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ABSTRACT 

Linking large scale monitoring and spatially explicit capture–recapture models to identify factors 

shaping large carnivore densities: case study of the American black bear in Ontario, Canada 

 
Brynn Andrea McLellan 

 
 

Understanding the spatial ecology of large carnivores in increasingly complex, multi-use 

landscapes is critical for effective conservation and management. Complementary to this need 

are robust monitoring and statistical techniques to understand the effect of bottom-up and top-

down processes on wildlife population densities. However, for wide-ranging species, such 

knowledge is often hindered by difficulties in conducting studies over large spatial extents to 

fully capture the range of processes influencing populations. This thesis addresses research gaps 

in the above themes in the context of the American black bear (Ursus americanus) in the multi-

use landscape of Ontario, Canada.  

First, I assess the performance of a widely adopted statistical modelling technique – 

spatially explicit capture-recapture (SECR) – for estimating densities of large carnivores 

(Chapter 2). Using simulations, I demonstrate that while SECR models are generally robust to 

unmodeled spatial and sex-based variation in populations, ignoring high levels of this variation 

can lead to bias with consequences for management and conservation.  

In Chapter 3, I investigate fine-scale drivers of black bear population density within study 

areas and forest regions by applying SECR models to a large-scale, multi-year black bear spatial 

capture-recapture dataset. To identify more generalizable patterns, in Chapter 4 I then assess 

patterns of black bear density across the province and within forest regions as a function of 

coarse landscape-level factors using the same datasets and assess the trade-offs between three 
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different modeling techniques. Environmental variables were important drivers of black bear 

density across the province, while anthropogenic variables were more important in structuring 

finer-scale space use within study areas. Within forest regions these variables acted as both 

bottom-up and top-down processes that were consistent with ecological influences on black bear 

foods and intensity of human influences on the species’ avoidance of developed habitats.  

Collectively, this thesis highlights the opportunities and challenges of working across 

multiple scales and over expansive landscapes within a SECR framework. Specifically, the 

multi-scale approach of this thesis allows for robust inference of the mechanisms structuring fine 

and broad scale patterns in black bear densities and offers insight to the relative influence of top-

down and bottom-up forces in driving these patterns. Taken together, this thesis provides an 

approach for monitoring large carnivore population dynamics that can be leveraged for the 

species conservation and management in increasingly human-modified landscapes.    
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Preface  

This thesis is based on data collected from the Ministry of Natural Resources and Forestry  

(MNRF) long-term black bear monitoring program. Research staff from the Wildlife Research 

and Monitoring Section designed and established sampling arrays for trap locations and field 

sampling was conducted by MNRF staff across 26 districts. Genetic analyses were performed by 

the MNRF DNA lab personnel. Access to these datasets were provided by my supervisor, Joe 

Northrup (MNRF, Trent University), and Eric Howe (MNRF). 

The data chapters presented in the body of this thesis (Chapters 2 - 4) are formatted as 

manuscripts for submission to peer-reviewed journals. Conceptualization of research questions 

and analytical approaches was developed with Joe Northrup and Eric Howe, with input from my 

committee members Justina Ray (Wildlife Conservation Society Canada, adjunct professor Trent 

University) and Adam Ford (University of British Columbia). Because of the collaborative 

nature of the study, I use the term ‘we’ in the data chapters. However, I was responsible for all 

major areas of data analysis and wrote original drafts of all data chapters with guidance and input 

from co-authors, as identified below. The introduction and general discussion of this thesis 

(Chapters 1 and 5) are my original work, with suggestions and edits from Joe Northrup.  

Chapter 2  

Authors: Brynn McLellan (BM), Eric Howe (EH), Joe Northrup (JN), Robby Marrotte (RM).  

BM, EH and JN conceptualized research ideas and designed the methodology. BM 

conducted data analysis and wrote the original manuscript, with JN, EH and RM 

providing guidance with analysis and interpreting results. All authors and JR provided 

manuscript suggestions and edits. 

Chapter 3  
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Authors: Brynn McLellan (BM), Eric Howe (EH), Joe Northrup (JN)  

All authors conceptualized research ideas and designed the methodology. BM conducted 

data analysis and wrote the original manuscript, with JN and EH providing guidance with 

analysis and interpreting results and manuscript edits.  

Chapter 4  

Authors: Brynn McLellan (BM), Eric Howe (EH), Joe Northrup (JN) 

All authors conceptualized research ideas and designed the methodology. BM conducted 

data analysis and wrote the original manuscript, with JN and EH providing guidance with 

analysis and interpreting results and JN providing manuscript edits.  
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Chapter 1: General introduction 

1.1 Challenges of contemporary carnivore management and conservation 

Humans have become one of the primary drivers of changes in ecological systems, with far-

reaching impacts to global biodiversity, ecosystem functioning and human well-being (Ripple et 

al. 2014, Newbold et al. 2015). The rapidly expanding human footprint, coupled with changing 

environmental conditions driven by climate change, pose ongoing threats to all species, but large 

terrestrial mammalian carnivores face particular challenges (hereafter, carnivores; Ripple et al. 

2014, Tilman et al. 2017, Su et al. 2018, Ashrafzadeh et al. 2022). Carnivores are vulnerable to 

the cumulative effects of these stressors because these species tend to have low densities, slow 

reproductive rates and wide-range behaviors that often brings them into conflict with people 

(Cardillo et al. 2004). As a result, many carnivores have experienced historical range 

contractions and population declines associated with habitat loss and degradation, persecution, 

utilization, and depletion of prey (Ceballos and Ehrlich 2002, Laliberte and Ripple 2004). 

Consequently, understanding how humans and carnivores can coexist in shared landscapes has 

become an increasing focus of research and goal of many carnivore management and 

conservation programs (Lozano et al. 2019, Treves and Karanth 2003).  

Challenges of carnivore conservation and management arise in part due to polarizing societal 

perspectives towards these species. Carnivores are often revered for their economic, cultural, and 

aesthetic value, yet can be simultaneously feared due to the threats they can pose to human safety 

and livelihoods (Ripple et al. 2014). Moreover, these species exert widespread influences on the 

structure and functioning of terrestrial ecosystem (Beschta and Ripple 2009) and can be viewed 

as umbrella species due to their large space requirements. Thus, due to their importance in 

conserving biodiversity as well as being charismatic animals, many carnivores have become a 
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symbol for wildlife conservation (Karanth and Chellam 2009). To that end, the persistence of 

carnivore populations in human-modified landscapes remains one of the most pressing and 

challenging issues facing contemporary ecologists, wildlife managers, and policy makers (Lute 

et al. 2018, Lamb et al. 2020).  

This thesis is guided by two research areas in ecology that are central to addressing 

challenges of conserving and managing carnivores. The first is the use of increasingly 

sophisticated analytical methods for estimating wildlife population abundance and distribution, 

and the second is the application of these methods to understand how wildlife populations 

respond to human modification of landscapes and changing environmental conditions. I address 

these overarching themes within the context of a large bodied terrestrial mammal, the American 

black bear (Ursus americanus), in the multi-use landscape of Ontario, Canada. In this first 

chapter, I provide an overview of these themes as they relate to the study context and present the 

objectives and hypotheses that frame my research. Then I introduce the three data chapters that 

comprise the body of this thesis, followed by a description of the general modeling approach 

used in all data chapters.  

1.2 Pattern and scale in the study of population ecology  

Quantifying spatial variation in population density forms one of the foundations of ecology 

(Brown 1984, Lamb et al. 2019). Identifying how many individuals of a species occur within an 

area is fundamental to understanding species-habitat relationships (Fretwell and Lucas 1969), 

population dynamics (Turchin 2001) and patterns of dispersal (Travis and Murrell 1999) among 

numerous other processes. As a result, while quantifying population density provides valuable 

insight into ecological processes and patterns it also structures the primary evidence required for 
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many large-scale carnivore management and conservation programs (Royle et al. 2004, Burton et 

al. 2015, Tourani 2021, Jones 2011).  

The distribution and abundance of species are largely influenced by species habitat 

requirements and tolerances (Brown 1984). Subsequently, landscape ecology frames spatial 

heterogeneity as a key factor shaping variation in ecological processes (e.g., movement, habitat 

use and selection, vital rates) that gives rise to spatial patterns in population density (Turner 

1989, Turner 2005, Scheiner and Willig 2008). In turn, wherever heterogeneity exists, it 

necessitates the consideration of the theme of spatial scale (hereafter, scale), because how we 

understand heterogeneity is fundamentally dependent on the scale at which it is measured (Wiens 

1989). Levin’s seminal paper “The problem of pattern and scale in ecology” (1992) provided a 

launching point of ecological thinking on the concept of scale. When considering scale, extent is 

the size of the study area, grain is the area surrounding a point over which a process is measured, 

and resolution is the minimum mapping unit of data that reflects how finely a covariate is 

measured. Compared to resolution which is typically restricted to the minimum pixel size in the 

available data, grain is up to the analyst and can be calculated across continuous space as a buffer 

or radius around a sample point based on the biology of the study species or data-driven through 

model selection methods (Wiens 1989, Wheatley and Johnson 2009, Northrup et al. 2021).  

Despite the wide-spread recognition that the scale of an analysis has profound implications 

on the understanding of ecological processes, there remains considerable ambiguity on its 

application (Hobbs 2003). Ecological processes may operate across multiple scales, and 

therefore what may appear to be important at one scale may not be at another (Turner 1989). 

Thus, it is increasingly recognized that all ecological studies are scale-sensitive and decisions 

made to address management and conservation challenges must consider the scale at which data 
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are collected and synthesized (Turner 1989, Ciarniello et al. 2007, Toews et al. 2017). The issue 

of scale is particularly important when interpreting single estimates of population density; both 

spatial and temporal scales interact such that current and past habitat conditions and human 

relationships with carnivores shape carnivore abundance and distribution (Boulanger et al. 2018). 

Consequently, identifying the most appropriate scale at which to conduct ecological research and 

how to best translate information across scales remains an ongoing challenge (Schneider 2001, 

Wu 2004). To this end, spatial heterogeneity and scale are interrelated concepts that are 

perceived as both challenging and unifying concepts in ecology (Levin 1992, Toews et al. 2017).  

Management of carnivores and their habitats occurs across a variety of scales and often over 

large landscapes. For example, designation of protected areas for wide-ranging carnivores often 

occurs at broader extents whereas matters related to human access or sport harvest can occur 

more locally. Consequently, understanding ecological processes requires a multi-scale 

characterization of spatial patterns across large landscapes (Wiens 1989, Wu et al. 2000, Towes 

et al. 2017). However, despite the theoretical and applied importance, understanding how 

different factors shape ecological patterns remains poorly understood, in part because studying 

interactions among multiple drivers and scales remains challenging (Turner 2005). This is 

particularly true for carnivore research as the species are notoriously difficult to monitor due to 

their low and variable densities and detectability, paired with wide-ranging movements and 

home-ranges that cover large landscapes (MacKenzie et al. 2005).  

1.3 Bottom-up and top-down influences on carnivores  

How animals distribute themselves across their range – that is, second-order selection 

(Johnson 1980) – is assumed to relate to the ecological requirements of a species and the spatial 

scale at which important factors regulating and limiting populations occur (Brown 1984, 
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Duquette et al. 2017). Despite being some of the most widely studied species, there remains 

considerable challenges in measuring and identifying the key factors influencing carnivore 

population densities. One school of thought holds animal population limitation by top-down 

mortality to be the most important process determining population abundance, whereas others 

consider regulation via bottom-up food resources as the primary process (Hunter and Price 

1992). While often treated as mutually exclusive, bottom-up and top-down factors are most 

likely to operate simultaneously, with the relative strength of their effects varying across 

landscapes and scales (Hunter and Price 1992, Nielsen et al. 2017). Moreover, as humans 

continue to transform natural landscapes on a global scale, modification of habitat can increase 

or decrease important food resources while concurrently exposing populations to a mosaic of 

human mortality risks such as roads, hunting, and human-wildlife conflict (Treves and Karanth 

2003, Laufenberg et al. 2018). To that end, understanding the relationship between bottom-up 

and top-down factors and large carnivore density across scales and over large landscapes is 

critical for predicting ecological outcomes and informing conservation and management (Schoen 

1990). 

1.4 Estimating carnivore population size and distribution: classic and contemporary 

techniques 

The ability to estimate carnivore abundance and distribution has improved with the advent 

and application of non-invasive sampling methods. In particular, non-invasive genetic sampling 

and camera traps, coupled with advances in ecological statistical techniques, have markedly 

improved our ability to study and monitor elusive species (Lewis et al. 2018). For decades, 

capture-recapture (CR) methods represented one of the most common approaches to estimate 

animal population size and formed the foundation of ecological statistics as applied to population 
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ecology (Royle et al. 2014). However, a major limitation of classical CR methods is they are 

inherently non-spatial, accounting for neither the spatial structure nor the ecological processes 

that give rise to the distribution of animal detections or the spatial nature of the sampling (Royle 

et al. 2013, Royle et al. 2018). It was not until spatially explicit capture-recapture (herein 

referred to as SECR; Efford 2004, Royle et al. 2014) methods were developed that many of these 

issues were resolved. By making ecological processes – including density, movement, and space 

use of individuals – explicit in the model, SECR unifies fundamental concepts of population and 

landscape ecology and provides a means of modeling wildlife distribution in space, as well as 

investigating the drivers of this distribution, with direct implications for conservation and 

management (Royle et al. 2014). However, while SECR models and non-invasive sampling 

methods represent an unparalleled opportunity to quantify population patterns in a widespread 

manner, there still remains limited SECR studies conducted across broad landscapes ( > 10 000 

km2; Tourani 2021), which introduces substantial challenges to applying SECR methods.  

1.5 Focal species: black bears in Ontario, Canada  

The American black bear in North America typifies the challenges facing carnivore 

management and coexistence. Black bears influence ecosystem dynamics (Enders et al. 2012, 

Levi et al. 2020), are integrated into the culture of many Indigenous peoples (Hallowell 1926) 

and provide economic benefits through ecotourism and harvest (Poulin et al. 2003). Further, 

although black bears may be characterized as a charismatic species that represents a symbol of 

wilderness, they are also often persecuted due to their tendency to damage property and come 

into conflict with humans and livestock (Poulin et al. 2003, Hagani et al. 2021). Moreover, as a 

popular game animal, black bears are subject to highly publicized and politically charged debates 
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surrounding hunting regulations (Poulin et al. 2003). Lastly, as with many large carnivores, black 

bears range widely and are elusive, making population estimation and monitoring challenging.  

Black bears are found throughout most of Ontario Canada, although densities are lower in the 

northern boreal (Herrero 1972, Poulin et al. 2003). They are characterized by low-densities, 

wide-ranging behaviours, and slow reproductive rates that make them vulnerable to the 

cumulative effects of human persecution and changing habitats conditions (Kolenosky 1990, 

Obbard and Howe 2008). Thus, the species’ population dynamics are largely driven by inter-

related bottom-up and top-down factors. As with many large mammals, humans can be the 

predominate top-down pressure influencing black bear survival, directly through hunting or 

vehicle collisions or indirectly through human-wildlife conflict (Hebblewhite et al. 2003, 

Gantchoff et al. 2020). In Ontario, black bears are subject to substantial harvest and regularly 

come into conflict with people (Kolenosky 1986, Obbard et al. 2014, Obbard et al. 2017; 

Northrup et al. in press). Further, as a species that depends on accumulated fat stores during 

winter hibernation and for reproduction, their demographic rates are subject to bottom-up 

processes including the availability, quality, and diversity of food sources (Kolenosky 1990, 

McLaughlin et al. 1994, Costello et al. 2003). Main food sources for Ontario black bears include 

vegetation and hard and soft mast, primarily found in uneven-aged mixed coniferous and 

deciduous forests (Romain et al. 2013).  

Bottom-up and top-down process are tightly linked, with human interference and alteration 

of habitats (i.e., land-use conversion, habitat loss and fragmentation) being a primary factor 

influencing bear behaviour and space usage directly and indirectly. For instance, timber harvest 

or wildfires can improve bear habitat by creating open early successional forests that act as 

important foraging grounds or can degrade and render habitat unavailable to bears (Brodeur et al. 



 

 8 

2008, Romain et al. 2013). Further, forestry often creates extensive road networks that can 

provide high quality vegetation for bears (Mosnier et al. 2008); however, such benefits can be 

offset by increased human activity associated with roads and subsequently higher rates of bear 

mortality (McLellan 1989, Proctor et al. 2019). Moreover, human settlements and agriculture can 

provide areas of supplemental food, paradoxically attracting bears to areas of higher mortality 

risks that may results in population sinks (McLaughlin et al. 1994, Baruch-Mordo et al. 2014, 

Laufenberg et al. 2018, Penteriani et al. 2019).  

Ontario black bears are managed as a game species by the Ministry of Natural Resources and 

Forestry  (MNRF). Management of black bear populations and their habitat involves different 

spatial scales due to the species’ expansive geographical range coupled with wide-ranging 

individual movements (Schoen 1990). Population management occurs at the Wildlife 

Management Unit (WMU) level (Newton and Obbard 2018) where non-invasive genetic spatial 

capture-recapture surveys have been used to estimate abundance and density in most huntable 

WMUs since 2004 (Figure 1.1; Obbard et al. 2010, Howe et al. 2013, Newton and Obbard 2018). 

Curvilinear arrays of approximately 40 baited barbed-wire hair corrals (Woods et al. 1999) have 

been used to sample black bears in the spring and early summer. From 2017 to 2019, a total of 

78 study areas were sampled with different areas sampled each year. These population surveys 

are ongoing, with estimates contributing to district management decisions (Newton and Obbard 

2018). Comparatively, habitat management occurs indirectly through application of forest 

management guidelines at the landscape and stand or site levels for the provision of a variety of 

wildlife species (OMNRF 2009).  
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Figure 1.1. Location of traplines of baited barbed wire hair corrals across the Great Lakes – St 
Lawrence (GLSL) and boreal forest regions (Rowe 1972) in Ontario, Canada where black bear 
hair samples were collected between 2017 - 2019. At the scale in Figure A, traplines appear as 
thin lines. Black points in Figure B represent baited barbed wire corrals. Figure C shows a black 
bear at a corral.  

��������	�

����

����

����

��	
��
���


��	����	
����

�����	

����

���������
���

A B

C



 

 10 

1.6 Research objectives, hypotheses and predictions, and thesis structure  

The MNRF surveys constitute one of the largest datasets available for understanding the 

factors influencing carnivore density and have been collected across an expansive, continuous 

geographical area over several years. The climatic and land-use patterns in Ontario – with higher 

habitat fragmentation and human densities in the South compared to the North and gradient in 

productivity increasing from the West to the East – reflect general trends in black bear habitat 

observed across the continent. As such, the Ontario black bear population and MNRF surveys 

represent an ideal study system to produce an integrated picture of the underlying forces shaping 

variation in carnivore densities across spatial extents previously unattainable.  

In this thesis I leverage the MNRF surveys and SECR models to address two research 

objectives:  

1. Evaluate the ability of SECR modeling methods to provide robust and unbiased 

density estimates for large scale surveys of carnivores   

2. Identify key bottom-up and top-down factors, and the relative influence of these 

factors, driving spatial variation in black bear densities across Ontario  

A multiple competing hypothesis framework is used to address the second objective. Specific 

hypotheses and predictions for the second objective are outlined in Table 1.1 and Figure 1.2.   

1.6.1 Thesis structure  

The core of this thesis consists of three data chapters (Chapters 2 to 4) presented as a 

collection of manuscripts formatted for submission to a peer-reviewed journal, followed by 

general conclusions and discussion (Chapter 5). All chapters (Chapters 1 - 5) have a joint list of 

references and appendices, found at the end of the thesis.   
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Chapter 2 addresses the first research objective by using simulations to assess the 

consequences of unmodeled heterogeneity on the performance of SECR models and model 

selection via information theoretic criteria. Insight from these simulations inform the modeling 

structure in the following data chapters. Chapters 3 and 4 address the second research objective, 

where the former assesses factors shaping density at a finer extent and the latter at a broader 

extent. In Chapter 3, I seek to understand how environmental and anthropogenic factors 

influence local variation in black bear distribution. I apply SECR models to the MNRF survey 

datasets to assess the influence of fine-grained spatial covariates representing natural 

productivity and human disturbances on black bear distribution within each study area and across 

two forest regions. Then, in Chapter 4 I take a broader-scale approach and examine the influence 

of coarse-grained landscape level factors representing bottom-up and top-down factors on black 

bear density across the province and forest regions, as well as assess the trade-offs between three 

different modeling techniques. Chapter 5 consists of general conclusions where results are 

synthesized and contextualized within the broader field of literature, research strengths and 

limitations are highlighted, and applications to management are suggested.  

1.7 Spatially explicit capture–recapture (SECR) model framework      

Throughout this thesis, the broader modeling framework that I employ is spatially 

explicit capture-recapture (SECR; Royle et al. 2014). While I briefly outline the general 

modeling approach in the following section to provide context for this thesis, there are numerous 

extensions and modifications that I detail, where applied, in the following chapters.   

This model is a hierarchical model that uses spatial-detection histories of animals to 

account for spatial variation in probability of detection across a landscape. The model is 

composed of two sub-models, a detection model and state model. The detection model describes 
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the probability of detecting an animal at each detector as a function of distance from the centroid 

of the space that an animal occupies during the period in which detectors are active, known as an 

animal’s activity center. Animals have highest probability of detection at their activity center, 

with declining probability as the distance from the activity center increases. The state model then 

estimates the distribution of activity centers with a region of interest which can be used to 

estimate of density.  

Within a sampling occasion, baited barbed-wire hair corrals (hereafter, detectors) can 

detect multiple bears but cannot distinguish between multiple visits of the same individual; such 

detectors are referred to as ‘proximity detectors’ in SECR. If individual i is detected at detector j 

at least once during sampling occasion k, then the detection history for that individual is yijk = 1 

and if the individual is not detected yijk = 0. For the basic SECR model, the encounter 

frequencies yijk follows a Bernoulli distribution such that  

yijk ~ Bernoulli(pijk).  

The probability of detecting individual i at detector j is pijk and is modeled using an 

encounter model proportional to the Gaussian probability density function, or half-normal 

detection function, such that  

pijk = p0𝑒#$!%"# , 

For a Gaussian model α& = (1/2σ') and p0 is the baseline detection probability at distance zero. 

The spatial parameter σ describes the rate at which detection probability declines as a function of 

Euclidean distance dij = d(xj, sj)2 between and individuals activity center si and the detector 

location xj. As follows, σ can be interpreted as a detection range which is proportional to an 

animal’s space use when activity centers are static, home ranges are symmetric and animals use 

space within home ranges independently (Dunpont et al. 2021, Royle et al. 2014). The parameter 
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p0 can further be modeled as a function of individual, detector and time level covariates thought 

to influence encounter probability as follows:  

logit(p0,ijk) = α0 + α2Xijk. 

where α2 is the coefficient to estimate and Xijk is some covariate that potentially varies by the 

individual i, detector j, or occasion k, for example, whether an individual has been captured at a 

trap previously.  

Within the detection model, the detector locations xj are known but the activity centers si 

are latent variables. Accordingly, the state model describes the distribution of unobserved 

locations of activity centers si within the state space 𝒮. The state model can be formulated as a 

homogeneous Poisson point process where activity centers are distributed randomly across the 

area of the state space 𝒮. An inhomogeneous point process can also be used in which the 

intensity parameter is modeled as a function of spatially referenced covariates (often habitat 

features) and a vector of regression coefficients 𝛽. In other words, using a Poisson log-linear 

regression framework,  

 Nc ~ Poisson(𝜙() 

log(𝜙()	= 𝛽) +∑ 𝛽*𝑋*	*
*+&  

where Nc is the number of bear activity centers si in the landscape pixel c and 𝜙( is the expected 

number of activity centers in the pixel c given the covariate values at c. There are 𝑣 number of 

covariates 𝑋* with corresponding regression coefficients 𝛽* , and 𝛽)	is the intercept. This 

inhomogeneous Poisson point process allows variation in density with variation in spatial 

covariates. The final model can be fit using marginal likelihood (Borchers and Efford 2008) 

where the latent variables are removed from the likelihood by integration or Bayesian analysis by 
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Markov chain Monte Carlo (Royle and Young 2008) where the activity centers are directly 

estimated alongside other variables and unknown parameters.  
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Table 1.1. Multiple-hypothesis framework for comparing bottom-up and top-down factors shaping black bear density. Rows represent 
anthropogenic and environmental factors. Columns represent hypotheses about if a factor acts as a bottom-up (BU) and/or top-down 
(TD) process, the direction of effect (i.e., if a factor positively [+] or negatively [–] influences density), the mechanisms underlying 
each factor (HCM = human-caused mortality; D = human disturbance [human/livestock access and presence]; R = resource 
availability [food, habitat, shelter]), and black bear literature to support predictions. Figure 1 illustrates predictions in schematic 
diagram. 
 

Category Factor Hypothesis Prediction References 
   Mechanism Description Effect  

Anthropogenic  Harvest   TD HCM; D Source of mortality2; provides 
human access to bear habitat; 
contributes to displacement 
 

– 1 1 Loosen et al. 2013 
2 Gantchoff et al. 2020 

 Roads  TD HCM; D Cause of animal-vehicle 
collisions5; barrier to movement; 
provides human access to habitat 
contributing to landscape 
fragmentation and elevated 
human-bear interactions and 
mortality4 
 

– 3 3 Humm et al. 2017 
4 McFadden-Hiller et al. 2016 
5 Hostetler et al. 2009 

  BU R Roads can act as travel pathways; 
source of herbaceous food in areas 
adjacent to roads6 
 

+ 3 3 Humm et al. 2017 
6 Poulin et al. 2003 
 

 Human 
settlement  

TD HCM; D Human presence associated with 
elevated human-bear conflicts and 
mortality5; creates forest edges 
that contributes to landscape 
fragmentation9  
 

– 3, 7, 8 

 
3 Humm et al. 2017 

7 Welfelt et al. 2019 
8 Laufenberg et al. 2018 
9 Evans et al. 2014 
5 Hostetler et al. 2009 

  BU R Source of anthropogenic foods12,10  
 

+9, 11 10 van Manen et al. 2020 

11 Beckmann and Berger 2003 

12 Lewis et al. 2015 

9 Evans et al. 2014 
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Table 1.1 (continued).  
 

Category Factor Hypothesis Prediction References 
   Mechanism Description Effect  

Anthropogenic Agriculture  TD HCM; D Source of human/livestock 
conflict; bears avoid agricultural 
areas frequented by humans4, 13, 14 
 

– 13 Jones and Pelton 2003 
14 Zeller et al. 2019 
4 McFadden-Hiller et al. 2016 

  BU R Cultivated crops, apiaries and 
livestock can act as supplemental 
food source6, 13, 14, 15 

+ 13 Jones & Pelton 2003 
14 Zeller et al. 2019 
6 Poulin et al. 2003 
15 Jonker et al. 1998 

Productivity  NDVI   BU R Related to vegetation greenness 
and availability of mast-producing 
species1, 16  
 

+ 16 Duquette et al. 2017 
1 Loosen et al. 2018 

Forest type     Coniferous    BU R Black bears select different forest 
types, often stands with greater 
abundance and diversity of mast 
producing species17, 18; greater 
productivity in deciduous GLSL 
forests than coniferous boreal 
forests in Ontario†, 19 
 

– 17 Carter et al. 2010  
18 Zeller et al. 2019 
19 Howe et al. 2013 
15 Potter and Obbard 2017 
 

 Deciduous    + 
 Mixed    +/– 

 Coniferous    TD D Increased cover and escape terrain 
in coniferous forests compared to 
deciduous forests20, 21 

+ 20 Herrero 1972  
21 Howe et al. 2005  Deciduous    – 

 Mixed    +/– 

† Rowe’s (1972) boreal and Great Lakes – St Lawrence (GLSL) forest regions  
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Figure 1.2 Schematic diagram of bottom-up (green lines) and top-down (orange lines) factors hypothesized to shape black bear 
density. Bold text denotes factors in Table 1.1.
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Chapter 2: Accounting for heterogeneous density and detectability in spatially explicit 

capture-recapture studies of large carnivores 
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2.1 Abstract  

Reliable estimates of population density are fundamental for managing and conserving wildlife. 

Spatially explicit capture-recapture (SECR) models in combination with information-theoretic 

model selection criteria are frequently used to estimate population density. Variation in density 

and detectability are inevitable and, when unmodeled, can lead to erroneous estimates. Despite 

this knowledge, the performance of SECR models and information-theoretic criteria remain 

relatively untested for populations with realistic levels of variation in density and detectability. 

We address this issue using simulations of American black bear (Ursus americanus) populations 

with variable density and detectability between sexes and in space. We first assess the reliability 

of Akaike Information Criterion adjusted for small sample sizes (AICc) to correctly identify the 

true data generating model or a good approximating model. We then assess the accuracy and 

precision of density estimates when such a model is selected or not selected. We demonstrate 

that unmodeled heterogeneity in detection and, more importantly, density, can lead to 

pronounced bias. However, when a good approximating model is included in the candidate set, 

AICc selects models that include important forms of variation and yield accurate estimates. We 

encourage researchers and practitioners to consider the impact of unmodeled variation in SECR 

models when making inferences, and to strive to include covariates likely to be the most 

influential based on the species biology and ecology in candidate model sets. Doing so can 

improve the robustness of wildlife density estimation methods that can be leveraged to make 

more sound conservation and management decisions.   
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2.2 Introduction  

Estimating population density is one of the fundamental goals of population ecology and is 

necessary for effective management and conservation of wildlife (Royle et al. 2014). With the 

need for robust population estimates has come the advent and application of innovative data 

collection methods, such as non-invasive genetic sampling and camera traps (Long et al. 2008), 

enabling data to be collected at increasingly larger spatial and temporal scales. Alongside this 

growth in data collection abilities, coupled with increasing computing power, has come rapid 

development and widespread application of more sophisticated quantitative methods to estimate 

population density (Lewis et al. 2018). As a result, statistical models have become a pervasive 

tool in ecology and are an integral component of most contemporary wildlife management and 

conservation programs. However, with this ever-increasing ability to address more complex 

research questions with advanced models comes the need to continually assess the robustness of 

models’ assumptions to realistic ecological conditions and sampling processes (Gerber and 

Parmenter 2015).  

While estimating population density is the objective of many wildlife monitoring programs 

(Burton et al. 2015), identifying factors that give rise to spatial variation in density can have 

broader relevance and applicability to conservation and management (Fuller et al. 2016). 

Spatially explicit capture-recapture (SECR; Efford 2004, Borchers and Efford 2008, Royle et al. 

2014) methods are well-suited for this purpose. SECR represents an extension of the classical 

capture-recapture framework (Otis et al. 1987), which ignores locations of capture or detection, 

by coupling a spatial point process model for the distribution of animals (“density sub-model”) 

with an observation model that describes encounter probability as a function of the distance 

between a sample location and animals’ activity center (“detection sub-model”; Royle et al. 
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2014). Although relatively recent in the field of statistical ecology, SECR methods have 

undergone considerable development and have become widely adopted as the standard for 

quantifying spatial patterns in density where animals are individually identifiable (Dupont et al. 

2021).  

Reliable information on large carnivore (hereafter, carnivore) population density is important 

given the species’ wide-ranging impacts on ecosystems and their vulnerability to human-induced 

environmental changes (Ripple et al. 2014). Further, carnivores often come into conflict with 

people, making them more prone to human-induced population declines (Treves and Karanth 

2003, Nyhus 2016). Consequently, carnivores are increasingly subject to intensive conservation 

and management programs that necessitates accurate population estimates to ensure success.  

In practice, however, obtaining unbiased, precise estimates of carnivore density is often 

challenging because the species tend to range widely over difficult-to-access areas and exhibit 

low and variable densities and capture probabilities (MacKenzie et al. 2005, Dröge et al. 2020). 

SECR requires multiple detections of some of the same individuals (“recaptures”), including at 

different detector locations (“spatial recaptures”), where the number and spatial distribution of 

recaptures inform the baseline detection probability (g0) and spatial scale parameter (σ) of the 

detection sub-model (Borchers and Efford 2008, Royle et al. 2014). Sparse data, in which 

numbers of recaptures and spatial recaptures are low, have been demonstrated to lead to 

imprecise and biased estimates (Sollmann et al. 2012, Sun et al. 2014, Clark 2017). Data sparsity 

is one of the major impediments to successfully implementing SECR studies of carnivores 

(Nawaz et al. 2021). Moreover, this challenge is further amplified when there are multiple 

sources of variation in detectability or density, as data must then be sufficient to estimate 

covariate effects or strata-specific model parameters.  
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Research to date has addressed the issue of data sparsity through improved survey design and 

statistical techniques. In recent years, multiple studies on the American black bear (Ursus 

americanus) have contributed to improvements in SECR sampling methods and yielded insight 

into some aspects of survey design (Sollmann et al. 2012, Sun et al. 2014, Wilton et al. 2014, 

Clark 2017). Collectively, these studies demonstrate that SECR methods generally perform well 

provided that the spatial components of survey design (extent, spacing, and configuration of 

arrays of detectors) are appropriate to the spatial characteristics of different subsets of the 

sampled population during the sampling period (such as home ranges size and range of 

individual movements). However, in practice, it can be logistically and financially challenging to 

conduct field surveys with sufficient spatial coverage and trap spacing for wide-ranging species 

that exist at low and non-uniform densities (Wilton et al. 2014). In cases when surveys yield 

insufficient data to estimate model parameters a common approach is to pool data from separate 

surveys, where models are simultaneously fit with parameters shared across time or space 

(MacKenzie et al. 2005). This approach has been employed in several SECR studies of bears 

(Ursus spp.; Howe et al. 2013, Azad et al. 2019, McLellan et al. 2019, Welfelt et al. 2019; 

Schmidt et al. 2022). With sufficiently large datasets, covariates can be included to account for 

differences in density and detectability to better reflect the actual state of the population 

(Sollmann et al. 2012).  

While aggerating data can enhance precision and power to detect and model some sources of 

variation in detectability or density (Howe et al. 2013, Azad et al. 2019, Schmidt et al. 2022), 

this approach may come at the expense of bias (MacKenzie et al. 2005). When carnivores are 

sampled across broad landscapes, the assumption that detection and density parameters remain 

constant across space is most often violated. This is likely common for surveys of black bears 
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where both density and detectability have been documented to vary by sex and across space and 

time (Howe et al. 2013, Humm et al. 2017, Humm and Clark 2021). Thus, if a misspecified 

SECR model is fit in the presence of sex and spatial heterogeneity, there is potential to produce 

biased density estimates. Specifically, unmodeled heterogeneity in detection parameters can 

produce density point estimates that are negatively biased (Tobler and Powell 2013). However, it 

is often challenging to account for all potential sources of heterogeneity in SECR models due to 

small sample sizes relative to the number of parameters and the computational burden of fitting 

highly parameterized SECR models. An alternative to avoiding bias introduced by model 

misspecification is to fit separate models to subsets of the data. Yet, this approach is not always 

practical as it may reduce sample size such that it is impossible to estimate parameters or 

estimates are too imprecise to be useful for management or conservation (Schmidt et al. 2022). 

Further, for sparse datasets, as the number of spatial and non-spatial recaptures decreases, 

estimates of σ are often negatively biased causing overestimation of population size and density 

(Sun et al. 2014, Clark 2017).  

Collectively, the above issues highlight a long-standing issue in statistical ecology: selecting 

an appropriate model for a dataset (Brewer et al. 2016). Model selection, the purpose of which is 

to identify models that optimize the trade-off between bias and precision (Burnham and 

Anderson 2002), is a critical yet challenging component of SECR analyses. For the vast amount 

of SECR studies on bears that use a frequentist framework, models are selected using Akaike 

Information Criterion adjusted for small sample sizes (AICc; Hurvitch and Tsai 1989) in which 

the top-ranked model(s) are used for inferences regarding parameter estimates and relationships 

between variables of interest (examples include Obbard et al. 2010, Morehouse and Boyce 2016, 

Lamb et al. 2018).  
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 Identifying models that allow for aggregation of survey data to improve precision while still 

accounting for important sources of heterogeneity to reduce bias is thus an essential 

consideration for SECR studies on elusive species where pooling data across space or time is 

common. Yet, few studies have systematically examined the performance of model selection and 

consequences of misspecification of both the density and detectability sub-models on SECR 

model performance under realistic levels of sex-based and spatial variation in carnivores.  

Here, we assess how unmodeled spatial and sex-based variability in density and detectability 

influences the performance of SECR models and AICc model selection when data are pooled 

across sampling areas. We do so through simulation, using parameters consistent with non-

invasive genetic surveys of black bears. However, the findings are generalizable to any wide-

ranging or elusive species, particularly carnivores. We had three primary research questions: (1) 

How well does AICc correctly identify the true data-generating model?; (2) How well does the 

true data-generating model perform, in terms of accuracy and precision, across a suite of 

simulations with varying levels of complexity in spatial and sex-based variation in density and 

detectability?; (3) When AICc does not select the data-generating model, what are the 

implications regarding inferences about population density?  

2.3 Methods  

2.3.1 Hypothetical study area and sampling design  

We simulated a hypothetical study area with a heterogeneous landscape composed of 

three distinct study areas (Areas A, B, C). These study areas broadly represent habitats in 

Ontario, Canada, in which black bear density and detectability vary due to differences in habitat 

quality and human disturbances across the landscape (Obbard et al. 2010, Howe et al. 2013). 

Although these scenarios are parameterized for black bears in Ontario, gradients in density exist 
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for most carnivore species. In each study area black bears were sampled using two linear arrays 

of 40 detectors, where arrays were far enough apart so that no individuals were detected at more 

than one array. Linear arrays were selected to replicate the curvilinear arrays used for ongoing 

black bear research and monitoring in Ontario (Obbard et al. 2010, Howe et al. 2013, Howe et al. 

2022, Marrotte et al. 2022). Literature recommends an optimal detector spacing to be less than 

two times the minimum spatial scale of the detection probability function (σmin; Sollmann et al. 

2012, Sun et al. 2014) and when g0 is low to be less than σmin (Efford and Boulanger 2019). 

Therefore, using our σmin of 2500 m (Table 2.2), detectors were spaced 2000m apart.  

