0.794 0.427 
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Table 2.7. AICc results for the base, additive and interaction models of anuran richness in Albany 
Ecodistrict (2012) combined with data from Dickey River, Winisk River and Wood Creek 
Ecodistricts (2014). 

 AICc ΔAICc AICcWt Cum.wt 

Additive 261.58 0.00 0.58 0.58 

Base 262.28 0.70 0.41 0.98 

Interaction 268.63 7.05 0.02 1.00 

 

2.4 Discussion 
 

When using point counts, there have always been trade-offs made between how many sites to 

survey, how many visits to make to each site and budgetary constraints – especially in remote or 

difficult to access study sites (Carlson & Schmiegelow, 2002).  Observer bias of biologists 

conducting point counts has also been a concern, especially when multiple observers are being 

used (Rempel et al., 2014; Shonfield & Bayne, 2017).  With the advent of ARUs that are as good 

or better than biologists at detecting the sounds of singing or calling organisms in the field, it can 

be more efficient and cost-effective to use these devices rather than trained human observers 

(Rempel et al., 2014; Shonfield & Bayne, 2017). Using ARUs enables more repeat sampling of 

plots, reduces the time in the field and the associated risks of field activities, provides a 

permanent record of the data collected, and can reduce observer bias (Rempel et al. 2014; 

Shonfield & Bayne, 2017).  As the choice of ARU makes and models has increased, considerable 

work has been done to explore the efficacy of different ARU units and optimal ways to use them 

in the field (Venier et al., 2012; Rempel et al., 2013; Rempel et al., 2014; Shonfield & Bayne, 

2017).  During the design of the FNBP, choices had to be made between prioritizing the use of 
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ARUs in short-term plots that could be moved regularly to sample more areas, versus using the 

ARUs in longer-term long-term plots, which reduced the total number of possible sites to be 

visited across the study area. My work makes a contribution to this research by quantifying the 

difference in bird and anuran species detection rates from two different types of ARUs and two 

differing plot designs in a large and remote study site.  

ARU type comparison 

 

Our results showed no significant difference in the effectiveness of SM2 versus SM2BAT meter 

in richness detections for anurans or birds. Although both ARU types performed equally well, 

SM2BAT units have the added capacity to collect bat data with no loss of bird and anuran data. 

This additional capacity could be useful in some biodiversity studies, however SM2BAT units 

are almost twice as expensive as SM2 units because they have both standard and ultrasonic 

circuitry. In addition to being more affordable, SM2s also have the built-in redundancy of an 

extra microphone should one of them get damaged by a bear, weather or other environmental 

factors. Since our study, Wildlife Acoustics Inc. has updated these ARUs to the SM4 and 

SM3BAT models. These updated versions should perform similarly to SM2 and SM2BAT units 

with respect to their ability to detect bird and anuran richness (Warren, C. Wildlife Acoustics, 

March 2019, personal communication). For any study not interested in bat data, I recommend the 

SM2-type units. Wildlife Acoustics Inc. now has more affordable models specifically for bats.  
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Avian plot type comparison  

 

I found long-term plots were a more effective means of sampling bird species richness in 

Ontario’s far north; on average long-term plots detected about seven more species than short-

term plots–or about 1.5 times as many species.  The obvious explanation for this substantial 

difference in richness detections is the difference in sampling effort (the number of interpreted 

recordings at each station) between long-term versus short-term plots. Although the number of 

long-term and short-term plots was the same (12 plots) and total the number of ARUs deployed 

for each plot type was very similar (42 on long-term plots and 48 on short-term plots), the total 

number of recordings–and thus the average number of recordings per richness estimate at a 

station–was much greater for long-term than short-term plots (14 versus 3 respectively). Given 

this difference in sampling effort,  and the potential variability in the arrival of birds at their 

breeding territories, it is not surprising that more bird species were detected over the longer 

sampling periods of the long-term plots compared with the short-term plots (Shiu and Lee, 2003) 

However, it is valuable to understand the magnitude of the difference in species detection rates 

between these two plot protocols to inform future study design decisions.  

 

To optimize future studies, it is also worth thinking about some more nuanced considerations for 

point count protocols. The breeding birds in our study lend themselves well to point count 

surveys because they are territorial, and their breeding seasons are relatively synchronous 

(Venier et al., 2012). Thus, repeated visits to a survey point over the breeding period should 

sample the same community, leading to more accurate species richness estimates (Venier et al., 

2012).  However, Rempel et al. (2014) suggest that when using audio recordings to estimate 
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occupancy, not all boreal bird species are equally detectable. They found that for birds with 

larger territories relative to the potential detection area of the ARU, detection rates were lower 

because there was a higher probability they would be outside the ARU detection range during 

their daily movements. These findings suggest that one reason long-term plots detected more 

species is that the higher number of recordings from each site provides a higher probability that 

species with large territories would be detected; the longer the ARU was operating, the higher 

the probability that a wide-ranging species would visit more parts of its large territory and end up 

being detected by an ARU within that territory.  Additionally, Semli & Boulinier (2003) suggest 

that the frequency of vocalizations can also vary between the start and end of the breeding 

season, and Rempel et al. (2014) suggest that short term plots may also be influenced by 

immediate weather patterns; several cold or wet days in a row may lead to fewer vocalizations 

for some species. Thus, species detection rates during short-term plots may not be optimal for 

species with larger territories and are also much more sensitive to any seasonality in 

vocalizations and the influence of short-term weather patterns than long-term plots with their 

greater temporal coverage.  

Anuran plot type comparison 

 

Long-term plots detected an average of about 1.5 more species than short-term plots, a 

substantial difference given there were only six anuran species detected in total across our study 

site, and all but six plots detected 4 species or fewer.  

 

Anurans can be classified into explosive and prolonged breeders. For explosive breeders, the 

entire breeding season is anywhere between 1 to 14 days, whereas the prolonged breeders may 
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breed over a period of one month or longer (McCauley et al., 2000). Of the six anuran species 

detected across all plots, two (wood frog and American toad) can be classified as explosive 

breeders (Oseen & Wassersug, 2002), whereas the other species are classified as prolonged 

breeders (Oseen & Wassersug, 2002; Whiting, 2010). As ectotherms, the timing and duration of 

anuran breeding behaviour, during which their vocalizations can be detected by ARUs, can be 

highly influenced by environmental factors, such as air and water temperature, rainfall, and 

humidity (Blair, 1961; Dorcas et al., 2009; Oseen & Wassersug, 2002). Explosive breeders are 

generally less responsive to environmental variables than prolonged breeders (Oseen & 

Wassersug, 2002). Thus, unlike the breeding birds in our study, anuran breeding may not be 

synchronous among species across the far north. Given the variable length and timing of 

breeding seasons for anurans–in addition to the differences in sampling effort between plot 

types–it is not surprising that more anurans were detected over the much longer sampling period 

of long-term plots than during the short six-day short-term plots. The longer sampling period of 

long-term plots provides more opportunity to capture vocalizations during the variable and 

potentially short anuran breeding periods. 

 

Conclusions   

 

When conducting auditory surveys, it is common practice to re-visit survey points more than 

once to generate a better estimate of species richness (Hutto et al., 1986; Ralph et al., 1995). In 

the case of territorial and actively breeding birds, any increase in richness detections with 

additional visits is assumed to be an improved richness estimate for the breeding birds at that 

survey plot, rather than the arrival of new species to the area (Venier et al., 2012).  With anurans, 
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repeated visits to survey points may also improve species detections by overcoming the 

variability in breeding times and duration for different species and the impact of environmental 

conditions.  

 

In our study, both SM2 and SM2BAT units from Wildlife Acoustics Inc. performed equally well 

at detecting birds and anurans. The extended temporal duration and greater number of recordings 

for each long-term plot compared to short-term plots appeared to provide better species richness 

estimates for bird and anurans.  

 

The Far North Biodiversity Project was a multi-taxa survey and, thus, collecting ARU data 

during the short short-term plots was logical since biologists were already on the plot sites. These 

short-term plots allowed for sampling of several taxa in numerous parts of Ontario’s far north 

while also gathering data via ARUs at each plot. However, future studies using ARUs for the 

detection of vocalizing bird and anuran species in large and remote landscapes such as Ontario’s 

far north would benefit from deploying ARUs for the duration of the breeding season of their 

target species rather than deploying units for shorter duration and moving them regularly to 

sample more sites. While the latter approach may seem appealing, our results suggest that longer 

plots provide better species richness estimates. 
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Chapter 3 – Determinants of songbird diversity in Ontario’s far north  
 

3.1 Introduction 
 

Defining biodiversity 

 

The term biodiversity is a contraction of biological diversity and a key concept in ecology that 

can be summarized as the total variation of living systems from genes to species and ecosystems 

(Purvis & Hector, 2000). MacArthur (1964, 1965), was the first ecologist to use the term 

diversity, and in the decades since, the concept has been expanded to include different notions 

for species (taxonomic), functional, genetic, phylogenetic and chemical diversity among 

numerous other groupings (Daly et al., 2018). Diversity has also been partitioned into different 

categories based on scale: gamma diversity is the total diversity across a landscape, alpha 

diversity is the diversity within a particular habitat or ecosystem, and beta diversity represents 

the difference in diversity between distinct habitats or ecosystems (Daly et al., 2018; Jost, 2006). 

In this study I am concerned with alpha diversity.  

 

The multiple uses of the term diversity became problematic enough that Hulbert (1971) 

suggested it had become meaningless and the term should be abandoned. Two decades later, 

Delong (1996) unearthed 85 different definitions for biodiversity, and Ricotta (2005) described 

the concept as “extremely confusing.” Nonetheless, since many ecologists find the idea of 

biodiversity useful when thinking about ecological systems, a substantial literature has been 

published on the concept. For most ecologists, the term biodiversity reflects intuitive ideas about 

species and ecosystems, but when we try to quantify those things, it gets complicated.  
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Measuring diversity 

 

In addition to, and perhaps partially because of, the difficulty of defining the concept of 

biodiversity is the challenge of measuring it. Dozens of mathematical indices have been created 

to tackle this problem—each with its own bias—and they often give contradictory results (Jost, 

2006; Daly et al., 2018). Chao and Jost (2004) proclaimed that the array of diversity indices in 

the literature is “bewildering.”   

 

In ecology, the most commonly used metric is species diversity, which is most commonly 

quantified using species richness, the Shannon index, and/or the Simpson Diversity index (Daly 

et al., 2018; Pallman et al., 2012; Roswell and Dushoff, 2021; Tuomisto, 2010). Species richness 

(i.e., the number of species present in an area) is often used in studies over large spatial extents 

and is intuitively easy to understand; a community with 8 species is twice as diverse as a 

community with 4 species. However, richness is also the simplest of species diversity measures, 

and can give unwarranted weights to rare species because it does not account for the relative 

abundance of species within a community (Jost, 2006; Tuomisto, 2010; Daly et al., 2018). By 

comparison, the Shannon index and the Simpson Diversity index are the two most popular 

compound indices that incorporate richness and abundance data into a single index, but they are 

not interchangeable. Shannon’s index weights each species exactly according to its frequency, 

whereas Simpson’s Diversity gives more weight to common or dominant species (Whittaker, 

1965). Thus, the choice of the index must be made carefully as this choice can have serious 

implications when interpreting results (Morris et al., 2014).  
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The Shannon index has its origins in information theory and was originally proposed by Claude 

Shannon to quantify the uncertainty, or entropy, in strings of text (Shannon, 1948). It is also 

known as the Shannon-Weiner index, the Shannon-Weaver index and Shannon entropy (Daly et 

al., 2018). Shannon’s diversity index is a measure of uncertainty when sampling a community 

(Shannon, 1948; Jost, 2006; Morris et al., 2014). As an ecological example, if a species is 

randomly selected from a highly diverse community, there will be relatively high uncertainty in 

its identity, leading to a higher index value. By comparison, in a non-diverse community, the 

identity of a randomly selected species will be less uncertain, and the index value will be lower.  

 

By contrast, the Simpson Index (D) measures the probability that two individuals randomly 

selected from a sample will belong to the same species (Daly et al., 2018). Unlike Shannon’s 

diversity index which has no upper limit, the Simpson Index is bound between 0 and 1, with 0 

representing infinite diversity and 1 representing no diversity. That is, the bigger the value of D, 

the lower the diversity. This scaling is counter-intuitive, so in biology, D is often subtracted from 

1 to give the Simpson Diversity Index (also referred to as the Gini-Simpson index, which I will 

use hereafter), where 0 is no diversity and 1 is very high diversity. Expressed this way, this index 

represents the probability that two individuals randomly selected from a sample will belong to 

different species. It places more emphasis on the dominant, or common, species in a community. 

These different permutations of Simpson’s index are used in the literature, so it is important to 

ensure one understands which index an author is using (Daly et al., 2018).  

 

In essence, species richness, the Shannon and the Gini-Simpson indices each measure different 

facets of a community’s species composition and use different units to quantify diversity 
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(species, uncertainty, and probability, respectively), making comparisons among them difficult. 

A biologist may be able to calculate whether there is a statistical difference in raw index values 

between one community and another, but this explains very little about the magnitude—or the 

ecological significance—of that difference.  

 

What does a Shannon Index value of 2.45 mean in biological terms? Does it represent a lot or a 

little diversity? How much more diverse is a community with a Shannon index value of 2.9, and 

how does this compare to a community with a Gini-Simpson value of 0.99? These are important 

questions.  

 

Part of the problem in answering them is the non-linear nature of the Shannon and Simpson’s 

indices. For perfectly even communities, both indices increase non-linearly; with increasing 

richness, communities appear more similar with respect to the magnitude of index values (Figure 

3.1). This is more pronounced with the Gini-Simpson index since it is bound between 0 and 1. 

This non-linear response can lead to interpretation challenges, especially for ecologists 

accustomed to the linear and intuitive nature of species richness.   
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Figure 3.1. Dependence of Shannon and Gini-Simpson index on a number of species in a 
perfectly even community (Zeleny, n.d.). 
 

To illustrate this problem, Jost (2009) used an example of a continent losing 999,900 of its one 

million species from a meteor impact. The raw Gini-Simpson index values change from 

0.999999 before the strike to 0.99 afterwards. This is a change in the index value of just 1% even 

though there has been a catastrophic loss of diversity on the continent. This example illustrates 

how reporting the raw value of an index can make it difficult to interpret the magnitude of the 

results and can lead to misinterpretations of findings (Ricotta, 2003; Jost, 2006). This impact is 

more pronounced in the Gini-Simpson index than with Shannon’s. Nonetheless, for any index, 

raw values are simply a proxy for the concept of diversity and should not be treated as a true 

measure of diversity as biologists understand it intuitively (Tuomisto, 2010). Jost (2019) 

contends that poor interpretation of indices arose, not from the indices themselves, but from 

biologists using these metrics as if they all shared the same intuitive and mathematical properties 
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as species richness, which they do not; different indices place more or less emphasis on different 

components of diversity.  

 

Nonetheless, all these indices can be unified, subject to their sensitivity to relative abundance, or 

frequency of the species in the community (Daly et al., 2018; Jost, 2019). As a measure of 

diversity, species richness is not at all sensitive to abundance, treating rare and common species 

identically. The Shannon Index weights all species exactly by their frequency, without 

favoring either common or rare species, and the Gini-Simpson index gives common species more 

weight than rare species.  

 

Using this approach, raw index values can be converted to Hill Diversity (Roswell et al., 2021). 

Hill (1973) was the first to recognize the utility of measuring diversity in units of effective 

numbers of species based how an index weights relative species abundance. After conversion, 

diversity is measured in units of effective number of species. This metric behaves in an intuitive 

and linear fashion that is easy to understand and allows for easy comparisons among 

communities and different studies regardless of what index is used (Jost, 2006; Daly et al., 

2018).  Amidst all the confusion in the literature regarding how to quantify diversity, Hill (1973) 

suggested that “the notion of diversity is little more than the notion of the effective number of 

species present,” a clarifying argument that was largely ignored for decades, until Jost (2006) re-

introduced these ideas to ecologists (Roswell et al., 2021). There is now a growing consensus 

that using Hill Diversity is a preferred method for measuring community diversity (Roswell et 

al., 2021).  
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Converting raw index values into Hill Diversity, or the indices’ number-equivalent, involves 

mathematically building a reference community of equally common species and calculating how 

many of those species correspond to a particular index value. For example, a community with a 

Shannon index value of 3.2, equates to 24.5 equally common species. Revisiting the questions 

posed earlier, Shannon Index values of 2.45 and 2.90 correspond to 11.6 and 18.2 effective 

species respectively, or a difference of about 7 species, which could be a lot or a little, depending 

on the species and community in question. The third community with a Gini-Simpson index of 

0.99 represents 100 effective species, a substantial difference from the others that is very difficult 

for most people to recognize if they only reference the raw index values. However, after 

converting index values to their Hill Diversity equivalents, the magnitude of the differences in 

diversity between these communities is now in units that are easily understood: they behave in a 

linear fashion and are far less prone to misinterpretation than non-linear diversity indices (Daly 

et al., 2018). 

