

Deep learning for removal of non-resonant background

in CARS hyperspectroscopy

A thesis submitted to the Committee on Graduate Studies

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in the Faculty of Art and Science

Trent University

Peterborough, Ontario, Canada

© Copyright by George A. Olaniyan, 2023

Materials Science M.Sc. Graduate Program

January 2023

ii

ii

Abstract

Deep learning for removal of non-resonant background in CARS hyperspectroscopy

George Aderopo Olaniyan

In this work, a deep learning approach proposed by Valensise et al. [3] for extracting

Raman resonant spectra from measured broadband CARS spectra was explored to see how

effective it is at removing NRB from our experimentally measured “spectral-focusing”-

based approach to CARS. A large dataset of realistic simulated CARS spectra was used to

train a model capable of performing this spectral retrieval task. The non-resonant

background shape used in creating the simulated CARS spectra was altered, to mimic our

experimentally measured NRB response. Two models were trained: one using the original

approach (Specnet) and one using the updated NRB “Specnet Plus”, and then tested their

ability to retrieve the vibrationally resonant spectrum from simulated and measured CARS

spectra. An error analysis was performed to compare the model's retrieval performance

on two simulated CARS spectra. The modified model's mean squared error value was five

and two times lower for the first and second simulated CARS spectra, respectively. Specnet

Plus was found to be more effective at extracting the resonant signals. Finally, the NRB

extraction abilities of both models are tested on two experimentally measured CARS

hyperspectroscopy samples (starch and chitin), with the updated NRB model (Specnet

Plus) outperforming the original Specnet model. These results suggest that tailoring the

approach to reflect what we observe experimentally will improve our spectral analysis

workflow and increase our imaging potential.

iii

iii

Keywords: non-resonant background; coherent anti-Stokes Raman Scattering (CARS)

microscopy; deep learning; Raman retrieval; convolutional neural networks.

iv

iv

Preface to the thesis and Outline

Hyperspectral Coherent anti-Stokes Raman Scattering (CARS) is very influential in the

world of material characterization. This technique provides non-invasive imaging and

probes the chemical information of different molecules without labeling [1]. It was first

implemented by Duncan et al. [2] and has evolved into a technique widely used to study

the structural and chemical composition of various compounds. In CARS, two beams of

laser light are typically used to excite the sample simultaneously; one beam is referred to

as the pump beam, and the other is the Stokes beam [1]. Infamously, CARS suffers from

the presence of a non-resonant background (NRB) that reshapes the observed CARS

spectrum, degrading spectral analysis [3]. Finding a solution to this problem has been the

primary motivation for this thesis project. Over the past few decades, several mathematical

approaches have been employed to these ends, such as the Time Domain Kramers-Kronig

method (TDKK) [4] and the maximum entropy method (MEM) [5], yet they all have their

limitations when it comes to fully eliminating NRB signals [3]. Recently, machine learning

has become a leading tool for data analysis and performing various applications, such as

image classification for cancer detection [6]. Due to its recognition as a tool used for

learning and classifying features from images, several machine learning approaches have

already been developed to solve this problem in CARS. In this work, I explore a deep

learning approach used by Valensise et al. [3] to remove these unwanted signals from

measured multiplex or broadband CARS spectra and I study how best to integrate this

method into our unique experimental approach to spectral-focusing CARS (SF-CARS)

microscopy.

v

v

In this thesis, I report how I integrated this approach into out SF-CARS setup, the

modification I made to the process, how the model performed with and without the change,

and some future considerations to improve this work. Chapter 1 introduces the main

concepts necessary to understand this work, such as Raman scattering, non-linear optical

processes, and deep learning, and provides a background for the remaining chapters. Since

this work revolves around improving spectral analysis in CARS, chapter 2 provides a more

detailed review of the theory behind the CARS process, spectrum formation, and how the

NRB signals distort the shape of the measured spectrum. The different variations to the

basic CARS process and the different experimental implementations of hyperspectral

CARS are then discussed. A detailed description of our spectral-focusing CARS setup is

also presented.

The third chapter introduces convolutional neural networks and the Specnet framework,

which is the deep learning approach in [3]. I outline the theory behind the process, and the

results in applying the model to experimentally obtained hyperspectral data from our setup.

Finally, I discuss the modification I made to the approach to better fit our setup.