2.3.2 Simulation of populations and capture histories  

Spatially explicit capture-recapture data were simulated for populations of female and 

male bears over five sampling occasions, where populations were distributed according to a 

homogenous Poisson point process within each study area. Populations of both sexes were 

simulated using a 6601.76 km2 state space defined as the linear array plus a 27-km buffer; this 

buffer corresponds to 4σmax, which is recommended to ensure that animals with activity centers 

outside the state space have negligible chances of being detected (Efford 2021). While this buffer 

is excessive for most female black bears, using an area of integration that is too small can 

positively bias SECR density estimates whereas using an area that is too large does not lead to 

bias as density estimates reach an asymptote with larger buffer widths (Royle et al. 2014, Efford 

2021). Spacing between the grid points of the mask was set at 2.2km to reduce computation time 

after verifying that increasing resolution had negligible effects on density estimates.  

A total of 29 scenarios were created (Table 2.1) by holding model parameters (D, σ, g0) 

constant or having them vary by either sex, area, or both sex and area. While carnivore 

populations are likely to exhibit spatial differences in both g0 and σ, scenarios where g0 varied by 
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area alone would contribute little relevance real-world SECR studies. Thus, to reduce the number 

of scenarios we varied g0 by sex alone or combined area and sex. Parameter values for each 

sampling area (Table 2.2) were selected to be consistent with prior simulation studies for black 

bears (Table 2.2; Sollmann et al. 2012; Sun et al. 2014, Clark 2017) and to represent reasonable 

parameter combinations for black bears in Ontario (Obbard et al. 2010, Howe et al. 2013). Area 

A was simulated with relatively high g0 and σ and low D (representative of relatively 

unproductive boreal forests in Ontario; Rowe 1972); Area C was simulated with relatively low g0 

and σ and high D (representative productive Great Lakes – St Lawrence [GLSL] Forest in 

Eastern Ontario); Area B was simulated with intermediate values. Within areas, males were 

simulated with higher values of σ and lower values of D and g0 due to differences in density and 

detectability between the sexes (Hooker et al. 2015, Humm et al. 2017). For each scenario we 

generated 1000 populations and corresponding capture-recapture datasets (hereafter, 

simulations), resulting in 29,000 datasets. 

Noticeably, these scenarios were not exhaustive of the entire parameter space. For SECR 

models a minimum of total 20 recaptures is recommended as the precision of density estimates 

depends on the number of recaptures in a sample (Efford et al. 2004, Sun et al. 2014). As this 

work aimed to assess the influence of spatial and sex-based heterogeneity on density estimates, 

irrespective of the influence of sample size, parameters values were selected to maintain a 

relatively similar and sufficient number of recaptures across sampling areas while still being 

biologically realistic for black bears.   
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Table 2.1. Structure of scenarios where each row details a scenario with varying density (D), 
detection probability (g0), and spatial scale (σ) parameters for which 1000 populations and 
capture histories were generated and a set of 105 candidate SECR model forms were fit. Scenario 
ID coded by variables corresponding to whether the parameters (D, g0, σ) were held constant (0) 
or varied by area (1), sex (2), or both sex and area (3). Last column indicates the approximate 
true data generating model (𝑀!) for each scenario.  
 
Scenario 

ID D g0 σ 𝑴𝑻 

000 . . . D(.) g0(.) σ(.)  
001 . . area D(.) g0(.) σ(area) 
023 . sex sex and area D(.) g0(sex) σ(sex + area) 
031 . sex and area area D(.) g0(sex + area) σ(area) 
032 . sex and area sex D(.) g0(sex + area) σ(sex) 
100 area . . D(area) g0(.) σ(.) 
101 area . area D(area) g0(.) σ(area) 
103 area . sex and area D(area) g0(.) σ(sex + area) 
122 area sex sex D(area) g0(sex) σ(sex) 
123 area sex sex and area D(area) g0(sex) σ(sex + area) 
130 area sex and area . D(area) g0(sex + area) σ(.) 
131 area sex and area area D(area) g0(sex + area) σ(area) 
132 area sex and area sex D(area) g0(sex + area) σ(sex) 
133 area sex and area sex and area D(area) g0(sex + area) σ(sex + area) 
203 sex . sex and area D(sex) g0(.) σ(sex + area) 
223 sex sex sex and area D(sex) g0(sex) σ(sex + area) 
230 sex sex and area . D(sex) g0(sex + area) σ(.) 
231 sex sex and area area D(sex) g0(sex + area) σ(area) 
232 sex sex and area sex D(sex) g0(sex + area) σ(sex) 
233 sex sex and area sex and area D(sex) g0(sex + area) σ(sex + area) 
301 sex and area . area D(sex + area) g0(.) σ(area) 
302 sex and area . sex D(sex + area) g0(.) σ(sex) 
320 sex and area sex . D(sex + area) g0(sex) σ(.) 
321 sex and area sex area D(sex + area) g0(sex) σ(area) 
322 sex and area sex sex D(sex + area) g0(sex) σ(sex) 
323 sex and area sex sex and area D(sex + area) g0(sex) σ(sex + area) 
331 sex and area sex and area area D(sex + area) g0(sex + area) σ(area) 
332 sex and area sex and area sex D(sex + area) g0(sex + area) σ(sex) 

333 sex and area sex and area sex and area D(sex + area) g0(sex + area) σ(sex + 
area) 
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Table 2.2. SECR parameter values for density (D), detection probability (g0) and spatial scale (σ) 
parameters used for generating black bear populations and capture histories across four 
groupings where parameters remain constant or vary by sex, area, or sex and area.  
 
Grouping 
code† 

Grouping 
description Parameter‡ Area A Area B Area C 

3 sex and area  D female 0.03 0.06 0.12 
  D male 0.02 0.04 0.08 
  g0 female 0.35 0.25 0.15 
  g0 male 0.20 0.15 0.10 
  σ female 4500 3500 2500 
  σ male 6750 5250 3750 
1 area D 0.025 0.05 0.10 
  g0 0.275 0.200 0.125 
  σ 5625 4375 3125 
2 sex D female  0.07  
  D male  0.05  
  g0 female  0.25  
  g0 male  0.15  
  σ female  3500  
  σ male  5250  
0 baseline D  0.06  
  g0  0.20  
  σ  4375  
†grouping code corresponds to scenario ID where variables represent whether parameters 
D, g0, and σ vary by either area (1), sex (2), sex and area (3), or are constant (0) 
‡σ represented by distance (m) and density (bears/km2 ) 
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2.3.3 SECR model fitting  

Data from all three study areas from each simulation were analysed simultaneously; study 

areas were modeled as sessions in a multi-session analysis that allowed for different degrees of 

data aggregation between sexes and among areas to estimate parameters. For each scenario, we 

fit 105 candidate model forms, representing almost all possible additive and interactive 

combinations of parameters (for a full list of candidate models see Appendix A Section 1: Table 

A.1.1) by maximizing the full likelihood for proximity detectors and using the half-normal 

detection probability function. This resulted in 3,045,000 models fit overall that required high 

computational costs and was prohibitively slow to summarize model outputs. However, there 

were negligible differences in density estimates derived from model forms with the same 

structure of covariates for each parameter, but either additive or interactive effects of sex and 

area (i.e., additive model D~area g0~area+sex 𝜎~sex; interactive model D~area g0~area×sex 

σ~sex). See Appendix A Section 4 for further clarification and comparison of density estimates 

between additive and interactive models. Consequently, we excluded candidate model forms 

where covariates on any one of the parameters (D, g0, 𝜎) included an interaction effect; this 

resulted in 48 candidate models with only additive effects included in the subsequent analysis 

and presented in the following results and discussion.  

2.3.4 Evaluation of model performance    

For each scenario and model form we compared density estimates to the expected values 

in terms of accuracy (mean percent relative bias [MPRB] and the 95% confidence interval [CI] 

coverage), precision (mean coefficient of variation [MCV]) and the root-mean-square error 

(RMSE). A |MPRB| < 5% was considered an allowable bias (Dupont et al. 2020) and a MCV < 
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0.2 was considered acceptable for carnivore management (Proctor et al. 2010). A low RMSE 

represented a good trade-off between low bias and variance (Blanc et al. 2013). 

2.3.5 Model selection  

AICc is one of the most commonly used model selection approaches for SECR studies. 

∆AICc can be used to rank competing candidate models and is the difference in AICc between 

the top ranked model and other models, where the top ranked model has ∆AICc = 0. Burnham 

and Anderson (2004) suggest that models with ∆AICc < 2 have substantial support, models with 

4 > ∆AICc < 7 have considerably less support, and models with ∆AICc > 10 have negligible 

support. For each scenario, the data generating model (𝑀!)	that best approximated the expected 

parameters was first identified. Then, using the above guidelines, for each scenario we calculated 

the frequency, out of the 1000 simulations, that 𝑀! was included in the following classes: (1) the 

top-ranked model (∆AICc = 0); (2) 0 <  ∆AICc  < 2; (3) 2 < ∆AICc < 10; (4)	∆AICc >10.  

All simulations were implemented through R 4.0.4 using packages ‘secr’ version 4.3.3 

(Efford 2020a) and ‘secrdesign’ version 2.5.11 (Efford 2020b). As computation time was 

prohibitively slow with a stand-alone personal computer, high-performance computing software 

provided by Compute Canada (computecanada.ca; RRG: hyf-453-ab) was used to 

simultaneously fit many models.  

2.4 Results  

Simulations yielded variable numbers of animals, detections, and spatial recaptures 

across scenarios; see Appendix A Section 2 (Figures A.2.1 and A.2.2) for a summary. All models 

converged.  
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2.4.1 Model selection   

We first identified the data generating model (𝑀!)	that best approximated the expected 

parameters for each scenario. Interactions between simulated main effects on D, g0 and σ were 

absent or slight (Figure 2.1). In Figure 2.1 the parallel lines for D and σ indicate no interaction 

between main effects whereas slightly different slopes for g0 indicate a slight interaction. Thus, 

for scenarios where either D, g0, or σ varied by sex and area, 𝑀! with an additive effect between 

sex and area was considered equivalent to the data generating model for D and σ and a good 

approximating model for g0.  

Across scenarios, AICc reliably identified 𝑀! as having substantial support (0 < ∆AICc  < 

2) for 71.5% to 100% of the simulations (Table 2.3). 𝑀! was identified as the top-ranked model 

(∆AICc = 0)	for fewer simulations on average (42.6 to 99.9% of the simulations; Table 2.3). The 

likelihood that AICc selected 𝑀! generally increased as the number of parameters in 𝑀! 

increased (Table 2.3; also see AICc weights in Appendix A Section 5: Table A.5.1). In contrast, 

AICc rarely selected 𝑀! 	as having considerably less or no support (0 to 27.2% of the simulations; 

Table 2.3).  

2.4.2 Performance of the data generating model  

Accuracy — For all scenarios, 𝑀! yielded estimates of density with less than 5% |MPRB| (Figure 

2.2; Appendix A Section 3: Figure A.3.1). Although still within + 5% bias, for both sexes and 

across areas there was a very slight positive MPRB for scenarios where 𝑀! had constant density 

(Figure 2.2; Appendix A Section 3: Figure A.3.1). Taking into consideration the remaining 

scenarios (density varied by sex, area, or sex and area), estimates for females were slightly 

negatively biased, with the magnitude greater in area A (82.6% of the total scenarios displayed 

negative MPRB in area A, 79.3% in area B and 72.4% in area C) compared to males where there 
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was a slight positive MPRB for approximately half of the scenarios (51.7% of the total scenarios 

displayed positive MPRB for area A, 48.2% for area B and 51.7% for area C; Appendix A 

Section 3: Figure A.3.1). The variance in percent relative bias (PRB; i.e., the spread of estimates 

across the 1000 simulations) differed by scenario; scenarios where 𝑀! had constant density had 

the least variable PRB, while scenarios where 𝑀! had density vary by either area or sex and area 

displayed more variable PRB (Figure 2.2). Scenarios where density varied by sex had 

intermediate variation in PRB (Figure 2.2). CI coverage was near nominal across all scenarios 

(across areas and sexes CI coverage ranged from 93.0% to 96.5%; mean 94.9%); see Appendix 

A Section 3: Table A.3.1.  

Precision — For all scenarios, 𝑀! density estimates had CVs well below 0.2 for both sexes and 

all areas (CV range 0.033 – 0.106; mean 0.062; Figure 2.3). Estimates were most precise where 

𝑀! was simple (number of parameter K < 5) and density was constant, followed by scenarios 

where density varied by sex but not among study areas (Figure 2.3). However, for the latter 

scenarios, there were opposing patterns in MCV between sexes and the CV remained relatively 

consistent across areas for each sex (Figure 2.3). The remaining scenarios (density varied either 

by area or by sex and area) were generally characterized by the least precise estimates.   

In contrast to bias, the CV and its variation differed across scenarios and between sexes 

and areas. Across most scenarios, Area B (which had intermediate density) exhibited on average 

the most precise estimates, followed by Area C (which had the highest density), then area A 

(with the lowest density). Variability in CV generally increased with increasing magnitude of 

CV, with Area A displaying the most elevated and variable CV values for scenarios where 𝑀! 

had density vary by either area or sex and area (Figure 2.3). Further, despite attempts to maintain 

a similar number of total spatial re-captures across scenarios, this was not always possible due to 
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the nature of parameter combinations for some scenarios. Consequently, there was an indication 

of generally higher precision for some scenarios with more recaptures (Appendix A Section 1: 

Figure A.1.1).  

Combined precision and accuracy — RMSE followed a similar pattern to precision, with RMSE 

slightly higher for most scenarios in which MCV was elevated (Figure 2.4); this pattern was 

most pronounced for area C. Specifically, area C exhibited the highest variability in RMSE for 

scenarios where 𝑀! had density vary by area or sex and area, followed by Area B then area A. 

Similar to precision, for scenarios where 𝑀! had density varying by sex, RMSE was relatively 

consistent across all areas for each sex and there were opposite patterns in RMSE across these 

scenarios between males and females (Figure 2.4).  

2.4.3 Performance of misspecified SECR models   

Accuracy — Across scenarios, the number of candidate model forms with unbiased density 

estimates (< 5% |MPRB|) generally decreased with increasing complexity of 𝑀! (Figure 2.5; 

also see Appendix A Section 5: Table A.5.1 for the MPRB of the most frequently selected 

misspecified models for each scenario). For the least complex scenarios (K = 3) where 𝑀! had 

all constant parameters, incorrectly selecting any one of the 47 mis-specified models had 

negligible impact on the density estimates (Figure 2.5; further see Appendix A Section 5: Table 

A.5.1). As a result, for these scenarios, despite AICc being less likely to select 𝑀! as the top-

ranked model, minimal bias was incurred by selecting a model more complex than 𝑀!.   

In contrast, for scenarios with complex 𝑀! (K > 10), selecting a model other than 𝑀! 

often yielded biased (> 5% |MPRB|) density estimates (Figure 2.5; Appendix A Section 5: Table 

A.5.1). More specifically, for misspecified models with > 5% |MPRB|, density was often 

overestimated for males and underestimated for females (Appendix A Section 5: Table A.5.1). 
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However, as 𝑀! was most often correctly selected for more complex scenarios when a good 

approximating model was included in the candidate model set (ranging from 70.3% to 99.9% of 

the simulations, Table 2.3; also see Appendix A Section 5: Table A.5.1), biased density estimates 

with > 5% |MPRB| were unlikely.  

For scenarios with moderate complexity 𝑀! (7 < K > 9), the number of model forms that 

produced density estimates with > 5% |MPRB| varied (Appendix A Section 3: Figure A.3.1). 

However, despite these scenarios having a poor to moderate chance of AICc selecting 𝑀! as the 

top-ranked model (ranging from 55.1% to 75.9% of the simulations; Table 2.3), there were 

generally minimal consequences on the accuracy of selecting a mis-specified model as in these 

cases the bias most often remains within + 5% (Appendix A Section 5: Table A.5.1).  

Combined precision and accuracy — The chances of misspecifying imprecise and inaccurate 

models generally displayed similar trends to those of 𝑀!, with models with higher bias usually 

characterized by higher MCV and RMSE for both sexes, and vice versa (Appendix A Section 5: 

Table A.5.1). However, this pattern was not always consistent; for some scenarios, there were 

minimal changes in MCV and RMSE across candidate model forms (Appendix A Section 5: 

Table A.5.1). Further, for misspecified models where bias was exceptionally large (> 15% 

|MPRB|), variances were typically underestimated; this was most apparent for scenarios with 

more complex 𝑀! (Appendix A Section 5: Table A.5.1).  
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Table 2.3. The percent, out of 1000 simulations, that the approximate true data generating model 
(𝑀!) in each scenario was identified as the top AICc ranked model (∆AICc = 0), having 
substantial support (0 < ∆AICc  < 2), considerably less support (2 < ∆AICc < 10) or no support 
(∆AICc >10). Scenarios are coded by variables corresponding to whether the model parameters 
(D, g0, 𝜎) vary by area (1), sex (2), sex and area (3), or are constant (0). ∆AICc is the difference 
between the focal model and the top ranked model and K is the number of parameters in 𝑀!.  
 

 Scenario  

 000 001 100 023 032 101 122 203 230 302 
K 3 5 5 7 7 7 7 7 7 7 

∆AICc = 0 42.6 48.7 51.2 61.8 61.8 58.8 55.1 66.6 64.5 67.6 
0 < ∆AICc  < 2 71.5 76.2 79.8 84 87 84 75.2 87.3 86 86.7 
2 < ∆AICc < 10 27.2 23.1 19.8 15.4 12.3 15.7 12.5 12.3 13.7 13.2 
∆AICc >10 1.3 0.7 0.4 0.6 0.7 0.3 12.3 0.4 0.3 0.1 
 Scenario 

 320 031 103 130 223 232 301 322 123 132 
K 7 8 8 8 8 8 8 8 9 9 

∆AICc = 0 63.0 58.5 67.1 60.2 73.8 75.9 69.3 75.5 74.0 72.2 
0 < ∆AICc  < 2 83.2 83.2 88.9 84.2 90 92.2 88.3 90 90.6 90.7 
2 < ∆AICc < 10 16.6 16.5 10.9 15.3 9.7 7.7 11.3 9.8 9.2 9.2 
∆AICc >10 0.2 0.3 0.2 0.5 0.3 0.1 0.4 0.2 0.2 0.1 
 Scenario 
 231 321 131 233 323 332 133 331 333  
K 9 9 10 10 10 10 11 11 12  

∆AICc = 0 72.0 71.0 70.3 86.5 87.4 86.6 83.6 84.2 99.9  
0 < ∆AICc  < 2 90 90.8 89.5 93.9 95.3 94.8 94.8 95 100  
2 < ∆AICc < 10 9.8 8.8 10.4 5.9 4.6 5 4.9 4.8 0  
∆AICc >10 0.2 0.4 0.1 0.2 0.1 0.2 0.3 0.2 0  
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Figure 2.1. Interactive plot displaying differences in density (D; plot 1), spatial scale parameter 
(σ; plot 2), and detection probability (g0; plot 3) among sexes and sampling areas (A, B, C) on 
the link scale for simulated female and male black bears. Parallel lines indicate an additive effect 
for D and σ and non-parallel lines indicate a slight interactive effect for g0.    
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Figure 2.2. Percent relative bias (PRB) of female (♀) and male (♂) black bear density estimates 
for the true data generating model (𝑀!) across study areas (A, B, C), for 1000 simulations of 
each scenario. Scenarios are coded by variables corresponding to whether the parameters (D, g0, 
𝜎) were constant across areas and sexes (0), or varied by area (1), sex (2), or both sex and area 
(3); see table 1 for more detailed summary of scenarios. White dots within the violins represent 
the mean percent bias and colours of violins represent the number of parameters in 𝑀!.Thick 
black horizontal lines represent PRB within 5% and red horizontal lines no bias. Background 
colors correspond to the four levels of variation in density: constant density (white), density 
varies by area (light gray), sex (medium gray), and both area and sex (dark gray).  
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Figure 2.3. Boxplots displaying the coefficient of variation (CV) of female (♀) and male (♂) 
black bear density estimates for the true data generating model (𝑀!) across study areas (A, B, 
C), for 1000 simulations of each scenario. Scenarios are coded by variables corresponding to 
whether the parameters (D, g0, 𝜎) were constant across areas and sexes (0), or varied by area (1), 
sex (2), or both sex and area (3); see Table 1 for more detailed summary of scenarios. White dots 
within the violins represent the mean CV and colours of violins represent the number of 
parameters in 𝑀!. Background colors correspond to the four levels of variation in density: 
constant density (white), density varies by area (light gray), sex (medium gray), and both area 
and sex (dark gray).  
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Figure 2.4. Root-mean-squared error (RMSE) of female (♀) and male (♂) black bear density 
estimates (bear/km2) for the true data generating model (𝑀!) across study areas (A, B, C) from 
1000 simulations of each scenario. Scenarios are coded by variables corresponding to whether 
the parameters (D, g0, 𝜎) were constant across areas and sexes (0), or varied by area (1), sex (2), 
or both sex and area (3); see Table 1 for more detailed summary of scenarios. Colors of the dots 
indicates the number of parameters in 𝑀! for each scenario. Background colors correspond to 
the four levels of variation in density: constant density (white), density varies by area (light 
gray), sex (medium gray), and both area and sex (dark gray).  
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Figure 2.5. Number of candidate model forms where the absolute mean percent relative bias 
(|MPRB|), out of 1000 simulations, of female (♀) and male (♂) black bear density estimates was 
< 5%, across study areas (A, B, C). The color of the circles denotes the number of parameters in 
the true data generating model (𝑀!) for each scenario. Scenarios are coded by variables 
corresponding to whether the parameters (D, g0, 𝜎) are constant (0) or vary by area (1), sex (2), 
or sex and area (3); see Table 1 for more detailed summary of scenarios. For each scenario, 48 
candidate models forms were fit. Background colors correspond to the four levels of variation in 
density: constant density (white), density varies by area (light gray), sex (medium gray), and 
both area and sex (dark gray).   
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2.5  Discussion 

Statistical methods for estimating population density and its variance accurately and 

precisely are fundamental for effective management and conservation of wildlife populations. 

Although the use of SECR models for estimating density has become increasingly widespread, 

their application may outpace rigorous testing of their performance using real-worlds datasets 

(Gerber and Parmenter 2015). This work addresses this concern, specifically in relation to 

realistic levels of sex-based and spatial heterogeneity. We demonstrate that when a good 

approximating model is included in the set of candidate models, SECR methods coupled with 

AICc model selection generally yielded accurate estimates with nominal CI coverage. However, 

we identify some situations in which these methods are prone to bias.  

In our series of simulations the critical factor contributing to SECR models’ effectiveness is 

an inverse pattern between the performance of SECR models and AICc model selection. For 

scenarios with low to moderate levels of complexity in 𝑀! (3 < K > 9), AICc less successfully 

identified the approximate true data generating model (Table 2.3) and was prone to overfitting 

(Appendix A Section 5: Table A.5.1). However, selecting an unnecessarily complex model 

generally had minor effects on density estimates as there was generally low bias (Appendix A 

Section 5: Table A.5.1). This pattern could be explained by the additional modeled effects being 

so small such that the density estimates for these scenarios were largely unaffected. Conversely, 

where the underlying approximate true data generating model was complex (K > 10), top-ranked 

models that were misspecified produced density estimates with severe negative and positive bias 

for female and male black bears, respectively (Appendix A Section 5: Table A.5.1). However, 

for such scenarios, 𝑀! was almost always selected as the top-ranked model (Table 2.3; Appendix 
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A Section 5: Table A.5.1) and therefore obtaining unbiase and precise estimates is likely, 

provided that a good approximating model is included in the candidate set.  

While SECR model performance was influenced by variation in all model parameters, in our 

series of simulations, variation in density more strongly influenced model performance than 

variation in detection parameters. When 𝑀! was not selected as the top-ranked model, 

misspecification of the density sub-model generally caused more bias than misspecification of 

the detection sub-model (Appendix A Section 5: Table A.5.1). The severe bias introduced from 

model misspecification for the more complex scenarios demonstrates that failure to account for 

heterogeneity in SECR models is of greater concern when pooling data from sub-populations 

that display high variation in density, and to a lesser extent, detection. This has important 

implications for monitoring because carnivore density is likely to vary spatially across gradients 

of habitat productivity and human influence that might be unknown to researchers. Thus, these 

findings demonstrate that if there is potential for variation in density between sexes or in space, 

this needs to be accounted for by including relevant covariates of density in candidate model 

sets. Elsewise, the estimates of density are likely to be bias.  

Our findings that for more complex scenarios misspecified models yielded biased sex-

specific densities is a shortcoming for managing harvested populations with high heterogeneity. 

As adult male black bears are more likely to be harvested than females (Obbard et al. 2017; 

Appendix D Section 6: Figure D.6.1), inflated estimates may lead to sub-optimal management 

decisions that place populations at risk (Obbard et al. 2010). Further, because females are critical 

for long-term population stability (Humm and Clark 2021), accurate estimates are critical for 

monitoring and predicting populations’ response to shift in land-use and environmental 
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conditions. While our simulations focus on black bears, such consequences are pertinent to other 

large game populations, particularly species of conservation concern.  

Moreover, even when 𝑀! was selected as the top-ranked model, scenarios where density 

varied by area or area and sex were the most challenging to produce unbiased density estimates 

with high precision and, to a lesser extent, accuracy. Collectively, this work highlights that while 

SECR models coupled with AICc selection generally perform well, it is more challenging for 

highly heterogenous populations, particularly those with varying densities.  

These findings further expand on simulation studies of bias caused by heterogeneity in SECR 

detection parameters. As demonstrated by Efford and Mowat (2014), for sex-based heterogeneity 

in detection parameters, scenarios where detection parameters varied in the same direction 

(reinforcing heterogeneity) displayed large bias; in contrast those where detection parameters 

varied in opposite direction (compensatory heterogeneity) displayed small or zero bias. Our 

simulations increased the level of complexity of the scenarios to represent wild carnivore 

populations by varying both density and detectability by sex and area and found a similar 

pattern: scenarios where both detection parameters varied by sex and area displayed relatively 

larger bias (Figure 2.2). As some of our scenarios had detection parameters vary in the same 

direction (Table 2.2), the larger bias for these scenarios could be partly explained by the 

simulation structure itself.  

2.5.1 Limitations and future areas of research and development   

Although our series of simulations provide insight into areas where SECR methods are 

robust as well as areas where caution is warrented, there is scope for refinement. While these 

simulations were more extensive than many existing SECR studies on carnivores, we did not 

account for general or site-specific learned responses to detectors (b and bk, respectively) 
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commonly included in SECR analyses of carnivores, specifically bears (examples include Howe 

et al. 2013, Lamb et al. 2018, Loosen et al. 2018, Azad et al. 2019, Humm and Clark 2021). 

Further, heterogeneity among individual detection may be attributed to a combination of intrinsic 

and extrinsic factors other than sex and area, as we focused on here, that may be difficult to 

observe or unknown to the researcher. In cases where unmodeled heterogeneity remains, mixture 

models may be used to reduce bias (Borchers and Efford 2008); however, such approaches are 

demanding of data which limits the practical application for many real-word datasets on elusive 

species. Failing to account for sources of heterogeneity by fitting an inappropriate model is likely 

to lead to biased density estimates of black bears (Howe et al. 2013). Thus, we anticipate that 

further sources of heterogeneity, if unaccounted for, would lead to more severe bias than we 

reported.  

While we attempted to remove the issue of data sparsity, this was not entirely possible due to 

the trade-off between selecting parameter values that were biologically realistic for the study 

system and values that maintain a relatively consistent number of recaptures. As expected, for 

some scenarios, increased number of spatial re-captures slightly improved precision and reduced 

bias of density estimates, similar to previous SECR studies (Sollmann et al. 2012, Sun et al. 

2014, Dupont et al. 2019).  

Testing for violations of model assumptions remains an ongoing challenge for SECR studies. 

As recently recommended (Moqanaki et al. 2021), goodness-of-fit tests for SECR methods could 

help identify unmodeled sex and spatial variation in density or detectability and determine if 

there is a need to account for such variations in the model. In our simulations, misspecified 

SECR models for less complex scenarios generally performed well; however, this may not be the 

case for other studies or species, and such a test could help identify cases of concern. These tests 
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would be particularly useful for populations expected to display high levels of heterogeneity 

where model misspecification can lead to extremely biased estimates, as demonstrated here. 

While Bayesian p-values have been suggested as a goodness-of-fit test for Bayesian SECR 

models, specific tests for SECR models fit using likelihood have yet to be fully developed and 

remain an important knowledge gap to be addressed (Moqanaki et al. 2021).  

2.6 Conclusion and recommendations  

Despite SECR being one of the most powerful tools for enumerating wildlife, variation in 

density and detectability is often inevitable. Pooling data across time or space is a frequent 

approach to mitigate the challenges of data sparsity common to SECR studies for such rare and 

elusive species. However, researchers may inadvertently risk biased density estimates if they do 

not include complex models that account for variation in detection, and most importantly 

density, in the candidate model set. In these situations, reliable density estimates therefore 

depends on obtaining sufficient sample sizes so that researchers can include multiple covariates 

to model and detect such variability. However, using highly parameterized models is challenging 

for field studies with sparse data. In such cases, we encourage researchers to include covariates 

likely to be the most influential on heterogeneity in density and detection. Choosing meaningful 

covariates should be based on knowledge of the study system and the species biology and 

ecology. Specifically, for many wide-ranging and elusive species such as carnivores, sex and 

spatial heterogeneity are key factors to consider.  

Nevertheless, unmodeled heterogeneity is inherent in SECR studies. Carnivores are likely 

to exhibit individual heterogeneity in detection probabilities that extend beyond what can be 

explained by sex and spatial effects (i.e., age and social status). While mixture distributions may 

be used to account for such heterogeneity (Borchers and Efford 2008), this approach is often 
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demanding of data; which limits the practical application for many real-word datasets. In many 

cases, unfortunately, expensive and time-consuming data collection efforts will lead to sparse 

datasets that are not useable for fitting complex models and the density estimates from models 

with few parameters are not only potentially biased, but may overstate precision. Therefore, we 

encourage researchers and wildlife managers to pay particular attention to the impact of 

unmodeled heterogeneity, both known and unknown, when conducting analyses and interpreting 

results, particularly in the context of conservation and management.  

Our work reinforces the need to simulate populations with realistic levels of variation in 

density and detection parameters, particularly when simulations are intended to inform the 

design of SECR studies. Elsewise it risks survey design and subsequent analyses being based on 

insufficient knowledge of the study population that may lead to flawed inferences. Further, while 

pilot studies of small sampling areas may suggest that less intensive surveys are adequate for 

enumerating populations, the assumption that detection and density parameters remain constant 

must be taken into account, particularly as the spatial extent of the study area and, in turn, the 

variability of the sampled population increases. As our findings demonstrate, not accounting for 

possible violations of this assumption can result in pronounced bias, particularly when 

heterogeneity in density and detectability is high. Collectively, out analysis reinforces the 

importance of understanding the limitations and assumptions of statistical methods. Doing so can 

help reduce the potential for basing conservation, management, and policy decisions on flawed 

population estimates. Such an understanding will contribute to improving the robustness of field-

based density estimates of carnivores.  
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3.1 Abstract  

Understanding the spatial ecology of large-bodied, terrestrial carnivores is a primary goal of 

ecology and fundamental to wildlife management and conservation. Population-level 

assessments conducted at sufficiently large spatial extents can capture meaningful patterns for 

wide-ranging species that exhibit considerable variation in density-habitat relationships. Here, 

we use three years of American black bear (Ursus americanus) capture-recapture data collected 

across 498, 022 km2 of Ontario, Canada to assess factors driving fine-scale variation in local 

densities. We use spatially explicit capture-recapture models to estimate black bear density as a 

function of spatial covariates representing ecosystem productivity and human disturbances and 

determine differences among forest regions and sexes. We collected capture-recapture data from 

65 study areas, and 3858 individuals (1645 female; 2212 male). Across Ontario, black bear 

densities were negatively associated with roads and human influences. In the more productive 

forests regions with higher intensity of human influence, black bear densities were positively 

associated with less productive coniferous forests and negatively associated with more 

productive deciduous forest and agriculture, suggesting bears may be prioritizing security when 

there is ample food supply. Opposite trends were observed in the less productive forest region 

where food is limited, as bears may be seeking out habitats with available food. Our research 

provides insight into factors influencing black bear space-use from one of the largest datasets 

collected on the species and at a large geographic extent with application to the species 

population and habitat management. Our conclusions underscore the importance of accounting 

for landscape heterogeneity when studying generalist and wide-ranging species.   
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3.2 Introduction 

Global declines in large-bodied and wide-ranging species, in particular large mammalian 

carnivores (hereafter, carnivores), are widely linked to the rapidly expanding human footprint 

coupled with changing environmental conditions (Laliberte and Ripple 2004, Tilman et al. 

2017). Carnivores are often revered for their economic, cultural, and aesthetic values and 

important role regulating terrestrial ecosystems (Beschta and Ripple 2009, Estes et al. 2011, 

Ripple et al. 2014). However, these species require large and interconnected habitats and their 

wide-ranging behaviors often bring them into conflict with humans (Treves and Karanth 2003). 

Consequently, as humans continue to transform natural landscapes, facilitating coexistence 

between humans and carnivores has become a pressing and controversial challenge for those 

tasked with conserving and managing carnivores (Lute et al. 2018, Lamb et al. 2020). Resolving 

these challenges necessitates reliable methods to estimate species abundance and distribution and 

an understating of population-level responses to habitat loss and land use and climate changes.  

Estimating population density and understanding how and why density changes across 

space is a fundamental pursuit in ecology. This topic structures many conservation and 

management programs (Sutherland et al. 2013, Royle et al. 2014, Lamb et al. 2019). Patterns in 

population density, and the underlying processes (e.g., vital rates, movement, habitat selection 

and space use), can vary across space and time and are associated with landscape heterogeneity 

(Turner 1989, Scheiner and Willig 2008). Failing to account for the effect of landscape 

heterogeneity can result in misinterpretation of ecological processes or biased density estimates 

(Royle et al. 2013) and therefore accounting for this variability is critical to understanding 

factors limiting and regulating ecological communities (Hunter and Price 1992, Royle et al. 

2013). However, for wide-ranging and habitat generalist species, identifying spatial drivers of 
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population density can be challenging because local results can be highly nuanced, limiting 

general conclusions. This issue can be addressed by conducting studies over geographical extents 

large enough to sufficiently capture meaningful variation in ecological processes that influence 

populations, but such studies are often limited by logistical and financial constraints.  

The American black bear (Ursus americanus) typifies the characteristics that make it difficult 

to identify factors shaping population density of wildlife species. In North America, black bears 

are widely distributed across multi-use landscapes composed of natural habitats and clusters of 

cities, rural communities, agriculture, and roads. Moreover, the species exhibits dynamic 

relationships with humans that can differ across space and time, as well as across individuals and 

by sex (Baruch-Mordo et al. 2014, Johnson et al. 2015, Evans et al. 2017, Zeller et al. 2019). 

Because black bears are an omnivorous species that depends on accumulated fat storage during 

hibernation and for reproduction, their demographic rates and space-use patterns are often 

contingent on the availability, quality, and diversity of food (Costello et al. 2003, Mccall et al. 

2017). As a result, depletion of natural food sources associated with habitat loss and 

fragmentation can influence their distribution and survival (Baruch-Mordo et al. 2014, Murphy et 

al. 2017, Laufenberg et al. 2018). Concurrently, black bears are vulnerable to human-caused 

mortality because of their slow reproductive rates and large body size (Kolenosky 1990). 

Further, the species have extensive home ranges and are habitat generalists, which allows them 

to occupy human-modified landscapes and exploit anthropogenic food sources that is often 

related to conflict behaviours (Ryan et al. 2007, Garshelis and Noyce 2008, Baruch-Mordo et al. 

2014, Obbard et al. 2014, Lewis et al. 2015, Van Manen et al. 2020). Consequently, hunting, 

vehicle collisions and human-bear conflicts are dominant mortality sources for the species 

(Hebblewhite et al. 2003, Garshelis and Noyce 2008, Hostetler et al. 2009, Obbard et al. 2017, 
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Gantchoff et al. 2020). These two primary factors influencing black bear ecology and biology, 

human disturbances and food availability, vary considerably over black bears range (Potter and 

Obbard 2017, Rettler et al. 2021). As such, it is both challenging and critical to account for 

variability in these factors when assessing drivers of the species density.  

The advent and increasing application of non-invasive sampling methods of wildlife, coupled 

with advances in statistical modeling techniques and computing power, have allowed for 

quantification of density-habitat relationships over larger, more heterogenous landscapes (Lewis 

et al. 2018, Lamb et al. 2019). Spatially explicit capture-recapture (SECR; Efford 2004, Borchers 

and Efford 2008; Royle et al. 2014) offers a powerful framework for addressing questions of 

animal abundance and distribution because this approach links individual and population-level 

processes to landscape-level spatial patterns. SECR models are built upon a detection model that 

regards animal detection probability as a function of distance from an individual’s activity center 

paired with a density model that predicts the spatial distribution of animal activity centers as a 

spatial Poisson or binomial point process. In this approach, there is an uncorrelated distribution 

of activity centers across a region of interest, but spatial covariates can be used to model the 

distribution of activity centers as a function of spatial covariates using an inhomogeneous 

Poisson point process. Because SECR models provide spatially referenced estimates of 

abundance and density that can be leveraged for targeted monitoring and management, they have 

been readily adopted for use with elusive and low-density species such as black bears (e.g., 

Sollmann et al. 2012, Howe et al. 2013, Hooker et al. 2015, Humm et al. 2017, Murphy et al. 

2017, Sun et al. 2017, Gardner et al. 2010, Obbard et al. 2010, Welfelt et al. 2019, Humm et al. 

2021, Howe et al. 2022).    
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To evaluate factors shaping carnivore population densities we focus on black bears in 

Ontario, Canada. The species is widely distributed across a multi-use landscape with a latitudinal 

gradient in productivity where bears are exposed to a mosaic of anthropogenic mortality risks 

and ongoing land-use changes. Due to their popularity as a game animal, coupled with their 

tendency to come into conflict with humans and livestock (Poulin et al. 2003; Obbard et al. 2014; 

Northrup et al. in press), effective monitoring is necessary for sound black bear management and 

the population’s persistence. Over the last two decades, the Ontario Ministry of Natural 

Resources and Forestry  (MNRF) established genetic spatial capture-recapture surveys across 

most huntable wildlife management units (WMUs) in the province to estimate black bear 

densities (Obbard et al. 2010, Howe et al. 2013, Howe et al. 2022). These surveys constitute one 

of the largest multi-year datasets collected on the species.  