 

The question then becomes which index to use, especially since different metrics may have 

different responses to scale (González-Megías et al., 2007). The answer depends on what you are 

interested in measuring. Authors interested in the most common species in a community may 

wish to use effective number of the Gini-Simpson index (HILL-GS), whereas the effective 

number of the Shannon index (HILL-SHAN), with its “middle-ground” sensitivity to rare 

species, may be a reasonable measure for most studies (Kempton, 1979; Roswell et al., 2021). 

Although it has been widely used, species richness (RICH) is not recommended as a single 

measure of diversity by many authors who have published on quantifying diversity (Magurran & 

McGill, 2011; Chase & Knight, 2013; Haegeman et al., 2013), because it places excessive 
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weight on rare species, is very sensitive to sample size and is difficult to estimate outside of 

controlled settings (González-Megías et al., 2007; Daly et al., 2018; Roswell et al., 2021). 

However, species richness still has its place, especially when combined with other metrics. For 

general diversity studies, many authors advocate using multiple diversity measures as this 

provides a more comprehensive picture of the shape of a community compared to any single 

measure (Stirling & Wilsey, 2001; Ma, 2005; González-Megías et al., 2007, Roswell et al., 

2021).  Here I use RICH, HILL-SHAN and HILL-GS as response variables because they provide 

readers with a thorough picture of avian diversity in the Ontario’s far north, and because this 

comprehensive approach is consistent with emerging best practices in the field. (González-

Megías et al., 2007; Daly et al., 2018, Roswell et al., 2021). 

 

Biodiversity Distribution 

 

Beyond the challenges of measuring diversity, a striking feature of Earth’s biodiversity is its 

unequal distribution across the globe, with the number of species generally decreasing from the 

tropics to the poles, among many other well-documented gradients (Tittensor & Worm, 2016). 

Explanations for these patterns have challenged ecologists for more than 200 years, becoming a 

core theoretical question in ecology and evolutionary biology (Worm & Tittensor, 2016) and 

stimulating over 30 hypotheses. (Davies et al., 2007; Luo et al., 2012). With large-scale 

environmental deterioration from human activities, understanding foundations of global and 

regional variability in species diversity is no longer a matter of theoretical interest; it is critical 

for long–term biodiversity conservation planning (Kerr & Packer, 1999). 
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Two of the most recognized hypotheses to explain species diversity gradients are the species-

energy hypothesis (Wright, 1983) and the habitat heterogeneity hypothesis (Mérő et al., 2015) 

(Simpson, 1949; MacArthur & Wilson, 1967), both of which are recognized in shaping species 

distributions (Davies et al., 2007; Luo et al., 2012). The species-energy hypothesis suggests that 

higher species diversity arises in areas with higher productivity, ambient energy and water-

energy dynamics (Carrara & Vázquez, 2010; Hawkins et al., 2003; Wang et al., 2009). In regions 

with more solar radiation and precipitation, higher primary productivity is expected to promote 

growth, reproduction, and species differentiation, leading to greater biodiversity (Carrara & 

Vázquez, 2010; Clarke & Gaston, 2006; Currie, 1991). The habitat heterogeneity hypothesis 

posits that variation in habitat features such as landscape, vegetation type, vegetation structure 

and elevation can produce a greater diversity of habitats for co-existing species, leading to higher 

biodiversity (Pianka, 1966; Kerr and Packer, 1997; Hugo & van Rensburg, 2008).  

 

Variability in energy and habitats work in conjunction; energy variables are largely responsible 

for patterns in distribution and productivity of terrestrial plants across the globe (Holdridge, 

1967), which then influence patterns of other taxa, including vertebrates (Hawkins et al., 2003; 

Currie et al., 2004). Temperature can directly limit animal distributions by excluding individuals 

from regions where physiological tolerances are exceeded (Root, 1988; Currie, 1991). Energy 

may also act indirectly on species distributions through energetic limitations on plant growth and 

food web development (Brown, 1981; Wright, 1983). Subsequently, vegetation composition and 

structure are well-documented drivers of local and regional abundance and community 

composition of bird populations (MacArthur, 1964; Rotenberry & Wiens, 1980; Cody, 

1981; Davidowitz & Rosenzweig, 1998). Whereas energy variables typically influence the 
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continental distribution of species, vegetation affects the provision of shelter, food and other 

important aspects of habitat quality at the scales of the territory, patch and landscape (Johnson, 

1980). 

 

According to Johnson’s (1980) hierarchical model of habitat selection, energy is viewed as 

controlling first-order selection, corresponding to the geographic range a species occupies, 

whereas vegetation influences second-order selection of home-ranges through individual choices 

such as specific foraging or nesting sites. In other words, climate and habitat variables tend to 

operate at different scales. Understanding the impact of scale on different variables is critical to 

understanding variation in biodiversity (Gaston, 2000; Hurlbert & Jetz, 2007; Whittaker et al., 

2001). Scale consists of two important attributes: the unit of sampling, defined as “resolution” or 

“grain” and the geographical space, or “extent” covered by the study (Wiens, 1989; Scheiner, 

2003; Rahbek, 2005).  The choice of spatial extent and grain can directly affect the relative 

importance assigned to environmental variables, their hierarchical organization and the 

comparison of results from different studies (Rahbek & Graves, 2001; Johnson et al., 2004; 

Olivier & Wotherspoon, 2005; Rahbek, 2005; Luoto et al., 2007). 

 

Jiménez-Valverde et al. (2011) found that avian distributions are well–described by energy 

characteristics at the large spatial extent of North America when modelling bird distributions 

using climate variables at a grain of 75 km. At a smaller geographical extent of the country of 

China, Luo et al. (2012) explored the predictive power of energy and habitat heterogeneity 

variables to model the distribution of vertebrate species richness. At a grain of 100 km, energy 

and habitat heterogeneity variables explained 67% and 25% of vertebrate richness, respectively. 
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Likewise, when modelling the abundance of 98 bird species across the boreal forest of northern 

Canada, Cumming et al. (2014) found climate variables (at 10 km resolution) explained 77% of 

variance in bird species abundance, and vegetation variables (mostly land cover type at 250m 

resolution and April leaf index at 1 km resolution) explained 23%. These results support 

Wright’s (1983) assertion that determinants of bird species distributions are hierarchically 

structured with climate largely dictating broad patterns of species distributions (Currie, 1991; 

Huntley et al., 1995; Parmesan, 1996), and land cover and habitat variables playing smaller, but 

important roles (Venier et al., 2004; Pearson et al., 2004). Thuiller et al. (2004) suggest that 

including land cover data in bioclimatic models at a coarse grain of 50 km does not greatly 

improve the predictive power of models, whereas other studies have found that land cover at 

finer grains can significantly improve spatial predictions of bird, plant and butterfly species (Hill 

et al., 1999; Pearson et al., 2004; Luoto et al., 2007). In a study of boreal birds in Finland 

(300,000 km2), Luoto et al. (2007), explored the relative importance of climate and land cover 

variables in bird species distribution models at multiple resolutions. Using bird atlas data at a 10 

km by 10 km grain, they re-sampled their dependent and explanatory variables at 20 km, 40 km, 

and 80 km grains, and found that the inclusion of land cover variables increased the performance 

of models at 10 km and 20 km grains, but not at the 40 km grain. Inclusion of land cover at the 

80 km grain decreased the performance of models. Luoto et al. (2007) results show that habitat 

data can strengthen climate-based distribution models for boreal birds if the work is conducted at 

grains that are fine enough.  

 

There is a well-documented positive relationship between habitat heterogeneity and species 

diversity, especially in the case of avian communities (MacArthur, 1961; Tews et al., 2004). The 
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habitat heterogeneity hypothesis predicts that with an increase in habitat types, resources and 

structural complexity, there should be a corresponding increase in the available niche space 

thereby allowing more species to coexist (e.g. Currie, 1991; Tews et al., 2004). However, more 

recent work (e.g. Allouche et al., 2012; Yang et al., 2015) provides evidence that the response in 

diversity to increasing habitat heterogeneity is not necessarily a continually increasing positive 

curve. Rather, increasing heterogeneity beyond a certain point can reduce the effective area 

available for individual species, reducing species richness and population sizes. A meta-analysis 

by Stein et al. (2014) suggests a positive relationship between diversity and habitat heterogeneity 

is the general rule, but the response can depend on the variables being used and the scale of the 

study. For conservation planning purposes at local or regional levels, understanding the finer-

scale relationship between species diversity and habitat heterogeneity is important. For example, 

a bell-shaped response to heterogeneity would warrant prioritizing areas of intermediate 

heterogeneity for protection, whereas increasing positive responses suggest areas of high habitat 

heterogeneity should be prioritized.  Moreover, it is difficult to predict a priori what diversity 

measure or spatial scale is most appropriate in any study (Stein, 2015). Thus, biodiversity studies 

should include multiple spatial scales and multiple diversity metrics (González-Megías et al., 

2007). 

Study area 

 

This study was undertaken in the far north of Ontario, Canada. Defined by Ontario’s Far North 

Act, 2010, S.O. 2010, c. 18 s.2, the far north of Ontario encompasses approximately 441,000 

square kilometers of intact ecosystems composed predominantly of boreal forest, swamp, bogs 

and fens (Figure 1.1, Far North Science Advisory Panel, 2010) situated approximately north of 
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50.00 N. Unlike other parts of the province, this region has had very little industrial development 

(Far North Science Advisory Panel, 2010).   

 

The region is comprised of two major ecozones: the Hudson Bay Lowlands and the Ontario 

Shield, which are further divided into 13 ecodistricts based on biogeoclimatic characteristics 

(Crins et al., 2009). The Hudson Bay Lowlands are the third largest wetland in the world 

(Abraham & Keddy, 2005). This region is also the world’s second largest peatland and is a 

globally significant carbon sink (Packalen et al., 2014). In conjunction with neighbouring parts 

of Manitoba, Ontario’s far north forms one of the largest pieces of intact forest in the world 

(World Resources Institute, 2010). The far north provides habitat for species at risk including 

woodland caribou (Rangifer tarandus), polar bears (Ursus maritimus), wolverines (Gulo gulo), 

olive-sided flycatchers (Contopus cooperi). Overall, 340 species of birds are known to be 

supported by Ontario’s far north ecosystems during some point during their annual cycle 

(Abraham and McKinnon, 2011). Of those, 190 species have been documented breeding in the 

region (Far North Science Advisory Panel, 2010), making the far north an important nursery for 

North American boreal breeding birds, which live in low densities across the landscape 

(Stralberg et al., 2018). 

 

In 2009, the Ontario Ministry of Natural Resources (OMNR) initiated the Far North Biodiversity 

Project (FNBP) – a five-year multi-species biological inventory project aimed at collecting 

baseline biodiversity data to help inform land use planning for the region. The project collected 

data on the distribution and abundance of numerous taxa including vertebrate, plant, insect and 

lichen species. Sampling of vocal species like bats, birds and anurans was done using long-term 
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bioacoustic monitoring devices (hereafter referred to as autonomous recording units, or ARUs, 

Chapter 2). Here, I use the bird data from the FNBP. 

 

Objective and hypotheses  

 

The objective of this study is to describe and better understand determinants of the distribution of 

breeding bird diversity in a large, remote and largely ecologically intact region of Ontario, 

Canada.  I focus on birds that breed in the far north including landbirds, waterbirds, waterfowl 

and shorebirds that have recognizable calls used to defend territories and attract females during 

the breeding season. All breeding birds were included in my analysis because I deemed all 

species, whether common or rare, as important components of the breeding bird diversity of 

Ontario’s far north. However, no playbacks were used, and thus secretive species may be 

underrepresented. 

 

I used the FNBP bird data and a collection of energy and habitat predictor variables to (1) test the 

relative importance of the habitat heterogeneity and species-energy hypotheses with respect to 

breeding bird diversity at various grains of analysis, and (2) create distribution maps for breeding 

bird diversity across this region. I expected that at smaller grain sizes within our study I would 

find more support for the habitat heterogeneity hypothesis whereas at the larger grains the 

species-energy hypothesis would find greater support. I will compare the relative strength of 

these hypotheses through a model selection process in which a set of candidate general linear 

models will be ranked based on their explanatory power while accounting for model parsimony. 
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3.2 Methods  

Avian data collection 

 

Avian data were collected at sample plots across the far north of Ontario, located at the centre of 

randomly selected 20 km by 20 km grid cells from the National Forest Inventory (Gillis et al., 

2005). Plots were stratified to ensure representative coverage for all ecodistricts. Plots were 

accessed by helicopter and restricted to lie within a 150 km radius from the closest staging 

community which was the maximum one-way flight distance for a helicopter loaded with field 

crews and equipment. If the designated random point location was too wet, too forested or 

otherwise inaccessible for helicopter landings, plots were relocated to the nearest possible 

landing from which similar habitat could be accessed. FNBP staff collected data from 2009 to 

2014. However, because of different sampling methods across years, and technical problems 

with equipment, I only use data from the five-year period 2010 to 2014 Figure 3.2).  

 
Figure 3.2. Far North Biodiversity Project plot locations in Ontario’s far north 2010-2014 
 



  

 

 

 

51 

 

Two types of autonomous recording units (ARUs) were used to collect audio recordings of bird 

vocalizations: SM2 and SM2BAT units, both made my Wildlife Acoustics Inc. SM2 units have 

two microphones – one on each side of the device – to record bird vocalizations. SM2BAT units 

look identical but have one standard microphone for birds and one ultrasonic microphone to 

record bats. There are no significant differences in the detection rates for bird species between 

unit types (Chapter 2). All song meters were programmed to record 10-minute point counts daily 

at 05:30, 06:00, 06:30, 07:30 to capture the dawn chorus, and at 22:00 and 23:00, to specifically 

target birds that vocalize at night. Song meters were fixed to tree trunks or posts approximately 

1.5 m above the ground. Care was taken to reduce sound interference by removing any 

vegetation within a one-meter radius of the microphones and to avoid setting up song meters 

near moving water.   

 

Interpretation of ARU recordings 

 

Bird species were identified aurally by experts listening to point count recordings following 

Rempel et al. (2014). The interpreter ranked the sound quality of bird recordings on a scale of 0-

5, where 0 denoted recordings that were unusable because of wind, rain or other sound 

interference and 5 denoted excellent recording quality with no distracting noise. If a recording 

selected for interpretation was of poor quality, the next available high-quality recording was 

interpreted. Interpreters also rated their confidence in the identification of each species; only 

species identified with 80% confidence or better were used in the analysis. A small number of 

recordings were less than 10 minutes long. I only included recordings of 7.5 minutes or longer. 

Recordings made at 05:30 were prioritized to capture the dawn chorus, with a smaller number of 

22:00 recordings interpreted to specifically target night-calling birds. For long-term plots, 05:30 



  

 

 

 

52 

 

recordings from each ARU were interpreted at five-day intervals; 22:00 recordings were 

interpreted at 10-day intervals. For each short-term plot 05:30 recordings were interpreted for 

days 1, 3 and either day 4 (2014), or day 5 (2012, 2013); a 22:00 recording was interpreted for 

day 2. Records that did not provide species-specific identification (e.g. woodpecker sp, duck sp, 

waterfowl taking off, insect chorus etc), and any blank records or species identified as unknown 

were filtered out.  

