
Machine Learning for Aviation Data

A Thesis Submitted to the Committee on Graduate Studies

in Partial Fulfillment of the Requirements for the Degree of Master of Science

in the Faculty of Arts and Science

TRENT UNIVERSITY

Peterborough, Ontario, Canada

© Copyright by Yang Meng 2022

Applied Modelling and Quantitative Methods M.Sc. Graduate Program

May 2022

Abstract

Machine Learning for Aviation Data

Yang Meng

This thesis is part of an industry project which collaborates with an aviation

technology company on pilot performance assessment. In this project, we pro-

pose utilizing the pilots’ training data to develop a model that can recognize the

pilots’ activity patterns for evaluation. The data will present as a time series,

representing a pilot’s actions during maneuvers. In this thesis, the main contri-

bution is focusing on a multivariate time series dataset, including preprocessing

and transformation. The main difficulties in time series classification is the data

sequence of the time dimension. In this thesis, I developed an algorithm which

formats time series data into equal length data.

Three classification and two transformation methods were used. In total,

there are six models for comparison. The initial accuracy was 40%. By opti-

mization through resampling, we increased the accuracy to 60%.

Keywords: Multivariate Time Series Classification, K-NN, Time Series Forest,

Machine Learning, Data Mining

i

Acknowledgements

I wish to thank various people for their contributions to this thesis. Without

you all, it would not be possible for me to finish this thesis.

First of all, my family, who respected my choice and supported me without

hesitation. Thank you for everything.

The CAE Inc. - the best team I have been lucky enough to join. I could

not conduct the research smoothly without your great effort on the guiding and

mentoring. Jean-François Delisle and Laurent Desmet - working with you was

fun and thanks for helping for my research and daily life.

I would like to thank my supervisor Dr. Sabine McConell and Dr. Richard

Hurley. Thank you for providing me such valuable opportunity to work alongside

both of you. Your suggestions and encouragement supported me throughout

the thesis study. Finally, thank you to Trent University and Mitacs for financial

support. Without funding I could not afford my life during my research process.

ii

Contents

Acknowledgements ii

1 Introduction 1

1.1 Overview . 1

1.2 Objects . 2

1.3 Thesis Outline . 4

1.4 Summary . 6

2 Background 7

2.1 Univariate Time Series Classification 8

2.1.1 Similarity-based Techniques 9

2.1.2 Interval-based Techniques 10

2.1.3 Shapelet-based Techniques 11

2.1.4 Dictionary-based Techniques 11

2.2 Similarity Measures . 12

2.2.1 Euclidean Distance . 13

2.2.2 DTW . 14

2.2.3 Other Similarity Measurements 17

iii

2.3 Multivariate Time Series Classification 17

2.3.1 Dimension Reduction by PCA 18

2.3.2 Vertical Preprocessing . 19

2.3.3 Horizontal Preprocessing 22

2.3.4 Image Topology Structure 23

2.4 Evaluating the Models . 24

2.5 Summary . 25

3 Dataset and Environment 26

3.1 Analysis of Pilot Performance Data 28

3.2 Software . 31

3.3 Preprocessing . 33

3.3.1 Proportional Scaling . 33

3.3.2 Transfer Time Series Data Structure 35

3.4 Summary . 41

4 Models 42

4.1 Model 1: 1-NN with DTW . 43

4.2 Model 2: Time Series Forest (TSF) 46

4.3 Model 3: Random Interval Spectral Ensemble (RISE) 48

4.4 Column Concatenate Transform 49

4.5 Column Ensemble Transform . 50

4.6 Implementation of Models . 53

4.7 Summary . 53

5 Results and Optimization 54

5.1 Evaluating the Models . 55

iv

5.1.1 Evaluation for 1-NN with DTW using Concatenation Trans-

form . 55

5.1.2 Evaluation for TSF using Concatenation Transform . . . 57

5.1.3 Evaluation for RISE using Concatenation Transform . . . 59

5.1.4 Evaluation for 1-NN with DTW using Column Ensemble

Transform . 61

5.1.5 Evaluation for TSF using Column Ensemble Transform . 63

5.1.6 Evaluation for RISE using Column Ensemble Transform . 65

5.1.7 Overall Comparison . 67

5.1.8 Computational Complexity 67

5.2 Optimization . 69

5.3 Summary . 72

6 Conclusions and Future Work 73

v

List of Tables

2.1 Confusion Matrix . 24

3.1 Table of test captions and labels 32

3.2 Class Distribution . 33

5.1 1-NN with DTW using Column Concatenate Transform for each

class . 56

5.2 TSF using Column Concatenate for each class 58

5.3 RISE using Column Concatenate for each class 60

5.4 1-NN with DTW using Column Ensemble for each class 63

5.5 TSF using Column Ensemble for each class 65

5.6 Overall Accuracy Comparison Through All Models 67

5.7 Overall Running Time Comparison Through All Models by Minutes 68

5.8 Overall Accuracy Comparison Through All Models With Imbal-

ance Resampling . 70

5.9 1-NN with DTW using Column Concatenate Transform after op-

timization of each class evaluation 71

5.10 TSF using Column Concatenate after optimization of each class

evaluation . 71

vi

5.11 RISE using Column Concatenate after optimization of each class

evaluation . 71

5.12 1-NN with DTW using Column Ensemble Transform after opti-

mization of each class evaluation 71

5.13 TFS using Column Ensemble Transform after optimization of

each class evaluation . 71

5.14 RISE using Column Ensemble Transform after optimization of

each class evaluation . 72

vii

List of Figures

1.1 Time Series Data Set for GunPoint [1] 3

2.1 Euclidean Distance with Time Series Data Set [1] 13

2.2 DTW with Time Series Data Set [1] 15

2.3 Comparison of Original D1 and D2 Dataset 20

2.4 Comparison of D1 and D2 Dataset after PCA preprocessing . . . 20

2.5 Basic Motion dataset[1] . 22

3.1 GunPoint Data Set from UCR Archive [2] 27

3.2 BasicMotion Data Set from UEA Archive in DataFrame Format

[3] . 28

3.3 Data Structure for Pilot Performance Assessment 30

3.4 Score 1.0 Time Series with Ground Speed 37

3.5 Score 2.0 Time Series with Ground Speed 37

3.6 Score 3.0 Time Series with Ground Speed 37

3.7 Score 4.0 Time Series with Ground Speed 37

3.8 Original Time Series Data Set 38

3.9 Proportional Scaling Preprocessing with 100 Time Points 38

3.10 Data Transformation Process . 39

viii

4.1 Column Ensemble Algorithm . 52

5.1 1-NN with DTW using Column Concatenate Transform Accuracy

Score . 55

5.2 1-NN with DTW using Column Concatenate Transform Confu-

sion Matrix . 56

5.3 TSF using Column Concatenate Transform Accuracy Score . . . 57

5.4 TSF using Column Concatenate Confusion Matrix 58

5.5 RISE using Column Concatenate Transform Accuracy Score . . . 59

5.6 RISE using Column Concatenate Transform Confusion Matrix . 61

5.7 1-NN with DTW using Column Ensemble Transform Accuracy

Score . 62

5.8 1-NN with DTW using Column Ensemble Transform Confusion

Matrix . 63

5.9 TSF using Column Ensemble Transform Accuracy Score 64

5.10 TFS using Column Ensemble Transform Confusion Matrix 65

5.11 RISE using Column Ensemble Transform Accuracy Score 66

ix

Chapter 1

Introduction

1.1 Overview

The study of time series data was ubiquitous in all aspects of life. There

are many examples of data around us, such as stock prices, voice tracking,

electrocardiogram analysis and so on. Machine Learning can be applied to the

field of time series for research and analysis, for example for human motion

tracking analysis. In 2003, Koegh collected the actor’s hand position movement

data to classify two classes – with gun or without gun [1].

Due to its broad application prospects and flexibility, the Time Series Re-

trieval problem had sparked interest in the field of data mining. In the early

1990s, many researches focused on this field. For example, R. Agrawal proposed

a methodology for time series similarity search [4]. Since then, many well-known

research communities contributed to Time Series Data Mining, such as groups

at California University and University of East Anglia [3].

In terms of time series classification research, most work focused on Uni-

1

variate Time Series Classification (UTSC [5]). However, with the popularity of

mobile electronic equipment and the needs of industry, the need for Multivariate

Time Series Classification (MTSC) became increasingly prominent. It can be

utilized in many fields, such as judging people’s movements by capturing actions

for example. In 2016, a research group performed four activities while wearing

a smart watch. The watch collected 3D accelerometer and a 3D gyroscope data

[3].

With the achievements in MTSC, more innovation progressed in the field

of aviation as well. According to Bryan et al [6], data mining techniques were

utilized in aviation safety, specifically for anomaly detection. The most recent

project development was ROCKET [7], in which researchers utilized random

convolutional kernels for time series classification. The research was funded by

the Air Force Office of Scientific Research, Asian Office of Aerospace Research

and Development for aviation purposes.

1.2 Objects

A time series is a series of sampled values of a set of variables at consecutive

time points. The d dimensional time series of length n is denoted as

xi(t) : [i = 1, 2, ..., d; t = 1, 2, ..., n] (1.1)

Where, i denotes dimension and t denotes the time. If d = 1, then we can

categorize the problem as Univariate Time Series (UTS). In contrast, if d >1,

we define it as Multivariate Time Series (MTS). We can also use a matrix to

2

represent a MTS: 

X1,1 ... X1,n

: : :

: : :

Xd,1 ... Xd,n


(1.2)

There were many classic example data sets of univariate time series. The

most widely utilized one was GunPoint [1]. In this data set, researchers used

sensors to track hand position for each time point and generate the record for

two classes. The data can be used for supervised machine learning.

Figure 1.1: Time Series Data Set for GunPoint [1]
The left graph shows the hand position data with gun and without gun. The

right graph shows the person’s real movement

In Figure 1.1, time series was not just a list of pure data, the relation

between each time point cannot be ignored. This feature made many statistical

methods for studying variance unsuitable for time series.

In addition to this, time series also posed many problems that other nu-

merical data did not have, such as how to measure the similarity between two

series. Unlike numerical values that can be compared by mathematical algo-

rithms, time series data can have a delay or a transfer for each time point.

Based on the above problem, researchers proposed a more effective solution for

3

one-dimensional time series. In 2001, Keogh proposed a methodology named

Dynamic Time Warping (DTW) [5], which improved the accuracy of time series

analysis by reducing the effect of time delay and warping.

Researchers tried to expand to multi-dimensional time series based on one-

dimensional time series data mining approaches. However, there are many prob-

lems and challenges still in need of exploration.

• Time series data were always collected with noise and redundancy. For

example, the sound wave had pause, delay, and unclear pronunciation in

the voice tracking;

• Multi-dimensional caused an increase in the amount of data, and time

series cannot reduce the dimensionality using traditional approaches. The

Curse of Dimensionality was very prominent. If the dimensionality was

reduced, the multi-dimensional time series structure were changed, and

some information are missing;

These problems appeared repeatedly in this thesis research and became the

main focus. Since the project was focused on aviation training data, there were

multiple dimensions with a high volume of records. In addition, the time series

data had various lengths, which caused another problem.

