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Abstract 

Deep learning for removal of non-resonant background in CARS hyperspectroscopy 

George Aderopo Olaniyan 

 

In this work, a deep learning approach proposed by Valensise et al. [3] for extracting 

Raman resonant spectra from measured broadband CARS spectra was explored  to see how 

effective it is at removing NRB from our experimentally measured “spectral-focusing”-

based approach to CARS. A large dataset of realistic simulated CARS spectra was used to 

train a model capable of performing this spectral retrieval task. The non-resonant 

background shape used in creating the simulated CARS spectra was altered, to mimic our 

experimentally measured NRB response. Two models were trained: one using the original 

approach (Specnet) and one using the updated NRB “Specnet Plus”, and then tested their 

ability to retrieve the vibrationally resonant spectrum from simulated and measured CARS 

spectra. An error analysis was performed to compare the model's retrieval performance 

on two simulated CARS spectra. The modified model's mean squared error value was five 

and two times lower for the first and second simulated CARS spectra, respectively. Specnet 

Plus was found to be more effective at extracting the resonant signals. Finally, the NRB 

extraction abilities of both models are tested on two experimentally measured CARS 

hyperspectroscopy samples (starch and chitin), with the updated NRB model (Specnet 

Plus) outperforming the original Specnet model. These results suggest that tailoring the 

approach to reflect what we observe experimentally will improve our spectral analysis 

workflow and increase our imaging potential. 
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Preface to the thesis and Outline  

Hyperspectral Coherent anti-Stokes Raman Scattering (CARS) is very influential in the 

world of material characterization. This technique provides non-invasive imaging and 

probes the chemical information of different molecules without labeling [1]. It was first 

implemented by Duncan et al.  [2] and has evolved into a technique widely used to study 

the structural and chemical composition of various compounds. In CARS, two beams of 

laser light are typically used to excite the sample simultaneously; one beam is referred to 

as the pump beam, and the other is the Stokes beam [1]. Infamously, CARS suffers from 

the presence of a non-resonant background (NRB) that reshapes the observed CARS 

spectrum, degrading spectral analysis [3]. Finding a solution to this problem has been the 

primary motivation for this thesis project. Over the past few decades, several mathematical 

approaches have been employed to these ends, such as the Time Domain Kramers-Kronig 

method (TDKK) [4] and the maximum entropy method (MEM) [5], yet they all have their 

limitations when it comes to fully eliminating NRB signals [3]. Recently, machine learning 

has become a leading tool for data analysis and performing various applications, such as 

image classification for cancer detection [6]. Due to its recognition as a tool used for 

learning and classifying features from images, several machine learning approaches have 

already been developed to solve this problem in CARS. In this work, I explore a deep 

learning approach used by Valensise et al.  [3] to remove these unwanted signals from 

measured multiplex or broadband CARS spectra and I study how best to integrate this 

method into our unique experimental approach to spectral-focusing CARS (SF-CARS) 

microscopy.  
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In this thesis, I report how I integrated this approach into out SF-CARS setup, the 

modification I made to the process, how the model performed with and without the change, 

and some future considerations to improve this work. Chapter 1 introduces the main 

concepts necessary to understand this work, such as Raman scattering, non-linear optical 

processes, and deep learning, and provides a background for the remaining chapters. Since 

this work revolves around improving spectral analysis in CARS, chapter 2 provides a more 

detailed review of the theory behind the CARS process, spectrum formation, and how the 

NRB signals distort the shape of the measured spectrum.  The different variations to the 

basic CARS process and the different experimental implementations of hyperspectral 

CARS are then discussed. A detailed description of our spectral-focusing CARS setup is 

also presented.   

The third chapter introduces convolutional neural networks and the Specnet framework, 

which is the deep learning approach in [3]. I outline the theory behind the process, and the 

results in applying the model to experimentally obtained hyperspectral data from our setup.  

Finally, I discuss the modification I made to the approach to better fit our setup.  

Chapter 4 presents the results of using this deep learning approach with and without 

the modification on simulated and experimentally measured CARS spectra. The fifth 

chapter summarizes the thesis and offers suggestions for future improvements. 
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Chapter 1  

Background Ideas: Raman Scattering, non-linear optical 

processes, and machine learning. 

Machine learning and Raman spectroscopy are the two areas of research that form the 

foundation of this project. This chapter will provide the required foundation knowledge to 

comprehend how these two fields were combined in this work. Raman spectroscopy is a 

non-invasive and label-free technique used to probe the vibrational mode of a sample of 

interest [7]. Raman spectroscopy has been prominently used to perform a variety of 

applications in several fields, such as biology [8], medicine [9], and so on.  Spontaneous 

Raman scattering or Raman effect, the phenomenon on which the Raman spectroscopy is 

based, will be introduced in Section 1.1. Although spontaneous Raman scattering has many 

benefits, it is relatively weak in most applications. Hence several enhanced Raman 

techniques have been developed with the introduction of new instrumentation, such as 

ultrafast lasers, to circumvent this drawback. [10]. These variants include surface-enhanced 

and non-linear Raman techniques. This work primarily deals with a non-linear Raman 

technique named Coherent Anti-Stokes Raman Scattering (CARS). Section 1.2 will discuss 

several non-linear optical processes and their relationship with Raman scattering, a linear 

optical process.  

Machine learning is covered in the later section of this chapter. A “deep learning” strategy 

was specifically enlisted for this project, which is a subset of machine learning. 

Understanding deep learning as a concept is required to comprehend the complexity of the 
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approach employed in this work. Section 1.3 gives the reader a base knowledge of the 

relationship between machine learning and deep learning. It also introduces neural 

networks which are used to implement deep learning algorithms. 

1.1 Raman Scattering 

When a sample interacts with a light beam, there are two types of scattering that can occur. 

The first of which is known as Rayleigh scattering, an elastic process, in which energy is 

conserved, and the emerging light is of the same frequency (𝐸 = 𝐸0) [11].  The other type 

is Raman scattering, an inelastic process consisting of a photon's absorption or emission 

and a phonon's emission or absorption. [11]. As described in Figure 1.1, when the emitted 

photon's energy is less than that of the incident photon ( 𝐸 < 𝐸0), this is known as the 

Stokes process, whereas when it's greater than the energy of the incident photon ( 𝐸 > 𝐸0), 

it is referred to as the anti-Stokes process [11].  
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Figure 1.1: All three different types of light scattering. Rayleigh Scatter (green photon), 

Stokes Raman Scatter (red photon), anti-Stokes Raman Scatter (blue photon). The image 

is adapted from [12]. 

The energy difference between the two processes corresponds to the energy necessary to 

excite a specific vibration mode, as seen in Figure 1.2. When these scattered photons are 

detected, a Raman spectrum is created, with several bands representing the vibrational 

frequencies of various functional groups [13]. 
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Figure 1.2: Jablonski energy diagram representations of Stokes and anti-Stokes Raman 

Scattering. (a) Stokes Raman Scattering.  (b) Anti-Stokes Raman Scattering. The Stokes 

process leaves the molecule in a vibrationally-excited state. The anti-Stokes process starts 

with a vibrationally-excited state and returns the molecule to a lower excited state or the 

ground state. 

When the emitted photon is shifted towards a longer wavelength, this is known as the 

Stokes shift. In contrast, the anti-Stokes shift when the photon is shifted toward a shorter 

wavelength. The change in wavelength for the Stokes and the anti-Stokes signals is 

expressed as:  

 

 1

𝜆𝑆
=

1

𝜆𝑃
− Ω𝑅    𝑆𝑡𝑜𝑘𝑒𝑠  

 

(1.1) 

 

 1

𝜆𝐴𝑆
=

1

𝜆𝑃
+ Ω𝑅    𝑎𝑛𝑡𝑖 − 𝑆𝑡𝑜𝑘𝑒𝑠   

 

(1.2) 
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where, 𝜆𝑃, is the incident light's wavelength, 𝜆𝐴𝑆, is the anti-Stokes wavelength, 𝜆𝑆 is the 

Stokes wavelength and, Ω𝑅, is the frequency of the vibrational mode. As we know, each 

molecule has a distinct structure and set of vibration modes. Raman microscopy and other 

succeeding techniques developed via Raman scattering are used to probe the vibrational 

modes of each molecule in a sample of interest.   

 

1.2 Non-linear optical processes: A brief review 

This work focuses mainly on CARS microscopy, but we must consider several other non-

linear optical phenomena. Non-linear optical processes occur when two or more photons 

interact simultaneously with a sample material [14]. As described in [15], the sample's 

induced (non-linear) polarization, P, is related to the electric field strength, E. This 

relationship is expressed as:  

 

 𝑃 = 𝜖0[𝜒
(1 𝐸 + 𝜒(2 𝐸2 + 𝜒(3 𝐸3 + ⋯+ 𝜒(𝑁 𝐸𝑁] 

 

(1.3) 

where  𝜖0 is the permittivity of free space,  𝜒(𝑁  and 𝐸𝑁, are the nth-order (non-linear) 

susceptibility and corresponding electric field, respectively. The first term in equation 1.3 

is the polarization contribution of linear optical processes (Raman scattering), and the 

higher-order polarization contributions are “non-linear” processes. The value of optical 

susceptibility decreases rapidly with increased order (i.e., 𝜒(1 , is several orders of 

magnitude larger than 𝜒(2  and so on) [15]. However, the weaker effect from the higher-

order contributions is overcome with the use of an ultrafast signal generation. With the use 
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of ultrafast lasers that can generate sufficiently high field strengths, the higher-order terms 

can become comparable to the linear term and thus the high-order term are measurable. 

Second harmonic generation (SHG) and sum frequency generation (SFG) occur because 

of the second-order response described by, 𝜒(2 , the second term in equation 1.3. They both 

occur when two photons interact with a sample material. Two-photon excitation 

fluorescence (TPEF), CARS, and third harmonic generation (THG) are due to the third-

order response, 𝜒(3 . These third-order non-linear processes are also referred to as four-

wave mixing (FWM) processes. Four-wave mixing occurs when three incident laser fields 

with frequencies 𝜔1, 𝜔2, and 𝜔3, interacts with sample material, 𝜒(3 , to generate signal 

field at frequency, 𝜔4  [16].  

Non-linear optical processes are often integrated simultaneously into a multimodal 

microscopy system. Our multimodal system includes SHG, TPEF, and CARS. Figure 1.3 

below shows the energy diagrams for SHG, TPEF, and CARS. Our multimodal setup is 

presented and further discussed in Chapter 2. The following subsections (1.2.1-1.2.3) 

briefly discuss these processes, their probing mechanism, and the type of molecule or 

material each technique can examine. 
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Figure 1.3: Jablonski energy diagram for (a) Two-Photon Excitation Fluorescence (TPEF), 

(b) Second Harmonic Generation (SHG), and (c) Coherent Anti-Stokes Raman Scattering 

(CARS). 𝜒(2  , indicates the processes that occur due to the second-order response (SHG), 

whereas TPEF and CARS is due to the third-order response, 𝜒(3 .  