 

Plot configurations – long-term 

 

Songmeters were deployed in two different configurations: long-term and short-term plots. These 

configurations were adapted from the Multiple Species Inventory and Monitoring Protocol 

(MSIM) developed by the US Forest Service (Manley et al. 2006).  On long-term plots, four 

songmeters (three SM2 and one SM2BAT) were deployed in a 500m square configuration with a 

songmeter at a sampling station at each corner (Figure 3.3). Whenever possible SM2BAT units 

were placed at an aquatic, or other ecological edge, to target aquatic birds and bats.  
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Figure 3.3. Configuration of long-term plots during the Far North Biodiversity Project in Ontario’s 

far north showing SM2 and SM2BAT units 
 

The MSIM protocol prescribed 1000 m by 1000 m squares. However, because of the large size 

of our study area and the expense of helicopter time, the FNBP opted for 500 m by 500 m 

squares. This arrangement allowed for faster plot set up and enabled the deployment of extra 

plots.  

 

In 2010 and 2011 long-term plots were deployed for 10 days and three weeks respectively, 

before being moved to new locations where the deployment was repeated. In 2012, 2013 and 

2014, long-term plots were deployed early in the spring at the beginning of the bird breeding 

season and left at the same location from approximately late May until mid-August, depending 

on the field season.  
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Plot configurations – short-term 

 

On short-term plots, ARUs were deployed in a 400 m diameter hexagon. Hexagons were 

oriented towards north with SM2 units placed at stations at the north, southeast, southwest and 

center locations (Figure 3.4). The centre station was intended as backup in case other units failed 

and was offset 100 m from plot center to avoid disturbance by field crews conducting surveys of 

other taxa near plot centre. Lastly, an SM2BAT meter was placed at least 200 meters away from 

the other units at an ecological edge (edge of stream, lake, pond or interface between bog and 

forest or fen and forest) at the discretion of field crews, to target aquatic birds. 

 

 
Figure 3.4. Configuration of short-term plots during the Far North Biodiversity Project in Ontario’s 

far north showing configuration of SM2 and SM2BAT units. 
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The MSIM protocol specifies point counts at all seven hexagon stations. However, given the 

weight restrictions for helicopters and workload limitations of field crews, the FNBP used four 

songmeters as described above, plus the extra SM2BAT unit. Previous research has shown that 

recorders set up at all seven MSIM layout stations had a high degree of sampling overlap among 

stations placed at 200 m intervals at each point of the hexagon (G. Holborn, personal 

communication, OMNR NW Region unpublished data 2010, 2011). short-term plots were 

deployed for six days at each site between 2010-2013 and for four days in 2014.  

 

Diversity Calculation  

 

I explored diversity at the plot level using three forms of Hill Diversity representing different 

levels of sensitivity to common species: RICH, HILL-SHAN and HILL-GS. The analysis was 

conducted at the plot level, rather than station level because the resolution of our energy 

variables does not vary meaningfully among the stations within a plot, making the plot-level a 

much better match for the resolution of those variables. Also, the nature of the hypotheses I am 

testing has to do with more broad-scale impacts on species distributions across the landscape, 

rather than station-level differences.  

 

To calculate diversity variables, bird richness and abundance data (Table 1A, Appendix 1) were 

pooled within each plot. These pooled data were used to calculate richness and the Shannon’s 

and Gini-Simpson indices, which were transformed into their respective effective number 

equivalents (Table 3.1). I used three R packages to calculate the diversity indices. All three gave 



  

 

 

 

56 

 

identical results. Vegetarian v 1.2 (Charney & Record, 2012) was chosen because it calculates all 

indices of interest, and their Hill Diversity equivalents.  

Table 3.1. Conversion of diversity indices to effective number of species, where S = number of 
species, Pi represents the relative abundance of the ith species, the number of individual species i 
at the plot divided by the total number of individuals of all S species.  

Traditional index Raw Index calculation Effective number of species  

       (Hill Diversity) 

 

Richness 

x ≡  
 

x 

 

Shannon Diversity 

x ≡  
 

exp (x) 

 

Gini-Simpson 

x ≡ 1 -  
 

1/(1-x)  

 

Covariates 

 

Our independent variables can be grouped into two categories: environmental variables (divided 

into energy and habitat categories) and experimental variables (year, effort, and plot type).    

 

Environmental variables - energy 

 

To test the species-energy hypothesis, I focused on bioclimatic variables available to us that 

influence the growth, reproduction, and survival of plants – which, in turn, influences vertebrates 

like birds – and which are reasonable surrogates for energy in the environment. These variables 
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included latitude, average temperature during the warmest quarter (ATWQ) (McKenney et al., 

2013) and the Normalized Difference Vegetation Index (NDVI) computed from MODIS remote 

sensing data averaged over 30 years (Tucker et al., 2005). None of these variables are energy in 

and of themselves but are useful and commonly used surrogates (Willig et al., 2003; Costello & 

Chaudhary, 2017; Clarke & Gaston, 2006; Pettorelli et al., 2005; Haedo et al., 2017; Gillespie et 

al., 2017). 

 

Latitude is a proxy for direct solar energy, or photosynthetically available radiation, which 

influences primary plant productivity (Willig et al., 2003; Costello & Chaudhary, 2017) and thus 

the distribution and diversity of birds and other vertebrates (Hawkins et al., 2003; Currie et al., 

2004; Carrara & Vázquez, 2010).  ATWQ is an energy surrogate which also affects primary 

productivity and the rate at which organisms make use of photosynthetically available radiation 

(Clarke & Gaston, 2006) and is also correlated with vertebrate species distributions (Hawkins et 

al., 2003).  Since most of the birds recorded on our ARUs are neo-tropical migrants and only 

present during breeding season, I decided the warmest quarter data is the most relevant 

temperature metric for our models.  

 

While useful as energy surrogates, latitude and temperature alone do not dictate plant abundance 

and diversity (Clarke & Gaston, 2006), nor the vertebrate diversity that stems from them. As 

Clarke and Gaston (2006) point out, hot deserts with ample solar radiation have low plant 

diversity. Thus, latitude and ATWQ can be thought of as reflections of ambient energy (Davies 

et al., 2007). To strengthen our suite of energy variables, I included NDVI as an energy surrogate 

that represents what Davies et al. (2007) call productive energy. NDVI is a good indicator of 
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vegetation cover, primary productivity (Pettorelli et al., 2005; Haedo et al., 2017; Gillespie et al., 

2017), and above ground plant biomass production  (Lumbierres et al., 2017). Numerous studies 

have shown positive relationships between NDVI and bird diversity (Lee et al., 2004; Kennedy 

et al., 2014; Coetzee and Chown, 2016; Haedo et al., 2017; Leveau et al., 2020). Using these 

measures of ambient and productive energy in our models provides a comprehensive picture of 

the impact of energy variables on bird diversity in our study area. Both NDVI and ATWQ data in 

this study had a grain of 250m. 

 

Environmental variables - habitat  

 

To assess the impact of habitat heterogeneity on bird diversity, I used a suite of land cover types 

derived from the Far North Land Cover v.1.4 layer of the Ontario Land Cover Compilation v.2.0 

(Ontario Ministry of Natural Resources 2014). The Far North Land Cover has a 30m grain and 

includes twenty-four land cover classes grouped under eight habitat categories (water, bog, fen, 

swamp, marsh, treed, non-treed and disturbance). Some of the 24 are not present in the far north 

(e.g., agriculture, alvar, plantations, hedge rows, etc.) and were excluded from our analysis. Of 

the 19 land classes present in the far north, shadow/cloud and unclassified types were also 

excluded leaving 17 land class types (Table 2A, Appendix1).  

 

I was less interested in the impact of any one of these variables than I was with creating 

estimates of habitat heterogeneity at each plot. Thus, for each plot, this suite of land cover types 

was used to calculate 1) a land cover richness value (LC-RICH) and 2) Shannon Diversity Index 

value for habitat diversity (LC-DIV). Using the proportions of different land cover types within 
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each plot, Shannon Diversity Index values were calculated using the Vegetarian package v 1.2 in 

R (Charney and Record, 2015).   

 

Experimental variables – sampling effort 

 

When conducting species surveys, the number of species detected is characteristically correlated 

with sampling effort (Ugland et al., 2003). However, the relationship between sampling effort 

and new species detections is not linear. Rather, species richness tends to increase with 

increasing sampling effort with declining slope to an asymptote, which would be the total species 

richness, in what is known as a species accumulation curve (Ugland et al., 2003).  

 

In my study, sampling effort is reflected in the number of interpreted ARU recordings, which 

vary from 6 to 55 recordings per plot, depending on plot type, data interpretation limitations and 

ARU failures. To account for varying sampling effort, I used the number of interpreted recording 

sessions at a plot to account for the effect of effort on estimates of bird diversity. To model the 

positive, and curvilinear shape of the species accumulation curve, I included number of 

recording sessions (N_SESS), and the natural logarithm (log(N_SESS)) and the square of this 

variable (N_SESS2). We then relied on a preliminary model selection (Burnham and Anderson, 

2001) to indicate the best combination of effort variables. This process indicated that natural log 

transformation of number of sessions was consistently selected as the best variable to account for 

sampling effort at the plot level and I included this variable in all our candidate models. 
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Experimental variables – year 

 

Environmental variability across years such as timing of snowmelt, onset of green-up, varying 

insect productivity, bird mortality during migration and extreme weather events, can affect 

breeding birds from year to year. In addition, because of changes in field protocols arising from 

logistical challenges and expense over the course of this study, average total sampling effort was 

not consistent across years, nor was it, in any year, randomly distributed over the entire study 

area (Figure 3.2). Effort varied from a mean of 15 sessions (3 stations on 5 days) per plot in 2010 

to a mean of 37 sessions in 2014 (Figure 3.5). Lastly, examining a correlation matrix of 

independent variables showed an r value of 0.39 for latitude and year, indicating the potential for 

a latitudinal gradient in bird diversity between years. To account for these potential sources of 

variability, Year was included as an independent variable in sets of candidate models.   

 

Figure 3.5. Sampling effort (number of interpreted ARU recordings of bird vocalizations per plot) 
versus sampling year, during the Far North Biodiversity Project in Ontario’s far north. 
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Experimental variables - plot type 

 

In Chapter 2, my results showed that long-term plots detected about 1.5 times as many species as 

short-term plots at the station level. Therefore, although in this chapter the analysis is being 

conducted at plot level, rather than station level, I included plot type (short-term versus long-

term) in our model selection process to examine the influence it may have on our dependent 

variables.  

 

Grain of analysis 

 

To assess the impact of different grain of analysis on dependent variables, I created buffers 

around each plot for each of our independent variables.  Minimum convex polygons were created 

from the stations for each plot and the distance between polygons was calculated. Four polygons 

were within 10km and 15km of one another, but none were closer than 10km. Thus, 10km was 

chosen as the maximum grain of analysis to minimize the overlap among polygons. Buffers 

around each plot were then calculated at 0m, 100m, 500m, 1000m, 2500m, 5000m, 7500m and 

10,000m grains. 

 

To explore the impact of grain size on the predictive power of our independent variables, I 

examined Pearson correlation coefficients (r values) of plot level diversity indices (RICH, HILL-

SHAN, HILL-GS) with all independent variables across all spatial grains. For all dependent 

variables, r values for ATWQ and Latitude varied little across grain sizes. For RICH, r values for 

NDVI increased with grain, suggesting the collective explanatory power of energy variables is 

greatest at 10,000m. Although they varied more across grain sizes, overall r values for habitat 
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richness and Shannon’s Index of habitat diversity were greatest at smaller grains when compared 

to energy variables (Figure 3.6). Similar trends were seen for HILL-SHAN and HILL-GS.  

 

I ran models across the full spectrum of grain sizes, holding grain constant for all variables 

within each set of candidate models. Doing so allowed exploration of the differing impacts of 

energy and habitat variables across differing grains of analysis while avoiding the potential for 

confounding the effect of varying grain size with the effect of the variables of interest. 

 
Figure 3.6. r values of Plot-level richness (RICH) with independent variables from 0m to 10,000m 
grains. 
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Assessing collinearity 

 

I conducted a principal component analysis at the 500m and 10,000m spatial grains to assess 

collinearity between predictor variables at both ends of the spatial spectrum. The first three 

components cumulatively explain 46%, 73% and 86% of the variance in the dataset at 500m, and 

43%, 70% and 86% at 10,000m (Table 3A and 3B, Appendix 1).  

 

Examining the 500m grain bi-plot (Figure 3.7) showed that both land cover variables (LC-RICH 

and LC-DIV) are strongly correlated and appear to have a strong negative correlation with effort, 

although it is not clear why. Likewise, the energy variables NDVI and ATWQ are correlated and 

have strong negative correlations with latitude. Examination of the correlation coefficients 

showed values of -0.3573 between effort and land cover richness and -0.3736 between effort and 

Shannon’s Index of land cover diversity (Table 4A, Appendix 1). Because correlations between 

predictor variables < 0.7 appear not to distort results (Dormann et al., 2013), I chose to retain all 

independent variables in my analyses. 

 

The 10,000m grain bi-plot (Figure 3.8), showed similar relationships among the land cover 

variables and energy variables, but effort appeared to have even smaller correlations with the 

energy and land cover variables (Table 4B, Appendix 1).  
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Figure 3.7. PCA Bi-plot of environmental variables 

and effort at 500m grain. 
 

 
Figure 3.8. PCA Bi-plot of environmental variables and 

effort at 10,000m grain. 
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Candidate model specification 

 

By visual inspection, I considered all three dependent variables to have a normal distribution for 

least squares linear modelling (Figure 3.9).  Linear models were used to explore the impact on 

RICH, HILL-SHAN and HILL-SIM. R version 3.5.0 (2018) and the dredge and subset functions 

in the R package “MuMIn” (Barton, 2020) were used to prevent the inclusion of correlated 

variables within the same model.  

 
Figure 3.9.  Histograms showing distribution of i) Species Richness, and the effective numbers 
derived from ii) Shannon diversity index and iii) the Gini-Simpson index 
 

Including all energy and habitat variables, and all combinations of Year, Plot Type and effort 

variables, produced 384 candidate models. Examining the effect of covariates in this model 

selection process showed that log(N_Sess) and Year were included in the top models when the 

energy and/or habitat variables were included. By contrast, models including N_Sess, N_Sess2 

and Plot Type with energy and habitat variables had higher ΔAIC values.   
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Since year and log of effort were identified as the best covariates to account for variation from 

year, effort, and plot type collectively, year and log of effort were forced into every model to 

ensure the variance accounted for by these two variables was constant. Accounting for this 

variance from experimental variables enabled exploration of the relative explanatory power of 

energy and habitat. Once collinearity among experimental variables was accounted for, the 

original 384 set of models was reduced to a set of 12 candidate models (Table 3.2).  

 

Table 3.2. Candidate models for breeding bird species richness in Ontario’s far north.  

 

Model 

No 

 

log(N_Sess) 

 

Year 

 

Latitude 

 

NDVI 

 

ATWQ 

 

Land 

cover 

richness 

 

(LC-

RICH) 

Shannon 

Index of 

Land cover 

diversity 

 

(LC-DIV) 

1 ● ● - - - - - 

2 ● ● ●     

3 ● ● - ● - - - 

4 ● ● - - ● - - 

5 ● ● - - - ● - 

6 ● ● - - - - ● 

7 ● ● ● - - ● - 

8 ● ● ● - - - ● 

9 ● ● - ● - ● - 

10 ● ● - ● - - ● 

11 ● ● - - ● ● - 

12 ● ● - -- ● - ● 
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This candidate set in Table 3.2 was developed using RICH as the dependent variable. However, 

after doing model selection for all the dependent variables and examining coefficient 

significance, I discovered that for HILL-SHAN and HILL-GS, effort never had a coefficient 

significantly different from zero (at p  0.10), and usually more than one year was significant. 

Therefore, I ran the model selection process for HILL-SHAN and HILL-GS, making ‘year only’ 

the base or null model. This left us with 12 slightly simplified candidate models for these 

dependent variables (Table 3.3). While I could have re-run the model selection process for the 

design variables, I felt the consistent lack of significance, and the tiny effect on R2 values was 

sufficient evidence to drop the effort variable in the candidate models for the HILL-SHAN and 

HILL-GS selection process. 
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Table 3.3. Candidate models for the effective number of species derived from the Shannon index 
and the effective number of species from the Gini-Simpson index. 