1.3 Thesis Outline

In this thesis, I discuss my research in Chapter 3 to Chapter 5. Chapter

2 mainly focused on the background, relevant terminology, algorithms and the

concepts which were used in the thesis. It explored the state-of-art techniques

that were used in time series classification for univariate and multivariate time

4

series. The concepts gave insight into distance measures such as Euclidean

Distance (EE) and Dynamic Time Warping (DTW). The techniques already

developed by previous research were explored as well, such as HIVE-COTE

model [8], TS-CHIEF model [9], ROCEKT [7] and the best achievement of those

techniques. After introducing the practices, I discussed their advantages and

disadvantages and comparisons. Some of the methods achieved high accuracy in

certain data sets, however, they had limitations dealing with certain problems

as well.

Following the background introduction, I introduced the data sets used in

this research in Chapter 3. This part began with the meta data of the data sets

from the industry partner. Followed by the general introduction, I discussed

the preprocessing part, which included restructuring of the data and summary

statistics. In this part, I expanded the discussion of difficulties of multivariate

time series classification, such as the dimensionality curve. Another difficulty

to modeling with the data set was using Principal Component Analysis (PCA)

to reduce the features. I discussed how to transfer each time series data set to

a list and store it in a column.

Chapter 4 discussed two models used in this thesis. The first one is K Near-

est Neighbor (K-NN), and the second one is Decision Tree based classification

method.

After talking about the models and techniques that were utilized, results

were presented using the previous techniques in Chapter 5. Final results were

not ideal because of low accuracy and computational complexity. To improve

the model performance, ensemble methods were used.

Chapter 6 was the conclusion for the whole thesis which discusses the

5

achievements and limitations in the experiment.

1.4 Summary

In this chapter, I described the structure of the thesis, and clarified the

main target output of the project. A brief summary of each chapter is included

as well. In the following chapters, I will discuss each topic in more depth.

6

Chapter 2

Background

There was a long history of research and applications for time series data.

In early years, time series research focused mainly on statistical modeling and

forecasting. In this period, time series was always considered as a linear function

with the dependent variable time.

With the development of machine learning techniques, researchers began

to pay more attention to the overall meaning of the time series rather than

just the continuity of time points. More research topics were beginning to

flourish, such as identifying the patterns, preprocessing with noise, time window

selection and describing the process, etc. Another important direction in this

field was the measurement of time series similarity. Unlike numeric values that

can be compared directly, there were many warping and alignment issues in

the comparison of two time series. In the early 2000s, time series research was

expanded to multidimensional classification and clustering.

The subsection is based on the development of time series classification:

from Univariate Time Series Classification to Multivariate Time Series Clas-

7

sification. Following those sections, several subsections are discussed, such as

Similarity-based Techniques and Interval-based Technique. The Similarity Mea-

sures is another topic which is important in time series classification.

2.1 Univariate Time Series Classification

Research in Univariate Time Series Classification was based on the tradi-

tional time series or statistic modeling of serial data. Given the structure of a

time series data set, it was always considered for linear regression. The original

research focused on time series forecasting, such as stock price prediction [10],

the analysis of heart rate [11], voltage disturbances analysis [12] and so on.

Unlike statistical models, machine learning for time series extended the

target of the time series analysis. Since Keogh [13] utilized an algorithm to

describe the distance between two samples and classified them, more difficult

problems required classification of large quantities of time series data. The most

recent research in this field included human activity recognition [14], health and

medical data from electrocardiograms (ECG) [15] and electric device identifica-

tion [16]... University of California Riverside (UCR) compiled a TSC dataset

as sample data. The algorithm which was first used with TSC dataset was 1-

NN. In the early research period, the distance between test sample and training

sample time series decided the class.

Time Series Classification focused on prediction of a label y ∈ {1, ...c},

where c was the number of target classes. For univariate time series classifica-

tion, there was only one dimension that can be represented as T = (X1, X2, ...Xi)

8

2.1.1 Similarity-based Techniques

Similarity-based Techniques were based on the distance between pairs of

time series. These usually use 1-Nearest Neighbour techniques (1-NN) [13] with

distance measurement and with various warping window size selection methods

[17]. Time series warping was the most crucial problem for modeling. Warping

means the similarity between two temporal sequences may vary in speed. For

example, similarities in walking could be a scenario of time series warping, a

person may walk faster or slower, and movement of data by a certain time point

were different. How to measure the time series with the effect of speed became

the priority task. In the next subsection, similarity measurement was discussed

in more depth with how it affected the model accuracy and efficiency. Since

Similarity-based Techniques were the most direct ways for humans to under-

stand, there were many developments in this field during the last two decades,

including WeightedDTW (WDTW) [18], Weighted DDTW (WDDTW) [18],

and measures based on subsequences, such as Move-Split-Merge (MSM) and

Longest Common Subsequence (LCSS) [19].

Ensemble methods were also developed to optimize 1-NN classifiers. Bag-

nall et al used multiple 1-NN classifiers with diverse similarity measures [16],

the overall best performance achieved by Bagnall was more than 95%. The

ensembles benefited classifications by reducing the variance of the model and

improving overall accuracy.

The advantages of Similarity-based Techniques were obvious. Since the

technique only considered the distance directly, it was the simplest and easiest

algorithm to understand and compute. However, the disadvantages cannot be

ignored. It was slow during training: if leave-one-out cross-validation was used

9

in evaluation, the time complexity for n time series which has m time points for

each is O(m2 ∗ n2) [20].

2.1.2 Interval-based Techniques

Unlike the distance or Similarity-based Techniques that considered every

time point, Interval-based Techniques focused on groups of time points. These

algorithms separated the entire series into a set of intervals and applied trans-

formations to these intervals to obtain a new feature vector. The new vector

can be treated as a categorical variable and used to train a traditional machine

learning algorithm, such as a Decision Tree and Random Forest.

There were many applications that utilized these techniques. Time Series

Forest (TSF) [21] applied the mean, standard deviation and slope to transfer

a set of randomly chosen intervals, and then trained a Decision Tree by us-

ing the new feature vector. The algorithm was repeated to learn an ensemble

model. Other algorithms utilized interval-based techniques was Random Inter-

val Spectral Ensemble (RISE) [22], Time Series Bag of Features (TSBF) [23]

and Learned Pattern Similarity (LPS) [24].

These algorithms can overcome the disadvantage of Similarity-based Tech-

niques. Since they decreased the time points to only k intervals, for n time

series, the training complexity is O(k ∗m ∗ n2) in which k is far less than m.

However, although the interval transformations decreased the time com-

plexity dramatically, the loss of information during preprocessing was difficult

to manage. The interval transformations gave up meaningful information such

as some minor changes and caused a bias of the model.

10

2.1.3 Shapelet-based Techniques

Different from the above two approaches discussed which took the whole

time series into consideration, Shapelete-based Techniques focused on partial

data. A shapelet was an unusual pattern which can be crucial identification

for each class. In another words, ” shapelet-based algorithms seek to identify

sub-sequences that maximally indicative of class members irrespective of where

they occur in a sequence ” [25].

The first version of a shapelet algorithm was developed by Ye in 2009

[25], in which the researcher enumerated all possible sub-sequences and tried to

find the ’best’ one. In this experiment, researchers used the Information Gain

as criteria to assess how to split the data. After getting the ’best’ shapelet, a

distance threshold was used as a decision criterion for a Decision Tree. Although

the shapelet-based technique can ignore the noise and improve the robustness

in time series classification, it is still a very slow algorithm with time complexity

of O(n2 ∗m4), in which n is the number of time series and m is the length of

each one.

Given the disadvantage of shapelet-based techniques, many approaches

tried to optimize this technique to speed up the training process. Instead of

enumerating all possible shapelet candidates, researchers tried to minimize the

search process. These algorithms included Fast Shapelets (FS) [26] and Learned

Shapelets (LS) [27].

2.1.4 Dictionary-based Techniques

Dictionary-based techniques transfered time series data into bags of words

[15]. These techniques were good at dealing with time series with noise and

11

finding the recurring patterns. The most widely discussed method was Bag-of-

SFA-Symbols (BOSS) [28]. The BOSS model was a structure-based similarity

measure which deducted noise from the raw time series. The algorithm first

defined a proper split window for each time series and transformed the sub-

sequence time series to words. This process can maximize the unique patterns

of the time series and ignore the noise. BOSS was faster than other algorithms

for time series which had many repeated patterns.

However, the model’s applicability was also very limited. It performed well

for some pattern extraction, such as using a sensor to detect the surface of

objects. If the time series had no repeated obvious patterns, the model was not

efficient.

2.2 Similarity Measures

Since Time Series Retrieval gained wide attention, the discussion about

time series similarity continued. There were many particularity of the data

cannot be ignored. Here, it cannot be ignored that the particularity of time

series data. For example, some Time Series Retrieval was only for a certain

interval, and others needed to be considered the whole waveform. Therefore,

the applications of similarity measurements varied based on the scenario.

Currently, the most mature algorithms regarding similarity measurement

include Euclidean distance (ED), Dynamic Time Warping (DTW) [5], Longest

Common Sub-sequence (LCSS) [29], Edit Distance on Real Sequence (EDR) [30]

and Edit Distance with Real Penalty (ERP) [31].

12

2.2.1 Euclidean Distance

Euclidean Distance (ED) is the most traditional and straightforward mea-

surement for similarity of time series. It was widely implemented in many ex-

periments before other methods became popular. Euclidean Distance was the

”ordinary” straight-line distance between two points in Euclidean space [32].

The line represented the distance between two points. It can be represented as

the function (2.1):

d(x, y) =

√√√√ n∑
i=1

(xi − yi)2 (2.1)

In this function, x and y were two time series, xi and yi represented the

value at the same time point i. The approach summed each value of the distance

between directly opposite points of two time series. The time consumption was

also low since it only iterated one time. Figure 2.1 showed the ED calculation:

Figure 2.1: Euclidean Distance with Time Series Data Set [1]
The blue and red line represent two time series. To calculate the ED, the

distance between each pair if opposite point are accumulated. The right graph
is the visualization of the path.

There were some experiments that used this method for time series data

sets. In the paper [33], K. Yang et al used ED and K-means to cluster time series

13

data. They achieved an outstanding performance with low time consumption.

In Z. Bank’s paper [34], ED is used to identify the similarity between two time

series.

However, ED also had deficiencies. ED did not have perception of time

series delay and transfer. In other words, because the distance was straight be-

tween two opposite points, any prior and late position was not considered. Many

real time-series data with noise was not matched against each other precisely.

To solve this difficulty, researchers proposed other measurements.

2.2.2 DTW

Dynamic time warping (DTW) was a technique to find ” an optimal align-

ment between two given (time-dependent) sequences under certain restrictions ”

[13]. It warps two sequences x and y non-linearly to cope with time deformations

and varying speeds in time dependent data [35].

Different than ED which directly summed the distance between two op-

posite time points, DTW considered the points value in a matrix, which was

called local cost matrix (LCM). The matrix size (i, j) decided how many time

points were considered in DTW, where the value of time point (i, j) was cal-

culated between xi and yj . Next, a warping path W was determined which

could be the minimum values of all distances. There were more considerations

of LCM in different conditions , such as the boundary condition, continuity, and

monotonicity. The total distance for a path W was obtained by summing the

individual elements (distances) of the LCM that the path traverses. To obtain

the DTW distance, a path with a minimum total distance was required. It can

be represented by Equation 2.2

14

dcum(i, j) = d(xi, yi) +min
{
dcum(i− i, j − 1), dcum(i− 1, j), dcum(i, j − 1)

}
(2.2)

After obtaining each minimum distance for all time point positions, the

total distance was the root of sum:

dDTW (x, y) = min

√√√√ K∑
k=1

wk (2.3)

Figure 2.2 showed an example

Figure 2.2: DTW with Time Series Data Set [1]
The blue and red lines represent two time series. DTW calculates the distance

in a matrix: the points prior and after determine the most closest points.
Graph on the right is the visualization of the path.