Chapter 4 presents the results of using this deep learning approach with and without

the modification on simulated and experimentally measured CARS spectra. The fifth

chapter summarizes the thesis and offers suggestions for future improvements.

vi

vi

Acknowledgments

I'd like to express my deepest gratitude to everyone who has contributed, directly or

indirectly, to the success of this project.

My biggest thank you goes to my supervisor, Dr. Aaron Slepkov, for believing in me and

providing me with guidance, advice, and words of encouragement during my M.Sc.

program, especially during the pandemic.

I'd also like to thank the Slepkov lab alumni, Jeremy Porquez and Ryan Cole, for teaching

me how to use our laser setup, assisting with my transition into the lab, being available to

answer all my questions, and their words of wisdom.

Many thanks also go to the many people who contributed to this work's foundation:

Valensise et al. [3] for introducing the deep learning approach I explored for this work.

Jeremy Porquez deserves special recognition for his preliminary work on adapting the

published code and his assistance in resolving the numerous bugs I encountered while

implementing the code.

I would also like express my gratitude to my supervisory committee members, Dr. Andrew

Vruegdenhil and Dr. Franco Gaspri, for their insightful comments during my committee

meeting.

Finally, I would like to thank my loving family back in Nigeria and Ireland for their

continuous support throughout my academic journey. Being apart from them for the past

few years hasn't been easy, but they are the main reason I persisted.

Thank you! E se gan ni! Go raibh maith agat!

vii

vii

Table of Contents

Abstract ii

Preface to the thesis and outline iv

Acknowledgments vi

Table of Contents vii

List of Figures ix

List of Tables xi

1 Background Ideas: Raman Scattering, non-linear optical processes, and machine

learning 1

1.1 Raman Scattering ………………………………………………………………...…..2

1.2 Non-linear Optical Processes: A Literature Review………………………………….5

1.2.1 Two-Photon Excitation Fluorescence………………………………………7

1.2.2 Second Harmonic Generation……………………………………………....8

1.2.3 Coherent Anti-Stokes Scattering…………………………………………....8

1.3 Machine Learning: A Literature Review…………………………………………..…9

1.3.1 Deep-Learning …………………………..……………………………...…10

1.3.2 Neural Networks……………………………………………………...……11

2 Hyperspectral Coherent Anti-Stokes Raman Scattering (CARS) 14

2.1 Chapter Preface ………………………………………………………………………14

2.2 Introduction…………………………………………………….…………………….14

2.3 CARS Basics…………………………………………………………………………15

2.4 Variations of the Primary CARS methods……………………...…………………….21

2.5 Hyperspectral CARS Implementations…………………………...………………….22

viii

viii

2.6 The Spectral-Focusing CARS Scheme……………………………………...………..26

2.7 Experimental Results…………………………………………………………………28

3 Specnet: A Convolutional Neural Network 32

3.1 Chapter Preface…………………………………………...………………………….32

3.2 Convolutional Neural Network………………………………………………………32

3.2.1 Input Layer…………………………………………………………………34

3.2.2 Convolutional Layer …………………………………………………….…35

3.2.3 Pooling Layer …………………...…………………………………………37

3.2.4 The Fully Connected Layer……………………………………...…………39

3.2.5 Activation Layer……………………………………………………………39

3.3 The Specnet Approach………………………………………………………….……41

3.3.1 Methodology……………………………………………….………………42

 3.4 Specnet model dataset simulation…………………………………………………..…43

3.4 Specnet Plus model simulation………………………………………...…..…46

3.5 Model Training and Evaluation……………………………..……………….……….48

3.6 Testing both Models Predictions Performance…………………………….…………50

4 Results and Discussions 52

5 Summary, Conclusion and Future Recommendations 66

Bibliography 69

Appendix A: Retrieval Code 74

Appendix B: Copyright material (Specnet Code) 78

ix

ix

List of Figures

Figure 1.1: All three different types of light scattering

Figure 1.2: Jablonski energy diagram representations of the Stokes and Anti-Stokes

Raman Scattering.

Figure 1.3: Jablonski energy diagram for (a) Two-Photon Excitation Fluorescence

(TPEF), (b) Second Harmonic Generation (SHG), and (c) Coherent Anti-Stokes Raman

Scattering (CARS).

