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Abstract

Particulate Matter Component Analyses in

Relation to Public Health in Canada

Shannon Jarvis

This thesis explores the shot-term relationship between exposure to ambient air

pollution and human health through metrics such as mortality and hospitalization in

Canada. We begin by detailing the organization and interpolation of air pollution

data from its partially quality-controlled source form. Analyses of seasonal, regional

and temporal trends of all major components of PM2.5, was performed, showing a

seasonal variation across most regions and validating the dataset.

A one-pollutant statistical Generalized Additive Model was applied to the data,

estimating the health risk associated with exposure to thirteen different components

of PM2.5. The selected components were based on those that compromised the major-

ity of the mass and included: sulphate, nitrate, zinc, silicon, iron, nickel, vanadium,

potassium, organic carbon, organic matter, elemental carbon, total carbon. Trends

based on annual estimates of the association for PM2.5, and its constituents, were

compared, showing that carbonaceous compounds, sulphate and nitrate had simi-

lar estimates of association. Many estimates, as is common in population ecologic

epidemiology, had association estimates statistically indistinguishable from zero, but

with clear features of interest, including evident differences between cold and warm
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season associations in Canada’s temperate climate.

A method to model two correlated pollutants (in this case, PM2.5 and O3) was

developed using thin plate splines. In this approach, the location of the response

surface (after accounting for the temperature, a smooth function of time and day of

week) that corresponds to the average pollutant concentration and the average plus

one unit was used as the estimate of the joint contribution of pollutants due to a unit

increase. The estimates from the thin plate spline (TPS) approach were compared to

the single pollutant models, with large increases and decreases in PM2.5 and O3 being

captured in the TPS estimates. However, this approach indicated significantly larger

error in the estimates than would be expected, indicating a possible future area for

refinement.
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1. Introduction

Air pollution is a significant public health issue with evidenced adverse human health

effects due to both short and long term exposure [30, 35, 11, 31, 82, 37]. Epidemio-

logical studies have shown evidence of cardiovascular, respiratory, and general physio-

logical effects, with links to other chronic conditions such as atherosclerosis, cognitive

function, and diabetes [62, 12, 40, 46, 87, 31, 36, 56]. This indicates that air pollution

is a major public health concern with far-reaching effects on human health.

The World Health Organization has set global air pollution standards for pollu-

tant concentrations with the aim of improving air quality and reducing the health

burden [56]. In addition to these standards, many countries have established regional

guidelines to reflect the short and long term health effects of pollutant exposure.

In Canada, the Canadian Ambient Air Quality Standards (CAAQS) sets air qual-

ity guidelines for maximum yearly or daily pollutant concentrations, with thresholds

currently being decreased every 5 years.

The National Air Pollution Surveillance (NAPS) Program was established in

Canada to collect and monitor air pollution. This program enables evaluation of

long-term air pollution trends and assessment of health, environmental and economic

impacts. Accordingly, it has helped inform public health guidelines and establish reg-

ulatory standards. It has also allowed initiatives, such as the Canadian Ambient Air

Quality Standards (CAAQS), the Canadian Environmental Sustainability Indicators

(CESI), the Air Health Trend Indicator (AHTI) and the Air Health Quality Index

1



(AHQI).

In this work, we used hourly or daily air pollutant data collected by the NAPS

Program to model adverse health effects of such pollutants. We began by cleaning and

organizing the data, discussed in Chapter 2. We then looked at seasonal, regional and

temporal differences in air pollution concentrations across Canada. In Chapter 3, we

used a previously developed one-pollutant model [91, 16], which estimates the health

risk associated with exposure to a single pollutant, and applied this model to the

integrated data organized and cleaned in the previous chapter. Then, in Chapter 4,

we present a bivariate model developed using a thin plate spline to estimate the health

effects of two air pollutants simultaneously, while accounting for their correlations.

Finally, in Chapter 5, we conclude with a discussion of the implications of this work,

and future areas of possible research.
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2. Monitoring Ambient Air Pollution in

Canada

Scripts created for the work in this chapter to download, organize and prepare pollutant

data, as well as the data itself, are publicly available [47, 48].

2.1 Air Pollution Data

The National Air Pollution Surveillance (NAPS) Program is a national system of

air sampling sites managed by Environment and Climate Change Canada [70]. The

monitoring sites are equipped with particulate detection air monitors, which obtain

samples of the ambient air. Samples are collected by drawing air through an inlet,

and using either filters to capture particles, or directly distributing the sample to an

analyzer. Of the pollutants measured, particulate matter of maximum diameter 2.5

micrometers (PM2.5), has been found to be highly significant for health effects studies

[54]. For context, the diameter of PM2.5 particles are approximately 20 times smaller

than the diameter of a strand of hair [101].

3



Figure 2.1: Particulate matter size comparison [18].

The NAPS program was established in 1969 and data is available for public ac-

cess, published on a yearly basis [70]. The NAPS database is accessible through the

Environment and Climate Change Canada open data portal [70]. As of 2021, the

network consists of 277 active stations, spanning across 130 census divisions (CDs).

Data is organized by pollutant and/or station as comma separated values (CSV) files

via the indicated data portal.

There are two primary types of monitoring equipment used by the NAPS program;

continuous (averages measured over an hour) and integrated (averages measured over

24 hours). The type is distinguished based on the equipment and collection time

frames used. As such, monitoring sites vary in equipment, and contain one or more

sampling units. NAPS provides metadata about each station, including: its location;

population density (urban, rural); elevation; time zone; which stations they may have

combined with; and collection start/end dates. Stations can move locations (combine

with an existing or a new station) and begin or end monitoring at any point. Typically,
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Figure 2.2: Locations of NAPS stations. Stations represented by red stars are loca-
tions that are highlighted in subsequent analyses, while locations in grey
are not analyzed in this work.

when stations combine, it is due to an existing station closing, and another station

at a new location beginning collection.

2.2 Continuous Data

Continuous data is measured at most monitoring sites using continuous monitoring

equipment, generally gas and particulate monitors. However, the exact type of mon-

itor is not identified in the raw data. The monitors use both analyzers and filters to

directly measure hourly concentrations (in µg · m−3, ppb or ppm) for eight pollutants;

• carbon monoxide (CO)

• nitrogen dioxide (NO2)
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• nitric oxide (NO)

• nitrogen oxides (NOX)

• ozone (O3)

• sulphur dioxide (SO2)

• particulate matter less than or equal to 2.5 micrometres (PM2.5)

• particulate matter less than or equal to 10 micrometres (PM10)

Measurements require minimal human involvement as the continuous monitors

can autonomously collect, log and distribute data. Quality assurance, in accordance

with the NAPS guidelines [71], is done on the raw data to ensure it meets predefined

standards. Data is then uploaded to the Environment and Climate Change Canada

open data portal on a yearly basis by pollutant. That is, the measured hourly con-

centrations for each pollutant, across all stations, in a given year are contained in one

file. The yearly pollutant files contain one row for all hourly measurements within a

single day, for each NAPS station.

Data from 1980 – 2019 was downloaded from the open data portal and organized

into a database using R, a statistical computing software language. The continuous

data was well-structured and consistent across the time period. The raw data con-

tained both missing and negative pollutant concentrations, with missing values being

indicated by -999.

The continuous data was used to update a non-public R package and database,

called AHItools, created by Dr. Wesley Burr. The aim was to expand the number of

CD’s analyzed from 24 (used in the previous version of AHItools) to 53, a significant

expansion. The additional CDs were selected based on the population and availability

of air pollution data. The AHItools database was also expanded temporally to include

data up to 2019.
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2.2.1 Cleaning of Continuous Data

As previously stated, the continuous data was used to update the existing AHItools

database, which consists of daily concentrations by the CD level. Accordingly, the

raw continuous data requires cleaning and transformation, with the following main

objectives:

• interpolate missing data per station; this is done both at the hourly and daily

level;

• aggregate multiple stations to CD-level daily concentrations.

We will begin by discussing checks done on the raw data.

2.2.1.1 Step 1: Checking the Raw Data

Checks were done when parsing each yearly pollutant file. This was to ensure the file

structure and contents were valid and as expected. The checks included:

• cross-verification of latitude and longitude of stations with the station metadata;

• ensuring all measurements within each yearly pollutant file were exclusively for

that pollutant and year;

• ensuring no duplicate measurements for each date and station;

• checking that the number of station observations was equal to the number of

days in the year,

In addition to checks on the files, negative pollutant concentrations, which are

not physically possible, were replaced with missing values. A detailed discussion on

the presence of negative values throughout each cleaning step is expanded upon in

Section 2.2.2.
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After parsing the raw data and executing checks, summary statistics, including the

daily minimum, maximum and mean were calculated. The summaries were plotted

and checked for unusual data points, which signal possible issues in the data.

2.2.1.2 Step 2: Interpolate Missing Hourly Data

Interpolation of the hourly data was performed on gaps of ten hours or less. To

facilitate this, another non-public R package, CATNAPS (created by David Riegert,

Dr. Aaron Springford and Dr. Wesley Burr) was used. CATNAPS stands for: Checking

and Tuning National Air Pollution Surveillance (NAPS) Data. It uses SQLite, a

flatfile database engine embedded within R to initialize, access and store the NAPS

data.

Minimal modifications were made to the CATNAPS package, but included adding

the ability to read pollutant CSV files (previously required fixed width files), updates

of the pollutant metadata to include additional pollutants and updates to the station

metadata to include additional CDs. In accordance with the objective of aggregating

the station-level NAPS data to CD level, the package requires a metadata file map-

ping NAPS station (by NAPS ID) to a Canadian CD. All stations not mapped to a

CD are disregarded in the subsequent processes. Additionally, the package required

initialization of the range of possible dates (start date and end date) and a list of

pollutants.

The process begins by creating an SQL database and initializing the aforementioned

metadata, that is: the mapping from NAPS station to CD; date range; and pollutants.

Then, the database is populated by the pollutant data from Step 1. The files are

required to be organized into directories by pollutant, and within each pollutant

directory, the yearly CSV files should be present. When populating the database,

the NAPS metadata (i.e., station name, location, status, . . .) and pollutant metadata

(name, code, units, . . .) are associated with the corresponding station and pollutant
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concentrations.

Then, CATNAPS data screening is used to compute statistics and flag measurements

to be replaced with missing values. The following screening steps are implemented

and values failing the conditions are flagged for interpolation:

• Ten or more zeroes in a row

• Baseline shift; shifts in daily minima concentrations

• Truncated daily maxima values (saturation); more daily maxima concentrations

than expected

• More than 3 observations with the same daily maxima concentration in a row

• Outlier zeroes; zeroes whose concentration is more than 20 units away from the

daily median concentration

After screening, the interpolation of univariate time series pollutant data was per-

formed on the flagged (or missing values) with gaps less than 10 hours. Any negative

values due to the interpolation were replaced by zeroes, due to the physicality con-

straint.

2.2.1.3 Step 3: Aggregate Hourly Data for Each Census Division

The CATNAPS hourly interpolated measurements at the NAPS station-level (Step 2)

are aggregated to daily metrics by CD. The metrics included a 24-hour daily mean

(calculated for all pollutants) and a daily maximum 8 hour mean (calculated for

ozone).

2.2.1.4 Step 4: Interpolate Missing Daily Data

A daily univariate interpolation, using the tsinterp R package developed by Dr. Wes-

ley Burr [13], for all missing values (between the first and last non-missing value) was
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applied to the aggregated CATNAPS gap-filled metrics. A significance clip of 0.95 and

time difference of 1 day (86400 seconds) was used.

Some negative values were induced by the interpolation procedure, and these were

replaced by zeroes where possible (as they are predicted to have below-threshold

values), or by missing where not (gaps which are too long to effectively fill). At the

end of this step, the final database is produced, consisting of daily pollutant metrics

by CD.

2.2.2 Data Issues

The following section details issues identified during the cleaning and interpolation

procedures.

2.2.2.1 Negative Pollutant Concentrations

Throughout the raw data and interpolation process, negative pollutant concentrations

were present. Table 2.1 shows the counts of negative hourly pollutant measurements

by CD from the raw data. The table was filtered to show all CD’s with more than

100 negative values. In total, there were 72 CDs and pollutant combinations with at

least 1 negative value. Of those, there were 41 unique CDs.
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Census Division (ID) No. NAPS stations Pollutant No. negative

hourly measurements

Haldimand-Norfolk, ON (3528) 2 SO2 7607

Lambton, ON (3538) 5 SO2 7145

Essex, ON (3537) 6 SO2 6460

Greater Sudbury, ON (3553) 6 SO2 3409

Hamilton, ON (3525) 9 SO2 3182

Ottawa, ON (3506) 4 SO2 2888

Hamilton, ON (3525) 9 PM2.5 783

Toronto, ON (3520) 23 SO2 614

Toronto, ON (3520) 23 PM2.5 207

Division No. 11, MB (4611) 7 NO2 177

Haldimand-Norfolk, ON (3528) 2 NO2 175

York, ON (3519) 2 PM2.5 173

Peterborough, ON (3515) 2 PM2.5 142

Table 2.1: Count of negative hourly raw pollutant measurements by census division,
sorted by decreasing counts from 1980 – 2019. The table was filtered to
show CDs with more than 100 negative values.

Negative measurements were observed for all pollutants (NO2, O3, PM10, PM2.5

and SO2), but were predominantly observed for SO2, contributing to 70% of the neg-

ative values. Additionally, the majority of negatives were measured in Ontario (ON),

seen in Figure 2.3. This may be a consequence of the data collection in Ontario, as

NAPS relies upon collection and cooperation from provincial and regional government

networks.
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Figure 2.3: Count of negative raw continuous pollutant concentrations by province,
organized from west to east.

To mitigate this issue (as negatives are physically impossible), negative raw pollu-

tant measurements were replaced with missing values. To reiterate, after the removal

of negative pollutant measurements, the count of negative values for all CDs (Table

2.1) was zero.

This removal of measured negative concentrations did not prevent negative val-

ues from arising in the interpolation steps. Table 2.2 shows the count of negative

concentrations at each interpolation step. Negative values that occurred after each

interpolation step were replaced with zeroes. There are two cases from which negative

pollutant concentrations are produced: from the CATNAPS hourly interpolation step

(step 2) and from the daily univariate interpolation step (step 4).

Figure 2.4 shows the count of negative daily pollutant concentrations by province,
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after the final daily univariate interpolation procedure. Recall that all the negative

pollutants were replaced by missing values/zeros before each subsequent step. Thus,

before beginning the daily interpolation, there were no negative data points. We can

see that SO2 still comprises the majority of negative values, although the total amount

of such negative values has been significantly reduced. However, it is no longer just

Ontario which contains the majority of negatives. The presence of negatives for SO2

can likely be explained by its low baseline concentration across all provinces. When

the baseline is around 0, it is more likely that negative values will be estimated,

particularly if there is a slight downward tend in concentrations. We will explore this

further using data from the Lambton, ON CD.

Figure 2.4: Count of negative daily interpolated continuous pollutant metric concen-
trations by province, organized from west to east.
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Census Division (ID) No. NAPS Date range Pollutant No. negative No. negative CATNAPS NAPS station No. negative CATNAPS CD No. negative daily
stations hourly measurements hourly concentrations daily concentrations interpolated concentrations

Halifax, NS (1209) 10 1980:2019 NO2 5 57 1 0
Saint John, NB (1301) 9 1996-11-20:2004-05-30 PM10 0 47 1 1
Saint John, NB (1301) 9 1980-01-27:2019 SO2 0 395 1 194
Longueuil, QC (2458) 4 1982-01-03:2019 SO2 1 13 0 391
Haldimand-Norfolk, ON (3528) 2 1980:2019 NO2 175 12 0 8
Haldimand-Norfolk, ON (3528) 2 2001-01-01:2019 SO2 7607 42 1 82
Essex, ON (3537) 6 1980:2019 O3 21 114 0 7
Essex, ON (3537) 6 1980:2019 SO2 6460 403 2 0
Essex, ON (3537) 6 1980:2019 O3 21 114 0 7
Lambton, ON (3538) 5 1980:2019 SO2 7145 782 13 0
Greater Sudbury, ON (3553) 6 1980:2019 SO2 3409 366 7 0
Division No. 7, MB (4607) 3 1993-12-10:2018-12-18 NO2 17 30 0 36
Division No. 7, MB (4607) 3 1997-10-08:2018-12-31 PM10 13 102 1 19
Division No. 11, MB (4611) 7 1993-06-01:2018-12-31 PM10 54 16 0 17
Division No. 11, MB (4611) 7 1980:2018-12-31 NO2 177 69 0 6
Division No. 16, AB (4816) 15 1986-07-03:2019 NO2 0 462 1 2

Table 2.2: Count of negative pollutant concentrations at each step by census division, sorted by location (east to west). Note
that these counts are prior to any correction-for-negatives being applied.
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A complete table with counts of negative values for all CDs are included in Ap-

pendix A.