 

Model 

No 

 

Year 

 

Latitude 

 

NDVI 

 

ATWQ 

 

Land 

cover 

richness 

 

(LC-

RICH) 

Shannon 

Index of 

Land cover 

diversity 

 

(LC-DIV) 

1 ● - - - - - 

2 ● ●     

3 ● - ● - - - 

4 ● - - ● - - 

5 ● - - - ● - 

6 ● - - - - ● 

7 ● ● - - ● - 

8 ● ● - - - ● 

9 ● - ● - ● - 

10 ● - ● - - ● 

11 ● - - ● ● - 

12 ● - -- ● - ● 

 
 

 

Model selection process 

 

Models for each of these configurations were estimated and Akaike’s model selection (Sugiura, 

1978; Hurvich & Tsai, 1991) was used to identify the best models which contained: A) effort and 

year only, or year only), B) effort and year, or year only plus an energy variable, C) effort and 
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year, or year only + a habitat variable, and D) effort and year, or year only + an energy variable + 

a habitat variable. R2 values for the top models at each grain were used to partition and plot the 

specific variance accounted for by a) experimental design variables (the base model of year + 

effort, or year only), b) energy, c) habitat and d) the explained variance shared by the energy and 

habitat variables following Bowman et al., 2001. Although ΔAIC values are our preferred 

measure of model fit, plotting R2 values as described was useful to help visualize the relative 

explanatory contribution of the energy and habitat variables. For predictive purposes for 

mapping of bird diversity I used the equation estimated for the top model (lowest ΔAIC) within 

each grain size, with the highest explanatory power (R2) across grains. 

Predictive diversity mapping 

 

For creating a predictive map of the diversity measures, I selected the model from each model set 

with the highest R2 that was also among the top models, aiming for a consistent set of predictive 

variables across the three diversity indices. For HILL-SHAN and HILL-GS models the highest 

R2 values were at the 100m grain, while for RICH, the highest R2 was at 0m (Tables 3.4, 3.5 and 

3.6). However, the difference in R2 between 0 and 100m grains for RICH was only 0.3%, so for 

consistency I used the 100m grain model. For all three diversity measures the environmental 

variables with the highest R2 values at the 100m grain were NDVI and LC-RICH.  

 

To generate a predictive equation, 2012 was used as the “standard year” since the mean diversity 

values from 2012 were either the centre-ranked value (RICH) or not substantially different from 

it (HILL-SHAN, HILL-GS). This created the following predictive equations: 
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Equation 1: RICH = 6.876579696 + 0.002276 x NDVI_100m + 0.903460 x LC_RICH_100m 

 

Equation 2: HILL-SHAN = 1.8343323 + 0.0016466 x NDVI_100m + 0.6894137  x  

LC_RICH_100m 

 

Equation 3: HILL-GS = 3.7131399 + 0.0008572  x NDVI_100m + 0.5874838  x  

LC_RICH_100m 

 

500m was chosen as the pixel size for the output as a compromise of grain and computation 

capability; a 500m pixel is a reasonable approximation of the size of the plot buffered by 100m.  

Land cover richness (LC-RICH) was estimated for each 15m pixel using a 500m focal area 

(approx. size of plot), then resampled to 500m pixels for prediction. ArcGIS tool Spatial 

Analyst/Raster Calculator used the prediction equations and the independent variables to create 

maps for each diversity measure for year 2012. For RICH, average effort (the average of the log 

number of sessions) was applied.   

 

3.3 Results 
 

Species richness  

 

Of all the energy and habitat variables, NDVI and LC-RICH most frequently had the greatest 

explanatory power with respect to bird richness estimates (Table 3.4). At 0 and 100 m grains, the 

top models included both NDVI and LC-RICH as the preferred energy and habitat variables. 

However, in the second-ranked models the single variables NDVI or LC-RICH appeared as the 

best environmental predictors at 0 and 100m grains, respectively. At the 500m, 1000m, 2500m 

and 5000m grains the top models all selected LC-RICH as the top explanatory variable. Neither 
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habitat nor energy variables were included in the top models at the 7500 and 10,000m grains, but 

at both grains NDVI was the only environmental variable in the secondarily ranked models.  

 

Overall, R2 values for all environmental variables diminished with increasing grain size. Year 

and effort were forced into all models as a constant, and the R2 for the base models containing 

only these variables was 36.4% for all grains. With respect to the contributions of environmental 

variables, habitat (LC-RICH) contributed greater additional explanatory power, over the base 

model, than did energy for grains ranging from 100m to 5000m, whereas energy made a greater 

additional explanatory contribution than habitat at 0m, 7500m and 10,000m grains. 
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Table 3.4. Model Selection Results for Bird Species Richness (RICH): Top model selected for each 
hypothesis, at each grain size, Hypothesis abbreviations: H&E: Energy and Habitat heterogeneity; 
E: Energy only; H: Habitat heterogeneity only; E&Y: Null model of only Effort and Year effects. 
Frequentist coefficient significance: p < 0.001 as ***;  p < 0.01 as **;  p < 0.05 as *;  and p < 0.10 
as ° 

Model 

Specification 
Model Selection Criteria Model Coefficients 

Grain 

size (m) 

Hypo- 

thesis 

AIC 

Rank 
Δ AICc Weight R2 (%) ATWQ Lat NDVI 

LC-

RICH 

LC-

DIV 

0 H&E 1 0.00 0.740 44.5     0.00284** 0.895*  

0 E 2 3.66 0.119 41.7     0.00342**   

0 H 3 5.13 0.057 41.0      1.122**  

0 E&Y 7 12.05 0.002 36.4        

100 H&E 1 0.00 0.517 44.2     0.00228° 0.903*  

100 H 2 1.71 0.220 42.3      1.146***  

100 E 5 4.59 0.052 41.0     0.00333**   

100 E&Y 9 11.47 0.002 36.4        

500 H 1 0.00 0.351 42.0      0.979**  

500 H&E 2 0.27 0.306 42.9     0.00194 0.777*  

500 E 5 3.88 0.051 40.1     0.00342**   

500 E&Y 7 8.99 0.004 36.4        

1000 H 1 0.00 0.465 42.9      1.029***  

1000 H&E 2 1.90 0.179 43.1   -0.443  1.047***  

1000 E 5 8.99 0.005 38.5     0.00268*   

1000 E&Y 9 10.92 0.002 36.4        

2500 H 1 0.00 0.316 39.0      0.649*  

2500 H&E 2 2.18 0.106 39.1 -0.286    0.678*  

2500 E&Y 6 2.93 0.073 36.4        

2500 E 7 3.84 0.046 37.1     0.00159   

5000 H 1 0.00 0.270 38.1      0.571°  

5000 E&Y 2 1.19 0.149 36.4        

5000 H&E 3 1.99 0.100 38.3     0.00087 0.525  

5000 E 6 2.43 0.080 36.9     0.00150   

7500 E&Y 1 0.00 0.269 36.4        

7500 E 2 1.33 0.138 36.9     0.00152   

7500 H 3 1.93 0.102 36.5      0.190  

7500 H&E 7 3.51 0.046 36.9     0.00137 0.124  

10000 E&Y 1 0.00 0.292 36.4     
   

10000 E 2 1.75 0.122 36.6     0.00113 
  

10000 H 5 2.25 0.095 36.4     
  

0.400 

10000 H&E 7 4.06 0.038 36.6     0.00118 -0.054 
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At the 100m grain, the habitat model (LC-RICH) contributed 5.9% of additional explanatory 

power over the base model of effort and year, whereas the energy model (NDVI) added 4.6% 

more explanatory power. Thus, these two models collectively explained 10.5% of the variance in 

species richness. However, when habitat and energy variables were in the same model, they 

added 7.8% in additional explanation. Subtracting this value from the collective explanatory 

power of habitat and energy models shows that 2.7% of the explanatory power is shared between 

habitat and energy models at the 100m grain. Shared explanation between habitat and energy 

was observed at all grains (Figure 3.10A). 
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Figure 3.10. R2 partitioning of habitat, energy, year, and effort contributions for A). breeding bird richnessl 
and habitat, energy, and year contributions for B). HILL-Shannon diversity and C). Hill-Gini-Simpson 
diversity in Ontario’s far north, showing ΔAIC values at 0 to 10,000m grains 

 

Hill-Shannon diversity  

 

With only one exception at the 2500m grain, where Latitude was selected, NDVI had the greatest 

explanatory power of any of the energy variables (Table 3.5). As with the results for RICH, the 

top models for HILL-SHAN at 0 and 100m included both NDVI and LC-RICH as the preferred 

energy and habitat variables, with NDVI and LC-RICH being the best environmental predictor in 

the second-best models at 0 and 100m respectively. Unlike RICH, the top model at the 500m 

grain for HILL-SHAN included NDVI and LC-DIV with NDVI as the only experimental 

variable in the second-best model. At the 1000 and 2500m grains the top models were habitat-

only models, but unlike with RICH, where LC-RICH was the only habitat variable selected, LC-

DIV was in the top model at the 2500m grain and was also selected in models at the 500, 5000 

and 7500m grain sizes. Like RICH, where environmental variables were not included in top 

models at the two largest grains, Year was the only variable in the top model at the 5000, 7500 

and 10,000 grains for HILL-SHAN. However, LC-DIV was the only experimental variable 

selected in the second-ranked model at 5000m and as found with RICH, NDVI was the only 

environmental variable in the second-best models at the 7500 and the 10,000m grains.  
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Table 3.5. Model Selection Results for Hill-Shannon Index of Bird Species Diversity (HILL-SHAN): 
Top model selected for each hypothesis, at each grain size, Hypothesis abbreviations: H&E: 
Energy and Habitat heterogeneity; E: Energy only; H: Habitat heterogeneity only; Y: Null model of 
only Year effects. Frequentist coefficient significance: p < 0.001 as ***; p < 0.01 as **;  p < 0.05 
as *;  and p < 0.10 as ° 

Model 

Specification 
Model Selection Criteria Model Coefficients 

Grain 

size (m) 

Hypo- 

thesis 

AIC 

Rank 

Δ 

AICc 
Weight R2 (%) ATWQ Lat NDVI LC-RICH LC-DIV 

0 H&E 1 0 0.571 34.0   0.00194* 0.632*  

0 E 2 2.56 0.159 31.3   0.00234**   

0 H 3 3.34 0.108 30.9    0.784**  

0 Y 7 8.52 0.008 26.5      

100 H&E 1 0 0.409 35.2   0.00165° 0.689**  

100 H 2 1.25 0.219 33.2    0.849***  

100 E 6 4.94 0.035 31.2   0.00244**   

100 Y 10 10.75 0.002 26.5      

500 H&E 1 0 0.225 31.8   0.00210*  1.696 

500 E 2 0.20 0.203 30.4   0.00252*   

500 H 4 1.18 0.125 29.9    0.514*  

500 Y 10 4.58 0.023 26.5      

1000 H 1 0 0.260 31.3    0.618**  

1000 H&E 3 1.50 0.123 31.8   0.000969 0.529*  

1000 E 9 4.26 0.031 28.9   0.00203°   

1000 Y 10 6.02 0.013 26.5      

2500 H 1 0 0.366 30.3     3.012* 

2500 H&E 3 2.14 0.125 30.4  -0.208   3.065* 

2500 Y 6 4.16 0.046 26.5      

2500 E 7 4.75 0.034 27.5   0.00135   

5000 Y 1 0 0.212 26.5      

5000 H 2 0.76 0.145 27.4     1.610 

5000 E 4 1.39 0.106 27.0   0.00105   

5000 H&E 7 2.62 0.057 27.7   0.000758  1.395 

7500 Y 1 0 0.247 26.5      

7500 E 2 0.74 0.171 27.4   0.00147   

7500 H 3 2.00 0.091 26.7     0.713 

7500 H&E 7 2.49 0.071 27.8   0.00168 -0.184  

10000 Y 1 0 0.215 26.5      

10000 E 2 0.77 0.146 27.4   0.00145   

10000 H 3 0.99 0.131 27.3    -0.298  

10000 H&E 4 1.17 0.120 28.5   0.00175 -0.369  
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Overall, R2 for all environmental variables diminished with grain size. The null model, for which 

year was the only independent variable, had an R2 value of 26.5% for all grains. Consistent with 

findings from RICH, habitat variables (LC-RICH and LC-DIV) explained more of the overall 

variance than energy variables at 100m and between 1000 and 5000m grains, and energy (NDVI) 

had greater explanatory power at the 0, 7500 and 10,000m grains. At the 100m grain, habitat 

variables offered 6.7% more explanatory power over the base model of year, whereas energy 

variables offered 4.7% more explanation. As with RICH, 2.7% of this explanatory power was 

shared between energy and habitat models. One anomaly compared with RICH was that energy 

had greater explanatory power than habitat variables at the 500m grain (3.9% versus 3.4% 

respectively, including 2% shared explanation between energy and habitat models) (Figure 

3.10B). 

 

Hill-Gini-Simpson diversity  

 

The R2 value for year was constant in all models at 24.8%. As with the other diversity indices, 

the top model at 0m was NDVI and LA-RICH. However, for HILL-GS, LA-DIV had far more 

influence than it did for the other indices, with LC-DIV included in the top models between the 

100 and 5000m grains. At the 100m grain, the habitat and energy models added 5.8% and 2.4% 

of additional explanation respectively over the base model of year, including 1.9% shared 

explanation between habitat and energy models (Table 3.6, Figure 3.10C). 
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Table 3.6. Model Selection Results for Hill-Gini-Simpson Index of Bird Species Diversity (HILL-GS): 
Top model selected for each hypothesis, at each grain size, Hypothesis abbreviations: H&E: 
Energy and Habitat heterogeneity; E: Energy only; H: Habitat heterogeneity only; Y: Null model of 
only Year effects. Frequentist coefficient significance: p < 0.001 as ***;  p < 0.01 as **;  p < 0.05 
as *;  and p < 0.10 as ° 

Model 

Specification 
Model Selection Criteria Model Coefficients 

Grain 

size (m) 

Hypo- 

thesis 

AIC 

Rank 

Δ 

AICc 
Weight 

R2 

(%) 
ATWQ Lat NDVI 

LC-

RICH 
LC-DIV 

0 H&E 1 0 0.198 28.7   0.00112 0.430  

0 H 2 0.081 0.190 27.3    0.519*  

0 E 3 0.522 0.153 27.0   0.00140°   

0 Y 6 2.02 0.072 24.8      

100 
H 1 0 0.214 30.6 

    2.863** 

 

100 H&E 4 1.36 0.108 31.1   0.000857 0.587*  

100 E 9 5.71 0.012 27.2   0.00152*   

100 Y 10 7.54 0.005 24.8      

500 H 1 0 0.358 29.4     2.55** 

500 
H&E 2 0.97 0.221 30.1 

  0.001  2.267* 

 

500 E 5 4.43 0.039 26.8   0.00156°   

500 Y 7 5.46 0.023 24.8      

1000 H 1 0 0.405 30.3     2.905** 

1000 H&E 2 1.60 0.182 30.7 -0.400    2.978** 

1000 Y 9 7.14 0.011 24.8      

1000 E 10 7.58 0.009 25.9   0.001   

2500 H 1 0 0.431 29.8     3.021** 

2500 H&E 2 1.35 0.220 30.4 -0.471    3.165** 

2500 Y 5 6.26 0.019 24.8      

2500 E 7 7.83 0.009 25.2   0.0008   

5000 H 1 0 0.206 26.2     1.783 

5000 Y 2 0.15 0.191 24.8      

5000 H&E 3 1.57 0.094 26.7 -0.428    1.991 

5000 E 5 2.15 0.070 24.9 -0.249     

7500 Y 1 0 0.247 24.8      

7500 H 2 1.49 0.117 25.2    -0.187  

7500 E 3 1.57 0.113 25.2   0.001   

7500 H&E 7 2.67 0.065 25.9   0.001 -0.239  

10000 H 1 0 0.218 26.5    -0.386  

10000 Y 2 0.54 0.166 24.8      

10000 H&E 3 0.76 0.149 27.4   0.001 -0.439°  

10000 E 4 1.98 0.081 25.3   0.001   
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Overall, the decreasing trend in the impact of environmental variables with increasing grain size 

is consistent across all our diversity measures. For top models, the R2 values are almost always 

higher with the Hill numbers compared to the raw Shannon or Gini-Simpson indices, indicating 

that the Hill numbers are a better fit for the data than the raw indices.  