Since the strength of DTW’s in dealing with time series delay and transfer,

there were many modifications and optimizations contributed by researchers.

Keogh [5] optimized and expanded the utilization of DTW. Keogh proposed

Derivative Dynamic Time Warping (DDTW) in 2001, which converted the time

series into a series of order differences. This avoided having a single point of

one series to map to many points in another series, which can negatively impact

15

the DTW distance. In 2011, Weighted Dynamic Time Warping (WDTW) was

proposed by Jeong et al. [18], which added a weight function to the LCM to

increase the penalty. This optimization reduced the bias for shape matching.

However, even though DTW reduced the bias of time series transform

problems, there were still many imperfections. The time and space complexity

of finding the DTW distance between two time series was O (mn), where n and

m are the lengths of the two input sequences.

The substantial complexity made DTW a high computational complexity

process, hence different methods were proposed in the literature to speed up

the distance measure. In 2007, Salvador and Chan proposed a method [36]

called FastDTW which reduced the time complexity of DTW by considering

fewer time points in time series. The algorithm first reduced the dimensions by

averaging adjacent pairs of points, then found the minimum warping path on

the reduced time points, and lastly calculated the distance based on the warping

path. The time complexity of FastDTW is O (max(m,n)) [37], where n means

the number of points in LCM.

Even though FastDTW already improved the efficiency compared with tra-

ditional DTW, many researchers still criticized the algorithm because of its

complexity. Whether DTW was a powerful time series analysis method was

still under discussion. T. Rakthanmanon [37] tested FastDTW with trillions of

time series and determined that FastDTW took the least amount of time. H.

Ding [17] reviewed 800 related papers, concluding that DTW was still the best

method for the measurement of time series similarity.

16

2.2.3 Other Similarity Measurements

Although ED and DTW were two mainstream measurements in time series

classification, other methods were also considered in some scenarios, such as

Longest Common Sequence (LCSS) [38]. Instead of considering the whole time

series, LCSS was based on a solution using pattern matching.

Another measurement which was discussed widely was Edit Distance with

Real Penalty (ERP) [39]. Similar to LCSS, ERP also calculated the sub of a

series but also included a constant penalty which was applied to non-matching

parts. It can be treated as the development of LCSS which considered both

matching and non-matching points.

Those techniques offset some of the disadvantages of EE and DWT. How-

ever, they had their own limitations. They were fast when applied to partial

classification or pattern recognition, but not universally applicable.

2.3 Multivariate Time Series Classification

With the foundation of similarity measurements, the time series classifica-

tion problem can be converted into an ordinary data mining problem. By using

various preprocessing techniques, such as transfer to categorical variables, the

univariate time series classification can be realized by many mature machine

learning algorithms, such as Decision Trees.

Multivariate time series (MTS) classification received wide attention over

the past decades. People can track time series data in more fields, such as human

behaviour, medicine, or media. Multivariate time series were developed from

techniques for Univariate time series classification. Since Multivariate time

17

series had more dimensions, there were many approaches that try to transfer

Multivariate time series into a univariate format. One important preprocessing

step was to reduce the number of dimensions.

2.3.1 Dimension Reduction by PCA

When talking about dimension deduction, the first algorithm came out

was PCA, which was widely applied in various problems. Principle Component

Analysis (PCA) was first proposed by Karl Pearson in 1901 [40]. PCA was a

linear algebra technique for continuous attributes. It achieved dimensionality

reduction by establishing an orthogonal coordinate system and capturing the

maximum variation of data.

Although PCA was used for many applications to reduce the dimensions,

using PCA to realize time series dimensionality reduction still had many dif-

ficulties. The main reason was that time series had data in order which PCA

ignored. PCA only catched the variance between datasets. The sequence of

time series had no effect on the PCA results.

A simple experiment to prove the limitations of PCA for time series di-

mensionality reduction was done as follows. First, I created two datasets D1

and D2, which had same the length of n. Each of them had two variables X1,

X2. In D1, X1 was monotonically increasing with a degree of 1, and X2 was

a set of random variables that obey the standard normal distribution. In D2,

X1 was monotonously decreasing, the degree of the decrease was 1, and X2

was also a set of random variables subject to standard normal distribution. I

performed PCA on D1 and D2 and used one dimension to represent them. The

dimensionality reduction resulted D1 and D2 were the same. In fact, the orders

18

of the two datasets were different. This result illustrated the feature that PCA

ignored the order and only extracted the variance.

In Figure 2.3, it was easy to see that with time series dimension variables

in D1 and D2 are different, though, after PCA preprocessing in one variable,

D1 and D2 became the same in Figure 2.4.

Although PCA cannot realize dimension deduction of time series datasets,

it was still a very effective method for analyzing variance. There were many

experiments discussed that applied PCA to MTS for comparing the similarity.

Z. Wang [41] used PCA as one similarity measurement which efficiently caught

the similarities between multiple variables. E. Keogh [42] combined DTW and

PCA for a new approach of a dissimilarity measure for multivariate time series.

The main idea of that approach was to use PCA to maximize the variance and

then realize the classification.

2.3.2 Vertical Preprocessing

From the above discussion, we realize that dimensionality deduction was

difficult to realize in most time series datasets. In this condition, how to convert

multivariate time series to univariate became the crucial preprocessing problem.

Since the multivariate time series structure was discussed in the previous

chapter, each multivariate time series was a matrix with multiple variables and

time dimensions.

19

Figure 2.3: Comparison of Original D1 and D2 Dataset

Figure 2.4: Comparison of D1 and D2 Dataset after PCA preprocessing
The original D1 and D2 with time dimensions are different in the above two
graphs; though after PCA preprocessing in one variable, D1 and D2 become
the same in the below graphs. This figure shows us that PCA only catches the
variance of variables without sequence. That is why the two dataset’s PCA
results are the same.

20



X1,1 ... X1,n

: : :

: : :

Xd,1 ... Xd,n


(2.4)

To classify multivariate time series, the most direct approach was to convert

it to the univariate time series. In Equation 2.5, the i means the ith time series

sample with the length of t and d variables.

xi(t) : {X1,1, ...X1,t, ...Xd,1, ...Xd,t} (2.5)

To concatenate the multivariate time series to a long univariate time series,

each variable should be in same scale. The most common way to normalize

various scales of data set was Standardization. The purpose of Standardization

was to make the entire set of values have specific properties. If x̄ was the average

value of the attributes and sx was their standard deviation, Standardization was

the equation to create a new variable x′ with a mean value of 0 and a standard

deviation of 1.

x′ =
x− x̄

sx
(2.6)

The Vertical preprocessing method can be realized easily without an in-

crease of the time complexity. It was also easy to understand as it utilized a

direct way to compare each time series. Although the Vertical preprocessing can

transfer multivariate time series in a direct way, it changed the shape of each

variable. The disadvantage of standardization was to change the original value.

21

For example, the Basic Motion [43] dataset in Figure 2.5 needed to be

Standardized by using Equation 2.6 in the first step. Then each time series was

concatenated in a long time series.

Figure 2.5: Basic Motion dataset[1]
Persons performed four activities whilst wearing a smart watch. The watch

collects 3D accelerometer and a 3D gyroscope data. Each line is one dimension

2.3.3 Horizontal Preprocessing

AlthoughVertical preprocessing for multivariate time series can easily trans-

fer multiple dimensions to a single dimension, it changed the scale of variables

and Standardization decreased the differences between values. Researchers de-

veloped another method to maintain the original data. Instead of transferring

multivariate to univariate, Horizontal preprocessing methodology was a method

which direct classified each variable simultaneously and assembled each clas-

sification result. To show the logic, Basic Motion database in Figure 2.5 was

taken as an example, the Horizontal preprocessing classified each dimension as

univariate time series and then assembled the result.

The method can well make up the disadvantage of Vertical preprocessing,

22

which changed the original data value, but the cost was the increase of calcu-

lation. The sequence of each variable was also a key factor of the classification

results. As a consequence, this method can gain a good performance when the

data size was small with few variables.

Bagnall proposed a model named COTE [16] in 2015 which considered all

possible methods in using a platform named COTE, which combined Vertical

preprocessing and Horizontal preprocessing.

2.3.4 Image Topology Structure

Each multivariate time series sample had two dimensions, which can be

classified as image. Using this idea, MTS was treated as image variables. Clas-

sification method such as Convolutional Neural Network (CNN) can be used.

The most state-of-the-art technique was ROCKET [7], which was developed in

2019. ROCKET was not only focusing on a single representation, such as shape

or variance, but used a CNN which can capture all features together.

There were many advantages to using CNN for time series classification. A

CNN was able to successfully capture the spatial and temporal patterns through

the application trainable filters and assigns importance to these patterns using

trainable weights. It was good at taking input with multiple dimensions. CNN

model identified the most significant patterns for samples with a reduction of

noise. Z.Cui [44] used a Multi-Scale Convolutional Neural Networks for time

series classification and achieved a high overall accuracy rate of 90%.

However, even though CNN can be the most reliable practice in time series

classification, the disadvantage was still obvious. The computation complexity

of CNN was high. Thus, CNN cannot be utilized to data with a large volume.

23

2.4 Evaluating the Models

Model performance will be evaluated in many ways. The first should be the

overall accuracy score. Other than that, a Confusion Matrix will be implemented

to show the performance for each class as well.

The Confusion Matrix shows the performance of the classification algorithm

with different classes. The other measures are calculated based on the confu-

sion matrix. In this thesis, Accuracy, Precision, Recall and F − score will be

calculated from the Confusion Matrix (see table 2.1).

Table 2.1: Confusion Matrix
Positive Negative

Positive True Positive (TP) False Negative (FN)

Negative False Positive (FP) True Negative (TN)

Recall =
TP

FN + TP
(2.7)

The Recall shows the proportion of positive tests correctly predicted by the

classifier

Precision =
TP

FP + TP
(2.8)

The Precision shows how reliable the predict class

F − score =
2 ∗Recall ∗ Precision

Recall + Precision
(2.9)

The F − score is the mean of Recall and Precision

24

Accuracy =
TP + TN

TP + FP + TN + FN
(2.10)

Accuracy is the proportion of the total number of the correctly identified

class that actually belongs to the class. It is an overall score to measure the

classifier performance. However, accuracy is not an ideal measurement when

classes are not balanced.

2.5 Summary

This chapter presented a literature review of the time series classification

development and the most state-to-art techniques. The early history of time

series research was focused on linear regression, which was a statistic model to

describe the relationship between time and value. Research of time series classi-

fication started from linear algorithms and evolved into a univariate time series

classification. With the demand of industry in many fields, the multivariate

time series were mentioned more generally in academic research.

25

Chapter 3

Dataset and Environment

Since time series research gained more attention in the early 1990s, the

demand for experimental data was becoming more and more urgent. However,

in those days, it was difficult to obtain data from the web or other resources.