Here, we investigate factors driving black bear density using three years of the MNRF 

genetic spatial capture-recapture datasets collected from 65 replicate study areas in Ontario, 

Canada. Using SECR models we test the effect of ecosystem productivity and human 

disturbances on variation in local black bear densities across study areas. The broad geographical 

scope of our study it provides a unique opportunity to capture fine-scale spatial heterogeneity in 

population drivers across large gradients in productivity and human influences.  

3.3 Methods 

3.3.1 Study Area  

Our study was conducted within black bear range in the boreal and Great Lakes – St  

Lawrence (GLSL) forest regions (Rowe 1972) in Ontario, Canada across approximately 498, 022 

km2 (Figure 3.1). Southern Ontario is generally characterized by a humid continental climate, 

with cold winters and warm summers, while northern Ontario is characterized by a subarctic 
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climate with colder winters and cooler, shorter summers (Drever et al. 2010). The study area was 

a multi-use landscape with uses including recreation, forestry, agriculture, and mining. Most of 

the human population and development occurs in the southeast of the province, predominantly 

bordering Lake Erie and Lake Ontario, but there were medium-sized cities across much of the 

study area. Black bear hunting was permitted in designated WMUs during open seasons in the 

fall and spring (the latter being previously reinstated in some WMUs in 2014 and across Ontario 

in 2016, following the 1999 moratorium; Poulin et al. 2003, Newton and Obbard 2018, Northrup 

et al. in press).  

Landcover varied across the study area due to the broad geographic extent and included 

wetlands, shorelines, grasslands, shrublands, human settlement and agriculture, and forests. 

Forests were the predominant landcover with coniferous and mixed forests dominating the boreal 

region; the primary coniferous tree species in the boreal forest included eastern white cedar 

(Thuja occidentalis), black and white spruce (Picea mariana, Picea glauca), balsam fir (Abies 

balsamea), jack pine (Pinus banksiana) and tamarack (Larix laricina) and the main deciduous 

species included poplar (Populus) and white birch (Betula papyrifera; Perera et al. 2000). 

Hardwood forests dominated the GLSL and included maple (Acer spp.), oak (Quercus spp.) and 

yellow birch (Betula alleghaniensis), mixed with some coniferous species (Perera et al. 2000). 

Although productivity is generally higher in the GLSL than the boreal, abundance of soft and 

hard mast that are important for black bears vary by year (Howe et al. 2012, Potter and Obbard 

2017), with food failure events more common in the boreal forests (Poulin et al. 2003). 
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Figure 3.1. Location of arrays of baited barbed wire hair corrals across the Great Lakes – St  Lawrence (GLSL) and boreal forest 
regions in Ontario, Canada where black bear hair samples were collected between 2017 – 2019. At this scale, arrays appear as thin 
lines. Orange circles in inlay figure represent an array of corrals. 
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3.3.2 Sampling design  

Black bears were sampled across 78 study areas using curvilinear arrays of approximately 40 

baited barbed-wire hair corrals (hereafter detectors; Woods et al. 1999) over five consecutive 

weekly sampling occasions in the spring and early summer of 2017 to 2019 (sampling occasions 

range from May 21st to June 30th). As black bears typically occupy stable home ranges and focus 

their movements within smaller areas during these times it is assumed resident populations were 

sampled (Obbard et al. 2010, Howe et al. 2013). Adjacent detectors were spaced approximately 

1.5km apart (some detectors were spaced further apart to avoid human development or 

agriculture). While detectors were placed alongside roads and trails to allow for vehicle access, 

roads and trails with curves and branches were selected to best avoid having a bear’s home 

ranges elongated in a consistent direction with respect to arrays. Detectors consisted of an 

approximately 5 x 5 meter fenced area created by stringing a single strand of barbed wire at a 

height of 50 cm around trees with partially opened tins of sardines in oil suspended from a board 

nailed 2.5 meters high on a central tree that was >2 m from the barbed-wire perimeter. Physical 

capture data from black bears in Ontario showed that the average 1-year old black bear was < 50 

cm at the shoulder (MNRF unpublished data). Detectors were therefore assumed to exclude cubs 

and yearlings and samples represent bears >1 year of age. Each week, detectors were visited, hair 

samples were collected and stored in paper envelopes and detectors were rebaited. To assign an 

individual and sex to hair samples, we used methods described in Howe et al. (2022).  

3.3.3 SECR analysis  

SECR model framework — SECR is a hierarchical model composed of two components – a state 

model and detection model – that are fit to spatial detection histories of animals. The detection 

model describes the probability of detecting an animal at each detector as a function of distance 
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from an animal’s latent activity center, where an activity center is the centroid or average of the 

space that an animal occupies during the period in which detectors are active. Parameters g0 and 

σ jointly define the detection model: g0 is the baseline detection probability of a trap placed at an 

animal’s activity center; σ describes the spatial scale over which detection probability declines 

with increasing Euclidean distance between the detector and an animal’s activity center. The 

state model describes the distribution of unobserved locations of activity centers within the state 

space. The state space is a discretized plane that includes all detectors buffered by an area large 

enough to include all animals at risk of being detected by any detectors, where areas of non-

habitat can be removed. This portion of the model can be formulated as a homogeneous Poisson 

point process where activity centers are distributed randomly according to the intensity 

parameter across the state space, or an inhomogeneous point process can be used in which the 

intensity parameter is modeled as a function of spatially referenced covariates and a vector of 

regression coefficients β. In this analysis, we took the latter approach, examining the influence of 

a suite of spatially reference covariates on local density within each array of detectors to explain 

variation in density across a study area.  

All analyses were implemented through R 4.0.4 using the ‘secr’ package version 4.3.3 

(Efford 2020a) and ArcMap version 10.7.1; the following functions are in reference to the ‘secr’ 

package. A high-performance computing cluster provided by Compute Canada 

(computecanada.ca; RRG: hyf-453-ab) was used to simultaneously fit many models because the 

computationally time of SECR models was prohibitively slow with a stand-alone personal 

computer.  

Habitat data — We used six variables to assess the influence of habitat productivity and human 

disturbances on black bear density. See Appendix C Section 1 for descriptions of original 
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datasets and data sources. All covariates were summarized with a 4480 m and 8290 m radius 

moving window (63 km2 and 216 km2 area circle, respectively), selected based on 95% circular 

space use radius derived from female and male σ estimates (σ√5.99; Royle et al. 2014) from an 

initial analysis of the MNRF data and SECR studies in Ontario (Obbard et al. 2010, Howe et al. 

2013, Howe et al. 2022). A moving window analysis calculates the average of the set of pixels 

within a specified radius of a focal pixel, with the result representing the mean attribute value of 

the covariate within the circular landscape (Apps et al. 2004). Therefore, these values represent 

the broader scale at which wide-ranging bears may respond to habitat conditions based on the 

area they use during the study period. Processed resolution of layers were set at 500 m to reduce 

computation time, excluding human settlement, which was quantified at 10m because decreasing 

the resolution resulted in spatial rasters with little variation.  

Landcover classes were obtained at 30 m resolution from the North American land change 

monitoring system based on 2015 Landsat satellite imagery (NALCMS 2020). Land cover 

classes were selected and grouped into four categories that were potentially important to black 

bears (agriculture, deciduous forests, coniferous forests, mixed forests) based on previous black 

bear SECR studies (Sun et al. 2014, Humm et al. 2017, Welfelt et al. 2019). We developed 

separate layers for each category. To do so, raster cells were coded with the focal cover layer 

(e.g., mixed forest) as 1 and all other cover types as 0 and the mean value of each cell was 

calculated using a circular moving window. The produced layers therefore represent the 

percentage of the landcover class within the circular moving window.  

Anthropogenic covariates included density of roads and human settlement. Roads current to 

2021 were obtained from the Statistics Canada National Road Network (Statistics Canada 2022). 

Roads classified as freeway, highway, collector, arterial, local, ramps and resource and 
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recreation were combined into a layer and female and male road length was calculated using a 

radius of 4480m and 8290m, respectively, to obtain the density of roads (km/km2) surrounding 

each pixel. As a proxy for anthropogenic presence, a human settlement raster layer was created 

using data from the global human settlement built-up grid (GHS-BUILD-S2 R202A). This global 

dataset represents the build-up area (i.e., constructed structures in the forms of buildings within a 

pixel) expressed in terms of a probability density grid at 10 meters spatial resolution. The data 

were derived from a Sentinel-2 global image composite for 2018 using Convolutional Neutral 

Networks (Corbane et al. 2020). 

We considered the normalized difference vegetation index (NDVI) as a potential covariate 

representing coarse vegetative productivity. NDVI is widely used in animal ecology as an index 

of vegetative productivity (Pettorelli et al. 2011) and is a continuous representation of vegetation 

as opposed to the discretized landcover classes. However, in Ontario, important green vegetation 

for black bears during the spring and early summer (e.g. clover, common dandelion, hawkweed; 

Romain et al. 2013) are typically associated with regenerating clear-cuts and disturbed areas such 

as roads and gravel borrow pits that typically exhibit lower NDVI values. Thus, we considered 

NDVI as unlikely to represent important black bear foods during our study period and was 

additionally likely to be confounded by other processes and patterns, such as forest cover and 

types (see Appendix C for further discussion of NDVI and SECR model results that including 

NDVI as a density covariate).   

State space — The state space consists of a discretize plane of a mesh of points where latent 

activity centers can occur, over which density is estimated. We defined the state space for each 

study area as a 500m resolution raster that extended 20 km around all detectors. This buffer falls 

within the 3 - 4σmax  recommendation to ensure that any animal with an activity center on the 
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edge or outside of the state space has negligible probability of capture (Royle 2014, Efford 

2019). Although excessive for most females, using an area of integration too small can positively 

bias density estimates, whereas using a too large an area does not as density estimates asymptote 

with larger buffer widths (Royle et al. 2014). During our analysis, if a larger buffer was 

suggested using the function ‘suggest.buffer’, this value was used. We intentionally selected a 

fine grid point spacing because we were interested in bears’ response to fine-scale habitat 

heterogeneity. Vector data representing Canadas’s surface waters as of 2019 were collected from 

Natural Resources Canada CanVec Series Hydrographic Features (Natural Resources Canada 

2019) and permanent waterbodies were excluded as non-bear habitat from each state space mask. 

Pixel values from the spatial rasters were assigned to each pixel of the state space mask to use as 

a covariate for the density model. Covariates were standardized by subtracting the mean and 

dividing by the standard deviation to facilitate model convergence and ensure resulting 

coefficients were directly comparable (Grueber et al. 2011).  

3.3.4 Two stage SECR models  

Data were analyzed using two different approaches. First, we fit sex-specific SECR models 

to datasets from each independent study area (hereafter, study area approach). This approach 

minimizes spatial heterogeneity in the detection parameters and provides results meaningful to 

each individual study area but is more subject to influence from small sample sizes. Secondly, 

we pooled datasets from study areas in the same forest region to create four sex-specific multi-

session SECR datasets (hereafter, pooled approach): GLSL male; GLSL female; boreal male; 

boreal female. For the latter approach, we treated study areas as sessions when fitting SECR 

models and simultaneously estimated parameters using the combined datasets. The pooled 

approach provides more power to detect and model sources of variation in density and detection, 
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although potentially smoothing over differences among study areas. Taken together, these two 

approaches allow for robust inference to the spatial factors influencing density. For the pooled 

approach, we built separate models for each forest region due to differences in bear movements 

and home ranges size between the forest regions (Howe et al. 2013). Further, factors shaping 

density markedly vary across the two forest regions; the GLSL is more densely populated with 

generally higher natural productivity and the boreal is characterized by lower human influences 

and productivity. To reduce challenges of modeling spatial effects due to data sparsity, for both 

analyses we excluded study-area and sex-specific datasets with less than 20 recaptures 

(recommended minimum number of recaptures for SECR models; Efford et al. 2004, Sun et al. 

2014). Despite this, the study area data were fit to relatively sparse, if not insufficient, datasets 

coupled with little variation in the covariate values that resulted in numerous models failing to 

converge or yielding inflated estimates of variance. Consequently, we only focus on the pooled 

approach in the following sections. Although pooling of datasets may risk masking spatial 

heterogeneity that could lead to spurious or weak and inclusive results (Lesmerises and St-

Laurent 2017), it does protect against small sample variance. Our overall conclusions of black 

bears’ responses to habitat features were generally consistent between the study area and pooled 

analyses (full methods and results for the study area analyses are provided in Appendix C 

Section 3). Therefore, we feel this decision did not unduly impact our overall inferences.  

As fitting SECR models can be time and computationally intensive, we fit models in a two-

stage approach following other bear (Ursus spp.) SECR studies (Morehouse et al. 2016, Evans et 

al. 2017, Sun et al. 2017, Lamb et al. 2018, McLellan et al. 2019). In the first stage, we fit four 

models where density was assumed constant (i.e., a homogenous Poisson point process was 

assumed for the state model). We fit a null model and combination of models where g0 varied as 
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a function of a trap-specific response (bk) and σ by sampling occasion (t). Differences in g0 and σ 

among sex and forest types were accounted for as models were fit to sex-and-forest region 

specific datasets. We intentionally kept our detection models simple because preliminary runs of 

more parameterized detection models often failed to converge. Despite this, the simpler detection 

models still provide a reasonable representation of bear behaviour. Akaike’s Information 

Criterion corrected for small sample size (AICc) was used to evaluate the relative support for 

each of the competing detection models (Hurvitch and Tsai 1989, Burnham and Anderson, 

2002).  

In the second stage, the most parsimonious detection model was used in the subsequent runs 

of the full SECR models with density covariates (i.e., with an inhomogeneous Poisson point 

process). Instead of evaluating the full set of density models including all additive combinations 

of covariates, we constructed a set of a priori univariate and multivariate models including 

covariates based on previous studies and black bear biology and including only two forest cover 

types in the same model. Covariates on the density model included percent forest types 

(coniferous, deciduous, mixed), percent agriculture land cover, human settlement density and 

road density.  Further, as correlation between variables can lead to unstable models with 

decreased precision that may produce erroneous estimates, pairs of covariates were tested for 

Pearson’s correlation coefficient |r| > 0.7 (Dormann et al. 2013; Appendix C Section 5: Table 

C.5.2). We experienced challenges with convergance of some of the models in this second stage 

using the defult Newton-Raphson optimizor. Thus, to confirm that models had converged, all 

models were re-fit sequentially four times, using two optimizors (the defult Newton-Raphson 

and more robust Nelder-Mead) with the starting values set as the estimates from the previous fits. 

Models were considered to be converged when log likelihoods and 𝛽 parameter coefficient 
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estimates stabilized to consistent values. For both the detection and density models, 𝛽 estimates 

and their SE and confidence intervals were visually inspected for unreasonably large estimates 

that could indicate failure to converge and overparameterization or non-identifiability (O’Brien 

and Kinnaird, 2011). Effects were evaluated on the coefficient slope (i.e., β estimate) and were 

considered significant if the 95% confidence intervals did not overlap 0 (Welfelt et al. 2019).  

3.4 Results  

3.4.1 Summary of hair collection and capture statistics   

Between 2017 and 2019, we identified 3857 individuals (1645 female; 2212 male) from 

12731 detections (5484 female; 7247 male). The number of individuals, detections, and 

recaptures in each study area ranged from 8 to 111 (4 - 52 female; 3 - 59 male), 9 to 485 (5-165 

female; 4 - 344 male) and 1 to 407 (0 - 134 female; 0 - 293 male), respectively. See Appendix B 

for capture statistics summary. Out of the 164 datasets from 78 study areas, we retained datasets 

from the last year of sampling for three study areas sampled across multiple years. A further 32 

datasets from 20 study areas were omitted due to insufficient recaptures (16 female datasets and 

16 male datasets) and two datasets from one study area due to data quality; see Appendix B for 

datasets. As a result, models in both analyses were fit to 122 datasets from 65 study areas.  

3.4.2 SECR detection models and habitat effects on density  

Female GLSL and boreal models included 20 and 41 study areas, respectively. Male GLSL 

and boreal models included 19 and 42 study areas, respectively. For detection models fit in the 

first stage of our modeling approach, the top ranked (ΔAICc = 0) male GLSL and boreal and 

female boreal models included a behavioural response (bk) on g0 and sampling occasion (t) effect 

on σ. The top ranked-model for female GLSL included a trap-specific behavioural response (bk) 

on g0 and constant σ. See Appendix C Section 5 for AICc detection model results.  
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Models in the second stage successfully converged, indicated by consistent log-likelihood 

and β estimates, after the second fit of the Nelder-Mead optimzor for the boreal models and the 

first fit of the Newton-Raphson optimizor for the GLSL models. The direction and magnitude of 

β parameter estimates were similar between the univariate and multivariate models (Appendix C 

Section 4); thus for simplicity we only discuss the univariate models when making inferences in 

the following sections.  

In the GLSL, for both males and females, deciduous forests were negatively associated 

with density and coniferous forests positively associated, with both effects being significant 

(Table 3.1). Human density was negatively related to male density and mixed forests negatively 

related to female density with both effects being significant. The remaining covariates in the 

GLSL models were negatively associated with density; however, the 95% confidence intervals 

included zero that indicated non-significant effects (Table 3.1). For both sexes in the boreal 

forest, roads and mixed forests were negatively associated with bear density (Table 3.1). Males 

in the boreal also had a significant negative and positive effect of humans and deciduous forests, 

respectively (Table 3.1); females displayed the same pattern, but effects were non-significant, 

and females had a significant positive effect on crops. There was also a non-significant negative 

association between coniferous forests and density for both sexes. The importance of the 

covariates, as indicated by the magnitude of the β coefficients, and their uncertainty varied by 

forest region and between males and females (Table 3.1). 
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Table 3.1. 𝛽 parameter estimates, standard errors (SE) and 95% confidence intervals (lower [LCL] and upper [UCL] confidence 
limits) of univariate SECR density models fit to female and male black bear capture-recapture datasets in the Great Lakes – St 
Lawrence (GLSL) and boreal forest regions, Ontario, Canada, 2017–2019. Bold text indicates models with significant 𝛽 parameter 
estimates (95% confidence intervals do not include 0). 𝛽 estimates were standardized to allow for covariate comparison within study 
area by sex.  
 

 
Predictor  

Female GLSL  Female Boreal 
𝜷	estimate† SE LCL UCL  𝜷	estimate† SE LCL UCL 

Human  -0.158 0.131 -0.415 0.100  -0.105 0.194 -0.485 0.276 
Road  -0.063 0.051 -0.162 0.036  -0.403 0.073 -0.546 -0.261 
Coniferous forest  0.214 0.051 0.114 0.315  -0.051 0.040 -0.130 0.028 
Deciduous forest  -0.124 0.050 -0.223 -0.025  0.070 0.036 -0.002 0.141 
Mixed forest  -0.090 0.045 -0.178 -0.003  -0.097 0.035 -0.166 -0.028 
Crop  -0.077 0.050 -0.175 0.021  0.238 0.073 0.096 0.381 

 
Predictor 

Male GLSL  Male Boreal 
𝜷	estimate† SE LCL UCL  𝜷	estimate† SE LCL UCL 

Human  -0.245 0.103 -0.448 -0.043  -0.287 0.125 -0.532 -0.043 
Road  -0.068 0.052 -0.170 0.034  -0.152 0.046 -0.241 -0.062 
Coniferous forest  0.263 0.046 0.173 0.353  -0.043 0.030 -0.101 0.016 
Deciduous forest  -0.189 0.047 -0.282 -0.096  0.106 0.028 0.051 0.161 
Mixed forest  -0.034 0.042 -0.117 0.049  -0.103 0.027 -0.156 -0.049 
Crop  -0.092 0.051 -0.193 0.009  0.034 0.063 -0.089 0.157 

† Baseline density on the log scale is reference category; all covariates standardized (mean = 0, standard deviation = 1) such 
that the 𝛽 parameter estimate indicates the change in the standard deviation of the baseline density (bears/hectare) on the log 
scale for one unit change in the standard deviation of the covariates value. 
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3.5 Discussion 

Understanding how wildlife species are impacted by human modification of landscapes and 

changing environmental conditions is essential for conservation and management of large-bodied 

and wide-ranging species, such as the American black bear. Here we leveraged a large-scale 

genetic spatial-capture recapture dataset of black bears and SECR models to uniquely capture the 

relationship between fine-scale habitat heterogeneity and the species densities across an 

expansive spatial extent. Our findings indicate a negative impact of roads and human settlement 

on the distribution of black bears, with both male and female bears at higher density in areas with 

lower road density in the boreal forest and male bears being found in areas with lower human 

impacts across the province. Moreover, black bear association with agriculture and forest types 

varied by forest region and followed patterns reflecting what habitat types and resources were 

likely to be most limiting to the species during the spring and early summer.  

Numerous studies have examined the influence of human disturbances on bear populations 

that have in part been motivated by the ongoing expansion of human activities into wildlife 

habitats. We found that the influence of roads mirrored many other large carnivore SECR studies 

where roads were associated with reduced bear densities (Humm et al. 2017, Lamb et al. 2018). 

These results also support other studies, conducted using radio collaring techniques, that show 

fine-scale avoidance of roads by bears (Kasworm and Manly 1990, Waller and Servheen 2005). 

Such trends may arise through a combination of mortality from vehicle collisions, avoidance 

linked to auditory and visual effects of vehicle traffic, barriers to movement, and increased 

human access leading to heightened hunting and human-bear conflicts (Hostetler et al. 2009, 

Northrup et al. 2012, McFadden-Hiller et al. 2016). Clearly, our results show that, at least in the 

boreal forest, roads are a strong driver of fine-scale distribution of black bears. Interestingly, the 
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effect of roads was not significant in the GLSL. The GLSL is substantially more populated, with 

higher road density on average. Road density across the state space of all study areas in the 

GLSL and boreal were 0.42 and 0.20 km/km2, respectively. The non-significant effect of roads in 

the GLSL could possibly reflect the pervasive nature of roads in this region, acclimatization of 

black bears living in more developed areas (Zeller et al. 2019) or bears frequenting roads where 

spring-green up occurs in the early spring (Mosnier et al. 2008, Tigner et al. 2014). Alternatively, 

the difference in road response across forest regions could be related to bear hunter behavior in 

the spring. Because there are fewer roads in the boreal forest, harvest activity may become 

concentrated along the few roads there are, leading to depressed local densities. However, this 

inference is speculative and warrants further research.  

Although there is consensus that bear density is typically higher in areas with less humans, 

studies report mixed results in human-dominated landscapes. Human settlement has been 

correlated with higher densities (Beckmann and Berger 2003, Fusaro et al. 2017), lower densities 

(Humm et al. 2017, Welfelt et al. 2019, Lamb et al. 2020) and linked to changes in natural food 

availability (Laufenberg et al. 2018) and housing density (Evans et al. 2017). Further, human 

settlements are often a source of food for bears. We found a negative association between human 

settlement and black bear densities; however, the effect was significant only for males. The 

difference between sexes could be in part due to male black bears in Ontario being harvested 

more than females; males are more likely to come into conflict with people (Kolenosky 1986; 

Obbard et al. 2017). We did not sample in areas with high human development (i.e., urban and 

exurban developments) and therefore we have little information on bear responses to high human 

activity and cannot make inference to more heavily developed areas. While it is optimistic that 

sampling with baited-barbed wire hair corrals near more heavily developed areas could occur 
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safely, the use of fine-scale telemetry data could help address this knowledge gap. Such 

information could enhance our understanding of black bear responses to the compounding effects 

of roads and human development to target land use management and bear safety outreach 

programs.  

Black bears’ association with agricultural land cover varied by forest region; density was 

positively associated with crops in the boreal and negatively, but not significantly, associated in 

the GLSL. This aligns with previous research demonstrating that black bears’ selection for 

agricultural areas varies spatially and by individual, season and time of day (McLaughlin et al. 

1994, Johnson et al. 2015, Zeller et al. 2019). Our results suggest behavioural trade-offs possibly 

related to gradients in productivity and human disturbances across the broad forest regions. In 

the less productive boreal forests where food is more limiting, black bears may seek out apiaries 

and cultivated crops as a supplemental food source (Ditmer et al. 2016), especially when 

agricultural areas are on the periphery of bear habitat and contain higher concentrations of foods 

than surrounding areas. Comparatively, in the GLSL where natural hard and soft mast is more 

abundant (Potter and Obbard 2017), bears may avoid coming into conflict with humans in 

agricultural areas (McFadden-Hiller et al. 2016). Furthermore, it is important to note that we 

assumed our crop covariate includes, to some extent, foods consumed by black bears during our 

study period; we did not specify the type of crop nor account for if crops were ripe so this 

assumption may not hold across all study areas and could explain the lack of a significant effects 

observed in the GLSL.  

The contrasting patterns between black bears’ association with forest cover types in the 

GLSL and boreal are consistent with black bear behaviour and gradients of productivity and 

human disturbances across the province. In the GLSL, black bear density was positively 
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associated with coniferous forests. While the GLSL has higher productivity, the region is more 

populated and has higher human disturbances and thus cover habitat may be the primary factor 

limiting bears. Further, because we sampled during the breeding season, cover may be of high 

importance to breeding females and all males except for the most dominate, breeding males. Our 

observed trend contrasts with findings from the lower peninsula in Michigan, USA. In this study 

male and female black bear habitat selection was positively associated with aspen forests and for 

females with northern hardwood and mixed hardwood (Carter et al. 2010). We did, however, 

find a positive association with deciduous forests in the boreal, although not significant for 

females; nerveless that pattern aligns with reports of black bear avoiding mature coniferous 

forest at their home-range scale in southern Quebec, Canada (Brodeur et al. 2008). Our findings 

further align with reports of black bears feeding on willow and aspen leaves in the spring when 

protein content is high (Poulin et al. 2003, Romain et al. 2013). This finding supports our 

prediction that density is correlated with forests stands containing greater abundance, diverse 

vegetative food sources in the less productive boreal forest. The lack of significant association to 

coniferous forests in the boreal for both sexes could be explained by the study areas being 

composed of predominately coniferous forests such that bears have little other land covers to 

select from or that when deciduous forest stands are available, bears seek them out for available 

foods. Collectively, these patterns in the GLSL and boreal reflect black bear behavioural 

responses to different habitat types and resources are likely to be most limiting to the species. In 

the boreal, food is limited and bears thus might be seeking out available food in deciduous 

forests. Comparatively, in the GLSL deciduous and mixed forests are more common, and food is 

less limited, and thus bears might be prioritizing the security of coniferous forests where there is 

still ample food supply.   
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In line with these patterns in the deciduous and coniferous forests, we expected black bears to 

seek out mixed forest in less productive boreal forest regions. Interestingly, we found a negative 

effect of mixed forest on black bears across both the boreal and GLSL regions that does not align 

with trends of the other forest cover types. This spatial covariate may capture another factor or 

processes we did not consider, especially provided the consistent effect across the study regions.  

3.5.1 Methodological considerations, study limitations and future research 

Our results provided further insight into the impact of human disturbances and environmental 

conditions on a widely distributed and generalist carnivore, yet there are limitations to the 

inferences that can be drawn from this study. A prevalent challenge of both analyses was 

selecting an appropriate model structure for the datasets, highlighting a long-standing challenge 

in statistical ecology (Brewer et al. 2016). It was possible that correlation among spatial 

predictors (although |r| < 0.7; Dormann et al. 2013) influenced our multivariate model results 

(Graham et al. 2003). Moreover, data sparsity paired with minimal variation in some covariates 

limited the complexity of models we could run without risking overparameterization, issues with 

convergence or models failing to estimate parameters (Schmidt et al. 2022). To that end, our 

models likely omitted important predictors of density, and their interactions, and thus were 

unable to fully capture the complexity of carnivore habitat-relationships linked to fine-scale 

factors. Further, assessment of model convergence was challenging and imperfect, especially 

provided the inflated SE and CI for some of the more parameterized models that suggests 

nonconvergence or collinearity (Gruber et al. 2011, Dorman et al. 2013). Considering the 

complexities involved with fitting multivariate models, we therefore based our main results on 

univariate models from the pooled analysis. Nonetheless, we note that a limited number of 

multivariate models showed similar effects as the univariate models (Appendix C Section 4) and 
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trends from the landscape and pooled analyses were similar; therefore, we feel that excluding 

landscape analysis and multivariate models had minor impacts on our overall inferences.  

It is possible our study was biased towards sampling bears with roads in their home ranges 

because we placed our detectors alongside roads and trails. While raised as a possible source of 

bias (Sadeghpour and Ginnett 2011), the influence of detectors’ proximity to roads has yet to be 

fully investigated for black bear and warrants further research for the species and other elusive 

carnivores living in multi-use landscapes. However, because we found a consistent negative 

relationship between roads density and bear density it suggests that if we sampled bears more 

tolerant to roads, that the true response to these features is even stronger than what we 

documented. Additionally, to simplify the number of parameters in our models we grouped all 

types of roads into one covariate. Investigating the influence of specific road types or vehicle 

traffic would improve our understanding and prediction of bears responses to specific road 

features that could be leveraged for more targeted land-use and recreation planning. However, it 

is unlikely that SECR data are sufficiently fine-scale to show relationships with these sorts of 

data and thus other finer-scale data, such as telemetry data, would be needed. 

3.6 Conclusions  

Effective management of carnivores in human-modified landscapes will increasingly depend 

on monitoring population trends and understanding and predicting population responses to 

changing land-use and environmental conditions. Similar to many carnivore studies, we 

demonstrate a negative impact of human disturbances on black bear densities. These results 

support the long history of research showing roads in particular, often related to timber harvest 

and other industrial activities, can displace bears, whether due to direct mortality or behavioral 

effects. The effect of agriculture and forest types on black bear populations varied by forest 
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region and followed patterns reflecting differences in habitat types and trade-offs between food 

resources and avoidance of human activities, suggesting nuance in the manner in which bears 

cope with human impacts to the environment. Collectively, our findings highlight the marked 

spatial variation in environmental and anthropogenic drivers of density across a species’ range 

and demonstrate how populations in different landscapes may experience impacts from drivers of 

density in different ways. This variation, in turn, suggests complexities in the way bears will 

likely respond to climate and as land-use change. Studies have predicted shifts in the distribution 

of bear vegetative food resources and habitat quality, as well as interactions with humans under a 

range of climate changes (Su et al. 2018, Penteriani et al. 2019, Ashrafzadeh et al. 2022). Thus, 

as climate change alters broad forest characteristics and land-use change continues to fragment 

and alter habitats, our results suggest that bears will respond in nuanced ways depending on how 

these factors alter the processes most limiting on the species locally. As such, continued 

monitoring of populations is key to understanding how and whether black bears can cope with 

large scale global change.  

This complexity and scale-dependent nature of black bear habitat-relationships reinforces the 

importance of conducting studies for wide-ranging and generalist species across large spatial 

extents to fully capture heterogeneity in mechanisms shaping density. Our findings further 

contribute to the growing body of literature investigating changes in carnivore density in relation 

to landscape-level shifts in habitat conditions and human disturbances. Such knowledge is 

essential for managing and conserving carnivores in increasingly human-modified landscapes.  
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4.1 Abstract  

Understanding the spatial ecology of large carnivores in increasingly human modified 

landscapes is critical for conservation and management. Complementary to this need are robust 

monitoring and statistical techniques to understand factors shaping population densities across 

the species’ large ranges. Here we analyze three years of a genetic capture-recapture dataset of 

3857 individual black bears over 498, 022 km2 of Ontario, Canada. Using spatially explicit 

capture-recapture models (SECR), we examine the influence of forested land cover and human 

influences, representing bottom-up and top-down processes, in shaping population densities 

across the province and forest regions. We propose a two-step modeling approach that allows for 

modeling the effect of spatial covariates on density when it is computationally restrictive to use 

data-intensive SECR models common to such large scale analyses. Black bears’ association with 

human influences and forested land cover varied across spatial scales reflecting differences in 

gradients of habitat quality and human disturbances and bear ecology. At the provincial scale, 

black bear density was largely driven by forested land cover, where higher densities were 

associated with more productive deciduous forests. Associations of black bear density within 

forest regions reflected trade-offs between intensity of human disturbances and productivity 

gradients. More bears were harvested in areas of higher bear density, expect for lower quality 

habitats where male densities were potentially supressed by harvest. These findings highlight the 

scale-and-context dependent nature of black bear density-habitat relationships and underscores 

the importance of conducting studies for wide-ranging and generalist species across large extents 

to capture heterogeneity in factors driving population processes. Such information is important 

for management of wildlife species in habitats undergoing landscape-level shifts in land-cover 

and human disturbances that can drive variability in bottom-up and top-down processes.   
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4.2 Introduction  

Human-induced changes to terrestrial ecosystems are intensifying, with widespread impacts 

on large-bodied mammalian carnivores (hereafter, carnivores) that have contributed to 

population declines and range contractions in recent decades (Ceballos et al. 2002, Laliberte and 

Ripple 2004, Márquez et al. 2022). Due to the importance of carnivores in structuring terrestrial 

ecosystems and providing socio-economic benefits (Ripple et al. 2004), quantifying the impacts 

of changing land-use and climatic conditions on their abundance and distribution are increasingly 

important for informing wildlife management and conservation.   

Understanding what factors regulate and limit population density, specifically bottom-up 

food resources and top-down mortality, is the focus of many carnivore monitoring and 

management programs. However, understanding the relative importance of these processes 

remains a long-standing subject of considerable debate among ecologists (Hunter and Price 

1992, Sinclair and Krebs 2002). Studying the relationship between bottom-up and top down 

dualities and population density is not always straight forward (Rettler et al. 2021); both 

processes can simultaneously influence population processes, where the magnitude of their 

effects can differ spatially and temporally and shift with changes in habitat quality and human 

disturbances (Fretwell and Lucas 1969, Turner 1989). For wide-ranging species that occur over 

large areas, characterization of bottom-up and top-down factors across large spatial extents are 

often required to fully capture heterogeneity in these factors. However, while these population-

level assessments are typically sought after in ecology, they remain rare due to the substantial 

logistical and analytical challenges they present (Jones 2011, Bischof et al. 2020).  

Complementary to the need for a better understanding of the drivers of carnivore distribution 

and abundance are robust monitoring and statistical techniques to estimate population density, a 
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state variable of interest in many wildlife monitoring, management and conservation programs 

(Sutherland et al. 2013, Morin et al. 2022). Yet, those tasked with wildlife management and 

conservation face the long-standing challenge of identifying how to obtain robust estimates of 

density over large areas (Lamb et al. 2019, Bischof et al. 2020). These challenges are amplified 

for elusive and wide-ranging carnivores that often exist at low and heterogenous densities and 

detectability. The ability to estimate wildlife abundance and distribution over large spatial 

extents has improved with the advent and application of non-invasive sampling coupled with 

advances in statistical techniques and computing power (Lamb et al. 2019). Spatially explicit 

capture-recapture (SECR) models are a common approach for modeling wildlife distribution in 

space, as well as investigating the drivers of this distribution, when animals are uniquely 

identifiable (Efford 2004, Royle et al. 2014). SECR models pair two spatially explicit sub-

models: a detection model, where the detection probability is modeled as a function of a 

detector’s location relative to the estimated center of an animal’s space use (i.e., its activity 

centre), and a density model that uses a spatial Poisson or binomial point process to predict the 

distribution of animal activity centres within a discretized plane of interests over which density is 

estimated. The density model can be formulated such that activity centers are distributed 

randomly, or spatial covariates can be used to model the distribution of activity centers as a 

function of ecological factors of interest. Covariates can also be attributed to the detection model 

and typically include individual, detector or temporal factors (Royle et al. 2014).  

With over a decade of development, SECR models have become increasingly customizable 

and flexible to answer a range of research questions including those related to demography, 

resource selection, space use, and movement and dispersal (see reviews by Royle et al. 2018, 

Tourani 2021). However, while SECR models offer an intriguing opportunity for assessing 
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factors influencing population density over large scales, alongside these advancements and more 

sophisticated analyses come numerous computational and logistical challenges (Stevenson et al. 

2021, Howe et al. 2022, Schmidt et al. 2022). When larger landscapes are sampled, heterogeneity 

in detectability and inhomogeneous density are more likely (Jones 2011). Failing to account for 

important sources of heterogeneity in the model structure can introduce bias in parameter 

estimates (Sollmann et al. 2011, Moqanaki et al. 2021, Stevenson et al. 2021, Howe et al. 2022; 

Chapter 2 of this thesis). To that end, application of SECR models to large scale analyses, such 

as those fit to large capture-recapture datasets collected across broad areas, are more prone to 

biased estimates unless models sufficiently capture detection heterogeneity (Howe et al. 2022, 

Marrotte et al. 2022). Despite the rapid growth in computer processing and ease of parallel 

processing, SECR models quickly become computationally intensive (Milleret et al. 2019, Morin 

et al. 2022). In these cases, one alternative is to fit separate models to subsets of data; however, 

this approach is not always practical as it can lower the detection and recapture information such 

that it is impossible to estimate parameters. This can lead to issues with precision, and is difficult 

to account for potential sources of heterogeneity due to the restricted number of parameters that 

can be included relative to sample size (Stetz et al. 2014, Schmidt et al. 2022). Moreover, models 

fit to sub-sets of data are subject to influence from small sample sizes such that predictions may 

not be reliably extended to unsampled areas. Collectively, these issues highlight the ongoing 

challenge of identifying the optimal trade-off between the size of the datasets, model complexity 

to account for population heterogeneity, and tractability (i.e., computational resources and run 

times of models).  

American black bears (Ursus americanus) are a widely distributed and abundant ursid in 

North America (Scheick and McCown 2014). Their population dynamics are largely driven by 
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interrelated bottom-up food availability and top-down mortality that can vary across landscape 

conditions and time, as well as by sex and individual, among other factors (Baruch-Mordo et al. 