 

1.2.1 Two-Photon Excitation Fluorescence (TPEF) 

In the microscopic implementation of multiphoton excitation, in which two or more 

photons induce an electronic transition from the ground state to the excited states via the 

virtual electronic states, the signal generation is proportional to the intensity of the 

excitation light squared [15]. The process described is shown in Figure 1.3 (a). Unlike one-

photon excitation, where a single photon is used to excite a fluorescent molecule in the 

ultraviolet or visible range (400nm-500nm), in TPEF, the fluorescent molecule is excited 

in the infrared range (800nm-1000nm). Thus, the excitation is different, but the molecule 

fluorescence is the same. These allow for increased depth penetration and reduced 

photodamage of live cells and tissues [15]. This has led to several applications in the 

biomedical field, such as neuroscience [17], cellular and tissue imaging [18], and several 

other applications. 
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1.2.2 Second Harmonic Generation (SHG) 

 For the SHG process, two pump photons with a frequency, 𝜔𝑝,  interact with a target 

molecule to produce a beam precisely double the original frequency (𝜔𝑆𝐻𝐺 = 2𝜔𝑝 , i.e at 

half the wavelength. SHG can only occur in materials that exhibit non-centrosymmetric 

structures (i.e., those without a center of inversion symmetry) [14]. Examples of materials 

that exhibit this symmetry are collagen and pharmaceutical crystals [14].   However, it is 

worth noting that THG, which is due to the third-order response described by, 𝜒(3 , or as 

an indirect two-step process involving SHG and SFG, can occur in materials that exhibit 

both centrosymmetric and non-centrosymmetric structures [15].  

 

1.2.3 Coherent Anti-Stokes Raman Scattering (CARS) 

As mentioned in the section preface, CARS microscopy is based on four-wave mixing 

process. In this process, as seen in Figure 1.3 (c), the pump, Stokes, and probe beams with 

frequencies, 𝜔𝑝, 𝜔𝑆, and 𝜔𝑝𝑟, respectively interact with the target sample to yield an anti-

stoke signal with a frequency, 𝜔𝐴𝑆. This normally weak signal is amplified, when the 

frequency difference between the pump and Stokes beams matches a vibration mode (Ω𝑅) 

of the material. The sample of interest can thus be probed over various vibrational 

frequencies to achieve label-free imaging and spectroscopy. The CARS process is 

discussed in more detail in Chapter 2.  
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1.3 Machine Learning: A brief review 

Artificial Intelligence (AI), arising from the use of machines to perform different tasks on 

their own, has been a practical approach to human learning and reasoning [19]. Early AI 

implementation focused on using a predefined set of rules provided by an expert to make 

predictions [20]. However, a less rigid structure is often needed due to the increased scale 

and amount of data. These constraints have led to the need for a more data-driven approach, 

such as machine learning (ML) and data mining.  Machine learning, a subset of AI, has 

widespread use in research to learn from training datasets fed into the algorithm to predict 

outcomes in various applications, including text mining, spam detection, and image 

classification [21]. The different approaches to ML include Clustering, Bayesian networks, 

Deep Learning, and Decision Tree Learning [19]. This section will highlight Deep learning 

(DL), as it’s the approach used. Figure 1.4 helps visualize how DL relates to machine 

learning (ML) and artificial intelligence (AI). 
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Figure 1.4: The deep learning family tree depicting the relationship between artificial 

intelligence, machine learning, and deep learning. Artificial Intelligence is the umbrella 

term for various computational methods of human reasoning and learning. One of these 

computational methods is machine learning, which focuses on using data to mimic human 

learning while also increasing learning accuracy. Deep learning is a branch of machine 

learning that employs artificial neural networks for data analysis and prediction. 

 

1.3.1 Deep Learning: 

The DL concept was introduced in 2006 [19] as a novel approach to machine learning. DL 

algorithms use numerous layers of perceptron, described in Figure 1.6, with each providing 

a different representation of the data fed to them. DL enables learning to be achieved in a 

single shot, by automating the learning and classifying different features for several types 

of datasets [21]. This is not the case for conventional ML techniques which require human 

intervention for the feature extraction step. Deep learning approaches are categorized into 

supervised and unsupervised learning. Supervised learning is a deep learning approach that 
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uses labeled data where the model input and output are both defined [22]. Labeling entails 

adding predefined tags, such as name, number, and color, to the raw datasets allowing the 

model to learn from an example. An example of this can be specifying whether an input 

image is that of a cat or dog. For unsupervised learning, the model learns by analyzing an 

unlabeled dataset and identifying hidden structures or similarities between each data point.  

The approach used for this work is supervised learning as further discussed in Chapter 3. 

 

1.3.2 Neural Networks 

Deep learning is designed using a multilayer algorithm known as a neural network. The 

building blocks of a neural network constitute the processing elements and nodes, whose 

functionality is based on the nervous system [23]. Each perceptron or neuron connects to 

another of its kind to form a neural network or multi-layer perceptron, and each has 

associated weights and thresholds [24]. When each node's output exceeds the specified 

threshold value in the layer, the node is activated, sending data to the next layer. Data is 

not passed to the next layer if this threshold constraint is not met. Figure 1.5 shows the 

constituent of each perceptron; a neural network unit. The perceptron comprises two steps:  

the first step calculates the weighted sum of the input functions, and the second is an 

activation function that transforms the output to a desired non-linear format before it is 

passed to the next layer in the network. The first step is mathematically expressed as [24] 
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∑𝑤𝑖𝑥𝑖 + 𝑏 = 𝑤1𝑥1 + 𝑤2𝑥2 + ⋯+ 𝑤𝑛𝑥𝑛 + 𝑏 

𝑛

𝑖=1

 
 

(1.4) 

 

where, 𝑥1 through 𝑥𝑛, are the input data, denoted by the vector 𝑥 on the left side of the 

equation; 𝑥𝑖, represent the 𝑖𝑡ℎ entry from the dataset; weights, 𝑤1, through 𝑤𝑛 can be 

denoted by the matrix, 𝑤𝑖; and b is the constant bias term. 

 

 

Figure 1.5: A perceptron; a single-layer neural network unit. The weighted sum is 

calculated in Step 1. In step 2, an activation function is used to transform the output to a 

desired non-linear format. 

In the second step, the activation function helps map the summation result to the desired 

range [24]. Activation functions, including the sigmoid or logistic activation function, tanh 

activation function, rectified linear unit (ReLU) activation function, and so forth, are used 

for this non-linearity operation. The simplest neural network architecture is made up of 

three layers, commonly referred to as a "feed-forward neural network": an input layer, one 

 1

 2
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or more hidden layers, and an output layer [24]. Its inputs are processed in the forward 

direction; the input layer gathers the information, then passes it to the hidden layer for 

processing, and the output layer shows the processed results. This neural network is the 

primary form of other neural networks such as recurrent neural networks (RNNs) and 

convolutional neural networks (CNNs). CNNs in particular are used for applications that 

have to do with images due to their ability to learn from data with grid patterns, which 

makes it suitable for this work due to the nature of our data (hyperspectral images) [25]. 

The conventional CNN architecture will be further described in Chapter 3, along with how 

it was applied to this project. 
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Chapter 2    

Hyperspectral Coherent Anti-Stokes Raman Scattering  

 

2.1 Chapter Preface  

This chapter provides insight into the origins of Coherent Anti-Stokes Raman Scattering 

(CARS) microscopy, the theory behind the process, spectrum formation, and how the non-

resonant background (NRB) influences the shape of the CARS spectrum. The different 

variations in the basic CARS process and the different experimental implementations of 

hyperspectral CARS microscopy are mentioned. A schematic of our particular 

implementation of spectral-focusing CARS (SF-CARS) is presented. The chapter also 

presents an example of a hyperspectral image obtained from a sample of crystalline 

sucrose, highlight how the NRB distorts the observed CARS spectrum.  

 

2.2 Introduction  

CARS was first reported as a third-order non-linear optical process in 1965 by Terhune et 

al.  [26] at Ford Motor Company.  The name was not coined until a decade later, when it 

was used to study the chemical reaction between benzene and toluene by Begley et al.  [27]. 

The first use of CARS as an imaging technique was in 1982 by Duncan et al.  [2], who 

performed cellular imaging by temporally synchronizing the pulses to achieve phase-

matching [2]. The introduction of femtosecond lasers led to the discovery of several other 
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non-linear processes and influenced further developments in CARS implementation. [1]. 

In 1999, Zumbusch et al.  achieved CARS microscopy by changing the pump beam 

configuration to overlap co-linearly with the Stokes beam, using a femtosecond laser for 

close focusing to perform three-dimensional imaging [28]. The work by Zumbusch et al.  

gained CARS its recognition as a label-free alternative to existing fluorescence techniques 

for material characterization.  

CARS offers a solution to the low-yield signal obtained in spontaneous Raman scattering, 

especially for microscopy [15]. Although it is a non-linear optical analog of Raman, due to 

its coherent nature, CARS processes can produce more than 105 times higher signal than 

the Raman process [15]. However, it also suffers drawbacks such as a square dependence 

on concentration, for example. So, it's not always better for dilute and trace sample 

characterization.  

 

2.3 CARS basics  

The CARS process involves interaction between three light beams denoted pump (𝜔𝑝𝑢 , 

probe (𝜔𝑝𝑟), and Stokes (𝜔𝑠 , to yield an anti-Stokes signal (𝜔𝑎𝑠 . This signal is amplified 

when the frequency difference between the pump and Stokes beams matches a Raman-

active vibrational mode (Ω𝑅  of the molecules in the sample [29]. 

As a third-order non-linear process, the electric field of the anti-Stokes signal and its 

corresponding angular frequency are given by [30]: 
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 𝐸𝑎𝑠(𝜔𝑎𝑠 = 𝜒(3 𝐸𝑠(𝜔𝑠 𝐸𝑝𝑟(𝜔𝑝𝑟 𝐸𝑃(𝜔𝑃  (2.1) 

   

 𝜔𝑎𝑠 = 𝜔𝑃 + 𝜔𝑝𝑟 − 𝜔𝑠 (2.2) 

 

where  𝐸𝑠, 𝐸𝑝𝑟, 𝐸𝑃 , are the Stokes, probe, and pump fields, respectively; 𝜔𝑠, 𝜔𝑝𝑟, 𝜔𝑃, 

denotes the frequencies of the fields, respectively. 𝜒(3  denotes the third-order non-linear 

susceptibility.  

For most CARS setups, the source of the pump and probe light is the same. This is referred 

to as a “degenerate” four-wave mixing (FWM), in which case equation 2.1 is expressed as: 

 

  𝐸𝑎𝑠 = 𝜒(3 𝐸𝑠𝐸
2
𝑃 (2.3) 

 

For degenerate FWM, 𝜔𝑃 = 𝜔𝑝𝑟 , and the corresponding angular frequency of the anti-

Stokes is given by: 

 

 𝜔𝑎𝑠 = 2𝜔𝑃−𝜔𝑆 (2.4) 

 

 

Theoretically, the anti-Stokes intensity for degenerate FWM will be proportional to the 

squared modulus of the non-linear susceptibility  |𝜒(3 |2 and is described as follows [15]: 
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 𝐼𝑎𝑠 ∝ 𝐼𝑃
2𝐼𝑆|𝜒

(3 |2 (2.5) 

 

where, 𝐼𝑃 and 𝐼𝑆, are the pump and Stokes intensities, respectively. The non-linear 

susceptibility, 𝜒(3 , is the sum of the non-resonant part, 𝜒𝑛𝑟
(3 

, commonly referred to as the 

non-resonant background, which appears due to off-resonance electronic contributions. 

The vibrationally-resonant part, 𝜒𝑟
(3 

, which contains the chemical information of the 

sample of interest. The energy diagram for both the resonant and non-resonant FWM is 

depicted in Figure 2.1. 
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Figure 2.1: (a) Energy diagram representation for both Raman resonant (CARS) and non-

resonant FWM (NRB) processes.  This process involves the frequency mixing of three light 

sources, namely the Stokes, probe, and pump, with angular frequency 𝜔𝑠, 𝜔𝑝𝑟, 𝜔𝑃 

respectively, to produce an anti-Stokes signal with angular frequency 𝜔𝑎𝑠. The anti-Stokes 

signal is amplified when the frequency difference between the pump and Stokes beam 

matches a vibrational mode of a molecule in a sample. (b) Energy diagram for electronic 

non-resonant FWM. The interaction between the pump and stokes beam within a molecule 

to generate a signal denoted anti-Stokes despite the fact no vibrational mode is probed. 