Predictive diversity maps 

 

Predictive maps for all three diversity measures show similar patterns in the distribution of bird 

diversity across Ontario’s far north for all three diversity indices. Distinct differences in bird 

diversity are visible between Ecozones with the highest diversity seen in the more southerly and 

westerly Ontario Shield Ecozone compared with the Hudson Bay Lowlands Ecozone. 

Nonetheless, within the Lowlands there are some concentrated areas of higher diversity 

associated with large waterways and some coastal formations. Although the predicted patterns of 

diversity are similar for all three indices, the magnitude of those index values differ considerably. 

The highest predicted values for richness were 32.1 to 36 species, versus 20.1 to 22 effective 

species for Hill-Shannon and 15.1 to 17.8 effective species for Hill-Simpson (Figures 3.11, 3.12 

and 2.13).   
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Figure 3.11. Breeding bird species richness detected between 2010-2014 by autonomous 
recording units across Ontario’s far north at 500m grain. 
 

 
Figure 3.12. Hill-Shannon diversity for breeding birds detected between 2010-2014 by 
autonomous recording units across Ontario’s far north at 500m grain. 
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Figure 3.13. Hill-Gini-Simpson diversity for breeding birds detected between 2010-2014 by 
autonomous recording units across Ontario’s far north at 500m grain. 

 

3.4 Discussion 
 

I tested the relative impact of the species-energy and habitat heterogeneity hypotheses to predict 

breeding bird diversity at various grains of analysis using multiple diversity measures in the far 

north of Ontario. Our top models supported both hypotheses, however, as expected, the influence 

of each hypothesis varied with the grain of analysis. Overall habitat heterogeneity explained 

more of the variance in bird diversity at grains between 0m and 2500m, whereas energy variables 

were better predictors from 5000m to 10,000m, although there was little additional explanation 

of diversity at the larger grains.  
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Species Richness  

 

From the 100m to 5000m grains, the habitat heterogeneity hypothesis found more support than 

the energy hypothesis. However, at the larger grain of 7500m and 10,000m, the energy variables 

had more explanatory power. These results support the general findings from the literature that 

the determinants of bird distribution are hierarchically structured with energy and habitat 

variables acting as useful correlates for diversity at different scales (Altamirano et al., 2010; 

Gaston, 2000; González-Megías et al., 2007; Hurlbert & Jetz, 2007; Luoto et al., 2007).   

An exception to this trend in our results was at the 0m grain where energy variables had greater 

explanatory power. I expect this irregularity in the pattern of our data is explained by our 

microphones sampling bird song from beyond the boundaries of the grain for which I had 

associated habitat data, thus under-emphasizing the impact of habitat at that grain size due to the 

mismatch of the area sampled.  

Overall, the experimental variables of year and effort explained most of the variance in bird 

species richness (36.4%). This impact of effort was not unexpected as species diversity 

detections are clearly linked to sampling effort (Daly et al., 2018). A significant year effect is 

also understandable given the variability in weather across years within the study area, and the 

within-year, geographically clustered sample plot pattern necessitated by economic constraints.  

The greatest explanatory power from the environmental variables was at the 0 and 100m grains, 

where those variables in the top models explained about 8% of the variance in bird diversity, 

diminishing to 0.3% at 10,000m. Some of this variance was shared between habitat and energy 

variables, with the amount of shared variance ranging from 2.78% at the 500 m grain to 0.11% at 
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7500 m. The general decrease in explained variance with increasing grain size is likely a function 

of a mismatch between the grain size and the resolution of our dependent variables which was 

constant at the grain of the plot. It is reasonable to assume that bird diversity within the plots is 

more closely related to the environmental variables in the immediate vicinity than to those that 

are perhaps 1 to 10 km away, which are well outside the average territory sizes and acoustic 

ranges of boreal birds (Toms et al., 2005). Thus, it is not surprising that the highest R2 values in 

our study were at grains where the resolution of environmental variables was the closest match to 

the resolution of the plot and the dependent variables. Nonetheless, even with the mismatch of 

resolutions, and the shared variance between environmental variables, the relative and scale-

dependent impacts of habitat heterogeneity and energy on bird diversity are still visible in our 

results.  

Land cover richness was favoured over Land cover diversity in all models where a habitat 

heterogeneity variable was selected in the top two models, suggesting that the richness of land 

cover types is a better predictor of bird richness in our study site than land cover diversity. This 

might be a result of patterning on the ground. Higher habitat richness may be a better indication 

of accessibility for multiple functions in bird breeding. Higher habitat diversity may relate to the 

number of edges or edge habitats, which may not be as important to the species that occur in my 

study site.  Of the three energy variables I used, NDVI was the one most commonly selected by 

our models, suggesting the impact of energy on bird richness at the extent and grain of our study 

is mediated more by energy impacts on vegetation than it is by surrogate measures of solar 

radiation like temperature or latitude. The exception was at the 1000 m and 2500m grains where 

latitude and ATWQ were the top energy variables, but at all larger grains NDVI was the top 
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energy variable.  At larger extents scales other studies have found temperature variables to be 

good predictors of bird distributions in North America (e.g. Jiménez-Valverde et al., 2011).  

Hill-Shannon diversity  

 

As with RICH, the habitat heterogeneity hypothesis generally had greater support than the 

energy hypothesis at smaller grains, but not at the 0m grain where energy had more explanatory 

power, likely because of the sampling-area and grain-size mismatch. Another anomaly in this 

pattern was found at the 500m grain where energy variables explained slightly more variance 

than habitat variables (1.97% versus 1.41% respectively). However, our results for HILL-SHAN 

generally reflect our findings from RICH, suggesting that even with this compound measure of 

diversity, the habitat heterogeneity hypothesis has more support at smaller grains and the energy 

hypothesis has relatively more support at larger grains. 

As with RICH, NDVI was almost always the preferred energy variable in all models.  However, 

unlike RICH where Land cover richness was the preferred land cover variable in all top models, 

Land cover diversity was selected almost as often in the preferred models for HILL-SHAN, 

suggesting that land cover diversity, and not just land cover richness is an important predictor for 

Hill-Shannon bird diversity in Ontario’s far north.  

Hill-Gini-Simpson diversity  

 

As with RICH and HILL-SHAN, the habitat heterogeneity hypothesis was well-supported over 

the energy hypothesis from the 100m to 5000m grains, where this variable had consistently 

greater explanatory power than it did for the other two diversity measures.  
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Unlike the other bird diversity models, habitat heterogeneity explained more variance than 

energy at the 0m grain, but the relative explanatory power of energy at 0m was still much greater 

than was found from 100m to 5000m, suggesting the impact of the mismatch of sampling-area to 

grain at 0m was consistent with results for the other dependent variables.  

Land cover diversity was the land cover variable most commonly selected. As with richness and 

Hill-Shannon, the relative contribution of energy increased at the 7500 and 10,000m grains 

compared with smaller grains. However, at 7500 and 10,000m where land cover richness was the 

top land cover variable, there was no significant relationship between habitat heterogeneity and 

bird diversity. This runs contrary to the established literature where a positive relationship is 

generally found between land cover richness and bird diversity (Stein et al., 2014; Tews et al., 

2004). Although these results are counterintuitive, the coefficient values at these resolutions were 

not significantly different from zero (Table 3.6).  

NDVI was still the energy variable that was most commonly selected, but as with RICH where 

different energy variables were in the second-best models at the 1000m and 2500m grains, 

ATWQ was the top energy variable for HILL-GS at those grains. It is not clear why energy 

variables other than NDVI are preferred at these two grains, but a similar pattern also emerged 

with HILL-SHAN where Latitude was selected at 2500m.  

Nonetheless, it is well documented in the literature that biotic drivers of species diversity, such 

as habitat heterogeneity, are generally more important at smaller grains, whereas abiotic drivers, 

such as temperature, latitude, and NDVI pre-dominate at larger grains (Götzenberger et al., 2012; 

Schweiger and Beierkuhnlein, 2016). These patterns were visible in our results for all three 

diversity indices used.  
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Implications of scale 

Because of the impact of scale, many authors have suggested that single-scale studies may have 

limited explanatory power or could produce misleading results (Altamirano et al., 2010; 

González-Megías et al., 2007; Luoto et al., 2007; Stein, 2015). For example, at the extent of the 

country of China and at a single 100km grain of analysis, Luo et al. (2012) found support for the 

species-energy hypothesis, which explained more than 60% of vertebrate species richness, 

whereas in their study the habitat heterogeneity hypothesis found considerably less support, 

explaining 26% of vertebrate richness. However, the relative lack of support for the habitat 

heterogeneity hypothesis in their study may be an artifact of the grain of their analysis. Our 

work, and others (e.g., Stefanescu et al., 2004; Vernier et al., 2004) illustrate that the inclusion of 

land cover data is important for models at local and regional scales. This suggests that if Luo et 

al. (2012) had also tested the hypotheses at finer grains, they may have found greater support for 

the habitat heterogeneity hypothesis and additional and complementary information about the 

factors governing biodiversity distribution in China which could be useful for local conservation 

planning.  

 

Nonetheless, at the grain and extent used by Luo et al. (2012), it is worth noting that habitat 

heterogeneity still explained about 26% of the distribution of vertebrate species richness.  

Although Cumming et al. (2014) were studying individual boreal bird species distributions and 

not vertebrate diversity, they found that at a single grain of 100m at the extent of Canada’s boreal 

forest, the explanatory power of their climate-based models was improved by about 25% with 

the inclusion of habitat data. Similarly, when modelling bird species distributions in Finland at 
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multiple scales (10,000 to 80,000m) Luoto et al. (2007) improved the explanatory power of 

bioclimatic models by 25% with the inclusion of land cover data. These studies illustrate that 

although energy variables tend to be better predictors of species distributions at large spatial 

extents and grains, habitat predictors can add useful predictive power to species-energy models 

even at large scales (Stein et al., 2014). Our results for all three diversity (richness, Hill-Shannon 

and Hill-Gini-Simpson) measures are consistent with other studies showing energy-based 

variables as the best descriptors of bird distributions at larger grains of analysis (Cumming et al., 

2014; Gaudreau et al., 2018; Luoto et al., 2007; Venier, 2004) with habitat heterogeneity 

exerting greater influence than energy predictors at finer scales (Pearson & Dawson, 2003; 

Pearson et al., 2004). Our results for these three diversity measures also reinforce the scale-

dependence of species diversity predictors and the importance of conducting diversity studies at 

multiple scales to glean a comprehensive picture of the factors that govern biodiversity 

distribution to ensure that results–and any ecological inferences made from them– are 

meaningful (Lawler et al., 2004; Pearson et al., 2004; Rahbek, 2005).   

Choice of diversity metrics and predictive maps 

 

I used our best models to create predictive maps of bird diversity across the far north for three 

different diversity metrics. Visual examination of the maps (Figures 3.11, 3.12 and 3.13) shows 

very similar patterns of predicted bird diversity for all three diversity indices, which is to be 

expected as all three predictive equations are linear combinations of the same two explanatory 

variables. The greatest diversity is generally estimated on the Ontario Shield and less diversity 

predicted for the Hudson Bay Lowlands. However, within the Lowlands, discrete areas of higher 

diversity are noticeable along sections of large rivers such as the Sutton, Winisk, Ekwan, Albany, 
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Attawapiskat and the Moose. Higher diversity is also noted along coastal reaches in proximity to 

mouths of these large rivers and that of the Harricana river at the southern end of James Bay. 

These results are consistent with my observations of greater habitat heterogeneity in riparian 

areas during helicopter flights over the study area and also consistent with other published work 

(e.g. Crins et al., 2009). It is possible that these clusters of avian diversity reflect higher levels of 

habitat heterogeneity associated with riparian vegetation, and also the transitional habitats of the 

freshwater-marine interface that creates edges analogous to riparian habitats further inland. 

These results are an example of the importance of including habitat variables in diversity 

modelling and conducting studies at multiple grains; species-energy models at the 10,000 or 

7500m grains would fail to recognize these important clusters of localized diversity, which 

should be prioritized for any bird conservation efforts in the Hudson Bay Lowlands.  

 

While the patterns in the predicted diversity maps are similar for all three indices, the magnitude 

of the predicted diversity values (richness and the effective number of species derived from the 

Shannon and Gini-Simpson indices) vary considerably with the highest richness values being 

almost double those for Hill-Gini-Simpson. Since richness gives rare and common species equal 

weight it is logical that it will always have a greater value than Hill-Gini Simpson which puts 

more weight on common species. However, the substantial difference in diversity estimates 

between these two metrics suggests there is a considerable degree of dominance within this 

community of breeding birds, and a sizable number of rare species. Nonetheless, whether one is 

interested in the distribution of common or rare species in the far north, the maps illustrate that 

the broad patterns of diversity are similar, while the use of multiple diversity metrics, including 

Hill-Diversity equivalents, provides further insight into the shape of the community beyond what 
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a single diversity metric would provide. Many other authors have argued persuasively that using 

multiple diversity metrics, including Hill-diversity equivalents, should be a best-practice in 

diversity studies because results become more intuitive, informative and less prone to 

misinterpretation (e.g. Daly et al., 2018; Jost, 2006; González-Megías et al., 2007; Roswell & 

Dushoff, 2021).   

Conservation implications 

 

Numerous recent papers have documented a decline in global biodiversity (Sage, 2020), and in 

North American birds specifically (Rosenberg et al., 2019). There have also been explorations of 

avian conservation and the related implications of climate change at large spatial extents in 

Canada’s boreal forest (Cumming et al., 2014; Stralberg et al., 2015; Stralberg et al., 2018). 

Canada’s boreal forest supports billions of birds from over 300 species (Stralberg et al., 2018). 

While the distribution of avian species has been explored across the boreal forest in other studies 

(e.g., Cumming et al., 2010; Cumming et al., 2014; Stralberg et al., 2018; Stralberg et al., 2019), 

our work provides more detailed information on the determinants and distribution of breeding 

bird diversity at finer grains within Ontario’s far north that could be applied to conservation 

planning in this region.  

 

Generally, my results show that the Ontario Shield Ecozone in the study area has greater 

breeding bird diversity than the HBL and should be a key component in any conservation 

planning related breeding bird diversity in the region. However, whereas the Ontario Shield is 

contiguous with a continent-wide band of boreal forest underlain by Precambrian shield, the 

HBL are a unique landform that representing a globally significant wetland (Abraham and 
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Keddy 2005). The lowlands and its coastline host a distinctive assemblage of breeding bird 

species that do not breed elsewhere in Ontario and are particularly important for numerous 

shorebird, waterbird and waterfowl species normally associated with the arctic (Abraham and 

Keddy, 2005; Cadman et al., 2007).  Given these unique attributes, the HBL should not be 

overlooked with respect to breeding bird conservation in Ontario’s far north even though my 

results indicate that, overall, there is greater breeding bird diversity on the Ontario Shield. 

 

At fine grains my work suggests that habitat heterogeneity is an important predictor of bird 

diversity in Ontario’s far north and, as such, any conservation planning at finer grains should 

include habitat models rather than those strictly driven by energy predictors. Our study provides 

the best available dataset of boreal breeding bird diversity across this large and remote area and 

thus, our models contribute to predicting bird diversity for parts of the far north where there are 

few or no observations.  

 

In their work to identify priority areas for bird conservation across Canada’s boreal forest, 

Stralberg et al. (2018), identified parts of the far north as high value areas. 

According to their study, the areas ranked as highest conservation priority included parts of the 

Hudson Bay Lowlands north of the Ontario Shield. Although this is not perfectly aligned with 

our findings of greater diversity on the Shield rather than the Lowlands, it is a reflection that the 

competing constraints of conservation planning produce differing results. Whereas our predictive 

maps create the most detailed picture of bird diversity available for the far north, Stralberg et al. 

(2018) illustrate that this is just one criterion of conservation planning.  
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All this information is important as interest in industrial development, including mineral 

extraction in the far north’s “Ring of Fire,” continues to increase. Despite resistance from some 

First Nations in the far north, the current Ontario government is actively supportive of moving 

forward with building permanent roads for mine development in the region (Crawley, 2021). 

Although the Far North Act (2010) committed to protecting at least 225,000 square kilometres of 

the region in a network of protected areas, no action has been taken in the last decade and this 

commitment is currently under revision (Far North Act proposed amendments, 2020).  