Example: SO2 Concentrations in Lambton, ON (CD 3538)

We will highlight the SO2 concentrations in Lambton, ON. This census division

is situated on the south-east bank of Lake Huron, bordering the United States and

close to Detroit, Michigan. There are five NAPS stations within the region, three of

which we have SO2 data for.

In this exploration, we will look at the number of negative concentrations, the

number of missing values and the baseline pollutant concentration. This CD was

chosen as it has a relatively large amount of negative concentrations due to CATNAPS

interpolation. Figure 2.5 shows the hourly CATNAPS interpolated SO2 concentration

for each NAPS station. Negative values are highlighted in maroon. In total, there are

782 negative values amongst the stations. Figure 2.6 shows the corresponding daily

average concentration, with 19 negative data points highlighted.

From these analyses, it was observed that stations with a significant portion of

missing values and with a pollutant concentration that is closer to 0 has a greater

chance of producing negative concentrations due to interpolation. Recall that the

CATNAPS interpolation is at the hourly station level, which are aggregated to daily

CD level metrics. Since multiple stations are located in one CD, a single negative

hourly concentration at a NAPS station doesn’t have a large influence on bringing

down the daily mean when aggregating. However, if the majority of stations and/or

hourly measurements are negative, the daily CD concentration will be much smaller.

That is to say, for a daily CD concentration to be negative, there must be a heavy

influence of negative hourly concentrations at each station.
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Figure 2.5: Hourly CATNAPS interpolated SO2 concentration for NAPS stations in
Lambton, ON from 1990-2019. Highlighted points (in maroon) are nega-
tive values.

Figure 2.6 aggregated the hourly station-level data from Figure 2.5 to a 24-hour

mean measurement. The majority of daily negative pollutants (in maroon) occur in

2016 and 2017. Figure 2.7 shows the daily data for a 6-month period from June 2016

to December 2016.
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Figure 2.6: Daily average SO2 concentration for Lambton, ON after CATNAPS in-
terpolation from 1990-2019. Highlighted points (in maroon) are negative
values.

Figure 2.7: Daily average SO2 concentration for Lambton, ON after CATNAPS in-
terpolation, from June 2016 to December 2016. Highlighted points (in
maroon) are negative values.
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The negative values occurred near concentrations with a baseline around 0. No-

tice the decreasing values on the days before the gap, and non-zero after: this is

functionally a “valley” shape, so the interpolation’s best trend guess is that the slope

continued down to a minimum, then climbed back upwards. Obviously nonsense, but

again: interpolation is not magic, it’s just mathematical and statistical guessing.

2.2.2.2 Interpolation Between Large Gaps

Additional issues could arise when interpolating gaps larger than 6 months. As pre-

vious reports on the interpolation methods have indicated, anything more than 4 – 6

months is simply impossible to interpolate without secondary data sources, and even

then, the values should not be taken to be all that accurate. There’s no structure to

follow through the gaps!

This phenomena was observed for four CDs across two pollutants: SO2 (CDs:

3529 - Brant ON; 3548 - Nipissing ON; and 4611 - Division No. 11 MB) and PM10

(2466 - Montreal QC). Figure 2.8 shows this interpolation issue for CD 2466, Montreal

QC. In this case, we clearly should simply not attempt to interpolate these missing

values: this is the better part of a decade missing, and should just be left out of the

data.

Thus, in all of these cases where the algorithm inadvertently interpolated some-

thing that really should have been left out, we have removed these imputed points,

and added a logical check to prevent interpolations for longer than 180 days total

time, for the daily series.
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Figure 2.8: Example of error when interpolating large gaps of data using plots of mean
24-hour PM10 concentrations for CD 2466, Montreal QC, for the raw daily
pollutant concentrations, CATNAPS 10 hour interpolated concentrations
and daily interpolated concentrations.

2.2.3 Analysis of Continuous Data

For the analyses, we will show data summaries for Capital, a census division in BC.

The Capital, BC census division is composed of 13 NAPS stations. It was selected

to showcase as it displays the effect of both the CATNAPS and univariate interpolation

on the number of missing data points. A series of six plots and corresponding table

of percentage of missing data points will be shown for each pollutant. We will begin

by examining ozone, O3.
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2.2.3.1 O3 Data

The 8-hour maximum mean and 24-hour mean ozone concentrations are shown in

Figures 2.9 and 2.10, respectively. Each plot is divided into three segments to show

the pollutant concentration at every interpolation step. In the top plot, the mean daily

O3 concentrations for all NAPS stations within Capital, BC is presented. The middle

plot, CATNAPS 10-hour interpolated data, shows the daily mean concentration after

applying the CATNAPS flagging and interpolation. The bottom plot shows the daily

interpolated O3 concentration. Gaps present in the CATNAPS plot were interpolated to

fill missing data points between the first and last measurement. Table 2.3 summarizes

the percent of non-missing data points at each step.

Ozone exhibits seasonal cycles, with maxima in the winter/spring and minima in

the summer/fall.

Metric Available Years % Non-Missing % Non-Missing CATNAPS % Non-Missing
Raw data 10hr Interpolated Data Daily Interpolated Data

O3 24 hr mean 1980-2019 88.87 87.85 93.21
O3 8 hr max 1980-2019 88.63 87.85 93.22

Table 2.3: Percentage of non-missing daily ozone concentrations for CD 5917, Capital,
BC.
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Figure 2.9: Plots of mean 8-hour maximum O3 concentrations for CD 5917, Capi-
tal BC, for the raw daily pollutant concentrations, CATNAPS 10 hour
interpolated concentrations and daily interpolated concentrations.

From Table 2.3, it can be seen that the percentage of non-missing data points

slightly decreased between the raw data and the CATNAPS interpolation. That is, the

CATNAPS flagging and interpolation introduced additional missing values in the data.

If we look at the counts of negative values (Appendix A), there were no negative daily

CATNAPS concentrations. Thus, the increase in missing data points is a consequence of:

(1) negative hourly concentrations being interpolated (there were 173 negative hourly

interpolated concentrations); and (2) concentrations being flagged by CATNAPS, but

not being interpolated.

The univariate daily interpolation decreased the number of missing data points,

as expected. The interpolation can be seen in Figures 2.10 and 2.9, particularly

from 1980 – 1987. There is a large gap in data from 1998 – 1991, which was not
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interpolated, as it is greater than 6 months. Three negative data points were incurred

in the interpolation, and replaced by zeros.

Figure 2.10: Plots of mean 24-hour O3 concentrations for CD 5917, Capital BC, for
the raw daily pollutant concentrations, CATNAPS 10 hour interpolated
concentrations and daily interpolated concentrations.

2.2.3.2 NO2 Data

In the NO2 data, there are a large amount of gaps that are larger than 6 months

apart. These gaps can be seen throughout all the panes in Figure 2.11.

The concentrations are highly variable and don’t exhibit seasonal trends.
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Available Years % Non-Missing % Non-Missing CATNAPS % Non-Missing

Raw data 10hr Interpolated Data Daily Interpolated Data

1981-2019 76.66 76.32 80.61

Table 2.4: Percentage of non-missing daily mean nitrogen dioxide concentrations for
CD 5917, Capital BC

Figure 2.11: Plots of mean 24-hour NO2 concentrations for CD 5917, Capital BC, for
the raw daily pollutant concentrations, CATNAPS 10 hour interpolated
concentrations and daily interpolated concentrations.
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2.2.3.3 SO2 Data

Available Years % Non-Missing % Non-Missing CATNAPS % Non-Missing

Raw data 10hr Interpolated Data Daily Interpolated Data

1981-2019 87.5 70.96 95.14

Table 2.5: Percentage of non-missing daily mean sulphur dioxide concentrations for
CD 5917, Capital BC

In the CATNAPS flagging and interpolation, 17% of the data points were removed. This

is particularly evident around 1995, visualized in the middle pane of Figure 2.12. In

the third pane, the points were interpolated and substantially reduced the amount of

small gaps.

Figure 2.12: Plots of mean 24-hour SO2 concentrations for CD 5917, Capital BC, for
the raw daily pollutant concentrations, CATNAPS 10 hour interpolated
concentrations and daily interpolated concentrations.
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SO2 concentrations show seasonal variation. Reflecting on previous discussion of

negative values in the data, which predominately occur for SO2, we can see how the

“wiggliness” with decreases and increases in concentration would generate negative

concentrations in the interpolation steps.

2.2.3.4 PM2.5 Data

PM2.5 shows seasonal (annual) cycle, but is otherwise fairly regular - high variance

in late winter and early spring, lower variable in summer and autumn. It also shows

a few days of very high PM2.5 concentrations, due to forest fires throughout British

Columbia in 2018.

Available Years % Non-Missing % Non-Missing CATNAPS % Non-Missing

Raw data 10hr Interpolated Data Daily Interpolated Data

1998/05/02 – 2019 98.53 98.53 99.99

Table 2.6: Percentage of non-missing daily mean PM2.5 concentrations for CD 5917,
Capital BC
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Figure 2.13: Plots of mean 24-hour PM2.5 concentrations for CD 5917, Capital BC, for
the raw daily pollutant concentrations, CATNAPS 10 hour interpolated
concentrations and daily interpolated concentrations.

The number of missing data points were consistent through the interpolation steps.

2.2.3.5 PM10 Data

The PM10 data is irregular, with some seasonal variation. The percentage of missing

data points is consistent throughout the three steps.

Available Years % Non-Missing % Non-Missing CATNAPS % Non-Missing

Raw data 10hr Interpolated Data Daily Interpolated Data

1998/05/02 – 2019 84.33 84.33 84.96

Table 2.7: Percentage of non-missing daily mean PM10 concentrations for CD 5917,
Capital BC
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Figure 2.14: Plots of mean 24-hour PM10 concentrations for CD 5917, Capital BC, for
the raw daily pollutant concentrations, CATNAPS 10 hour interpolated
concentrations and daily interpolated concentrations.

2.3 Integrated Data

The collection and laboratory analysis of integrated data is more complex than the

continuous data. As such, the data is collected by a smaller subset of sites. In this

type of sampling, cartridges with filters and denuders constructed of varying media

are used to collect and retain distinct compounds. The cartridges are placed in the

sampler for 24 hours and are transported to a laboratory in Ottawa for analysis.

Each monitoring site varies in age and equipment, and contain one or more inte-

grated sampling units: dichotomous samplers; speciation samples; and manual sam-

plers. All samplers collect data over a 24 hour period at specified frequencies: once

every 3, 6 or 12 days.
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The total particulate matter mass (at various levels, e.g., 2.5 microns or 10 mi-

crons) from a given day is obtained by weighing the filter before and after collection

[71]. Then the samples undergo chemical analyses to decompose into its components.

The following components are obtained:

• Particulate Matter (PM) mass

• Metals (Ag, Al, Si, S, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Zn, Se, Br, Rb, Sr, Cd, Sn,

Cu, Cs, Ba, and Pb)

• Ions (F−, Cl−, NO−
2 , NO−

3 , SO−2
4 , PO−3

4 , acetate, formate, propionate, methanosul-

fonate, oxalate, Na+, NH+
4 , K+, Mg+2, Mn+2, Ca+2, Sr+2 and Ba+2)

• Ammonia, nitric acid, sulphur dioxide

• Organic carbon, elemental carbon

Each of the compounds could be measured and analyzed using several different meth-

ods. For example, metals were analyzed by an Energy Dispersive X-ray Fluorescence

(ED-XRF) for total elemental mass. Acid digestion and inductively-coupled plasma

mass spectrometry (ICP-MS) was also used to analyze the metal samples for near

total and for water-soluble masses. This makes it essential that each observation

be associated with the correct sampling machine, filter/cartridge media and analysis

method. In conjunction with the total mass, a minimum detection limit (MDL) is

reported for each compound observation in the raw data.

The organization of integrated data was more involved as file structure and com-

pound naming changed over time. Additionally, the type of sampling unit, cartridge

and analysis method used for each observation needed to be obtained. A description

of the data wrangling and cleaning follows.
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2.3.1 Cleaning of Integrated Data

As stated previously, the integrated data required numerous steps to read and organize

the files such that it could be stored in a properly formatted and well organized

structure. All work was done in R. The process used all data from 2003 to 2019. As

of May 2022, data from 2020 and 2021 has not been uploaded to NAPS database,

due to issues arising from the COVID-19 pandemic.

2.3.1.1 Step 1: Retrieving the Data

The process began by retrieving yearly files from Environment and Climate Change

Canada’s NAPS database. The files on the NAPS database were organized into sub-

directories based on either sampling unit or filter size (PM10, PM2.5). A diagram of

the file organization is displayed in Figure 2.15. At this point, the approach diverges

for files before and after 2010 due to a major change in the file structure on the part

of Environment and Climate Change Canada.

Figure 2.15: Schematic detailing the organization and file naming of NAPS raw data
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Essentially, the pre-2010 data was split into numerous files, where each file con-

tained data for a specific sampling unit and analysis method. In the 2010+ data,

all samples and analysis methods were contained in one file. The retrieval of data

and its organization into sensible structures set the framework for the remaining steps.

Pre-2010 Data

The pre-2010 data was organized by sampling unit (directories included: PMDICHOT,

PMSEPCTATION and PMPART25). Within each directory, yearly station files for each

analysis method contained data for both the fine and coarse filters. For example,

the PMSPECIATION directory was used for the speciation sampler data. Within, files

were named using the scheme; YEAR STATION ANALYSIS METHOD. The following figure

shows a snapshot of the file contents for station 60427 in Toronto in 2009 for Ion

Chromatography (IC) analyses.

Figure 2.16: Snapshot of contents of speciation file for station 60427, Toronto ON,
2009 S60427 IC.XLS

Within this file, and all other pre-2010 files, the cartridge column is used to iden-

tify the type of molecule size. C denotes a coarse filter (corresponding to PM 10), F

denotes a fine filter (PM 2.5) and FB denotes a field blank. The field blank sample is

used at least once a month in place of the routine sample for quality assurance. The
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media column distinguishes the material of filter used, where a T refers to a Teflon

filter and N is a Nylon filter. To reiterate, all observations within this file are ob-

tained from a speciation sampling unit in Toronto for 2009 using IC analysis method.

This file system made the association between each observation and corresponding

sampling unit, filter/cartridge type and analysis method simple.

Post 2010 Data

The 2010+ data contained directories organized by particulate matter size (di-

rectories: PM 2.5 and PM 2.5-10). Within each directory, one file per year and

station contained all data (all analyses methods and all sampling units). Multiple

spreadsheets within a file were used to organize the data, with each analysis methods

contained in one sheet. Sheets included:

• Station info: site information, samplers used, collection frequency and analysis

techniques used

• Metadata information: description of sampler cartridges, material and observa-

tion type

• Analysis method specific sheets: sheet names included PM 2.5, ED-XRF, IC-

PMS (near total and water-soluble), Ions-Spec, Volatile Nitrate, OCEC, OC,

Biomass burning markers, ammonia and acidic gaseous PM precursors

A snapshot of the PM2.5 sheet for Station 60427 in 2010 is shown in Figure 2.17.
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Figure 2.17: Snapshot of contents of speciation file for station 60427, Toronto ON,
S60427 PM25 2010.xlsx

The first 6 rows correspond to information about the sampling unit. Acronyms

(S-1, S-2) must be associated with the corresponding sampler indicated in the ‘station

info’ spreadsheet. For example, for Station 60427 in 2010, sampler S-1 is a Dichoto-

mous Sequential Air Sampler (2025-D Thermo) and sampler S-2 is a Partisol 2300

Speciation sampler. The sampler types were found by parsing the ‘station info’ sheet

and looking for the sampler code (i.e. S-1, S-2) followed by the description. If the

description could not be found, manual intervention was needed to associate the sam-

pler code to the correct unit. This association was imperative as samples obtained

from different types of machines should not be merged.

2.3.1.2 Step 2: Addressing Inconsistencies in Compound Naming

Over time, the naming of compounds changed. For example, silicon could be called

Silicon, Si or Silicon (Si). These changes throughout the files needed to be tracked

to generate one consistent naming scheme. A file called a ‘header dictionary’ was

created to contain all possible compound names, so they could be combined.

The header dictionary was created by reading all files and creating a list of all

unique column names. Names containing ‘MDL’ or ‘flag’ were removed from the

list and compounds were manually associated with one another. This facilitated a

consistent name for each compound in the data. In hindsight, using string matching

or pattern matching may have been a much easier approach than manual intervention,
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although there were so many patterns, the implemented solution was the most time

efficient.