The equation for the non-linear susceptibility, 𝜒(3 , is simply [15] 

 

 𝜒(3 = 𝜒𝑛𝑟
(3 

+ 𝜒𝑟
(3 

. 

 

(2.6) 
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The resonant part, 𝜒𝑟
(3 

, is a complex function described as a Lorentzian function mirroring 

a spontaneous Raman line [31]. It is expressed as: 

 

 
𝜒𝑟

(3 =
𝐴𝑅

Ω𝑅 − ( 𝜔𝑃 − 𝜔𝑠 + 𝑖Γ
 

 

(2.7) 

where 𝐴𝑅 is the amplitude, or “oscillator strength”,  Ω𝑅, is the vibrational frequency, and  

Γ is the linewidth of the vibration resonance.  

 

The anti-Stokes intensity for equation 2.5 can be expanded as: 

 

 𝐼𝑎𝑠 ∝ |𝜒(3 |
2
 

= |𝜒𝑛𝑟
(3 + 𝜒𝑟

(3  |
2

 

= |(𝜒𝑟
(3  2 + (𝜒𝑛𝑟

(3  2 + 2𝜒𝑟
(3 𝜒𝑛𝑟

(3 |. 

 

(2.8) 

 

A simulated plot of equation 2.8 (shown in Figure 2.2) highlights how the combination of 

the resonant and non-resonant contributions distorts the shape of a CARS spectrum. This 

simulation considers the complex function presented in equation 2.7. The blue line 

represents the resonant part of the non-linear susceptibility, (𝜒𝑟
(3  2, containing the 

sample’s chemical information. The dashed red line represents the purely non-resonant 
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contributions, (𝜒𝑛𝑟
(3 

 2, which is assumed constant and is not frequency-dependent [32].  

NRB is predominantly comprised of electronic signal contributions from other non-linear 

optical phenomena, that are less chemically specific [33]. 

 

Figure 2.2: Constituents of a CARS spectrum. The vibrational resonance is set to 1000 

𝑐𝑚−1. 𝜒𝑛𝑟
(3 

 is set constant at 0.5, the amplitude is set to 2, the linewidth is set to 5, while 

both 𝐼𝑃 and 𝐼𝑆, are set to 1. The third term, the mixing term, majorly influences the shape 

of the observed anti-Stokes signal. The dashed vertical line (black) was placed at the 

vibrational resonance (1000 𝑐𝑚−1) to show the shifting of the peak in 𝐼𝐴𝑆. The image and 

image description are adapted from [32]. 

 

The green line represents the third term, 2𝜒𝑟
(3 

𝜒𝑛𝑟
(3 

, an implication of the quadratic 

expansion of equation 2.5, a mixture of both the resonant and non-resonant parts. This term 

 he actual

resonance

 he   R  

signal 
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is mainly responsible for reshaping the vibrational peaks into a dispersive line shape [31], 

as seen in Figure 2.2. Due to the complex nature of equation 2.8, this third term cannot be 

subtracted, making retrieval of the resonant term complex. The plot shown in Figure 2.2 is 

not an actual representation of experimentally measured CARS spectra but showcases how 

NRB reshapes the observed spectrum. Experimentally, other factors might also add to the 

complexity of experimental CARS spectra. Such factors include laser source noise, low 

target molecule concentration, symmetry of the functional group, and scattering losses. 

Several methods have been implemented to remove NRB from measured CARS spectra, 

leaving it with resonant parts. Clearly, simple subtraction of the (𝜒𝑛𝑟
(3  2 is not enough 

because of the 2𝜒𝑟
(3 

𝜒𝑛𝑟
(3 

 term.  Mathematical methods of spectral retrieval such as methods 

such as the time domain Kramers-Kronig method (TDKK), and maximum entropy method 

(MEM) have their limitations when it comes to performing this task [3], [6]. The next 

chapter discusses a deep learning approach's practicality in removing NRB from measured 

hyperspectroscopy.  

 

2.4 Variations of the primary CARS method 

Even though the focus of this work is removing non-resonant signal from CARS signals 

collected in the forward direction, I still want to draw attention to other CARS variations 

because our lab has recently explored these other approaches, and thus they may benefit 

from the DL approach described later in Chapter 3. The basic CARS configuration, also 

known as forward-detected (F-CARS), occurs when the resonant and non-resonant signals 

propagate in the same direction. Different variations include backward-detected or “epi-
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detected”   R  (epi-CARS), and polarization CARS (P-CARS). epi-CARS is 

implemented by detecting backward propagating resonant signals using dichroic mirrors 

[34]. Compared to F-CARS, epi-CARS is extremely sensitive to the sample's size and 

shape since epi-signals can be greatly suppressed by destructive interference. [35]. 

However, epi-CARS exhibits lower NRB and can be used to detect small scatters in the 

sample’s background, so it is advantageous to simultaneously detect both the forward and 

epi-scattered signals.   

P-CARS works by exploiting the polarization difference between the resonant and non-

resonant signals before detection [34]. P-CARS considerably enhances CARS sensitivity 

of weak Raman resonances by suppressing the background observed in the transparent 

media [36], [37]. In this method, the pump and Stokes beams are purposefully polarized in 

different planes. A significant CARS signal is produced by controlling the laser 

polarizations and inserting a polarization analyzer before the detector, to extinguish the 

non-resonant signal and pass a portion of the vibrationally resonant signal. While P-CARS 

is known to reduce the influence of NRB, this comes at the cost of the observed CARS 

signal intensity [37].  

 

2.5 Hyperspectral CARS Implementations 

Historically, the first implementation of CARS microscopy employed a narrowband pump 

and Stokes beam to excite a single Raman mode at a time [1], [28], [38]. This approach is 

most commonly implemented using a picoseconds optical parametric oscillator (ps-OPO).  

A primary laser output is split into two beams, one of which serves as the Stokes beam and 
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the other for synchronously pumping an ps-OPO to generate the pump beam [39]. This 

scheme allows for high-speed imaging, but it does not discriminate against molecules 

having overlapped Raman modes, which is a disadvantage in spectral analysis. A multi-

color approach to this scheme gives way to “hyperspectral imaging” via wavelength 

sweeping [39]. 

Hyperspectral imaging provides a spectral profile for each pixel [38].  As seen in Figure 

2.3 (a), wavelength sweeping uses two narrowband beams and continuously tunes the 

frequency of one of the beams over a range to perform hyperspectral imaging [38].  

Hyperspectral imaging is also achieved in two other implementations, broadband CARS 

(B-CARS) and spectral-focusing CARS (SF-CARS). The broadband scheme utilizes a 

narrowband pump beam and broadband pump beam to excite all the sample's vibrational 

modes simultaneously (Figure 2.3 (b)). The CARS signals are collected by an array 

detector, such as a cooled charge-coupled device (CCD) acting as a spectrometer [40]. By 

contrast, the spectral focusing scheme (SF-CARS) involves spatially overlapping a pump 

beam with a portion of supercontinuum Stokes, wherein the frequency difference 

corresponds to a single vibrational mode made possible through chirp-matching (Figure 

2.3 (c)) [41]. Chirp-matching is the idea of matching the frequency vs time dependence of 

both beams (pump and Stokes) to focus their frequency difference at a single vibrational 

resonance [41]. Imaging is done by scanning the overlap of both chirped beams at different 

frequencies, by delaying one pulse with respect to the other and collecting the observed 

signals with a single detector, such as a photomultiplier tube (PMT). The last two schemes 

(B-CARS and SF-CARS) are both plagued by NRB which often dominates the weaker 

resonant signal of interest [40]. The deep learning approach described later in this thesis 
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was originally employed to solve this problem for B-CARS, the approach was modified to 

perform the same task on our one-of-a-kind spectral focusing scheme. Our spectral 

focusing scheme used to perform hyperspectral CARS is introduced in section 2.6. 
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Figure 2.3:  Different schemes used to implement hyperspectral CARS. (a) The single 

frequency scheme is based on the frequency-tuning of the narrowband pump and Stokes 

beam. (b) The broadband scheme is achieved by simultaneously exciting all the vibrational 

modes using a narrowband beam and broadband Stokes beam. (c) The spectral focusing 

scheme (SF-CARS) is based on spatially overlapping a narrowband or broadband pump 

with a portion of supercontinuum Stokes where the difference corresponds to a vibrational 

mode; this scheme is achieved by chirp matching the pulses. The image is adapted from 

[38]. 
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2.6 The Spectral-Focusing CARS Scheme 

A scheme for our SF-CARS setup is shown in Figure 2.3. As described in both [32] and 

[37], a Ti: Sapphire laser (Spectra-Physics Tsunami) generates an 800 nm beam with a 

tunable pulse duration ranging from 70 femtoseconds to 200 femtoseconds. The laser 

output is split into two paths: One beam serves as the degenerate pump and probe beam, 

and the other path is used for the Stokes beam. The first beam is sent to a computer-

controlled optical delay stage (Thorlabs DDS220) before recombining with the Stokes. The 

delay stage controls the temporal overlap between the pump and the Stokes beam [41]. The 

second path is coupled into a commercial photonic crystal fiber (PCF) (FemtoWhite-

CARS, NKT Photonics) using a 40 × objective lens. The PCF can generate a 

supercontinuum spanning 550 nm to 1200 nm, with the region >820 nm used for the Stokes 

beam [41]. A Mitutoyo (M Plan NIR 50 ×) long-working-distance objective is used to 

collimate the Stokes beam. The end-to-end coupling efficiency of the PCF is approximately 

32%. The pump and Stokes beams are also co-linearly polarized by placing a half-wave 

plate (HWP) in each beam path before they are recombined using an angled dichroic mirror 

(Chroma T8101pxr) acting as an effective 840 nm long-pass filter (LPF). A linear polarizer 

is added before the entrance to the microscope to make sure the beams are linearly co-

polarized. The Stokes and the pump beams are temporally dispersed and chirp-matched by 

a 6 cm and 10 cm of S-NPH2 glass, respectively, to implement spectral focusing. 
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Figure 2.4: The schematics for the multimodal SF-CARS microscopy setup used in this 

work. A Ti: Sapphire laser generates an 800 nm beam with variable pulse duration from 70 

to 200 femtoseconds. The laser output is split using a beam splitter into a Stokes and pump 

beam. The first beam is coupled into a FemtoWhite-CARS (NKT Photonics) module to 

generate a supercontinuum spanning 550 nm to 1200 nm, with the region >820 nm used as 

the Stokes beam. The delay stage controls the overlap between the pump and the Stokes 

beam. A 6cm block and a 10 cm block of S-NPH2 glass are used to disperse and chirp-

match the Stokes to the pump beam, respectively. Both beams are recombined using an 

angled dichroic mirror acting as an 840 nm long pass filter. A linear polarizer is added 

before the entrance of the microscope to ensure both beams are co-linearly polarized; the 

beams are then sent into a laser scanning microscope. The CARS and SHG signals are 

detected in the forward direction, separated using a 425 nm LPF, and detected by different 

PMTs. TPEF are collected in the epi-direction and detected by a PMT. A series of short-

pass, long-pass, and broadband filters are used to eliminate undesired signals. Computer 
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control, implemented via Python, is integrated into the system to manage and synchronize 

various parts of the scheme, as well as for data acquisition.  