 

The intact nature of the boreal forest, and Ontario’s far north specifically, still provide a rare 

opportunity for proactive conservation planning at a large extent. Given the broad distribution 

patterns of boreal birds, small and distinct protected areas will not be sufficient to protect boreal 

bird populations in Ontario’s far north over the long term. In keeping with the scale of the 

landscape and the nature of its avian community, large areas that are off limits to development 

are necessary to maintain the biodiversity of breeding birds in the region over the long term.   
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Chapter 4 – General discussion 
 

Canada’s boreal forest comprises some of the most intact ecosystems in the world today 

(Stralberg et al., 2018), providing seasonal habitat for an estimated 1 to 3 billion migratory birds 

represented by 300 species (Stralberg et al., 2019; Wells et al., 2020). Within that vast landscape, 

the boreal forests of Ontario’s far north and the adjacent forests of Manitoba, comprise the 

largest block of undeveloped boreal forest in the world (Far North Science Advisory Panel, 

2010). Ontario’s far north also includes the Hudson Bay Lowlands, which represent the third 

largest wetland in the world (Abraham & Keddy, 2005).  Three hundred and forty species of 

birds are supported by the far north during some point in their annual cycle. Of those, 190 

species breed in the region, making it an important nursery for migratory boreal birds, and also 

implying a responsibility for Ontario to protect their nesting grounds (Far North Science 

Advisory Panel, 2010). 

 

During field research between 2009 and 2014, the Far North Biodiversity Project (FNBP) 

compiled the most comprehensive dataset on biodiversity ever compiled for this remote region. 

For this thesis, I used the 2010-2014 breeding bird data from the FNBP to explore and refine 

field methods for sampling breeding birds in a large and remote study area, while testing the 

habitat heterogeneity and species-energy hypotheses and producing predictive maps of breeding 

bird diversity across the study site.  

 

In Chapter 2, I explored the efficacy of two different autonomous recording unit (ARU) models 

manufactured by Wildlife Acoustics Inc. to detect bird and anuran species richness. SM2 units 

are equipped with two microphones to detect and record bird and anuran vocalizations, whereas 
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the SM2BAT units have one microphone to detect and record birds and anurans, and a second 

ultrasonic microphone to detect bats. To maximize the opportunity to sample the widest variety 

of taxa possible, the FNBP utilized both types of units. My analysis showed that there was no 

significant difference in the detection rates of birds or anurans between these unit types.  

 

These results suggest that using either unit type is acceptable for bird or anuran studies, as only 

one regular microphone can adequately sample these taxa, while the ultrasonic microphone on 

the SM2BAT units provides the added advantage of simultaneously collecting bat data. 

However, the second microphone on SM2 units provides redundancy should one microphone 

malfunction or become damaged by a bear or other environmental factors while deployed in the 

field for extended periods of time. Thus, although both unit types will collect avian and anuran 

data equally well, researchers need to decide whether the double-microphone redundancy of the 

SM2 units is more useful than the ability to gather bat data simultaneously.  

 

Sampling a large and remote study area is logistically complicated and expensive. Maximizing 

data collection and minimizing costs are important considerations for study design. The FNBP 

utilized two different plot configurations (long-term and short-term) adapted from the Multiple 

Species Inventory and Monitoring Protocol (MSIM) developed by the US Forest Service 

(Manley et al., 1997). Four ARUs were deployed (three SM2 and one SM2BAT) on each long-

term plot in a square configuration. short-term plots consisted of three SM2 units in a triangular 

configuration with an SM2BAT unit deployed at a nearby water or habitat edge to target bats. 

Long-term plots were deployed for the duration of the nesting season, whereas short-term plots 

were deployed for four to six days at a series of locations and a shorter total proportion of a 
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nesting season. However, the short duration of short-term plots enabled crews to sample more 

locations within the targeted ecozone in a season, which was important for the overall FNBP 

study. 

 

The question was whether there was a difference in the species detection rates between these two 

plot types and, if so, what was the magnitude of that difference. My analysis showed that long-

term plots detected considerably more species for both birds and anurans compared with short-

term plots. On average, long-term plots detected about 7 more species, or 1.5 times as many bird 

species. For anurans the relative difference between plot types was even more substantial. Most 

plots only detected 4 or fewer anuran species. Nonetheless, on average, long-term plots detected 

1.5 more species than short-term plots.  

 

Since the sampling effort (number of recording sessions) over a longer portion of the breeding 

season was much greater with long-term plots, thus covering a greater range of species arrivals 

and breeding seasons, it is not surprising that this plot type detected more species of birds and 

anurans. However, my results quantified that difference giving an idea of how much the short-

term plots may have underestimated the bird and anuran richness. Based on these results, I 

recommend that future studies of birds alone forgo the use of ARUs in short duration plots such 

as the FNBP short-term plots in favour of deploying those units for longer periods of time - 

preferably for the entire breeding season. Although moving the ARUs to new plots every several 

days allows for sampling more widely across a study area, it also under-samples bird and 

particularly anuran richness. Depending on study objectives, some researchers may wish to 

sample more areas and sacrifice plot duration. But in doing so, they should clearly understand 
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the trade-offs between greater sampling area and decreased unique species richness estimates. 

Future studies may consider exploring whether shorter plots of 3-weeks could be a reasonable 

compromise between increased sampling area and species detections. However, the associated 

costs of helicopter and crew time required to move plots must also be considered.  

 

I explored the relative impact of the habitat heterogeneity versus the species-energy hypotheses 

to predict bird diversity at different grains of analysis using multiple diversity measures. During 

this analysis, I found that the impact of plot type on diversity was reflected not in plot type 

specifically but in effort, since the impact of effort on the diversity metrics was always 

substantially greater than from plot type.  

 

Depending on the grain of analysis, I found a difference in the relative support for the habitat 

heterogeneity and species-energy hypotheses. The habitat heterogeneity hypothesis was a better 

predictor of bird diversity at grains from 100m to 5000m, whereas the species-energy hypothesis 

was a better predictor at larger grains from 7500 to 10,000m. These results highlight the 

importance of conducting diversity studies at multiple grains since the impact of independent 

variables varies with the extent and grain of analysis. Studies conducted at a single grain run the 

risk of drawing conclusions of limited applicability relating to the best predictors of bird 

diversity, which could be especially troublesome if results are being used to inform land use 

planning and recommendations for protected areas (Roswell & Dushoff, 2021). In other words, 

when being used to inform land use planning decisions, the grain of diversity studies should be 

well matched with the extent and grain of the area in question. Otherwise, in the worst-case 

scenarios, this could lead to high priority conservation lands being slated for development, or the 
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creation of protected areas that are poorly matched with actual conservation priorities (Jenkins et 

al., 2015).  

 

My maps of predicted bird diversity showed that the Ontario Shield Ecozone is home to a greater 

diversity of breeding birds than the Hudson Bay Lowlands Ecozone. However, given the unique 

attributes of the Hudson Bay Lowlands and the distinct assemblage of birds that breed in this 

region, it is also important for breeding bird conservation in the far north (Abraham and Keddy, 

2005). Although boreal birds tend to be widely dispersed across the landscape, rather than 

clustered in hot spots of diversity (Slattery et al., 2011; Stralberg et al., 2018), our maps show 

that in the Hudson Bay Lowlands the greatest diversity tends to be concentrated around 

waterways, specifically large river system and the shorelines associated with the mouths of these 

rivers, presumably because of the greater habitat heterogeneity found in the riparian and edge 

habitat in those areas. Thus, if trying to protect avian diversity in the Hudson Bay Lowlands, 

these specific areas should be prioritized.  

 

When identifying priority areas for songbird conservation across Canada’s boreal forest using a 

framework of multiple conservation constraints, Stralberg et al. (2018) found that Ontario’s far 

north was among the regions containing some of the highest ranked areas in the country. 

According to their work, the areas ranked as highest conservation priority in the far north 

included parts of the Hudson Bay Lowlands north of the Ontario Shield. Although this is not 

perfectly aligned with our findings of greater diversity on the Shield rather than the Lowlands, 

our results simply report on the predicted diversity values, whereas the models Stralberg et al. 
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(2018) used included six competing conservation constraints in their work that our models did 

not address.  

 

In our study, I did not see substantial differences in the results based on the diversity metric used 

when testing the habitat heterogeneity and species-energy hypotheses. Nor did I see noticeable 

differences in the patterns of our predictive diversity maps for each of our three diversity indices. 

However, models based on the Hill-diversity metrics had greater predictive power than models 

based on raw index values, and the use of Hill numbers – or effective number of species – 

allowed for intuitive comparisons of the differences between indices on our maps of predicted 

bird diversity.  

 

For diversity studies, I recommend the use of multiple diversity measures especially when 

studying communities with uneven or unknown community structures since multiple measures 

can reveal more about the shape, or structure, of a community. Taking this comprehensive 

approach is not onerous analytically, provides greater certainty in results and, thus, is more 

defensible. Moreover, the use of Hill diversity metrics is also recommended because they 

simplify the interpretation of compound indices and allow for intuitive comparisons between 

studies using different indices.   

 

Over the next century, the North American boreal forest is likely to undergo substantial climate-

related changes with increased incidences of drought, insect-caused tree mortality, wetland 

drying, and wildfires (Allen et al., 2010; Balling et al.,1998; Klein et al., 2005; Michaelian et al., 

2010; Peng et al., 2011). Some North American breeding birds have already expanded their 
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ranges northward in response to climate change (Hitch & Leberg, 2007).  In Ontario’s far north, 

interest in developing the considerable mineral deposits is also increasing (Crawly, 2021; Tencer, 

2013), and the Far North Act is being revised to exclude the provision to protect 50 percent of 

the region (Far North Act proposed amendments, 2020). Collectively, these changes lend 

urgency to the need to comprehensively describe the region’s biodiversity to ensure that the land 

use planning processes underway are well-informed by the best science and to provide a baseline 

against which to measure future changes in the biodiversity of Ontario’s far north.     

  



  

 

 

 

99 

 

Literature Cited 
 

 

Abraham, K. F., and Keddy, C. J. (2005). “The Hudson Bay Lowland.” In L. H. Fraser and P. A. 

Keddy (eds), The World’s Largest Wetlands, (Cambridge: Cambridge University Press), 

118–148. 

Abraham, K.F. and McKinnon, L.M. (2011). Hudson Plains Ecozone+ evidence for key findings 

summary. Canadian Biodiversity: Ecosystem Status and Trends 2010, Evidence for Key 

Findings Summary Report No. 2. Canadian Councils of Resource Ministers. Ottawa, ON. vi 

+ 98 p. 

Allen, C. D., et al. 2010. A global overview of drought and heat-induced tree mortality reveals 

emerging climate change risks for forests. Forest Ecology and Management 259:660– 684 

Allouche, O., Kalyuzhny, M., Moreno-Rueda, G., Pizarro, M., & Kadmon, R. (2012). Area-

heterogeneity tradeoff and the diversity of ecological communities. Proceedings of the 

National Academy of Sciences, 109(43), 17495–17500. 

https://doi.org/10.1073/pnas.1208652109 

Altamirano, A., Field, R., Cayuela, L., Aplin Paul., P., Lara, A., & Rey-Benayas, J. M. (2010). 

Woody species diversity in temperate Andean forests: The need for new conservation 

strategies. Biological Conservation, 143(9), 2080–2091. 

https://doi.org/10.1016/j.biocon.2010.05.016 

Badiou, P., Orians, G., Pimm, S., Possingham, H., Raven, P., & Reid, F. (2013). Conserving the 

World ’ s Last Great Forest Is Possible : Here's How. A science / policy briefing note 

issued under the auspices. October. 

Berlanga, H., J. A. Kennedy, T. D. Rich, M. C. Arizmendi, C. J. Beardmore, P. J. Blancher, G. S. 

Butcher, A. R. Couturier, A. A. Dayer, D. W. Demarest, W. E. Easton, M. Gustafson, E. 

Iñigo- Elias, E. A. Krebs, A. O. Panjabi, V. Rodriguez Contreras, K. V. Rosenberg, J. M. 

Ruth, E. Santana Castellón, R. Ma. Vidal, and T. Will. 2010. Saving our shared birds: 

partners in flight tri- national vision for landbird conservation. Cornell Lab of Ornithology, 

Ithaca, New York, USA. [online] URL: http://www.savingoursharedbirds.org/ 

final_reports_pdfs/PIF2010_English_Final.pdf 

Blancher, P. Importance of Canada’s boreal forest to landbirds. The Canadian Boreal Initiative 

and Bird Studies Canada. 48 p 

Bowman, J., Forbes, G. J., & Dilworth, T. G. (2001). The spatial component of variation in 

small- mammal abundance measured at three scales. Canadian Journal of Zoology, 79, 

137–144. 

Bryant, D., Nielsen, D., & Tangley, L. (1997). The last frontier Forests. In Cités (Vol. 31, Issue 

3). 

Butchart, S. H. M., Walpole, M., Collen, B., van Strien, A., Scharlemann, J. P. W., Almond, R. 

E. a, Baillie, J. E. M., Bomhard, B., Brown, C., Bruno, J., Carpenter, K. E., Carr, G. M., 

Chanson, J., Chenery, A. M., Csirke, J., Davidson, N. C., Dentener, F., Foster, M., Galli, A., 

… Watson, R. (2010). Global biodiversity: indicators of recent declines. Science (New York, 

N.Y.), 328(5982), 1164–1168. https://doi.org/10.1126/science.1187512 

Caro, T., Darwin, J., Forrester, T., Ledoux-Bloom, C., & Wells, C. (2012). Conservation in the 

Anthropocene. Conservation Biology, 26(1), 185–188. https://doi.org/10.1111/j.1523-

1739.2011.01752.x 

Carrara, R., & Vázquez, D. P. (2010). The species-energy theory: A role for energy variability. 



  

 

 

 

100 

 

Ecography, 33(5), 942–948. https://doi.org/10.1111/j.1600-0587.2009.05756.x 

Chao, Anne and Jost, L. (2004). Diversity analysis : a fresh approach. In Diversity (p. 9p). 

Chetkiewicz, C., & Lintner, A. (2014). Getting It Right in Ontario’s Far North. 136. 

Clarke, A., & Gaston, K. J. (2006). Climate, energy and diversity. Proceedings of the Royal 

Society B: Biological Sciences, 273(1599), 2257–2266. 

https://doi.org/10.1098/rspb.2006.3545 

Crins, W. W. J., Gray, P. A. A., Uhlig, P. W. C. W. C., & Wester, M. C. C. (2009). The 

ecosystems of Ontario, Part 1: Ecozones and Ecoregions. Inventory, Monitoring and 

Assessment, SIB TER IMA TR-01, 77. 

Cumming, S. G., Stralberg, D., Lefevre, K. L., Sólymos, P., Bayne, E. M., Fang, S., Fontaine, T., 

Mazerolle, D., Schmiegelow, F. K. A. a., & Song, S. J. (2014). Climate and vegetation 

hierarchically structure patterns of songbird distribution in the Canadian boreal region. 

Ecography, 37(May 2013), no-no. https://doi.org/10.1111/j.1600-0587.2013.00299.x 

Currie, D. J. (1991). Energy and Large-Scale Patterns of Animal and Plant-Species Richness. 

The American Naturalist, 137(1), 27–49. https://doi.org/10.1086/285144 

Daly, A. J., Baetens, J. M., & De Baets, B. (2018). Ecological diversity: Measuring the 

unmeasurable. Mathematics, 6(7). https://doi.org/10.3390/math6070119 

Darras, K., Batáry, P., Furnas, B., Celis-Murillo, A., Van Wilgenburg, S. L., Mulyani, Y. A., & 

Tscharntke, T. (2018). Comparing the sampling performance of sound recorders versus 

point counts in bird surveys: A meta-analysis. Journal of Applied Ecology, 55(6), 2575–

2586. https://doi.org/10.1111/1365-2664.13229 

Davies, R. G., Orme, C. D. L., Storch, D., Olson, V. A., Thomas, G. H., Ross, S. G., Ding, T. S., 

Rasmussen, P. C., Bennett, P. M., Owens, I. P. F., Blackburn, T. M., & Gaston, K. J. 

(2007). Topography, energy and the global distribution of bird species richness. 

Proceedings of the Royal Society B: Biological Sciences, 274(1614), 1189–1197. 

https://doi.org/10.1098/rspb.2006.0061 

Dorcas, M. E., Price, S. J., Walls, S. C., & Barichivich, W. J. (2009). Auditory monitoring of 

anuran populations. In Amphibian ecology and conservation: A Handbook of Techniques 

(Issue January, pp. 281–298). 