To solve the issue and be inspired by the increasing contributions of the UCI

(University of California Irvine) Archive to the Machine Learning Community,

Koegh Folias developed the UCR (University of California Riverside) time

series datasets archive in 2002 [2]. The first version of the archive contained

only 45 datasets, which increased to 85 in 2015. As of the Fall of 2018, the

archive expanded to 128 data sets. Currently, UCR Time Series Archive has

become the largest depository for time series classification. As a consequence,

the majority of algorithms in time series classification were developed by using

the archive data. The format can be described as follows:

• Each time series has the same length

• The data is normalized

26

• Individual datasets are small

• The split for training and testing data already exists

Each time series dataset had various number of columns and rows in UCR

archive. However they all had same data structure. There was one example from

UCR archive which showed the structure. The structure of the UCR archive

can be represented in a two-dimensional table as showned in Figure 3.1. Each

row was a single time series with the class at the beginning, and there were

151 columns, meaning there were 151 time points for each sample. The column

header 1,2,3...indicated the time point with the normalized value.

Figure 3.1: GunPoint Data Set from UCR Archive [2]
Each row represents one movement by 151 time points. The class 1 and 2

means With Gun or Without Gun

Motivated by the UCR time series datasets archive, the University of East

Anglia developed the Multivariate Time Series Archive in 2018 which can be

found at the website www.timeclassification.com [3]. There were 30 datasets

from a wide range of real-life problems. The UEA multivariate time series

archive inherited the format of UCR, in which each single time series is equal

length.

The Multivariate Time Series archive can be stored in a ’Table’ format as

well, but in each column, there was a certain length of time series data instead

27

of a single value. The column header ′dim0′, ′dim1′... described the different

features; it’s structure was shown in Figure 3.2.

Figure 3.2: BasicMotion Data Set from UEA Archive in DataFrame Format [3]
Each row represents one sample. One sample has 5 features. In another word,

one sample has 5 time series happen simultaneously

Since the dataset used in this thesis was a multivariate time series, I was

inspired by the UEA dataset archive for the data structure. Though there was

still a certain gap between my actual data and the ideal model, the UEA archive

gave good guidance on model establishment. How to transfer the actual data

to an archive format data was described in the following section.

3.1 Analysis of Pilot Performance Data

The dataset used in this thesis came from industry partner CAE Inc. CAE

is dedicated to aviation technology. It is one of largest flight simulator manufac-

turer in the world. Their main products are flight simulators which assist pilot

trainees in familiarising themselves with the flight environment before flying.

CAE’s main business is building simulators and developing aviation training

28

centers for their clients all over the world.

My research was focusing on flight training data. The flight training data

was collected directly from each simulator. Each session was stored in one table

with time points as one dimension. The data recorded all performance using

different variables, such as speed, altitude, flight angle.

A metadata table that contained the different training events including the

overall information such as the start time, end time and scored that achieved.

The data was stored in an AZURE cloud environment. For each record, a log

file recorded specific data from the telemetry of the simulator. Around 4000

parameters of different types were records at about a frequency 10HZ. Unlike

archive datasets, there were separate tables for each training session. In each

table, the variables were listed as a time sequence. The structure of the dataset

can be seen in Figure 3.3. I can use the attribution ScoreId to reserve the

corresponding time series dataset from certain training sessions. The class label

is the scored as the GAGrade in the metadata.

The line graphs of each time series can be seen from Figure 3.4 to Figure

3.7. Since the dataset was a multi dimensional data structure, it was shown

in each class by same feature. Figure 3.4 to Figure 3.7 were four score classes

– Score 1.0, 2.0, 3.0, and 4.0. The x-axis was time and the y-axis was ground

speed. It can be seen from the graph that at the beginning the ground speed

was low. It rose quickly in the next period. Then the speed was stable until the

end after reaching peak speed.

Some differences were observed from the graph easily. Score 4.0 took less

time to reach peak speed than other scores. This might be one reason for the

score difference. Other than that, Score 4.0 had more samples than other three

29

Figure 3.3: Data Structure for Pilot Performance Assessment
The above table is meta data of all samples and their classes. Each sample has

a table with time series details given in the table below

classes and Score 1.0 has the least samples. Those factor could be a main reason

in the testing results which discussed in Chapter 5.

There were 8696 records in the current database for a 6-month collection. In

the whole dataset, there were 28 training events, such as Go-around, Take-off.

Engine-Out-Landing, etc. For each of the training events, there were multi-

ple tests. Each of the training event log files contained 164 features, such as

Ground Speed, Altitude. These features consisted of various telemetry measures

collected at regular intervals during a simulation exercise. As the first phase of

the modeling, I started using a single training event – Take-off, as selected by

industry partner. Since there were too many features to be manipulated, the

partner selected a subset of features using their domain knowledge. In their

documentation [45], those features can represent a flight status. For time se-

ries classification purposes, there was a subset of features of the dataset. The

30

descriptions were listed in Table 3.1.

There is a total of 673 records in four classes. The four classes can be seen

in Table 3.2

3.2 Software

All preprocessing and modeling parts in this thesis are performed using

Python Version 3.7. Various external libraries for Python were used in this

thesis as well. I used a DataFrame which is a spreadsheet format from the

pandas library. Another library used for time series classification is sktime,

which is developed by the Alan Turing Institute research group [46]. It is an

open-source Python library for machine learning with time series. The version

of sktime used here is 0.4.1. The library supports:

• Forecasting

• Time series classification

• Time series regression

The main development idea of sktime is to extend existing machine learn-

ing capabilities based on scikit-learn [46]. Sktime development team aimed

to design and implement an API (application programming interface) for time

series. The library includes all aspects for time series classification, including

data analysis, data regularization, and state-of-the-art algorithms for time-series

classification.

31

Table 3.1: Table of test captions and labels
Column Data type Description

AirspeedTrue Double The speed of simulated aircraft
relative to the surrounding air
mass

AltitudeAGL Double Direct distance measured be-
tween the simulated aircraft and
the ground

PitchAngle Double The vertical angle between the
nose of the aircraft and the
horizon

BankAnglem Double The vertical angle between a
wingtip of the aircraft and the
horizon

AngleOfSideslip Double The origin of the relative wind

Engine1N1 Double Engine1 indication of the engine
thrust through the measure of
the rotational speed of the low-
pressure engine spool

Engine2N1 Double The engine2 indication of the en-
gine thrust through the measure
of the rotational speed of the
low-pressure engine spool

The features selected by industry partner, which can represent the situation
of an aircraft, explanation for each feature from [45]

32

Class Count

Score 1.0 57

Score 2.0 163

Score 3.0 145

Score 4.0 308

Table 3.2: Class Distribution

3.3 Preprocessing

Given the previous discussion, the data needs to be transformed so that

supervised machine learning algorithms can applied.

3.3.1 Proportional Scaling

The time series contained in the UEA archive has some common features:

they are of equal length. This is a priori condition for most time series classi-

fication problems. The goal is to standardize each time series for comparison.

If the lengths are different, it is difficult to be implemented the similarity mea-

surement. However, datasets in this project have various length. To visualize

the time series in each class, we use one training event with one attribute to

show four classes for exploration purposes in Figure 3.4 to Figure 3.7.

Another aspect that needs to be considered is timing. For example, if a

pilot operates the simulator in a shorter time to get to a certain altitude level, he

will get a better score. However, this is not the only reason for attitude. From

our partner document, reaching the target altitude could also hinge on other

variables such as, aircraft gross weight, air temperature, or thrust settings. In

this thesis, there are selected features from partner already. With this condition,

I need to maintain the basic shape of each time series and transfer them to the

33

same length. In order to solve this problem, I adopt the stratified sampling

idea from statistics, which is a method of sampling from a population which

can be partitioned into sub populations. Proportional Scaling was proposed by

Kanatani in 1997 [47] for motor control applications. The main idea is to use

as few samples as possible to represent the whole population. The algorithm

separates the whole time series into k pieces and gets the value at point k. If I

take the time point as measurement dimension, I can set the stratified sampling

to a certain percentage of the whole time series. For example, if the whole time

series using n time points, we can extract k values sequentially: the value on

the 1th time point, the value the 2th time point ... utile the value of the kth

time point. The algorithm is shown in Equation 3.1

xsample(t) : {X 1∗n
k
, X 2∗n

k
...X (k−1)∗n

k
, Xn} (3.1)

In Equation 3.1, n represents the whole time series. With the sampling

method, I can generate a sample that can represent the real time series. If the

number of points is not divisible by the sampling number k, I round the result

of the division. By using Equation 3.1, no matter how many time points the

time series data has, it can be transferred to a certain number of lengths. For

example, if there is a time series with 1000 time points, and we want to use 100

time points to represent it. By using the Equation 3.1, we will use the time

point 10th, 20th. 30th ... 1000th time point to represent the whole time series.

To show an example: I randomly select one time series (take-off with a

ground speed feature). The original data set is 858 time points in length, and

the goal is to transfer it to 100 time points length. By using Equation 3.1, I

will take the 1∗858
100 th, 2∗858

100 th... 99∗858
100 th values to generate a new time series

34

data. Since n = 858 cannot be divided by k =100, I use the round value of

each point. Therefore, I use the 9th, 18th ... 849th values instead of the whole

time series. If comparing the preprocessed data with the original one, they have

similar shapes. Figure 3.8 and Figure 3.9 show a comparison of the original

time series and after proportional scaling preprocessing in 100 time points.

Figure 3.8 shows that the value increases from time point 0 to time point

400, with a really small fluctuation on the peak value. Figure 3.9 shows that

the new time series data with Proportional Scaling has the same shape as the

original data. When comparing these two graphs, the transformed data set has

the same shape as the original one.

If the time series’ monotonicity is constant, which means it always increases

or decreases, I can use few points to represent the series. Otherwise, we need to

improve the sensitivity to resampling, which means we need more points.

With this algorithm, the various length time series data can be preprocessed

into series of the same length. There are advantages of this method:

• The algorithm can use few samples to represent the various length time

series, which can improve the efficiency for the time series classification

• The algorithm can be adjusted to various scaling needs

• The scaling can be performed at various resolutions within one series.

3.3.2 Transfer Time Series Data Structure

Unlike the normal data mining problem using a two-dimensional matrix,

multivariate time series have more dimensions. How to organize classification

algorithms on each sample is another difficult problem, since the project data

35

is stored in multiple tables and needs to be reorganized into a two-dimension

matrix.

The start of the data structure adjustment is to load all test samples into

a list structure inputList. Based on the selected features and sampling points

defined, cut each time series with one feature and certain time points separately

and save them in a list structure outputList as output in Algorithm 1. The

next step is to expand each time series with a single value and generate a nested

table in a DataFrame structure. Here I used the function fromLongtoNested to

realize this step. The process is shown in Figure 3.10.