The microscope is a modified Olympus IX73 inverted laser-scanning microscope with a 

1.15 NA 40 × objective (Olympus UAPON40XW340), a Thorlabs scanning galvo system, 

and a computerized sample stage [37].  CARS and SHG signals are detected in the forward 

direction and are wavelength-separated using a dichroic filter (Chroma T8101pxr), acting 

as a 425 nm long pass filter, with each signal sent to separate detectors [32]. Hamamatsu 

H10723-01 PMTs is used to detect the SHG, while a Hamamatsu H10723-20 PMT is used 

to detect the CARS signals [37]. A series of filters (short pass, long pass, and broadband) 

are used to eradicate unwanted signals, as shown in Figure 2.4. The filtering system can 

also be configured to allow for epi-CARS detection. A custom Phyton program is used for 

instrumentation control of vital parts such as the delay stage, shutters, detectors, 

galvanometer mirrors, and the microscope [32]. This program also produces an image stack 

from frame-by-frame hyperspectral data acquired at different frequencies. 

 

2.7 CARS hyperspectroscopy: 

This section presents the findings from a CARS hyperspectroscopy experiment on a 

sucrose sample using our setup (see Figure 2.5). The pump power was set to 75 mW, and 

the PCF input was set at 150mW for supercontinuum generation. The CARS hyperspectral 

stack consists of 250 × 250 pixel images at 698 spectral data points collected at different 

individual frequencies; spectral filtering and the Stokes wavelength limit our detection of 

CARS signals to a maximum range around 3600 𝑐𝑚−1.   
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Figure 2.5: Broadband hyperspectroscopy for a crystalline sucrose sample. (a) A 

250 × 250 pixel greyscale CARS image generated with an average of 11 frames centered 

at around 2800𝑐𝑚−1. (b) CARS spectra observed at two regions of interest in (a). (c) A 

zoomed-in representation of ROI 2 is displayed in the spectrum to show the NRB structure. 

ROI 1: Spectra observed from a region with a high sample concentration; ROI 2: Spectra 
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observed from a region containing the coverslip to represent the observed non-resonant 

background. The pump power was set to 75 mW, and the PCF input for supercontinuum 

generation was set to 150 mW. This characteristic vibrational signals for sucrose (at 1011 

𝑐𝑚−1 and 2800 𝑐𝑚−1) are shown. Other unresolved peaks and signals are a combination 

of noise and non-resonant background.  

 

The 250 × 250 pixel image shown in Figure 2.5 (a) was generated as an average of 11 

frames centered at around 2800𝑐𝑚−1. (b) the CARS spectra presented were obtained from 

two regions of interest. ROI 1: a region with a high concentration of the sucrose sample; 

ROI 2: a region with just microscope cover slip. In the fingerprint region, spanning 600 

𝑐𝑚−1 to 1400 𝑐𝑚−1, the only strong characteristic resonance for sucrose is located at 

around 847 𝑐𝑚−1 [42]. Looking at the spectra presented in Figure 2.5 (b), in ROI 1, this 

resonance was not detected, suggesting limited Stokes power at the corresponding 

wavelengths [32]. However, ROI 1 shows a weak resonance at around 1011𝑐𝑚−1, which 

can be attributed to known C-O stretching in sugars [43]. A strong resonance was detected 

at around 2800𝑐𝑚−1 arising from the strong C-H vibrations in sucrose.  ROI 2 highlights 

the NRB contributions to the sucrose spectrum in ROI 1. According to the simulation 

Figure 2.2, the non-resonant contribution is relatively constant, and this is observed from 

the experimental results in ROI 2. The heavy distortions in the silent region, from 2000 

𝑐𝑚−1 to 2500 𝑐𝑚−1 [3] , observed in ROI 1 spectra is attributed to the contribution from 

the mixing term, as seen in equation 2.5. As discussed in section 2.3, the resonant and non-

resonant contribution mix complicates the spectrum observed, as seen in Figure 2.5 (b). 

Several methods have been used to reduce this complication.  In this work, a deep learning 
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approach, a convolutional neural network (CNN) is employed to achieve this, and the 

results are presented in the next chapter. 
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Chapter 3  

The Specnet Framework: A convolutional neural 

network 

 

3.1 Chapter Preface  

This chapter provides insight into convolutional neural networks (CNNs). Section 3.2 will 

discuss why CNNs work best for image-related learning and how their architecture 

supports these tasks. Sections 3.3- 3.6 will introduce the Specnet framework, a proposed 

deep learning model used for Raman retrieval from experimental B-CARS images and 

spectra [3], how the framework was implemented, and the modification made to the 

approach.    

 

3.2 Convolutional Neural Networks (CNNs) 

CNNs are used to process data with grid patterns, such as images, to learn spatial 

hierarchies by assigning weights and biases for classifications down the line [44]. The core 

components of a CNN are the convolutional, pooling, and fully connected layers. CNN is 

divided into two phases: The first phase comprises the convolution and the pooling layer. 

This phase is where feature extraction from the input is carried out. At this phase, the raw 

input is transformed into smaller relevant features for processing while preserving the 

original information. In the second phase, the fully connected layer maps and classifies the 
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extracted features to predict an output. Figure 3.1 provides a visual representation of the 

basic CNN architecture.  

 

Figure 3.1: A visual representation of a convolutional neural network. The neural network 

can be primarily divided into two phases namely the feature extraction phase and the 

classification phase. The feature extraction phase comprises the convolutional and pooling 

layer. The raw input from the input layer is transformed into smaller relevant feature 

maps for processing while preserving the original information at the convolutional layer. 

The main function of the pooling layer is to reduce the dimensions of the extracted feature 

maps to increase computational speed. The output from the pooling layer (the pooled 

feature maps) is converted to 1-dimensional linear vectors via a flattening step before 

they are sent to the fully connected layer. The fully connected layer is made of several 

connected neurons that compile the vectors with similarly distinct features for classification 

and output a confidence score between 0 and 1 indicating the if the input belongs to a 

particular label (the highest confidence score was assigned to the “car” label which is the 

input image used in Figure 3.2).  

 

                    

            

         

          

      
      

                             
      

          
         

          
         

        
            
           
           

        

             
      

       
      

                
      

                             

           

          



34 
 

 

3.2.1 Input Layer  

CNN inputs are usually either an image or a video file which are a collection of pixels 

stored in arrays [44]. For grayscale images, the pixel values are stored in a one-dimensional 

array with integers that range from 0 (dark or black shade) to 255 (light or white shade), 

whereas colored images are stored in three-dimensional arrays because they are generated 

from a combination of the three primary colors: red, green, and blue. Each value in the 

arrays corresponds to the intensity of each color in each pixel. They also range from 0 to 

255 depending on the color’s intensity. For computational applications, the images are 

initially converted to their array form before processing using NumPy (a Python library). 

A visual example of this conversion is shown in Figure 3.2 below and this is used as a 

representation for CNN architecture in Figure 3.1. This layer is followed by the feature 

extraction phase where the initial raw input read as arrays are converted into feature maps. 

 

 

Figure 3.2: A colored image converted to a three-dimensional array for processing. Images 

are a collection of pixels stored in arrays. Each pixel in a colored image is made up of a 

combination and intensities of three primary colors which are stored in a three-dimensional 

array.  
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3.2.2 Convolution Layer  

The convolutional layer is the most important part of any CNN architecture. Convolution 

entails using several learnable filters applied as weights (see Figure 1.6) to reduce the 

dimensionality of the raw input while preserving the original information. Each filtering 

operation produces an activation or a convolved feature and using the filters repeatedly 

throughout the input dimension produces a map of activations known as a feature map 

[45]. A typical feature map is just an amalgamation of distinct features from the input—

for example, a group of pixels containing the tires might make up a feature map from the 

input image in Figure 3.2. To better understand how this convolution operation occurs, 

Figure 3.3 illustrates how a single filter is applied in a rolling manner across the 

dimensionality of the input. The figure shows preliminary calculation at three different 

steps for a 4 × 4 grayscale image (input) with a 2 × 2 weighted filter resulting in a  ×   

feature map. Additionally, it shows the final feature map once the filter has been used 

throughout the entire image. 
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Figure 3.3: A representation of a convolution operation. For this convolutional operation, 

a 2 × 2 weighted filter (green) is applied in a rolling manner across the  4 × 4 grayscale 

input (yellow) to yield a  ×   feature map (white). The calculations and results for three 

convolved features are shown. The complete   ×   feature map which will be layer output 

is also shown.  
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As seen in Figure 3.3, a dot product is performed with the elements of the input data every 

time the filter is applied at each stage. These dot product results make up the feature map 

volume, which is the output of the convolutional layer [45]. Since the output depends on 

the applied filter, the number of features extracted at each layer can be controlled using 

different filter sizes. In the case of colored images, this operation is performed for the 

different colored arrays (red, green, blue).  

 

3.2.3 Pooling Layer  

The main responsibility of this layer is to reduce the size of the preceding layer’s output 

(feature maps) while keeping most of its dominant features [21]. The reason for having this 

layer in the architecture is to further reduce the number of parameters needed, and in turn 

reduces, the computational complexity of the model [45]. Several pooling methods are used 

for this operation; they include tree pooling, gated pooling, average pooling, minimum 

pooling, and maximum pooling [21]. Figure 3.4 demonstrates how the two commonly used 

pooling methods, maximum and average pooling, perform this operation.  
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Figure 3.4: A demonstration of maximum and average pooling. A pooled feature map is 

created by pooling values from a segment of the feature maps, which reduces their 

dimensionality for better computational performance. Average pooling returns the mean 

value in each segment and maximum pooling returns the highest value in each segment. 

Each pooling operation only takes place at a different segment of the input array, as 

opposed to the filters, which are performed in a rolling fashion in the convolutional layer. 

As seen in Figure 3.4, maximum pooling takes the maximum value at each portion to form 

a pooled feature map, whereas average pooling just restores the average value for each 

portion. The feature extraction phase is concluded once the output from the pooling layer 

(the pooled feature maps) is sent to the subsequent layer for classification. 
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3.2.4 The Fully Connected Layer (FC) 

The next phase in the architecture, classification, is carried out at the fully connected layer 

as seen in Figure 3.1. Before data from the preceding layer (the pooled feature maps) is 

sent into the fully connected layer, the output matrix is converted to 1-dimensional linear 

vectors (This step is called “flattening”).  This is then passed to the fully connected layer 

which is made up of neurons connected to all neurons from the previous layer. The purpose 

of these connections is to compile all the vectors with similar features. Weights are 

assigned to the complied vectors to quantify the presence of distinct features and predict 

the correct label. Figure 3.1 illustrates the layer's output, which is a set of confidence scores 

(numbers ranging from 0 to 1) that indicate the likelihood that the input belongs to a 

particular label (in this case, the confidence score was given to the car label which is the 

images used in Figure 3.2). 

 

3.2.5 Activation Functions  

As highlighted in Chapter 1, the later component of each perceptron in a neural network is 

an activation function. The major role of these functions is to predict an output using the 

weighted sum of its input. This is accomplished by having the function establish a threshold 

value. If this value is not exceeded, the information in the input is not sent to the next layer. 

However, if the value is exceeded, the node (perceptron input) is activated, and 

information is allowed to pass through. Practically, these functions are used to determine 

the non-linear relation between the input and output. The three most commonly used are 

the tanh, sigmoid, and rectified line unit activation functions (ReLU) but several other 
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functions can be used to perform this operation. A brief description of these three functions 

is as follows: 

Tanh: This function accepts real values as input, and its output ranges from -1 and 1 [21]. 