2.3.1.3 Step 3: Creating the Database

The header dictionary in conjunction with the sampling unit, analysis method and

filter/cartridge media were used to rename columns in the data. The naming struc-

ture was:

sampling unit.analysis method.filter cartridge type.compound

After addressing inconsistencies in step 2, all data could be combined into an

organized structure. Two separate lists were created: one for PM less than 2.5 microns

and one for PM less than 10 microns. Both lists used the same structure; a list of

stations with all component time series data.

2.3.1.4 Step 4: Data Verification

The data was screened for errors or inconsistencies. Recall that each measurement

had a corresponding minimum detection limit (MDL). All concentrations which fell

below their MDL were replaced by half the MDL. Abnormal values were identified

by preforming summary statistics and checking data points which fell 2 standard

deviations outside of the mean concentration.

The verification of data was imperative, so as to check for errors in the raw data

that may have incurred due to cleaning steps or within the raw data itself. Abnormal

values in the raw data may be an indication of errors, whether observational or due

to instruments. An example of this type of error is provided in Figure 2.18. In

Figure 2.18a, an abnormal nitrate concentration was measured in March 2018 at the

Edmonton, Alberta station. A concentration of 151 µg/m−3 was measured which is

well beyond typical concentration at that site (mean value of 1.01 µg/m−3). The time
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series of nitrate was reviewed to determine if such a high value is atypical. It was

deemed to be an erroneous measurement and replaced by a missing value.

In Figure 2.18b, several abnormal PM2.5 values were observed in August 2018.

The steady increase of values, peaking after a few days, and not a one-off high value,

indicates potential environmental causes. After a search on the internet, it was deter-

mined that these values were due to nearby forest fires. Several new outlets depicted

pictures of an orange smoggy sky and headlines read “Lovely morning in the apoca-

lypse” [6]. Those high values were unusual, but not erroneous.

(a) (b) .

Figure 2.18: Example of an abnormal measured value (in red) for pollutant concen-
trations measured in Division No. 11 (Edmonton), AB for 2018.
(a)Nitrate Concentrations.
(b) PM2.5 Concentrations.

2.3.1.5 Step 5: Compound Calculations

For mass reconstruction, chemical components were calculated as in the previous

work by Dabek-Zlotorzynska et al. [25]. The following components were calculated

from the speciation data: ammonium nitrate (ANO3); ammonium sulphates (ASO4);

organic matter (OM); elemental carbon (EC); crustal matter (SOIL); sodium chloride

(NaCl); particle-bound water (PBW); and reconstructed mass (RCM, the sum of all

calculated components). Trace element oxides were not calculated, as several of the
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elements were not collected by the speciation sampler. Details of the compounds and

their calculation are provided in Table 2.8.

Table 2.8: Summary of calculated compounds and components.

Compound name Symbol Component

ammonium nitrate ANO3 1.29NO−
3

ammonium sulphates ASO4 SO2−
4 + NH+

4 - 0.29NO−
3

organic matter OM kOC

elemental carbon EC EC

crustal matter SOIL 3.48Si + 1.63Ca + 2.42Fe + 1.41K + 1.94Ti

sodium chloride NaCl Na + Cl

particle-bound water PBW 0.32(SO2−
4 + NH+

4 )

reconstructed mass RCM ANO3 + ASO4 + OM + EC + SOIL + NaCl + PBW

Correction factor, k, calculated from the SANDWICH method [25]

2.3.2 Analysis of Integrated Data

In total, eleven NAPS stations were selected for analysis, based on availability of the

organic matter correction factor, k [25]. For the remainder of the work, stations will

be referred to by census division name, with multiple NAPS stations being merged

(as there was no overlap between stations at a common geographic location - the

stations were physically relocated).
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Figure 2.19: Map of Canada with location of NAPS speciation stations indicated in
red

Table 2.9: List of NAPS stations and corresponding CD used.

Census Division (ID) NAPS ID NAPS Station Name NAPS Station City

Columbia-Shuswap, BC (5939) 103202 Golden Hospital Helipad Golden

Greater Vancouver, BC (5915) 100119 Burnaby South Metro Van - Burnaby

Fraser Valley, BC (5909) 101004 Abbotsford Airport Metro Van - Abbotsford

101005 ABBOTSFORD AIRPORT-2 Metro Van - Abbotsford

Division No. 11, AB (4811) 90132 Edmonton Mcintyre Edmonton

Essex, ON (3537) 60211 Windsor West Windsor

Haldimand-Norfolk, ON (3528) 62601 Experimental Farm Simcoe Simcoe

Toronto, ON (3520) 60427 Gage Institute Toronto

60439 Roadside – Wallberg (Uoft) Toronto

60445 TORONTO DOWNTOWN Toronto

Le Haut-Saint-Laurent, QC (2469) 54401 Saint-Anicet Saint-Anicet

Montréal, QC (2466) 50104 Ontario Montreal

50134 Montréal-Molson Or Motreal-Saint-Joseph Montreal

York, NB (1310) 40801 Canterbury Dow Settlement

Halifax, NS (1209) 30113 Johnston Building Halifax

30118 Vogue Building Halifax

Of the selected sites, Greater Vancouver, British Columbia, was the only station

with observations for the entire period of interest, 2003–2019. A timeline of the

available data for the selected stations is shown in Figure 2.20.
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Figure 2.20: Timeline of data availability at NAPS stations for speciation (grey),
dichotomous (light blue) and manual (dark blue) air samplers from 2003–
2019.

It is of interest to examine the seasonal variation in particulate matter concentra-

tions, and the implications for component concentration. We begin with the monthly

average levels of PM2.5 and organic carbon.

2.3.2.1 PM2.5 Mass Concentrations

Organizing the available sites from west (Greater Vancouver) to east (Halifax), we

plot the monthly average PM2.5 mass concentration in µgm−3 in Figure 2.21, from

2010–2019. The whiskers in this plot represent the 2nd (lower) and 98th (upper)

percentiles of the available data. Median PM2.5 concentrations ranged from 5 to 9

µg m−3. Six concentrations above 50 µg m−3 were observed, all in Division No. 11,

Alberta (commonly known as the city of Edmonton). They can largely be attributed

37



Figure 2.21: Measured PM2.5 monthly average mass in µg m−3, by location, organized
west to east from 2010–2019

to months with large-scale wildfires (especially 2015 and 2018). Similarly, the outlier

for Greater Vancouver (48 µg m−3) was also due to a fire on Burnaby Mountain in

July 2015.

Figure 2.22 takes the same data as Figure 2.21, but broken down by month. All

stations exhibit seasonal variation, with maximums observed in the North American

summer months (July/August). Essex, Toronto and Le Haut Saint-Laurent all ex-

hibit peaks in early winter, which may be attributable to select years with dry or

limited snow pack, where road grit is easily stirred up and aerosolized. Additionally,

high PM levels may be explained by meteorological effects, such as wind and tem-

perature inversions, which act to trap particulate matter at the surface and prevent

its dispersion into the atmosphere [103, 102, 108]. Temperature inversions occur at a

higher frequency in the winter [72].
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Figure 2.22: Monthly mean PM2.5 concentration in µg m−3, with the error bars rep-
resenting 90% percentiles.

The highest average monthly PM2.5 levels were observed in the urbanized locations

of Division No. 11 and Toronto, as well as Essex (a mid-sized city with a heavily

industrial and commercial freight presence, down-wind of Detroit, Michigan). Much

of the excessive variability in Division No. 11 (Edmonton) can be explained by months

with wildfires, as these act as outliers and expand the variation tremendously.

Figure 2.23 further breaks down the data from the previous figures and displays

the data collected in January. The measured PM mass for each day is displayed, and

outliers (whose concentration is more than three standard deviations from the mean)

are highlighted in red. There can be more than one measurement per day, as the

figure displays all January data from 2010 – 2019.

There is significant variation in Division No. 11, where the outliers range from 41-

62 µg m−3. Additionally, two outliers were identified in Greater Vancouver and one
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Figure 2.23: Daily PM2.5 concentration in µg m−3, for January with outliers (> 3σ)
indicated in red

in each of Halifax, Haldimand-Norfolk, Toronto and Essex. The presence of outliers

can explain variability observed in Figure 2.22 for January.

The mean monthly PM2.5 observations for 2010–2019 are on average lower than

those from 2003–2009, with a mean monthly concentration difference of -1.6 µg m−3.

The largest differences occurred in Essex and Haldimand-Norfolk where they recorded

a mean monthly average PM2.5 difference of -3µg m−3 and -2.9 µg m−3 for all months,

respectively.

One important component of PM mass is organic carbon (OC). In Figure 2.24, we

examine mean organic carbon concentrations across the sites. Mean organic carbon is

measured using a quartz filter (cartridge A), while an active organic carbon blank is

simultaneously measured using a Teflon filter (cartridge B). The mean passive travel

and field blank OC concentrations ranged from 0.49 to 0.64 µg m−3, and did not show
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Figure 2.24: Mean organic carbon concentration, in µg m−3, by cartridge and site

any obvious relationship to mean OC. Mean active blank values ranged from 1.1 to 1.6

µg m−3. Lower active blank values were observed in rural sites (Haldimand-Norfolk,

Le Haut Saint-Laurent) as compared to urban sites (Toronto, Barnaby, Essex). There

were no obvious trends in mean organic carbon levels based on location.

When comparing the measured organic carbon levels, the passive travel and field

blank was 14-22% of the mean OC concentration. The mean active blank was 45-

57% of the mean OC concentration. Additionally, when comparing the mean OC

concentrations from 2003–2009 to 2010–2019, the mean concentration for measured

parameters decreased by 0.3-0.9 times, across the sites.

2.3.2.2 Reconstructed PM2.5 Mass

The reconstructed mass (RCM), calculated as described in Section 2.3.1.5, is pre-

sented in Figure 2.25 for samples collected during warm (April-September) and cold
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(October-March) seasons. On average, there was a small discrepancy between the

RCM and the PM2.5 concentration. The mean difference between RCM and mea-

sured PM2.5 was 0.96 µg m−3.

The largest contributor to the reconstructed mass was the combination of ASO4

and PBW. As shown in Figure 2.25, the components had the highest concentration

in Ontario and Quebec. Of the eastern sites, the average contribution to the RCM

was 25-45% in the summer and 30-39% in the winter. For the remaining sites, ASO4

and PBW accounted for 21-25% of mass in the warm season and 16-23% in the cold

season.

Figure 2.25: Reconstructed PM2.5 mass from 2010–2019 by mean compound for the
cold season (October - March, left) and the warm season (right, April -
September).

The next largest component contributor was organic matter (OM), which ac-

counted for 38-55% of the mass in the warm season and 19-50% in the cold season.
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The largest contributions of OM occurred at coastal and residential sites (Greater

Vancouver, Fraser Valley and Halifax). A decrease of OM contribution in the winter

may be explained by the OM correction factor, k, used to calculate the component

[25, 34]. On average, the correction factor is higher in the summer and spring sea-

son, while the monthly OC concentration showed seasonal patterns with peaks in the

winter months for all sites.

The contribution of ANO3 was greatest in the cold season for Alberta, Ontario

and Quebec where the average percent composition ranged from 23-30% and 2-3% in

the summer. In British Columbia, the ANO3 percent composition ranged from 3-5%

in the summer to 11-15% in the winter, while in Halifax, the composition remained

at 3-4% year round. There was up to an eleven-fold increase in ANO3 during the

winter months compared to summer. This may be explained by the low temperature

in the winter, where the formation of ANO3 is chemically favoured [90].

NaCl levels were between 1-2% at all non-coastal sites. At coastal sites, Halifax

NaCl concentration comprised 9% of the total RCM in the cold season and 4% in the

warm season, while Greater Vancouver and Fraser Valley observed an average percent

composition of 3%. The wintertime concentration was higher than the summertime at

all sites. Higher levels on coastal sites are expected due to the influence of saltwater.

The contribution of SOIL was slightly higher in the warmer season where it ranged

from 5-14% compared to 4-8% in the colder season. The cities with the largest

contribution were Division No. 11, Toronto and Essex. It is suspected that this is due

to the soil composition, coarseness and moisture in the regions.

Figure 2.26 shows the reconstructed PM mass for the years 2003–2009. On aver-

age, secondary ASO4 and associated PBW accounted for 31-46% of total PM2.5 mass

at the eastern sites during the warm season, and 20-34% in the cold season. For the

western sites, ASO4 and associated PBW accounted for 9-20% of mass in the warm

season and 7-11% in the cold season. The ASO4 and PBW levels in the cold season
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increased by 1.1-2.4 times from 2003-2009 to 2010-2019. There were no obvious trends

in the summer season.

Figure 2.26: Reconstructed PM2.5 mass from 2003 – 2009 by mean compound for the
cold season (October - March, left) and the warm season (right, April -
September).

There were no obvious patterns in the difference of ANO3 levels from 2003–2009 to

2010–2019 as the levels were relatively consistent when comparing the average RCM

percentage.

When comparing the average percent of RCM composition for NaCl from 2003–

2009 to 2010–2019, the levels decreased. Specifically, NaCl decreased by 1.2-4.2 times

in the cold season and 1.1-5.3 times in the warm season.

Figure 2.27 shows the reconstructed mass for ten days in the warm and cold seasons

with the largest measured PM2.5 concentrations. The mean total concentration for the

highest 10 days was largest for Division No. 11 (Edmonton) and sites in Ontario. Mean
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total mass concentration ranged from 18 µg m−3 (Halifax) to 59 µg m−3 (Division

No. 11) for the 10 highest days in the summer and ranged from 16 µg m−3 (Fraser

Valley) to 51 µg m−3 (Division No. 11) for the 10 highest days in the winter.

Figure 2.27: Reconstructed PM2.5 mass by mean compound for the 10 highest mass
concentration days for the cold season (October - March, left) and the
warm season (right, April - September) from 2010–2019.

In the 10 highest days of the warm season in Division No. 11 and the eastern

sites, the mass was primarily composed of PBW and ASO4 (42 - 63 %). In the warm

season at the western sites, organic matter encompassed the largest proportion of the

mass (44 - 46 %). Similar findings were obtained for the 10 highest days in the cold

season, where, PM was primarily composed of ANO3 in Division No. 11, Ontario and

Quebec (49 - 52 %) and OM in the west (28 - 30%).
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2.3.2.3 Monthly Variations in the Major PM2.5 Components and Vapour

Phase Species

Ammonium sulphate and ammonium nitrate: The median ammonium sulphate and

ammonium nitrate concentrations by site and month is displayed in Figure 2.28. The

western sites (Greater Vancouver and Fraser Valley), show some seasonal variation

of ammonia sulphate with a summertime median maximum of 1.1 µg m−3 in August

and minimum of 0.2 µg m−3 in the colder months (November/December/January).

The remaining sites, particularly those in Ontario, have a higher median ASO4 con-

centration, on average. There is no obvious seasonal pattern in the eastern sites. The

eastern sites had median monthly ASO4 values ranging from 0.3-1.8 µg m−3. The

average median ammonium sulphate level in Ontario was 1.2 µg m−3, compared to

0.6 µg m−3 for the remaining provinces.

By contrast, ammonium nitrate displayed a seasonal pattern for all sites with

peaks in the colder months (October - March). Most sites had peak concentrations in

January or December. Peak levels ranged from 0.6-3.4 µg m−3, with sites in Ontario

exhibiting the highest concentrations (1.8-3.4 µg m−3). Similar observations were

obtained from the median ammonium sulphate and ammonium nitrate concentration

from 2003–2009.

Carbonaceous compounds: The median elemental carbon (EC) and organic matter

(OM) concentrations by site and month are displayed in Figure 2.29. Organic matter

showed seasonal patterns for all sites, with maximums in the range of 2.9 - 3.5 µg m−3

occurring in July/August. Minimum OM values were observed in October-January

and ranged from 1.1 to 2 µg m−3.

Figure 2.29 shows similar trends for elemental carbon and organic carbon. Some

seasonal patterns can be seen in Ontario and Halifax, where peaks occur in the

summer and minima in the cooler months. The lowest concentrations of EC were
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Figure 2.28: Ammonium sulphate and ammonium nitrate concentrations, in µg m−3,
by site and month (median and interquartile range). Note that the scale
for Fraser Valley is an order of magnitude larger than the others.

observed in Saint-Ancient and Halifax where values ranged from 0.1 - 0.4 µg m−3.

The largest EC concentrations were observed in Toronto, Fraser Valley and Essex (0.8

- 1.0 µg m−3). Median organic matter values ranged from 0.8 - 4.5 µg m−3, with the

largest concentrations observed in Fraser Valley and Essex. Large variation observed

in Greater Vancouver in August is attributed to forest fires.