36

Figure 3.4: Score 1.0 Time Series with Ground Speed

Figure 3.5: Score 2.0 Time Series with Ground Speed

Figure 3.6: Score 3.0 Time Series with Ground Speed

Figure 3.7: Score 4.0 Time Series with Ground Speed
Figure 3.4 to Figure 3.7 show Score 1.0, 2.0, 3.0, and 4.0 with Ground Speed
feature. Score 1.0 samples are very similar at the beginning, and the time of
peak speed is almost the same. Score 2.0 and Score 3.0 have similar amounts of
samples and trends. Score 4.0 has more samples and the peak value within the
first 20 time points 37

Figure 3.8: Original Time Series Data Set

Figure 3.9: Proportional Scaling Preprocessing with 100 Time Points
The values in Figure 3.8 increase from Time Point 0 to Time Point 400, with
a really small fluctuation on the peak value, it becomes flat until the end. In
Figure 3.9, the new time series data with Proportional Scaling has the same
shape as the original data

38

F
ig
u
re

3
.1
0
:
D
a
ta

T
ra
n
sf
o
rm

a
ti
o
n
P
ro
ce
ss

T
h
e
fi
rs
t
gr
ap

h
sh
ow

s
th
e
or
ig
in
al

d
at
a
st
ru
ct
u
re
.
E
a
ch

re
co
rd

h
a
s
a
ti
m
e
se
ri
es

o
n
ea
ch

d
im

en
si
o
n
.
T
h
e
se
co
n
d
g
ra
p
h
is

th
e
fi
rs
t
st
ep

o
f

tr
an

sf
or
m
at
io
n
w
h
ic
h
cu
ts

ea
ch

ti
m
e
se
ri
es

to
th
e
sa
m
e
le
n
g
th

a
n
d
st
o
re
s
it
in

a
li
st

st
ru
ct
u
re
.
T
h
e
th
ir
d
g
ra
p
h
sh
ow

s
tr
a
n
sf
o
rm

a
ti
o
n
s
o
f

th
e
li
st

in
to

a
D
a
t
a
F
r
a
m
e
b
y
in
vo
k
in
g
f
r
o
m
L
o
n
g
t
o
N
e
s
t
e
d

39

Figure 3.10 shows the raw data stored in a list with each log file as a table.

One table represents one test with various features. In the first step, I cut

them into a single feature with the same length by using Proportional Scaling

methods. The algorithm is shown in Algorithm 1. The output of this step is

univariate time series data with a single feature. In the next step, I invoked the

function fromLongtoNested and the output of this step is a DataFram which

has a time series in each column. The final output of this procedure is a ’Table’

which has each time series inside of column unit.

Data: inputList

Result: Generate Splite Sampling Time Series

outputList← [] ;

for test j in inputList.length do

for feature f on selectFeatures do

for timepint i in samplingNumber do

outputList.add(inputList[t][f][round(inputList[t].length * i /

samplingNumber)])

end

end

end

Algorithm 1: Generate Long List Algorithm

40

3.4 Summary

This chapter is an introduction of the dataset used in this thesis. The

preprocessing methods is also presented. Using well-developed and innovative

python library, I transfer the raw data to a specific structure for classification.

The preprocessing step Proportional Scaling is proposed in this chapter. This

algorithm is dedicated to use few time points to represent the whole series other

than the original data. The algorithm will solve the problem of various length

in time series classification and improve the efficiency.

41

Chapter 4

Models

Mitacs partner company CAE.Inc used Deep Learning on Time Series Clas-

sification for their project - Training Event Detection [45]. They used Long Short

Term Memory networks (LSTMs) [48] to build the model. The result was 81%

accuracy, but the computational complexity was high. Training the model pro-

cess took two days with twenty nodes. It showed a significant limitation for

this work. Deep Learning model was efficient and cannot be applied for this

particular example.

To improve the efficiency and applicability to here, the use of traditional

classification models is necessary. Chapter 2 introduced each model with their

advantages and disadvantages. In this project, the whole time series which with

time points and values needs to be compared as a vector. There are no repeated

particular patterns. Based on the characteristics of our dataset, similarity-based

technique and interval-based technique were chosen.

Similarity-based technique and interval-based technique are two widely used

models for Time Series Classification. The similarity-based technique is to cal-

42

culate the distance between two values on every two opposite time points and

sum them together, using a brute force method. Interval-based technique trans-

fers partial time series into categories and use a decision tree for classification.

These techniques were introduced in Chapter 2.

The advantage of the interval-based technique is that it has a lower com-

putational complexity. Rather than use the whole series, the interval class of

algorithms selects one or more dependent intervals of the series. If the time series

has outstanding features, such as peak points and fluctuation, the interval-based

technique will perform better. In Chapter 2, I compared the training complex-

ity between similarity-based technique and interval-based technique. The inter-

val transformations will result in meaningful information such as some minor

changes and will cause a bias of the model.

However, some information will be lost. Unlike a interval-based technique,

a similarity-based technique maintains the original data. The disadvantage of

the similarity-based technique is a higher computational complexity. The more

time points, the more computing time is required.

4.1 Model 1: 1-NN with DTW

1-NN is the most intuitive classification algorithm. Keogh provided signifi-

cant insight in this field [5] [49] [50]. It is widely applied to UCR data in many

applications.

Keogh discussed how to measure the time series distance first. He discussed

that, other than using traditional Euclidean distance, DTW will improve the

accuracy of the time series classification. The disadvantage is that DTW will

43

also increase the computational complexity. Keogh also tried to develop other

algorithms such as FastDTW, WDTW, and DDTW. Keogh’s insisted that the

1-NN is the best method for time series classification [34].

K-NN, which is a traditional classification method, uses the Lazy Leaner

strategy, which means it will not classify the data during the training process.

The parameter k refers to the number of nearest neighbours to include in the

majority of the voting process. The value of k vary from 1 to many. If the k

is too small, the test samples will be under-classified. If k is too large, the test

samples will be over-classified. If the time series has noise, the result will be

opposite.As k increases, the test samples will be classified more accurately.

Result: k-NN Classification Algorithm

thenearestneighbour ← k;

theTrainingDataset← D;

for each test instance z = (x’,y’)) do

Compute z = x’,x, the distance between z and every sample, (x,y) ∈

D;

Select DZ ⊆ D , the set of k closest training example to z;

y’ = argmax
∑

(xi,yi) ∈ Dz I(v = yi)

end

Algorithm 2: K-NN Classification Algorithm [51]

The test instance is classified by the majority of its nearest neighbors

through voting.

The Elastic Ensemble Model was developed based on 1-NN combined with

time series similarity measurement. The algorithm is described below. Since

44

the development of DTW which was proposed in early 1990, the techniques and

discussions applied to this area have seen substantial growth. These include

DTW and its derivatives products and edit distance-based measures, such as

longest common subsequence. Some methods perform better on specific time-

series datasets samples but not all. As a consequence, another ensemble idea

was proposed by Lines and Bagnall [52].

Result: 1-NN Classification Algorithm

bestsofar ← inf ;

for i in length(TRAINclasslables) do

comparetothisobject ← TRAIN(i,:) ;

distance ← DWT distance;

if distance < bestsofar then

predictedclass = TRAINclasslabels(i) ;

bestsofar = distance ;

end

end

Algorithm 3: 1-NN Classification Algorithm with DTW [8]

The 1-NN Classification Algorithm with DTW will use DTW as the similar-

ity measurement and calculate all distances between test instances and training

dataset, then using the closest training sample class as the classification result.

An ensemble of classifiers is a combination of base classifiers with their

decisions. The first version of the ensemble in time series data mining was

developed by Deng et al [21]. They compare 1-NN with Euclidean distance and

1-NN with DTW. Their results showing improvement in accuracy.

45

4.2 Model 2: Time Series Forest (TSF)

Time Series Forest (TSF) is the most representative method of the interval-

based TSC techniques. The generation process is a top-down, recursive strategy

that is similar to a standard decision tree. It was first proposed by Deng in

2013 [21]. TFS was developed to summarize the features from intervals of a

time series. Instead of using the whole time series, TSF focuses on every pos-

sible sampling interval. For example, if a time series’ length is m, there will

be m(m − 1)/2 possible intervals. TFS takes a Random Forest-like approach.

Based on mean, standard deviation, and slope, the algorithm will find the most

likely subsequence as features to be used in classification.

46

Result: buildTS(A list of n cases length m, T = (X, y))

the number of trees, k ; the minimum interval length, p; the number of

intervals per tree, r

k ← 500 as default, p ← 3, r ←
√
m i ← 1;

Let F = (F1 ...Fk) be the trees in the forest;

while i < k and time Remaining do

Let S be a list of n cases (s1 ... sn);

for j ← 1 to r do

b ← randVetween(1, m-p);

e ← randBetween(b+p, m);

for i ← 1 to n do

st,3(j−1)+1 ← mean(xt,b,e);

st,3(j−1)+2 ← standardDeviation(xt,b,e);

st,3(j−1)+3 ← slope(xt,b,e)

end

end

Fi.buildTimeSeriesTree(S,y)

end

The value of k can be vary. The default of the k is set by the

development team to 500
Algorithm 4: TSF algorithm [8]

47

4.3 Model 3: Random Interval Spectral Ensem-

ble (RISE)

RISE is also a tree based interval ensemble similar to TSF. However, there

is an improvement in the efficiency compared to TSF. RISE only uses a single

interval for each tree compared to multiple trees of TSF. RISE also employs

spectral features rather than statistical analysis. At the same time. RISE also

uses Fast Fourier Transform (FFT) and Auto Correlation Function (ACF) to

transfer the same interval for each series. There is also an improvement to the

original RISE which used the partial autocorrelation function and autoregres-

sive model features. These make RISE faster than traditional TFS.

48

Result: buildRISE(A list of n cases of length m, T = (X,y)

the number of trees, k ; the minimum interval length, p; the number of

intervals per tree, r

k ← 500 as default, p ← min(randomNumber n, m/2) ;

Let F = (F1 ...Fk) be the trees in the forest ;

while i < k and time Remaining do

buildAdaptiveTimeModel();

if i = 1 then
r ← m

else

max ← findMaxIntervalLength();

r ← findPowerof2Interval(p,max);

end

T’ ← removeAttributesOutsideofRange(T,b,r);

S ← getSepctralFeatures(T’);

Fi.buildRandomTreeClassifier(S,y);

updateAdaptiveModel(r);

i ← i+1

end

The value of k can be various. The default of the k is set by develop

team as 500
Algorithm 5: RISE algorithm [8]

4.4 Column Concatenate Transform

In Chapter 3, Proportional Scaling was discussed. The propose of Propor-

tional Scaling is to transform the various length time series and to keep the

49

most significant features.

After the Proportional Scaling, the data used in this project can be inves-

tigated using transformation and classification algorithms. In this research, not

only the classification algorithm is adopted, but the transfer algorithm is also

an important step. There are two main strategies implemented: Horizontal and

Vertical. The Vertical method is to concatenate each time series to a long series,

and Horizontal is to classify by each feature and vote. The majority class will

be the testing class. The precondition to use those two transform methods is

cut each time series to the same length and load each time series in a DataFrame

structure. This preprocessing step is shown in Figure 3.10.

Algorithm 6 shows how to change data structure form a multi-dimension

to a . The input DataFrame is a table with (m,n) dimensions. The algorithm

will transfer to an output DataFrame with (m*n,1) dimensions which can im-

plement the univariate time series classification.

Result: Concatenate Each Feature to Long Time Series

a dataframe InputTable(m,n), each time series t

Output ← NewDataFrame(m*n,1);

for t in InputTable do

NewDataFrame.add(t)

end

Algorithm 6: Concatenate Algorithm

4.5 Column Ensemble Transform

The Column Ensemble Transfer is a horizontal processing method that uses

a different logic from the vertical processing method. Unlike to concatenate each

50

dimension, Column Ensemble retains the original data structure. As it is shown

in Figure 4.1, the test samples will be classified by each of feature: feature1,

feature2, feature3, feature4 simultaneously. The results will be voted by

ensemble method.