2014, Johnson et al. 2015, Evans et al. 2017, Kristensen et al. 2019, Zeller et al. 2019). As with 

many carnivores, human are often the predominant top-down force influencing black bear 

survival, directly through hunting or vehicle collisions or indirectly through human-wildlife 

conflict (Hebblewhite et al. 2003, Gantchoff et al. 2020). Moreover, as humans continue to 

transform natural landscapes, modification of habitat can increase or decrease important food 

resources while exposing populations to a mosaic of human mortality risks associated with 

anthropogenic food sources and overlap between human activities and bear habitat (Treves and 

Karanth 2003, Laufenberg et al. 2018). As a result, black bears are often the subject of 

management programs across their range; population information is both challenging to obtain, 

yet critical for their management and conservation (Hristienko and McDonald 2007, Obbard et 

al. 2014, Humm and Clark 2021). To that end, black bears present an important case study for 

assessing the relative influence of top-down and bottom-up forces on carnivore populations.  

In this study, we examine the influence of anthropogenic and environmental factors on 

black bear populations in Ontario, Canada. Over the last two decades, the Ontario Ministry of 

Natural Resources and Forestry  (MNRF) has estimated black bear densities and abundance 

across the province using genetic spatial capture-recapture surveys in most huntable wildlife 

management units (WMUs; Obbard et al. 2010, Howe et al. 2013, Howe et al. 2022, Marrotte et 

al. 2022). These surveys span a gradient in natural productivity and a mosaic of human 

influences, providing a unique opportunity to capture the effect of spatial heterogeneity on 

factors structuring black bear densities across the population’s range. These spatially expansive 
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studies are particularly important for generalist and wide-ranging species, such as black bears, 

that can take advantage of an array of habitat conditions.  

Using three years of black bear genetic spatial-capture recapture data collected in the 

boreal and Great Lakes – St Lawrence Forest regions of Ontario (Rowe 1972), we test the 

influence of forest type, harvest, human influence, and roads, representing bottom-up and top-

down process, on variation in black bear densities across the province and within forest regions. 

Further, this work was in part motivated by the need to explore alternative modeling approaches 

to computationally and data-intensive SECR models common to large capture-recapture datasets. 

Thus, we used our expansive dataset to assess the trade-offs of different modeling approaches. 

Our study not only provides information from one of the largest genetic black bear datasets but 

provides insight to the opportunities and difficulties of using large capture-recapture datasets 

within a SECR framework for large-scale monitoring and management.    

4.3 Methods  

4.3.1 Study area    

Our study spanned the boreal and Great Lakes – St  Lawrence Forest regions (GLSL; Rowe 

1972) in Ontario, Canada, encompassing a 498, 022 km2 region of continuous black bear habitat 

(Figure 4.1). The region comprised mostly forests, but also included shorelines, grasslands, 

wetlands, human settlement, and agriculture. Mixed woods and deciduous stands dominated the 

GLSL and common tree species included sugar maple (Acer saccharum), red oak (Quercus 

rubra), yellow birch (Betula alleghaniensis), beech (Fagus grandifolia), hemlock (Tsuga 

canadensis), white pine (Pinus strobus), trembling aspen (Populus tremuloides), and balsam fir 

(Abies balsamea). Coniferous and mixed wood forests dominated the boreal region; common 

coniferous tree species included jack pine (Pinus banksiana), black and white spruce (Picea 
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mariana, Picea glauca), balsam fir (Abies balsamea) and in wetter sites tamarack (Larix 

laricina) and less commonly, eastern white cedar (Thuja occidentalis; Perera et al. 2000). 

Further, white birch (Betula papyrifera) and trembling aspen were common hard wood species. 

A gradient in climate exists across the region: southern Ontario is generally characterized by a 

humid continental climate, with cold winters and warm summers and northern Ontario by a 

subarctic climate with colder winters and cooler, shorter summers (Drever et al. 2010). 

Compared to the GLSL, boreal forests experience more extreme seasonal variation in climate, 

with a shortened growing season and generally lower productivity. 

The study area was a multi-use landscape that includes recreation, forestry, agriculture, and 

mining. Medium sized cities are dispersed through the study area, with most of the human 

population and development in the southeast of the province. Harvest of black bears was 

permitted in designated WMUs during open seasons in the fall and spring, with the latter being 

previously reinstated in some WMUs in 2014 and across Ontario in 2016 following the 1999 

moratorium (Poulin et al. 2003, Lemelin 2008, Northrup et al. in press). Females with cubs of 

the year are protected from harvest during the spring, but not the fall hunting season.   

4.3.2 Sampling design  

Black bears were sampled across 78 study areas over five consecutive weekly sampling 

occasions in the spring and summer from 2017 to 2019 (sampling occasions range from May 21st 

to June 30th). We assumed resident populations were sampled because black bears typically 

focus their movements within smaller areas and occupy smaller home ranges during this period, 

after which they undertake extensive forays in search of seasonally available foods (Howe et al. 

2013). Study areas consisted of curvilinear arrays of roughly 40 barbed-wire hair corrals baited 

with partially opened tins of sardines in oil (hereafter detectors; Woods et al. 1999). Adjacent 
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detectors were spaced approximately 1.5 km apart and were placed alongside roads and trails to 

allow for vehicle access; roads with curves and branches were selected to avoid having bears 

home ranges elongated in same direction as an array. Detectors consisted of an approximate 5 x 

5-meter fenced area of a single strand of barbed wire at a height of 50 cm around trees. This 

height corresponds with physical capture data indicating an average 1-year old black bear in 

Ontario is < 50 cm at the shoulder (MNRF unpublished data). Samples are assumed to represent 

bears >1 year of age. Detectors were visited and checked for hair samples at roughly 1-week 

intervals and rebaited. Using methods detailed in Howe et al. (2022), individual and sex were 

assigned to hair samples.
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Figure 4.1. Location of arrays of baited barbed wire hair corrals across the Great Lakes – St  
Lawrence and boreal forest regions in Ontario, Canada where black bear hair samples were 
collected between 2017 – 2019. At this scale, arrays appear as thin colored lines.  
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4.3.3 SECR analysis  

4.3.3.1 Habitat and harvest data  

As we were interested in broad-scale patterns influencing black bear density, for each 

covariate we quantified a single value for each study area. We selected habitat covariates 

documented to be biologically important for black bears and for which there was sufficient 

variation across the study region to allow for model convergence and meaningful inference. All 

covariates were quantified within a buffer surrounding each array of detectors. We delineated the 

buffer size based on the biology of our species and used raw movement data from the MNRF 

capture-recapture datasets (i.e., the mean maximum straight-line distance between detections of 

an individual). To explore the distance over which human and environmental factors may affect 

the distribution of black bears’ we tested three buffer sizes corresponding to the median, 62.5% 

and 75% quantiles of the observed range length for each sex (Appendix D Section 2 for further 

details). Because all covariates were highly positively correlated across buffer widths (range r = 

0.95 – 1; mean r = 0.99; Appendix D Section 2: Table D.2.2), we used the 75% quantile buffer 

width of 4430m and 8740m for females and males, respectively. Out of our tested buffers, these 

values were most similar to spring 95% utilization distribution estimates of female black bears in 

boreal forests of Ontario (see Appendix D Section 2 for further details). Using this buffer 

approach resulted in sex and study-area specific values for each covariate.  

We were interested in two broad spatial classes to represent top-down and bottom-up 

processes, respectively: (1) human disturbances; and (2) forest regions. See Appendix D Section 

1 for description of covariates and original data sources. Covariates representing human 

disturbances included roads, a human influence index (HII) and black bear harvest. The HII 

dataset is a satellite-derived aggregated ranking of nine global data layers covering human 
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footprint, produced by the Wildlife Conservation Society and the Columbia University Center 

for International Earth Science Information Network (WCS and CIESIN 2005). Roads current to 

2021 were obtained from the Statistics Canada National Road Network (Statistics Canada 2022) 

and classified as freeway, highway, collector, arterial, local, and resource and recreation and 

combined into a layer to calculate the density of roads (km of roads/km2) for each buffer (i.e., 

total length of roads within the buffer divided by area). To represent harvest, we divided the 

average annual number of bears harvested in each WMU by the area of the WMU and averaged 

this value over the previous seven years, or the approximate species’ generation time (Onorato et 

al. 2004)  

Natural productivity varies across forest regions in Ontario. Because we were interested in 

capturing broad-scale habitat patterns, we used landcover classes from the North American land 

change monitoring system based on 2015 Landsat satellite imagery as a coarse proxy for 

productivity (NALCMS 2020). Selected land cover classes were grouped into deciduous and 

coniferous forests. For each class we developed separate raster layers by coding the focal cover 

layer as 1 and all other cover types as 0. We then calculated the mean value of each cell within 

the buffer such that the produced layers represented the average percentage of the landcover 

class (either deciduous or coniferous) within the buffer.  

We assessed pairwise correlations between all covariates and ensured no pairs were 

correlated at |r| > 0.6 (Dormann et al. 2013). Covariates were standardized by subtracting the 

mean and dividing by the standard deviation to ensure resulting coefficients were directly 

comparable. Spatial analyses were implemented through R 4.0.4 and ArcMap version 10.7.1.  
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4.3.3.2 SECR Model  

We estimated black bear densities as a function of spatially referenced covariates using 

likelihood-based SECR models in the R package ‘secr’ version 4.3.3 (Efford 2020a; Efford et al. 

2004, Borchers and Efford 2008). SECR models comprise a spatial model of detection and a 

spatial state model of the population that are jointly fit to capture-recapture histories of detected 

individuals. The state model describes the unobserved distribution of activity centers across a 

landscape, where each animal is represented by an activity center that is the centroid or average 

of the space that an individual occupies during sampling. Location of activity centers are 

distributed over a two-dimensional plane, referred to as a state space, large enough that animals 

outside the state space are not detected and typically delineated by adding a buffered area around 

the detectors. Activity centers may be distributed randomly across the state space as a realization 

of the spatial Poisson or binomial point process, or an inhomogeneous point process can be used 

in which activity centers are distributed as a function of spatially referenced covariates. Here we 

took the latter approach, allowing activity centers to be distributed across the state space as a 

function of the additive effects of road density, human influence index, harvest density and 

percent coniferous and deciduous forests. We defined a discrete state space for each study area as 

a 1km resolution raster that extended 20 km around all traps, excluding permanent waterbodies 

as non-bear habitat. This buffer represents the extreme edge of detection for individuals in our 

study areas and falls within the 3 - 4σmax buffer recommendation (Royle 2014, Efford 2019). We 

verified that using a 1km grid point spacing had negligible effects on density estimates and used 

the function ‘suggest.buffer’ to verify that 20km was an appropriate buffer width; if a larger 

buffer was suggested, this value was used. The detection model requires two parameters: g0 that 

describes the probability of detection for an animal with a detector placed at its center of activity, 



 

 85 

and σ that describes the spatial scale over which detection probability declines with increasing 

Euclidean distance between the detector and activity center. We allowed g0 to vary as a function 

of a trap-specific response (bk) and study area, and σ by sampling occasion (t), linear time trend 

over occasions (T), study area, and forest region.  

To account for differences in movement between males and female bears, sex-specific 

datasets from study areas were analyzed simultaneously using multi-session models where study 

areas were modeled as sessions. This approach allowed for data to be pooled across study areas 

to examine the overall effect of the covariates on population density. Data were analyzed using 

two approaches: first, all datasets were combined to create two sex-specific SECR models 

(hereafter, pooled approach), then datasets from study areas in the same forest region were 

pooled to create four sex-specific SECR models (hereafter, forest region approach).  

Because data sparsity can introduce challenges with convergence of highly parametrized models, 

we excluded sex and study-area specific datasets with less than 20 recaptures following the 

recommended minimum number of re-captures for these types of models (Efford et al. 2004, 

Schmidt et al. 2013, Sun et al. 2014). Additionally, for study areas sampled across multiple years 

we retained datasets only from the first year of sampling.  

We defined a candidate set of models that included the additive effect of all density 

covariates and combinations of detection covariates, excluding the forest region covariate for the 

forest region approach and repetitive covariates for the pooled approach (i.e., forest region and 

study area; for complete list of models see Appendix D Section 5: Table D.5.1). Akaike 

Information Criterion corrected for small sample size (AICc) was used to select the most 

parsimonious model for the pooled approach. Because we were interested in comparing model 

estimates between the pooled and forest region models, we used the most parsimonious model 
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structure identified in the pooled model approach for the forest region models to maintain 

consistency. Models were fit maximizing the full likelihood for proximity detectors and using a 

half-normal detection function. As computation time of SECR models was prohibitively slow 

with a stand-alone personal computer, a high-performance computing cluster provided by 

Compute Canada was used to simultaneously fit many models (computecanada.ca; RRG: hyf-

453-ab). 

We inspected coefficient estimates (𝛽) and their standard errors (SE) for unreasonably large 

values that may indicate converge issues (Gimenez et al. 2004, O’Brien and Kinnaird 2011). Due 

to uncertainty with convergence of some models, all models were re-fit sequentially up to ten 

times, using the more robust Nelder-Mead optimizer, with the starting values set as the estimates 

from the previous fits. Models were considered converged when the log likelihood values 

stabilized and 𝛽 estimates were similar. We evaluated effects based on the 𝛽 values and 

considered effects to be significant if the 95% confidence intervals did not overlap zero.  

4.3.4 Two step modeling approach  

The above approach was computationally intensive and, in many cases did not allow for the 

maximum complexity in detection models to be fit across study areas. As such, we explored two 

different two-stage approaches to assessing the influence of our spatial covariates on density. 

First, density estimates were derived using single-session SECR models fit to each study area 

and sex separately. We used a simple state model where density was estimated using a 

homogeneous Poisson point process. We allowed the detection model parameters g0 to vary as a 

function of a trap-specific response (bk) and σ by a linear time trend over occasions (T). Models 

were fit maximizing the conditional likelihood for proximity detectors and density was derived 

as a parameter using the Horvitz-Thompson-like estimator (see Borchers and Efford 2008). We 
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compared the fit of models using AICc and retained the top ranked model to estimate density. 

See Appendix D Section 4 for further details. Following density estimation, we fit sex-specific 

generalized linear models (GLM) in R with a gamma error distribution and log-link function. 

Female and male estimates of black bear density at each study area were used as the response 

variable, with the same spatial covariates as the SECR models, above, as the explanatory 

variables. We fit 6 models: 1 each to the pooled datasets for each sex and 1 model for each sex 

and forest region (either boreal or GLSL) combination.   

The GLM approach does not account for uncertainty in the density estimates, despite the fact 

that such uncertainty exists. In our second two-stage approach, we then used Monte Carlo (MC) 

sampling to assess the influence of density estimates on the 𝛽 coefficient estimates. The mean 

and standard error of the SECR derived density estimates for each sex and study area were used 

to generate lognormal distributions. We then sampled a random variable from these distributions 

as the response variable in the GLM model. We generated 1000 Monte Carlo samples from each 

distribution and refit the GLM to each dataset. The resulting distribution of coefficient estimates 

represents uncertainty in the mean effect of each covariate due to uncertainty in density 

estimates. We derived 95% percent confidence intervals from the resulting distributions of 

coefficients for each spatial covariate.   

4.4 Results 

4.4.1 Capture summary    

Over the course of three years, we identified 3857 individuals (1645 female; 2212 male) 

from 12731 detections (5484 female; 7247 male) where the number of individuals, detections, 

and recaptures in each study varied (see Appendix B for capture statistics summary). Out of the 

164 datasets from 78 study areas, we removed 32 datasets from 20 study areas due to insufficient 
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recaptures (16 datasets female and 16 male) and two datasets from one study area due to 

insufficent data quality. For study areas sampled across multiple years we only retained datasets 

from the first year of sampling. This resulted in models being fit to 122 datasets from 65 study 

areas, with more datasets from the boreal. Female GLSL and boreal models included 20 and 41 

study areas, respectively. Male GLSL and boreal models included 19 and 42 study areas, 

respectively.  

4.4.2 SECR models  

For the pooled datasets, models where g0 varied by t failed to converge and models where g0 

or σ varied by study area did not converge within the 28-day limit of the advanced resource 

computing system cluster. Model forms with these covariates were therefore omitted. The 

direction of effect and magnitude of the 𝛽 estimates were generally similar across candidate- 

models forms, with slight differences (Appendix D Section 5: Figure D.5.1). For both sexes the 

top ranked model included a behavioural response (bk) on g0 and additive effect of a linear time 

trend (T) and forest region on σ. See Appendix D Section 5 for AICc model selection criteria. As 

noted above, this model structure was subsequently used for fitting of the forest region models. 

Forest region models converged, as indicated by stabilization of the log likelihood values and 𝛽 

estimates.  

4.4.3 Model comparison  

       The direction of effect and magnitude of the 𝛽 parameter point estimates for each covariate 

were generally similar across the SECR and two-step modeling approaches for both the pooled 

and forest region models, with some exceptions of the confidence interval coverage and 

significances (Figure 4.2, Figure 4.3). For both modeling approaches, SECR models generally 
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provided the smallest magnitude of 𝛽 estimates with smaller confidence intervals compared to 

the GLM and MC models (Figure 4.2, Figure 4.3).   

4.4.4 Bottom-up and top-down effects on density  

Pooled models displayed a negative effect of coniferous forests and positive effect of roads, 

harvest and deciduous forests on male and female densities, with the exception of male SECR 

models that had a negative effect of deciduous forests (Figure 4.2). Human influence was 

positivity associated with female density and negatively associated with male density (Figure 

4.2). Most covariates and model forms displayed non-significant effects as indicated by 

confidence intervals including zero (Figure 4.2). Notable exceptions included a significant 

positive effect of deciduous forest on female density for both two-stage approaches, and 

significant positive effects of harvest on female density in the MC approach and SECR approach, 

with only a small overlap of the 95% confidence interval with 0 for the GLM approach.  

For the forest region models, roads and coniferous forests displayed similar patterns to the 

pooled models; coniferous forests and roads were negatively and positively associated with 

female and male densities across both forest regions, respectively, although these effects were 

non-significant (Figure 4.3). For the remining covariates there were differences among the boreal 

and GLSL forest regions that varied by sex (Figure 4.3). Deciduous forests displayed a 

significant positive association with female density in the boreal and a weak non-significant 

positive association in the GLSL. Deciduous forests were also significantly and positively 

associated with male density in the boreal, but in contrast were negatively associated in the 

GLSL where the effect was significant for the MC model. Harvest was positively associated with 

female density across both forest regions but was significant for the MC model in the GLSL 

only. For males, harvest displayed a negative association with density in the boreal that was non-
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significant and a positive association with density in the GLSL that was significant. For both 

sexes, human influence was negatively associated with density in the boreal and positively 

associated with density in the GLSL; these effects were non-significant.  

For both the pooled and forest region models, the magnitude of the 𝛽 estimates varied by sex, 

forest region, and modeling method (Figure 4.2, Figure 4.3). In general, harvest and forest types 

displayed the largest magnitude of the 𝛽 estimates. 
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Figure 4. 2. Log-scale effect size (𝛽 parameter estimates) of pooled female (♀) and male (♂) models (generalized linear models 
[GLM]; Monte Carlo models [MC]; spatially explicit capture-recapture models [SECR]) with density covariates including percent 
forest types (coniferous, deciduous), human influence index (HII), road density (road) and harvest density (harvest). 𝛽 estimates 
standardized to allow for covariate comparison within sex. The effect size indicates the change in the baseline density (bears/hectare) 
on the log scale for one unit change in the covariate value. Vertical lines indicate 95% confidence limits and dashed black horizontal 
lines no effect of the covariate on density.  
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Figure 4. 3. Log-scale effect size (𝛽 parameter estimates and upper and lower 95% confidence limits) of Great Lakes – St  Lawrence 
(GLSL) and boreal forest female and male generalized linear models (GLM), Monte Carlo models (MC), and spatially explicit 
capture-recapture (SECR) models. Density covariates included percent forest types (coniferous, deciduous), human influence index 
(HII), road density (road) and harvest density (harvest). 𝛽 estimates standardized to allow for covariate comparison within a forest 
region and sex. The effect size indicates the change in the baseline density (bears/hectare) on the log scale for one unit change in the 
covariates value. 
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4.5 Discussion  

The continued loss of biodiversity due to the expanding human footprint remains one of the 

most pressing challenges facing conservationists today. Addressing this problem requires robust 

monitoring methods to assess populations’ responses to changing landscapes and environmental 

conditions (Jones 2011, Bischof et al. 2020). Using an extensive dataset spanning a gradient of 

land cover and climate, we found that black bear relationships with human influences and forest 

land cover varied across the province of Ontario and within forest regions, reflecting gradients of 

habitat quality, intensity of human disturbances and bear ecology. Forested land cover explained 

most patterns of black bear density at the provincial scale, where higher densities were 

associated with more productive forest types (i.e., deciduous forests). When gradients of natural 

productivity and differences in human disturbances between forest regions were accounted for, 

association of bear population density with human influences and forested land cover varied 

within forest regions, reflecting trade-offs between food resources and avoidance of human 

activities and mortality risks. These results provide key understanding for broad scale drivers of 

black bear density in Ontario and offer insight to the relative influence of top-down and bottom-

up forces in driving variation in carnivore density. Specifically, our findings highlight how 

anthropogenic and environmental factors can act as both bottom-up or top-down processes that 

varies with spatial extent, ecological conditions and intensity of human disturbances.  

We used three different modeling approaches to assess the influence of anthropogenic and 

environmental factors on black bear density. These approaches reflected trade-offs between 

computation time and accounting for uncertainty in estimates of density. Even with high-

performance computing systems, our large datasets restricted us from running SECR models that 

accounted for study area level variation in detection and density parameters due to computational 
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requirements that exceeded the computing cluster’s time limit. However, we were able to better 

account for study-area variation in detection and density in the two-step modeling approach. 

Nonetheless, the MC models displayed similar confidence intervals as the GLM models (Figure 

4. 2; Figure 4. 3), suggesting that uncertainty in density estimates did not largely influence our 𝛽 

estimates. To that end, we base our inferences in the following sections on the 𝛽 estimates 

derived from the GLM methods. Estimates from the MC and GLM models were generally 

consistent (Figure 4. 2, Figure 4. 3) and therefore, we feel this decision did not unduly impact 

our overall inferences. Further, because both the MC and GLM models allow for maximal 

flexibility in detection across study areas, we assume that differences in the direction of 

coefficient effects between the two-step modeling approaches and the SECR approach are most 

likely due to our inability to account for study area level variation in detection in the SECR 

models.  

4.5.1 Factors driving black bear density  

Forested land cover was the most consistent, strongest, and most certain driver of black bear 

density across the province and within forest regions. At the provincial scale (i.e., the pooled 

approach), black bear density was positively associated with deciduous forests and negatively 

with coniferous forests with the effect of deciduous forest on female density being significant. 

The GLSL forest, which has a much higher proportion of deciduous trees, is more productive 

than the boreal; bears to be more abundant in this region (Howe et al. 2013, Howe et al. 2022). 

Thus, at this scale, the pooled results are likely reflecting these broad patterns where GLSL study 

areas had consistently higher proportions of deciduous forest and more bears.  

Similar patterns were observed in the boreal forest when data were analyzed alone such that 

black bear density was positively associated with deciduous forests and negatively with 
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coniferous forests. Herbaceous vegetation constitutes the bulk of spring and early summer diets 

for bears in Ontario (Romain et al. 2013) and hardwood forest stands contain higher abundance 

and diversity of these foods during the spring and early summer seasons when other resources 

are limited. Thus, the strong and positive significant effect of deciduous forests on female and 

male bears in the boreal is likely due to food being a limiting factor in these habitats reflecting 

the generally lower abundance and diversity of food resources in coniferous forests (Obbard et 

al. 2017, Potter and Obbard 2017). These results are consistent with finer-scale studies 

demonstrating black bears avoiding mature coniferous forests in the boreal (Brodeur et al. 2008) 

and negative association of black bear densities with less productive evergreen forests (Humm et 

al. 2021). 

Comparatively, in the GLSL forest region male density was negatively associated with both 

coniferous and deciduous forest types. Although both effects had confidence intervals 

overlapping zero, the deciduous forest was close to being significant. Females showed no strong 

patterns with equivocal results relative to forest type. In the GLSL region, there is higher 

intensity of human disturbances, but food resources are more widely available. Consequently, the 

finding for females is not entirely surprising as they have ample natural foods. However, the 

negative, though relatively uncertain relationship between deciduous forest and male density 

warrants consideration. Differences between sexes could be a function of males being more 

conflict-prone in part due to their wider ranging movement bringing them into contact with 

human activities and anthropogenic food sources (Rogers et al. 1976). This pattern may be more 

pronounced in the southern study areas of the GLSL that are composed primary of deciduous 

forests but are also more populated and have higher fragmentation and developed habitats such 

that males’ larger home ranges overlap with human activities. Similarly, in northern Wisconsin 
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black bears select for coniferous forests over deciduous forests (Sadeghpour and Ginnett 2011). 

However, as suggested in the study, this pattern may be an artefact of the time of sampling such 

that if sampling were to occur in the fall bears would likely be associated with deciduous forests 

due to availability of important hard mast species. We predict a similar trend in Ontario in the 

late summer and fall, particularly in the GLSL when hard mast beech and oak trees are important 

energy sources during hyperphagia (Poulin et al. 2003).  

Most of our covariates associated with human disturbance or direct mortality of bears 

showed uncertain results. However, there were some general patterns that provide insight to how 

bear populations respond to human influence. We observed higher male black bear densities in 

areas with greater human influences, as measured by the human influence index, in the boreal, 

and observed higher male densities in areas with less human influences in the GLSL. Although 

these effects were uncertain, the confidence intervals only slightly overlapped 0 in both cases. 

These effects match well with our expectations of how bears respond to humans based on the 

differences in the intensity of human disturbances in the two forest regions. The GLSL is more 

densely populated and highly fragmented than the boreal. Thus, bear populations may be 

depressed in habitats at the urban-wildlife interface because these areas can be associated with 

heightened human-bear conflicts linked to human activities and anthropogenic food sources 

(Evans et al. 2014, Hagani et al. 2021). The equivocal results for females could be reflective of 

the fact that male bears are more likely to come into conflict with people and that males 

represent nearly 2/3rd of the harvest in Ontario (Appendix D Section 6: Figure D.6.1). 

Comparatively, in less productive boreal regions, characterized by lower human disturbances and 

more continuous dense forests, bears may be using habitats near humans for supplemental food 

or because these more open and disturbed areas contain early spring and summer vegetation. 
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However, because we were unable to sample close to human settlements, our populations likely 

represent bears with generally low human activities in their ranges, particularly in the boreal. The 

most developed areas sampled in the boreal are relatively less developed than most of the areas 

sampled in the GLSL, so in the boreal, bears may be responding to the only moderate levels of 

human influence. This pattern is consistent with studies linking higher black bear densities with 

human settlements (Beckmann and Berger 2003, Fusaro et al. 2017) and changes in natural food 

availability (Laufenberg et al. 2018). In comparison, when datasets were pooled, human 

influences had a weak effect on shaping provincial-scale patterns in bear density, likely due to 

the contrasting forest region patterns. As previously noted, the negative effect for males in the 

pooled analysis may be due to their conflict prone behaviours (Rogers et al. 1976) and is further 

supported by the negative effect of human influence on males in the highly populated GLSL.  

All pooled models revealed a positive relationship between harvest density and black bear 

densities, such that WMUs with higher bear densities tended to have more bears harvested per 

unit area. This effect was nearly significant for females, though more uncertain for males. This 

finding contrasts with previous studies displaying a negative influence of harvest on female bear 

densities (Loosen et al. 2018). Such differences could be due to the broad scale of our analysis 

paired with how we measured harvest. While black bear density was a static estimate for each 

study area, harvest density was measured at a much broader WMU extent and averaged over a 

bear generation time (i.e., seven years) prior to sampling. Accordingly, our measure of harvest 

was unlikely to capture the finer temporal and spatial influence of harvest on density. Thus, we 

presume that the positive relationship between harvest and density actually reflects that, at this 

broad scale, more bears are harvested in areas that simply have more bears.  
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The forest region-specific analyses support our above assertion that more bears are 

harvested in areas that have more bears. The GLSL, which is more populated and has higher 

densities of roads, displayed the stronger positive relationship between bear density and harvest. 

We suggest that these results indicate that black bears are primarily harvested in areas where 

there are sufficient habitats to support higher densities in the GLSL. In comparison, in the boreal, 

harvest may not be an artefact of bear density because habitat quality is generally lower and 

reduced road access may restrict hunters’ access to bear habitats, such that harvest may not be 

concentrated to higher quality habitats with more bears. We did, however, find a negative effect 

of harvest on males and positive effect on females in the boreal, although, the effects were again 

not significant. This finding may be due to differences between sexes and productivity and 

human disturbances across forest regions. Males are typically subject to higher harvest (Obbard 

et al. 2017, Gantchoff et al. 2020), with females accounting for approximately one-third of total 

harvest from 2010-2019 in Ontario (Appendix D Section 6: Figure D.6.1). However, the above is 

largely speculative and therefore further assessment of harvest on black bear densities at finer 

temporal and spatial scales is warranted to clarify these uncertainties. Nonetheless, these findings 

suggest that the effect of harvest on bear populations may in part be mediated by habitat quality 

and further underscores the importance of forested landcover in shaping black bear densities in 

our study system.  

Interestingly, we found a non-significant, positive effect of roads on female and male 

densities for all models. These findings contrast with studies generally demonstrating negative 

association of bears with roads (Humm et al. 2017, Lamb et al. 2018) often linked to top-down 

mortality including hunting access, vehicle collisions and human-bear conflict from increased 

human access into bear habitats (Hostetler et al. 2009, Wynn-Grant et al. 2018). Our findings do, 
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however, align with studies reporting association of higher black bear densities with roads in 

some areas (Humm et al. 2017) and bears favouring habitats closer to roads in the spring in 

boreal forests (Mosnier et al. 2008). Further there are numerous reports of bears foraging 

alongside roads where early vegetative plant growth occurs during the spring green-up due to 

disturbance and the edge effect when other food resources are limited (Mosnier et al. 2008, 

Romin et al. 2013, Tigner et al. 2014). Presumably, the consistent positive and non-significant 

effect of roads at both the provincial and forest region extents suggests that, at our scale of 

analyses and time of sampling, roads on their own are not depressing bear density at this scale. 

Despite the generally equivocal results relative to roads, males in the GLSL showed a more 

certain (as indicated by the larger 𝛽	parameter), though still non-significant response. A potential 

biological explanation for this effect could be black bears in the GLSL being acclimated to living 

in more developed areas where there are higher density of roads (Zeller et al. 2019). Lastly, these 

observed patterns may also be a result of including the human influence index covariate in the 

multivariate model that may have accounted for some of the effect of roads; however, the two 

variables were not strongly correlated at both the forest region and pooled scales (Appendix D 

Section 3: Table D.3.1).   

4.5.2 Alternatives to computationally demanding SECR models 

Despite increasing recognition that large capture-recapture datasets and more complex SECR 

models can be computationally challenging (Morin et al. 2022), techniques to improve model 

tractability remain surprisingly rare (exceptions include Milleret et al. 2019). Here, we 

demonstrate how our proposed two-step approach can expand the utility of SECR models when 

modeling spatial effects on density across large extents is computationally restrictive. Overall, 

we found that the direction of effect and magnitude of the 𝛽 estimates were generally similar 
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across the three modeling approaches and the confidence interval coverage of the three modeling 

methods overlapped for all covariates (Figure 4. 2). Density and detection parameters were 

nested within the hierarchical SECR model, but not in the two-step approach when the GLM or 

MC sampling was used to estimate effects on density covariates. The excessive run times 

associated with fitting SECR models to large datasets, even with access to high-performance 

computing systems, restricted us from fitting models that account for study area variation in 

detection and density. In such cases, the two-step modeling approach proposed here could be 

used to assess the influence of spatial covariates on density while better accounting for these 

sources of heterogeneity. Our results, showing in many cases opposite direction of effects for 

some covariates between SECR and the other two-stage approaches would suggest that the two-

stage approaches are preferable in these cases. While we recognize that further work examining 

the robustness of this approach for other species and sizes of capture-recapture datasets is 

needed, this approach may provide a feasible option for practitioners without access to high-

performance computing or could be used to test the effect of spatial covariates on density before 

running demanding SECR models. Nonetheless, we suggest that researchers take into careful 

consideration the study population, study design, sample size and model assumptions and select 

density estimation methods based on these factors.  

4.6 Conclusion 

Understanding how bottom-up and top-down processes shape broad-scale patterns in wildlife 

populations remains an enduring challenge that requires monitoring across large extents and 

robust statistical frameworks for handling large spatial analyses. Here, we use one of the largest 

spatial capture-recapture datasets on black bears collected across an expansive extent to quantify 

mechanisms shaping patterns in population density. To address the challenges of highly 
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parameterized and computationally restrictive SECR models common to large datasets, we 

propose a two-step modeling process that improves model tractability while producing 

comparable results and accounting for more aspects of spatial heterogeneity in detection and 

density. Our results demonstrate that factors shaping broad spatial patterns in black bear densities 

are dynamic and vary by spatial extent, ecological conditions and intensity of human 

disturbances. Bottom-up forces, as measured by forest types, were the main drivers of bear 

density at the broad scale. While top-down forces from human disturbances and harvest 

influenced bear densities, these effects were more nuanced and likely acted at finer scales than 

our coarse analyses could account for. This is important, because most management actions 

related to black bears focus on top-down mortality factors, which is, indeed, easier to manage 

than bottom-up forces. Thus, managers should continue to consider that broad productivity 

patterns may be dominant in large jurisdictions and manage accordingly. Collectively, our 

findings demonstrate the scale-dependent and context-specific way in which black bears respond 

to human impacts to the environment and indicates how management should consider the effect 

of land-use and climatic changes that drive variability in productivity and human-caused 

mortality. Specifically, our results show that broad changes in forest composition in Ontario 

could have major implications for black bear populations. Thus, sustained monitoring of black 

bear densities across scales and over large heterogenous landscapes to capture broad and fine 

scale changes in bottom-up and top-down factors is critical for management of the species in 

dynamic and multi-use landscapes.   
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Chapter 5: Conclusion and Synthesis  

Combining advanced statistical models with information-rich genetic and geospatial data has 

allowed ecologists to identify mechanisms driving patterns in population size and distribution at 

increasingly finer resolution and over larger extents (Long et al. 2008, Lewis et al. 2018, Lamb et 

al. 2019). However, with this ever-increasing ability to address more complex processes using 

more advanced models comes many technical challenges and the need for critical evaluation of 

model assumptions in relation to the ecology and behaviour of the species and study system. 

Framed within the context of the American black bear in Ontario, this thesis highlights the 

opportunities and challenges of working with elusive and wide-ranging species across multiple 

scales and over large extents.  

5.1 Summary of key findings  

In this thesis I leveraged three years of black bear spatial capture-recapture data to assess 

broad and fine scale drivers of black bear density and distribution in Ontario. I first assessed the 

robustness of SECR models to spatial and sex-based variation in detection and density (Chapter 

2) and provide suggestions to reduce the risks of obtaining biased density estimates. This chapter 

also provided context for the modeling structures in the subsequent chapters of this thesis and, 

more broadly, for large carnivore monitoring and management. Next, I identified fine-grained 

environmental and anthropogenic drivers of black bear distribution within study areas (Chapter 

3). However, assessments at this finer scale are prone to sampling bias, such that local study area 

results may be nuanced, limiting general conclusions that are more likely to emerge at broad 

scales because the effects of local heterogeneity are smoothed out, making ecological patterns 

appear more consistent (Wiens 1989). I then assessed population-level patterns of black bear 

density as a function of coarse-grained landscape-level environmental and anthropogenic 



 

 103 

features (Chapter 4). Taken together, this multi-scale approach allows for robust inference to the 

mechanisms structuring fine and broad scale patterns in black bear densities and offers insight to 

the relative influence of top-down and bottom-up forces in driving these patterns.  

Collectively, this thesis demonstrates that Ontario black bear densities are shaped by both 

environmental and anthropogenic factors, where the relative influence of these factors varies 

with the spatial extent of the analysis. Bottom-up forces were more dominate at the broad extent, 

with environmental variables, specifically forest cover representing differences in productivity, 

the most consistent and strong driver of density across the province (Chapter 4). Anthropogenic 

variables, measured with fine grained covariates, were consistently important only within study 

areas at a finer extents such that black bears distributed themselves according to avoidance of 

people (Chapter 3). When differences in forest regions were accounted for (Chapter 3 and 4), 

forest type and human influences acted as both bottom-up and top-down forces that were 

consistent with ecological influences on black bear foods and intensity of human influences on 

black bear avoidance of riskier, developed areas. Comparison of patterns in black bear density-

habitat relationships at both the fine (Chapters 3) and broad (Chapter 4) scales are summarized in 

Table 5.1 and described in further detail in the subsequent paragraphs. These patterns support the 

multiple hypotheses outlined in Chapter 1 (Table 1.1, Figure 1.1).   
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Table 5.1. Direction of effect for 𝛽 parameter estimates of environmental and anthropogenic 
variables in the fine (Chapters 3) and broad (Chapter 4) scale analyses. Results summarized by 
the spatial extent of analysis where black bear capture-recapture data were aggregated by: within 
a study area (study area); within a forest region (Boreal; Great Lakes – St Lawrence [GLSL]); 
across all study areas (Province). Gray outlined boxes indicate difference in effect between 
female and male black bears.  
 