Figure 1.4: The deep learning family tree showing the relationship between artificial

intelligence, machine learning, and deep learning.

Figure 1.5: A perceptron; a single-layer neural network unit.

Figure 2.1: (a) Energy diagram representation for both Raman resonant (CARS) and

non-resonant FWM (NRB) processes.

Figure 2.2: Constituents of a CARS spectrum.

Figure 2.3: Different schemes used to implement hyperspectral CARS.

Figure 2.4: The schematics for the multimodal SF-CARS microscopy setup.

Figure 2.5: Broadband hyperspectroscopy for a crystalline sucrose sample.

Figure 3.1: A visual representation of a convolutional neural network.

Figure 3.2: A colored image converted to a three-dimensional array for processing.

Figure 3.3: A representation of a convolution operation.

x

x

Figure 3.4: A demonstration of maximum and average pooling.

Figure 3.5: The spectrum shows a zoomed-in and processed copy of the NRB spectrum

from ROI 2 of Figure 2.5.

Figure 3.6: A summary of each training step.

Figure 3.7: A process flow diagram of how the model is used for processing.

Figure 3.8: The prediction results obtained from using the Specnet and Specnet models

on two randomly simulated CARS spectra.

Figure 3.9: SF-CARS hyperspectroscopy of a potato starch sample and the retrieved

hyperspectral data from Specnet and Specnet Plus.

Figure 3.10: SF-CARS images of the potato starch sample gotten at an off-resonance

frequency.

Figure 3.11: SF-CARS hyperspectroscopy of a chitin sample and the retrieved

hyperspectral data from Specnet and Specnet Plus.

Figure 3.12: SF-CARS images of the chitin sample gotten at an off-resonance

frequency.

xi

xi

List of Tables

Table 3.1: A summary of the detected Chitin Raman resonance assignments.

Appendix A.1: Specnet model architecture.

1

Chapter 1

Background Ideas: Raman Scattering, non-linear optical

processes, and machine learning.

Machine learning and Raman spectroscopy are the two areas of research that form the

foundation of this project. This chapter will provide the required foundation knowledge to

comprehend how these two fields were combined in this work. Raman spectroscopy is a

non-invasive and label-free technique used to probe the vibrational mode of a sample of

interest [7]. Raman spectroscopy has been prominently used to perform a variety of

applications in several fields, such as biology [8], medicine [9], and so on. Spontaneous

Raman scattering or Raman effect, the phenomenon on which the Raman spectroscopy is

based, will be introduced in Section 1.1. Although spontaneous Raman scattering has many

benefits, it is relatively weak in most applications. Hence several enhanced Raman

techniques have been developed with the introduction of new instrumentation, such as

ultrafast lasers, to circumvent this drawback. [10]. These variants include surface-enhanced

and non-linear Raman techniques. This work primarily deals with a non-linear Raman

technique named Coherent Anti-Stokes Raman Scattering (CARS). Section 1.2 will discuss

several non-linear optical processes and their relationship with Raman scattering, a linear

optical process.

Machine learning is covered in the later section of this chapter. A “deep learning” strategy

was specifically enlisted for this project, which is a subset of machine learning.

Understanding deep learning as a concept is required to comprehend the complexity of the

2

approach employed in this work. Section 1.3 gives the reader a base knowledge of the

relationship between machine learning and deep learning. It also introduces neural

networks which are used to implement deep learning algorithms.

1.1 Raman Scattering

When a sample interacts with a light beam, there are two types of scattering that can occur.

The first of which is known as Rayleigh scattering, an elastic process, in which energy is

conserved, and the emerging light is of the same frequency (𝐸 = 𝐸0) [11]. The other type

is Raman scattering, an inelastic process consisting of a photon's absorption or emission

and a phonon's emission or absorption. [11]. As described in Figure 1.1, when the emitted

photon's energy is less than that of the incident photon (𝐸 < 𝐸0), this is known as the

Stokes process, whereas when it's greater than the energy of the incident photon (𝐸 > 𝐸0),

it is referred to as the anti-Stokes process [11].

3

Figure 1.1: All three different types of light scattering. Rayleigh Scatter (green photon),

Stokes Raman Scatter (red photon), anti-Stokes Raman Scatter (blue photon). The image

is adapted from [12].