51

F
ig
u
re

4
.1
:
C
o
lu
m
n
E
n
se
m
b
le

A
lg
o
ri
th
m

T
h
e
te
st

sa
m
p
le
s
w
il
l
b
e
cl
a
ss
ifi
ed

b
y
ea
ch

o
f
fe
a
tu
re
:

fe
at
u
re

1
,f

ea
tu
re

2
,f

ea
tu
re

3
,f

ea
tu
re

4
.T

h
er
es
u
lt
sw

il
lb
ev
ot
ed
by
en

se
m
bl
em

et
h
od

a
n
d
g
et
th
ep
re
d
ic
ti
on

cl
a
ss

52

4.6 Implementation of Models

The industry partner has developed a deep learning model by using LSTMs.

In their report, they state that LSTMs architecture aims at predicting a se-

quence from another input sequence [45]. The model aims at compressing and

exacting the most relevant information across the input signal.

Different from their model, I use the three models with two preprocessing

methods. I first use Proportion Scaling to cut each time series to the same

length, then load them in a 2-dimension table. I used the models implemented

sktime with the preprocessing methods. The results and comparison will be

discussed in the next chapter.

4.7 Summary

In this chapter, I mainly illustrated each model algorithm used in this the-

sis. Due to the characteristics of the project data, I choose three models—1-NN,

TSF, and RISE. Since the data used in the project has multiple features, two

transformation methods are employed to transfer the original data to univari-

ate time series. The two transformation methods are considered from different

aspects: Column Concatenate and Column Ensemble. The outputs of two trans-

formation methods are univariate time series which can be applied classification

model.

53

Chapter 5

Results and Optimization

The aim of this study was to train a model that can correctly classify

four score classes: Score 1.0, Score 2.0, Score 3.0, Score 4.0. Each score class

represented the trainees’ performance. In this chapter, the results of three

classification methods and two preprocessing methods were presented. The

results were discussed using accuracy score, precision, recall and f1-score. k-

fold Cross Validation was also used in the evaluation section. Each dataset was

divided into training data and testing data. The test size was 0.25, which meant

75% data was used as training data while the remaining 25% was used as testing

data.

54

5.1 Evaluating the Models

5.1.1 Evaluation for 1-NN with DTW using Concatena-

tion Transform

The first model was 1-NN with DTW using Concatenation Transform, with

a 0.31 overall accuracy score, see Figure 5.1. Even though the average accu-

racy score of four classes exceeded the random likelihood, each class behaved

differently.

The overall accuracy rate of 1-NN with DTW using Concatenation Transform

is 31%

Figure 5.1: 1-NN with DTW using Column Concatenate Transform Accuracy
Score

According to Table 5.1, the precision for Score 1.0 was 7%, Score 2.0 24%,

Score 3.0 13% and Score 4.0 37%. Thus, Score 4.0 had the greatest accuracy

in this model. Recall reflected the percentage of correctly classified given that

instances belong to the classified class: Score 1.0 only had 5% correct hits, while

Score 2.0 had 24%, Score 3.0 had 13% and Score 4.0 had 37%. F1-score was the

weighted mean of precision and recall, and the best score was 0.37 for Score 4.0.

Our classifier reported 0.06, 0.25 and 0.13 for Score 1.0, Score 2.0 and Score 3.0

respectively.

In Figure 5.2, the Confusion Matrix shows the number of each class cor-

55

rectly predicted. Score 4.0 had the highest correct predictions. The majority

of incorrect predictions happened when Score 1.0, Score 2.0 and Score 3.0 were

predicted as Score 4.0. Some of Score 4.0 samples were predicted as Score 2.0.

Class Precision Recall F1-score Support

Score 1.0 0.07 0.05 0.06 19

Score 2.0 0.24 0.26 0.25 39

Score 3.0 0.13 0.13 0.13 30

Score 4.0 0.37 0.37 0.37 62

Table 5.1: 1-NN with DTW using Column Concatenate Transform for each class

Figure 5.2: 1-NN with DTW using Column Concatenate Transform Confusion
Matrix

56

5.1.2 Evaluation for TSF using Concatenation Transform

The second model was TSF which used Concatenation Transform. The

overall accuracy score for this model was 0.39, indicating that 39% of test sam-

ples were correctly predicted. It performed better than the first model, since

the first model’s overall accuracy was 0.31.

Figure 5.3: TSF using Column Concatenate Transform Accuracy Score
The overall accuracy rate of TFS using Concatenation Transform is 38%

From Table 5.2, it can be observed that the precision for Score 1.0 was

100%, which was the highest compared to all other class. Score 2.0 was 39%,

Score 3.0 was 14% and Score 4.0 was 42%. As a result, Score 1.0 had the highest

precision in this model. The recall for this model was quite different. Score 1.0

only had 5% correct hits, while Score 2.0 had 18%, Score 3.0 had 10% and Score

4.0 had 74%. Score 4.0 had a highest recall rate. F1-score was the weighted

mean of precision and recall, and the best score was 0.54 for Score 4.0. Our

classifier reported 0.10, 0.25, and 0.12 for Score 1.0, Score 2.0 and Score 3.0

respectively.

For the confusion matrix (Figure 5.4), it can be seen that Score 4.0 still had

more correctly predicted samples than other classes. Score 1.0 had the lowest

57

number of correct predictions. In this model, the misclassification still occured

when Score 1.0, Score 2.0 and Score 3.0 were predicted as Score 4.0.

Class Precision Recall F1-score Support

Score 1.0 1.00 0.05 0.10 19

Score 2.0 0.39 0.18 0.25 39

Score 3.0 0.14 0.10 0.12 30

Score 4.0 0.42 0.74 0.54 62

Table 5.2: TSF using Column Concatenate for each class

Figure 5.4: TSF using Column Concatenate Confusion Matrix

58

5.1.3 Evaluation for RISE using Concatenation Transform

RISE had the highest computational complexity compared to the previous

two models, which meant it took the longest time to run. However, it had a

higher accuracy score than other models. The accuracy score was 0.4, which

meant overall that 40% of test samples were predicted correctly. It was better

than the previous two models.

Figure 5.5: RISE using Column Concatenate Transform Accuracy Score
The overall accuracy of rate RISE using Concatenation Transform is 40%

From Table 5.3, the precision for Score 1.0 was 0%, which was lowest com-

pared to other classes. Score 2.0 was 22%, Score 3.0 was 17% and Score 4.0

was 42% which represented the percentage of correct classification. Score 4.0

still had the highest precision. The model did not predict Score 1.0 well. It

cannot predict Score 1.0 because of the amount of samples was too small. This

situation was mentioned in Chapter 3 that the dataset was imbalanced, since

most trainees got Score 4.0 and only a few of them got Score 1.0. The result

also explained that our models cannot predict imbalanced datasets correctly. It

had bias in the prediction.

Recall in this model was quite different. Score 1.0 had 0% correct hits,

while Score 2.0 had 5%, Score 3.0 had 3% and Score 4.0 had 92% respectively.

In that case, Score 4.0 had the highest recall rate. The highest f1-score was 0.58

59

for Score 4.0. The classifier reported 0, 0.08 and 0.06 for Score 1.0, Score 2.0

and Score 3.0 respectively.

The confusion matrix of RISE using Concatenation Transform was similar

with the TFS using Column Concatenate. The result showed that Score 4.0 had

more correctly predicted samples than other classes. Score 1.0 had the lowest

number of accurate prediction. In this model, the misclassification happened

when Score 1.0, Score 2.0 and Score 3.0 were predicted as Score 4.0.

Class Precision Recall F1-score Support

Score 1.0 0.00 0.00 0.00 19

Score 2.0 0.22 0.05 0.08 39

Score 3.0 0.17 0.03 0.06 30

Score 4.0 0.42 0.92 0.58 62

Table 5.3: RISE using Column Concatenate for each class

60

Figure 5.6: RISE using Column Concatenate Transform Confusion Matrix

5.1.4 Evaluation for 1-NN with DTW using Column En-

semble Transform

The previous three models were transformed by concatenating columns to-

gether. Other than generating a long list, the Column Ensemble Transform

applied classification on each feature and assembled the most possible one. The

1-NN with DWT by using Column Ensemble Transform achieved a 0.29 accu-

racy, which meant 29% of test samples were predicted correctly. It had a lower

accuracy score than 1-NN with DTW using Column Concatenate.

In Table 5.4, the precision for Score 1.0 was 0%, which was lowest compared

to all other classes. Score 2.0 was 28%, Score 3.0 was 20% and Score 4.0 was

41% which represented the percentage of correct classification. Score 4.0 had

61

Figure 5.7: 1-NN with DTW using Column Ensemble Transform Accuracy Score

the highest precision. The model cannot predict Score 1.0 well. The recall in

this model was quite different. Score 1.0 had 0% correct hits, while Score 2.0

had 28%, Score 3.0 had 23% and Score 4.0 had 42% respectively. As a result,

Score 4.0 had the highest recall rate compared all other models. The best f1-

score is 0.41 for Score 4.0. Our classifier reported 0, 0.28 and 0.22 for Score 1.0,

Score 2.0 and Score 3.0 respectively.

1-NN with DTW using Column Ensemble Transform cannot predict Score

1.0 properly. The result was similar with RISE using Concatenation Transform.

Neither of them can predict Score 1.0 correctly. The reason for this can be a

result of imbalance in the sample amount. Score 1.0 had less samples than other

class. In the confusion matrix, Score 4.0 had more correct predicted samples

than other classes. Score 2.0 had a specific number of correct prediction as well.

Comparing the result with 1-NN with DTW using Concatenation Trans-

form’s result, Concatenation Transform showed better than Column Ensemble

with K-NN model.

62

Class Precision Recall F1-score Support

Score 1.0 0.00 0.00 0.00 19

Score 2.0 0.28 0.28 0.28 39

Score 3.0 0.20 0.23 0.22 30

Score 4.0 0.41 0.42 0.41 62

Table 5.4: 1-NN with DTW using Column Ensemble for each class

Figure 5.8: 1-NN with DTW using Column Ensemble Transform Confusion
Matrix

5.1.5 Evaluation for TSF using Column Ensemble Trans-

form

The accuracy score of TSF using Column Ensemble Transform was 0.35,

it meant 35% test samples were predicted correctly. It achieved better perfor-

63

mance than 1-NN with Column Ensemble but lower than TFS using Concate-

nate Transform.

Figure 5.9: TSF using Column Ensemble Transform Accuracy Score
The overall accuracy of rate RISE using Concatenation Transform is 35%

In Table 5.5, precision for Score 1.0 was 0%, which was lowest compared to

all other classes. Score 2.0 was 21%, Score 3.0 was 0% and Score 4.0 was 40%.

Score 4.0 still had the highest precision in this model. It did not predict neither

Score 1.0 nor Score 3.0 well. The recall was different with previous models.

Score 1.0 had 0% correct hits, while Score 2.0 had 31%, Score 3.0 had 0% and

Score 4.0 had 60% respectively. In this case, Score 4.0 still had the highest recall

rate F1-score was 0.48 for Score 4.0, and 0, 0.25 and 0 for Score 1.0, Score 2.0

and Score 3.0 respectively.

In conclusion, TSF using Column Ensemble Transform can predict neither

Score 1.0 nor Score 3.0, since they both achieved low in all three evaluation

measures. It meant even the overall accuracy was not bad, this model cannot

be used to prediction of all classes.

From Figure 5.10, Score 1.0 and Score 3.0 were all 0. Score 4.0 still had

more correctly predicted samples than other classes.