Sex  Variable  Fine scale analysis (Chapter 3) †  Broad scale analysis (Chapter 4) † 
Study area ‡ Boreal *  GLSL *   Boreal *   GLSL * Province** 

Female   Human influence*** — — —  + — + 
Road  — — —  + + + 
Harvest      + + + 
Coniferous forest  — — +  — — — 
Deciduous forest  + + —  + + + 
Mixed forest  — — —     
Crop   + —     
NDVI — — —     

Male   Study area ‡ Boreal *   GLSL *    Boreal *  GLSL *  Province** 

Human influence***  — — —  + — — 
Road  — — —  + + + 
Harvest      — + + 
Coniferous forest  — — +  — — — 
Deciduous forest  + + —  + — + 

Mixed forest  + — —     
Crop   + —     
NDVI — — —     

† inference from univariate SECR models (Chapter 3) and multivariate generalized linear 
models in the two-stage approach (Chapter 4)  
‡ values indicate the median of 𝛽 estimates across all study areas for each variable 
(Chapter 3, Appendix C Section 3: Figure C.3.2) 
* referred to as the pooled analysis (Chapter 3) and forest region analysis (Chapter 4) 
** referred to as the pooled analysis (Chapter 4) 
*** different data sources used in Chapter 3 (human build-up grid) and Chapter 4 (human 

 influence index)   



 

 105 

A key finding of this thesis was that forested land cover was the most consistent driver of 

black bear density across scales. This effect was most pronounced at the broad scale (Chapter 4), 

where higher densities of black bears were found in more productive deciduous forests than 

coniferous forest which follows patterns consistent with previous studies (Brodeur et al. 2008, 

Zeller et al. 2019). However, when assessed at the finer scale (Chapter 3), more nuanced patterns 

emerged. In the GLSL region, characterised by wide-spread human development and 

fragmentation, higher densities of bears were found in coniferous forests that may provide cover 

and security and in areas with less agricultural land cover. Conversely, in the boreal, with less 

intensive human influences and higher proportion of less productive coniferous forests, bear 

densities were higher in deciduous forests and areas with more agricultural landcover. The latter 

two land covers are generally associated with greater diversity and abundance of natural and 

anthropogenic food sources for bears (Romain et al. 2013, Ditmer et al. 2016). Collectively, 

these findings suggest that black bear use of landscapes at a finer scale is driven by the trade-offs 

between the benefits of food resources and avoidance of risky human-developed areas (Johnson 

et al. 2015, Zeller et al. 2019). Further, although datasets in this thesis were grouped based on 

broad forest regions, there are differences in both productivity and intensity of human influence 

between the east and west GLSL regions that have been documented to influence black bear 

densities (Howe et al. 2013). Analyses of the GLSL data split by east and west may provide 

further insight into the more complex and nuanced behaviour of the species, however, there are 

likely to be challenges associated with data sparsity for such analyses (see section 5.2 for further 

discussion on this topic).  

While top-down forces, as measured primarily through harvest and anthropogenic 

disturbance, had an influence on spatial patterns of black bear densities across all scales, these 
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effects were less certain. At the finer scale, black bears consistently distributed themselves 

according to avoidance of roads and human settlement (Chapter 3) that coincides with 

documentation of fine-scale avoidance of roads by bears and reduced bear densities near human 

development (Kasworm and Manly 1990, Waller and Servheen 2005, Northrup et al. 2012, 

Humm et al. 2017, Lamb et al. 2018, Proctor et al. 2019).  

While black bears clearly avoid human disturbances at the fine scale, this effect of roads and, 

to a lesser extent human influences, were not detected with the coarse resolution variables used 

in Chapter 4 (Table 5.1). The weak but consistent positive effect of roads on broad-scale patterns 

of density (Chapter 4) could be a consequence of the multivariate models such that the inclusion 

of the human influence index reduced the strength of the road variable in these models. 

However, there were some general patterns for human development that possibly reflected forest 

region differences in the intensity of human disturbances and bear biology. Human influence was 

negatively associated with male black bear densities across the province and for both sexes in the 

GLSL region, however, these effects were not significant. In contrast, human influence was 

positively associated with female density across the province and for both sexes in the boreal, 

although effects were also not significant. Bear populations may be depressed in habitats at the 

urban-wildlife interface, such as the GLSL, because these areas are typically associated with 

heightened human-bear conflicts linked to human activities and anthropogenic food sources 

(Hristienko and Mcdonald 2007, Evans et al. 2014, Hagani et al. 2021). Males are more conflict 

prone (Rogers et al. 1976) and subject to higher harvest rates (Kolenosky 1986, Obbard et al. 

2017, Gantchoff et al. 2022); this may further explain the differences between sexes. Overall, the 

less certain results for top-down factors in this thesis may be reflective of sampling in 

moderately to slightly developed areas that could limit the power to observe a strong effect of 
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human influences; this effect is likely pronounced in the boreal and pooled models because the 

boreal study areas are less developed and comprised 69% and 67% of the total study areas for the 

males and female datasets, respectively. Moreover, higher densities of black bears have been 

found to exist in intermediate housing densities (Johnson et al. 2015) and exurban areas 

compared to rural or urban (Evans et al. 2017), suggesting a threshold in which bears cannot exit 

in developed areas. The strong avoidance of black bears to human activities at the fine scale 

(Chapter 3) provides a mechanism for this process.  

Similar to human disturbances, I observed uncertain results for the effect of hunting at the 

provincial scale (Chapter 4). More bears were harvested in areas with higher bear densities, a 

result that mirrors previous studies in Ontario (Wightman et al. 2022). Interestingly, when 

differences in forest region were accounted for, there was slight evidence of suppression of male 

densities by harvest in the boreal, but not females in either forest region. These finding align with 

males being more heavily harvested in Ontario than females (Kolenosky 1986, Obbard et al. 

2017; Appendix D Section 6: Figure D.6.1) and may suggest that at broad scales, bottom-up 

processes offset the effects of harvest in higher quality bear habitat. However, these assertions 

are largely speculative and further studies at finer temporal and spatial scales are warranted.   

5.2 Confronting uncertainty in ecological models: opportunities, limitations, and directions 

for future research  

As with many analytical frameworks, alongside the rapid development of SECR methods 

have come increased computational demands and difficulties completing analyses and 

interpreting results (Levin 1997, Green et al. 2005, Grueber et al. 2011, Morin et al. 2022). Table 

5.2 (Chapter 5) summarizes common challenges identified throughout this thesis of applying 

SECR models to large scale analyses and suggests potential solutions and associated drawbacks.  
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Indeed, a common difficulty in this thesis was identifying the optimal trade-off amoung the 

size of the datasets, complexity of the model structure to account for population heterogeneity, 

and tractability (i.e., computational time and resources). As clearly demonstrated in Chapter 2 

and repeatedly illustrated in literature (Tobler and Powell 2013, Moqanaki et al. 2021, Stevenson 

et al. 2021, Marrotte et al. 2022), bias can be induced when violations of SECR model 

assumptions are substantial. This is a concern for large-scale surveys because variability in 

detection and density are likely to increase with study area size (Jones 2011, Howe et al. 2022). 

Therefore, the black bear populations in this thesis likely exhibit heterogeneity that extends 

beyond what I accounted for in the models provided the relatively sparse datasets; this was most 

clearly reflected in the study area analysis (Chapter 3) where univariate density models were 

used to prevent overfitting. In contrast, when datasets were pooled (Chapter 4), it permitted more 

highly parameterized models due to larger datasets. However, as previously documented 

(Millerete et al. 2019), when I scaled SECR models to larger extents they quickly became 

computationally intensive and were prohibitively slow despite access to a Federal computing 

cluster. In response to this challenge, I explored alternatives to improve the tractability of the 

data-intensive and computationally burdening SECR models and proposed a two-stage approach 

in Chapter 4 that produced generally comparable estimates while also accounting for more 

aspects of heterogeneity in detectability and density. While further assessment of the robustness 

of this approach are warranted and I caution the use of this method to replace SECR models that 

sufficiently account for important sources of variation in model parameters, this avenue of 

research could be of interest of practitioners with limited computing resources or a method to 

assess spatial drivers of density on datasets prior to running computationally burdening SECR 

models.  
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A further difficulty in my work was selecting the appropriate scale of observation on animal 

space use, a longstanding challenge in ecology that has received increasing attention (Apps et al. 

2001, Apps et al. 2004, Ciarniello et al. 2007). I used two methods to quantify the grain of spatial 

covariates in this thesis: a moving window approximating the 95% space use radius derived from 

σ estimates (Chapter 3) and a buffer based on the movement distances from the raw capture-

recapture data (Chapter 4). I did not use data-driven modeling (i.e., comparing different models 

across grain or extent sizes) to avoid overfitting due to the large number of models this would 

entail. Nonetheless, optimization of the grain size warrants further consideration for SECR 

studies using these datasets (see Marrotte et al. 2022). This underscores the wide range of 

methods to quantify geo-spatial data and the implications for interpretation of results.  

Animals respond to environments at finer scales than SECR data and models allow (Theng et 

al. 2022). The broad covariates in this thesis could have been collected at inappropriate scales 

that do not match how bears perceive their environment or other important factors may have be 

omitted from models (Stetz et al. 2019, Howe et al. 2022). These challenges, however, are 

ubiquitous to the use of models and geospatial data in ecology. Despite these concerns, I found 

consistent patterns of black bear density association with forest types, and to a lesser extent 

human influences, across two spatial extents that strengthens the conclusion that black bear 

density in the study systems are shaped by habitat conditions.  

Collectively, the results of this thesis demonstrate that SECR models can provide unbiased 

inferences of density-habitat relationships across scales, but only if specific conditions are met 

and models account for important sources of heterogeneity in detection and density. SECR 

studies conducted across large heterogenous landscapes are more prone to bias, requiring careful 

consideration of the study population, study design and sample size in relation to model 
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assumptions. However, if these issues area addressed, large scale programs such as the one 

outlined here, offer substantial opportunity for understanding how large carnivore populations 

are shaped.  

5.3 Future outlook and management implications  

Below I highlight management suggestions for black bears in Ontario that rely on findings of 

this thesis, but in many cases these suggestions apply more broadly to generalist carnivores 

living in human-modified landscapes.  

Findings of my thesis demonstrate how species should be broadly managed according to 

landscape productivity and intensity of human influences. Management activities focused on 

creating early successional forests would be beneficial for providing important bear foods found 

in disturbed areas and regenerating forest stands associated with forestry, agriculture, and fire 

(Mosnier et al. 2008, Romin et al. 2013, Rettler et al. 2021), particularly in the less productive 

boreal regions. However, these actions must be balanced with impacts to other species and 

retention of mature forests patches and corridors that act as escape cover for black bears (Howe 

et al. 2005). Moreover, human-bear conflict and black bear mortality has been linked with 

overlap between humans and bears at the wildlife-urban interface (Evans et al. 2014, Johnson et 

al. 2015, Wynn-Grant et al. 2018, Hagani et al. 2021). Given that forestry and agriculture bring 

with them increases in humans and roads, using these activities to promote habitat improvements 

for bears is a double-edge sword and there is likely a threshold of forestry and agricultural 

activities above which bear populations will be negatively impacted. Thus, allowing more natural 

disturbance regimes to dominate, particularly in the boreal forest, is most likely to promote bear 

habitat improvements while reducing the risk posed by roads and people. In contrast to the 

boreal, in more urbanized landscapes and more productive areas, such as the GLSL, maintaining 
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large continuously forested areas with a diversity of forest stands to provide black bear foods and 

cover should be of priority (Garshelis and Noyce 2008). Given the predicted increase in 

frequency of droughts and late spring frosts with climate change (Karl et al. 2009) and the 

associated reduction in mast production for black bears, it may escalate their use of developed 

areas during poor food years (Johnson et al. 2005, Howe et al. 2013). Given that measuring food 

availability is time-intensive and costly for wide-ranging black bears (Rettler et al. 2021), 

predicting food shortages using climate variables and land-use composition could help managers 

identify areas vulnerable to human-bear conflict that warrants further research (Howe et al. 

2013).  

This thesis alludes to the complex relationships between food resources and mortality risks 

associated with roads. While we found that bears distributed themselves away from roads at a 

finer scale (Chapter 3), this effect was not observed at larger extents and coarser resolutions 

(Chapter 4). Further studies examining the types and intensity of motorized and non-motorized 

use could help identify spatial and temporal patterns that may elevate, due to vegetation near 

roads in the spring, or decrease habitat effectiveness and mortality risks for black bears to allow 

for targeted land-use and recreational access management (Lamb et al. 2018, Ladle et al. 2018, 

Proctor et al. 2019).  

Ontario has changes its black bear hunting policies that have been subject to highly 

publicized and politically charged debates (Poulin et al. 2003, Newton and Obbard 2018). While 

this thesis suggests that the effects of harvest may be mediated by habitat quality, these 

inferences were largely speculative and require further research to resolve these uncertainties. 

Incorporating data on the age distribution of harvested populations from premolar teeth 

submitted by hunters to the MNRF could allow for more robust assessment of whether harvest 
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rates are sustainable under current and predicted landscape conditions and to identify areas of 

concern at finer spatial and temporal scales more suited for harvest management (Newton and 

Obbard 2018).   

Overall, the collective findings of this thesis highlight the necessity for robust population 

monitoring across scales and over large extents to capture the complexity in which generalist and 

wide-ranging carnivores respond to changing land-use and climate conditions. While large scale 

monitoring projects can provide regional and provincial population context for wildlife 

management, they should be nested within finer-scale data that is more appropriate for localized 

decision making (Apps et al. 2016). Integration of different data sources into modeling 

frameworks that account for species survival, reproduction and behaviour and movement 

patterns could provide a more comprehensive understanding of how animals respond to both 

demographic and landscape factors. Such methods illustrate a shift towards increasingly 

quantitative and integrated research to better understand the effect of environmental change on 

carnivores with wide-ranging benefits to human well-being and global biodiversity conservation. 
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Table 5.2. Summary of SECR modeling challenges addressed in this thesis and possible solutions, including drawbacks to consider 
with each solution (matched by lower case letters). Last column includes a non-exhaustive list of examples from SECR studies.  
 

Challenge Solutions  Possible drawbacks   SECR references 
Data sparsity  

Low number of detections and 
recaptures inflates variance, precludes 
model convergence, or negatively biases 
σ estimates and overestimates density4  

a. pool datasets across space or time 1,2  
b. combine with other data sources 

(telemetry, different detection 
methods, harvest, live trapping)3,4,5,6 

c. reassess the number of model 
parameters relative to the datasets size  

 

a. trade-off between overfitting 
and risk of bias if important 
sources of heterogeneity are 
not accounted for7     

a/b. higher computational  
       demands with increased         
       spatial domain8   
b. introduces more sources of 

heterogeneity  

1 Howe et al. 2013 
2 Schmidt et al. 2022 
3 Morehouse and Boyce 
2016  
4 Ruprecht et al. 2021 
5 Sutherland et al. 2019 
6 Welfelt et al. 2019 
7 Moqanaki et al. 2021 
8 Milleret et al. 2019 
 

Trade-off between overfitting and risk of 
bias if detection or density model 
misspecified because limited number of 
covariates can be included relative to 
sample size 7,9,10,11 

a. simulate populations with expected 
levels of heterogeneity to examine 
violation of model assumptions  
 

a. extensive computational time 
for complex simulations 
(particularly Bayesian 
implementation)12,13 

 

7 Moqanaki et al. 2021 
9 Tobler and Powell 
2013 
10 Stevenson et al. 2021 
11 Sollmann et al. 2011 
12 Morin et al. 2022 
13 Theng et al. 2022  
 
 

 
Large recapture distances produce tails 
on the detection distribution, biasing 
estimates or making model convergence 
difficult; more pronounced at smaller 
sample sizes.  

a. evaluate maximum distance moved by 
individuals and consider truncation2; 
assess sensitivity of density to 
removal of outliers14  

a. reduces samples size  2 Schmidt et al. 2022 
14 Kendall et al. 2019 
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Table 5.2 (continued). 
 

Challenge Solutions Possible drawbacks   SECR references 

Model complexity to account for population heterogeneity 
Account for variable density and 
detectability across individuals, sexes, and 
space and time  

a. include covariates on the detection 
and density model  

b. run separate models split by main 
source(s) of variation  

c. if sample sizes allow, include 
mixture-models5,15  

a. potential overfitting; 
uncertainty with model 
selection; superius effects 
with greater covariates and 
collinearity; reduces model 
tractability  

b. data sparsity challenges  
b.    smaller groups prone to  
       sampling bias    
c. requires large amounts of 

data; difficult to interpret 
biologically   
 

5 Borchers and Efford 
2008 
15 Obbard et al. 2010 

Model tractability 

More parameterized models required to 
account for heterogeneity in large capture-
recapture datasets to minimize bias, yet 
such models are often computationally 
intensive11  

 
 

a. parallel processing and advanced 
research computing systems may 
reduce run times and allows for fitting 
of many models simultaneously13,16  

b. reduce number of parameters17  
c. divide datasets based on groups and 

run separate models  
d. optimize masks resolution and buffer 

a.    models may still have  
       excessive run times   
b.    introduce bias from   

model misspecification  
c.    data sparsity challenges 
c.    small groups prone to      
       sampling bias    
 

11 Millerette et al. 2018 
13 Theng et al. 2022  
16 Howe et al. 2013 
17 Stez et al. 2014 
 
 

Increased run times due to inclusion of 
density covariates  

a. use univariate density models18, check 
similar trends to multivariate models  

b. simplify models; remove density 
covariates of least importance to 
species biology and ecology and/or 
study objectives  

c. refine buffer width and mask point 
spacing 

a. ignores possible interactive 
or additive effects among 
covariates  

b. study system/population 
may be poorly understood 
to guide what covariates to 
remove 22   

18 Loosen et al. 2018 
19 Howe et al. 2022 
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Table 5.2 (continued). 
 

Challenge Solutions Possible drawbacks   SECR references 

Model implementation 
Uncertainty selecting the scale to quantify 
density covariates   

a. select buffer or moving window size 
based on animal biology (if possible, 
from telemetry, elsewise consider 
movement data from capture-
recapture data)20 

b. derive 95% home range size from 
sigma  

c. data driven model selection process  

b. estimates likely inaccurate13 20 Lamb et al. 2018 
21 Murphy et al. 2013 
13 Theng et al. 2022  
 
 

Models fail to converge or parameters 
and/or their variance calculation failed17   

a. try different optimization methods  
b. re-fit models, using starting values 

from previous fits  
c. simplify models17 
d. for multi-session models, split into 

separate models based on groups 

c. introduce bias from model 
misspecification7,9 

d. data sparsity challenges  
d.    small groups prone to  
       sampling bias    

7 Moqanaki et al. 2021 
9 Tobler and Powell 
2013 
17 Stez et al. 2014 
 
 

Uncertainty with model convergence   a. goodness-of-fit tests 
b. re-run models using the starting 

values from previous fits; check for 
stabilization of loglikelihood values 
and 𝛽	estimates    

c. try different optimization methods  

a. limited options and methods 
remain underdeveloped, 
particularly for more 
complex models12,19,22  

12 Morin et al. 2022 
19 Howe et al. 2022 
22 Tourani et al. 2021 

Sampling bias19  a. expand sampling to larger extent and 
pool datasets from across species 
range  

a. introduce bias from model 
misspecification; higher 
computational demands 
with increased spatial 
domain8   

a.    smooths over heterogeneity,  
       limiting inferences to local  
       conditions that may be  
       context specific  

8 Milleret et al. 2019 
19 Howe et al. 2022 
23 Marrotte et al. 2022 
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Appendix A: Chapter 2 

A.1  Chapter 2 list of candidate model forms  

Table A.1.1. Candidate model forms with combination of covariates on the parameters density (D), spatial scale parameter (σ) and 
detection probability (g0).  
 

Model number † Parameter   Model number † Parameter  
 D g0 σ  D g0 σ 

1 1 1 1 27 area sex area 
2 area 1 1 28 sex sex area 
3 sex 1 1 29 area+sex sex area 
4 area+sex 1 1 30* area×sex sex area 
5* area×sex 1 1 31 1 area+sex area 
6 1 sex 1 32 area area+sex area 
7 area sex 1 33 sex area+sex area 
8 sex sex 1 34 area+sex area+sex area 
9 area +sex sex 1 35* area×sex area+sex area 
10* Area×sex sex 1 36* 1 area×sex area 
11 1 area+sex 1 37* area area×sex area 
12 area area+sex 1 38* sex area×sex area 
13 sex area+sex 1 39* area+sex area×sex area 
14 area+sex area+sex 1 40* area×sex area×sex area 
15* area×sex area+sex 1 41 1 1 sex 
16* 1 area×sex 1 42 area 1 sex 
17* area area×sex 1 43 sex 1 sex 
18* sex area×sex 1 44 area+sex 1 sex 
19* area+sex area×sex 1 45* area×sex 1 sex 
20* area×sex area×sex 1 46 1 sex sex 
21 1 1 area 47 area sex sex 
22 area 1 area 48 sex sex sex 
23 sex 1 area 49 area+sex sex sex 
24 area+sex 1 area 50* area×sex sex sex 
25* area×sex 1 area 51 1 area+sex sex 
26 1 sex area 52 area area+sex sex 

† Models indicated with asterisk (*) not presented in results or discussion. See section 4 of appendix for clarification.   
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Table A.1.1 (continued).   
 

Model number † Parameter Model number † Parameter 
 D g0 σ  D g0 σ 

53 sex area+sex sex 80* area×sex area×sex area+sex 
54 area+sex area+sex sex 81* 1 1 area×sex 
55* area×sex area+sex sex 82* area 1 area×sex 
56* 1 area×sex sex 83* sex 1 area×sex 
57* area area×sex sex 84* area+sex 1 area×sex 
58* sex area×sex sex 85* area×sex 1 area×sex 
59* area+sex area×sex sex 86* 1 area area×sex 
60* area×sex area×sex sex 87* area area area×sex 
61 1 1 area+sex 88* sex area area×sex 
62 area 1 area+sex 89* area+sex area area×sex 
63 sex 1 area+sex 90* area×sex area area×sex 
64 area+sex 1 area+sex 91* 1 sex area×sex 
65* area×sex 1 area+sex 92* area sex area×sex 
66 1 sex area+sex 93* sex sex area×sex 
67 area sex area+sex 94* area+sex sex area×sex 
68 sex sex area+sex 95* area×sex sex area×sex 
69 area+sex sex area+sex 96* 1 area+sex area×sex 
70* area×sex sex area+sex 97* area area+sex area×sex 
71 1 area+sex area+sex 98* sex area+sex area×sex 
72 area area+sex area+sex 99* area+sex area+sex area×sex 
73 sex area+sex area+sex 100* area×sex area+sex area×sex 
74 area+sex area+sex area+sex 101* 1 area×sex area×sex 
75* area×sex area+sex area+sex 102* area area×sex area×sex 
76* 1 area×sex area+sex 103* sex area× 𝑠ex area×sex 
77* area area×sex area+sex 104* area+sex area×sex area×sex 
78* sex area×sex area+sex 105* area×sex area×sex area×sex 
79* area+sex area×sex area+sex     

† Models indicated with asterisk (*) not presented in results or discussion. See section 4 of appendix for clarification.    
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A. 2  Chapter 2 summary of simulated populations    

 
Figure A.2.1. Spatial recaptures of female (♀) and male (♂) black bears across sampling areas (A, B, C; figure1) and combined total 
spatial recaptures (figure 2). Scenario ID coded by variables corresponding to whether the parameters (D, g0, 𝜎) were constant (0) or 
vary by area (1), sex (2), or both sex and area (3). Coloured boxes represent the 25% to 75% percentiles, thick horizontal black lines 
the median; whiskers extend 1.5 times the interquartile range and black dots outside the boxes represent outliers. Red dashed horizonal 
line indicates the recommended minimum of 20 recaptures for SECR models. 
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Figure A.2.2. Number of detections (figure 1) and individual female (♀) and male (♂) black bears (figure 2) across sampling areas 
(A, B, C). Scenario ID coded by variables corresponding to whether the parameters (D, g0, 𝜎) were constant (0) or varied by area (1), 
sex (2), or both sex and area (3). Coloured boxes represent the 25% to 75% percentiles, thick horizontal black lines the median; 
whiskers extend 1.5 times the interquartile range and black dots outside the boxes represent outliers.  
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A.3 Chapter 2 95% confidence interval coverage and mean percent relative bias  
 
Table A.3.1. The mean 95% confidence interval (CI) coverage of simulated female and male black bear densities for the true data 
generating model (𝑀!) across study areas (A, B, C) for each scenario. Scenario ID coded by variables corresponding to whether the 
parameters (D, g0, 𝜎) were constant across areas and sexes (0), or varied by area (1), sex (2), or both sex and area (3). K is the number 
of parameters in 𝑀!. Bold values represent values equal to or greater than the nominal CI coverage (95.0).  
 

  Female Male 
Scenario K A B C A B C 

000 3 94.9 94.9 94.9 94.9 94.9 94.9 
001 5 95.1 95.1 95.1 95.1 95.1 95.1 
023 7 95.0 95.0 95.0 95.0 95.0 95.0 
031 8 95.7 95.7 95.7 95.7 95.7 95.7 
032 7 95.3 95.3 95.3 95.3 95.3 95.3 
100 5 95.9 94.2 95.1 95.9 94.2 95.1 
101 7 95.6 94.3 95.3 95.6 94.3 95.3 
103 8 95.3 95.1 96.3 95.3 95.1 96.3 
122 7 95.7 94.6 93.7 95.7 94.6 93.7 
123 9 95.1 95.0 96.2 95.1 95.0 96.2 
130 8 96.1 95.1 93.9 96.1 95.1 93.9 
131 10 95.7 94.5 95.6 95.7 94.5 95.6 
132 9 95.1 95.1 94.9 95.1 95.1 94.9 
133 11 95.7 94.6 94.6 95.7 94.6 94.6 
203 7 94.2 94.2 94.2 94.0 94.0 94.0 
223 8 94.4 94.4 94.4 93.8 93.8 93.8 
230 7 94.7 94.7 94.7 93.0 93.0 93.0 
231 9 95.0 95.0 95.0 93.3 93.3 93.3 
232 8 95.0 95.0 95.0 94.1 94.1 94.1 
233 10 94.5 94.5 94.5 93.4 93.4 93.4 
301 8 94.8 95.2 95.4 95.2 94.2 95.7 
302 7 94.6 94.3 94.6 94.3 94.5 96.2 
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Table A.3.1 (continued).  
 

  Female Male 
Scenario K A B C A B C 

320 7 94.3 95.8 94.7 95.1 94.7 96.5 
321 9 94.5 95.1 95.3 95.1 95 96.3 
322 8 95.1 94.6 94.5 94.8 95.8 95.8 
323 10 95.8 94.7 95.1 95.0 95.3 95.1 
331 11 95.2 95.3 95.5 95.4 94.1 95.1 
332 10 94.7 95.0 94.1 94.5 93.7 95.6 
333 12 94.9 94.4 94.4 93.9 94.6 93.8 
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Figure A.3.1. Mean percent relative bias (PRB) of female (♀) and male (♂) black bear density estimates for the true data generating 
model (𝑀!) across study areas (A, B, C), for 1000 simulations of each scenario. Scenarios are coded by variables corresponding to 
whether the parameters (D, g0, 𝜎) were constant across areas and sexes (0), or varied by area (1), sex (2), or both sex and area (3). Red 
horizontal lines represent no bias. Background colors correspond to the four levels of variation in density: constant density (white), 
density varies by area (light gray), sex (medium gray), and both area and sex (dark gray). All scenarios fall within acceptable bias (< 
5% |MPRB|). 
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A.4  Chapter 2 comparison between interactive and additive models  
 

For each of the 29 scenarios 1000 black bear populations were simulated and fit to 105 candidate models; this resulted in 

3,045,000 models fit overall that required high computational costs and was prohibitively slow to summarize model outputs. Additive 

or interactive models forms with the same structure of covariates for each parameter (i.e., additive model D~area g0~area+sex 𝜎~sex; 

interactive model D~area g0~area×sex σ~sex) exhibit similar patterns in density estimates across the sampling areas for both sexes 

(these patterns are summarized for scenario 333 in Figure S4 below; other scenarios display similar patterns). Because density 

estimates from interactive or additive model forms are similar (Figure A.4.1), including all candidate model forms with additive and 

interactive forms would not enhance the overall insight and conclusions drawn from this work. Therefore, to reduce high 

computational cost and simplify interpretation of results, we excluded candidate model forms where covariates on any one of the 

parameters (D, g0, 𝜎) included interactions between sex and area. This resulted in 48 candidate models with only additive effects being 

presented in the results and discussion.  
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Figure A.4.1. For scenario 333 (D, g0, 𝜎 vary by sex and area), female (♀) and male (♂) bear densities (bears/km2) in three different 
sampling areas (A, B, C) from 82 different SECR candidate models forms fit to 1000 simulated populations with spatial and sex 
specific density (D), detection probability (g0) and spatial scale (𝜎) parameters. Coloured boxes represent the 25% to 75% percentiles, 
thick horizontal black lines the median; whiskers extend 1.5 times the interquartile rang; outliers are excluded from the plots. The 
colour of boxes indicates model forms that have the same structure of covariates for each parameter, but either additive or interactive 
effects of sex and area. The approximate data generating model for this scenario is indicated by the eight red boxes on the far left of 
each panel. True densities in area A (0.06 and 0.04 bears/ km2), area B (0.12 and 0.08 bears/km2), and area C (0.24 and 0.16 
bears/km2) for female and male bears, respectively.  
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A.5  Chapter 2 most frequent SECR model forms for each scenario  

Table A.5.1. The five most frequent top-ranked SECR models (∆AICc = 0), out of 1000 simulations, for each scenario. Columns 
represent the frequency the model form was ranked as the top model (n), number of parameters in the model (K), the minimum, 
maximum, and mean Akaike weight (wi) and the mean percent relative bias (MPRB), mean coefficient of variation (MCV) and root-
mean squared-error (RMSE) of male and female black bear densities (bears/km2) across different sampling regions (A, B, C) for each 
model form. Italicized bold values indicate a |MPRB| greater than 5%. Model parameters D, g0, σ are constant (.) or vary by area (a), 
sex (s) or the additive effect between the two (a+s). Bold text indicates the true data generating model (𝑀!) for each scenario. 
Scenarios are coded by variables corresponding to whether the three parameters (D, g0, σ) are constant across areas and sexes (0), or 
vary by area (1), sex (2), or both sex and area (3). For some scenarios there were less than five models forms identified as the top-
ranked model. 
 

      Female  

                          wi MPRB MCV RMSE 

Scenario Model K n min max mean A B C A B C A B C 

000 D(.) g0(.) σ(.) 3 426 0.075 0.278 0.172 0.079 0.079 0.079 0.035 0.035 0.035 4.15E-03 4.15E-03 4.15E-03 

000 D(s) g0(.) σ(.) 4 78 0.071 0.289 0.168 -1.011 -1.011 -1.011 0.046 0.046 0.046 8.28E-03 8.28E-03 8.28E-03 

000 D(.) g0( (s) σ(.) 4 69 0.083 0.247 0.147 0.707 0.707 0.707 0.035 0.035 0.035 4.37E-03 4.37E-03 4.37E-03 

000 D(.) g0(.) σ(s) 4 67 0.071 0.313 0.162 0.972 0.972 0.972 0.035 0.035 0.035 4.85E-03 4.85E-03 4.85E-03 

000 D(.) g0(.) σ(a) 5 60 0.064 0.3 0.158 0.317 0.317 0.317 0.035 0.035 0.035 4.15E-03 4.15E-03 4.15E-03 

001 D(.) g0(.) σ(a) 5 487 0.084 0.319 0.218 0.349 0.349 0.349 0.035 0.035 0.035 4.16E-03 4.16E-03 4.16E-03 
001 D(s) g0(.)σ(a) 6 110 0.097 0.384 0.211 -0.316 -0.316 -0.316 0.046 0.046 0.046 8.28E-03 8.28E-03 8.28E-03 
001 D(.) g0(.) σ(a+s) 6 78 0.117 0.352 0.207 0.225 0.225 0.225 0.035 0.035 0.035 3.77E-03 3.77E-03 3.77E-03 
001 D(.) g0(s) σ(a) 6 72 0.113 0.317 0.191 -0.003 -0.003 -0.003 0.035 0.035 0.035 4.38E-03 4.38E-03 4.38E-03 
001 D(a) g0(.) σ(a) 7 72 0.092 0.32 0.197 0.271 0.023 -0.620 0.050 0.061 0.081 8.05E-03 1.17E-02 1.61E-02 

023 D(.) g0(s)σ(a+s) 7 618 0.18 0.559 0.405 0.254 0.254 0.254 0.036 0.036 0.036 4.31E-03 4.31E-03 4.31E-03 
023 D(a) g0(s) σ(a+s) 9 117 0.205 0.591 0.375 0.559 0.282 -0.777 0.051 0.062 0.083 9.19E-03 1.10E-02 1.59E-02 
023 D(.) g0(a+s) σ(a+s) 9 112 0.18 0.586 0.368 0.197 0.197 0.197 0.036 0.036 0.036 4.50E-03 4.50E-03 4.50E-03 
023 D(s) g0(s) σ(a+s) 8 103 0.208 0.711 0.393 -0.083 -0.083 -0.083 0.055 0.055 0.055 9.93E-03 9.93E-03 9.93E-03 
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023 D(a+s) g0(s) σ(a+s) 10 15 0.235 0.523 0.374 1.548 0.285 0.292 0.066 0.075 0.093 1.51E-02 1.62E-02 2.04E-02 

031 D(.) g0(a+s) σ(a) 8 585 0.188 0.468 0.354 0.376 0.376 0.376 0.035 0.035 0.035 4.13E-03 4.13E-03 4.13E-03 

031 D(s) g0(a+s) σ(a) 9 131 0.176 0.592 0.349 -2.200 -2.200 -2.200 0.045 0.045 0.045 7.71E-03 7.71E-03 7.71E-03 

031 D(.) g0(a+s) σ(a+s) 9 115 0.148 0.578 0.345 0.047 0.047 0.047 0.035 0.035 0.035 4.04E-03 4.04E-03 4.04E-03 

031 D(a) g0(a+s) σ(a) 10 99 0.176 0.516 0.323 -1.039 1.690 3.199 0.047 0.061 0.101 8.01E-03 1.09E-02 2.07E-02 

031 D(s) g0(a+s) σ(a+s) 10 32 0.188 0.754 0.366 -2.143 -2.143 -2.143 0.046 0.046 0.046 7.47E-03 7.47E-03 7.47E-03 

032 D(.) g0(a+s) σ(s) 7 618 0.168 0.558 0.412 0.173 0.173 0.173 0.036 0.036 0.036 4.31E-03 4.31E-03 4.31E-03 
032 D(s) g0(a+s) σ(s) 8 146 0.195 0.687 0.409 -2.790 -2.790 -2.790 0.057 0.057 0.057 1.09E-02 1.09E-02 1.09E-02 
032 D(.) g0(a+s) σ(a+s) 9 95 0.178 0.543 0.335 0.415 0.415 0.415 0.037 0.037 0.037 4.36E-03 4.36E-03 4.36E-03 
032 D(a) g0(a+s) σ(s) 9 80 0.227 0.583 0.351 -1.358 0.761 1.321 0.055 0.057 0.064 9.24E-03 1.03E-02 1.10E-02 
032 D(a) g0(a+s) σ(a+s) 11 25 0.163 0.702 0.344 -1.794 3.180 2.918 0.057 0.062 0.075 1.15E-02 1.11E-02 1.66E-02 

100 D(a) g0(. ) σ(.) 5 512 0.08 0.324 0.217 0.311 0.014 -0.133 0.083 0.060 0.044 4.03E-03 6.16E-03 8.54E-03 

100 D(a) g0(.) σ(s) 6 83 0.107 0.383 0.207 0.669 0.168 -0.486 0.083 0.060 0.045 3.61E-03 6.58E-03 9.41E-03 

100 D(a+s) g0(.) σ(.) 6 77 0.108 0.405 0.207 0.240 -0.197 0.557 0.088 0.067 0.054 4.78E-03 8.25E-03 1.42E-02 

100 D(a) g0(.) σ(a) 7 77 0.085 0.317 0.183 0.417 0.021 -0.149 0.095 0.067 0.047 5.84E-03 8.04E-03 8.65E-03 

100 D(a) g0(s) σ(.) 6 75 0.112 0.32 0.2 0.888 0.191 0.843 0.082 0.060 0.044 4.17E-03 6.00E-03 9.78E-03 

101 D(a) g0(.) σ(a) 7 588 0.136 0.372 0.277 0.115 0.212 0.083 0.078 0.067 0.062 3.88E-03 6.88E-03 1.17E-02 

101 D(a+s) g0(.) σ(a) 8 94 0.145 0.431 0.256 0.694 -0.539 -1.483 0.085 0.075 0.071 5.10E-03 9.52E-03 1.82E-02 

101 D(a) g0(.) σ(a+s) 8 86 0.164 0.407 0.259 0.542 0.097 0.015 0.078 0.067 0.062 3.68E-03 6.84E-03 1.38E-02 

101 D(a) g0(s) σ(a) 8 78 0.131 0.391 0.236 0.632 0.976 -0.559 0.078 0.067 0.062 3.77E-03 6.73E-03 1.32E-02 

101 D(a) g0(a+s) σ(a) 10 47 0.161 0.493 0.277 0.219 0.300 1.322 0.078 0.066 0.062 3.73E-03 5.24E-03 1.30E-02 

103 D(a)g0(.)σ(a+s) 8 671 0.19 0.513 0.411 0.510 0.248 -0.082 0.078 0.066 0.062 3.91E-03 6.58E-03 1.18E-02 

103 D(a+s) g0 (.) σ(a+s) 9 116 0.194 0.643 0.39 0.328 -0.454 -0.484 0.094 0.086 0.083 6.35E-03 1.21E-02 2.38E-02 

103 D(a) g0(s) σ(a+s) 9 111 0.238 0.599 0.386 0.975 0.476 0.260 0.078 0.066 0.062 3.43E-03 5.77E-03 1.24E-02 

103 D(a) g0(a+s) σ(a+s) 11 73 0.212 0.682 0.408 -0.698 1.332 -0.141 0.078 0.066 0.062 3.98E-03 6.30E-03 1.11E-02 

103 D(a+s) g0 (s) σ(a+s) 10 16 0.224 0.614 0.327 -0.514 -2.333 1.076 0.095 0.086 0.083 6.14E-03 1.13E-02 2.59E-02 

122 D(a) g0(s) σ(s) 7 551 0.187 0.561 0.406 0.705 0.495 0.407 0.083 0.061 0.045 4.01E-03 6.51E-03 9.26E-03 

122 D(a+s ) g0(s) σ(s) 8 119 0.223 0.716 0.397 -1.276 -0.826 -0.146 0.094 0.074 0.062 5.64E-03 8.67E-03 1.83E-02 
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122 D(a) g0(s) σ(a+s) 9 89 0.177 0.618 0.381 0.531 -0.965 0.235 0.098 0.069 0.048 6.48E-03 7.84E-03 1.04E-02 