The energy difference between the two processes corresponds to the energy necessary to

excite a specific vibration mode, as seen in Figure 1.2. When these scattered photons are

detected, a Raman spectrum is created, with several bands representing the vibrational

frequencies of various functional groups [13].

4

Figure 1.2: Jablonski energy diagram representations of Stokes and anti-Stokes Raman

Scattering. (a) Stokes Raman Scattering. (b) Anti-Stokes Raman Scattering. The Stokes

process leaves the molecule in a vibrationally-excited state. The anti-Stokes process starts

with a vibrationally-excited state and returns the molecule to a lower excited state or the

ground state.

When the emitted photon is shifted towards a longer wavelength, this is known as the

Stokes shift. In contrast, the anti-Stokes shift when the photon is shifted toward a shorter

wavelength. The change in wavelength for the Stokes and the anti-Stokes signals is

expressed as:

 1

𝜆𝑆
=

1

𝜆𝑃
− Ω𝑅 𝑆𝑡𝑜𝑘𝑒𝑠

(1.1)

 1

𝜆𝐴𝑆
=

1

𝜆𝑃
+ Ω𝑅 𝑎𝑛𝑡𝑖 − 𝑆𝑡𝑜𝑘𝑒𝑠

(1.2)

5

where, 𝜆𝑃, is the incident light's wavelength, 𝜆𝐴𝑆, is the anti-Stokes wavelength, 𝜆𝑆 is the

Stokes wavelength and, Ω𝑅, is the frequency of the vibrational mode. As we know, each

molecule has a distinct structure and set of vibration modes. Raman microscopy and other

succeeding techniques developed via Raman scattering are used to probe the vibrational

modes of each molecule in a sample of interest.

1.2 Non-linear optical processes: A brief review

This work focuses mainly on CARS microscopy, but we must consider several other non-

linear optical phenomena. Non-linear optical processes occur when two or more photons

interact simultaneously with a sample material [14]. As described in [15], the sample's

induced (non-linear) polarization, P, is related to the electric field strength, E. This

relationship is expressed as:

 𝑃 = 𝜖0[𝜒
(1 𝐸 + 𝜒(2 𝐸2 + 𝜒(3 𝐸3 + ⋯+ 𝜒(𝑁 𝐸𝑁]

(1.3)

where 𝜖0 is the permittivity of free space, 𝜒(𝑁 and 𝐸𝑁, are the nth-order (non-linear)

susceptibility and corresponding electric field, respectively. The first term in equation 1.3

is the polarization contribution of linear optical processes (Raman scattering), and the

higher-order polarization contributions are “non-linear” processes. The value of optical

susceptibility decreases rapidly with increased order (i.e., 𝜒(1 , is several orders of

magnitude larger than 𝜒(2 and so on) [15]. However, the weaker effect from the higher-

order contributions is overcome with the use of an ultrafast signal generation. With the use

6

of ultrafast lasers that can generate sufficiently high field strengths, the higher-order terms

can become comparable to the linear term and thus the high-order term are measurable.

Second harmonic generation (SHG) and sum frequency generation (SFG) occur because

of the second-order response described by, 𝜒(2 , the second term in equation 1.3. They both

occur when two photons interact with a sample material. Two-photon excitation

fluorescence (TPEF), CARS, and third harmonic generation (THG) are due to the third-

order response, 𝜒(3 . These third-order non-linear processes are also referred to as four-

wave mixing (FWM) processes. Four-wave mixing occurs when three incident laser fields

with frequencies 𝜔1, 𝜔2, and 𝜔3, interacts with sample material, 𝜒(3 , to generate signal

field at frequency, 𝜔4 [16].

Non-linear optical processes are often integrated simultaneously into a multimodal

microscopy system. Our multimodal system includes SHG, TPEF, and CARS. Figure 1.3

below shows the energy diagrams for SHG, TPEF, and CARS. Our multimodal setup is

presented and further discussed in Chapter 2. The following subsections (1.2.1-1.2.3)

briefly discuss these processes, their probing mechanism, and the type of molecule or

material each technique can examine.

7

Figure 1.3: Jablonski energy diagram for (a) Two-Photon Excitation Fluorescence (TPEF),

(b) Second Harmonic Generation (SHG), and (c) Coherent Anti-Stokes Raman Scattering

(CARS). 𝜒(2 , indicates the processes that occur due to the second-order response (SHG),

whereas TPEF and CARS is due to the third-order response, 𝜒(3 .