In 2003-2009, the monthly pattern for OM and EC was similar. This was also

observed in 2010-2019.
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Figure 2.29: Elemental carbon (EC) and organic matter (OM) concentration, in µg
m−3, by site and month (median and interquartile range)

SOIL and sodium chloride: Figure 2.30 displays the median SOIL and sodium

chloride concentrations by site and month. Sites in Alberta and Ontario showed

some seasonal variation of soil concentrations, with higher median levels in the warm

months (April-July). Median SOIL concentrations in Ontario and Alberta ranged

from 0.1-0.7 µg m−3 and ranged from 0.1-0.4 µg m−3 at the remaining sites. The

average median SOIL concentration for all sites was 0.3 µg m−3.

The largest NaCl concentration was observed in Halifax (0.1-0.4 µg m−3), as

expected due to its geographic location on a coast. For all eastern sites, the lowest

NaCl concentrations were observed in the summer (June/July/August). In the Fraser

Valley and Greater Vancouver, the lowest concentrations were observed in November.

From 2003–2009, the mean NaCl level for all observations was 0.32 µg m−3. This

decreased in 2010–2019, where the average concentration for all sites was 0.15 µg
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m−3.

Figure 2.30: Soil and sodium chloride concentration, in µg m−3, by site and month
(median and interquartile range)

Gas-phase species: The median ammonia mixing ratio (in parts per million) is

shown in Figure 2.31. The concentration for Fraser Valley is using a scale around ten

times larger than the other sites in. Data for Montreal is missing. There are seasonal

patters in the ammonia concentration for the eastern sites, where peaks occur in

the warmer months (May/June/August) and ranged from 1.3 - 3.4 ppb. Minimum

concentrations for the eastern sites occurred in January and February and was in

the range of 0.4-1.2 ppb. The seasonal trends and range of median concentrations

observed in 2010–2019 was similar to those from 2003–2009.
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Figure 2.31: Ammonia mixing ratio, in ppb, by site and month (median and in-
terquartile range)

Figure 2.32: Sulphur dioxide mixing ratio, in ppb, and nitric acid concentration, in
µg m−3, by site and month (median and interquartile range).
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Figure 2.32 displays the median sulphur dioxide mixing ratio and nitric acid con-

centrations by site and month. Most sites observed higher median nitric acid concen-

trations in the warm months (May-August). Seasonal patterns were only apparent in

Essex, Toronto and Saint-Ancient, where the concentration peaked in May (0.6-0.8

µg m−3) and minimums were observed in October/November (0.2-0.4 µg m−3).

The highest median sulphur dioxide concentration was observed in Essex, where

it ranged from 1.9-4.6 ppb. The remaining sites ranged from concentrations of 0.4-2.4

ppb. When comparing the monthly median SO2 value from 2003-2009 to 2010-2019,

on average, the concentrations decreased in Halifax, Essex and Haldimand-Norfolk

and increased at all other sites.

2.3.2.4 Discussion and Conclusions

Ammonium sulphate and nitrate were the largest contributors to the reconstructed

PM2.5 mass, particularly in the winter where the concentration of ASO4 increased at

all sites. Division No. 11 (Edmonton) experienced the largest seasonal difference with

a 15-fold increase in the percentage of reconstructed mass during the winter (October

to March).

The formation of ammonium nitrate is controlled by an equilibrium equation

with ammonia and nitric acid as precursors. Hence, it is limited by the availability

of precursors, the ambient temperature and the relative humidity [89]. The observed

increase in winter time ammonium nitrate concentrations at all sites is a consequence

of the lower temperatures, where the formation of ammonium nitrate is favoured [81].

Additionally, the increase corresponds to increases in ammonium and nitric acid at

the sites.

Ammonium sulphate’s formation is dependent on the concentration and abun-

dance of ammonia moles (which must be two or more times greater than sulphuric
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acid) [81]. Consequently, peaks in particulate ammonium sulphate roughly corre-

sponds with peaks in ammonia.

Ammonia concentrations in Fraser Valley were one order of magnitude larger

than all other sites. The elevated concentrations are primarily a consequence of

poultry broiler farms but nitrogen fertilizers and wastewater treatment also play a

role [69, 57, 38].

Contributors to particulate ammonium nitrate and sulphate include agriculture

(nitrogen fertilizer and livestock), coal-burning power plants and vehicle emissions

[25, 104, 83, 7]. High density Canadian agricultural operations located in southeast

Ontario and southern Quebec [20] may explain increased levels of ammonia, ammo-

nium sulphates and ammonium nitrates in nearby sites (Windsor, Haldimand-Norfolk,

Toronto and Saint-Ancient). Additionally, Toronto and Essex are urban areas with

heavy traffic. Notably, Essex is situated on the busiest land boarder crossing between

Canada and the United States (Detroit-Windsor). Particulate matter from Detroit

and border traffic, plus being down-wind of the Ohio River Valley and the heavy

industry located there, all influence Essex’s air.

Emissions from the combustion of fossil fuels, in particular coal, contributes to

particulate ammonia sulphate and nitrate [23]. Although coal-burning power plants

are being phased out, they are currently used in Alberta (near Division No. 11),

Detroit (near Essex), New Brunswick and Nova Scotia [68].

Carbonaceous compounds (elemental carbon and organic matter) comprises a sig-

nificant portion of the reconstructed mass (RCM) and its contribution increased in the

winter months (October–March) compared to the summer months (April–September).

There were no apparent differences in concentration for urban and rural sites, but this

finding may be a consequence of the limited number of rural sites in the study. Tai

P.K. Amos et al. showed a positive correlation between temperature and OC/EC

[98]. These findings are consistent with our observations.
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Particulate soil is a consequence of melting snowpack, agriculture, soil composi-

tion, moisture and coarseness [1]. The observed soil trends for most sites, with soil

concentrations rising in March/April and peaking around May, correlates with the

release of pollutants during spring snow melt. The largest soil concentrations were

observed in urban locations; Division No. 11 (Edmonton), Essex and Toronto. The

lowest particulate soil concentrations were observed in Greater Vancouver, Fraser

Valley and Halifax.

Non-coastal urban sites (Division No. 11, Essex, Toronto) showed seasonal varia-

tion of sodium chloride levels, with peak levels occurring in January, a consequence

of winter road salting. High NaCl levels were observed at coastal sites (Halifax,

Greater Vancouver and Fraser Valley), due to ocean salinity. NaCl had the smallest

contribution to the reconstructed mass.

Sulphur dioxide is primarily emitted with fossil fuel combustion and industrial pro-

cesses. It is also produced from marine phytoplankton (via the oxidation of dimethyl

sulfide), by ships and biomass burning [64, 60]. The highest concentrations of SO2

were observed in Essex, largely due to the impact of emissions from Michigan.

Nitric acid is emitted from industry (manufacturing, printing), farms, wastewater

and vehicle emissions [39]. The highest concentrations were observed in Essex and

Toronto as they are urban locations with heavy traffic and manufacturing.

In summary, urban locations (Toronto, Essex) had the highest concentrations of

particulate matter and its constituents due to high population density, heavy traffic

and manufacturing facilities. Across Canada, at rural and agricultural sites, farming

(livestock, poultry and fertilizer use) had a significant influence on ammonia and

nitric acid emissions which in turn influenced the production of ammonium sulphate

and nitrate. Emissions from the United States, particularly in Michigan and Ohio,

had a significant impact on Canadian air quality in Essex.
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When comparing the RCM from 2003–2009 to 2010–2019, the mean concentra-

tion of all constituents has decreased. All sites observed a reduction in mean PM2.5

concentration except for the summertime levels of Greater Vancouver, Fraser Valley

and Division No. 11 (Edmonton). It is suspected that the increase in summertime

particulate matter is due to biomass burning. The ammonia mixing ratio was the

only component studied whose mean concentration increased in 2010–2019 compared

to 2003–2009, across all sites and seasons.

2.4 Temperature Data

The temperature data was obtained from the Meteorological Service of Canada cli-

mate database. The climate database consists of daily temperature observations from

climate stations across Canada. The data for each climate station is organized by

monthly CSV files. The database also contains station metadata with the location

and name of each sampled location.

The mapping between weather station and census division was done based on the

station location, and then mean daily temperatures by census division were calculated.

The temperature has been known as a strong confounder of the association between

air pollution and health outcomes [21, 4]. This requires daily temperature data in

the model presented in the next chapters.
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3. Modelling Adverse Health Effects of

Air Pollution

Research to assess the impact of air pollution on human health has been a major

topic in epidemiological studies, seeking to understand how factors such as long-

term or short-term exposure, type of pollutant, day of the week or weather affect

health outcomes. With this information, we can investigate the burden of pollution

in order to improve public health and inform air pollution related policy. Additionally,

although this is not a topic of this study, air pollution has far-reaching impacts such

as: ecosystems, food production, climate change and economic development.

3.1 Literature Review

Early epidemiological studies (1950-1990s)

In 1961, the World Health Organization published an article identifying air pol-

lution as a significant problem on human health [44]. It was a broad report detailing

sources of air pollution and identifying historical environmental episodes, primarily

smog, which resulted in adverse health effects. This type of observational health ef-

fects (i.e., an environmental phenomenon occurred and resulted in excess morbidity

or mortality in the population) was common at this point in time (1994, 1979) [2, 58].
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In subsequent decades, modernization and the development of continuous moni-

toring equipment drove the implementation of initiatives, including the creation of the

NAPS program in 1969, collecting hourly data at 15 sites across Canada. Through-

out the 1980’s, there was an increasing number of studies looking at daily mortal-

ity and air pollution concentrations which relied upon multiple regression analysis

[2, 66, 59, 55, 74].

Initiatives also facilitated the enactment of legislation, such as the Canadian En-

vironmental Protection Act (1988) and Canada-United States Air Quality Agreement

(1991) [19]. Significant advancements in data collection, technology and statistical

approaches were made. Consequently, epidemiological studies with greater statistical

power could be performed.

In 1997, Kelsall et al. [52] developed a Poisson regression model to estimate the

risk of mortality in Philadelphia while controlling for time, season and weather. The

pollutants of interest were total suspended particle and ozone. Similar analyses were

done in Lyon, France (1996) [111], London, England (1996) [3] and Milan, Italy (1996)

[100], among others. The advantage of this model was that it produced relative risks

which were easily interpretable and comparable across regions.

By 1990, Generalized Linear Models [67] and Generalized Additive Models [42, 43],

had begun to be used in epidemiological studies [88].

Epidemiological studies in the 2000’s

In the early 2000s significant contributions in Europe and the US included two

studies: Air Pollution and Health: A European Approach (APHEA 1 and 2) and the

National Morbidity and Mortality Study (NMMAPS) [51, 5, 79, 80]. Later, a project

with Europe, US and Canada was created, called Air Pollution and Health: a Eu-

ropean and North American Approach (APHENA), to combine and standardize the
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existing analyses [50]. By this point, the association between particulate matter expo-

sure and cardiovascular or cardiopulmonary health effects was widely acknowledged

[82].

The first of this work in early 2000s was in the U.S. from Samet, Dominici, Cur-

riero, Coursac and Zeger [86] which assessed risk estimates of five pollutants across

20 American cities. A generalized additive model (GAM) for city-level estimates and

a hierarchical Bayesian model was used to obtain an overall estimate. Confounding

was controlled by including a non-parametric smooth function of temperature and

dew point, and a day of week term. The analysis was later expanded to include 90

cities [27].

Using data from NMMAPS project, Dominici, McDermott, Zeger, and Samet

analyzed the effects of GAM convergence parameters [28]. Bell, Samet and Dominici

summarized the history and evolution of air pollution studies [9]. They also discussed

a distributed lag model, in which terms in the model are lagged by a specified number

of days. Continuing analyses with the NMMAPS project, Peng, Dominici and Louis

[78] compared different approaches to control for seasonal and long-term trends in

mortality, by comparing the implication of different smooth functions of time and

degrees of freedom.

Liu et al. used a multiple logistic regression to model the association between

ambient air pollutants and adverse birth outcomes in Vancouver, Canada [61]. They

found low concentrations of sulfur dioxide, nitrogen dioxide, carbon monoxide, and

ozone to be associated with adverse birth outcomes. Later, a national study using

data across Canada found a significant association between nitrogen dioxide with

small for gestational age and birth weight [95].

Generalized Linear Models were applied to a Canadian city, Hamilton, ON to

investigate the effect of socioeconomic characteristics on a risk estimate model [49].

The city was divided into 5 sub-regions and increased mortality was associated with
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areas of lower socioeconomic characteristics.

Another Canadian study by Shin et al. examined the short-term association be-

tween ozone and circulatory mortality across 24 urban regions using generalized ad-

ditive Poisson models [92]. They found significant associations in the warm season

and by sex, with females having a higher risk than males.

PM component studies

More recently, researchers have begun to look at the components of particulate

matter to identify which are the most influential. Bell, Dominici, Ebisu, Zegerand

Samet analyzed 52 components of PM2.5 [8]. They identified seven components which

compromised the majority of PM2.5: NH+
4 , EC, Organic carbon matter (OCM) , NO−

3 ,

Si, Na+, and SO2−
4 . They also identified six components which were correlated with

PM2.5: NH+
4 , SO2−

4 , OCM, NO−
3 , Br, and EC.

Peng et al. [77] looked at the association between PM2.5 constituents and emer-

gency room visits for cardiovascular and respiratory outcomes in people over 65. They

found a positive association between elemental carbon (EC) with cardiovascular ad-

missions and an association between organic carbon matter (OCM) with respiratory

admissions.

Additionally, Burnett et al. investigated the association between particulate mat-

ter components and mortality across eight Canadian cities [97]. They found that

sulfate, iron, nickel, and zinc were most strongly associated with mortality. The

availability of PM constituent data was limited, and the authors indicated that there

were additional significant components not examined in the study. In particular,

they suggested that elemental and organic carbon should be measured as they are

the largest constituents of PM2.5.

In a meta-analysis, Yang et al. [109] reviewed 42 papers published after 2008

58



which identified associations between PM2.5 components with morbidity and mortal-

ity. Associations between all adverse health effects and black carbon, organic carbon,

potassium, sulfate, NH+
4 , zinc and silicon were observed. Associations occurred be-

tween cardiovascular effects and sulfate, NH+
4 , zinc and silicon, nickel, vanadium,

sodium and iron. Respiratory associations were identified for organic carbon, nitrate,

sulfate and vanadium. Identifying which components are most harmful to human

health can inform air pollution policies and the understanding of biological processes.

Environmental epidemiology is increasingly being used to study under-represented

regions and community-level metrics. Such studies have incorporated satellite mea-

surements and chemical transport models to estimate pollutant concentrations in

unmeasured regions [26] and the inclusion of regional or individual metrics such as;

socioeconomic status, sex, race, smoking and obesity rates, education, median house-

hold income and city greenness [53, 26, 94, 85].

Mortality, seasonality and lagging confounders

Curriero et al. [24] investigated the relationship between temperature and mor-

tality in 11 American cities. They found that the greatest mortality occurred in the

winter months, however there was a stronger association between mortality and cold

temperatures in southern regions, while northern regions showed a stronger associ-

ation in warm temperatures. In addition to these findings, they showed that tem-

perature lags of 0, 1, 2 or 3 days were the most strongly associated with mortality.

Understanding this relationship is valuable for the construction of our models.

Another study in the Neatherlands looked at the seasonal variation of deaths with

the aim of assessing why there is an excess of deaths in the winter [63]. Two periods

of increased mortality were observed in late January and March. These periods

corresponded to the lowest yearly temperatures and influenza season.
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More recently, Burr et al. [14] supported the use of a lag-0 non-parametric tem-

perature covariates when a smooth function of time is already incorporated in the

health effects model.

Burr et al. also developed a novel lag-aggregation technique, called synthetic lag

[15]. In this approach, components are transformed to the frequency-domain and the

cross-spectrum is used to capture the behaviour of individual periodic components so

that they can be lagged by targeted amounts in order to phase-align the components

and response. The series is then transformed back to the time-domain to form one

pollutant series, that has been synthetically lagged.

3.2 Generalized Additive Model

Generalized Linear Model (GLM)

Hastie and Tibshirani set the groundwork for current air pollution models with

the development of Generalized Additive Models (GAMs) [42, 43, 88]. GAMs are an

extension of Generalized Linear Models (GLMs) [67] in which the response variable

is modelled by a linear function of covariates. Formally this is written as [67]:

g(µ) = Xβ (3.1)

= β0 + β1X1 + · · · + βkXk (3.2)

where µ is the expected value of response variable, Y ;

µ ≡ E(Y ) (3.3)

and g is the link function (describing how the expected response is related to the ex-

planatory variables), Xi are explanatory (or predictor) variable(s) and β are regres-

sion coefficients, estimated by the model. The estimation of β allows the prediction

of the response.