122 D(a ) g0(a+s) σ(s) 9 76 0.206 0.615 0.359 -0.133 -0.816 0.391 0.087 0.062 0.046 3.83E-03 6.36E-03 1.03E-02 

122 D(a+s) g0(a+s) σ(.) 9 64 0.989 1 1 -10.075 -33.039 -53.378 0.083 0.077 0.081 6.18E-03 3.34E-02 1.07E-01 

123 D(a) g0(s) σ(a+s) 9 740 0.277 0.644 0.525 0.472 0.419 0.255 0.080 0.068 0.064 4.05E-03 6.74E-03 1.25E-02 

123 D(a+s) g0(s) σ(a+s) 10 119 0.269 0.821 0.512 0.142 -0.022 0.201 0.093 0.083 0.079 5.54E-03 1.14E-02 2.07E-02 

123 D(a) g0(a+s) σ(a+s) 11 118 0.286 0.728 0.48 -0.285 0.202 -0.355 0.080 0.068 0.064 3.76E-03 6.56E-03 1.23E-02 

123 D(a+s) g0 (a+s) σ(a+s) 12 23 0.272 0.68 0.436 2.897 -0.095 0.366 0.092 0.083 0.079 5.55E-03 9.19E-03 2.21E-02 

130 D(a) g0(a+s ) σ(.) 8 602 0.186 0.468 0.355 -0.332 -0.030 0.380 0.081 0.062 0.051 3.88E-03 6.32E-03 1.05E-02 

130 D(a) g0(a+s) σ(s) 9 115 0.211 0.605 0.347 0.034 -0.170 0.977 0.081 0.063 0.051 3.32E-03 6.69E-03 9.36E-03 

130 D(a+s) g0(a+s ) σ(.) 9 109 0.189 0.57 0.349 -2.128 -2.130 -0.881 0.087 0.070 0.059 4.84E-03 8.38E-03 1.42E-02 

130 D(a) g0(a+s) σ(a) 10 97 0.204 0.499 0.327 0.650 0.292 1.663 0.087 0.067 0.057 4.58E-03 7.11E-03 1.40E-02 

130 D(a+s) g0(a+s) σ(s) 10 37 0.189 0.66 0.388 -4.981 -2.987 -1.601 0.089 0.071 0.061 5.28E-03 8.92E-03 1.65E-02 

131 D(a) g0(a+s)σ(a) 10 703 0.297 0.534 0.454 -0.301 0.082 0.749 0.073 0.067 0.078 3.52E-03 6.73E-03 1.56E-02 

131 D(a+s) g0(a+s) σ(a) 11 132 0.295 0.698 0.455 -4.155 -2.356 -2.002 0.081 0.075 0.084 5.05E-03 8.69E-03 1.85E-02 

131 D(a) g0(a+s) σ(a+s) 11 124 0.299 0.708 0.428 -0.052 0.361 0.821 0.073 0.067 0.078 3.35E-03 6.94E-03 1.60E-02 

131 D(a+s) g0(a+s) σ(a+s) 12 41 0.309 0.929 0.502 -5.754 -4.763 -2.720 0.082 0.076 0.085 5.30E-03 8.80E-03 1.84E-02 

132 D(a) g0(a+s) σ(s) 9 722 0.284 0.643 0.524 -0.098 -0.010 0.244 0.082 0.063 0.052 3.84E-03 6.44E-03 1.03E-02 

132 D(a+s) g0(a+s) σ(s)  10 152 0.287 0.815 0.515 -3.128 -2.201 -2.282 0.095 0.078 0.069 5.97E-03 9.67E-03 1.96E-02 

132 D(a) g0(a+s) σ(a+s) 11 105 0.278 0.722 0.463 0.531 0.246 0.980 0.088 0.069 0.058 4.83E-03 7.13E-03 1.42E-02 

132 D(a+s) g0(a+s) σ(a+s) 12 21 0.304 0.766 0.468 -4.233 -5.483 -2.679 0.101 0.083 0.075 6.64E-03 1.19E-02 2.48E-02 

133 D(a) g0(a+s) σ(a+s) 11 836 0.502 0.731 0.676 0.281 0.440 0.935 0.074 0.068 0.080 3.75E-03 7.18E-03 1.61E-02 

133 D(a+s) g0(a+s) σ(a+s) 12 164 0.503 0.996 0.687 -5.984 -4.455 -4.642 0.089 0.085 0.094 5.94E-03 1.11E-02 2.25E-02 

203 D(s) g0(.) σ(a+s) 7 666 0.217 0.615 0.471 -0.148 -0.148 -0.148 0.055 0.055 0.055 7.77E-03 7.77E-03 7.77E-03 

203 D(s) g0(s)σ(a+s) 8 123 0.189 0.681 0.432 -0.088 -0.088 -0.088 0.055 0.055 0.055 7.85E-03 7.85E-03 7.85E-03 

203 D(a+s) g0(. ) σ(a+s) 9 99 0.214 0.63 0.393 1.286 0.540 0.070 0.066 0.075 0.092 1.15E-02 1.48E-02 1.88E-02 

203 D(s) g0(a+s) σ(a+s) 10 72 0.203 0.815 0.46 0.787 0.787 0.787 0.054 0.054 0.054 8.73E-03 8.73E-03 8.73E-03 

203 D(a+s) g0(s) σ(a+s) 10 25 0.267 0.527 0.373 0.637 0.489 2.733 0.066 0.075 0.093 1.58E-02 1.31E-02 1.90E-02 

223 D(s) g0(s ) σ(a+s) 8 738 0.208 0.77 0.599 -0.115 -0.115 -0.115 0.051 0.051 0.051 7.40E-03 7.40E-03 7.40E-03 
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223 D(s) g0(a+s) σ(a+s) 10 126 0.282 0.867 0.54 0.567 0.567 0.567 0.051 0.051 0.051 7.78E-03 7.78E-03 7.78E-03 

223 D(a+s) g0(s) σ(a+s) 10 111 0.301 0.857 0.536 0.532 -0.163 0.552 0.063 0.073 0.091 1.13E-02 1.35E-02 2.00E-02 

223 D(a+s) g0(a+s ) σ(a+s) 12 25 0.299 0.887 0.481 -0.145 -3.055 -1.739 0.063 0.073 0.091 1.18E-02 1.45E-02 2.04E-02 

230 D(s) g0(a+s) σ(.) 7 645 0.148 0.56 0.404 -0.528 -0.528 -0.528 0.043 0.043 0.043 6.12E-03 6.12E-03 6.12E-03 

230 D(s) g0(a+s) σ(s) 8 110 0.197 0.731 0.382 -0.605 -0.605 -0.605 0.044 0.044 0.044 5.91E-03 5.91E-03 5.91E-03 

230 D(a+s) g0(a+s) σ(.) 9 93 0.2 0.574 0.349 -1.797 1.785 0.944 0.059 0.061 0.067 1.12E-02 1.22E-02 1.29E-02 

230 D(s) g0(a+s) σ(a) 9 82 0.193 0.567 0.344 -0.475 -0.475 -0.475 0.043 0.043 0.043 6.18E-03 6.18E-03 6.18E-03 

230 D(a+s) g0(a+s) σ(a)  11 26 0.196 0.702 0.345 -3.937 4.012 2.757 0.062 0.064 0.076 9.05E-03 1.41E-02 2.32E-02 

231 D(s) g0(a+s) σ(a) 9 720 0.249 0.643 0.512 -0.423 -0.423 -0.423 0.042 0.042 0.042 5.90E-03 5.90E-03 5.90E-03 

231 D(s) g0(a+s) σ(a+s) 10 147 0.274 0.857 0.514 -0.387 -0.387 -0.387 0.043 0.043 0.043 5.75E-03 5.75E-03 5.75E-03 

231 D(a+s) g0(a+s) σ(a) 11 112 0.218 0.726 0.47 -1.028 -1.423 4.801 0.053 0.065 0.101 1.02E-02 1.44E-02 2.16E-02 

231 D(a+s) g0(a+s) σ(a+s) 12 21 0.316 0.692 0.426 0.125 -2.187 5.687 0.053 0.066 0.102 1.06E-02 1.21E-02 2.24E-02 

232 D(s) g0(a+s) σ(s) 8 759 0.308 0.774 0.589 -0.859 -0.859 -0.859 0.052 0.052 0.052 7.05E-03 7.05E-03 7.05E-03 

232 D(s) g0(a+s) σ(a+s) 10 116 0.256 0.854 0.504 -0.430 -0.430 -0.430 0.052 0.052 0.052 6.97E-03 6.97E-03 6.97E-03 

232 D(a+s) g0(a+s) σ(s) 10 110 0.298 0.816 0.514 -1.343 0.084 -0.606 0.066 0.068 0.075 1.16E-02 1.24E-02 1.51E-02 

232 D(a+s) g0(a+s) σ(a+s) 12 12 0.38 0.927 0.545 -1.353 0.707 5.026 0.069 0.074 0.084 1.25E-02 1.97E-02 2.10E-02 

232 D(.) g0(a+s) σ(s) 7 2 0.312 0.334 0.323 -16.324 -16.324 -16.324 0.037 0.037 0.037 2.30E-02 2.30E-02 2.30E-02 

233 D(s) g0(a+s) σ(a+s) 10 865 0.431 0.88 0.767 -0.691 -0.691 -0.691 0.050 0.050 0.050 7.17E-03 7.17E-03 7.17E-03 

233 D(a+s) g0(a+s) σ(a+s) 12 134 0.408 0.994 0.719 0.111 -1.916 2.932 0.060 0.073 0.110 1.10E-02 1.43E-02 2.68E-02 

233 D(.) g0(a+s ) σ(a+s) 9 1 0.457 0.457 0.457 -23.148 -23.148 -23.148 0.037 0.037 0.037 3.24E-02 3.24E-02 3.24E-02 

301 D(a+s) g0(.) σ(a) 8 693 0.221 0.515 0.41 -0.035 0.234 -0.063 0.083 0.072 0.068 4.85E-03 8.81E-03 1.65E-02 

301 D(a+s) g0(.) σ(a+s) 9 99 0.237 0.616 0.392 -0.306 0.064 -1.614 0.085 0.074 0.071 5.58E-03 9.83E-03 1.77E-02 

301 D(a+s) g0(s) σ(a) 9 94 0.244 0.597 0.367 -0.111 -0.274 0.083 0.083 0.073 0.068 5.37E-03 8.24E-03 1.72E-02 

301 D(a+s) g0(a+s) σ(a) 11 77 0.235 0.715 0.404 -0.634 -0.773 -0.699 0.084 0.073 0.068 5.66E-03 1.01E-02 1.62E-02 

301 D(a+s)  g0(s )  σ(a+s) 10 30 0.21 0.665 0.402 1.460 1.422 1.721 0.084 0.074 0.069 6.11E-03 8.11E-03 1.44E-02 

302 D(a+s)  g0(.) σ(s) 7 676 0.237 0.615 0.477 -0.201 -0.039 -0.545 0.094 0.074 0.061 5.55E-03 8.88E-03 1.49E-02 

302 D(a+s)  g0(s) σ(s) 8 112 0.229 0.625 0.412 0.833 -0.452 -0.405 0.094 0.074 0.062 6.10E-03 8.52E-03 1.68E-02 

302 D(a+s)  g0(.) σ(a+s) 9 111 0.232 0.653 0.41 2.534 1.832 1.137 0.106 0.080 0.064 7.13E-03 1.11E-02 1.69E-02 
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302 D(a+s)  g0(a+s) σ(s) 10 64 0.237 0.808 0.463 1.851 0.376 0.896 0.097 0.075 0.062 5.48E-03 1.22E-02 1.51E-02 

302 D(a+s) g0(a+s) σ(a+s) 12 21 0.221 0.759 0.447 3.523 -0.922 1.518 0.105 0.081 0.064 9.15E-03 9.08E-03 1.51E-02 

320 D(a+s) g0(s ) σ(.) 7 630 0.171 0.559 0.412 0.293 -0.159 -0.486 0.086 0.064 0.050 5.19E-03 7.51E-03 1.24E-02 

320 D(a+s) g0(s) σ(s) 8 120 0.192 0.71 0.412 0.408 0.026 -0.614 0.086 0.065 0.051 5.35E-03 7.07E-03 1.18E-02 

320 D(a+s) g0(a+s) σ(.) 9 99 0.187 0.589 0.382 0.268 0.783 0.104 0.088 0.065 0.050 5.09E-03 7.91E-03 1.03E-02 

320 D(a+s) g0(s) σ(a) 9 99 0.201 0.541 0.365 -0.403 1.295 -0.725 0.097 0.070 0.052 6.47E-03 9.63E-03 1.42E-02 

320 D(a+s) g0(a+s) σ(s) 10 20 0.227 0.509 0.37 0.937 -0.159 1.848 0.088 0.066 0.051 5.34E-03 1.15E-02 1.43E-02 

321 D(a+s)  g0(s ) σ(a) 9 710 0.306 0.644 0.525 0.128 0.219 -0.317 0.082 0.071 0.066 4.88E-03 8.27E-03 1.62E-02 

321 D(a+s)  g0(s ) σ(a+s) 10 160 0.263 0.834 0.503 -0.568 -0.350 -0.053 0.083 0.072 0.067 5.38E-03 8.93E-03 1.61E-02 

321 D(a+s)  g0(a+s ) σ(a) 11 114 0.273 0.726 0.467 -0.705 0.056 0.426 0.082 0.071 0.066 4.81E-03 9.01E-03 1.51E-02 

321 D(a+s)  g0(a+s ) σ(a+s) 12 16 0.29 0.851 0.484 2.232 1.707 -1.470 0.082 0.072 0.068 4.71E-03 1.01E-02 1.61E-02 

322 D(a+s) g0(s) σ(s) 8 755 0.321 0.773 0.602 0.124 0.142 -0.390 0.092 0.071 0.058 5.50E-03 8.20E-03 1.41E-02 

322 D(a+s) g0(a+s) σ(s) 10 119 0.317 0.86 0.528 0.400 -0.030 0.216 0.095 0.073 0.059 5.13E-03 1.05E-02 1.40E-02 

322 D(a+s) g0(s) σ(a+s) 10 100 0.295 0.825 0.521 2.118 -0.139 0.115 0.105 0.078 0.061 6.88E-03 1.07E-02 1.63E-02 

322 D(a+s) g0(a+s) σ(a+s) 12 26 0.323 0.943 0.526 0.045 -0.922 -1.199 0.106 0.078 0.061 8.52E-03 8.77E-03 1.47E-02 

323 D(a+s)  g0(s) σ(a+s) 10 874 0.386 0.881 0.769 0.450 -0.060 -0.095 0.090 0.080 0.075 5.35E-03 9.51E-03 1.89E-02 

323 D(a+s)  g0(a+s) σ(a+s) 12 125 0.48 0.996 0.702 0.226 -0.823 0.203 0.090 0.080 0.076 5.09E-03 9.60E-03 1.67E-02 

323 D(a)  g0(s) σ(a+s) 9 1 0.364 0.364 0.364 -8.580 -15.148 -21.046 0.078 0.069 0.064 5.15E-03 1.82E-02 5.05E-02 

331 D(a+s) g0(a+s) σ(a) 11 842 0.453 0.731 0.673 -1.015 -0.586 -0.066 0.077 0.071 0.080 4.53E-03 8.52E-03 1.90E-02 

331 D(a+s) g0(a+s) σ(a+s) 12 156 0.376 0.997 0.666 -1.476 -0.477 -0.178 0.078 0.072 0.081 5.01E-03 8.57E-03 2.01E-02 

331 D(a) g0(a+s) σ(a+s) 11 2 0.339 0.624 0.482 -19.775 -13.783 -7.847 0.077 0.067 0.079 1.27E-02 1.68E-02 2.62E-02 

332 D(a+s) g0(a+s) σ(s) 10 866 0.328 0.881 0.77 -0.783 -0.507 -0.771 0.092 0.075 0.065 5.48E-03 9.00E-03 1.56E-02 

332 D(a+s) g0(a+s) σ(a+s) 12 133 0.494 0.997 0.698 -0.333 -1.752 0.043 0.098 0.079 0.070 6.51E-03 9.81E-03 1.91E-02 

332 D(a) g0(a+s) σ(s) 9 1 0.52 0.52 0.52 -19.525 -14.319 -17.094 0.084 0.064 0.053 1.17E-02 1.72E-02 4.10E-02 

333 D(a+s) g0(a+s) σ(a+s) 12 999 0.606 1 0.992 -1.047 -1.137 -0.149 0.085 0.080 0.091 5.01E-03 9.65E-03 2.19E-02 

333 D(a) g0(a+s) σ(a+s) 11 1 0.557 0.557 0.557 -16.289 -29.778 -10.179 0.075 0.073 0.079 9.77E-03 3.57E-02 2.44E-02 
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Table A.5.1 (continued).  
 

    Male  

 
                         wi RB CV RMSE 

Scenario Model K n min max mean A B C A B C A B C 

000 D(.) g0(.) σ(.) 3 426 0.075 0.278 0.172 0.079 0.079 0.079 0.035 0.035 0.035 4.15E-03 4.15E-03 4.15E-03 
000 D(s) g0(.) σ(.) 4 78 0.071 0.289 0.168 0.445 0.445 0.445 0.046 0.046 0.046 9.09E-03 9.09E-03 9.09E-03 
000 D(.) g0(s) σ(.) 4 69 0.083 0.247 0.147 0.707 0.707 0.707 0.035 0.035 0.035 4.37E-03 4.37E-03 4.37E-03 
000 D(.) g0(.) σ(s) 4 67 0.071 0.313 0.162 0.972 0.972 0.972 0.035 0.035 0.035 4.85E-03 4.85E-03 4.85E-03 
000 D(.) g0(.) σ(a) 5 60 0.064 0.3 0.158 0.317 0.317 0.317 0.035 0.035 0.035 4.15E-03 4.15E-03 4.15E-03 

001 D(.) g0(.) σ(a) 5 487 0.084 0.319 0.218 0.349 0.349 0.349 0.035 0.035 0.035 4.16E-03 4.16E-03 4.16E-03 
001 D(s) g0(.)σ(a) 6 110 0.097 0.384 0.211 0.800 0.800 0.800 0.046 0.046 0.046 8.14E-03 8.14E-03 8.14E-03 
001 D(.) g0(.) σ(a+s) 6 78 0.117 0.352 0.207 0.225 0.225 0.225 0.035 0.035 0.035 3.77E-03 3.77E-03 3.77E-03 
001 D(.) g0(s) σ(a) 6 72 0.113 0.317 0.191 -0.003 -0.003 -0.003 0.035 0.035 0.035 4.38E-03 4.38E-03 4.38E-03 
001 D(a) g0(.) σ(a) 7 72 0.092 0.32 0.197 0.271 0.023 -0.620 0.050 0.061 0.081 8.05E-03 1.17E-02 1.61E-02 

023 D(.) g0(s) σ(a+s) 7 618 0.18 0.559 0.405 0.254 0.254 0.254 0.036 0.036 0.036 4.31E-03 4.31E-03 4.31E-03 
023 D(a) g0(s) σ(a+s) 9 117 0.205 0.591 0.375 0.559 0.282 -0.777 0.051 0.062 0.083 9.19E-03 1.10E-02 1.59E-02 
023 D(.) g0(a+s) σ(a+s) 9 112 0.18 0.586 0.368 0.197 0.197 0.197 0.036 0.036 0.036 4.50E-03 4.50E-03 4.50E-03 
023 D(s) g0(s) σ(a+s) 8 103 0.208 0.711 0.393 0.032 0.032 0.032 0.047 0.047 0.047 8.20E-03 8.20E-03 8.20E-03 
023 D(a+s) g0(s) σ(a+s) 10 15 0.235 0.523 0.374 0.341 -0.756 -1.072 0.060 0.070 0.089 9.43E-03 1.28E-02 1.54E-02 

031 D(.) g0(a+s) σ(a) 8 585 0.188 0.468 0.354 0.376 0.376 0.376 0.035 0.035 0.035 4.13E-03 4.13E-03 4.13E-03 
031 D(s) g0(a+s) σ(a) 9 131 0.176 0.592 0.349 4.228 4.228 4.228 0.048 0.048 0.048 9.04E-03 9.04E-03 9.04E-03 
031 D(.) g0(a+s) σ(a+s) 9 115 0.148 0.578 0.345 0.047 0.047 0.047 0.035 0.035 0.035 4.04E-03 4.04E-03 4.04E-03 
031 D(a) g0(a+s) σ(a) 10 99 0.176 0.516 0.323 -1.039 1.690 3.199 0.047 0.061 0.101 8.01E-03 1.09E-02 2.07E-02 
031 D(s) g0(a+s) σ(a+s) 10 32 0.188 0.754 0.366 3.608 3.608 3.608 0.053 0.053 0.053 1.17E-02 1.17E-02 1.17E-02 

032 D(.) g0(a+s) σ(s) 7 618 0.168 0.558 0.412 0.173 0.173 0.173 0.036 0.036 0.036 4.31E-03 4.31E-03 4.31E-03 
032 D(s) g0(a+s) σ(s) 8 146 0.195 0.687 0.409 2.277 2.277 2.277 0.048 0.048 0.048 8.06E-03 8.06E-03 8.06E-03 
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032 D(.) g0(a+s) σ(a+s) 9 95 0.178 0.543 0.335 0.415 0.415 0.415 0.037 0.037 0.037 4.36E-03 4.36E-03 4.36E-03 
032 D(a) g0(a+s) σ(s) 9 80 0.227 0.583 0.351 -1.358 0.761 1.321 0.055 0.057 0.064 9.24E-03 1.03E-02 1.10E-02 
032 D(a) g0(a+s) σ(a+s) 11 25 0.163 0.702 0.344 -1.794 3.180 2.918 0.057 0.062 0.075 1.15E-02 1.11E-02 1.66E-02 

100 D(a) g0(. ) σ(.) 5 512 0.08 0.324 0.217 0.311 0.014 -0.133 0.083 0.060 0.044 4.03E-03 6.16E-03 8.54E-03 

100 D(a) g0(.) σ(s) 6 83 0.107 0.383 0.207 0.669 0.168 -0.486 0.083 0.060 0.045 3.61E-03 6.58E-03 9.41E-03 

100 D(a+s) g0(.) σ(.) 6 77 0.108 0.405 0.207 0.283 -0.104 0.637 0.088 0.067 0.054 4.48E-03 8.28E-03 1.41E-02 

100 D(a) g0(.) σ(a) 7 77 0.085 0.317 0.183 0.417 0.021 -0.149 0.095 0.067 0.047 5.84E-03 8.04E-03 8.65E-03 

100 D(a) g0(s) σ(.) 6 75 0.112 0.32 0.2 0.888 0.191 0.843 0.082 0.060 0.044 4.17E-03 6.00E-03 9.78E-03 

101 D(a) g0(.) σ(a) 7 588 0.136 0.372 0.277 0.115 0.212 0.083 0.078 0.067 0.062 3.88E-03 6.88E-03 1.17E-02 

101 D(a+s) g0(.) σ(a) 8 94 0.145 0.431 0.256 1.274 0.054 -0.860 0.085 0.075 0.071 4.95E-03 9.03E-03 1.88E-02 

101 D(a) g0(.) σ(a+s) 8 86 0.164 0.407 0.259 0.542 0.097 0.015 0.078 0.067 0.062 3.68E-03 6.84E-03 1.38E-02 

101 D(a) g0(s) σ(a) 8 78 0.131 0.391 0.236 0.632 0.976 -0.559 0.078 0.067 0.062 3.77E-03 6.73E-03 1.32E-02 

101 D(a) g0(a+s) σ(a) 10 47 0.161 0.493 0.277 0.219 0.300 1.322 0.078 0.066 0.062 3.73E-03 5.24E-03 1.30E-02 

103 D(a) g0(.) σ(a+s) 8 671 0.19 0.513 0.411 0.510 0.248 -0.082 0.078 0.066 0.062 3.91E-03 6.58E-03 1.18E-02 

103 D(a+s) g0(.) σ(a+s) 9 116 0.194 0.643 0.39 1.115 0.324 0.200 0.083 0.072 0.068 4.67E-03 8.61E-03 1.40E-02 

103 D(a) g0(s) σ(a+s) 9 111 0.238 0.599 0.386 0.975 0.476 0.260 0.078 0.066 0.062 3.43E-03 5.77E-03 1.24E-02 

103 D(a) g0(a+s) σ(a+s) 11 73 0.212 0.682 0.408 -0.698 1.332 -0.141 0.078 0.066 0.062 3.98E-03 6.30E-03 1.11E-02 

103 D(a+s) g0(s) σ(a+s) 10 16 0.224 0.614 0.327 1.180 -0.684 2.426 0.083 0.073 0.067 5.50E-03 8.70E-03 1.42E-02 

122 D(a) g0(s) σ(s) 7 551 0.187 0.561 0.406 0.705 0.495 0.407 0.083 0.061 0.045 4.01E-03 6.51E-03 9.26E-03 

122 D(a+s) g0(s ) σ(s) 8 119 0.223 0.716 0.397 -1.015 -0.382 0.165 0.090 0.069 0.055 4.66E-03 8.51E-03 1.45E-02 

122 D(a) g0(s) σ(a+s) 9 89 0.177 0.618 0.381 0.531 -0.965 0.235 0.098 0.069 0.048 6.48E-03 7.84E-03 1.04E-02 

122 D(a) g0(a+s) σ(s) 9 76 0.206 0.615 0.359 -0.133 -0.816 0.391 0.087 0.062 0.046 3.83E-03 6.36E-03 1.03E-02 

122 D(a+s) g0(a+s) σ(.) 9 64 0.989 1 1 42.028 5.734 -26.413 0.076 0.070 0.075 2.17E-02 9.39E-03 5.37E-02 

123 D(a) g0(s) σ(a+s) 9 740 0.277 0.644 0.525 0.472 0.419 0.255 0.080 0.068 0.064 4.05E-03 6.74E-03 1.25E-02 

123 D(a+s) g0(s) σ(a+s) 10 119 0.269 0.821 0.512 0.710 0.386 0.669 0.087 0.077 0.073 5.39E-03 9.60E-03 1.80E-02 

123 D(a) g0(a+s) σ(a+s) 11 118 0.286 0.728 0.48 -0.285 0.202 -0.355 0.080 0.068 0.064 3.76E-03 6.56E-03 1.23E-02 

123 D(a+s) g0(a+s) σ(a+s) 12 23 0.272 0.68 0.436 1.737 -1.075 -0.847 0.087 0.077 0.073 4.88E-03 9.22E-03 1.86E-02 

130 D(a) g0(a+s ) σ(.) 8 602 0.186 0.468 0.355 -0.332 -0.030 0.380 0.081 0.062 0.051 3.88E-03 6.32E-03 1.05E-02 
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130 D(a) g0(a+s) σ(s) 9 115 0.211 0.605 0.347 0.034 -0.170 0.977 0.081 0.063 0.051 3.32E-03 6.69E-03 9.36E-03 

130 D(a+s) g0(a+s ) σ(.) 9 109 0.189 0.57 0.349 2.235 2.276 3.604 0.089 0.072 0.064 5.40E-03 1.01E-02 1.99E-02 

130 D(a) g0(a+s) σ(a) 10 97 0.204 0.499 0.327 0.650 0.292 1.663 0.087 0.067 0.057 4.58E-03 7.11E-03 1.40E-02 

130 D(a+s ) g0(a+s) σ(s) 10 37 0.189 0.66 0.388 2.655 4.884 6.403 0.093 0.077 0.069 6.33E-03 1.32E-02 2.71E-02 

131 D(a) g0(a+s) σ(a) 10 703 0.297 0.534 0.454 -0.301 0.082 0.749 0.073 0.067 0.078 3.52E-03 6.73E-03 1.56E-02 

131 D(a+s) g0(a+s) σ(a) 11 132 0.295 0.698 0.455 3.582 5.605 6.037 0.082 0.078 0.090 5.33E-03 1.14E-02 2.55E-02 

131 D(a) g0(a+s) σ(a+s) 11 124 0.299 0.708 0.428 -0.052 0.361 0.821 0.073 0.067 0.078 3.35E-03 6.94E-03 1.60E-02 

131 D(a+s) g0(a+s ) σ(a+s) 12 41 0.309 0.929 0.502 7.543 9.176 11.090 0.086 0.082 0.093 6.55E-03 1.64E-02 3.20E-02 

132 D(a) g0(a+s) σ(s) 9 722 0.284 0.643 0.524 -0.098 -0.010 0.244 0.082 0.063 0.052 3.84E-03 6.44E-03 1.03E-02 

132 D(a+s) g0(a+s ) σ(s)  10 152 0.287 0.815 0.515 1.666 2.826 2.632 0.088 0.071 0.061 5.11E-03 9.91E-03 1.78E-02 

132 D(a) g0(a+s ) σ(a+s) 11 105 0.278 0.722 0.463 0.531 0.246 0.980 0.088 0.069 0.058 4.83E-03 7.13E-03 1.42E-02 

132 D(a+s) g0(a+s ) σ(a+s) 12 21 0.304 0.766 0.468 1.623 0.337 2.915 0.096 0.076 0.066 6.40E-03 1.08E-02 1.81E-02 

133 D(a) g0(a+s) σ(a+s) 11 836 0.502 0.731 0.676 0.281 0.440 0.935 0.074 0.068 0.080 3.75E-03 7.18E-03 1.61E-02 

133 D(a+s) g0(a+s) σ(a+s) 12 164 0.503 0.996 0.687 3.218 4.861 4.805 0.082 0.077 0.087 4.80E-03 9.90E-03 2.28E-02 

203 D(s) g0(.) σ(a+s) 7 666 0.217 0.615 0.471 0.311 0.311 0.311 0.047 0.047 0.047 4.89E-03 4.89E-03 4.89E-03 

203 D(s) g0(s) σ(a+s) 8 123 0.189 0.681 0.432 0.275 0.275 0.275 0.047 0.047 0.047 4.58E-03 4.58E-03 4.58E-03 

203 D(a+s) g0(.) σ(a+s) 9 99 0.214 0.63 0.393 1.618 0.830 0.368 0.060 0.070 0.087 8.25E-03 1.02E-02 1.33E-02 

203 D(s) g0(a+s) σ(a+s) 10 72 0.203 0.815 0.46 0.846 0.846 0.846 0.047 0.047 0.047 4.73E-03 4.73E-03 4.73E-03 

203 D(a+s) g0(s) σ(a+s) 10 25 0.267 0.527 0.373 -0.408 -0.372 1.870 0.060 0.070 0.088 9.83E-03 9.80E-03 1.39E-02 

223 D(s) g0(s ) σ(a+s) 8 738 0.208 0.77 0.599 0.591 0.591 0.591 0.051 0.051 0.051 5.55E-03 5.55E-03 5.55E-03 

223 D(s) g0(a+s ) σ(a+s) 10 126 0.282 0.867 0.54 0.596 0.596 0.596 0.051 0.051 0.051 4.91E-03 4.91E-03 4.91E-03 

223 D(a+s) g0(s) σ(a+s) 10 111 0.301 0.857 0.536 0.490 -0.217 0.411 0.064 0.073 0.092 8.63E-03 1.02E-02 1.40E-02 

223 D(a+s) g0(a+s) σ(a+s) 12 25 0.299 0.887 0.481 1.812 -0.984 0.097 0.064 0.073 0.092 7.94E-03 1.12E-02 1.38E-02 

230 D(s) g0(a+s) σ(.) 7 645 0.148 0.56 0.404 1.089 1.089 1.089 0.055 0.055 0.055 5.84E-03 5.84E-03 5.84E-03 

230 D(s) g0(a+s) σ(s) 8 110 0.197 0.731 0.382 2.669 2.669 2.669 0.061 0.061 0.061 7.71E-03 7.71E-03 7.71E-03 

230 D(a+s) g0(a+s) σ(.) 9 93 0.2 0.574 0.349 -1.933 1.574 0.843 0.067 0.070 0.077 9.29E-03 9.11E-03 1.06E-02 

230 D(s) g0(a+s) σ(a) 9 82 0.193 0.567 0.344 1.173 1.173 1.173 0.055 0.055 0.055 5.66E-03 5.66E-03 5.66E-03 

230 D(a+s) g0(a+s) σ(a)  11 26 0.196 0.702 0.345 -3.247 4.690 2.964 0.070 0.073 0.085 7.87E-03 1.09E-02 1.42E-02 
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231 D(s) g0(a+s) σ(a) 9 720 0.249 0.643 0.512 1.403 1.403 1.403 0.053 0.053 0.053 5.85E-03 5.85E-03 5.85E-03 

231 D(s) g0(a+s) σ(a+s) 10 147 0.274 0.857 0.514 2.510 2.510 2.510 0.058 0.058 0.058 7.49E-03 7.49E-03 7.49E-03 

231 D(a+s) g0(a+s) σ(a) 11 112 0.218 0.726 0.47 1.202 0.654 7.343 0.061 0.073 0.108 8.03E-03 9.43E-03 1.83E-02 

231 D(a+s) g0(a+s) σ(a+s) 12 21 0.316 0.692 0.426 0.504 -1.934 6.793 0.066 0.078 0.112 8.93E-03 8.40E-03 2.12E-02 

232 D(s) g0(a+s) σ(s) 8 759 0.308 0.774 0.589 1.069 1.069 1.069 0.052 0.052 0.052 5.47E-03 5.47E-03 5.47E-03 

232 D(s) g0(a+s) σ(a+s) 10 116 0.256 0.854 0.504 0.887 0.887 0.887 0.053 0.053 0.053 6.18E-03 6.18E-03 6.18E-03 

232 D(a+s) g0(a+s) σ(s) 10 110 0.298 0.816 0.514 -0.194 1.213 0.509 0.066 0.069 0.076 8.55E-03 9.00E-03 1.08E-02 

232 D(a+s) g0(a+s) σ(a+s) 12 12 0.38 0.927 0.545 -1.406 0.222 5.343 0.070 0.074 0.084 7.98E-03 9.12E-03 1.71E-02 

232 D(.) g0(a+s) σ(s) 7 2 0.312 0.334 0.323 17.147 17.147 17.147 0.037 0.037 0.037 1.73E-02 1.73E-02 1.73E-02 

233 D(s) g0(a+s) σ(a+s) 10 865 0.431 0.88 0.767 0.844 0.844 0.844 0.051 0.051 0.051 5.30E-03 5.30E-03 5.30E-03 

233 D(a+s) g0(a+s) σ(a+s) 12 134 0.408 0.994 0.719 1.029 -1.105 3.791 0.060 0.073 0.111 8.79E-03 9.89E-03 1.93E-02 

233 D(.) g0(a+s ) σ(a+s) 9 1 0.457 0.457 0.457 7.593 7.593 7.593 0.037 0.037 0.037 7.59E-03 7.59E-03 7.59E-03 

301 D(a+s) g0(.) σ(a) 8 693 0.221 0.515 0.41 0.156 0.446 0.100 0.088 0.078 0.074 3.44E-03 6.50E-03 1.12E-02 

301 D(a+s) g0(.) σ(a+s) 9 99 0.237 0.616 0.392 -0.036 0.290 -1.235 0.092 0.082 0.079 4.11E-03 6.92E-03 1.52E-02 

301 D(a+s) g0(s) σ(a) 9 94 0.244 0.597 0.367 0.349 0.164 0.519 0.089 0.079 0.075 3.70E-03 5.46E-03 1.15E-02 

301 D(a+s) g0(a+s) σ(a) 11 77 0.235 0.715 0.404 0.635 0.474 0.588 0.089 0.079 0.075 3.79E-03 6.57E-03 1.14E-02 

301 D(a+s)  g0(s)  σ(a+s) 10 30 0.21 0.665 0.402 0.414 0.560 0.814 0.091 0.082 0.078 4.77E-03 8.77E-03 1.64E-02 

302 D(a+s) g0(.) σ(s) 7 676 0.237 0.615 0.477 0.284 0.432 -0.105 0.091 0.069 0.056 3.64E-03 5.60E-03 8.32E-03 

302 D(a+s) g0(s ) σ(s) 8 112 0.229 0.625 0.412 1.840 0.625 0.634 0.090 0.069 0.056 3.68E-03 5.31E-03 9.26E-03 

302 D(a+s) g0(. ) σ(a+s) 9 111 0.232 0.653 0.41 1.701 0.993 0.309 0.103 0.076 0.059 4.42E-03 6.58E-03 9.31E-03 

302 D(a+s) g0(a+s) σ(s) 10 64 0.237 0.808 0.463 0.475 -1.210 -0.635 0.093 0.071 0.057 4.17E-03 7.33E-03 9.36E-03 

302 D(a+s) g0(a+s) σ(a+s) 12 21 0.221 0.759 0.447 2.439 -1.508 0.970 0.102 0.076 0.058 4.52E-03 6.54E-03 1.20E-02 

320 D(a+s) g0(s) σ(.) 7 630 0.171 0.559 0.412 0.707 0.265 -0.084 0.093 0.073 0.062 3.76E-03 5.91E-03 9.70E-03 

320 D(a+s) g0(s) σ(s) 8 120 0.192 0.71 0.412 1.601 1.373 0.646 0.097 0.079 0.068 4.26E-03 8.01E-03 1.36E-02 

320 D(a+s) g0(a+s) σ(.) 9 99 0.187 0.589 0.382 -0.493 -0.049 -0.647 0.096 0.074 0.062 3.73E-03 5.34E-03 9.74E-03 

320 D(a+s) g0(s) σ(a) 9 99 0.201 0.541 0.365 1.124 2.784 0.693 0.103 0.079 0.063 4.90E-03 7.37E-03 1.05E-02 

320 D(a+s) g0(a+s) σ(s) 10 20 0.227 0.509 0.37 1.178 -0.022 1.946 0.099 0.079 0.067 4.49E-03 8.65E-03 1.12E-02 

321 D(a+s) g0 (s) σ(a) 9 710 0.306 0.644 0.525 0.228 0.360 -0.235 0.091 0.081 0.078 3.55E-03 6.57E-03 1.17E-02 
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321 D(a+s) g0 (s) σ(a+s) 10 160 0.263 0.834 0.503 1.286 1.633 1.932 0.096 0.087 0.084 4.29E-03 8.59E-03 1.65E-02 

321 D(a+s) g0 (a+s) σ(a) 11 114 0.273 0.726 0.467 -0.349 0.328 0.746 0.091 0.081 0.078 3.58E-03 5.94E-03 1.12E-02 

321 D(a+s) g0 (a+s) σ(a+s) 12 16 0.29 0.851 0.484 2.345 1.968 -1.265 0.096 0.088 0.085 5.08E-03 1.16E-02 1.99E-02 

322 D(a+s) g0(s) σ(s) 8 755 0.321 0.773 0.602 0.643 0.676 0.106 0.094 0.073 0.060 3.74E-03 5.86E-03 9.28E-03 

322 D(a+s) g0(a+s ) σ(s) 10 119 0.317 0.86 0.528 0.635 0.105 0.380 0.096 0.074 0.061 3.84E-03 6.81E-03 9.90E-03 

322 D(a+s) g0(s ) σ(a+s) 10 100 0.295 0.825 0.521 3.058 0.648 0.901 0.106 0.079 0.063 5.05E-03 6.75E-03 9.76E-03 

322 D(a+s) g0(a+s ) σ(a+s) 12 26 0.323 0.943 0.526 0.173 -0.625 -0.821 0.108 0.080 0.063 4.94E-03 5.35E-03 1.05E-02 

323 D(a+s) g0(s) σ(a+s) 10 874 0.386 0.881 0.769 1.098 0.589 0.497 0.092 0.082 0.078 3.71E-03 6.73E-03 1.21E-02 

323 D(a+s) g0(a+s) σ(a+s) 12 125 0.48 0.996 0.702 0.641 -0.459 0.633 0.092 0.082 0.078 3.43E-03 5.98E-03 1.16E-02 

323 D(a) g0(s) σ(a+s) 9 1 0.364 0.364 0.364 37.130 27.279 18.432 0.078 0.069 0.064 1.49E-02 2.18E-02 2.95E-02 

331 D(a+s) g0(a+s) σ(a) 11 842 0.453 0.731 0.673 1.195 1.633 2.166 0.086 0.082 0.093 3.47E-03 6.70E-03 1.48E-02 

331 D(a+s) g0(a+s) σ(a+s) 12 156 0.376 0.997 0.666 1.475 2.726 2.925 0.092 0.088 0.098 4.22E-03 9.70E-03 1.94E-02 

331 D(a) g0(a+s ) σ(a+s) 11 2 0.339 0.624 0.482 20.337 29.325 38.229 0.077 0.067 0.079 9.36E-03 2.36E-02 6.38E-02 

332 D(a+s) g0(a+s) σ(s) 10 866 0.328 0.881 0.77 0.777 1.062 0.764 0.093 0.076 0.067 3.78E-03 6.32E-03 1.04E-02 

332 D(a+s) g0(a+s ) σ(a+s) 12 133 0.494 0.997 0.698 2.206 0.753 2.606 0.099 0.081 0.072 4.42E-03 6.28E-03 1.33E-02 

332 D(a) g0(a+s) σ(s) 9 1 0.52 0.52 0.52 20.712 28.522 24.359 0.084 0.064 0.053 8.29E-03 2.28E-02 3.90E-02 

333 D(a+s) g0(a+s) σ(a+s) 12 999 0.606 1 0.992 0.919 0.813 1.835 0.087 0.082 0.093 3.53E-03 6.70E-03 1.57E-02 

333 D(a) g0(a+s) σ(a+s) 11 1 0.557 0.557 0.557 25.566 5.333 34.732 0.075 0.073 0.079 1.02E-02 4.27E-03 5.56E-02 
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Appendix B: MNRF black bear DNA capture-recapture summary  

Black bear DNA capture-recapture datasets are available on Dryad: Howe, Eric. 2021. Spatially explicit genetic capture-recapture data 

from black bears in Ontario, Canada, 2017-2019. Dryad, Dataset, https://doi.org/10.5061/dryad.7wm37pvtz. 