1.2.1 Two-Photon Excitation Fluorescence (TPEF)

In the microscopic implementation of multiphoton excitation, in which two or more

photons induce an electronic transition from the ground state to the excited states via the

virtual electronic states, the signal generation is proportional to the intensity of the

excitation light squared [15]. The process described is shown in Figure 1.3 (a). Unlike one-

photon excitation, where a single photon is used to excite a fluorescent molecule in the

ultraviolet or visible range (400nm-500nm), in TPEF, the fluorescent molecule is excited

in the infrared range (800nm-1000nm). Thus, the excitation is different, but the molecule

fluorescence is the same. These allow for increased depth penetration and reduced

photodamage of live cells and tissues [15]. This has led to several applications in the

biomedical field, such as neuroscience [17], cellular and tissue imaging [18], and several

other applications.

 (((

8

1.2.2 Second Harmonic Generation (SHG)

 For the SHG process, two pump photons with a frequency, 𝜔𝑝, interact with a target

molecule to produce a beam precisely double the original frequency (𝜔𝑆𝐻𝐺 = 2𝜔𝑝 , i.e at

half the wavelength. SHG can only occur in materials that exhibit non-centrosymmetric

structures (i.e., those without a center of inversion symmetry) [14]. Examples of materials

that exhibit this symmetry are collagen and pharmaceutical crystals [14]. However, it is

worth noting that THG, which is due to the third-order response described by, 𝜒(3 , or as

an indirect two-step process involving SHG and SFG, can occur in materials that exhibit

both centrosymmetric and non-centrosymmetric structures [15].

1.2.3 Coherent Anti-Stokes Raman Scattering (CARS)

As mentioned in the section preface, CARS microscopy is based on four-wave mixing

process. In this process, as seen in Figure 1.3 (c), the pump, Stokes, and probe beams with

frequencies, 𝜔𝑝, 𝜔𝑆, and 𝜔𝑝𝑟, respectively interact with the target sample to yield an anti-

stoke signal with a frequency, 𝜔𝐴𝑆. This normally weak signal is amplified, when the

frequency difference between the pump and Stokes beams matches a vibration mode (Ω𝑅)

of the material. The sample of interest can thus be probed over various vibrational

frequencies to achieve label-free imaging and spectroscopy. The CARS process is

discussed in more detail in Chapter 2.

9

1.3 Machine Learning: A brief review

Artificial Intelligence (AI), arising from the use of machines to perform different tasks on

their own, has been a practical approach to human learning and reasoning [19]. Early AI

implementation focused on using a predefined set of rules provided by an expert to make

predictions [20]. However, a less rigid structure is often needed due to the increased scale

and amount of data. These constraints have led to the need for a more data-driven approach,

such as machine learning (ML) and data mining. Machine learning, a subset of AI, has

widespread use in research to learn from training datasets fed into the algorithm to predict

outcomes in various applications, including text mining, spam detection, and image

classification [21]. The different approaches to ML include Clustering, Bayesian networks,

Deep Learning, and Decision Tree Learning [19]. This section will highlight Deep learning

(DL), as it’s the approach used. Figure 1.4 helps visualize how DL relates to machine

learning (ML) and artificial intelligence (AI).

10

Figure 1.4: The deep learning family tree depicting the relationship between artificial

intelligence, machine learning, and deep learning. Artificial Intelligence is the umbrella

term for various computational methods of human reasoning and learning. One of these

computational methods is machine learning, which focuses on using data to mimic human

learning while also increasing learning accuracy. Deep learning is a branch of machine

learning that employs artificial neural networks for data analysis and prediction.

1.3.1 Deep Learning:

The DL concept was introduced in 2006 [19] as a novel approach to machine learning. DL

algorithms use numerous layers of perceptron, described in Figure 1.6, with each providing

a different representation of the data fed to them. DL enables learning to be achieved in a

single shot, by automating the learning and classifying different features for several types

of datasets [21]. This is not the case for conventional ML techniques which require human

intervention for the feature extraction step. Deep learning approaches are categorized into

supervised and unsupervised learning. Supervised learning is a deep learning approach that

11

uses labeled data where the model input and output are both defined [22]. Labeling entails

adding predefined tags, such as name, number, and color, to the raw datasets allowing the

model to learn from an example. An example of this can be specifying whether an input

image is that of a cat or dog. For unsupervised learning, the model learns by analyzing an

unlabeled dataset and identifying hidden structures or similarities between each data point.