It's mathematically expressed as: 

 
𝑓(𝑥 =

𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 

 

 

(3.1) 

 

Sigmoid: This activation function only accepts real values as input, and its output ranges 

from zero to one [21]. The sigmoid activation function is expressed as:  

 
𝑓(𝑥 =

1

1 + 𝑒−𝑥
 

 

 

(3.2) 

 

ReLU: This is the most popular function for implementing CNNs, and the function 

employed in this work. Equation 3.3 shows the rectification at the bottom because 𝑓(𝑥  is 

zero when 𝑥 (input in our case) is less than zero [21]. At the same time, 𝑓(𝑥  equals 𝑥 

when 𝑥 is greater than zero. Any input with a negative weighted total is zeroed out by the 

function because the threshold is set to 0. 

 𝑓(𝑥 = {
0, 𝑥 < 0
𝑥, 𝑥 ≥ 0

 

 

 

(3.3) 
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In a basic CNN architecture (Figure 3.1), an activation function can be added to the end of 

each layer to add non-linearity to the network. In the case of this work, a RELU function 

was included at end of each layer in our neural network.  

 

3.3 The Specnet Approach   

In this work, we employed a deep learning approach designed and published by Valensise 

et al.  [3] to resolve the NRB limitations that come with broadband-rich CARS schemes. 

The approach was used to retrieve the resonant part of the non-linear susceptibility, 

𝜒𝑟
(3 (𝜔 , directly from a measured B-CARS spectrum, without the need for external 

measurements or complex processing [3]. The relationship between CARS and 

spontaneous Raman scattering, is  [15]: 

 𝐼(𝜔 𝑅𝑎𝑚𝑎𝑛 ∝ 𝜒𝑟
(3 (𝜔 , (3.4) 

 

where, 𝐼(𝜔 𝑅𝑎𝑚𝑎𝑛, is the measured Raman intensity and, 𝜒𝑟
(3 (𝜔 , is the resonant 

contribution to CARS. This relationship makes it possible to compare these two techniques 

directly when performing spectral analysis after the non-resonant has been removed.  

The following are the justifications for choosing a CNN model for this task: 

• Input: The datatype (hyperspectral image stacks) is suitable for a CNN compared 

to other neural networks. 

• Labeling: In our case, the CARS spectrum (input), the NRB shape (input 

component), and the resonant spectrum (target output) are defined for model 
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training. The model already knows what the target output should look like, so it 

backtracks its calculation by changing the filter values (weights) after every training 

step, so the predicted output is closer to the target vector.  This process is referred 

to as “Backpropagation” in literature. 

• Feature extraction and classification: The most important justification for using a 

CNN is its ability to retrieve information from input with the aid of shared weights 

among filters and its ability to generalize the extracted information on its own [3]. 

  

3.3.1 Methodology  

The goal of this study is to explore how well this approach performs at removing NRB 

from experimentally measured CARS hyperspectroscopy and to determine how best to 

modify this approach to suit the data obtained from our unique SF-CARS scheme. To do 

this, two DL models were trained on two different sets of realistic simulated CARS spectra. 

The first model “ pecnet” was trained using the dataset created by using the same 

procedure seen in [3]. The second model was trained with the modified dataset. Section 

3.4.1 will introduce the modification made to the approach and the resulting model is 

denoted as “Specnet Plus”.  The neural network and model training was implemented in a 

Python environment using TensorFlow, a deep learning package. The original Specnet 

code can be found in a GitHub repository [46]. The modified code can be found in 

Appendix B.  

The following is a chronological summary of the steps taken to accomplish this task, and 

each step’s specifics are provided in the sections that follow.  
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1. Creating the input datasets (Simulated CARS spectra) using the original approach 

(Specnet) and then with the updated approach (Specnet Plus). 

2. Both datasets were used to train two different DL models. 

3. Both models’ ability to remove to extract the resonant parts from simulated and 

experimentally measured data were tested. The finding from both tests is discussed 

in chapter 4.  

 

3.4 Step 1 (a): Simulating the input data for Specnet  

A large set of simulated CARS spectra was used as the input to Specnet model in order to 

yield a generalizable model that can account for different experimental scenarios. This 

section discusses the process used to create each CARS spectrum. The process description 

is a synopsis of the approach reported by Valensise et al [3]. Specnet was configured to 

accept simulated and measured data with intensity 𝐼 𝜖 [0,1], and the frequencies were also 

normalized at 𝜔 𝜖 [0,1]. 

 

 𝜔 ≡
𝜔 − 𝜔𝑚𝑎𝑥

𝜔𝑚𝑎𝑥 − 𝜔𝑚𝑖𝑛
  

(3.5) 

 

where  𝜔𝑚𝑎𝑥 and 𝜔𝑚𝑖𝑛 , corresponds to the maximum and minimum CARS spectrum 

frequencies that our system is capable of detecting, as mentioned in Section 2.6. The 

spectra used in the training dataset were manufactured by randomly sampling 15 CARS 

resonances and, for each of them, the corresponding amplitude, resonance frequency, and 
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linewidth. The resonances, amplitude, bandwidth, and vibrational frequency were sampled 

randomly from these distributions as described using 

 

 𝑁~𝑈(1,15 ; 

𝐴𝑖~𝑈(0.01,1 ; 

Γ𝑖~𝑈(0.001, 0.00  ; 

Ω𝑖~𝑈(0,1 . 

 

(3.6-3.9) 

 

where 𝑈(𝑥, 𝑦  denotes the uniform distribution; x is the minimum value and y is the 

maximum. 𝐴𝑖 denotes the amplitude, Γ𝑖 denotes the bandwidth, Ω𝑖, denotes the vibrational 

frequency, and N represents the number of CARS resonances. Each resonant spectrum, 

𝜒𝑟
(3 

, was coded using equation 2.7 and normalized to a maximum value of 1 to avoid model 

rigidity.  

The NRB, 𝜒𝑛𝑟
(3 

, is represented by the product of two sigmoid functions, 𝜎, whose 

parameters are also randomly sampled. 

 𝜒𝑛𝑟
(3 (𝜔 = 𝜎1(𝜔 𝜎2(𝜔  (3.10) 

 

these sigmoid functions are defined as: 

 
𝜎𝑖(𝜔 =

1

1 + exp (−(𝜔 − 𝑐𝑖 𝑠𝑖 
 

 

(3.11) 
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The parameters {𝑐𝑖, 𝑠𝑖, 𝑖 = 1,2} are randomly sampled to generate a non-uniform 

background distribution across the spectral range with their amplitudes restricted to values 

ranging from 0 to 1.  Like the random sampling done for 𝜒𝑟
(3 (𝜔 , this accounts for various 

experimental scenarios. Recall that theoretically the NRB is often considered to be 

constant, but in our experimental setup, where the Stokes beam is a highly structured 

broadband supercontinuum, the NRB is far from constant.   

The input vector, 𝑥, is then computed as: 

 

 
𝑥 =

|𝑟𝜒𝑟
(3 

(𝜔 +𝜒𝑛𝑟
(3 

(𝜔 |2

2
+ 𝜀(𝜔  

(3.12) 

 

where, 𝜀, is the normally distributed noise component (𝜀 ~ 𝑁(0, 𝑠 ) and 𝑠, is modeled to 

mimic experimental noise. The factor of 2 normalizes the input vector to the maximum 

possible value (1), which is obtained for a vibrational resonance, 𝜔𝑟𝑒𝑠, at these conditions: 

 max (Im (𝜒𝑟
(3 (𝜔𝑟𝑒𝑠 )) = 1 

(3.14) 

 

 

 max(𝜒𝑛𝑟
(3 ) = 1 (3.15) 

and  
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 Re (𝜒𝑟
(3 (𝜔𝑟𝑒𝑠 ) = 0 (3.16) 

 

This normalization makes sure that the inputs intensities are distributed throughout the 

(0,1) range. It is crucial when using the model to process experimental CARS data that all 

curves are normalized to the global maximum of each batch, ensuring that all other 

amplitudes are in the (0, 1) range. This ensures the model’s ability to extract the resonant 

part without losing information encoded in the peak relative intensities. 

Finally, the target vector, 𝑦, (the model output) is expressed as:  

 

 𝑦 = lm(𝜒𝑟
(3   (3.17) 

 

3.4.1 Step 1 (b): Simulating the input dataset for Specnet Plus  

Except for the NRB shape used in creating the simulated CARS spectra, the modified 

dataset used the same simulation parameters as in section 3.4. The use of a double sigmoid 

function to model the slowly varying frequency response of the NRB is not sufficient for 

modeling a three-color CARS system [51]. This was the justification for modifying the 

NRB shape used in the simulation to mimic what we observed experimentally. The non-

resonant background spectrum collected from the coverslip used in the experiment 

demonstrated in ROI 2 of Figure 2.5 is shown in greater detail below in Figure 3.5. A plot 

of the spectrum’s running average was carried out to deduce which shape can be used to 

mirror our experimentally observed NRB response for simulation. This was also done for 
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an NRB spectrum collected from a water sample, but only the spectrum obtained from the 

coverslip in Figure 3.5 is presented in this thesis. For both experiment, two similar spectra 

with three humped broad peaks of varying amplitudes and widths in both spectra. These 

observed spectra shapes were significantly different from the linear line highlighted 

in Figure 2.2 or the double sigmoid function used in the Specnet approach.  

 

 

Figure 3.5: CARS spectrum from a glass coverslip as an experimental example of NRB in 

our system. The spectrum shows a zoomed-in and processed copy of the CARS spectrum 

from ROI 2 of Figure 2.5. This non-resonant background was collected from the coverslip 

(black line). A plot of the running average of the spectrum was included to estimate the 

shape used for simulation (red line). The shape from the running average inspired how the 

NRB was simulated for the input vector 𝑥. 

Four gaussian-like peaks with varying widths and amplitudes were simulated to recreate 

the shape seen in the collected NRB spectra. Four peaks were used to improve the model's 

generalisation capability. The peak used in each instance were chosen at random to cover 
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a wide range of experimental conditions. The gaussian peaks amplitudes were sampled 

from random numbers between 1 and 4,  

 

𝐴𝑁𝑅𝐵~𝑈(1,4  

 

(3.17-3.18) 

 

where, 𝑈, denotes the uniform distribution. For each amplitude, 𝐴𝑁𝑅𝐵, the assigned width 

is sampled from this distribution: 

 Γ𝑁𝑅𝐵~𝑈(0.1,0.  , 

 

(3.17-3.18) 

where, Γ𝑁𝑅𝐵, denotes the width for each peak. The NRB shape was added to the simulated 

CARS spectrum (input x) for each permutation. The dataset with updated NRB spectra was 

used to train the Specnet Plus model. Chapter 4 will discuss how this modification 

performed at extracting the resonant spectrum from our experimentally measured CAR 

spectrum compared to the original approach. 

 

3.5 Model Training and Evaluation 

The two datasets created from Step 1 were used to train both Specnet and Specnet Plus 

models; the datasets consisted of 30000 simulated CARS spectra at 640 spectral points. 

The spectral points correspond to the hyperspectral images taken at different 
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frequencies. The model's architecture consists of five 1-dimensional CLs with 128, 64, 16, 

16, and 16 filters of dimensions 32, 16, 8, 8, and 8, respectively, followed by three FC 

layers of 32, 16, and 640 neurons (as the output is expected to have the exact dimensions 

of the input) [3]. Please see Appendix A.1 for a table summarizing the original approach's 

architecture which is the same for the Specnet Plus model. ReLU was included at the end 

of each CL and FC layer to add non-linearity to the network. Backpropagation was 

performed using Adam (a tool for optimizing training performance and pace) with a batch 

size of 256 examples [3]. The resulting number of trainable parameters was 6 × 106 [3]. 