Table B.1. Summary of capture statistics from DNA population monitoring from 78 study areas across Ontario, Canada. Statistics 
calculated by study area and sex (female [♀] and male [♂]) and include the number of barbed wire hair corrals in each area (traps), 
how many of these corrals were visited (traps used), number of traps visited (traps visited), number of detections (detections; 
excluding multiple detections of the same individual at the same trap and occasion), number of unique individuals detected 
(individuals) and the number of re-captured individuals (re-captures). Across all study areas, there were five sampling occasions 
(exception of Shirley Lake Road in 2019 with 7 sampling occasions). Males1 or female2 study areas datasets excluded from analysis 
because of insufficient data (< 20 recaptures) or data quality concerns4. Repeated traplines sampled across multiple years3.  
 

Year Study area Traps Traps used Traps visited Detections Individuals Re-captures 
   ♀ ♂ ♀ ♂ ♀ ♂ ♀ ♂ ♀ ♂ 
2017 325 Road 40 22 29 37 66 42 89 18 30 24 59 
2017 700 Road1 40 21 17 50 27 60 35 19 16 41 19 
2017 81 Road 41 38 41 121 124 165 185 31 36 134 149 
2019 Anaconda 40 23 33 63 114 80 186 20 44 60 142 
2018 Beauty Lake Road 40 25 25 59 53 69 74 19 25 50 49 
2019 Black Creek Road 40 15 19 28 48 32 65 12 20 20 45 
2019 Bogie & Clyde1 40 25 19 50 29 67 33 26 17 41 16 
2019 Boreal 40 28 27 59 52 74 60 33 33 41 27 
2017 Borland 40 26 26 65 56 70 75 11 21 59 54 
2018 Caithness 40 26 29 54 58 64 81 17 21 47 60 
2018 Camp1Road 41 28 31 61 74 74 143 25 39 49 104 
2019 Cardiff Anstruther1,2 40 18 19 29 30 39 37 23 22 16 15 
2018 Cargill 40 22 29 43 58 50 78 25 36 25 42 
2019 Carp Road2 40 22 23 30 44 33 52 15 18 18 34 
2017 CCGP 40 40 38 120 121 155 164 32 29 123 135 
2018 Cedar Narrows 40 33 31 99 85 135 118 38 37 97 81 
2018 Century Road 40 26 30 51 81 64 112 27 40 37 72 
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2017 Crib Road 40 38 38 130 107 156 159 30 39 126 120 
2018 Deer Lake Road 40 28 29 59 56 72 83 22 29 50 54 
2018 Detour 40 27 24 59 66 83 110 19 18 64 92 
2019 Dorion 40 22 20 47 36 56 41 15 18 41 23 
2018 Fred Flat 40 18 25 36 47 39 57 13 20 26 37 
2018 Fushimi 40 30 29 57 70 66 107 22 29 44 78 
2017 Garden Lake Road 41 27 38 63 123 73 220 18 53 55 167 
2018 GargMijnSand 40 24 28 54 68 65 105 14 21 51 84 
2017 Gibson Lake Road 40 29 20 78 45 94 66 31 22 63 44 
2017 Goldfield 40 25 32 57 72 64 101 23 30 41 71 
2017 Grassy 40 26 33 65 74 85 111 21 30 64 81 
2019 Grimsthorpe2 40 18 26 29 48 34 56 21 29 13 27 
2019 Highway 631 40 19 21 43 39 69 52 20 22 49 30 
2017 Hwy 651 40 23 31 49 67 57 79 16 23 41 56 
2018 Inglis Lake Road 40 26 37 60 87 76 118 16 36 60 82 
2019 Killarney 40 21 27 44 63 60 84 22 28 38 56 
2019 Lampson 41 29 34 90 91 130 141 29 35 101 106 
2017 Larder Raven1,2 40 14 11 21 14 23 15 14 9 9 6 
2019 Line 741,2 34 5 5 7 7 7 7 5 3 2 4 
2019 Line 751,2 27 7 6 13 9 15 10 10 9 5 1 
2018 Longlegged 40 27 39 71 102 85 161 26 56 59 105 
2018 Marlborough Limerick1,2 41 5 4 5 4 5 4 4 4 1 0 
2018 Massey Tote2 41 15 21 21 30 24 33 13 11 11 22 
2019 Mayburn 40 25 27 61 74 73 118 22 37 51 81 
2019 McClure Herschel1,2 40 6 16 7 20 7 22 7 15 0 7 
2017 McConnell 40 24 25 44 53 49 69 24 29 25 40 
2018 Menet Brent 40 28 30 60 70 77 113 36 45 41 68 
2017 Munro 41 13 21 29 58 36 89 16 29 20 60 
2019 NORT Road2 40 17 22 27 37 27 46 8 22 19 24 
2018 Oates4 40 32 32 75 78 111 104 23 30 88 74 
2019 Ogoki 40 37 40 115 166 141 344 27 51 114 293 
2017 Opeepeesway 40 22 35 36 81 36 106 13 29 23 77 
2018 Opeongo Line1,2 45 11 15 19 21 22 22 10 15 12 7 
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2017 Pardo 40 28 27 58 64 65 81 31 30 34 51 
2019 Phillip Creek 40 27 34 63 80 82 114 23 29 59 85 
2019 Pickerel 40 30 26 70 52 91 64 39 31 52 33 
2018 Pineridge 40 19 25 42 55 46 86 16 36 30 50 
2017 Portelance Road 40 22 27 43 66 45 99 22 35 23 64 
2018 Red Squirrel1 40 27 20 58 26 68 26 23 19 45 7 
2019 Road 600 41 25 31 72 71 98 91 19 21 79 70 
2018 Robinson Lake 40 15 16 25 29 31 37 11 16 20 21 
2018 Round Lake1,2 40 14 21 23 37 29 43 17 27 12 16 
2019 Sand English 40 34 33 97 89 150 148 52 59 98 89 
2019 Shaw Road1 40 24 16 56 26 67 28 17 18 50 10 
2018 Shirley Lake Road3 40 24 30 52 58 59 82 22 37 37 45 
2019 Shirley Lake Road3 40 36 31 67 71 111 131 26 35 85 96 
2017 South EMU Road 40 23 23 59 52 71 66 24 25 47 41 
2017 Sowden3 40 23 26 49 58 64 84 17 23 47 61 
2019 Sowden3 40 30 38 91 106 133 175 19 30 114 145 
2018 Sowden3  44 27 33 76 98 93 147 16 32 77 115 
2018 Translimit 40 36 34 90 84 127 124 28 30 99 94 
2019 Trout Lake 40 25 21 47 42 53 47 25 20 28 27 
2018 Turtle River Road 40 23 29 49 60 67 72 28 34 39 38 
2019 Two Island Lake1,2 42 16 13 27 21 36 23 18 15 18 8 
2018 Vermilion River Road 40 32 37 82 125 93 214 24 50 69 164 
2017 Watabeag 40 24 17 57 33 67 41 20 18 47 23 
2018 Wenasaga 40 19 30 53 96 65 186 13 36 52 150 
2018 Wenebegon 40 24 28 44 60 46 87 17 29 29 58 
2019 WestEnd 50 27 27 53 48 64 59 30 36 34 23 
2018 Whitman Dam 40 28 26 78 70 93 97 18 19 75 78 
2018 Winter Lake3 40 24 24 42 49 44 57 20 31 24 26 
2019 Winter Lake3 40 23 27 38 63 44 88 19 33 25 55 
2018 WMU 54 Line1,2 40 16 21 28 33 34 43 15 25 19 18 
2019 WMU 621,2 40 13 16 24 21 30 23 13 15 17 8 
2018 WMU 50 Parry Sound1,2 42 11 23 25 35 28 44 13 26 15 18 
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Appendix C: Chapter 3 

 
C.1 Chapter 3 summary of spatial covariate data sources  
 
Table C.1.1. Spatial covariates used for SECR density model including names, descriptions, sources of datasets, original resolution 
(Res.; pixel size), unit of time over which the original datasets were available (time), and units of processed layers. Covariates were 
quantified using the approximate circular area used by female and male black bear (radius of 4480m and 8290m, respectively). All 
covariates are continuous, and the processed resolution of all layers was set at 500m x 500m, except for NDVI and human settlement 
that were set to 1km x 1km and 10m x 10m, respectively.  

Covariates Description Source Res. Time  Unit 
NDVI  The average of the normalized difference vegetation index (NDVI) 

from the last week of June to the first week of August from 1989 to 
2019. 

CCAP1 1 km  Weekly  NA 

Land 
cover 

Agriculture  Percentage of area dominated by annual crops, perennial grasses for 
grazing, woody crops. Does not include grasslands used for light to 
moderate grazing.  

NALCMS2  30 m  2015 %  

 Deciduous  Percentage of area where tree crown cover is comprised of >75% 
deciduous species generally greater than 3m tall.  

NALCMS2  30 m  2015 %  
 

 Coniferous  Percentage of area where tree crown cover is comprised of >75% 
coniferous species generally greater than 3m tall. 

NALCMS2  30 m  2015 % 

 Mixed  Percentage of area where neither coniferous nor deciduous species 
occupy >75% tree crown cover. Species co-dominant. 

NALCMS2  30 m  2015 % 

Human Road 
density  

Density of all roads (freeway, highway, collector, arterial, local, ramps, 
resource and recreation) in km roads/km2.  

NRN3 NA  2021   km/km2  

  
Human 
settlement 

 
Build-up area density. Represented by the built-up (density of 
buildings) probability (1-100) in each pixel.  

 
GHS 4 

 
10 m  

 
2018 

 
%  

1 Crop Condition Assessment Program (CCAP), advanced very high-resolution radiometer (AVHRR) corrected representation 
of the normalized difference vegetation index (Statistics Canada, 2021)  
2 2015 Land cover of North America at 30 meters. North American land change monitoring system (NALCMS; NALCMS, 
2020).  
3 Canada national road network (NRN; Statistics Canada, 2022)  
4 Global human settlement [GHS] built-up grid (Corbane et al. 2020)   
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C.2  Chapter 3 normalized difference vegetation index  

NDVI values were calculated for Ontario’s peak growing season (June 30 - August 1) and averaged across 1989-2019, using data 

obtained from Crop Condition Assessment Program Advanced Very High-Resolution Radiometer (AVHRR) satellite images. A 

temporally static NDVI layer was used as we were interested in the long-term and more generalizable vegetation productivity across 

the landscape. Across the study area, higher NDVI values corresponded to mixed and deciduous forests (Appendix C Section 2). For 

both the landscape analysis (see Appendix C Section 3) and pooled analysis we ran univariate and multivariate SECR models (for the 

latter see Appendix C Section 4) using the two-stage approach outlined in the main text. 

NDVI displayed a significant negative relationship with black bear densities for the pooled and landscape analyses (Appendix C 

Section 3 and Section 4), opposite to what we would predict if density was correlated with vegetation productivity. NDVI has been 

shown to be a proxy for grizzly bear vegetation diet (Mowat et al. 2013) and positively correlated with black bear habitat selection 

(Duquette et al. 2017; Loosen et al. 2018) and distribution (Gantchoff et al. 2019). In our study, the strong negative association of 

NDVI with density could, in part, be explained by disturbed areas (roads, clear-cuts, gravel borrow pits) and regenerating clear-cuts 

acting as important foraging areas in the boreal forest because these areas contain spring foods including green vegetation (clover, 

common dandelion, hawkweed; Romin et al. 2013) but have lower NDVI values. This pattern could also be explained by our measure 

of NDVI being confounded by forest cover and type. For the pooled analyses, out of the forest types in our study area, in the boreal, 

NDVI was positively correlated with mixed forests and in the GLSL deciduous (Appendix C Section 5). Thus, the broadscale patterns 

of NDVI may be most reflective of the forest type patterns, which had significant negative associations with density and bears could 
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be responding to broad forest types more so than productivity per se. Moreover, while our NDVI functioned as a coarse proxy for 

general vegetation productivity available to bears during the growing season, it does not reflect spring and early summer foods 

including insects and ungulates (Poulin et al. 2003, Romain et al. 2013). Our findings align with Nielsen et al. (2017) who report a 

negative association between NDVI and grizzly bear abundance and suggest that NDVI may be a poor measure of grizzly bear 

resources in some study areas. Therefore, while NDVI may be a poor measure of the absolute abundance or quality of foods during 

sampling, the aim of this covariate was to characterize bear density as a function of general productivity and clearly bears across study 

areas are distributed in areas with lower broad scale productivity during this time. This suggest that primary productivity is either not a 

good proxy for bear foods during the spring, or that bears are focused on behaviors other than foraging. Collectively our findings 

highlight the challenges of drawing conclusions from large-scale covariates like NDVI that are confounded by other processes and 

patterns. 

Table C.2.1. 𝛽 parameter estimates, standard errors (SE) and 95% confidence intervals (lower [LCL] and upper [UCL] confidence 
intervals) of univariate SECR density models with NDVI as a density covariate fit to female and male black bear capture-recapture 
datasets in the Great Lakes – St Lawrence (GLSL) and boreal forest regions (Rowe 1972), Ontario, Canada, from 2017–2019.  
 
 𝜷	estimate a SE LCL UCL 
Female GLSL -0.315 0.049 -0.411 -0.218 
Male GLSL -0.271 0.044 -0.357 -0.185 
Female Boreal -0.161 0.037 -0.235 -0.088 
Male Boreal -0.171 0.028 -0.225 -0.117 

a Baseline density on the log scale is reference category; all covariates standardized (mean = 0, standard deviation = 1) such 
that the beta parameter estimate indicates the change in the standard deviation of the baseline density (bears/hectare) on the log 
scale for one unit change in the standard deviation of the covariates value.  
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C.3  Chapter 3 study area level analysis summary  
 

We used a two-stage modeling approach, fitting models to the same datasets as described in the main text. In the first stage we 

created three candidate detection models where density was held constant and the baseline encounter probability g0 varied as a 

function of two behavioural responses: a global, permanent change in behaviour after initial capture (b) and a trap-specific, permanent 

change in behavior after initial capture (bk). While seasonal variation may influence black bears detectability and home range, a 

covariate for time of sampling was not included because preliminary runs of highly parameterized detection models failed to converge 

due to data sparsity. AICc was used to evaluate the relative strength of support for each of the competing detection models (Hurvitch 

and Tsai 1989, Burnham and Anderson 2002). In the second stage, the most parsimonious detection model was then used in the 

subsequent runs of the density model which included spatial covariates (identical to the covariates detailed in the main text, except for 

NDVI and percent agriculture landcover were included). Ideally, we intended to fit global models including additive effects of some 

or all covariates but such models were overparametrized for the sparse datasets and prone to overfitting and convergence issues. We 

reduced the candidate model set to less complicated univariate models. However, for some study areas unreasonably large standard 

errors of the 𝛽 estimates suggested overparameterization (Grueber et al. 2011). To exclude such models the precision of 𝛽 parameter 

estimates was assessed using coefficient of variation (CV = SE / 𝛽 estimate) and all univariate models with |CV| > 1 were excluded.  

Summary of AICc model selection criterion for SECR detection by sex and study area are presented in Table C.3.2. For both 

sexes, the most frequent top-ranked detection model included a trap-specific behavioural response (bk), followed by the model with a 

global behavioural response (b; Table C.3.3). A total of 340 univariate density models from 63 study areas successfully converged 
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(Table C.3.4). Models that failed to converge and all crop models were excluded from the subsequent results and discussion, with all 

crop models dropped because only five models successfully converged. 

Across all model forms there was some degree of positive and negative association between 𝛽 parameter estimates and density 

that varied spatially across the province. The proportion of successfully converged models by direction and significances for each 

model form is summarized in Figure C.3.1. Across model forms the strength of the 𝛽 parameter estimates, as indicated by the 

magnitude of the 𝛽 parameter estimates, varied (Figure C.3.2). Because masks for each covariate were scaled for each study area and 

sex, we present unstandardized 𝛽 estimates in Figure C.3.2 to allow for comparison of covariate values across study areas by sex; this 

does not allow for comparison across different covariates as scales differ.  
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Table C.3.2. Summary of AICc model selection criterion for stage one of the SECR detection models fitted to black bear capture-
recapture surveys from 65 study area in Ontario, Canada from 2017–2019. K denotes the number of parameters; LL the log likelihood; 

Wi the AICc weight. Detection covariates includes general (b) and a trap-specific (bk) learned behavioural response. Bold text indicates 
detection models parameters used in stage two of model fitting.  
 

  Female  Male 
Study area Year Model K LL AICc △AICc Wi 

 Model K LL AICc △AICc Wi 
325Rd 2017 D~1 g0~bk sigma~1 4 -133.4 278.0 0.0 0.9  D~1 g0~bk sigma~1 4 -284.3 578.3 0.0 1.0 

 2017 D~1 g0~b sigma~1 4 -136.0 283.1 5.2 0.1  D~1 g0~b sigma~1 4 -296.7 602.9 24.6 0.0 

 2017 D~1 g0~1 sigma~1 3 -145.3 298.3 20.3 0.0  D~1 g0~1 sigma~1 3 -300.5 607.8 29.6 0.0 
700Rd 2017 D~1 g0~bk sigma~1 4 -161.3 333.5 0.0 1.0        
 2017 D~1 g0~b sigma~1 4 -165.1 341.1 7.6 0.0        
 2017 D~1 g0~1 sigma~1 3 -176.3 360.3 26.8 0.0        
81Rd 2017 D~1 g0~bk sigma~1 4 -352.3 714.1 0.0 1.0  D~1 g0~bk sigma~1 4 -556.7 1122.7 0.0 1.0 

 2017 D~1 g0~b sigma~1 4 -372.4 754.3 40.2 0.0  D~1 g0~b sigma~1 4 -575.0 1159.3 36.6 0.0 

 2017 D~1 g0~1 sigma~1 3 -378.5 764.0 49.8 0.0  D~1 g0~1 sigma~1 3 -587.7 1182.1 59.5 0.0 
Anaconda 2019 D~1 g0~b sigma~1 4 -200.6 411.9 0.0 0.5  D~1 g0~bk sigma~1 4 -549.2 1107.3 0.0 1.0 

 2019 D~1 g0~bk sigma~1 4 -200.8 412.2 0.3 0.5  D~1 g0~b sigma~1 4 -557.2 1123.4 16.1 0.0 

 2019 D~1 g0~1 sigma~1 3 -208.0 423.5 11.6 0.0  D~1 g0~1 sigma~1 3 -560.3 1127.2 19.9 0.0 
Beauty Lake 
Road 2018 D~1 g0~bk sigma~1 4 -182.7 376.2 0.0 1.0 

 
D~1 g0~bk sigma~1 4 -245.9 501.8 0.0 1.0 

 2018 D~1 g0~b sigma~1 4 -199.4 409.6 33.4 0.0  D~1 g0~b sigma~1 4 -257.3 524.7 22.9 0.0 

 2018 D~1 g0~1 sigma~1 3 -207.3 422.2 46.0 0.0  D~1 g0~1 sigma~1 3 -268.7 544.5 42.7 0.0 
Black Creek Rd 2019 D~1 g0~bk sigma~1 4 -96.2 206.2 0.0 1.0  D~1 g0~bk sigma~1 4 -214.6 439.8 0.0 0.6 

 2019 D~1 g0~b sigma~1 4 -101.8 217.3 11.1 0.0  D~1 g0~b sigma~1 4 -215.0 440.6 0.8 0.4 

 2019 D~1 g0~1 sigma~1 3 -105.3 219.6 13.4 0.0  D~1 g0~1 sigma~1 3 -223.5 454.5 14.7 0.0 
Bogie and Clyde 2019 D~1 g0~b sigma~1 4 -191.9 393.7 0.0 0.9        
 2019 D~1 g0~bk sigma~1 4 -194.5 398.9 5.2 0.1        
 2019 D~1 g0~1 sigma~1 3 -202.0 411.2 17.5 0.0        
Boreal 2019 D~1 g0~bk sigma~1 4 -224.8 458.9 0.0 1.0  D~1 g0~bk sigma~1 4 -207.0 423.4 0.0 1.0 

 2019 D~1 g0~b sigma~1 4 -238.7 486.9 28.0 0.0  D~1 g0~1 sigma~1 3 -211.5 429.9 6.5 0.0 
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 2019 D~1 g0~1 sigma~1 3 -240.2 487.2 28.2 0.0  D~1 g0~b sigma~1 4 -211.5 432.4 9.1 0.0 
Borland 2017 D~1 g0~b sigma~1 4 -138.5 291.6 0.0 0.7  D~1 g0~b sigma~1 4 -238.3 487.1 0.0 0.9 

 2017 D~1 g0~bk sigma~1 4 -139.3 293.2 1.6 0.3  D~1 g0~bk sigma~1 4 -241.0 492.4 5.3 0.1 

 2017 D~1 g0~1 sigma~1 3 -147.2 303.9 12.3 0.0  D~1 g0~1 sigma~1 3 -243.6 494.5 7.4 0.0 
Caithness 2018 D~1 g0~bk sigma~1 4 -179.0 369.3 0.0 1.0  D~1 g0~bk sigma~1 4 -262.0 534.6 0.0 0.8 

 2018 D~1 g0~b sigma~1 4 -182.3 376.0 6.8 0.0  D~1 g0~b sigma~1 4 -263.7 537.9 3.4 0.2 

 2018 D~1 g0~1 sigma~1 3 -188.3 384.4 15.2 0.0  D~1 g0~1 sigma~1 3 -269.2 545.8 11.2 0.0 
Camp1Road 2018 D~1 g0~bk sigma~1 4 -204.5 419.0 0.0 1.0  D~1 g0~bk sigma~1 4 -484.8 978.8 0.0 1.0 

 2018 D~1 g0~b sigma~1 4 -210.8 431.5 12.5 0.0  D~1 g0~b sigma~1 4 -490.8 990.8 12.1 0.0 

 2018 D~1 g0~1 sigma~1 3 -227.9 462.9 43.9 0.0  D~1 g0~1 sigma~1 3 -493.5 993.6 14.8 0.0 
Cargill 2018 D~1 g0~bk sigma~1 4 -151.9 313.8 0.0 1.0  D~1 g0~bk sigma~1 4 -277.7 564.6 0.0 1.0 

 2018 D~1 g0~b sigma~1 4 -155.1 320.1 6.3 0.0  D~1 g0~1 sigma~1 3 -286.2 579.2 14.6 0.0 

 2018 D~1 g0~1 sigma~1 3 -158.9 324.9 11.1 0.0  D~1 g0~b sigma~1 4 -285.9 581.1 16.5 0.0 
CarpRd 2019        D~1 g0~bk sigma~1 4 -197.1 405.2 0.0 1.0 

 2019        D~1 g0~b sigma~1 4 -210.3 431.6 26.4 0.0 

 2019        D~1 g0~1 sigma~1 3 -212.6 432.9 27.6 0.0 
CCGP 2017 D~1 g0~bk sigma~1 4 -371.2 751.8 0.0 1.0  D~1 g0~b sigma~1 4 -438.9 887.5 0.0 1.0 

 2017 D~1 g0~1 sigma~1 3 -376.3 759.5 7.6 0.0  D~1 g0~bk sigma~1 4 -442.4 894.5 7.1 0.0 

 2017 D~1 g0~b sigma~1 4 -375.3 760.1 8.3 0.0  D~1 g0~1 sigma~1 3 -453.5 914.0 26.5 0.0 
Cedar Narrows 2018 D~1 g0~bk sigma~1 4 -262.0 533.1 0.0 1.0  D~1 g0~bk sigma~1 4 -357.9 725.0 0.0 1.0 

 2018 D~1 g0~b sigma~1 4 -272.8 554.8 21.6 0.0  D~1 g0~1 sigma~1 3 -382.4 771.5 46.5 0.0 

 2018 D~1 g0~1 sigma~1 3 -282.1 570.8 37.7 0.0  D~1 g0~b sigma~1 4 -382.1 773.4 48.3 0.0 
Century Road 2018 D~1 g0~bk sigma~1 4 -187.3 384.5 0.0 1.0  D~1 g0~bk sigma~1 4 -331.7 672.5 0.0 1.0 

 2018 D~1 g0~b sigma~1 4 -190.9 391.7 7.2 0.0  D~1 g0~b sigma~1 4 -361.5 732.2 59.7 0.0 

 2018 D~1 g0~1 sigma~1 3 -194.9 396.9 12.4 0.0  D~1 g0~1 sigma~1 3 -363.3 733.3 60.8 0.0 
Crib Road 2017 D~1 g0~bk sigma~1 4 -316.8 643.1 0.0 1.0  D~1 g0~bk sigma~1 4 -520.2 1049.5 0.0 1.0 

 2017 D~1 g0~b sigma~1 4 -321.9 653.3 10.2 0.0  D~1 g0~b sigma~1 4 -525.5 1060.2 10.7 0.0 

 2017 D~1 g0~1 sigma~1 3 -324.0 654.9 11.8 0.0  D~1 g0~1 sigma~1 3 -533.6 1073.9 24.4 0.0 
Deer Lake Road 2018 D~1 g0~bk sigma~1 4 -193.2 396.7 0.0 1.0  D~1 g0~bk sigma~1 4 -278.8 567.2 0.0 1.0 

 2018 D~1 g0~b sigma~1 4 -209.5 429.4 32.7 0.0  D~1 g0~b sigma~1 4 -284.6 578.9 11.7 0.0 

 2018 D~1 g0~1 sigma~1 3 -221.5 450.3 53.6 0.0  D~1 g0~1 sigma~1 3 -293.4 593.8 26.6 0.0 
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Detour 2018 D~1 g0~bk sigma~1 4 -216.5 443.8 0.0 0.8  D~1 g0~bk sigma~1 4 -288.3 587.7 0.0 1.0 

 2018 D~1 g0~b sigma~1 4 -217.9 446.7 2.9 0.2  D~1 g0~b sigma~1 4 -291.9 594.9 7.2 0.0 

 2018 D~1 g0~1 sigma~1 3 -228.1 463.7 19.9 0.0  D~1 g0~1 sigma~1 3 -306.5 620.7 33.0 0.0 
Dorion 2019 D~1 g0~bk sigma~1 4 -142.1 296.1 0.0 1.0  D~1 g0~bk sigma~1 4 -141.0 293.0 0.0 1.0 

 2019 D~1 g0~b sigma~1 4 -148.2 308.4 12.3 0.0  D~1 g0~b sigma~1 4 -145.3 301.7 8.7 0.0 

 2019 D~1 g0~1 sigma~1 3 -159.6 327.4 31.2 0.0  D~1 g0~1 sigma~1 3 -153.8 315.4 22.4 0.0 
FredFlat 2018 D~1 g0~bk sigma~1 4 -120.8 254.6 0.0 1.0  D~1 g0~bk sigma~1 4 -192.7 396.1 0.0 1.0 

 2018 D~1 g0~1 sigma~1 3 -128.3 265.2 10.6 0.0  D~1 g0~1 sigma~1 3 -201.4 410.3 14.2 0.0 

 2018 D~1 g0~b sigma~1 4 -126.9 266.7 12.1 0.0  D~1 g0~b sigma~1 4 -201.4 413.5 17.4 0.0 
Fushimi 2018 D~1 g0~1 sigma~1 3 -189.9 387.2 0.0 0.7  D~1 g0~bk sigma~1 4 -341.3 692.2 0.0 0.6 

 2018 D~1 g0~b sigma~1 4 -189.9 390.2 3.0 0.2  D~1 g0~b sigma~1 4 -341.6 692.9 0.8 0.4 

 2018 D~1 g0~bk sigma~1 4 -189.9 390.2 3.0 0.2  D~1 g0~1 sigma~1 3 -348.6 704.2 12.1 0.0 
Garden Lk Rd 2017 D~1 g0~bk sigma~1 4 -172.5 356.0 0.0 0.9  D~1 g0~bk sigma~1 4 -597.2 1203.3 0.0 1.0 

 2017 D~1 g0~b sigma~1 4 -174.7 360.5 4.5 0.1  D~1 g0~b sigma~1 4 -610.6 1230.1 26.8 0.0 

 2017 D~1 g0~1 sigma~1 3 -179.6 366.8 10.8 0.0  D~1 g0~1 sigma~1 3 -622.3 1251.1 47.8 0.0 
Garg Mijn Sand 2018 D~1 g0~bk sigma~1 4 -165.0 342.4 0.0 0.9  D~1 g0~bk sigma~1 4 -386.9 784.3 0.0 0.9 

 2018 D~1 g0~b sigma~1 4 -167.2 346.8 4.4 0.1  D~1 g0~b sigma~1 4 -389.6 789.7 5.4 0.1 

 2018 D~1 g0~1 sigma~1 3 -181.0 370.5 28.1 0.0  D~1 g0~1 sigma~1 3 -397.7 802.9 18.6 0.0 
Gibson Lake Rd 2017 D~1 g0~bk sigma~1 4 -223.7 457.0 0.0 0.6  D~1 g0~bk sigma~1 4 -236.7 483.7 0.0 1.0 

 2017 D~1 g0~b sigma~1 4 -224.2 458.0 1.0 0.4  D~1 g0~b sigma~1 4 -246.5 503.4 19.7 0.0 

 2017 D~1 g0~1 sigma~1 3 -237.9 482.6 25.6 0.0  D~1 g0~1 sigma~1 3 -251.7 510.8 27.1 0.0 
Goldfield Road 2017 D~1 g0~bk sigma~1 4 -181.7 373.6 0.0 1.0  D~1 g0~bk sigma~1 4 -309.0 627.6 0.0 0.9 

 2017 D~1 g0~b sigma~1 4 -189.8 389.8 16.1 0.0  D~1 g0~b sigma~1 4 -311.8 633.1 5.6 0.1 

 2017 D~1 g0~1 sigma~1 3 -194.0 395.3 21.7 0.0  D~1 g0~1 sigma~1 3 -330.9 668.7 41.1 0.0 
Grassy 2017 D~1 g0~bk sigma~1 4 -222.5 455.5 0.0 0.9  D~1 g0~bk sigma~1 4 -339.7 688.9 0.0 0.9 

 2017 D~1 g0~b sigma~1 4 -225.2 460.9 5.4 0.1  D~1 g0~b sigma~1 4 -341.6 692.8 3.9 0.1 

 2017 D~1 g0~1 sigma~1 3 -240.6 488.6 33.2 0.0  D~1 g0~1 sigma~1 3 -360.0 726.8 37.9 0.0 
Grimsthorpe 2019 D~1 g0~b sigma~1       D~1 g0~bk sigma~1 4 -190.1 389.8 0.0 1.0 

 2019 D~1 g0~bk sigma~1       D~1 g0~1 sigma~1 3 -195.5 397.9 8.1 0.0 

 2019 D~1 g0~1 sigma~1       D~1 g0~b sigma~1 4 -194.5 398.6 8.9 0.0 
Highway 631 2019 D~1 g0~bk sigma~1 4 -188.7 388.1 0.0 0.5  D~1 g0~bk sigma~1 4 -177.7 365.8 0.0 1.0 
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 2019 D~1 g0~b sigma~1 4 -188.8 388.3 0.2 0.4  D~1 g0~b sigma~1 4 -183.1 376.5 10.7 0.0 

 2019 D~1 g0~1 sigma~1 3 -191.7 391.0 2.8 0.1  D~1 g0~1 sigma~1 3 -187.4 382.2 16.4 0.0 

 2017 D~1 g0~bk sigma~1 4 -153.8 319.2 0.0 1.0  D~1 g0~bk sigma~1 4 -245.2 500.6 0.0 1.0 

 2017 D~1 g0~b sigma~1 4 -164.9 341.4 22.2 0.0  D~1 g0~b sigma~1 4 -262.8 535.9 35.3 0.0 

 2017 D~1 g0~1 sigma~1 3 -173.3 354.5 35.3 0.0  D~1 g0~1 sigma~1 3 -268.9 545.0 44.4 0.0 
Inglis Lake Road 2018 D~1 g0~bk sigma~1 4 -209.4 430.4 0.0 1.0  D~1 g0~bk sigma~1 4 -406.5 822.4 0.0 1.0 

 2018 D~1 g0~b sigma~1 4 -226.2 464.0 33.6 0.0  D~1 g0~b sigma~1 4 -416.3 841.8 19.4 0.0 

 2018 D~1 g0~1 sigma~1 3 -238.2 484.4 54.0 0.0  D~1 g0~1 sigma~1 3 -417.9 842.6 20.2 0.0 
Killarney 2019 D~1 g0~bk sigma~1 4 -163.6 337.5 0.0 0.6  D~1 g0~bk sigma~1 4 -263.5 536.8 0.0 1.0 

 2019 D~1 g0~b sigma~1 4 -164.1 338.6 1.0 0.4  D~1 g0~b sigma~1 4 -274.5 558.7 21.9 0.0 

 2019 D~1 g0~1 sigma~1 3 -171.6 350.6 13.0 0.0  D~1 g0~1 sigma~1 3 -286.6 580.2 43.4 0.0 
Lampson 2019 D~1 g0~bk sigma~1 4 -322.7 655.2 0.0 1.0  D~1 g0~bk sigma~1 4 -418.9 847.2 0.0 1.0 

 2019 D~1 g0~b sigma~1 4 -371.0 751.7 96.5 0.0  D~1 g0~b sigma~1 4 -439.6 888.6 41.4 0.0 

 2019 D~1 g0~1 sigma~1 3 -386.3 779.5 124.3 0.0  D~1 g0~1 sigma~1 3 -441.4 889.6 42.3 0.0 
Longlegged 2018 D~1 g0~bk sigma~1 4 -229.2 468.3 0.0 1.0  D~1 g0~bk sigma~1 4 -526.1 1061.0 0.0 0.9 

 2018 D~1 g0~b sigma~1 4 -236.5 482.8 14.5 0.0  D~1 g0~b sigma~1 4 -529.0 1066.9 5.9 0.1 

 2018 D~1 g0~1 sigma~1 3 -238.0 483.0 14.7 0.0  D~1 g0~1 sigma~1 3 -533.3 1073.0 12.0 0.0 
Massey Tote 2018 D~1 g0~b sigma~1       D~1 g0~1 sigma~1 3 -123.2 255.9 0.0 0.9 

 2018 D~1 g0~bk sigma~1       D~1 g0~bk sigma~1 4 -123.1 260.9 5.0 0.1 

 2018 D~1 g0~1 sigma~1       D~1 g0~b sigma~1 4 -123.2 261.1 5.2 0.1 
Mayburn 2019 D~1 g0~bk sigma~1 4 -198.0 406.4 0.0 1.0  D~1 g0~bk sigma~1 4 -361.8 732.8 0.0 1.0 

 2019 D~1 g0~b sigma~1 4 -200.9 412.3 5.9 0.0  D~1 g0~b sigma~1 4 -378.0 765.3 32.5 0.0 

 2019 D~1 g0~1 sigma~1 3 -209.1 425.6 19.2 0.0  D~1 g0~1 sigma~1 3 -383.7 774.0 41.3 0.0 
McConnell 2017 D~1 g0~bk sigma~1 4 -161.4 332.9 0.0 0.8  D~1 g0~bk sigma~1 4 -225.7 461.2 0.0 1.0 