The approach used for this work is supervised learning as further discussed in Chapter 3.

1.3.2 Neural Networks

Deep learning is designed using a multilayer algorithm known as a neural network. The

building blocks of a neural network constitute the processing elements and nodes, whose

functionality is based on the nervous system [23]. Each perceptron or neuron connects to

another of its kind to form a neural network or multi-layer perceptron, and each has

associated weights and thresholds [24]. When each node's output exceeds the specified

threshold value in the layer, the node is activated, sending data to the next layer. Data is

not passed to the next layer if this threshold constraint is not met. Figure 1.5 shows the

constituent of each perceptron; a neural network unit. The perceptron comprises two steps:

the first step calculates the weighted sum of the input functions, and the second is an

activation function that transforms the output to a desired non-linear format before it is

passed to the next layer in the network. The first step is mathematically expressed as [24]

12

∑𝑤𝑖𝑥𝑖 + 𝑏 = 𝑤1𝑥1 + 𝑤2𝑥2 + ⋯+ 𝑤𝑛𝑥𝑛 + 𝑏

𝑛

𝑖=1

(1.4)

where, 𝑥1 through 𝑥𝑛, are the input data, denoted by the vector 𝑥 on the left side of the

equation; 𝑥𝑖, represent the 𝑖𝑡ℎ entry from the dataset; weights, 𝑤1, through 𝑤𝑛 can be

denoted by the matrix, 𝑤𝑖; and b is the constant bias term.

Figure 1.5: A perceptron; a single-layer neural network unit. The weighted sum is

calculated in Step 1. In step 2, an activation function is used to transform the output to a

desired non-linear format.

In the second step, the activation function helps map the summation result to the desired

range [24]. Activation functions, including the sigmoid or logistic activation function, tanh

activation function, rectified linear unit (ReLU) activation function, and so forth, are used

for this non-linearity operation. The simplest neural network architecture is made up of

three layers, commonly referred to as a "feed-forward neural network": an input layer, one

 1

 2

 1

 2

13

or more hidden layers, and an output layer [24]. Its inputs are processed in the forward

direction; the input layer gathers the information, then passes it to the hidden layer for

processing, and the output layer shows the processed results. This neural network is the

primary form of other neural networks such as recurrent neural networks (RNNs) and

convolutional neural networks (CNNs). CNNs in particular are used for applications that

have to do with images due to their ability to learn from data with grid patterns, which

makes it suitable for this work due to the nature of our data (hyperspectral images) [25].

The conventional CNN architecture will be further described in Chapter 3, along with how

it was applied to this project.

14

Chapter 2

Hyperspectral Coherent Anti-Stokes Raman Scattering

2.1 Chapter Preface

This chapter provides insight into the origins of Coherent Anti-Stokes Raman Scattering

(CARS) microscopy, the theory behind the process, spectrum formation, and how the non-

resonant background (NRB) influences the shape of the CARS spectrum. The different

variations in the basic CARS process and the different experimental implementations of

hyperspectral CARS microscopy are mentioned. A schematic of our particular

implementation of spectral-focusing CARS (SF-CARS) is presented. The chapter also

presents an example of a hyperspectral image obtained from a sample of crystalline

sucrose, highlight how the NRB distorts the observed CARS spectrum.

2.2 Introduction

CARS was first reported as a third-order non-linear optical process in 1965 by Terhune et

al. [26] at Ford Motor Company. The name was not coined until a decade later, when it

was used to study the chemical reaction between benzene and toluene by Begley et al. [27].

The first use of CARS as an imaging technique was in 1982 by Duncan et al. [2], who

performed cellular imaging by temporally synchronizing the pulses to achieve phase-

matching [2]. The introduction of femtosecond lasers led to the discovery of several other

15

non-linear processes and influenced further developments in CARS implementation. [1].

In 1999, Zumbusch et al. achieved CARS microscopy by changing the pump beam

configuration to overlap co-linearly with the Stokes beam, using a femtosecond laser for

close focusing to perform three-dimensional imaging [28]. The work by Zumbusch et al.

gained CARS its recognition as a label-free alternative to existing fluorescence techniques

for material characterization.