The power of GLM’s come from the flexibility of the distribution of the response
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variable: it does not need to be normally distributed as is required in most linear

regression models. In health models, we are generally modelling daily counts of

morbidity or mortality, naturally this is the over-dispersed Poisson distribution:

Y ∼ Poisson(µ) (3.4)

In this case of a Poisson distribution, the typical link function is the log link function;

g(·) = log(·) (3.5)

To obtain an estimate of β, we seek to maximize the likelihood function. Due

to the generalization of the response variable, this requires solving the maximum log

likelihood equations iteratively, a process called iteratively re-weighted least-squares

[45]. This can be done in R using the glm() function, a part of the stats package

[84].

Generalized Additive Model (GAM)

Hastie and Tribanishae recognized that they could replace the linear predictor in

GLMs with an additive smoother. That is, the response variable can be modelled by

smooth functions of the explanatory variables. Formally, this is written as;

g(µ) = β0 + β1Z +
k∑

i=1

si(Xi) (3.6)

= β0 + β1Z + s1(X1) + · · · + sk(Xk) (3.7)

where si are smooth non-parametric functions, which can be linear or nonlinear. One

caveat with this model is the distribution of response variable is required to be from

the exponential family (this includes; normal, exponential, chi-squared, Poisson, . . .).

There are many advantages to using GAMs, including;

• Ability to capture nonlinear covariate effects.

• Easy interpretation of the model outputs. Due to additivity, the effect and
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interpretation of covariate coefficients does not depend on the values of other

coefficients.

• Can control the smoothing parameter and degrees of freedom in the predictor

functions (i.e., can set smoothing parameters for si). This changes the ‘wiggli-

ness’ and number of knots in the curve.

• A choice in the smoothers used, which for example can include: local regression

(loess); smoothing splines; and regression splines.

In R, GAMs can be estimated using the mgcv package [105, 106] or the gam package,

among others.

3.3 PM Component Models

A single pollutant GAM for short-term exposure, as presented above, originally de-

veloped by Dominici et al. [29], and expanded [78, 16] was used. The GAM estimates

the relative mortality associated with the pollutant, after accounting for confounders.

This estimate can be called a health risk, and is estimated annually or for all years

combined. The logarithms of the daily human mortality or morbidity (health effect)

are modelled by the additive combination of the pollutant of interest, a smooth func-

tion of time (either natural cubic regression splines or Discrete Prolate Spheroidal

Sequences with 6 or 12 degrees of freedom per year [16]), daily average temperature

and the day of week. This can be formally written as:

log(µ) = β0 + β1 × pollutant + s1(time, df = 6 or 12) + temperature + DOW (3.8)

where µ is the mean response, β0 and β1 are linear coefficients estimated by the GAM,

s1 is a smooth function of time, temperature is same-day average temperature, DOW

is the day-of-week and pollutant is the pollutant concentration of interest, possibly
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lagged. As discussed in [14], a smooth function is not applied to the temperature

term. The estimated value of β1 is the pollutant specific risk estimate. That is,

it is the log-relative risk of an adverse health effect due to a one unit increase in

pollutant concentration, accounting for confounders. The risk estimate is a measure

of the association between a pollutant exposure and health effect, it does not imply

causation.

Historically, Dominici et al. [29] used a natural spline with 6 df as the choice of

the smooth function of time. More recently, Burr et al. [14] demonstrated the 6 df

does not remove all of the desired long time scale effects and advocated the use of 12

or 14 df per year. Burr also showed that Discrete Prolate Spheroidal Sequences are

much better at filtering the long time scale variation than the natural spline.

The health data, mortality and morbidity counts due to cardiovascular and pul-

monary causes for all age groups, were extracted based on ICD-10 codes [107]. The

mortality data runs from 1984–2015, inclusive, while the morbidity data spans from

1996–2019.

To run these models in R, the AHItools package was used. The package contains

a series of function to run GAMs based on user specification of parameters, outlined

in Table 3.1. The function has parameters as follows;

compute_models(cutoffs, seasons, resp.terms, AP.terms, temp.lags,

estimate.block, time.dfs, selectCDs, yrRange, fNameOut,

subfolder, local_db_path, gam.control)
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Model parameter Description Example Value

cutoffs % of allowable missing data 0.5, 0.7

seasons seasonality cutoff JanDec (all months), AprSep, OctMar

response terms health effect response variables mortality and morbidity counts

AP.terms air pollution variables sulphate, nitrate, zinc, silicon, iron, nickel, vanadium, potassium,

OC (corrected), OM, EC, TC (corrected), PM2.5

temp.lags temperature lag daily mean temperature lagged 0, 1, 2 or 3 days

estimate.block estimation block Annual, AllUni (all years)

time.dfs degrees-of-freedom per year for the 6, 12

smooth function of time

selectCDs selected CD 3520 (Toronto)

yrRange first and last years of data 2010, 2019

fNameOut file names

subfolder subfolder name

local db path desired file directory path

gam.control list of gam parameters default values are; max iter = 100, bf.max iter = 20

epsilon = 1e-09, bf.epsilon = 1e-09

Table 3.1: Model parameters used for one pollutant component models.

As part of this thesis work, the AHItools package was extensively modified to

facilitate parallel computation. Risk estimates for all model combinations from a CD

could be estimated simultaneously, under the constraints of the CPU cores. This

drastically reduced the computation time to run the models. For each model combi-

nation, two time smothers: natural cubic spline and slp (Discrete Prolate Spheroidal

(Slepian) Sequence regression smoothers, from the AHIsmooth and slp packages by

Dr. Wesley Burr) were used such that each combination had two model fits calculated.

3.3.1 Lagging variables

Lags are used to account for the delayed effects of confounders at short timescales.

Generally, lags are selected based on which produce the largest risk estimate. It has

lead to several guidelines, such as the maximum association for ozone, O3, is observed

at a lag of 1 day for respiratory mortality [93].
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3.3.1.1 Discrete Lags

Discrete lags are when a variable is lagged by a specific number of days. They can be

applied to the pollutant data itself [22] as well as to the temperature [24]. Typically,

temperature lags of 0, 1, 2 or 3 days are used as they are the most strongly associated

with mortality [24]. Pollutant lags of 0, 1 or 2 days are most commonly used.

The discrete lags manifest in the GAM equation as follows:

log(µ) =β0 + β1 × pollutantlag t1 + s1(time, df = 6 or 12)+

temperaturelag t2 + DOW

(3.9)

where pollutantlag t1 is the pollutant data with a lag of t1 days and temperaturelag t2

is the temperature data with a lag of t2 days.

3.3.1.2 Synthetic Lags

As described in Section 3.1, Burr et al. developed a novel lag-aggregation technique,

called synthetic lag [15]. The method applies principles of spectrum estimation to lag

individual components by targeted amounts. Code to apply this method is part of

the AHItools package.

The lag manifests in the model as:

log(µ) =β0 + β1 × pollutantsynth lag + s1(time, df = 6 or 12)+

temperaturelag t2 + DOW

(3.10)

where, pollutantsynth lag is the pollutant series with synthetic lag applied. The discrete

lag works by applying a lag of an integer number of days (e.g. 1, 2 days), whereas the

synthetic lag can manifest as a non-integer lag (e.g. 1.2, 2.8 days). Thus, the synthetic

lag can capture missed association and has been shown to, in general, produce a more

positive result [15].
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3.4 Particulate Matter Risk Estimates

For this study, association refers to risk estimates obtained from Generalized Addi-

tive Models, modeling mean log health counts against additive combinations of daily

pollutants and confounding variables, equation 3.8. When risk estimates are dis-

cussed as being “similar”, we mean similar trends over time: peaks and troughs in

the same years with the similar relative magnitudes. To look at these trends between

different components, scaled risk estimates were used: the risk estimates were scaled

by the average concentration of that pollutant component (with all concentrations

measured in µg/m3). This is to reflect the relative proportion and relative impact of

each compound, as the components additively form the particulate mass.

In Section 3.4.1, we will examine changing parameters in the GAM for risk esti-

mates in Toronto, ON. In Section 3.4.2, we will explore the risk estimates for con-

stituents of PM across the eight CDs previously selected in Section 2.3.2.

3.4.1 Exploring GAM Parameters for PM2.5 Risk Estimates

We will explore associations based on the choice of the smooth function of time,

seasonality, lagging and morbidity/mortality. PM2.5 and ozone, O3, concentrations

from the updated AHItools package is used, with the ozone risk estimates presented

in Appendix B. The analyses were performed for all 52 CDs from 1984 – 2019, but

Toronto, ON was selected for demonstration. The cutoff for proportion of allowable

missing data of was 50% (i.e., cutoffs = 0.5 in the compute models() function)

and the default gam.control parameters were used.

To begin, we will look at the risk estimates for Toronto. Toronto, Ontario is a

large city in the center-east of Canada, with a population of 2.1-2.9 million across the

time span of available data. Toronto sits in the middle of an extended metropolitan
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area (“The Greater Toronto Area”) with population near 10 million, covering over

7,000 square kilometers of land.

Smooth function of time

We will first consider the choice of smooth function of time and degrees of freedom

with seasonality. We modelled the logarithms of the daily mortality counts (both

pulmonary and circulatory) by the additive combination of the average daily PM2.5

concentration, the day of the week, the average daily temperature (lag 0) and a

smooth function of time. That is:

Health outcome ∼ PM 2.5 (lag0) + Day Of Week (DOW) +

Temperature (lag0) + s(time, df = 6,12)

Figure 3.1: Annual mortality (both cardiovascular and pulmonary) risk estimates
for PM2.5 in Toronto, ON, for three seasonal breakdowns (all year; warm
season; and cold season) and for varying smooth functions of time (natural
spline (NS); and Discrete Prolate Spheroidal (Slepian) Sequence (SLP)),
with 6 and 12 degrees of freedom (df) per year. No temperature lag is
used.
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Figure 3.2: Annual morbidity (both cardiovascular and pulmonary) risk estimates
for PM2.5 in Toronto, ON, for three seasonal breakdowns (all year; warm
season; and cold season) and for varying smooth functions of time (natural
spline (NS); and Discrete Prolate Spheroidal (Slepian) Sequence (SLP)),
with 6 and 12 degrees of freedom (df) per year. No temperature lag is
used.

There is considerable variation in the risk estimates between seasons (columns in

Figure 3.1), but not amongst the smooth functions of time and degrees of freedom

(rows in Figure 3.1). For the remainder of the analyses, a SLP with 6 df/year will be

used.

In the Canadian cold season, there is a large fluctuation in the risk estimates

across the years, with a considerable decrease in 2007. The all year and warm season

risk estimates are more alike, with peaks and troughs occurring around the same

time, with similar magnitudes. The all year risk estimates are more consistent than

the seasonal breakdowns. This seasonality illustrates that weather has an effect on

the association between mortality and PM2.5 concentrations.
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Lagging pollutant concentrations

The relationship does change with different lags applied to the PM data. Figure 3.3

shows seasonal differences for discrete pollutant lags (0, 1 and 2 days), and synthetic

lag, using a Slepian smooth function of time. The following is being modelled:

Health outcome ∼ PM 2.5 (lagX) + Day Of Week (DOW) +

Temperature (lag0) + SLP(time, df = 12)

PM2.5 risk estimates for the synthetic lag are not available before 1998 and after

2014 (inclusive) as there isn’t enough air pollution data to surpass the cutoff of 50%.

The first row of Figure 3.3 is showing the same data as the third row of Figure 3.1;

the PM2.5 concentration with no lag.

Figure 3.3: Annual mortality (both cardiovascular and pulmonary) risk estimates
for PM2.5 in Toronto, ON, for three seasonal breakdowns (all year; warm
season; and cold season) and for four lags on the pollutant data (0 days;
1 day; 2 days; and synthetic)
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Figure 3.4: Annual morbidity (both cardiovascular and pulmonary) risk estimates
for PM2.5 in Toronto, ON, for three seasonal breakdowns (all year; warm
season; and cold season) and for four lags on the pollutant data (0 days;
1 day; 2 days; and synthetic)

When a discrete lag is applied to the pollutant concentration, either a lag of 1 or

2 days, the variation in the risk estimates increases and the warm and all year esti-

mates are no longer as aligned. The largest fluctuations in the risk estimate occurs

when the pollutant is lagged by 1 day. The synthetic lag risk estimates have a larger

magnitude and are not as variable.

Health effect cause

We can also look at the daily morbidity and mortality counts for cardiovascular

and pulmonary issues, individually. The pulmonary estimates are much more erratic

and have a greater magnitude than the cardiovascular and the combined estimates,

shown in Figure 3.5. This indicates that deaths due to pulmonary causes are more

associated with PM2.5 than due to cardiovascular and both causes combined. Another
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interesting note is that the estimates for cardiovascular and both causes (cardiovascu-

lar and pulmonary) have similar trends; that is, peaks and troughs in the same years

with similar values, which are all positive.

Figure 3.5: Annual health risk estimates, by cause, for PM2.5 in Toronto, ON, for
three temperature lags (0 days; 1 day; and 2 days) for all year synthetically
lagged pollutant concentrations.

All years combined risk estimate

The all-year mortality risk estimates (that is, one estimate for all years of data)

is in Table 3.2. When looking down a column (pollutant lags) in Table 3.2 by season,

the risk estimates are decreasing, particularly for a temperature lag of 1 day. There

is variation due to seasonality and due to the type of pollutant lag. For the synthetic

lag, a slight increase in estimates is observed as the temperature lags increase (across

a row). No trends are observed for the discrete pollutant lags.
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Season Pollutant Lag Mortality Morbidity

synthetic 5.21 ± 0.7 2.07±0.28

All year 0 days 0.67 ± 0.6 0.57±0.25

(January - December) 1 day 0.68 ± 0.57 0.45±0.24

2 days 0.48 ± 0.53 0.07±0.23

synthetic 4.93 ± 0.96 1.73±0.39

Warm season 0 days 0.28 ± 0.83 0.47±0.35

(April - September) 1 day 0.83 ± 0.72 0.24±0.31

2 days 0.69 ± 0.66 0.12±0.28

synthetic 5.7 ± 1.26 3.01±0.45

Cold season 0 days -0.11 ± 1.1 1.07±0.44

(October - March) 1 day -0.34 ± 1.04 1.01±0.42

2 days 0.12 ± 0.97 0.09±0.39

Table 3.2: All-year (x 10−3) risk estimates for PM2.5, in Toronto, ON, for three sea-
sonal breakdowns (all year; warm season; and cold season) with a SLP
smooth function of time using 12 degrees of freedom per year and varying
pollutant and temperature lags.

Table 3.2 shows the all-year mortality and morbidity risk estimates. When look-

ing down a column (pollutant lags) in Table 3.2, the risk estimates are decreasing.

Hence, a synthetic lag produces the largest risk estimate, across all seasons.

Discussion

In conclusion, in this study, the choice of the smooth function of time was used to

remove the long time scale variation - for this reason, a SLP with 6 d.f. was used in

analyses. It was observed that seasonality had an effect on the association between

mortality and PM2.5 concentrations, with the most erratic estimates being calculated

in the cold season. The largest risk estimates occur with a synthetic lag. There were
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significant differences between the morbidity and mortality risk estimates, where both

estimates were highly erratic. Pulmonary deaths and morbidity are associated with

PM2.5 concentrations.

3.4.2 PM Component Risk Estimates

Single pollutant models were used to identify the association between component pol-

lutants and adverse health effects over time at a single location. Thirteen components

of PM2.5 were selected including: Sulphate, Nitrate, Zinc, Silicon, Iron, Nickel, Vana-

dium, Potassium, Organic Carbon (OC, corrected), Organic Matter (OM), Elemental

Carbon (EC), Total Carbon (TC, corrected); and models were also fit for PM2.5 mass

(as in Section 3.4.1). The analyses were performed for eight CD’s from 2003 – 2019 (a

reduced number due to available data). For this work, the integrated data, described

in Section 2.3 was used.

3.4.2.1 PM Constituents

Before diving into the PM component risk estimates, we will first look at the con-

stituents that make up the particulate matter mass. This will help us identify which

of the selected components compose the bulk of the PM mass, and will assist in un-

derstanding subsequent analyses.

Breakdown of PM by Proportion

The breakdown of PM2.5 into its components by CD is shown in Figure 3.6. Com-

ponents with a very small proportion (such as Nickel, Vanadium, Zinc, Potassium,

Iron and Silicon) cannot be seen in Figure 3.6. The carbonaceous compounds (OM,

TC, OC and EC) compose a significant portion of the total PM2.5 mass. Sulphate

and nitrate compose the next largest portion.
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There are seasonal and geographical differences in the composition. The presence

of sulphate is larger in eastern Canada compared to western Canada. Nitrate concen-

trations are significantly larger in the cold season (October – March) than the warm

season (April – September). These findings are consistent with those observed when

looking at the reconstructed mass, Section 2.3.