Mean squared error (loss function) was computed to quantify the prediction error between 

the target vector 𝑦 and the predicted one, �̂�. To avoid overfitting and reduce the model's 

sensitivity to noise, L2 weight regularization is utilized on the weights of the first fully 

connected layer with a weight of 5 × 10−6 [3]. The training required 10-fold cross epochs, 

each taking about 10 seconds on a GeForce GTX 1080 Ti graphic processing unit (GPU). 

Figure 3.5 illustrates how backpropagation is done at every training step. The initial 

predictions, which might be poor, are improved by updating the filters (weights and biases) 

to make better predictions; each iteration is known as an epoch.  
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Figure 3.6: A summary of each training step. After an initial assigned weight and bias are 

used for the first prediction, the training goes through several cycles (or epochs) of updating 

the weights and biases to predict an output closer to the target vector. The arrow (IN and 

OUT) indicates the transitions from one cycle to the next. 

 

3.6 Testing both models’ prediction performance 

The final stage in this approach involves testing both trained models’ viability at extracting 

resonant signals from other simulated CARS spectra and measured SF-CARS 

hyperspectroscopy. Appendix A.2 provides the code required to execute this test on the 

measured data. Each pixel in the hyperspectral stack is processed at each spectral data 

point. The predicted output from each processed pixel is accumulated together to form a 

completely new hyperspectral stack, termed the “retrieved hyperspectral stack or 

retrieved stack”. Figure 3.7 show a process flow diagram for testing the model on 

measured CARS hyperspectral data. 
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Figure 3.7: A process flow diagram of how the model is used for processing. Both trained 

models are used to process the measured hyperspectral stack to extract the resonant signals 

from each pixel. The retrieved hyperspectral stack is created by compiling the processing 

results from each frame. 
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Chapter 4  

Experimental Results  

 

4.1 Chapter Preface 

This chapter reports the ability of both the published and modified Specnet model to extract 

resonant signals from two randomly simulated spectra and measured SF-CARS 

hyperspectroscopy on a sample containing potato starch granules and a chitin sample 

obtained from the exoskeleton of a shellfish. 

 

4.2 Simulated CARS spectra  

A preliminary test of each model’s ability to extract the resonant spectrum from unknown 

simulated spectra was conducted. Two extra (random) CARS spectra that weren't used in 

the model's training were simulated for this test. The two spectra were simulated using the 

same steps described in section 3.4, which means the resonances were randomly assigned 

while creating them (i.e., the resonant spectrum for each simulation is known). Mean 

squared error analysis was employed to provide a quantitative assessment of how each 

model’s prediction output differed from the “known” resonant spectrum (target vector) 

through the spectral range. The x-axis' frequency scale was normalized between 0 and 1; 

the Raman shift might be viewed as relative as a result. This translates to 0 𝑐𝑚−1 for the 

first spectral data point and 1 𝑐𝑚−1 for the 640th spectral data point.  
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Figure 4.1 (top panel) shows the prediction results from processing the first CARS 

spectrum with the Specnet and Specnet Plus, respectively. The first simulation comprised 

a CARS spectrum with a single resonance at 0.6 𝑐𝑚−1. Although Specnet successfully 

extracted the resonance peak at 0.6 𝑐𝑚−1, the retrieval of weak spurious signals across the 

whole spectral range reduced its performance. These spurious signals were retrieved at 

around 0.3 𝑐𝑚−1 and in the spectral region 0.5 to 0.8 𝑐𝑚−1, excluding the resonant 

frequency. Specnet Plus also retrieved the resonance at 0.6 𝑐𝑚−1 and it also retrieved 

spurious signals at the same spectral regions, but they were significantly weaker in 

intensity. The mean squared error for Specnet Plus was discovered to be 5 times lower than 

the value for Specnet.  

The second simulated spectrum had six resonances at frequencies around 0.01, 0.48, 0.52, 

0.7, and 0.75 𝑐𝑚−1. The strongest peak is located at 0.52 𝑐𝑚−1 followed by the peaks at 

0.01, 0.48, 0.7, and the resonance at 0.75 𝑐𝑚−1 has the lowest intensity. Figure 4.1 (bottom 

panel) shows the test result from the second CARS spectrum. The resonances were 

retrieved by Specnet at the same frequencies but differed in intensity and shape in some 

regions. The peak height at 0.01 𝑐𝑚−1 was lower than the resonant spectrum, and the peak 

shape at 0.75 𝑐𝑚−1 looks to still be distorted, indicating that the NRB presence wasn't 

completely eradicated. Specnet Plus also retrieved a similar resonance as the resonant 

spectrum. The resonance at 0.01 𝑐𝑚−1 had a higher intensity in the Specnet Plus-retrieved 

resonance spectrum compared to the Specnet-retrieved resonance spectrum, and the 

resonance at 0.75 𝑐𝑚−1 appeared to be less distorted. The mean squared value for Specnet 

was 2 times greater than that of Specnet Plus. The error analysis results from both tests 
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indicate that Specnet Plus outperformed Specnet in terms of predicting the target vector 

(resonant spectrum). 

 

 

Figure 4.1: The prediction results obtained from using the Specnet and Specnet Plus 

models on two randomly simulated CARS spectra. Top panel: The predictions result from 

processing the first CARS spectrum (a and b). Bottom panel: The predictions result from 

the second test (c and d). Each plot in Figure 3.5 has four subplots that show the resonant 

spectrum (top), the CARS spectrum with the NRB added (second), the retrieved spectrum 
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by the model (third), and the squared error (bottom). Blue curves are the simulated “ground 

truth” and the red curves are the model’s attempt at retrieving the true spectrum. 

 

4.3 Experimentally measured CARS data  

The ability of each model to extract the Raman spectrum from experimentally recorded 

CARS hyperspectroscopy is reported in this section. Qualitative analysis is carried out by 

comparing the retrieved resonances with the vibrational Raman mode assignment in the 

literature. 

 

4.3.1 Starch 

For a variety of reasons, starch was chosen as a sample of interest. The fact that it is the 

most abundant carbohydrate (a polysaccharide) in many plant cells is one example [47]. 

Starch is made up of amylose and amylopectin chains and exhibits several Raman 

resonances including molecular vibrations in the C-H and -OH regions [47]. Because starch 

is included in many everyday foods, such as potatoes, rice, beans, and others, as well as 

being simple to prepare, getting a sample is inexpensive and straightforward. To prepare 

the starch sample, raw potatoes were cut into pieces, steeped in water, stirred, allowed to 

settle for a short period of time, and then aspirated with a pipette into a fresh vial.  

Three 250 × 250 CARS images of the potato starch sample are shown in Figure 4.2 (top 

panel). These images were generated by averaging eight frames within a hyperspectral 

stack centered around 3011 𝑐𝑚−1. The first stack contained the experimentally-measured 
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raw CARS hyperspectroscopy. The second stack was the retrieved hyperspectral stack that 

was obtained after the Specnet model was used to process the original stack. The third stack 

was the processing results from the modified model (Specnet Plus). The pump power and 

the PCF input were set at 120 mW and 180 mW, respectively. These powers are weak 

enough to avoid photobleaching and sample degradation. The measured hyperspectral 

stack was acquired by scanning the delay stage which translates to 467 spectral data points 

spanning frequencies approximately between 50 𝑐𝑚−1 to 3600 𝑐𝑚−1. One of the training 

parameters (the data points size) was adjusted to fit the measured experimental data (It was 

changed it from 640 points, as seen in section 3.5, to 467 spectral data points as it is our 

measured data size). This allows us to retrieve a hyperspectral stack with the same spectral 

points as the measured stack.  

 

Spectral analysis: 

Starch's characteristic Raman resonances at 3200, 2900, 930, and 477 𝑐𝑚−1 are associated 

with molecular vibrations in amylose and amylopectin molecules [48]. The two strongest 

resonances, at around 477 𝑐𝑚−1 and between 2900 and 3100 𝑐𝑚−1, are attributed to the 

vibrations in the pyranose ring of the glucose and the C-H stretching, respectively. Bands 

around 860 𝑐𝑚−1 and 930 𝑐𝑚−1 are assigned to the 𝐶𝐻2 deformations, and the C-O-C 

vibrational mode [48]. The bands around 3100 𝑐𝑚−1 to 3600 𝑐𝑚−1 for starch are assigned 

to the -OH stretching [49].  

The measured CARS spectrum derived from the highlighted region of interest (Figure 4.2 

bottom panel) shows strong resonances at 488 𝑐𝑚−1 and 3011 𝑐𝑚−1, but the non-resonant 
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contribution severely distorts them. The -OH stretching assignment was seen at 3209 

𝑐𝑚−1. It is challenging to locate the resonance at 930 𝑐𝑚−1 since it appears to be 

overpowered by the NRB shape. The CARS spectra obtained from both retrieved 

hyperspectral stacks, derived from the same region of interest, are also presented in Figure 

3.9 bottom panel. Both of the strong resonances, at 488 𝑐𝑚−1 and 3011 𝑐𝑚−1 were 

retrieved by both models and thus appear less distorted with a more Lorentzian-like peak 

compared to the measured CARS spectrum; the Lorentzian-like shape does indicate proper 

Raman retrieval. Furthermore, obtaining CARS signals below 800 𝑐𝑚−1 has been quite 

difficult historically [50]. The resonance at 3209 𝑐𝑚−1 was retrieved by Specnet Plus but 

Specnet failed to retrieve it. Specnet did predict a new peak at 3313 𝑐𝑚−1, which had a 

higher peak height than the anticipated resonance at 3209 𝑐𝑚−1. The new peak retrieved 

by Specnet is most likely a misinterpretation that occurred during processing, according to 

the resonance assignments found in literature. The resonance at around 930 𝑐𝑚−1 was not 

retrieved by either model, suggesting the vibrational mode was never excited. This non-

excitation may be a result of insufficient Stokes light was provided at that frequency. The 

resonances retrieved between 1000 𝑐𝑚−1 and 3000 𝑐𝑚−1 were neglected during analysis 

because they are not included in the characteristic resonance used for identifying starch 

[48]. The CARS spectrum from the Specnet Plus model appears to be less noisy than that 

from Specnet, suggesting that the applied modification resulted in a better reduction of 

observed NRB and image denoising. 
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Figure 4.2: SF-CARS hyperspectroscopy of a potato starch grain and the retrieved 

hyperspectral data from Specnet and Specnet Plus. Top panel: The three CARS images 

presented were obtained from averaging the same eight frames centered around 3011 𝑐𝑚−1 

in each hyperspectral stack. (a) Image obtained from the measured CARS hyperspectral 

stack, (b) Specnet processed image, and (c) Specnet Plus-processed image. Bottom panel: 

the CARS spectra obtained from the highlighted region of interest in (a-c). The measured 

CARS spectrum (blue line), the Specnet processed CARS spectrum (red line), and the 

Specnet Plus processed CARS spectrum (green line).  
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Image analysis: 

Since every pixel at every spectral data point in the original stack is processed by the model 

by updating them with its prediction, it could be a good idea to establish a metric that 

compares not only the spectrum but also how the approach influenced imaging. Structural 

similarity index metric (SSIM) was employed to perform this image analysis; an objective 

measure that quantifies the overall difference in pixel magnitudes between a processed 

image and its original. The three CARS images presented in Figure 4.2 (top panel) was 

used for this test (these images were taken at a resonant frequency). The test resulted in a 

similarity score of 25.8% between the measured and the Specnet processed image, whereas 

the test reported a 34.3% similarity between the measured and the Specnet Plus-processed 

image. Images obtained at a different frequency deemed off-resonance were also used in 

this test to see how it performs with primarily NRB signals present. The second set of 

images was collected by averaging eight frames around 3310 𝑐𝑚−1, which was the 

frequency where the unknown peak was retrieved by Specnet during spectral analysis 

(Figure 4.3). This region is deep into the O-H vibrational region and is thus reflective of 

water content or of NRB. The result was a similarity score of 9.98% between the measured 

and Specnet-processed images. A 7.63% similarity was obtained from testing the measured 

with the Specnet Plus-processed image. These test results do suggest NRB reduction during 

processing because of the low similarity score observed from both retrieved images 

compared to the original, but they do not give a clear answer as to which model 

performed better.  