 2017 D~1 g0~1 sigma~1 3 -164.3 335.9 3.0 0.2  D~1 g0~b sigma~1 4 -237.7 485.0 23.8 0.0 

 2017 D~1 g0~b sigma~1 4 -164.0 338.1 5.1 0.1  D~1 g0~1 sigma~1 3 -240.4 487.7 26.5 0.0 
Menet Brent 2018 D~1 g0~bk sigma~1 4 -216.6 442.4 0.0 0.9  D~1 g0~bk sigma~1 4 -376.4 761.7 0.0 0.8 

 2018 D~1 g0~b sigma~1 4 -219.5 448.3 5.9 0.1  D~1 g0~b sigma~1 4 -377.8 764.5 2.8 0.2 

 2018 D~1 g0~1 sigma~1 3 -226.2 459.1 16.7 0.0  D~1 g0~1 sigma~1 3 -380.9 768.4 6.7 0.0 
Munro Tower 2017 D~1 g0~b sigma~1 4 -107.4 226.5 0.0 0.7  D~1 g0~bk sigma~1 4 -279.1 567.9 0.0 1.0 

 2017 D~1 g0~bk sigma~1 4 -108.4 228.4 2.0 0.3  D~1 g0~b sigma~1 4 -289.4 588.5 20.5 0.0 
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 2017 D~1 g0~1 sigma~1 3 -114.2 236.4 9.9 0.0  D~1 g0~1 sigma~1 3 -291.3 589.5 21.6 0.0 
NORT Road 2019        D~1 g0~bk sigma~1 4 -172.0 354.4 0.0 0.8 

 2019        D~1 g0~1 sigma~1 3 -175.5 358.3 3.8 0.1 

 2019        D~1 g0~b sigma~1 4 -175.3 360.9 6.5 0.0 
Ogoki 2019 D~1 g0~bk sigma~1 4 -308.0 625.7 0.0 0.5  D~1 g0~bk sigma~1 4 -897.7 1804.3 0.0 1.0 

 2019 D~1 g0~1 sigma~1 3 -309.5 626.0 0.3 0.4  D~1 g0~1 sigma~1 3 -908.5 1823.6 19.3 0.0 

 2019 D~1 g0~b sigma~1 4 -309.5 628.8 3.1 0.1  D~1 g0~b sigma~1 4 -907.9 1824.6 20.3 0.0 
Opeepeesway 2017 D~1 g0~b sigma~1 4 -116.2 245.4 0.0 0.4  D~1 g0~bk sigma~1 4 -369.9 749.5 0.0 1.0 

 2017 D~1 g0~bk sigma~1 4 -116.2 245.4 0.1 0.4  D~1 g0~b sigma~1 4 -376.2 762.0 12.5 0.0 

 2017 D~1 g0~1 sigma~1 3 -119.5 247.7 2.3 0.1  D~1 g0~1 sigma~1 3 -378.1 763.3 13.8 0.0 
Pardo 2017 D~1 g0~b sigma~1 4 -183.4 376.4 0.0 0.6  D~1 g0~bk sigma~1 4 -252.3 514.2 0.0 1.0 

 2017 D~1 g0~bk sigma~1 4 -184.1 377.8 1.4 0.3  D~1 g0~1 sigma~1 3 -260.1 527.1 12.9 0.0 

 2017 D~1 g0~1 sigma~1 3 -186.1 379.1 2.8 0.1  D~1 g0~b sigma~1 4 -259.2 528.0 13.9 0.0 
Phillip Creek 2019 D~1 g0~b sigma~1 4 -221.5 453.2 0.0 1.0  D~1 g0~bk sigma~1 4 -354.8 719.3 0.0 1.0 

 2019 D~1 g0~bk sigma~1 4 -228.4 466.9 13.7 0.0  D~1 g0~b sigma~1 4 -358.0 725.6 6.3 0.0 

 2019 D~1 g0~1 sigma~1 3 -237.6 482.4 29.2 0.0  D~1 g0~1 sigma~1 3 -363.9 734.8 15.5 0.0 
Pickerel 2019 D~1 g0~bk sigma~1 4 -247.4 504.1 0.0 1.0  D~1 g0~bk sigma~1 4 -220.0 449.5 0.0 1.0 

 2019 D~1 g0~b sigma~1 4 -254.1 517.3 13.2 0.0  D~1 g0~b sigma~1 4 -228.4 466.4 16.9 0.0 

 2019 D~1 g0~1 sigma~1 3 -257.2 521.2 17.1 0.0  D~1 g0~1 sigma~1 3 -230.5 468.0 18.4 0.0 
Pineridge 2018 D~1 g0~bk sigma~1 4 -139.0 289.7 0.0 1.0  D~1 g0~bk sigma~1 4 -285.3 579.9 0.0 1.0 

 2018 D~1 g0~b sigma~1 4 -142.4 296.4 6.7 0.0  D~1 g0~b sigma~1 4 -294.5 598.4 18.5 0.0 

 2018 D~1 g0~1 sigma~1 3 -147.7 303.3 13.6 0.0  D~1 g0~1 sigma~1 3 -301.3 609.4 29.5 0.0 
Portelance 2017 D~1 g0~bk sigma~1 4 -156.9 324.2 0.0 1.0  D~1 g0~bk sigma~1 4 -319.3 647.9 0.0 1.0 

 2017 D~1 g0~1 sigma~1 3 -164.8 337.0 12.8 0.0  D~1 g0~b sigma~1 4 -343.3 696.0 48.1 0.0 

 2017 D~1 g0~b sigma~1 4 -164.5 339.3 15.1 0.0  D~1 g0~1 sigma~1 3 -345.5 697.7 49.8 0.0 
RedSquirrel 2018 D~1 g0~bk sigma~1 4 -208.9 428.0 0.0 1.0        
 2018 D~1 g0~b sigma~1 4 -220.0 450.3 22.2 0.0        
 2018 D~1 g0~1 sigma~1 3 -224.7 456.6 28.6 0.0        
Road600 2019 D~1 g0~bk sigma~1 4 -207.9 426.6 0.0 1.0  D~1 g0~bk sigma~1 4 -313.9 638.3 0.0 1.0 

 2019 D~1 g0~b sigma~1 4 -229.9 470.7 44.1 0.0  D~1 g0~b sigma~1 4 -319.8 650.0 11.7 0.0 

 2019 D~1 g0~1 sigma~1 3 -242.1 491.7 65.1 0.0  D~1 g0~1 sigma~1 3 -325.8 659.1 20.8 0.0 
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Robinson Lake 2018 D~1 g0~bk sigma~1 4 -109.5 233.8 0.0 1.0  D~1 g0~b sigma~1 4 -132.5 276.6 0.0 0.5 

 2018 D~1 g0~b sigma~1 4 -112.8 240.2 6.4 0.0  D~1 g0~bk sigma~1 4 -132.6 276.9 0.2 0.5 

 2018 D~1 g0~1 sigma~1 3 -117.1 243.6 9.8 0.0  D~1 g0~1 sigma~1 3 -138.9 285.7 9.1 0.0 
Sand English 2019 D~1 g0~bk sigma~1 4 -349.5 707.8 0.0 1.0  D~1 g0~bk sigma~1 4 -422.6 853.8 0.0 1.0 

 2019 D~1 g0~b sigma~1 4 -365.3 739.5 31.7 0.0  D~1 g0~b sigma~1 4 -453.9 916.5 62.6 0.0 

 2019 D~1 g0~1 sigma~1 3 -375.5 757.5 49.7 0.0  D~1 g0~1 sigma~1 3 -468.5 943.5 89.6 0.0 
Shaw Rd 2019 D~1 g0~bk sigma~1 4 -191.9 395.1 0.0 1.0        
 2019 D~1 g0~b sigma~1 4 -195.0 401.4 6.3 0.0        
 2019 D~1 g0~1 sigma~1 3 -201.2 410.3 15.3 0.0        
Shirley Lake Rd 2019 D~1 g0~b sigma~1 4 -255.3 520.4 0.0 1.0  D~1 g0~bk sigma~1 4 -375.0 759.3 0.0 1.0 

 2019 D~1 g0~bk sigma~1 4 -259.3 528.6 8.1 0.0  D~1 g0~b sigma~1 4 -390.6 790.5 31.2 0.0 

 2019 D~1 g0~1 sigma~1 3 -279.1 565.3 44.9 0.0  D~1 g0~1 sigma~1 3 -401.8 810.4 51.1 0.0 
South EMU 2017 D~1 g0~bk sigma~1 4 -209.5 429.0 0.0 1.0  D~1 g0~bk sigma~1 4 -214.0 438.1 0.0 1.0 

 2017 D~1 g0~b sigma~1 4 -218.2 446.5 17.4 0.0  D~1 g0~1 sigma~1 3 -231.8 470.7 32.6 0.0 

 2017 D~1 g0~1 sigma~1 3 -220.2 447.6 18.6 0.0  D~1 g0~b sigma~1 4 -231.0 471.9 33.8 0.0 
Sowden 2019 D~1 g0~bk sigma~1 4 -337.2 685.2 0.0 1.0  D~1 g0~b sigma~1 4 -474.4 958.5 0.0 1.0 

 2019 D~1 g0~b sigma~1 4 -362.4 735.7 50.5 0.0  D~1 g0~bk sigma~1 4 -483.6 976.7 18.3 0.0 

 2019 D~1 g0~1 sigma~1 3 -378.5 764.6 79.4 0.0  D~1 g0~1 sigma~1 3 -497.8 1002.6 44.1 0.0 
Translimit 2018 D~1 g0~bk sigma~1 4 -321.1 652.0 0.0 1.0  D~1 g0~bk sigma~1 4 -416.4 842.5 0.0 1.0 

 2018 D~1 g0~b sigma~1 4 -328.0 665.7 13.7 0.0  D~1 g0~b sigma~1 4 -426.7 862.9 20.4 0.0 

 2018 D~1 g0~1 sigma~1 3 -341.5 690.0 37.9 0.0  D~1 g0~1 sigma~1 3 -438.1 883.2 40.7 0.0 
Trout Lake 2019 D~1 g0~bk sigma~1 4 -158.9 327.8 0.0 1.0  D~1 g0~bk sigma~1 4 -176.6 363.9 0.0 0.9 

 2019 D~1 g0~b sigma~1 4 -163.1 336.2 8.4 0.0  D~1 g0~1 sigma~1 3 -180.8 369.1 5.2 0.1 

 2019 D~1 g0~1 sigma~1 3 -166.7 340.6 12.8 0.0  D~1 g0~b sigma~1 4 -180.5 371.7 7.8 0.0 
Turtle River 
Road 2018 D~1 g0~bk sigma~1 4 -183.1 375.9 0.0 1.0 

 
D~1 g0~bk sigma~1 4 -234.3 478.1 0.0 1.0 

 2018 D~1 g0~b sigma~1 4 -199.8 409.3 33.4 0.0  D~1 g0~b sigma~1 4 -241.8 492.9 14.8 0.0 

 2018 D~1 g0~1 sigma~1 3 -213.5 434.0 58.1 0.0  D~1 g0~1 sigma~1 3 -249.7 506.2 28.2 0.0 
Vermilion River 
Road 2018 D~1 g0~bk sigma~1 4 -241.8 493.8 0.0 1.0 

 
D~1 g0~bk sigma~1 4 -636.5 1282.0 0.0 1.0 

 2018 D~1 g0~b sigma~1 4 -251.1 512.3 18.5 0.0  D~1 g0~b sigma~1 4 -650.9 1310.6 28.6 0.0 

 2018 D~1 g0~1 sigma~1 3 -255.4 517.9 24.1 0.0  D~1 g0~1 sigma~1 3 -659.0 1324.5 42.5 0.0 
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Watabeag 2017 D~1 g0~bk sigma~1 4 -177.4 365.5 0.0 0.7  D~1 g0~bk sigma~1 4 -137.3 285.7 0.0 1.0 

 2017 D~1 g0~b sigma~1 4 -178.4 367.5 2.1 0.3  D~1 g0~b sigma~1 4 -142.4 295.8 10.1 0.0 

 2017 D~1 g0~1 sigma~1 3 -182.6 372.7 7.2 0.0  D~1 g0~1 sigma~1 3 -147.6 302.8 17.1 0.0 
Wenasaga 2018 D~1 g0~bk sigma~1 4 -168.2 349.3 0.0 1.0  D~1 g0~bk sigma~1 4 -490.5 990.2 0.0 1.0 

 2018 D~1 g0~1 sigma~1 3 -174.8 358.2 8.9 0.0  D~1 g0~b sigma~1 4 -494.0 997.4 7.2 0.0 

 2018 D~1 g0~b sigma~1 4 -174.2 361.4 12.1 0.0  D~1 g0~1 sigma~1 3 -498.3 1003.3 13.1 0.0 
Wenebegon 2018 D~1 g0~bk sigma~1 4 -133.8 278.9 0.0 1.0  D~1 g0~bk sigma~1 4 -289.5 588.6 0.0 1.0 

 2018 D~1 g0~b sigma~1 4 -139.3 290.0 11.1 0.0  D~1 g0~b sigma~1 4 -293.4 596.5 7.9 0.0 

 2018 D~1 g0~1 sigma~1 3 -147.7 303.3 24.4 0.0  D~1 g0~1 sigma~1 3 -298.0 602.9 14.3 0.0 
West End 2019 D~1 g0~bk sigma~1 4 -193.8 397.2 0.0 1.0  D~1 g0~bk sigma~1 4 -218.3 445.9 0.0 1.0 

 2019 D~1 g0~b sigma~1 4 -208.4 426.4 29.2 0.0  D~1 g0~b sigma~1 4 -230.3 469.8 23.9 0.0 

 2019 D~1 g0~1 sigma~1 3 -213.2 433.3 36.1 0.0  D~1 g0~1 sigma~1 3 -237.5 481.7 35.8 0.0 
Whitman Dam 2018 D~1 g0~bk sigma~1 4 -231.5 474.0 0.0 1.0  D~1 g0~bk sigma~1 4 -318.8 648.5 0.0 1.0 

 2018 D~1 g0~b sigma~1 4 -270.2 551.5 77.5 0.0  D~1 g0~b sigma~1 4 -325.4 661.7 13.3 0.0 

 2018 D~1 g0~1 sigma~1 3 -282.8 573.4 99.4 0.0  D~1 g0~1 sigma~1 3 -334.1 675.9 27.4 0.0 
Winter Lake 2019 D~1 g0~b sigma~1 4 -146.3 303.4 0.0 0.8  D~1 g0~bk sigma~1 4 -262.1 533.6 0.0 1.0 

 2019 D~1 g0~bk sigma~1 4 -147.6 306.1 2.7 0.2  D~1 g0~b sigma~1 4 -269.6 548.6 15.0 0.0 

 2019 D~1 g0~1 sigma~1 3 -152.5 312.7 9.3 0.0  D~1 g0~1 sigma~1 3 -276.5 559.8 26.1 0.0 
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Table C.3.3 Summary of the AICc minimizing model for SECR detection models for stage 1 fit to 122 black bear capture-recapture 
datasets (61 female; 61 male) collected from 65 study areas in Ontario, Canada between 2017–2019. Columns represent the number 
(N) and percent of total datasets where each model form was identified as the AICc minimizing model. Detection covariates includes 
general (b) and a trap-specific (bk) behavioural response. “.” Indicates parameter held constant.  
 
  Female Male Combined 

SECR model N % N % N % 
D(.) g0 (bk) σ(.) 48 78.7 57 93.4 105 86.1 
D(.) g0 (b) σ(.) 12 19.7 4 6.6 16 13.1 
D(.) g0 (.) σ(.)  1 1.6 0 0.0 1 0.8 

 
 
 
 
Table C.3.4. Number of successfully converged univariate SECR model by form, fit to black bear spatial capture-recapture data 
collected across 65 study areas in Ontario Canada from 2017–2019.   
 

Sex Univariate density model form1   Combined 
  Human Road NDVI Coniferous forest Deciduous forest Mixed forest  
Female 19 20 30 28 31 21 149 
Male 31 42 28 31 28 31 191 

1 Covariate that the density (D) parameter varies by   
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Figure C.3.1. Summary of the direction of 𝛽 parameter estimates from univariate SECR models fit to 65 study areas in Ontario from 
2017–2019. Covariates on density model include normalized difference vegetation index (NDVI), percent forest types (coniferous, 
deciduous, mixed), human settlement density (human) and road density (road). Figure I displays the direction of 𝛽 estimates across 
study areas; at this scale coloured lines represents study areas. Figure II displays the proportion of successfully fit models by the 𝛽 
parameter direction and significance; green and blue shades indicate a positive and negative direction of effect respectively, and 
asterisks (*) indicates significant effect (95% confidence intervals do not include 0).  
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Figure C.3.2. Log-scale effect size (𝛽 parameter estimates) of female (♀) and male (♂) univariate models with density covariates 
including normalized difference vegetation index (NDVI), percent forest types (coniferous, deciduous, mixed), human settlement 
density (human) and road density (road). 𝛽 estimates unstandardized to allow for comparison of effects within a covariate across study 
areas. The effect size indicates the change in the baseline density (bears/hectare) on the log scale for one unit change in the covariates 
value. Green and blue shades indicate a positive and negative direction of effect respectively, and asterisks (*) indicates significant 
effect (95% confidence intervals do not include 0). Thick gray horizontal line within boxplots and text represents the median of 𝛽 
estimates and dashed red horizontal line indicates no effect of covariates on density.  
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C. 4  Chapter 3 pooled analysis multivariate models and comparison to univariate models 
 

Log-scale effect size (𝛽 parameter estimates) of two global SECR multivariate models (Table C.4.1) fit to female and male 

black bear populations in the GLSL and boreal forests regions of Ontario, Canada, from 2017–2019. Multivariate models not included 

in second analysis because of multicollinearity between covariates and challenges assessing model convergence. Despite this, the 

direction and magnitude of 𝛽 parameter estimates in the univariate models are generally comparable to the multivariate models.  

 
Table C.4.1. Stage 1 and 2 for multivariate SECR models. Detection model includes covariates for behavioural response where 
capture provides net increase or decrease in subsequent capture probability by detector (bk) and sampling occasion (t). Density model 
covariates represent hypothesis of bottom-up (productivity and forest type) and top-down (anthropogenic effects) and includes 
normalized difference vegetation index (NDVI), percent forest types (coniferous forest [con_F] and deciduous forest [dec_F]), percent 
agriculture land cover (CROP), human settlement density (HS) and road density (RD). “.” indicates that model parameter held 
constant.  
 

Modeling stage Detection model  Density model 
 Hypothesis g0 σ  Hypothesis D 
Female Boreal  
Male Boreal  
Male GLSL   

Sampling occasion and trap-
specific response 

g0 (bk) σ (t)  Anthropogenic effects and 
productivity 

D(NDVI + HS + RD + CROP)  
 

    Anthropogenic effects and forest 
type  

D(con_F + dec_F + HS + RD + CROP) 

Female GLSL Trap-specific response g0 (bk) σ (.)  Anthropogenic effects and 
productivity 

D(NDVI + HS + RD + CROP)  
 

    Anthropogenic effects and forest 
type  

D(con_F + dec_F + HS + RD + CROP) 
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Figure C.4.1. Log-scale effect size (𝛽 parameter estimates) of six univariate models with density covariates including percent forest 
types (coniferous, deciduous, mixed), percent crop, human settlement density (human) and road density (road) and one global 
multivariate model (D ~ road + human + coniferous + deciduous + crop). 𝛽 estimates standardized to allow for covariate comparison 
within study area by sex. The effect size indicates the change in the baseline density (bears/hectare) on the log scale for one unit 
change in the covariates value. Black outlines around circles indicate significant effect (95% confidence intervals do not include 0) 
and dashed red horizontal line indicates no effect of predictor on density.   
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C. 5  Chapter 3 pooled analysis detection model selection criteria and density correlation coefficients  
 
Table C.5.1. Summary of AICc model selection criterion for stage one fit to four black bear capture-recapture datasets from 65 study 
area in Ontario, Canada from 2017-2019. K denotes the number of parameters; LL the log likelihood; Wi the AICc weight. Detection 
covariates includes a trap-specific (bk) learned behavioural response and sampling occasion (t). Bold text indicates detection model 
parameters used in stage two of density model fitting.  
 

Dataset Model form K LL AICc △AICc Wi 
Female GLSL1 D(1) g0(bk) σ(1) 4 -4183.40 8374.89 0.00 0.66 

 D(1) g0(bk) σ(t) 9 -4178.91 8376.19 1.30 0.34 
 D(1) g0(1) σ(t) 8 -4440.31 8896.91 522.02 0.00 
 D(1) g0 (1) σ(1) 3 -4524.77 9055.59 680.70 0.00 

Female Boreal D(1) g0(bk) σ(t) 8 -9222.82 18461.81 0.00 1.00 
 D(1) g0(bk) σ(1) 4 -9272.98 18554.00 92.20 0.00 
 D(1) g0(1) σ(t) 7 -9606.49 19227.10 765.29 0.00 
 D(1) g0(1) σ(1) 3 -9861.32 19728.66 1266.85 0.00 

Male GLSL1 D(1) g0(bk) σ(t) 9 -5358.23 10734.80 0.00 1.00 
 D(1) g0(bk) σ(1) 4 -5386.90 10781.88 47.08 0.00 
 D(1) g0 (1) σ(t) 8 -5592.12 11200.51 465.71 0.00 
 D(1) g0(1) σ(1) 3 -5685.31 11376.67 641.87 0.00 

Male Boreal D(1) g0(bk) σ(t) 8 -15889.20 31794.50 0.00 1.00 
 D(1) g0(bk) σ(1) 4 -15922.05 31852.12 57.62 0.00 
 D(1) g0(1) σ(t) 7 -16309.19 32632.47 837.97 0.00 
 D(1) g0(1) σ(1) 3 -16470.24 32946.49 1151.99 0.00 

1 addition parameter in GLSL datasets fit to models with t covariate because one study area sampled over additional occasions   
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Table C.5.2. Pearson’s correlation coefficients for covariates used in SECR models for male and female black bears. Correlations 
calculated from mask points (x,y) pooled across all study areas included in the SECR model. Covariates includes normalized 
difference vegetation index (NDVI), percent forest types (coniferous, deciduous, mixed), percent agriculture land cover (crop), human 
settlement density (human) and road density (road). Bold values | r | > 0.7.  
 

Covariates Boreal GLSL 
 Female Male Female Male 

NDVI human 0.07 0.14 0.03 0.07 
NDVI road 0.13 0.17 0.24 0.29 
human road 0.44 0.43 0.27 0.25 
NDVI crop 0.16 0.18 0.14 0.13 
human crop 0.29 0.35 0.18 0.12 
road crop 0.34 0.39 0.20 0.17 
NDVI coniferous -0.48 -0.53 -0.28 -0.27 
human coniferous -0.10 -0.14 -0.03 0.01 
road coniferous -0.26 -0.32 -0.14 -0.13 
crop coniferous -0.14 -0.16 -0.17 -0.16 
NDVI deciduous 0.21 0.18 0.37 0.41 
human deciduous 0.06 0.11 0.15 0.19 
road deciduous 0.16 0.21 0.12 0.21 
crop deciduous 0.23 0.28 0.19 0.22 
coniferous deciduous -0.51 -0.52 -0.49 -0.49 
NDVI mixed 0.69 0.75 0.27 0.21 
human mixed -0.01 0.03 -0.29 -0.31 
road mixed 0.02 0.09 -0.04 -0.13 
crop mixed -0.10 -0.07 -0.37 -0.40 
coniferous mixed -0.60 -0.67 -0.11 -0.01 
deciduous mixed -0.07 -0.04 -0.55 -0.63 

  



 

 168 

Appendix D: Chapter 4 

 
D.1 Chapter 4 spatial covariates  
 
Table D.1.1 Spatial covariates including names, descriptions, sources of datasets, original resolution (pixel size), unit of time over 
which original datasets were available, and units of processed layers. Processed resolution of all raster layers set at 1km x 1km.  
 

Covariate Description Source Resolution Time scale Units 
Deciduous 
forest   

Percentage of area where tree crown cover is comprised of 
>75% deciduous species generally greater than 3m tall.  
 

NALCMS1 30 x 30m 2015 % 
 

Coniferous 
Forest   

Percentage of area where tree crown cover is comprised of 
>75% coniferous species generally greater than 3m tall. 

NALCMS1 30 x 30m 2015 % 

      
Road 
density  

Density of all roads (freeway, highway, collector, arterial, 
local, resource and recreation) in km roads/km2.  
 

NRN2 NA 2021 km/km2 

Human 
influence 
index  

Includes nine global data layers covering human population 
density, human land use and infrastructure (built-up areas, 
nighttime lights, land use/land cover) and human access 
(coastlines, roads, railways, navigable rivers).  
 

HII3 1 x 1km 1995 – 2004 0 (no human 
presence) – 64 
(max human 

presence) 

Harvest 
density  

Average number of bears harvested annually per km2 in each 
WMU from the previous 7 years of sampling.  

MNRF4 NA 2018 – 20105 bears 
harvested/ km2 

1 2015 Land cover of North America at 30 meters. North American land change monitoring system (NALCMS; NALCMS, 
2020).  
2 Canada national road network (NRN; Statistics Canada, 2022) 
3 Global human influence index [HII] dataset (WCS and CIESIN 2005) 
4 calculated from hunter-reported harvest. The Ministry of Natural Resources and Forestry (MNRF) reports harvest annually 
through surveys mailed to licensed hunters. Includes harvest from fall hunt and, when applicable, spring hunt.  
5 because study areas were sampled across three different years, harvest density was averaged across the previous seven years 
from the year of sampling (i.e., for study areas sampled in 2019, harvest was averaged from 2012-2018).  
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D. 2  Chapter 4 approximating the buffer size 
 

The buffer used to quantify spatial covariates was delignated based on raw movement data collected from the MNRF capture-

recapture datasets. The maximum distance between any two detections was calculated for each animal caught more than once across 

77 study areas and provides an approximation of animals observed range length. For study areas sampled over multiple years, only 

datasets from the first year were included. To examine how our spatial covariates varied by extent we initially developed three buffer 

widths based on the median, 62.5% and 75% quantiles of the observed range length for each sex (Figure D.2.1; Table D.2.1).  While it 

is likely that black bears are exhibit non-circular home ranges, we treated the observed range length as the diameter of a bear’s circular 

home range to meet SECR detection model assumption of a circular home range. These buffer values collaborate with past radio-

collar studies of female black bears adjacent to the Chapeau Crown Game Preserve in the boreal forest of Ontario, 1992-1998. 

Estimate of the spring 95% conditional home range utilization distribution (CUDs) of female black bear in the area ranges between 

12.84 – 20.23 km2 (4.04 – 5.06 km circular home range diameter; Howe, unpublished) that varied by age and if females were 

encumbered or not. We did not include a buffer width using the 95% percentile because these values represented large movements that 

are uncommon during the study period (Table D.2.1). All covariates displayed high correlation across buffer widths (range r= 0.95 – 

1; mean r = 0.99; Table D.2.2). Therefore, we selected to use the 75% quantile buffer of 4430m and 8740m for females and males 

respectively because these values were most similar to the Ontario radio-collar data (Howe, unpublished) and we expected range 

lengths to slightly underestimate home range circles.   
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Table D.2.1. Quantiles of observed range length of each animal (maximum distance between any two detections of an animal) from 
female and male black bear capture-recapture data collected across 77 study sites in Ontario, Canada from 2017-20191. Estimated 
circular home ranges calculated using observed range length as circle diameter.  
 

Quartile Observed range length (km) Estimated circular home range (km2) 
 Female Male Female Male 

50% 2.90 5.30 6.61 22.08 
62.5% 3.19 6.87 7.97 37.02 
75% 4.43 8.74 15.40 60.06 
95% 8.82 16.01 61.10 201.26 

 

 
Figure D.2.1. Observed range length of each animal (maximum distance between any two detections) from black bear capture-
recapture data collected across 77 study sites in Ontario, Canada from 2017-2019. Data represents female and male bears caught more 
than once. Vertical lines represent mean (green) and median (blue). For inset plots, whiskers extend 1.5 times the interquartile range 
from the boxes; coloured circles within boxes represent mean (green) and median (blue); black line within box represents median; 
black circle outside box represent outliers.   
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Table D.2.2.  Pearson’s correlation coefficients (r) of spatial covariates quantified across three different buffer sizes for male and 
female black bears in 77 study. Covariates includes percent forest types (coniferous, deciduous, mixed), percent agriculture land cover 
(crop), road density (road), mean and median human influence index (HII), and average harvest density (harvest). All covariates 
continuous except for average harvest density that has a discrete value for each study area.   
 

Female Male 
Covariates (buffer width in m) r Covariate (buffer width in m) r 

road (2900) road (3190) 1.00 road (5300) road (6870) 0.99 
road (2900) road (4430) 0.98 road (5300) road (8740) 0.98 
road (3190) road (4430) 0.99 road (6870) road (8740) 0.99 
mean HII (2900) mean HII (3190) 1.00 mean HII (5300) mean HII (6870) 0.99 
mean HII (2900) mean HII (4430) 0.99 mean HII (5300) mean HII (8740) 0.95 
mean HII (3190) mean HII (4430) 0.99 mean HII (6870) mean HII (8740) 0.98 
median HII (2900) median HII (3190) 0.99 median HII (2900) median HII (3190) 0.99 
median HII (2900) median HII (4430) 0.96 median HII (2900) median HII (4430) 0.96 
median HII (3190) median HII (4430) 0.97 median HII (3190) median HII (4430) 0.97 
coniferous (2900) coniferous (3190) 1.00 coniferous (5300) coniferous (6870) 1.00 
coniferous (2900) coniferous (4430) 0.99 coniferous (5300) coniferous (8740) 0.99 
coniferous (3190) coniferous (4430) 1.00 coniferous (6870) coniferous (8740) 1.00 
crop (2900) crop (3190) 1.00 crop (5300) crop (6870) 1.00 
crop (2900) crop (4430) 1.00 crop (5300) crop (8740) 0.99 
crop (3190) crop (4430) 1.00 crop (6870) crop (8740) 1.00 
deciduous (2900) deciduous (3190) 1.00 deciduous (5300) deciduous (6870) 1.00 
deciduous (2900) deciduous (4430) 0.99 deciduous (5300) deciduous (8740) 0.99 
deciduous (3190) deciduous (4430) 1.00 deciduous (6870) deciduous (8740) 1.00 
mixed (2900) mixed (3190) 1.00 mixed (5300) mixed (6870) 1.00 
mixed (2900) mixed (4430) 0.99 mixed (5300) mixed (8740) 0.99 
mixed (3190) mixed (4430) 1.00 mixed (6870) mixed (8740) 1.00 
shrb grass (2900) shrb grass (3190) 1.00 shrb grass (5300) shrb grass (6870) 0.99 
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shrb grass (2900) shrb grass (4430) 0.98 shrb grass (5300) shrb grass (8740) 0.98 
shrb grass (3190) shrb grass (4430) 0.98 shrb grass (6870) shrb grass (8740) 0.99 
harvest (2900) harvest (3190) 1.00 harvest (5300) harvest (6870) 1.00 
harvest (2900) harvest (4430) 1.00 harvest (5300) harvest (8740) 1.00 
harvest (3190) harvest (4430) 1.00 harvest (6870) harvest (8740) 1.00 
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D. 3  Pearson’s correlation coefficients density spatial covariates  
 
Table D.3.1 Pearson’s correlation coefficients for pooled and forest region (boreal and Great – Lakes St Lawrence [GLSL]) model 
covariates including percent forest types (coniferous, deciduous), road density (road), median human influence index (HII), and 
average harvest density (harvest). For each study area covariates were quantified across a 4430m m buffer and 8740m m buffer 
surrounding the arrays of detectors for male and females, respectively. Bold values | r | > 0.7 
 
  Pooled models  Forest region models 
    Female  Male  Female GLSL Male GLSL Female boreal Male boreal 
road HII 0.13 0.29  0.28 0.46 -0.16 -0.10 
road coniferous -0.32 -0.34  -0.22 -0.16 -0.11 -0.19 
HII coniferous -0.15 -0.21  0.15 0.25 -0.13 -0.15 
road deciduous 0.32 0.44  0.09 0.27 0.02 0.05 
HII deciduous 0.09 0.26  0.08 0.23 -0.14 -0.04 
coniferous deciduous -0.54 -0.56  -0.54 -0.45 -0.36 -0.43 
road harvest 0.10 0.22  -0.02 0.14 -0.07 0.01 
HII harvest 0.44 0.45  0.69 0.59 0.29 0.29 
coniferous harvest -0.36 -0.48  0.20 0.13 -0.38 -0.51 
deciduous harvest 0.41 0.49  0.11 0.20 0.33 0.45 
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D. 4  Point estimation of black bear densities  
 

We conducted a SECR analysis with three years of genetic capture-recapture detection data to estimate female and male black 

bear density at each study area. We fit sex specific SECR models to 122 datasets from 65 of the study areas in a likelihood framework 

using the R package ‘secr’ (Efford 2020a). For study areas sampled across multiple years we only retained datasets from the first year 

of sampling. We defined the state space, excluding permeant waterbodies as non-bear habitat, for each study area as a 1km resolution 

raster that extended 20km around all traps and verified that using a 1km grid point spacing had negligible effects on density estimates. 

We used the function ‘suggest.buffer’ to verify that 20km was an appropriate buffer width; if a larger buffer was suggested this value 

was used. For the detection model we allowed g0 to vary as a function of a trap-specific response (bk) and σ by sampling occasion (t) 

and linear time trend over occasions (T). We were not interested in examining spatial factors shaping density and therefore used a 

simple state model assuming constant density that was formulated as a homogeneous Poisson point process. Models were fit using a 

half-normal detection function and maximizing the conditional likelihood for proximity detectors and density was derived as a 

parameter using the Horvitz-Thompson-like estimator (see Efford et al. 2009). 𝛽 parameter coefficient estimates and their standard 

errors (SE) were visually inspected for unreasonably large values that could indicate overparameterization or non-identifiability 

(Gimenez et al. 2011, O’Brien and Kinnaird 2011). We compared the fit of converged candidate models using AICc (Hurvitch and 

Tsai 1989, Burnham and Anderson 2002) and used the top ranked model to estimate density.   
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D. 5  Chapter 4 comparison of SECR candidate models for pooled datasets   

Table D.5.1. Summary of AICc model selection criterion for SECR models fitted to female and male black bear capture-recapture surveys 
from 65 study area in Ontario, Canada from 2017–2019. K denotes the number of parameters; LL the log likelihood; Wi the AICc weight. 
Detection covariates includes trap-specific (bk) learned behavioural response, linear time trend (T), and forest region (for_reg). Density 
covariates include harvest density (harvest), road density (road), human influence index (HII), and percent coniferous and deciduous 
forests (con_F, dec_F); “.” indicates parameter held constant.  
 

Sex Model form K LL AICc △AICc Wi 
Female D(road + HII + harvest + dec_F + con_F) g0(bk) σ(for_reg+ T) 11 -13296.20 26614.60 0.00 1.00 

  D(road + HII + harvest + dec_F + con_F) g0(bk) σ(T) 10 -13321.72 26663.61 49.01 0.00 
  D(road + HII + harvest + dec_F + con_F) g0(bk) σ(For_reg) 10 -13324.00 26668.17 53.57 0.00 
  D(road + HII + harvest + dec_F + con_F) g0(bk) σ(.) 9 -13349.91 26717.94 103.35 0.00 
  D(road + HII + harvest + dec_F + con_F) g0(.) σ(For_reg + T) 10 -13873.64 27767.44 1152.84 0.00 
  D(road + HII + harvest + dec_F + con_F) g0(.) σ(T) 9 -13933.73 27885.58 1270.98 0.00 
  D(road + HII + harvest + dec_F + con_F) g0(.) σ(For_reg) 9 -14183.64 28385.41 1770.81 0.00 
  D(road + HII + harvest + dec_F + con_F) g0(.) σ(.) 8 -14243.21 28502.53 1887.93 0.00 

Male D(road + HII + harvest + dec_F + con_F) g0(bk) σ(For_reg + T) 11 -21065.71 42153.56 0.00 1.00 
  D(road + HII + harvest + dec_F + con_F) g0(bk) σ(T) 10 -21073.27 42166.65 13.09 0.00 
  D(road + HII + harvest + dec_F + con_F) g0(bk) σ(For_reg) 10 -21110.94 42242.00 88.44 0.00 
  D(road + HII + harvest + dec_F + con_F) g0(bk) σ(.) 9 -21117.77 42253.64 100.08 0.00 
  D(road + HII + harvest + dec_F + con_F) g0(.) σ(For_reg + T) 10 -21676.39 43372.90 1219.34 0.00 
  D(road + HII + harvest + dec_F + con_F) g0(.) σ(T) 9 -21689.27 43396.64 1243.08 0.00 
  D(road + HII + harvest + dec_F + con_F) g0(.) σ(For_reg) 9 -21891.15 43800.40 1646.84 0.00 
  D(road + HII + harvest + dec_F + con_F) g0(.) σ(1) 8 -21900.87 43817.82 1664.26 0.00 
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Figure D.5.1. Log-scale effect size (𝛽 parameter estimates) of female and male candidate SECR models with density covariates including 
percent forest types (coniferous, deciduous), human influence index (HII), road density (road) and harvest density (harvest). 𝛽 estimates 
standardized to allow for covariate comparison within sex. The effect size indicates the change in the baseline density (bears/hectare) 
on the log scale for one unit change in the covariates value. Vertical lines indicate 95% confidence intervals and dashed black horizontal 
lines no effect of a covariate on density. Baseline detection probability g0 varies by trap-specific (bk) learned behavioural response and 
spatial scale parameter sigma by linear time trend (T) and forest region (for_reg); “.” indicates parameter held constant.  
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D. 6 Chapter 4 Ontario black bear harvest summary  

 
Figure D.6.1 Percent female harvest across 65 WMU in the boreal and Great Lakes – St Lawrence (GLSL) in Ontario Canada, from 
2010-2019. Years of MNRF black bear surveys indicated by gray shading in boxes and seven years prior by white boxes. Thick 
horizontal black lines and red stars in the boxes indicate the median and mean, respectively, and black dots represent outliers.  
 