The average percentages, by site and season, are provided in Table 3.3. Organic

matter, total carbon (corrected), organic carbon (corrected), sulphate, elemental car-

bon and nitrate compromise approximately 98.5 % of the mass.

Figure 3.6: Proportional composition of components in PM2.5 mass by season and
census division.
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Pollutant All year proportion (%) Warm season proportion (%) Cold season proportion (%)

OM 28.6 26.5 30.6

TC (corr) 22.1 20.8 23.3

OC (corr) 16.0 14.8 17.1

Sulphate 15.9 14.3 17.3

Nitrate 7.8 13.9 2.2

EC 7.6 7.7 7.4

Silicon 0.7 0.6 0.8

Iron 0.6 0.6 0.6

Potassium 0.6 0.6 0.5

Zinc 0.1 0.1 0.1

Nickel 0.03 0.03 0.03

Vanadium 0.02 0.02 0.02

Table 3.3: Average pollutant proportions across all CD’s in the study by season.
Table is sorted by highest all year proportion.

Component Correlations

Figure 3.7 shows correlation coefficients between PM2.5 and its components, for each

CD by season (i.e., each set of seasonal data, for a specific location, and a specific

component, is considered against PM2.5 for the same). Of these, high correlations were

observed between PM2.5 and: sulphate; OC (corrected); OM; EC; and TC (corrected).

For all CD’s, a higher correlation coefficient between PM2.5 and both nitrate and

zinc was observed for the warm season (April – September) compared to both the

cold season (October – March) and all months. In Greater-Vancouver, BC, a higher

correlation was observed between PM2.5 and all components in the warm season (April

– September) compared to the cold season (October – March) and all months (January

– December).
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Figure 3.7: Correlation coefficient between PM2.5 and its components, by season, for
CD’s organized from east to west. Note that the lines are visual aids, and
do not signify series.

3.4.2.2 Risk Estimates for Toronto - CD 3520

To begin, we examine the largest city in Canada (Toronto, ON), followed by an

examination of all relevant CD’s in Section 3.4.2.3. The scaled risk estimates for daily

cardio-pulmonary morbidity and mortality across all age groups for Toronto are shown

in Figures 3.8 and 3.9. The risk estimates were scaled by the average concentration

of that pollutant component (with all concentrations measured in µg/m3). This

is to reflect the relative proportion and relative impact of each compound, as the

components additively form the particulate mass.

In these figures, broken down by component, with 2.5 micrometer mass as the first

entry, there are a few erratic estimates across time. To give context to these annual

outliers, we also estimated all-year risk estimates (i.e., one risk estimate for all years
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of data), shown in Table 3.4. These all-year estimates reflect the findings in the

literature: that, on the whole, the constituent components of particulate matter are

themselves also quite associated with human health effects, in statistically significant

ways.

The most prevalent association was observed for PM2.5 and carbonaceous com-

pounds (EC, OC, OM and TC), nitrate and sulphate. This is especially true when

looking at mortality estimates compared to morbidity estimates. When looking at the

mortality estimates (Figure 3.8) all components generally track the PM2.5 estimates,

i.e., the trends follow a similar pattern with minima in 2012 and 2014. However, when

looking at the annual morbidity estimates (Figure 3.9) EC, OC (corrected), OM and

TC (corrected) all exhibit common trends which differ from the PM2.5 trend. All com-

pounds appear to have a similar magnitude risk estimates and standard deviations,

with the exceptions of nitrate and sulphate.

Figure 3.8: Annual scaled model estimates for census division 3520, Toronto, for re-
sponse variable pulmonary and cardiac mortality.
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Figure 3.9: Annual scaled model estimates for census division 3520, Toronto, for re-
sponse variable pulmonary and cardiac morbidity.

In Figure 3.9, the large standard error in 2017 is a consequence of component

collection stopping halfway through the year.
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Health Parameter Component Lower CI Bound Scaled Estimate Upper CI Bound

PM2.5 1.0 17.0 33.0

Mortality OM 14.0 31.0 47.0

risk estimate TC (corr) 16.0 34.0 52.0

OC (corr) 14.0 31.0 47.0

Sulphate 4.0 18.0 32.0

EC 17.0 39.0 62.0

Nitrate -2.0 5.0 11.0

PM2.5 4.0 11.0 18.0

Morbidity OM 1.0 8.0 14.0

risk estimate TC (corr) 2.0 9.0 17.0

OC (corr) 1.0 8.0 14.0

Sulphate 1.0 6.0 12.0

EC 6.0 15.0 24.0

Nitrate -1.0 2.0 4.0

Table 3.4: All-year combined scaled model estimates (×10−3) for census division 3520,
Toronto, with a Discrete Prolate Spheroidal Sequence with 6 degrees of
freedom per year for the smooth function of time. Components are sorted
with PM2.5 first followed by components compromising the highest pro-
portion of PM2.5 mass. Lower and Upper bounds are for 95% confidence
intervals on the coefficient estimates.

3.4.2.3 Risk Estimates by Census Divisions

The mortality and morbidity risk estimates for Halifax, Toronto, Division No. 11

(Edmonton), the Fraser Valley and Greater Vancouver are shown in Figures 3.10 –

3.11. Haldimand-Norfolk and Essex are not displayed due to their limited availability

of data.

The greatest similarity in annual risk estimate trends appears in the three larger

urban areas: Vancouver (population ∼ 2 million); Division No. 11 (Edmonton, ∼
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1 million); and Toronto (as mentioned above, ∼ 3 million). Both the Fraser Val-

ley and Halifax are smaller areas, with the Fraser Valley being sparsely populated

in particular. In general, the larger urban areas show quite tight clustering of an-

nual risks, especially for all months and the cold season (running October-March in

Canada). The warm season is more variable, especially in Vancouver, which may

indicate differing climate patterns across the different regions.

The morbidity risk estimates (Figure 3.11) showed similar findings, but with

greater variability. In the warm season (April–September) the nitrate mortality and

morbidity risk estimates are more erratic, particularly in Greater Vancouver, Division

No. 11 and Halifax. In fact, nitrate and sulphate showed the least common trending

with PM2.5 of all observed components in Figures 3.10 and 3.11

Figure 3.10: Annual scaled mortality risk estimates for PM2.5 and components, across
five census divisions, for three seasonal breakdowns (all months; cold
season; and warm season).
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Figure 3.11: Annual scaled morbidity risk estimate for PM2.5 and components, across
five census divisions, for three seasonal breakdowns (all months; cold
season; and warm season).

3.5 Discussion and Conclusions

As with many of these acute risk models, for short(er) time scales the estimates are

quite noisy; we see this in the significant differences in the risk estimates for both mor-

tality and morbidity by season. What is most interesting about these sets of models

is comparing the trend and behaviour of particulate mass (PM2.5) to carbonaceous

compounds (EC, OC, OM and TC), particularly for mortality. These findings co-

incide with the investigation of the proportional composition of PM2.5 above, where

carbonaceous compounds, sulphate and nitrate made up the bulk of PM2.5. The

breakdown proportionally being high for these compounds does not necessarily imply
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that the proportionality is stationary with time, but the associations being so sim-

ilar in the risk estimates implies that at least as far as the association between the

compounds and human health is concerned, these compounds can be thought of as

representative of the whole.

We also see in these results (Figures 3.10, 3.11) some wildly erratic selected years.

When working with annual estimates, for multi-day steps in the observations, there

really are not very many observations to work with. This, compounded by the known

volatility of these risk models to limited time spans, limited observations, low con-

centration pollutants, and smaller populations, results in limitations on the stability

of these estimates. Previous work on development of the Air Health Trend Indicator

(e.g., [91]) suggests that a small number of periodic components in a time series can

dominate the correlation/association from a regression model, and that their phases

are most important for determining this behaviour. However, estimating such peri-

odic components in such limited data availability regimes is quite challenging.

Overall, from this limited Canadian data set we see that particulate matter of

2.5 micrometers or less is well represented temporally by carbonaceous compounds.

These compounds then demonstrate associations that are very similar to aggregate

particulate matter. These associations suggest that it may be possible to use both

sources of information to develop multiple source approaches, using information on

overall mass to inform compound observations, and vice versa. This has some philo-

sophical connections to the work being done by remote sensing and ground-truth

observation matching: use what observations are available to impute or inform the

missing observations of the opposing instrument.

Particulate matter is a highly relevant air pollutant, with a wealth of evidence

pointing to a broad range of adverse health effects. However, much of particulate

matter pollution is not controllable, or not anthropogenic, and thus we must deter-

mine what portion and contribution in the health risk due to air pollution is from
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actual anthropogenic (and hence, controllable) sources, to better inform policymakers

who seek to balance improvements to the environment and overall societal costs.
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4. Modelling Adverse Health Effects of

Two Pollutants

In this chapter, we explore the development of a multiple pollutant method that

includes multiple, possibly correlated, pollutants (in this case, particulate matter

with a diameter less than 2.5 µm (PM2.5) and ozone (O3)) with the use of a response

surface, and thin plate splines. A portion of this chapter has been accepted for

publication in the proceedings of the International Conference on Statistics: Theory

and Applications (2022), and is in press.

4.1 Literature Review

As previously discussed, the evidence of association due to both short (acute) and

long-term exposures of ambient air pollution on cardiovascular and respiratory health

impacts has been examined and found to be significant [73]. More recently, studies

examining human health effects associated with multiple pollutants simultaneously

has been investigated, as a more realistic framework for actual exposure. Several

recent attempts (and successes) include [10, 75, 41], where the two project teams

explored models, mostly in Bayesian frameworks, for assessing the statistical effect of

multiple air pollution constituents and unknown numbers of major sources.

In 2010, Mauderly et al. presented key issues in multi-pollutant models including;
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interactions between pollutants, relationship between exposure and response, individ-

ual exposure, pollutant data availability and the accuracy of health data [65]. They

reasoned that improvements in models and data could make multi-pollutant mod-

elling more feasible in the coming decade. Since then, Bobb et al. [10] used a kernel

function to incorporate a mixture of air pollution constituents in a Bayesian regres-

sion model. A hierarchical approach with prior specification about the pollutants was

used for correlated pollutants. Other approaches involved investigating the charac-

teristics of air pollution mixtures that effects health. Under a grant from the Health

Effects Institute, Park et al. used a hierarchical model to incorporate source-specific

health effects [76]. This approach provided improved exposure estimates and allowed

for predictions of pollutant sources at sites that were not monitored.

Thin plate splines have been applied to the modelling of spatial surfaces in epi-

demiological studies. Szpire et al. used a two-stage analysis and a thin plate spline

to model pollutant exposure across the region of study [96]. This spatial exposure

surface was then used to estimate health effects. Additionally, Yanosky et al. used

a thin plate spline and generalized additive mixed model to predict monthly average

PM concentrations across the United States, at high resolution [110]. The bivairate

thin plate spline was used to model spatial variability over monthly time periods.

The model accounted for covariates including; average wind speed, temperature, to-

tal precipitation, and air stagnation. Ettinger et al. used a bivariate thin plate spline

to model ozone concentrations and found that estimates required less computational

time and were more accurate [33].
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4.2 Multiple Pollutant Model

We will begin by discussing our motivation for the bivariate model by exploring the

correlation between pollutants, namely PM2.5 and O3. The PM2.5, O3 and temper-

atures for Toronto, ON is shown in Figure 4.1. There are apparent seasonal ozone

and temperature patterns, where in the warmer season (May – October) ozone con-

centrations are higher. Patterns can also be seen for the PM2.5 concentrations. An

increase of concentrations in warmer seasons is a consequence of atmospheric chemical

formation, where O3 forms from nitrogen oxides via the addition of solar radiation, a

process that largely occurs above 17◦C [73]. These patterns, and hence correlation,

between pollutants compel our exploration into the development of a multi-pollutant

model that controls for confounding. They are seen and vary across all CD’s in the

study. Note that a naive Pearson correlation between the two gives mild correlation

only, but careful examination of the time series structure makes it clear that there

are deeper relationships – these pollutants cannot be considered independent.

Figure 4.1: Daily ozone (top), PM2.5 (middle) and temperature (bottom) measure-
ments for Toronto, ON census division.
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4.2.1 Brief Introduction to Thin Plate Splines (TPS)

Thin plate splines [32] are a smooth function of one or more predictor variables,

such that the response surface of the spline models the combined effect of multiple

predictors. They do not require prior knowledge about the relationship between

predictors or specification of knot locations. This flexibility motivates its use in

modelling confounding pollutants.

4.2.2 The TPS Bivariate Model

To incorporate multiple pollutants, the single pollutant model, from Equation 3.8, is

adjusted to incorporate a TPS and is written as:

log(µ) =β0 + sTPS(pollutant1, pollutant2)+

s1(time, df = 6 or 12) + temperature + DOW

(4.1)

where sTPS is the thin plate spline, and the smooth functions are the same as Equa-

tion 3.8. In this approach, the location on the response surface (after accounting for

the temperature and a smooth function of time) that corresponds to the average of

a particular pollutant concentration, and this location (average) plus one unit (e.g.,

ppb) can be determined. In traditional models, the result of interest for these models

(e.g., a β1) is geometrically interpreted as a slope, so we replicate this in the context of

the bivariate surface as one of three quantities of interest: the slope of each pollutant

at the location of the bivariate average, in the direction of a unit increase in that

pollutant; and the slope of the pollutants jointly in the direction of their joint unit

increase (taken to be equal contribution, so an increase of 1 unit in a bisecting angle

to the two pollutant axes). This approach has the advantage that the interpretation

stays the same as the univariate models, allowing easy comparison of the magnitudes

and temporal trends.

The thin plate spline surface of the residual mortality is visualized in Figure 4.2.
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Grids in the centre plot are used to show the cross-sections (planes corresponding to

the average PM2.5 and O3 concentrations). In Figure 4.2, left, the residual mortality

TPS is plotted against the O3 concentration while the PM2.5 concentration is held at

its mean value, 9.12 µg m−3, while the right shows the TPS residual response surface

versus PM2.5 concentration while the O3 concentration is held at its mean value of

23.49 ppb.

Figure 4.2: Thin Plate Spline residual mortality and cross-sectional plots at the av-
erage pollutant concentrations for Toronto, ON throughout 2014. Each
of the single pollutant plots shows the surface and the prediction interval
along that pollutant’s axis, with the other pollutant fixed at its arith-
metic overall average value. The response visualized here is the residual
log mortality after accounting for temperature, DOW and the smooth
function of time.

When looking at the ozone slice of the thin plate spline surface (Figure 4.2, left),

the relationship forms an ‘M’ shaped curve. This is a peculiar finding, as it suggests

exposures to both low and high concentrations of ozone (when exposed to the average

PM2.5 concentration) results in a similar mortality risk. Risk estimates were expected

to increase with larger concentrations. This unanticipated relationship of the O3 slice

was observed across multiple years. It suggests that the model is not appropriate and

that a constraint on the thin plate spline surface should be investigated so that at
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higher pollutant concentrations a larger residual health effect is observed.

4.3 Comparison of Single and Two Pollutant Mod-

els

The cardiovascular and respiratory mortality and morbidity estimates from the thin

plate spline (TPS) approach were compared to the single pollutant models (Fig-

ures 4.3 – 4.5) for Toronto, ON from 1997 to 2019. Plots for Ottawa, Edmonton

and Vancouver CDs are included in Appendix C. For these estimates, the smooth

function of time was a DPSS (Slepian) spline with 12 degrees of freedom per year. In

general, large increases and decreases in PM2.5 and O3 are captured in the TPS esti-

mates. The TPS approach has significantly larger prediction error than either of the

two individual models, or their additive combination. This is not entirely surprising,

as the correlation structure of the two pollutants is known to vary over time due to

component-level correlations between the respective elements of the series.

Figure 4.3: Comparison of single and multi-pollutant morbidity models for synthetic
and discrete lag, using an SLP with 12 df for the smooth function of time
in Toronto, ON
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Figure 4.4: Comparison of single and multi-pollutant mortality models for discrete
lag, using an SLP with 12 df for the smooth function of time in Toronto,
ON

Figure 4.5: Comparison of single and multi-pollutant morbidity models for discrete
lag, using an SLP with 12 df for the smooth function of time in Toronto,
ON

90



4.4 Discussion

The mean association, jointly, between the two pollutants is quite similar to the

average of two univariate models, but is not identical, demonstrating that modeling

both simultaneously does have some value. The use of thin-plate splines is quite

flexible, and could allow for further work to more carefully model the correlation and

association structure of the pollutants, rather than treating them as simple bivariate

contributors. In particular, the extreme swings in confidence for the estimates of

the TPS-based model are likely a sign of extreme values and contamination in the

estimation of the surface, so robust alternatives which may help control this variation

need to be investigated.