64

Class Precision Recall F1-score Support

Score 1.0 0.00 0.00 0.00 19

Score 2.0 0.21 0.31 0.25 39

Score 3.0 0.00 0.00 0.00 30

Score 4.0 0.40 0.60 0.48 62

Table 5.5: TSF using Column Ensemble for each class

Figure 5.10: TFS using Column Ensemble Transform Confusion Matrix

5.1.6 Evaluation for RISE using Column Ensemble Trans-

form

The accuracy score of RISE using Column Ensemble Transform was 0.27,

which meant 27% of test samples were predicted correctly. The accuracy rate

65

was lower than other models. Considering its highest computational complexity,

this model was not considered as applicable model in this project. Because of

this, the model was not evaluated by other evaluation measures.

Figure 5.11: RISE using Column Ensemble Transform Accuracy Score
The overall accuracy of rate RISE using Concatenation Transform is 26%

66

5.1.7 Overall Comparison

Table 5.6 summarised the cumulative analysis of all versions. The highest

accuracy in this table was approximately 0.4. TFS, RISE outperformed K-NN

in terms of precision. For both transformation processes, TFS had a higher ac-

curacy. Column Ensemble was superior to RISE with Column Concatenation.

Column Concatenate preprocessing had higher average accuracy score than Col-

umn Ensemble preprocessing. In conclusion, Column Concatenate was a better

option for our project in terms of preprocessing.

Table 5.6: Overall Accuracy Comparison Through All Models
Transform Method K-NN TFS RISE

Column Concatenate 0.31 0.39 0.4

Column Ensemble 0.29 0.35 0.27

After comparing all models with each class, it can be found that Score 1.0

had the lowest performance except TSF using Column Concatenate. Score 4.0

had more correctly predict samples in the Confusion Matrix. Score 1.0, on the

other hand, had the least accurate forecast. It meant that certain models cannot

predict Score 1.0, and misclassified other classes in Score 4.0 during testing.

The next step was optimization. I tried to use more preprocession methods

to reduce misclassifications.

5.1.8 Computational Complexity

The analysis of the model is not limited to the accuracy rate, but also the

computational complexity. The computational complexity or simply complexity

of an algorithm is the amount of resources required to run it. To measure that,

67

the Big O is implemented. In computer science Big O notation is used to classify

algorithms according to how their run time or space requirements grow as the

input size grows [53].

In Chapter 2, each classification algorithm was discussed. The time and

space complexity of finding the KNN with DTW distance between two time

series is O(m2 ∗ n2) [20], where n and m are the lengths of the two input

sequences. Unlike KNN with DTW takes every time point to calculate, TFS

and RISE transfer the whole time series in sub sequences. Since they decrease

the time points to only k intervals, for n time series, the training complexity is

O(k ∗m ∗ n2) in which k is far less than m.

The two preprocessing algorithms also need to be compared. Column Con-

catenate is a linear function which the only scan a list of time series size, and the

computational complexity is O(m∗n), where m is the number of dimensions and

n is the lengths each time series [46]. Column Ensemble is a way of generating

each classifier with one dimension time series. The computational complexity

of Column Ensemble is decided by the max amount of time of classifier, which

should be O(Max(m ∗ n)).

The running time can be matured by using computer timing function. The

overall comparison of different classifiers for training and testing with 10-fold

cross validation is listed as the table by minutes.

Table 5.7: Overall Running Time Comparison Through All Models by Minutes
Transform Method K-NN TFS RISE

Column Concatenate 3.92 0.86 4.49

Column Ensemble 5.18 7.06 7.25

From Table 5.7, TFS with Column Concatenate has the lowest running time

68

which is 0.86 Minutes . RISE with Column Ensemble has the highest computa-

tional complexity, which 7.25 Minutes. Considering all classifiers’ performance,

TFS with Column Concatenate can be considered as the most efficient one. With

comparing between two transformation methods, it can be found that Column

Ensemble’s average result is higher than Column Concatenate. Therefore, if the

accuracy is similar, Column Concatenate is better for our experiment.

5.2 Optimization

From the initial experiment, the performances of the classifiers were not

satisfactory, where the highest score was only 0.4. This cannot be utilized in

real applications. Based on the analysis of the data feature – the imbalance of

four classes, the following optimization was utilized.

The main reason for the poor performance of the model could be the im-

balance of classes. Since the trainees were professional pilots with years of

experience, the majority of them achieved the full score. Figure 3.4 and Figure

3.7 showed that Score 4.0 had more samples than other classes. In the first

test, Score 4.0 had a higher accuracy rate than other classes. In conclusion, the

misclassification happened because of the imbalance of sample amount of each

class.

Another reason for the models’ poor performance might be the differences

between each class were minute, which indicated that classifier algorithm cannot

identify the threshold of each class. For example, the standards of Score 2.0 and

Score 3.0 might be similar. It might cause confusing during the model training

and testing.

69

To improve the performance, only Score 1.0 and Score 4.0 were used in

second experiment. Imbalanced-learn package in python was also used for

resampling purpose. The strategy was to take more samples from the minor

class and fewer samples from the major class.

In Table 5.8, the overall accuracy scores all increased. Not only did the

accuracy scores increase, the performance for each class was also better. From

Table 5.9 to Table 5.14, the performance of Score 1.0 classification showed a

continuous improvement. By resampling Score 1.0 and Score 4.0 using imbalance

learn in similar size, the models can predict two classes properly.

Table 5.8: Overall Accuracy Comparison Through All Models With Imbalance
Resampling
Transform Method K-NN TFS RISE

Column Concatenate 0.53 0.66 0.66

Column Ensemble 0.60 0.53 0.43

After comparing previous results, an improvement was outstanding here.

Table 5.10 to Table 5.15 showed precision and recall were balanced after re-

sampling. However, some issues still existed in current experiment. The first

was that number of samples was small, especially after resampling. In order

to obtain more accurate results, the models still needed more data for training

purpose. The second was that only one maneuver was used in the thesis, which

might not reflect the real situation. The third was that the select features were

also selected.

70

Class Precision Recall F1-score Support

Score 1.0 0.42 0.45 0.43 11

Score 4.0 0.67 0.63 0.65 19

Table 5.9: 1-NN with DTW using Column Concatenate Transform after opti-
mization of each class evaluation

Class Precision Recall F1-score Support

Score 1.0 0.62 0.62 0.62 13

Score 4.0 0.71 0.71 0.71 17

Table 5.10: TSF using Column Concatenate after optimization of each class
evaluation

Class Precision Recall F1-score Support

Score 1.0 0.36 0.36 0.36 11

Score 4.0 0.63 0.63 0.63 19

Table 5.11: RISE using Column Concatenate after optimization of each class
evaluation

Class Precision Recall F1-score Support

Score 1.0 0.43 0.55 0.48 11

Score 4.0 0.69 0.58 0.63 19

Table 5.12: 1-NN with DTW using Column Ensemble Transform after optimiza-
tion of each class evaluation

Class Precision Recall F1-score Support

Score 1.0 0.25 0.27 0.26 11

Score 4.0 0.56 0.53 0.54 19

Table 5.13: TFS using Column Ensemble Transform after optimization of each
class evaluation

71

Class Precision Recall F1-score Support

Score 1.0 0.36 0.36 0.36 11

Score 4.0 0.63 0.63 0.63 19

Table 5.14: RISE using Column Ensemble Transform after optimization of each
class evaluation

5.3 Summary

This chapter showed the results of the six models presented in Chapter 4.

However, the first result was not ideal, an optimization strategy was utilized

to improve the models’ performances. Even though the overall accuracy was

better after applying the optimization strategy, issues still remained.

72

Chapter 6

Conclusions and Future

Work

There is a long history in time series data mining, especially in time series

classification, and there are many outstanding practices and approaches. How-

ever, due to the special structure of the time series dataset, the preprocessing

techniques are inadequate for the application of classifiers. In the previous ex-

periments, the time series datasests which commonly used in experiments were

formatted in equal length. In this project, the difficulty was to utilize the chosen

classifier on a real aviation dataset which had various lengths.

In Chapter 4, Proportional Scaling was developed, which used fewer points

to represent the whole time series. The purpose of this preprocessing was to cut

each time series in same length. At the same time, DataFrame data structure

stored all time series. Those two steps made it possible to utilize the classifier

models. In this experiment, based on our data type, three classifiers and two

73

time series transformation methods were selected. In total, six different models

were created. The results of models were presented and compared in Chap-

ter 5. However the first results were not ideal, an optimization strategy was

implemented.

This was an innovative practice in time series classification, especially in the

aviation industry. The future work could be explored more on the preprocessing,

such as how to adjust sampling numbers, how to improve the classifier efficiency,

and how to deal with a huge amount of data in the real world.

74

Bibliography

[1] H. A. Dau, A. Bagnall, K. Kamgar, C.-C. M. Yeh, Y. Zhu, S. Gharghabi,

C. A. Ratanamahatana, and E. Keogh, “The UCR time series archive.”

[Online]. Available: http://arxiv.org/abs/1810.07758

[2] E. Keogh and T. Folias, “The ucr time series data mining archive, 2002,”

URL http://www. cs. ucr. edu/eamonn/TSDMA/index. html, vol. 7.

[3] A. Bagnall, H. A. Dau, J. Lines, M. Flynn, J. Large, A. Bostrom,

P. Southam, and E. Keogh, “The UEAmultivariate time series classification

archive, 2018.” [Online]. Available: http://arxiv.org/abs/1811.00075

[4] R. Agrawal, C. Faloutsos, and A. Swami, “Efficient similarity search in

sequence databases.” Springer Verlag, 1993, pp. 69–84.

[5] E. J. Keogh and M. J. Pazzani, “Derivative dynamic time warping,” in

Proceedings of the 2001 SIAM International Conference on Data Mining.

Society for Industrial and Applied Mathematics, pp. 1–11. [Online].

Available: https://epubs.siam.org/doi/10.1137/1.9781611972719.1

[6] B. Matthews, S. Das, K. Bhaduri, K. Das, R. Martin, and N. Oza, “Dis-

covering anomalous aviation safety events using scalable data mining al-

75

http://arxiv.org/abs/1810.07758
http://arxiv.org/abs/1811.00075
https://epubs.siam.org/doi/10.1137/1.9781611972719.1

gorithms,” Journal of Aerospace Information Systems, vol. 10, no. 10, pp.

467–475, 2013.

[7] A. Dempster, F. Petitjean, and G. I. Webb, “ROCKET: Exceptionally

fast and accurate time series classification using random convolutional

kernels.” [Online]. Available: http://arxiv.org/abs/1910.13051

[8] A. Bagnall, M. Flynn, J. Large, J. Lines, and M. Middlehurst, “A tale

of two toolkits, report the third: on the usage and performance of

HIVE-COTE v1.0.” [Online]. Available: http://arxiv.org/abs/2004.06069

[9] A. Shifaz, C. Pelletier, F. Petitjean, and G. I. Webb, “TS-

CHIEF: a scalable and accurate forest algorithm for time series

classification,” vol. 34, no. 3, pp. 742–775. [Online]. Available:

https://doi.org/10.1007/s10618-020-00679-8

[10] A. A. Ariyo, A. O. Adewumi, and C. K. Ayo, “Stock price prediction using

the arima model,” in 2014 UKSim-AMSS 16th International Conference

on Computer Modelling and Simulation. IEEE, 2014, pp. 106–112.

[11] Z. Őri, G. Monir, J. Weiss, X. Sayhouni, and D. H. Singer, “Heart rate

variability: frequency domain analysis,” Cardiology clinics, vol. 10, no. 3,

pp. 499–533, 1992.