For images collected at resonance, the similarity score is expected to be closer to the 

original image, whereas images taken off-resonance should have a low similarity score. 
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The results from both models supported this hypothesis, which raises the possibility that 

the Specnet Plus may have performed better but these similarity scores by themselves 

cannot be used to determine which prediction was more accurate. The best way to use this 

measure to determine which model had a better prediction performance is to integrate some 

level of supervision by specifying which frame contains predominately the resonant signals 

and the ones that have the non-resonant signals.  

The contrast disparity seen in the two retrieved images in Figure 4.3 demonstrates how 

both models differed in removing NRB. The image obtained from the measured stack 

shows a higher contrast in the regions around the starch granule which is predominantly 

water. The Specnet-processed image shows little starch contrast whereas the retrieved 

Specnet Plus stack showed no contrast in both regions.  he image analysis didn’t yield a 

definite answer to which model performed better at retrieving the resonant signals, but it 

was worth noting it did show that this approach reduced our experimentally measured 

NRB.  
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Figure 4.3:  SF-CARS images of the potato starch sample gotten at an off-resonance 

frequency. The three CARS images were obtained by averaging the same eight frames 

centered around 3313 𝑐𝑚−1 in each hyperspectral stack. (a) Image obtained from the 

measured hyperspectral stack, (b) Specnet processed image, and (c) Specnet Plus processed 

image. 

 

4.3.2 Chitin  

The second most prevalent carbohydrate after starch, chitin is made up of repeating units 

of N-acetylglucosamine (Nag), the amide derivative of glucose [47]. Chitin can be found 

in arachnids, insect exoskeletons, shells of crustaceans, and invertebrates (an example of 

this is shrimp) [47]. Because chitin is a carbohydrate similar to starch but has several other 

distinct molecular vibrations such as amide stretching, it was chosen as a sample for 

imaging. The chitin sample was obtained from the exoskeleton of a shrimp. Figures 4.4 

(top panel) shows three 250 × 250 CARS images generated by averaging twelve frames 

centered at around 2670 𝑐𝑚−1 with each hyperspectral stack; the measured hyperspectral 

stack, the Specnet retrieved stack, and the Specnet Plus retrieved stack. The pump input 

was set to 75 mW and the PCF input was set to 180 mW; these powers were weak enough 

to avoid photobleaching and sample degradation. Imaging was done by scanning from one 
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point on the delay stage to another which translated to 567 spectral data points collected at 

different frequencies spanning 0 to 3700 𝑐𝑚−1. 

      

 

Figure 4.4: SF-CARS hyperspectroscopy of a chitin sample and the retrieved 

hyperspectral data from Specnet and Specnet Plus. Top panel: The three CARS images 

presented were obtained from averaging the same twelve frames centered around 2670 

𝑐𝑚−1 in each hyperspectral stack. (a) Image obtained from the measured hyperspectral 

stack, (b) Specnet processed image, and (c) Specnet Plus processed image. Bottom panel: 

the CARS spectra obtained from the highlighted region of interest in (a-c). The measured 

CARS spectrum (blue line), the Specnet processed CARS spectrum (red line), and the 

Specnet Plus processed CARS spectrum (green line). 
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Spectral analysis: 

Table 3.1 summarizes the Raman resonance assignments for Chitin found in the spectrum 

obtained from the region of interest of Figure 3.11. 

Table 3.1: Summary of detected Raman resonance for Chitin. [51], [52] 

Figure 4.4 (bottom panel) shows the experimentally measured CARS spectrum from the 

highlighted region of interest. The resonance detected at 2670 𝑐𝑚−1 is the C-H stretching 

vibration of methyl and methylene groups of the pyranoid ring [51]; the resonance detected 

at 2734 𝑐𝑚−1  can be attributed to the 𝐶𝐻2 stretching [51], [52]; and the amide and C=O 

stretching detected at 1645 𝑐𝑚−1 . Methylene bending and C-O-H in-plane bending 

assignment are found at 1381 𝑐𝑚−1 ; the C-O stretching or alicyclic chain is found at 1031 

𝑐𝑚−1 ; and the C-O-C stretching detected at 813 𝑐𝑚−1  [51]. Similar resonances are visible 

in the CARS spectra from the same region of in the Specnet and Specnet processed stacks 

(Figure 3.11 bottom panel) at 1381 𝑐𝑚−1 , 1645 𝑐𝑚−1 , and 2670 𝑐𝑚−1 . The strong 

denoising of the large distortions in the silent region between 2000 𝑐𝑚−1 to 2500 𝑐𝑚−1  

suggests that NRB was reduced by both models. The previously reported C-O-C and C-O 

contributions, which were found at both 813 𝑐𝑚−1  and 1031 𝑐𝑚−1 , appear to have been 

Frequency Range (𝒄𝒎−𝟏) Assignment  

800-970 C-O-C stretching  

1000-1200 C-O Stretching/ Alicyclic chain stretching 

1380-1470 Methylene bending/ C-O-H in-plane bending  

1500-1680 Amide I and C=O stretching  

2700-3000 C-H stretching  
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interpreted as NRB during processing. Both models extract a peak at 915 𝑐𝑚−1 , indicating 

that C-O-C contribution is, in fact, present at this wavenumber. Looking at the two CARS 

spectra from the Specnet and Specnet Plus stacks, the band at 2734 𝑐𝑚−1  was retrieved at 

2880 𝑐𝑚−1 , illustrating both resonances are present at a later frequency but were reshaped 

by NRB. Both models predicted similar vibrational peaks, but the modified model appears 

better suited for our SF-CARS setup, with a less noisy retrieved spectrum compared with 

the Specnet model. 

 

Image analysis: 

       

Figure 4.5:  SF-CARS images of the chitin sample at an off-resonance frequency. The 

three CARS images were obtained by averaging the same twelve frames centered around 

2450 𝑐𝑚−1 in each hyperspectral stack. (a) Raw CARS image, (b) Specnet processed 

image, and (c) Specnet Plus processed image. The lack of contrast in (c) suggests that 

Specnet plus model worked as expected.  

SSIM was also employed to compare images of the chitin sample that were taken both on 

and off resonance. The chitin CARS images presented in Figure 4.4 (top panel) taken at a 

resonant frequency (obtained by averaging twelve frames centered at around 2670 𝑐𝑚−1) 
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was used for the initial test. The comparison between the original image at resonance and 

the Specnet processed image at the same frequency yielded a similarity score of 33.0%, 

while comparing the original image with the Specnet Plus processed image was 39.9%.  

Three CARS images shown in Figure 4.5 were generated by averaging twelve frames 

centered around 2450 𝑐𝑚−1 (at a frequency off-resonance) in a hyperspectral stack. The 

same test on the images obtained off-resonance yielded a similarity score of -6.50% and -

10.10% for the Specnet and Specnet Plus models, respectively. A negative SSIM score 

indicates that processed images differ significantly from the originally measured one. This 

result also agreed with the test hypothesis mentioned in section 4.3.1 (image analysis) 

indicating Specnet Plus may have performed better. The contrast difference between the 

three images in Figure 4.5 also shows that the non-resonant signals were removed more 

effectively using the Specnet Plus. The Specnet Plus image showed no contrast at all while 

the Specnet image still showed a dark contrast at the region contain the chitin sample. 
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Chapter 5 

Summary, Conclusion, and Future Work 

This work explores a deep learning approach, the Specnet framework, proposed by others 

in [3] to remove non-resonant background from measured B-CARS spectra to determine:  

• How practical is this approach at retrieving the vibrationally resonant signals and 

reducing the presence of NRB observed in our SF-CARS setup? 

• How best to integrate it into our spectral analysis workflow?  

The Specnet model was built as a convolutional neural network consisting of 7 hidden 

layers. The model was trained on a large dataset of realistic simulated CARS spectra to 

achieve high generalization capabilities when interpreting and extracting unwanted NRB 

signals. The NRB shape used to simulate the input dataset (the simulated CARS spectra) 

was changed to mirror the NRB response observed experimentally to better integrate the 

proposed approach into our spectral analysis workflow; the resulting model from this 

modification was termed Specnet Plus. Both models (Specnet and Specnet Plus) were used 

to retrieve resonant spectra from two randomly simulated spectra and measured CARS 

hyperspectral stacks from our setup. Since the original resonant spectrum of the simulated 

spectra is known due to how they were made, an error analysis was done to provide a 

quantitative assessment of each model's performance. When compared to Specnet, the 

retrieved resonant spectra from Specnet Plus were more consistent with the original 

resonant spectra and had a smaller average mean squared error value for both cases. This 
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preliminary test confirmed that modification improves performance; both qualitatively and 

quantitatively. 

The presence of reduced distortions in the spectra shape in the retrieved spectra suggests 

that the proposed Specnet framework eradicates the non-resonant signals from our 

experimentally measured SF-CARS spectra. Also, the approach was able to retrieve most 

of the identified Raman resonances for both test samples. However, the retrieved Specnet 

Plus spectra appears to be less noisy than that of Specnet suggesting the modification 

resulted in better denoising (i.e., performed better at removing the non-resonant 

background from each CARS spectrum). The structural similarity index metric (SSIM) 

results also indicated the presence of lesser noise in the retrieved stacks from Specnet Plus. 

The results from the image analysis indicate updated NRB model agreed with the test 

hypothesis, but some level of supervision is needed to deduce which model actually 

performed better. The contrast difference observed in the processed images demonstrates 

how the two models’ interpretation of the resonant signals varied. Although the model with 

the best performance could not be determined with certainty using the contrast difference 

and image similarity score, it is still important to note how the modification changed how 

the measured data was processed. The results from the preliminary test and the appearance 

of a less noisy retrieved resonant spectra from the measured CARS hyperspectroscopy 

suggest performance was enhanced by modifying the approach to emulate spectra obtained 

from our CARS platform, indicating that future work should indeed expand on this 

methodology. 

A recommendation made by others in [53] is to use measured spectra recorded from our 

CARS platform for model training for better prediction, but this would be cumbersome 
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work and would require a large volume of measured data. Furthermore, it is not strictly 

possible to obtain a ground truth Raman spectrum for a given recorded CARS spectrum 

[53]. As highlighted in [15], the relationship between Raman and CARS should be used 

with caution, as the non-linear susceptibility probing mechanism is different from the 

Raman process. Any algorithm used to retrieve a CARS spectrum would necessarily be an 

approximation, which would compound errors in the retrieval network [53]. Tailoring the 

simulation parameters such as amplitudes, widths, and frequencies to emulate measured 

spectra across the spectral ranges will be vital in reducing these approximation errors. The 

results show that when the simulated NRB shape is changed to match the measured spectra, 

performance improves. This supports the suggestion that in future work, the input data be 

tailored to mimic the measured spectra. 

Other deep learning approaches, as seen in the work done by Wang et al.  [53] and 

Abdolgadher et al.  [6], which are both based on unsupervised learning should also be 

explored to determine if they are better suited for our setup. Any improvements to this 

work will only positively affect CARS imaging and spectral analysis. 
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Appendix A  

A.1 The proposed Specnet model architecture summary [3]. 