Field, R., Hawkins, B. A., Cornell, H. V, Currie, D. J., Diniz-filho, J. A. F., Kaufman, D. M., 

Kerr, J. T., Mittelbach, G. G., Oberdorff, T., Brien, E. M. O., & Turner, J. R. G. (2008). 

Spatial species-richness gradients across scales : a meta-analysis. Journal of Biogeography. 

https://doi.org/10.1111/j.1365-2699.2008.01963.x 

Gaston, K. J. (2000). Global patterns in biodiversity. Nature, 405(6783), 220–227. 

https://doi.org/10.1038/35012228 

Gaudreau, J., Perez, L., & Harati, S. (2018). Towards modelling future trends of Quebec’s boreal 

birds’ species distribution under climate change. ISPRS International Journal of Geo-

Information, 7(9). https://doi.org/10.3390/ijgi7090335 

Gauthier, A. S., Bernier, P., Kuuluvainen, T., Shvidenko, A. Z., Gauthier, S., & Bernier, P. 

(2021). Linked references are available on JSTOR for this article : Boreal forest health and 

global change. Boreal global change. 349(6250), 819–822. 

Gillis, M. D., Omule, A. Y., & Brierley, T. (2005). Monitoring Canada’s forests: The national 

forest inventory. Forestry Chronicle, 81(2), 214–221. https://doi.org/10.5558/tfc81214-2 

González-Megías, A., María Gómez, J., & Sánchez-Piñero, F. (2007). Diversity-habitat 

heterogeneity relationship at different spatial and temporal scales. Ecography, 30(1), 31–41. 

https://doi.org/10.1111/j.2006.0906-7590.04867.x 



  

 

 

 

101 

 

Götzenberger, L., de Bello, F., Bråthen, K. A., Davison, J., Dubuis, A., Guisan, A., Lepš, J., 

Lindborg, R., Moora, M., Pärtel, M., Pellissier, L., Pottier, J., Vittoz, P., Zobel, K., & Zobel, 

M. (2012). Ecological assembly rules in plant communities-approaches, patterns and 

prospects. Biological Reviews, 87(1), 111–127. https://doi.org/10.1111/j.1469-

185X.2011.00187.x 

Hawkins, B. A., Richard Field, Cornell, H. V., Currie, D. J., Gan, J.-F. G., Kaufman, D. M., 

Jeremy T. Kerr, 4, Mittelbach, G. G., Oberdorff, T., O’brien, E. M., & Eric E. Porter, A. J. 

R. G. T. (2003). Energy, water and broad-scale geographic patterns of species richness. 

Ecology, 84(12), 3105–3117. https://doi.org/10.1890/03-8024 

Hill, M. (1973). Diversity and evenness: a unifying notation and its consequences. Ecology, 

54(2), 427–432. https://doi.org/10.2307/1934352 

Hurlbert, A. H., & Jetz, W. (2007). Species richness, hotspots, and the scale dependence of range 

maps in ecology and conservation. Proceedings of the National Academy of Sciences of the 

United States of America, 104(33), 13384–13389. https://doi.org/10.1073/pnas.0704469104 

Hurvich, C. M., & Tsai, C. L. (1991). Bias of the corrected aic criterion for underfitted 

regression and time series models. Biometrika, 78(3), 499–509. 

https://doi.org/10.1093/biomet/78.3.499 

Jenkins, C. N., Houtan, K. S. Van, Pimm, S. L., & Sexton, J. O. (2015). US protected lands 

mismatch biodiversity priorities. Proceedings of the National Academy of Sciences, 1–6. 

https://doi.org/10.1073/pnas.1418034112 

Jiménez-Valverde, A., Barve, N., Lira-Noriega, A., Maher, S. P., Nakazawa, Y., Papeş, M., 

Soberón, J., Sukumaran, J., & Peterson, A. T. (2011). Dominant climate influences on 

North American bird distributions. Global Ecology and Biogeography, 20(1), 114–118. 

https://doi.org/10.1111/j.1466-8238.2010.00574.x 

Johnson, C. N., Balmford, A., Brook, B. W., Buettel, J. C., Galetti, M., Guangchun, L., & 

Wilmshurst, J. M. (2017). Biodiversity losses and conservation responses in the 

Anthropocene. Science, 356(6335), 270–275. https://doi.org/10.1126/science.aam9317 

Jost, L. (2006). Entropy and diversity. Oikos, 113, 363–375. https://doi.org/10.1111/j.2006.0030-

1299.14714.x 

Jost, L. (2009). Mismeasuring biological diversity: Response to Hoffmann and Hoffmann 

(2008). Ecological Economics, 68(4), 925–928. 

https://doi.org/10.1016/j.ecolecon.2008.10.015 

Jost, L. (2019). What do we mean by diversity?: The path towards quantification. Metode, 

2019(9), 55–61. https://doi.org/10.7203/metode.9.11472 

Kerr, J. T., & Packer, L. (1999). The environmental basis of North American species richness 

patterns among Epicauta (Coleoptera: Meloidae). Biodiversity and Conservation, 8(5), 617–

628. https://doi.org/10.1023/A:1008846131749 

Kirk, D. a., Diamond, A. W., Hobson, K. a., & Smith, A. R. (1996). Breeding bird communities 

of the western and northern Canadian boreal forest: relationship to forest type. Canadian 

Journal of Zoology, 74(9), 1749–1770. https://doi.org/10.1139/z96-193 

Leveau, L. M., Isla, F. I., & Isabel Bellocq, M. (2020). From town to town: Predicting the 

taxonomic, functional and phylogenetic diversity of birds using NDVI. Ecological 

Indicators, 119(August), 106703. https://doi.org/10.1016/j.ecolind.2020.106703 

Locke, H. (2013). Nature needs half: A necessary and hopeful new Agenda for protected areas. 

Parks, 19(2), 13–22. https://doi.org/10.2305/IUCN.CH.2013.PARKS-19-2.HL.en 

Lumbierres, M., Méndez, P. F., Bustamante, J., Soriguer, R., & Santamaría, L. (2017). Modeling 



  

 

 

 

102 

 

biomass production in seasonal wetlands using MODIS NDVI land surface phenology. 

Remote Sensing, 9(4), 1–18. https://doi.org/10.3390/rs9040392 

Luo, Z., Tang, S., Li, C., Fang, H., Hu, H., Yang, J., Ding, J., & Jiang, Z. (2012). Environmental 

effects on vertebrate species richness: Testing the energy, environmental stability and 

habitat heterogeneity hypotheses. PLoS ONE, 7(4), 23–26. 

https://doi.org/10.1371/journal.pone.0035514 

Luoto, M., Virkkala, R., & Heikkinen, R. K. (2007). The role of land cover in bioclimatic models 

depends on spatial resolution. Global Ecology and Biogeography, 16(1), 34–42. 

https://doi.org/10.1111/j.1466-8238.2006.00262.x 

MacArthur, RH MacArthur, J. (1961). On Bird Species Diversity. Ecology, 42(3), 594–598. 

Magurran, Anne E. and McGill, B. J. (2011). Biological_Diversity: Frontiers in Measurement 

and Assessment (B. J. Magurran, Anne E. and McGill (ed.)). Oxford University Press Inc. 

Manley, P. N., Service, U. S. F., Horne, B. Van, Wildlife, N., & Service, U. S. F. (1997). The 

Multiple Species Inventory and Monitoring Protocol : A Population , Community , and 

Biodiversity Monitoring Solution for National Forest System Lands. USDA Forest Service 

Proceedings RMRS-P-42CD., 1, 671–680. 

McCauley, S. J., Bouchard, S. S., Farina, B. J., Isvaran, K., Quader, S., Wood, D. W., & St. 

Mary, C. M. (2000). Energetic dynamics and anuran breeding phenology: Insights from a 

dynamic game. Behavioral Ecology, 11(4), 429–436. 

https://doi.org/10.1093/beheco/11.4.429 

McKenney, D., Pedlar, J., Hutchinson, M., Papadopol, P., Lawrence, K., Campbell, K., 

Milewska, E., Hopkinson, R. F., & Price, D. (2013). Spatial climate models for Canada’s 

forestry community. Forestry Chronicle, 89(5), 659–663. https://doi.org/10.5558/tfc2013-

118 

Mérő, T. O., Lontay, L., & Lengyel, S. (2015). Habitat management varying in space and time: 

the effects of grazing and fire management on marshland birds. Journal of Ornithology. 

https://doi.org/10.1007/s10336-015-1202-9 

Morris, E. K., Caruso, T., Buscot, F., Fischer, M., Hancock, C., Maier, T. S., Meiners, T., 

Müller, C., Obermaier, E., Prati, D., Socher, S. a., Sonnemann, I., Wäschke, N., Wubet, T., 

Wurst, S., & Rillig, M. C. (2014). Choosing and using diversity indices: insights for 

ecological applications from the German Biodiversity Exploratories. Ecology and 

Evolution, 4(18), 3514–3524. https://doi.org/10.1002/ece3.1155 

Noss, R. F., Dobson, A. P., Baldwin, R., Beier, P., Davis, C. R., Dellasala, D. A., Francis, J., 

Locke, H., Nowak, K., Lopez, R., Reining, C., Trombulak, S. C., & Tabor, G. (2011). 

Bolder Thinking for Conservation. Conservation Biology, 26(1), 1–4. 

https://doi.org/10.1111/j.1523-1739.2011.01738.x 

Oseen, K. L., & Wassersug, R. J. (2002). Environmental factors influencing calling in sympatric 

anurans. Oecologia, 133(4), 616–625. https://doi.org/10.1007/s00442-002-1067-5 

P.Lee, D.Aksenov, L. Laestadius, R. Nogueron, W. S. (2007). Canada’s Large Intact Forest 

Landscapes. In Canada’s Large Intact Forest Landscapes. 

Packalen, M. S., Finkelstein, S. A., & McLaughlin, J. W. (2014). Carbon storage and potential 

methane production in the Hudson Bay Lowlands since mid-Holocene peat initiation. 

Nature Communications, 5(May), 1–8. https://doi.org/10.1038/ncomms5078 

Purvis, A., & Hector, A. (2000). Getting the measure of biodiversity. In Nature (Vol. 405, Issue 

6783, pp. 212–219). https://doi.org/10.1038/35012221 

R.S. Rempel, J.M. Jackson,  and J. N. R. (2014). Acoustic Monitoring and Assessment of Forest 



  

 

 

 

103 

 

Songbirds : Sample Design , Analysis Methods , and. 

Rempel, R. (2014). Effectiveness monitoring of forest management guides. Acoustic monitoring 

objectives, sample design, analysis methods, and observation error (Issue 80). 

Rempel, R. S., Francis, C. M., Robinson, J. N., & Campbell, M. (2013). Comparison of audio 

recording system performance for detecting and monitoring songbirds. Journal of Field 

Ornithology, 84(1), 86–97. https://doi.org/10.1111/jofo.12008 

Rosenberg, K. V., Dokter, A. M., Blancher, P. J., Sauer, J. R., Smith, A. C., Smith, P. A., 

Stanton, J. C., Panjabi, A., Helft, L., Parr, M., & Marra, P. P. (2019). Decline of the North 

American avifauna. Science, 366(6461), 120–124. https://doi.org/10.1126/science.aaw1313 

Roswell, M; Dushoff, Winfree, R. (2021). A conceptual guide to measuring species diversity. 

Oikos, 130, 321–338. https://doi.org/10.1111/oik.05876 

Sage, R. F. (2020). Global change biology: A primer. Global Change Biology, 26(1), 3–30. 

https://doi.org/10.1111/gcb.14893 

Shiu, H. J., & Lee, P. F. (2003). Assessing avian point-count duration and sample size using 

species accumulation functions. Zoological Studies, 42(2), 357–367. 

Shonfield, J., & Bayne, E. M. (2017). Autonomous recording units in avian ecological research: 

current use and future applications. Avian Conservation and Ecology, 12(1). 

https://doi.org/10.5751/ace-00974-120114 

Stein, A. (2015). Environmental heterogeneity–species richness relationships from a global 

perspective. Frontiers of Biogeography, 7(4), 168–173. 

https://doi.org/10.21425/f5fbg27952 

Stein, A., Gerstner, K., & Kreft, H. (2014). Environmental heterogeneity as a universal driver of 

species richness across taxa, biomes and spatial scales. Ecology Letters, 17(7), 866–880. 

https://doi.org/10.1111/ele.12277 

Stralberg, D., Berteaux, D., Drever, C. R., Drever, M., Lewis, I. N., Schmiegelow, F. K. A., & 

Tremblay, J. A. (2019). Conservation planning for boreal birds in a changing climate: A 

framework for action. Avian Conservation and Ecology, 14(1). 

https://doi.org/10.5751/ACE-01363-140113 

Stralberg, D., Camfield, A. F., Carlson, M., Lauzon, C., Westwood, A., Barker, N. K. S., Song, 

S. J., & Schmiegelow, F. K. A. (2018). Strategies for identifying priority areas for songbird 

conservation in Canada’s boreal forest. Avian Conservation and Ecology, 13(2). 

https://doi.org/10.5751/ACE-01303-130212 

Tews, J., Brose, U., Grimm, V., Tielbörger, K., Wichmann, M. C., Schwager, M., & Jeltsch, F. 

(2004). Animal species diversity driven by habitat heterogeneity/diversity: The importance 

of keystone structures. Journal of Biogeography, 31(1), 79–92. 

https://doi.org/10.1046/j.0305-0270.2003.00994.x 

The Far North Science Advisory Panel. (2010). Science for a Changing Far North (Issue April). 

Tittensor, D. P., & Worm, B. (2016). A neutral-metabolic theory of latitudinal biodiversity. 

Global Ecology and Biogeography, 25(6), 630–641. https://doi.org/10.1111/geb.12451 

Toms, J. D., Hannon, S. J., & Schmiegelow, F. K. A. (2005). Population dynamics of songbirds 

in the boreal mixedwood forests of Alberta, Canada: Estimating minimum and maximum 

extents of spatial population synchrony. Landscape Ecology, 20(5), 543–553. 

https://doi.org/10.1007/s10980-004-5038-6 

Tucker, C. J., Pinzon, J. E., Brown, M. E., Slayback, D. A., Pak, E. W., Mahoney, R., Vermote, 

E. F., & El Saleous, N. (2005). An extended AVHRR 8-km NDVI dataset compatible with 

MODIS and SPOT vegetation NDVI data. International Journal of Remote Sensing, 26(20), 



  

 

 

 

104 

 

4485–4498. https://doi.org/10.1080/01431160500168686 

Ugland, K. I., Gray, J. S., & Ellingsen, K. E. (2003). The species – accumulation curve and 

estimation of species richness. British Ecological Society, Rosenzweig 1995, 888–897. 

Venier, L. A., Holmes, Setphen, B., Holborn, George, W., McIlwrick, Kenneth, A., & Brown, G. 

(2012). Evaluation of an Automated Recording Device for Monitoring Forest Birds. 

Wildlife Society Bulletin, 36(1), 30–39. https://doi.org/10.1002/wsb.88 

Venier, L. a., McKenney, D. W., Wang, Y., & McKee, J. (1999). Models of large-scale 

breeding-bird distribution as a function of macro-climate in Ontario, Canada. Journal of 

Biogeography, 26(2), 315–328. https://doi.org/10.1046/j.1365-2699.1999.00273.x 

Venier, L. a., Pearce, J., McKee, J. E., McKenney, D. W., & Niemi, G. J. (2004). Climate and 

satellite-derived land cover for predicting breeding bird distribution in the Great Lakes 

Basin. Journal of Biogeography, 31(2), 315–331. https://doi.org/10.1046/j.0305-

0270.2003.01014.x 

Wang, K., Franklin, S. E., Guo, X., He, Y., & McDermid, G. J. (2009). Problems in remote 

sensing of landscapes and habitats. Progress in Physical Geography, 33(6), 747–768. 

https://doi.org/10.1177/0309133309350121 

Watson, J. E. M., Evans, T., Venter, O., & Williams, B. (2018). The exceptional value of intact 

forest ecosystems | Nature Ecology & Evolution. Nature Ecology and Evolution, 2(4), 599–

610. https://www.nature.com/articles/s41559-018-0490-x#Sec15 

Watson, J. E. M., & Venter, O. (2017). A global plan for nature conservation. Nature, 550(7674), 

48–49. https://doi.org/10.1038/nature24144 

Wells, J., D., Childs, D., Reid, F., Ph, D., & Smith, K. (2014). Boreal Birds Need Half : 

Maintaining North America’s Bird Nursery and Why it Matters. 