The extraction of univariate ‘slices’ from the bivariate surface is also a technique

that demonstrates promise, as these extracted slices are comparable in form to non-

linear modeling outputs for the impact of air pollution on human health. In con-

clusion, this new method shows promise, and allows a new viewpoint on a modeling

problem which is of high interest to a broad global community.
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5. Conclusions

In this thesis, we explored and analyzed Canadian air pollutant data (Chapter 2)

for both continuous (hourly) and integrated (daily) data. We began by discussing

how the raw pollutant data was cleaned and unified to produce a well-structured and

organized database. Scripts used to generate the database, from downloading the

pollutant files for select years to addressing file inconsistencies, is publicly available.

Additionally, the database themselves for both integrated and continuous data from

1980 – 2019 are available. Data preparation and management accounted for more

than half of the work in this thesis. Thus, the accessibility of this data can remove

such a burden in future studies. This air pollution data can not only be applied to

health studies, but could be used for crop monitoring, investigating climate change

and many other domains [17, 99].

We explored seasonal, regional and temporal differences in air pollution concen-

trations as well as the cause of such differences. Urban locations (Toronto, Essex) had

the highest concentrations of particulate matter and its constituents due to high pop-

ulation density, heavy traffic and manufacturing facilities. Overall, we saw a reduction

in pollutant concentrations since 2000, except select sites which observed increased

summertime levels due to biomass burning. We identified that carbonaceous com-

pounds (elemental carbon and organic matter) comprise a significant portion of the

reconstructed mass (RCM) with is proportional contribution increasing in the winter

months (October–March).
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We used a single pollutant Generalized Additive Model to estimate the short-term

association between component pollutants and adverse health effects over time at a

single location, while accounting for confounders (Chapter 3). We explored associ-

ations based on the choice of the smooth function of time, seasonality, lagging and

morbidity/mortality variable. We observed that seasonality had an effect on the asso-

ciation between mortality and PM2.5 concentrations, with the most erratic estimates

being calculated in the cold season. There were significant differences between the

morbidity and mortality risk estimates, where both estimates were highly erratic.

There were several limitations in this work, including;

• study locations were selected based on population and are not representative of

regions with small populations;

• pollutant exposure measured at NAPS sites was generalized as the population

exposure for the census division;

• limited data availability, particularly for PM components which were measured

once every 3, 6 or 12 days;

• census division estimates do not reflect individual behaviour and exposure.

In this work we showed that carbons, sulphate and nitrate are the components of

PM2.5 which may be responsible for the majority of the acute human health effect

association as they are representative of the PM risk estimates. We identified that the

PM risk estimate can be used to inform the risk estimates of its largest components

and vice versa.

We developed a bivariate model (Chapter 4) to model multiple correlated pollu-

tants (in this case, PM2.5 and O3) using response surface and thin plate spline bases.
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This method showed promise, and allows a new viewpoint on a modeling problem

which is of high interest to a broad global community.

5.1 Future Work

The spatial coverage of this work was limited by the availability of data and census

divisions were selected based on their population. Combining in situ monitoring data

with other sources such as satellite measurements could grossly expand the availability

of data.

Following the work of [53, 26, 94, 85], our health effects models could be used

to study community-level metrics, with the addition of such variables in the models.

Examples of regional or individual metrics includes; regional socioeconomic status,

sex, race, smoking and obesity rates, education, median household income and city

greenness. Of course, this is quite idealistic and is highly dependent on the availability

of such data.

A large source of future work is improvements in the bivariate TPS model. We saw

extreme swings and large standard errors in confidence estimates for the estimates of

the TPS-based model, which is likely a sign of extreme values and contamination in

the estimation of the surface, as the total number of inputs is quite limited given the

total area of the surface. As this portion of the work was highly speculative, we leave

the solution of this issue to a future research project.

To summarize, key recommendations for future work are as follows;

• incorporate additional source(s) of air pollution data to increase the spatial

scope and estimate missing data;

• extend the spatial scope of the study;

• inclusion of additional confounders to the one pollutant model;
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• improvements to the bivariate model;

– investigate the inclusion of parameters to require the residual mortality

of the thin plate spline surface to increase as pollutant concentrations

increase;

– apply the model to all years combined (i.e. one model for all available

years of data).
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A. Data Summaries

Negative pollutant by census division

The count of negative integrated pollutant concentrations by CD are in the following

table. Blank values represent a count of zero.
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Census Division No. NAPS Date range Pollutant No. negative No. negative CATNAPS hourly No. negative CATNAPS hourly No. negative daily

stations raw values by NAPS station by CD

Division No. 1, NL (1001) 3 1990-01-18:2019-12-31 NO2 11

Division No. 1, NL (1001) 3 1989-04-01:2019-12-31 O3 6

Division No. 1, NL (1001) 3 1980-01-01:2019-12-31 SO2 61

Division No. 1, NL (1001) 3 1998-01-01:2019-12-31 PM2.5 160

Division No. 5, NL (1005) 3 2009-12-31:2019-12-31 SO2 1 1

Division No. 5, NL (1005) 3 2001-07-01:2019-12-31 NO2 3 22

Division No. 5, NL (1005) 3 2001-07-07:2019-12-31 PM2.5 2 46 1

Halifax, NS (1209) 10 1980-01-01:2019-12-31 O3 2

Halifax, NS (1209) 10 2001-06-19:2019-12-31 PM2.5 70 1

Halifax, NS (1209) 10 1980-01-02:2019-12-31 SO2 383 1

Halifax, NS (1209) 10 1980-01-01:2019-12-31 NO2 5 57 1

Saint John, NB (1301) 9 1980-01-01:2019-12-31 O3 1

Saint John, NB (1301) 9 1980-01-27:2019-12-31 SO2 395 1 162

Saint John, NB (1301) 9 1980-08-08:2019-12-31 NO2 21 11

Saint John, NB (1301) 9 1996-11-21:2019-12-31 PM2.5 261 12

Saint John, NB (1301) 9 1996-11-20:2004-05-30 PM10 47 1 1

Westmorland, NB (1307) 1 1998-09-01:2019-12-31 NO2 1 49

Westmorland, NB (1307) 1 1998-07-17:2019-12-31 O3 4

Westmorland, NB (1307) 1 1999-11-06:2019-12-31 PM2.5 50 11

York, NB (1310) 3 1999-04-24:2019-12-31 PM2.5 121 11

York, NB (1310) 3 1994-08-01:2019-12-31 O3 3

York, NB (1310) 3 1999-04-17:2019-12-31 NO2 3 65

Quebec, QC (2423) 9 1980-01-01:2019-12-31 NO2 16

Quebec, QC (2423) 9 1980-01-01:2019-12-31 SO2 119

Quebec, QC (2423) 9 1998-04-08:2019-12-31 PM2.5 21 14

Quebec, QC (2423) 9 1980-01-01:2019-12-31 O3 239 1

Le Haut-Richelieu, QC (2456) 1 1999-08-12:2019-12-31 NO2 4 6

Le Haut-Richelieu, QC (2456) 1 1999-11-27:2019-12-31 PM2.5 49 1 4

Le Haut-Richelieu, QC (2456) 1 1999-08-12:2019-12-31 O3 20

Longueuil, QC (2458) 4 2003-01-25:2019-12-31 PM2.5 14

Longueuil, QC (2458) 4 1982-01-03:2019-12-31 NO2 12

Longueuil, QC (2458) 4 1982-01-03:2019-12-31 SO2 1 13 390

Longueuil, QC (2458) 4 1982-01-03:2019-12-31 O3 127 1

Laval, QC (2465) 3 1980-01-02:1992-12-31 SO2 1 39

Laval, QC (2465) 3 2003-10-09:2019-12-31 PM2.5 7
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Census Division No. NAPS Date range Pollutant No. negative No. negative CATNAPS hourly No. negative CATNAPS hourly No. negative daily

stations raw values by NAPS station by CD

Laval, QC (2465) 3 1980-01-01:2019-12-31 NO2 5

Laval, QC (2465) 3 1980-01-01:2019-12-31 O3 61

Montreal, QC (2466) 25 1980-01-01:2019-12-31 O3 27

Montreal, QC (2466) 25 1980-01-01:2019-12-31 NO2 26

Montreal, QC (2466) 25 1980-01-01:2019-12-31 SO2 1 30

Montreal, QC (2466) 25 1997-09-01:2019-12-31 PM2.5 78 1

Gatineau, QC (2481) 3 1980-01-01:2019-12-31 NO2 8

Gatineau, QC (2481) 3 2003-04-16:2019-12-31 PM2.5 7

Gatineau, QC (2481) 3 1980-01-02:2019-12-31 SO2 17

Gatineau, QC (2481) 3 1992-01-01:2019-12-31 O3 10

Stormont, Dundas and Glengarry, ON (3501) 2 1980-01-01:2019-12-31 O3 5

Stormont, Dundas and Glengarry, ON (3501) 2 2003-04-17:2019-12-31 PM2.5 82 11

Stormont, Dundas and Glengarry, ON (3501) 2 1980-01-01:2019-12-31 NO2 19

Stormont, Dundas and Glengarry, ON (3501) 2 1980-01-01:2002-10-09 SO2 41 89

Ottawa, ON (3506) 4 1980-01-01:2019-12-31 O3 68

Ottawa, ON (3506) 4 1980-01-01:2019-12-31 NO2 22

Ottawa, ON (3506) 4 1998-01-01:2019-12-31 PM2.5 14 2

Ottawa, ON (3506) 4 1980-01-01:2019-12-31 SO2 2888 77

Peterborough, ON (3515) 2 1993-01-06:2019-12-31 O3 2

Peterborough, ON (3515) 2 1998-12-02:2001-02-26 PM10 1

Peterborough, ON (3515) 2 1980-01-01:2003-11-17 SO2 29

Peterborough, ON (3515) 2 1999-01-21:2019-12-31 NO2 6 8

Peterborough, ON (3515) 2 2001-02-28:2019-12-31 PM2.5 142 5 3

Durham, ON (3518) 3 1980-01-01:2017-12-31 O3 1 37

Durham, ON (3518) 3 1980-01-01:2017-12-31 NO2 2

Durham, ON (3518) 3 1980-01-01:2005-12-31 SO2 49

Durham, ON (3518) 3 1997-04-19:2017-12-31 PM2.5 19 12

York, ON (3519) 2 2001-06-19:2019-12-31 PM2.5 173 13

York, ON (3519) 2 1980-01-01:2019-12-31 O3 6

York, ON (3519) 2 2001-06-09:2006-12-31 SO2 13

York, ON (3519) 2 1983-06-09:2019-12-31 NO2 2

Toronto, ON (3520) 28 1980-01-01:2019-12-31 SO2 622 56

Toronto, ON (3520) 28 1997-01-01:2019-12-31 PM2.5 231 72

Toronto, ON (3520) 28 1980-01-01:2019-12-31 NO2 4 9

Toronto, ON (3520) 28 1980-01-01:2019-12-31 O3 6 246
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Census Division No. NAPS Date range Pollutant No. negative No. negative CATNAPS hourly No. negative CATNAPS hourly No. negative daily

stations raw values by NAPS station by CD

Peel, ON (3521) 5 1980-01-01:2019-12-31 O3 4 40

Peel, ON (3521) 5 1980-01-01:2019-12-31 NO2 1

Peel, ON (3521) 5 1980-01-01:2016-05-31 SO2 22 194

Peel, ON (3521) 5 1997-01-01:2019-12-31 PM2.5 68 17

Halton, ON (3524) 5 1980-01-01:2019-12-31 NO2 54 27

Halton, ON (3524) 5 1980-01-01:2019-12-31 O3 2 19

Halton, ON (3524) 5 1980-01-01:2006-12-31 SO2 7 36

Halton, ON (3524) 5 1999-05-11:2001-04-23 PM10 1

Halton, ON (3524) 5 2001-04-26:2019-12-31 PM2.5 74 15

Hamilton, ON (3525) 10 1980-01-01:2019-12-31 SO2 3231 375

Hamilton, ON (3525) 10 1980-01-01:2019-12-31 NO2 13

Hamilton, ON (3525) 10 1980-01-01:2019-12-31 O3 55

Hamilton, ON (3525) 10 1998-01-01:2019-12-31 PM2.5 783 43

Niagara, ON (3526) 4 1980-01-01:2019-12-31 O3 1 34

Niagara, ON (3526) 4 1980-01-01:2019-12-31 NO2 12

Niagara, ON (3526) 4 1998-01-01:2019-12-31 PM2.5 18 59

Niagara, ON (3526) 4 1980-01-01:2006-12-31 SO2 11 38

Haldimand-Norfolk, ON (3528) 2 1980-01-01:2019-12-31 NO2 175 12 8

Haldimand-Norfolk, ON (3528) 2 1998-01-01:2019-12-31 PM2.5 31 14 2

Haldimand-Norfolk, ON (3528) 2 1980-01-01:2019-12-31 O3 6

Brant, ON (3529) 2 2004-01-02:2019-12-31 NO2 5 4

Brant, ON (3529) 2 2004-01-01:2019-12-31 PM2.5 1 8

Brant, ON (3529) 2 1980-01-01:2006-12-31 SO2 1

Waterloo, ON (3530) 3 1980-01-01:2019-12-31 O3 24 19

Waterloo, ON (3530) 3 1980-01-01:2019-12-31 NO2 3

Waterloo, ON (3530) 3 1998-01-01:2019-12-31 PM2.5 34 100 7

Waterloo, ON (3530) 3 1980-01-01:2006-12-31 SO2 46

Essex, ON (3537) 6 1980-01-01:2019-12-31 O3 21 114 7

Essex, ON (3537) 6 1980-01-01:2019-12-31 SO2 6460 403 2

Essex, ON (3537) 6 1980-01-01:2019-12-31 O3 21 114 7

Essex, ON (3537) 6 1980-01-01:2019-12-31 NO2 2 1

Essex, ON (3537) 6 1999-03-18:2019-12-31 PM2.5 49 21 5

Lambton, ON (3538) 5 1980-01-01:2019-12-31 O3 24

Lambton, ON (3538) 5 1980-01-01:2019-12-31 NO2 15 10

Lambton, ON (3538) 5 1980-01-01:2019-12-31 SO2 7145 782 13
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Census Division No. NAPS Date range Pollutant No. negative No. negative CATNAPS hourly No. negative CATNAPS hourly No. negative daily

stations raw values by NAPS station by CD

Lambton, ON (3538) 5 2000-02-17:2019-12-31 PM2.5 36 4 5

Middlesex, ON (3539) 6 1980-01-22:2010-12-31 SO2 16 112

Middlesex, ON (3539) 6 1980-01-01:2019-12-31 NO2 6 4

Middlesex, ON (3539) 6 2001-01-01:2019-12-31 PM2.5 22 9

Middlesex, ON (3539) 6 1980-01-01:2019-12-31 O3 3 40

Simcoe, ON (3543) 3 2001-12-01:2019-12-31 NO2 2

Simcoe, ON (3543) 3 1981-06-27:2019-12-31 O3 8

Simcoe, ON (3543) 3 2001-12-01:2019-12-31 PM2.5 45 33

Simcoe, ON (3543) 3 2001-12-01:2006-12-31 SO2 8

Nipissing, ON (3548) 1 1999-09-10:2019-12-31 PM2.5 37 9

Nipissing, ON (3548) 1 1988-01-01:2019-12-31 NO2 3

Greater Sudbury / Grand Sudbury, ON (3553) 6 1980-01-01:2019-12-31 NO2 6

Greater Sudbury / Grand Sudbury, ON (3553) 6 2004-06-28:2019-12-31 PM2.5 66 11 20

Greater Sudbury / Grand Sudbury, ON (3553) 6 1980-01-01:2019-12-31 SO2 3409 366 7