[12] Y. H. Gu and M. H. Bollen, “Time-frequency and time-scale domain analy-

sis of voltage disturbances,” IEEE Transactions on Power Delivery, vol. 15,

no. 4, pp. 1279–1284, 2000.

[13] E. J. Keogh and M. J. Pazzani, “Derivative dynamic time warping,” in

76

http://arxiv.org/abs/1910.13051
http://arxiv.org/abs/2004.06069
https://doi.org/10.1007/s10618-020-00679-8

Proceedings of the 2001 SIAM international conference on data mining.

SIAM, 2001, pp. 1–11.

[14] H. F. Nweke, Y. W. Teh, M. A. Al-Garadi, and U. R. Alo, “Deep learning

algorithms for human activity recognition using mobile and wearable sensor

networks: State of the art and research challenges,” Expert Systems with

Applications, vol. 105, pp. 233–261, 2018.

[15] J. Wang, P. Liu, M. F. She, S. Nahavandi, and A. Kouzani, “Bag-of-words

representation for biomedical time series classification,” Biomedical Signal

Processing and Control, vol. 8, no. 6, pp. 634–644, 2013.

[16] A. Bagnall, J. Lines, J. Hills, and A. Bostrom, “Time-series classification

with COTE: The collective of transformation-based ensembles,” vol. 27,

no. 9, pp. 2522–2535, conference Name: IEEE Transactions on Knowledge

and Data Engineering.

[17] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. Keogh, “Query-

ing and mining of time series data: experimental comparison of representa-

tions and distance measures,” Proceedings of the VLDB Endowment, vol. 1,

no. 2, pp. 1542–1552, 2008.

[18] Y.-S. Jeong, M. K. Jeong, and O. A. Omitaomu, “Weighted dynamic

time warping for time series classification,” vol. 44, no. 9, pp. 2231–

2240. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/

S003132031000484X

[19] D. S. Hirschberg, “Algorithms for the longest common subsequence prob-

lem,” Journal of the ACM (JACM), vol. 24, no. 4, pp. 664–675, 1977.

77

https://linkinghub.elsevier.com/retrieve/pii/S003132031000484X
https://linkinghub.elsevier.com/retrieve/pii/S003132031000484X

[20] A. Shifaz, C. Pelletier, F. Petitjean, and G. I. Webb, “Ts-chief: A scalable

and accurate forest algorithm for time series classification,” Data Mining

and Knowledge Discovery, pp. 1–34, 2020.

[21] H. Deng, G. Runger, E. Tuv, and M. Vladimir, “A time series

forest for classification and feature extraction,” vol. 239, pp. 142–

153. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/

S0020025513001473

[22] J. Lines, S. Taylor, and A. Bagnall, “Time series classification

with HIVE-COTE: The hierarchical vote collective of transformation-

based ensembles,” vol. 12, no. 5, pp. 1–35. [Online]. Available:

https://dl.acm.org/doi/10.1145/3182382

[23] M. G. Baydogan, G. Runger, and E. Tuv, “A bag-of-features framework to

classify time series,” IEEE transactions on pattern analysis and machine

intelligence, vol. 35, no. 11, pp. 2796–2802, 2013.

[24] M. G. Baydogan and G. Runger, “Time series representation and

similarity based on local autopatterns,” vol. 30, no. 2, pp. 476–509.

[Online]. Available: http://link.springer.com/10.1007/s10618-015-0425-y

[25] L. Ye and E. Keogh, “Time series shapelets: a new primitive for data

mining,” in Proceedings of the 15th ACM SIGKDD international conference

on Knowledge discovery and data mining, 2009, pp. 947–956.

[26] T. Rakthanmanon and E. Keogh, “Fast shapelets: A scalable

algorithm for discovering time series shapelets,” in Proceedings of the

2013 SIAM International Conference on Data Mining. Society for

78

https://linkinghub.elsevier.com/retrieve/pii/S0020025513001473
https://linkinghub.elsevier.com/retrieve/pii/S0020025513001473
https://dl.acm.org/doi/10.1145/3182382
http://link.springer.com/10.1007/s10618-015-0425-y

Industrial and Applied Mathematics, pp. 668–676. [Online]. Available:

https://epubs.siam.org/doi/10.1137/1.9781611972832.74

[27] J. Grabocka, N. Schilling, M. Wistuba, and L. Schmidt-Thieme, “Learning

time-series shapelets,” in Proceedings of the 20th ACM SIGKDD inter-

national conference on Knowledge discovery and data mining, 2014, pp.

392–401.

[28] P. Schäfer, “The BOSS is concerned with time series classification in the

presence of noise,” vol. 29, no. 6, pp. 1505–1530. [Online]. Available:

http://link.springer.com/10.1007/s10618-014-0377-7

[29] M. Vlachos, G. Kollios, and D. Gunopulos, “Discovering similar multidi-

mensional trajectories,” in Proceedings 18th international conference on

data engineering. IEEE, 2002, pp. 673–684.

[30] L. Chen, M. T. Özsu, and V. Oria, “Robust and fast similarity search

for moving object trajectories,” in Proceedings of the 2005 ACM SIGMOD

international conference on Management of data, 2005, pp. 491–502.

[31] L. Chen and R. Ng, “On the marriage of lp-norms and edit distance,” in

Proceedings of the Thirtieth international conference on Very large data

bases-Volume 30, 2004, pp. 792–803.

[32] H. Anton and C. Rorres, “Elementary linear algebra:: John wiley& sons,”

Inc, New York, USA, vol. 9, 1994.

[33] M. R. Berthold and F. Höppner, “On clustering time series using euclidean

distance and pearson correlation,” arXiv preprint arXiv:1601.02213, 2016.

79

https://epubs.siam.org/doi/10.1137/1.9781611972832.74
http://link.springer.com/10.1007/s10618-014-0377-7

[34] E. Keogh, L. Wei, X. Xi, M. Vlachos, S.-H. Lee, and P. Protopapas, “Sup-

porting exact indexing of arbitrarily rotated shapes and periodic time se-

ries under euclidean and warping distance measures,” The VLDB journal,

vol. 18, no. 3, pp. 611–630, 2009.

[35] P. Roelofsen, “Time series clustering,” Vrije Universiteit Amsterdam, Am-

sterdam, 2018.

[36] S. Salvador and P. Chan, “Toward accurate dynamic time warping in linear

time and space,” Intelligent Data Analysis, vol. 11, no. 5, pp. 561–580, 2007.

[37] T. Rakthanmanon, B. Campana, A. Mueen, G. Batista, B. Westover,

Q. Zhu, J. Zakaria, and E. Keogh, “Searching and mining trillions of

time series subsequences under dynamic time warping,” in Proceedings of

the 18th ACM SIGKDD international conference on Knowledge discovery

and data mining - KDD ’12. ACM Press, p. 262. [Online]. Available:

http://dl.acm.org/citation.cfm?doid=2339530.2339576

[38] M. A. Rahim Khan and M. Zakarya, “Longest common subsequence based

algorithm for measuring similarity between time series: a new approach,”

World Applied Sciences Journal, vol. 24, no. 9, pp. 1192–1198, 2013.

[39] D. Zhang, W. Zuo, D. Zhang, H. Zhang, and N. Li, “Classification of pulse

waveforms using edit distance with real penalty,” EURASIP Journal on

Advances in Signal Processing, vol. 2010, pp. 1–8, 2010.

[40] K. Pearson, “Liii. on lines and planes of closest fit to systems of points in

space,” The London, Edinburgh, and Dublin Philosophical Magazine and

Journal of Science, vol. 2, no. 11, pp. 559–572, 1901.

80

http://dl.acm.org/citation.cfm?doid=2339530.2339576

[41] K. Yang and C. Shahabi, “A pca-based similarity measure for multivariate

time series,” in Proceedings of the 2nd ACM international workshop on

Multimedia databases, 2004, pp. 65–74.

[42] Z. Bankó and J. Abonyi, “Correlation based dynamic time warping of mul-

tivariate time series,” Expert Systems with Applications, vol. 39, no. 17, pp.

12 814–12 823, 2012.

[43] A. Bagnall, H. Dau, J. Lines, M. Flynn, J. Large, A. Bostrom, P. Southam,

and E. Keogh, “The uea multivariate time series classification archive, 2018.

arxiv e-prints,” arXiv preprint arXiv:1811.00075, 2018.

[44] Z. Cui, W. Chen, and Y. Chen, “Multi-scale convolutional neural networks

for time series classification,” arXiv preprint arXiv:1603.06995, 2016.

[45] J.-M. D. Maxie Claveau and K. Krishan, “Capstonr project report - opction

c: Aircraft training event detection,” 2019.

[46] M. Löning, A. Bagnall, S. Ganesh, V. Kazakov, J. Lines, and F. J. Király,

“sktime: A unified interface for machine learning with time series,” arXiv

preprint arXiv:1909.07872, 2019.

[47] K. Kanatani-Fujimoto, B. V. Lazareva, and V. M. Zatsiorsky, “Local pro-

portional scaling of time-series data: method and applications,” Motor

Control, vol. 1, no. 1, pp. 20–43, 1997.

[48] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural com-

putation, vol. 9, no. 8, pp. 1735–1780, 1997.

[49] E. Keogh and S. Kasetty, “On the need for time series data mining bench-

marks: A survey and empirical demonstration,” p. 23.

81

[50] M. W. Kadous and C. Sammut, “Classification of multivariate time se-

ries and structured data using constructive induction,” Machine learning,

vol. 58, no. 2-3, pp. 179–216, 2005.

[51] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to data mining.

Pearson Education India, 2016.

[52] J. Lines and A. Bagnall, “Time series classification with ensembles of

elastic distance measures,” vol. 29, no. 3, pp. 565–592. [Online]. Available:

http://link.springer.com/10.1007/s10618-014-0361-2

[53] A. Mohr, “Quantum computing in complexity theory and theory of com-

putation,” Carbondale, IL, vol. 194, 2014.

82

http://link.springer.com/10.1007/s10618-014-0361-2

	Acknowledgements
	Introduction
	Overview
	Objects
	Thesis Outline
	Summary

	Background
	Univariate Time Series Classification
	Similarity-based Techniques
	Interval-based Techniques
	Shapelet-based Techniques
	Dictionary-based Techniques

	Similarity Measures
	Euclidean Distance
	DTW
	Other Similarity Measurements

	Multivariate Time Series Classification
	Dimension Reduction by PCA
	Vertical Preprocessing
	Horizontal Preprocessing
	Image Topology Structure

	Evaluating the Models
	Summary

	Dataset and Environment
	Analysis of Pilot Performance Data
	Software
	Preprocessing
	Proportional Scaling
	Transfer Time Series Data Structure

	Summary

	Models
	Model 1: 1-NN with DTW
	Model 2: Time Series Forest (TSF)
	Model 3: Random Interval Spectral Ensemble (RISE)
	Column Concatenate Transform
	Column Ensemble Transform
	Implementation of Models
	Summary

	Results and Optimization
	Evaluating the Models
	Evaluation for 1-NN with DTW using Concatenation Transform
	Evaluation for TSF using Concatenation Transform
	Evaluation for RISE using Concatenation Transform
	Evaluation for 1-NN with DTW using Column Ensemble Transform
	Evaluation for TSF using Column Ensemble Transform
	Evaluation for RISE using Column Ensemble Transform
	Overall Comparison
	Computational Complexity

	Optimization
	Summary

	Conclusions and Future Work