Wells, J. V., Dawson, N., Culver, N., Reid, F. A., & Morgan Siegers, S. (2020). The State of 

Conservation in North America’s Boreal Forest: Issues and Opportunities. Frontiers in 

Forests and Global Change, 3(July), 1–18. https://doi.org/10.3389/ffgc.2020.00090 

Wester, M. C., Henson, B. L., Crins, W. J., Uhlig, P. W. C., & Gray, P. A. (2018). The 

Ecosystems of Ontario, Part 2: Ecodistricts. Ontario Ministry of Natural Resources and 

Forestry, Science and Research Branch, 516. https://files.ontario.ca/ecosystems-ontario-

part2-03262019.pdf 

Whiting, A. V. (2010). Factors affecting larval growth and development of the boreal chorus frog 

Pseudacris maculata. In Dept of Biological science - U Alberta. 

Whittaker, R. J., Willis, K. J., & Field, R. (2001). Scale and species richness : towards a general , 

theory of species diversity hierarchical. Journal of Biogeography, 28(4), 453–470. 

https://doi.org/10.1046/j.1365-2699.2001.00563.x 

Willig, M. R., Kaufman, D. M., & Stevens, R. D. (2003). Latitudinal Gradients of Biodiversity: 

Pattern, Process, Scale, and Synthesis. Annual Review of Ecology, Evolution, and 

Systematics, 34(Hawkins 2001), 273–309. 

https://doi.org/10.1146/annurev.ecolsys.34.012103.144032 

Yang, Z., Liu, X., Zhou, M., Ai, D., Wang, G., Wang, Y., Chu, C., & Lundholm, J. T. (2015). 

The effect of environmental heterogeneity on species richness depends on community 

position along the environmental gradient. Scientific Reports, 5(October), 1–7. 

https://doi.org/10.1038/srep15723 

  



  

 

 

 

105 

 

Appendix 1 
 

Table 1A. Breeding birds in taxonomic order as detected on autonomous recording units during 
the Far North Biodiversity Project between 2010-2014, showing the number of individuals of 
each species for long-term and short-term plots. Species at risk in Ontario are shaded in grey.  

 
   

Number of individual detections of ARUs  

Taxonomic 

Groups 

Species Common 

Name 

Scientific Name Taxa 

Code 

Long-term 

plots 
Short-term plots Grand 

Total 

Ducks, geese and 

waterfowl 

Snow Goose Chen caerulescens SNGO  1 1 

 Canada Goose Branta canadensis CAGO 724 84 808 

 Northern Shoveler Anas clypeata NSHO 1  1 

 Green-winged Teal Anas crecca GWTE 1  1 

 Mallard Anas platyrhynchos MALL 12 4 16 

 Black Scoter Melanitta nigra BLSC 2  2 

 Common Merganser Mergus merganser COME  9 9 

Grouse and Allies Ruffed Grouse Bonasa umbellus RUGR 11 9 20 

 Spruce Grouse Falcipennis canadensis SPGR 1 4 5 

 Willow Ptarmigan Lagopus lagopus WIPT 38 3 41 

 Sharp-tailed Grouse Tympanuchus 

phasianellus 

STGR 26 5 31 

Nightjars Common Nighthawk Chordeiles minor CONI 140 160 300 

Rails Yellow Rail Coturnicops 

noveboracensis 

YERA 20  20 

 Sora Porzana Carolina SORA 54 5 59 

Cranes Sandhill Crane Grus canadensis SACR 518 150 668 

Plovers Black-bellied Plover Pluvialis squatarola BBPL  12 12 

 Semipalmated Plover Charadrius 

semipalmatus 

SEPL 1 2 3 

Sandpipers and 

Allies 

Stilt Sandpiper Calidris himantopus STSA 11  11 

 Least Sandpiper Calidris minutilla LESA 104 13 117 

 Semipalmated 

Sandpiper 

Calidris pusilla SESA 1  1 

 Short-billed Dowitcher Limnodromus griseus SBDO 58 12 70 

 Wilson's Snipe Gallinago gallinago WISN 650 159 809 

 Spotted Sandpiper Actitis macularius SPSA 55 72 127 

 Solitary Sandpiper Tringa solitaria SOSA 103 34 137 

 Lesser Yellowlegs Tringa flavipes LEYE 230 86 316 

 Greater Yellowlegs Tringa melanoleuca GRYE 491 133 624 

Gulls and terns Bonaparte's Gull Chroicocephalus 

philadelphia 

BOGU 129 57 186 

 Ring-billed Gull Larus delawarensis RBGU  10 10 
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 Herring Gull Larus argentatus HERG 11 5 16 

 Common Tern Sterna hirundo COTE 1  1 

 Arctic Tern Sterna paradisaea ARTE 2  2 

Loons Common Loon Gavia immer COLO 369 269 638 

Herons and 

bitterns 

American Bittern Botaurus lentiginosus AMBI 73 12 85 

Hawks and eagles Bald Eagle Haliaeetus 

leucocephalus 

BAEA 4 6 10 

Owls Great Horned Owl Bubo virginianus GHOW  1 1 

 Great Gray Owl Strix nebulosa GGOW 12 3 15 

 Long-eared Owl Asio otus LEOW 1 1 2 

 Boreal Owl Aegolius funereus BOOW 1 1 2 

Kingfishers Belted Kingfisher Megaceryle alcyon BEKI 1 4 5 

Woodpeckers Yellow-bellied 

Sapsucker 

Sphyrapicus varius YBSA 9 7 16 

 American Three-

toed Woodpecker 

Picoides dorsalis TTWO 63 20 83 

 Black-backed 

Woodpecker 

Picoides arcticus BBWO 6 6 12 

 Downy 

Woodpecker 

Picoides pubescens DOWO  2 2 

 Hairy Woodpecker Picoides villosus HAWO 3 8 11 

 Northern Flicker Colaptes auratus NOFL 17 8 25 

 Pileated 

Woodpecker 

Dryocopus pileatus PIWO 1  1 

 Woodpecker Species Woodpecker Species WOOD 22  22 

Tryant flycatchers Olive-sided 

Flycatcher 

Contopus cooperi OSFL 174 74 248 

 Eastern Wood-Pewee Contopus virens EAWP  1 1 

 Yellow-bellied 

Flycatcher 

Empidonax flaviventris YBFL 223 154 377 

 Alder Flycatcher Empidonax alnorum ALFL 401 214 615 

 Least Flycatcher Empidonax minimus LEFL 12 18 30 

Vireos Blue-headed Vireo Vireo solitaries BHVI 11 25 36 

 Philadelphia Vireo Vireo philadelphicus PHVI 7 28 35 

 Red-eyed Vireo Vireo olivaceus REVI 24 30 54 

Crows and Jays Gray Jay Perisoreus canadensis GRAJ 359 269 628 

 American Crow Corvus brachyrhynchos AMCR 22 6 28 

 Common Raven Corvus corax CORA 67 28 95 

Larks Horned Lark Eremophila alpestris HOLA 14  14 

Swallows Tree Swallow Tachycineta bicolor TRES 12 9 21 

Chickadees Black-capped 

Chickadee 

Poecile atricapillus BCCH 1 2 3 

 Boreal Chickadee Poecile hudsonicus BOCH 36 29 65 
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Nuthatches Red-breasted Nuthatch Sitta canadensis RBNU 8 17 25 

Treecreepers Brown Creeper Certhia americana BRCR 12 19 31 

Wrens Winter Wren Troglodytes 

[troglodytes] hiemalis 

WIWR 117 227 344 

Kinglets Golden-crowned 

Kinglet 

Regulus satrapa GCKI 46 41 87 

 Ruby-crowned Kinglet Regulus calendula RCKI 432 220 652 

Thrushes Veery Catharus fuscescens VEER 1  1 

 Gray-cheeked Thrush Catharus minimus GCTH 37 12 49 

 Swainson's Thrush Catharus ustulatus SWTH 387 458 845 

 Hermit Thrush Catharus guttatus HETH 1485 579 2064 

 American Robin Turdus migratorius AMRO 308 184 492 

Waxwings Bohemian Waxwing Bombycilla garrulus BOWA 1 5 6 

 Cedar Waxwing Bombycilla cedrorum CEDW 7 45 52 

Pipits American Pipit Anthus rubescens AMPI  1 1 

 

Finches 

Evening Grosbeak Coccothraustes 

vespertinus 

EVGR  1 1 

 Pine Grosbeak Pinicola enucleator PIGR 23 9 32 

 Purple Finch Haemorhous  purpureus PUFI 1  1 

 Common Redpoll Acanthis flammeaÊ CORE 143 34 177 

 Red Crossbill Loxia curvirostra RECR  1 1 

 White-winged   

Crossbill 

Loxia leucoptera WWCR 177 165 342 

 Pine Siskin Spinus pinus PISI 6 5 11 

 American Goldfinch Spinus tristis AMGO 3 1 4 

Longspurs Lapland Longspur Calcarius lapponicus LALO 1  1 

 Smith's Longspur Calcarius pictus SMLO 29  29 

Sparrows Chipping Sparrow Spizella passerina CHSP 152 67 219 

 Clay-colored Sparrow Spizella pallida CCSP 2 5 7 

 Fox Sparrow Passerella iliaca FOSP 663 318 981 

 American Tree 

Sparrow 

Spizella arborea ATSP 108 36 144 

 Dark-eyed Junco Junco hyemalis DEJU 748 291 1039 

 White-crowned 

Sparrow 

Zonotrichia leucophrys WCSP 260 107 367 

 White-throated 

Sparrow 

Zonotrichia albicollis WTSP 1896 802 2698 

 Le Conte's Sparrow Ammodramus leconteii LCSP 13 22 35 

 Nelson's Sparrow Ammodramus nelsoni NSTS 23 13 36 

 Savannah Sparrow Passerculus 

sandwichensis 

SAVS 621 95 716 

 Song Sparrow Melospiza melodia SOSP  6 6 

 Lincoln's Sparrow Melospiza lincolnii LISP 961 211 1172 

 Swamp Sparrow Melospiza georgiana SWSP 295 57 352 
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Troupials Red-winged Blackbird Agelaius phoeniceus RWBL 35 4 39 

 Rusty Blackbird Euphagus carolinus RUBL 143 53 196 

New World 

Warblers 

Ovenbird Seiurus aurocapilla OVEN 4 16 20 

 Northern Waterthrush Seiurus noveboracensis NOWA 378 219 597 

 Black-and-white 

Warbler 

Mniotilta varia BAWW 7 15 22 

 Tennessee Warbler Oreothlypis peregrina TEWA 183 173 356 

 Orange-crowned 

Warbler 

Oreothlypis celata OCWA 215 99 314 

 Nashville Warbler Oreothlypis ruficapilla NAWA 40 55 95 

 Connecticut Warbler Oporornis agilis CONW 62 46 108 

 Mourning Warbler Oporornis philadelphia MOWA 3 1 4 

 Common Yellowthroat Geothlypis trichas COYE 272 119 391 

 American Redstart Setophaga ruticilla AMRE 7 29 36 

 Cape May Warbler Setophaga tigrina CMWA  8 8 

 Magnolia Warbler Dendroica magnolia MAWA 61 109 170 

 Bay-breasted Warbler Dendroica castanea BBWA 2 7 9 

 Blackburnian Warbler Setophaga fusca BLBW 2 3 5 

 Yellow Warbler Dendroica petechia YWAR 78 51 129 

 Chestnut-sided 

Warbler 

Setophaga  

pensylvanica 

CSWA 15 21 36 

 Blackpoll Warbler Setophaga striata BPWA  7 7 

 Palm Warbler Dendroica palmarum PAWA 718 187 905 

 Yellow-rumped 

Warbler 

Dendroica coronata YRWA 457 244 701 

 Wilson's Warbler Wilsonia pusilla WIWA 189 130 319 

 

 

Table 2A. Anurans detected on autonomous recording units during the Far North Biodiversity 
Project between 2010-2014, showing the number of individuals of each species for long-term 
and short-term plots.  
   Number of individual detections of ARUs 

Common 

name 

Scientific name Taxa 

Code 

Long-term 

plots 

Short-term 

plots 

Total 

Spring Peeper Pseudacris crucifer SPPE 193 29 222 

Chorus Frog 
(Boreal) Pseudacris maculata BOCF 186 32 218 

Wood Frog Lithobates sylvaticus WOFR 94 8 102 

American 
Toad Anaxyrus americanus AMTO 71 25 96 

Mink Frog 
Lithobates 
septentrionalis MIFR 9 0 9 

Green Frog Lithobates clamitans  GRFR 4 0 4 
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Table 3A. The 17 land cover names and codes derived from the Ontario Land Cover Compilation 
v.2.0 used to calculate Number of Land classes and Effective Number for Shannon Diversity as 
indices for habitat heterogeneity*   

Land-

class 

Code 

Original Ontario Land 

cover Compilation 

classifications 

Land classes 

present in the 

Far North* 

Pct of 10km 

buffered Plots 

1 Clear open water ✔ 11.10% 

2 Turbid water ✔ 1.11% 

3 Shoreline   

4 Mudflats ✔ 0.37% 

5 Marsh ✔ 0.80% 

6 Swamp ✔ 11.3% 

7 Fen ✔ 22.3% 

8 Bog ✔ 27.8% 

9 Shadow/cloud ✔** 0.02% 

10 Heath ✔ 0.13% 

11 Sparse treed ✔ 2.41% 

12 Treed upland ✔  

13 Deciduous treed ✔ 1.21% 

14 Mixed Treed ✔ 2.17% 

15 Coniferous treed ✔ 10.12% 

16 
Plantations (treed 

cultivated) 
  

17 Hedge rows   

18 Disturbance ✔ 8.75% 

19 Cliff and Talus   

20 Alvar   

21 Sand barren & Dune   

22 Open tallgrass prairie   

23 Tallgrass savannah   

24 Tallgrass woodland   

25 
Sand/gravel/mine 

tailings/extraction 
✔ 0.04% 

26 Bedrock ✔ 0.06% 

27 Community/infrastructure ✔ 0.00% 

28 Agriculture   

99 Unclassified types ✔** 0.02% 

*Far North Land Cover Data Specifications, version 1.4, 2014 

**Not included in habitat diversity calculations 
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Table 4A. Variance explained and component loadings from principal component analysis at 
500m grain size. 

 
 

 

Table 4B. Variance explained and component loadings from principal component analysis at 
10,000m grain size. 
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Table 5A. Correlation coefficients for all independent variables at 500m grain.   

 
Land cover 

richness 

Land cover 

diversity 
NDVI ATWQ Latitude Effort 

Land cover 

richness 
1.0 0.7207 0.4676 0.3490 0.0740 -0.3573 

Land cover 

diversity 
0.7207 1.0 0.3627 0.2663 -0.0007 -0.3736 

NDVI 0.4676 0.3627 1.0 0.6839 -0.4453 -0.1633 

ATWQ 0.3490 0.2663 0.6839 1.0 -0.7251 -0.1739 

Latitude 0.0740 -0.0007 -0.4453 -0.7251 1.0 0.1352 

Effort -0.3573 -0.3736 -0.1633 -0.1739 0.1352 1.0 

 
 

Table 5B. Correlation coefficients for all independent variables at 10,000m grain. 
 Land 

cover 

richness 

Land 

cover 

diversity 

NDVI ATWQ Latitude Effort 

Land 

cover 

richness 

1.0 0.5112 

 

0.0509 

 

-0.0326 

 

0.2894 

 

0.0814 

 

Land 

cover 

diversity 

0.5112 

 

1.0 0.4649 

 

0.4507 

 

0.0155 

 

-0.1281 

 

NDVI 0.0509 

 

0.4649 1.0 0.7845 -0.5156 -0.1747 

ATWQ -0.0326 

 

0.4507 0.7845 1.0 -0.7229 -0.1718 

Latitude 0.2894 0.0155 

 

-0.5156 

 

-0.7229 

 

1.0 0.1352 

 

Effort 0.0814 -0.1281 -0.1747 

 

-0.1718 0.1352 

 

1.0 
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