Layer (Type) Output Shape Parameter Number  

Batch Normalization  (None, 640,1) 4 

Activation  (None, 640,1) 0 

Convolution Layer 1 

(Using Conv1D) 

(None, 609, 128) 4,224 

Convolution Layer 2 

(Using Conv1D) 

(None, 594, 64) 131,136 

Convolution Layer 3 

(Using Conv1D) 

(None, 587, 16) 8,208 

Convolution Layer 4 

(Using Conv1D) 

(None, 580, 16) 2,064 

Convolution Layer 5 

(Using Conv1D) 

(None, 573, 16) 2,064 

Fully Collected Layer 1 

(Dense) 

(None, 573, 32) 544 

Fully Collected Layer 2 

(Dense) 

(None, 573, 16) 528 

Flatten layer (None, 9168) 0 

Dropout Layer (None, 9168) 0 

Fully Collected Layer 3 

(Dense) 

(None, 640) 5,540,480 

 

Total number of parameters: 6, 016, 932 

Number of Trainable Parameter: 6, 016, 930 

Number of Non-trainable Parameter: 2 
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A.2  

This code used processing both measured hyperspectral stack with the Specnet and Specnet 

Plus model is presented below. 

import tensorflow as tf 

import os, time 

import tifffile 

import numpy as np 

from scipy.interpolate import interp1d 

import pathlib 

import multiprocessing as mp 

import tensorflow as tf 

# import keras.backend as K 

from keras.models import Sequential 

from keras.layers import Dense, Conv1D, Flatten, BatchNormalization, 

Activation, Dropout 

from keras import regularizers 

 

model = tf.keras.models.load_model('model/467_model.h5') 

model.summary() 

x_values = np.arange(467) 

# x_values= np.arange() 

 

def open_tiff(file_path): 

    # *This step changes the tiffile pulled numpy array from 2-D to 3-D 

    image = tifffile.TiffFile(file_path) 

    pages = image.pages 

    page_shape_rows, page_shape_cols = image.pages[0].shape 

    output_image = np.zeros((len(pages), page_shape_rows, page_shape_cols)) 

    for i in range(len(pages)): 

        output_image[i] = image.pages[i].asarray() 

    return output_image 
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def chi3(data): 

    # get the shape of the unprocessed tiff file 

    z, y, x = data.shape 

 

    # create an empty array for the Raman-retrieved tiff file 

    # z-axis should be 640 data points, same as with the trained model 

    new_data = np.empty((467, y, x)) 

 

    # generate arbitrary values to the _x ('wavenumber') component of the 

raw data 

    # to be used for interpolation purposes later 

    # Note. The retrieval algorithm doesn't need actual wavenumbers but only 

needs the pixel / frame number. 

    _x = np.linspace(0, 467, z) 

 

    # process each pixel of the image 

    # process along the row axis 

    for i in range(y): 

 

        # process along the column axis 

        for j in range(x): 

 

            print(f"processing row: {j} column {i}", end="\r") 

 

            # extract the raw CARS spectrum at pixel j, i 

            _y = data[:, i, j] 

            

 

            # re-map the spectrum to 640 points to be compatible with the 

model 

            # _x is 640 points 

            # _y is whatever number of data points 

            f = interp1d(_x, _y) 
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            # retrieve the Raman spectrum 

             

            new_data[:, i, j] = model.predict(f(x_values)[np.newaxis, :, 

np.newaxis]).flatten() 

 

    return new_data 

 

# process the files in this directory 

rootdir = r"C:\Users\damil\OneDrive\Desktop\pharma" 

 

# get time-stamp to measure how long the process will take  

print(time.strftime('%Y_%m_%d %H:%M:%S')) 

for subdir, dirs, files in os.walk(rootdir): 

    for file in files: 

        filepath = pathlib.Path(subdir, file) 

        print(f"processing {file}") 

        data = open_tiff(filepath) 

         

        #obtain new file path for processed file  

        new_file = 

pathlib.Path(pathlib.Path(file).parent,"results_pharma_test", file) 

        new_file.parent.mkdir(parents=True, exist_ok=True) 

        processed = chi3(data) 

 

        # Save tiff_file 

         

        tifffile.imsave(new_file, processed) 

        #tifffile.imsave(os.path.join("results", file), processed) 

 

print(time.strftime('%Y_%m_%d %H:%M:%S')) 
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Appendix B Copyrighted Material  

The code for training the DL model with the modification is shown in this section (the 

bolded parts). The section also includes a copy of the MIT license for the original code, 

which permits me to use it as I wish for this project. 

 

 

Source code for building the modified Model  

The Original code for the Specnet model can be found in the GitHub Repository [46]. 

import numpy as np 

import matplotlib.pyplot as plt 

import pandas as pd 

import tensorflow as tf 

MIT 

License 
 

 
  
Copyright (c) 2020 Valensicv 

 
 
  
Permission is hereby granted, free of charge, to any person obtaining a copy 

 
of this software and associated documentation files (the "Software"), to deal 

 
in the Software without restriction, including without limitation the rights 

 
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 

 
copies of the Software, and to permit persons to whom the Software is 

 
furnished to do so, subject to the following conditions: 

 
 
  
The above copyright notice and this permission notice shall be included in all 

 
copies or substantial portions of the Software. 

 
 
  
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 

 
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 

 
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 

 
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 

 
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 

 
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 

 
SOFTWARE. 
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import keras.backend as K 

from keras.models import Model, Sequential 

from keras.layers import Dense, Conv1D, Flatten, BatchNormalization, 

Activation, Dropout 

from keras import regularizers 

from datetime import datetime 

 

max_features = 15 

n_points = 640 

nu = np.linspace(0,1,n_points) 

 

def random_chi3(): 

    """ 

    generates a random spectrum, without NRB.  

    output: 

        params =  matrix of parameters. each row corresponds to the 

[amplitude, resonance, linewidth] of each generated feature (n_lor,3) 

    """ 

    n_lor = np.random.randint(1,max_features) # take a random int between 1 

and max_features 

    a = np.random.uniform(0.01,1,n_lor)  # take a random number between 0 

and 1 with shape n_lor 

    w = np.random.uniform(0.001,1,n_lor)  # take a random number between 0 

and 1 with shape n_lor 

    g = np.random.uniform(0.001,0.008, n_lor) # take a random number between 

0.001 and 0.008 with shape n_lor 

     

    params = np.c_[a,w,g] 

    return params 

random_chi3() 

 

def build_chi3(params): 

    """ 

    buiilds the normalized chi3 complex vector 
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    inputs:  

        params: (n_lor, 3) 

    outputs 

        chi3: complex, (n_points, ) 

    """ 

     

    chi3 = np.sum(params[:,0]/(-nu[:,np.newaxis]+params[:,1]-

1j*params[:,2]),axis = 1) 

     

    return chi3/np.max(np.abs(chi3))   

 

def sigmoid(x,c,b): 

    return 1/(1+np.exp(-(x-c)*b)) 

 

def generate_nrb(): 

    number_of_undulations = np.random.randint(1,4) 

    a = np.random.random(number_of_undulations) 

    a.sort() 

    x0 = np.random.random(number_of_undulations) 

    sigma = np.random.uniform(0.1,0.3,number_of_undulations) 

    sigma.sort() 

    print(f"x0 :\t{x0}") 

    print(f"a :\t{a}") 

 

    print(sigma) 

    _all = np.exp((-(nu-np.c_[x0])**2)/(2*(np.c_[sigma]**2))) 

    result = np.sum(_all,axis=0) 

 

    return result/result.max() 

 

# test function 

#plt.plot(generate_nrb()) 

 

# generate nrb and store in variable, _nrb 

_nrb = generate_nrb() 
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# plt.plot(_nrb) 

 

def get_spectrum(): 

    """ 

    Produces a cars spectrum. 

    It outputs the normalized cars and the corresponding imaginary part. 

    Outputs 

        cars: (n_points,) 

        chi3.imag: (n_points,) 

    """ 

    chi3 = build_chi3(random_chi3())*np.random.uniform(0.3,1) 

    nrb = generate_nrb() 

    # nrb = _nrb 

    noise = np.random.randn(n_points)*np.random.uniform(0.01,0.03) 

    cars = ((np.abs(chi3+nrb)**2)/2+noise) 

    return cars, chi3.imag 

 

cars, chi3 = get_spectrum() 

#plt.plot(cars) 

#plt.plot(chi3) 

#plt.show() 

 

nrbfig=plt.plot(_nrb)   

carsfig=plt.plot(cars) 

chi3fig=plt.plot(chi3) 

 

plt.show() 

 

## Seperate the plots here 

 

tf.keras.backend.clear_session() 

model = Sequential() 

 

model.add(tf.keras.Input(shape=(n_points,1))) 
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# Batch normalization 

model.add(BatchNormalization(axis=-1, 

                             momentum=0.99, 

                             epsilon=0.001, 

                             center=True, 

                             scale=True, 

                             beta_initializer='zeros', 

                             gamma_initializer='ones', 

                             moving_mean_initializer='zeros', 

                             moving_variance_initializer='ones', 

                             beta_regularizer=None, 

                             gamma_regularizer=None, 

                             beta_constraint=None, 

                             gamma_constraint=None, 

                             # input_shape = (n_points, 1) # can be deprecated 

by input layer 

                             )) 

 

# gives batch normalization activation 'relu' 

model.add(Activation('relu')) 

 

# Conv1D is for pattern detection 

# there are 128 kinds of filters and kernel size (32) is convolution window 

# adds 128 (filters) to the next dimension 

# reduces samples by 32 but adds 1 --> 640 - 32 + 1 = 609 

model.add(Conv1D(128, activation = 'relu', kernel_size = (32))) 

 

# do 64 filters, 16 window kernel 

model.add(Conv1D(64, activation = 'relu', kernel_size = (16))) 

 

# so on... 

model.add(Conv1D(16, activation = 'relu', kernel_size = (8))) 

model.add(Conv1D(16, activation = 'relu', kernel_size = (8))) 

model.add(Conv1D(16, activation = 'relu', kernel_size = (8))) 
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# Dense Layers == Fully connected layers 

# 32 units, 573 features 

model.add(Dense(32, activation = 'relu', 

                kernel_regularizer=regularizers.l1_l2(l1 = 0, l2=0.1))) 

# 16 units, 573 features 

model.add(Dense(16, activation = 'relu', 

kernel_regularizer=regularizers.l1_l2(l1 = 0, l2=0.1))) 

 

# Flattens out the previous layer 

# 573 * 16 = 9168 

model.add(Flatten()) 

 

# Dropout. With rate 0.25. Randomly sets a value to zero to prevent 

overfitting 

model.add(Dropout(0.25)) 

 

# Return to previous number of data points 

model.add(Dense(n_points, activation='relu')) 

 

model.compile(loss='mse',optimizer='Adam', 

metrics=['mean_absolute_error','mse','accuracy']) 

model.summary() 

 

def generate_batch(size = 10000): 

    X = np.empty((size, n_points,1)) 

    y = np.empty((size,n_points)) 

     

    for i in range(size): 

        X[i,:,0], y[i,:] = get_spectrum() 

    return X, y 

 

# X, y = generate_batch(10) 

# X has shape (10, 640, 1) 

# y has shape (10, 640) 
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X, y = generate_batch(50000) 

history = model.fit(X, y,epochs=10, verbose = 1, validation_split=0.25, 

batch_size=256)  

plt.plot(history.history['loss'])  

plt.plot(history.history['val_loss']) 

plt.title('Model loss') 

plt.ylabel('Loss') 

plt.xlabel('Epoch') 

plt.legend(['Train', 'Test'], loc='upper left') 

plt.show() 

model.save('model/640_model.h5') 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