Greater Sudbury / Grand Sudbury, ON (3553) 6 1980-01-01:2019-12-31 O3 5

Algoma, ON (3557) 7 1996-01-01:2001-12-31 PM10 7 2

Algoma, ON (3557) 7 2000-01-01:2019-12-31 PM2.5 13

Algoma, ON (3557) 7 1983-02-23:2019-12-31 NO2 10 7

Algoma, ON (3557) 7 1983-02-23:2019-12-31 O3 8 1

Algoma, ON (3557) 7 1980-01-01:2019-12-31 SO2 21 583

Thunder Bay, ON (3558) 5 2001-06-22:2019-12-31 PM2.5 9

Thunder Bay, ON (3558) 5 1980-01-01:2003-12-31 SO2 9

Thunder Bay, ON (3558) 5 1981-01-01:2019-12-31 O3 5 2

Division No. 7, MB (4607) 3 1993-12-10:2018-12-18 NO2 17 30 44

Division No. 7, MB (4607) 3 2001-06-20:2018-12-31 PM2.5 25 3

Division No. 7, MB (4607) 3 1987-01-02:2018-12-31 O3 1 45

Division No. 11, MB (4611) 7 1993-06-01:2018-12-31 PM10 54 16 17

Division No. 11, MB (4611) 7 1980-01-01:2018-12-31 NO2 177 69

Division No. 11, MB (4611) 7 1980-01-01:2018-12-31 O3 191

Division No. 11, MB (4611) 7 1980-01-01:2018-12-31 SO2 38

Division No. 11, MB (4611) 7 1997-09-06:2018-12-31 PM2.5 81 14 1

Division No. 6, SK (4706) 6 1980-01-01:2019-12-31 O3 5 2

Division No. 6, SK (4706) 6 1999-01-01:2017-12-31 PM10 1

Division No. 6, SK (4706) 6 1980-04-15:2019-12-31 NO2 3

Division No. 6, SK (4706) 6 1980-02-08:2019-12-31 SO2 11 262
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Census Division No. NAPS Date range Pollutant No. negative No. negative CATNAPS hourly No. negative CATNAPS hourly No. negative daily

stations raw values by NAPS station by CD

Division No. 6, SK (4706) 6 2001-01-01:2019-12-31 PM2.5 26 1

Division No. 11, SK (4711) 3 1984-01-01:2019-12-31 NO2 1

Division No. 11, SK (4711) 3 2003-07-11:2019-12-31 PM2.5 42 3

Division No. 11, SK (4711) 3 1980-02-20:2019-12-31 SO2 2 103

Division No. 11, SK (4711) 3 1984-01-01:2019-12-31 O3 1 15

Division No. 2, AB (4802) 1 2004-01-02:2019-12-31 NO2 4 4

Division No. 2, AB (4802) 1 2004-01-02:2019-12-31 O3 5

Division No. 2, AB (4802) 1 2003-10-02:2019-12-30 PM2.5 41

Division No. 2, AB (4802) 1 2004-01-02:2019-12-31 SO2 65

Division No. 6, AB (4806) 13 1980-01-02:2019-12-31 NO2 12

Division No. 6, AB (4806) 13 1980-01-02:2019-12-31 O3 176

Division No. 6, AB (4806) 13 1996-01-02:2012-04-16 PM10 3 2

Division No. 6, AB (4806) 13 1997-11-02:2019-12-31 PM2.5 54

Division No. 6, AB (4806) 13 1980-01-02:2019-12-31 SO2 46 388

Division No. 8, AB (4808) 5 2000-01-02:2019-12-31 NO2 1 1

Division No. 8, AB (4808) 5 2000-01-02:2019-12-31 O3 1 87

Division No. 8, AB (4808) 5 2001-01-03:2019-12-31 PM2.5 26 1

Division No. 8, AB (4808) 5 2001-01-02:2019-12-31 SO2 3 55

Division No. 10, AB (4810) 5 1994-01-02:2019-12-31 NO2 16 16

Division No. 10, AB (4810) 5 1993-04-02:2019-12-31 O3 15

Division No. 10, AB (4810) 5 2004-01-02:2014-12-31 PM10 5 1

Division No. 10, AB (4810) 5 2004-01-02:2019-12-31 PM2.5 19 1

Division No. 10, AB (4810) 5 2004-01-02:2019-12-31 SO2 48 31

Division No. 11, AB (4811) 27 1980-01-02:2019-12-31 NO2 231

Division No. 11, AB (4811) 27 1980-01-02:2019-12-31 O3 226

Division No. 11, AB (4811) 27 1994-01-02:2014-12-31 PM10 29

Division No. 11, AB (4811) 27 1998-04-18:2019-12-31 PM2.5 1 247 3

Division No. 11, AB (4811) 27 1980-01-02:2019-12-31 SO2 555 36

Division No. 16, AB (4816) 15 1986-07-03:2019-12-31 NO2 462 1 2

Division No. 16, AB (4816) 15 1986-07-02:2019-12-31 O3 243

Division No. 16, AB (4816) 15 1998-01-02:2019-12-31 PM2.5 309

Division No. 16, AB (4816) 15 1991-01-02:2019-12-31 SO2 786 60

Division No. 19, AB (4819) 4 1998-01-02:2019-12-31 NO2 3 15

Division No. 19, AB (4819) 4 1998-01-02:2019-12-31 O3 29

Division No. 19, AB (4819) 4 2004-02-02:2019-12-30 PM2.5 113 1
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Division No. 19, AB (4819) 4 2001-01-02:2019-12-31 SO2 43 44

Fraser Valley, BC (5909) 10 1986-01-02:2019-12-31 NO2 10

Fraser Valley, BC (5909) 10 1982-08-02:2019-12-31 O3 857 1

Fraser Valley, BC (5909) 10 1994-07-20:2019-12-31 PM10 20

Fraser Valley, BC (5909) 10 1995-06-02:2019-12-31 PM2.5 23 3

Fraser Valley, BC (5909) 10 1998-09-19:2019-12-31 SO2 13 9

Greater Vancouver, BC (5915) 34 1980-01-02:2019-12-31 NO2 90

Greater Vancouver, BC (5915) 34 1980-01-02:2019-12-31 O3 2265

Greater Vancouver, BC (5915) 34 1994-01-02:2019-12-31 PM10 15

Greater Vancouver, BC (5915) 34 1999-01-15:2019-12-31 PM2.5 1 77

Greater Vancouver, BC (5915) 34 1980-01-02:2019-12-31 SO2 328 1

Capital, BC (5917) 13 1980-01-02:2019-12-31 NO2 59

Capital, BC (5917) 13 1980-01-02:2019-12-31 O3 173 3

Capital, BC (5917) 13 2001-01-04:2013-09-16 PM10 1

Capital, BC (5917) 13 1998-05-02:2019-12-31 PM2.5 60 1

Capital, BC (5917) 13 1981-01-10:2019-12-31 SO2 117 55

Squamish-Lillooet, BC (5931) 3 2003-07-05:2019-12-31 NO2 6

Squamish-Lillooet, BC (5931) 3 1995-07-06:2019-12-31 O3 158 1

Squamish-Lillooet, BC (5931) 3 1998-01-03:2011-01-28 PM10 51 1

Squamish-Lillooet, BC (5931) 3 2005-01-02:2019-12-31 PM2.5 71 1

Squamish-Lillooet, BC (5931) 3 1998-01-02:2019-12-31 SO2 17 18

Thompson-Nicola, BC (5933) 2 1998-01-03:2019-12-31 NO2 33 1

Thompson-Nicola, BC (5933) 2 1998-01-03:2019-12-31 O3 67 2

Thompson-Nicola, BC (5933) 2 1995-01-02:2008-12-31 PM10 9 1

Thompson-Nicola, BC (5933) 2 1998-01-02:2019-12-30 PM2.5 19

Thompson-Nicola, BC (5933) 2 1980-02-23:2019-12-31 SO2 27 21

Central Okanagan, BC (5935) 1 1998-01-03:2019-06-03 NO2 16

Central Okanagan, BC (5935) 1 1987-07-02:2019-06-03 O3 53 7

Central Okanagan, BC (5935) 1 1987-07-02:2019-06-03 O3 53 1

Central Okanagan, BC (5935) 1 1995-01-02:2019-06-03 PM10 4

Central Okanagan, BC (5935) 1 1998-01-03:2019-06-12 PM2.5 14 3

Central Okanagan, BC (5935) 1 2001-01-03:2019-03-10 SO2 1 4

North Okanagan, BC (5937) 1 2002-10-16:2019-12-31 NO2 7

North Okanagan, BC (5937) 1 2002-10-16:2019-12-31 O3 35 10

North Okanagan, BC (5937) 1 2002-10-18:2019-11-21 PM10 4 1
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North Okanagan, BC (5937) 1 2002-10-16:2019-12-31 PM2.5 17

North Okanagan, BC (5937) 1 2003-12-18:2013-10-29 SO2 3

Cariboo, BC (5941) 7 1998-01-03:2019-12-31 NO2 63

Cariboo, BC (5941) 7 1992-04-16:2019-12-31 O3 140

Cariboo, BC (5941) 7 1995-01-02:2019-12-31 PM10 70

Cariboo, BC (5941) 7 2000-03-11:2019-12-31 PM2.5 385 1

Cariboo, BC (5941) 7 2006-07-27:2019-12-31 SO2 35 9

Fraser-Fort George, BC (5953) 11 1998-01-03:2019-12-31 NO2 7 2

Fraser-Fort George, BC (5953) 11 1995-04-29:2019-12-31 O3 121 1

Fraser-Fort George, BC (5953) 11 1995-01-02:2019-12-31 PM10 53

Fraser-Fort George, BC (5953) 11 1998-01-02:2019-12-31 PM2.5 2 166 7

Fraser-Fort George, BC (5953) 11 2001-01-03:2019-12-31 SO2 541 39

Table A.1: Count of negative pollutant concentrations by pollutant and census divisions. Missing values indicate a count of
zero.
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Mapping from CD to NAPS Station

The table on the next page shows the mapping between census division (name and

unique identifier) to naps station, by station ID.
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Census Division NAPS Station ID(s)

Division No. 1, NL (1001) 10102, 10401, 10101

Division No. 5, NL (1005) 10201, 10301, 10602

Halifax, NS (1209) 30113, 30115, 30116, 30117, 30118, 30120, 30601, 31001, 30101, 30114

Saint John, NB (1301) 40202, 40203, 40204, 40206, 40207, 40209, 40501, 40208, 40201

Westmorland, NB (1307) 40302

York, NB (1310) 40103, 40104, 40801

Quebec, QC (2423) 50304, 50306, 50307, 50308, 50309, 50310, 50311, 50303, 50305

Le Haut-Richelieu, QC (2456) 55301

Longueuil, QC (2458) 50108, 50119, 50121, 50122

Laval, QC (2465) 50111, 50112, 50113

Montreal, QC (2466) 50102, 50103, 50104, 50107, 50109, 50110, 50115, 50116, 50120, 50123, 50126, 50128, 50129,

50130, 50134, 50135, 50136, 50138, 50133, 50101, 50105, 50106, 50117, 50118, 50131

Gatineau, QC (2481) 50203, 50204, 50201

Stormont, Dundas and Glengarry, ON (3501) 61201, 65701

Ottawa, ON (3506) 60101, 60104, 60105, 60106

Peterborough, ON (3515) 61103, 61104

Durham, ON (3518) 61701, 61702

York, ON (3519) 63201, 65101

Toronto, ON (3520) 60401, 60402, 60403, 60410, 60413, 60414, 60417, 60418, 60419, 60420, 60421, 60422,

60423, 60424, 60425, 60429, 60430, 60433, 60435, 60440, 60412, 60409, 60411

Peel, ON (3521) 60415, 60428, 60432, 60434, 60450

Halton, ON (3524) 61601, 61602, 61603, 63001

Hamilton, ON (3525) 60501, 60512, 60513, 60514, 60515, 60505, 60511, 60518, 60519

Niagara, ON (3526) 61301, 61302, 62901, 62902

Haldimand-Norfolk, ON (3528) 62601, 62701

Brant, ON (3529) 61402, 61401

Waterloo, ON (3530) 61501, 61502, 62801

Essex, ON (3537) 60204, 60211, 65601, 60203, 60201, 60212

Lambton, ON (3538) 61004, 61005, 61009, 61007, 61001

Middlesex, ON (3539) 60901, 60903, 60904, 62401, 63601, 64301

Simcoe, ON (3543) 63101, 64401, 65001

Nipissing, ON (3548) 62001

Greater Sudbury / Grand Sudbury, ON (3553) 60602, 60607, 60609, 60610, 63501, 60606

Algoma, ON (3557) 60706, 60707, 60709, 64101, 60704, 60705, 60708

Thunder Bay, ON (3558) 60806, 60807, 60809, 63401, 63901

Division No. 7, MB (4607) 70203, 70201, 70202
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Census Division NAPS Station ID(s)

Division No. 11, MB (4611) 70118, 70119, 70101, 70102, 70103, 70104, 70120

Division No. 6, SK (4706) 80109, 80110, 80111, 80801, 80901, 80108

Division No. 11, SK (4711) 80209, 80211, 80202

Division No. 2, AB (4802) 90502

Division No. 6, AB (4806) 90218, 90222, 90227, 90228, 90229, 90230, 90250, 92701, 93301, 93401, 94101, 90219, 90220

Division No. 8, AB (4808) 90302, 90303, 90304, 93501, 93701

Division No. 10, AB (4810) 90606, 90609, 90901, 91101, 92201

Division No. 11, AB (4811) 90120, 90121, 90122, 90130, 90133, 90134, 90135, 90136, 90601, 90607, 90608,

91301, 91401, 92601, 93101, 90602, 90603, 90605, 92301, 93801, 94201, 94202, 90114,

90131, 90604, 90132, 92801

Division No. 16, AB (4816) 90701, 90702, 90801, 90806, 90807, 90808, 91801, 94601, 90703, 90805, 92101, 92102,

90802, 90803, 90804

Division No. 19, AB (4819) 91501, 92001, 93001, 94001

Fraser Valley, BC (5909) 100143, 101001, 101002, 101003, 101004, 101005, 101101, 101401, 103602, 105401

Greater Vancouver, BC (5915) 100103, 100106, 100108, 100109, 100110, 100111, 100112, 100118, 100119, 100120, 100121, 100122,

100123, 100124, 100125, 100126, 100127, 100128, 100129, 100130, 100131, 100132, 100134,

100135, 100140, 100141, 101201, 101202, 101301, 101501, 100105, 100136, 100137, 100138

Capital, BC (5917) 100302, 100303, 100304, 100307, 100308, 100314, 100316, 102001, 100301, 100317, 100318,

100313, 100312

Squamish-Lillooet, BC (5931) 101601, 101603, 105001

Thompson-Nicola, BC (5933) 100401, 100402

Central Okanagan, BC (5935) 100701

North Okanagan, BC (5937) 104003

Cariboo, BC (5941) 101701, 102701, 102706, 101702, 101703, 101704, 102702

Fraser-Fort George, BC (5953) 100202, 100201, 100205, 100210, 100211, 100212, 100213, 100214, 106101, 100203, 100209

Table A.2: Mapping from census division to NAPS stations
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B. Ozone Risk Estimates

Figure B.1: Annual mortality (both cardiovascular and pulmonary) risk estimates for
O3 in Toronto, ON, for three seasonal breakdowns (all year; warm season;
and cold season) and for varying smooth functions of time (natural spline
(NS); and Discrete Prolate Spheroidal (Slepian) Sequence (SLP)), with
6 and 12 degrees of freedom (df) per year
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Figure B.2: Annual mortality (both cardiovascular and pulmonary) risk estimates for
O3 in Toronto, ON, for three seasonal breakdowns (all year; warm season;
and cold season) and for three lags on the pollutant data (o days; 1 day;
and 2 days)

Figure B.3: Annual morbidity (both cardiovascular and pulmonary) risk estimates
for O3 in Toronto, ON, for three seasonal breakdowns (all year; warm
season; and cold season) and for three lags on the pollutant data (o days;
1 day; and 2 days)

122



C. Bivariate Risk Estimates

Figure C.1: Comparison of single and multi pollutant morbidity models for synthetic
and discrete lag, using a SLP with 12 df for the smooth function of time
in Greater Vancouver, BC
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Figure C.2: Comparison of single and multi pollutant mortality models for discrete
lag, using a SLP with 12 df for the smooth function of time in Greater
Vancouver, BC

Figure C.3: Comparison of single and multi pollutant morbidity models for discrete
lag, using a SLP with 12 df for the smooth function of time in Greater
Vancouver, BC
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Figure C.4: Comparison of single and multi pollutant mortality models for discrete
lag, using a SLP with 12 df for the smooth function of time in Edmonton,
AB

Figure C.5: Comparison of single and multi pollutant morbidity models for discrete
lag, using a SLP with 12 df for the smooth function of time in Edmonton,
AB
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Figure C.6: Comparison of single and multi pollutant mortality models for discrete
lag, using a SLP with 12 df for the smooth function of time in Ottawa,
ON

Figure C.7: Comparison of single and multi pollutant morbidity models for discrete
lag, using a SLP with 12 df for the smooth function of time in Ottawa,
ON
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