CARS offers a solution to the low-yield signal obtained in spontaneous Raman scattering,

especially for microscopy [15]. Although it is a non-linear optical analog of Raman, due to

its coherent nature, CARS processes can produce more than 105 times higher signal than

the Raman process [15]. However, it also suffers drawbacks such as a square dependence

on concentration, for example. So, it's not always better for dilute and trace sample

characterization.

2.3 CARS basics

The CARS process involves interaction between three light beams denoted pump (𝜔𝑝𝑢 ,

probe (𝜔𝑝𝑟), and Stokes (𝜔𝑠 , to yield an anti-Stokes signal (𝜔𝑎𝑠 . This signal is amplified

when the frequency difference between the pump and Stokes beams matches a Raman-

active vibrational mode (Ω𝑅 of the molecules in the sample [29].

As a third-order non-linear process, the electric field of the anti-Stokes signal and its

corresponding angular frequency are given by [30]:

16

 𝐸𝑎𝑠(𝜔𝑎𝑠 = 𝜒(3 𝐸𝑠(𝜔𝑠 𝐸𝑝𝑟(𝜔𝑝𝑟 𝐸𝑃(𝜔𝑃 (2.1)

 𝜔𝑎𝑠 = 𝜔𝑃 + 𝜔𝑝𝑟 − 𝜔𝑠 (2.2)

where 𝐸𝑠, 𝐸𝑝𝑟, 𝐸𝑃 , are the Stokes, probe, and pump fields, respectively; 𝜔𝑠, 𝜔𝑝𝑟, 𝜔𝑃,

denotes the frequencies of the fields, respectively. 𝜒(3 denotes the third-order non-linear

susceptibility.

For most CARS setups, the source of the pump and probe light is the same. This is referred

to as a “degenerate” four-wave mixing (FWM), in which case equation 2.1 is expressed as:

 𝐸𝑎𝑠 = 𝜒(3 𝐸𝑠𝐸
2
𝑃 (2.3)

For degenerate FWM, 𝜔𝑃 = 𝜔𝑝𝑟 , and the corresponding angular frequency of the anti-

Stokes is given by:

 𝜔𝑎𝑠 = 2𝜔𝑃−𝜔𝑆 (2.4)

Theoretically, the anti-Stokes intensity for degenerate FWM will be proportional to the

squared modulus of the non-linear susceptibility |𝜒(3 |2 and is described as follows [15]:

17

 𝐼𝑎𝑠 ∝ 𝐼𝑃
2𝐼𝑆|𝜒

(3 |2 (2.5)

where, 𝐼𝑃 and 𝐼𝑆, are the pump and Stokes intensities, respectively. The non-linear

susceptibility, 𝜒(3 , is the sum of the non-resonant part, 𝜒𝑛𝑟
(3

, commonly referred to as the

non-resonant background, which appears due to off-resonance electronic contributions.

The vibrationally-resonant part, 𝜒𝑟
(3

, which contains the chemical information of the

sample of interest. The energy diagram for both the resonant and non-resonant FWM is

depicted in Figure 2.1.

18

Figure 2.1: (a) Energy diagram representation for both Raman resonant (CARS) and non-

resonant FWM (NRB) processes. This process involves the frequency mixing of three light

sources, namely the Stokes, probe, and pump, with angular frequency 𝜔𝑠, 𝜔𝑝𝑟, 𝜔𝑃

respectively, to produce an anti-Stokes signal with angular frequency 𝜔𝑎𝑠. The anti-Stokes

signal is amplified when the frequency difference between the pump and Stokes beam

matches a vibrational mode of a molecule in a sample. (b) Energy diagram for electronic

non-resonant FWM. The interaction between the pump and stokes beam within a molecule

to generate a signal denoted anti-Stokes despite the fact no vibrational mode is probed.

The equation for the non-linear susceptibility, 𝜒(3 , is simply [15]

 𝜒(3 = 𝜒𝑛𝑟
(3

+ 𝜒𝑟
(3

.

(2.6)

19

The resonant part, 𝜒𝑟
(3

, is a complex function described as a Lorentzian function mirroring

a spontaneous Raman line [31]. It is expressed as:

𝜒𝑟

(3 =
𝐴𝑅

Ω𝑅 − (𝜔𝑃 − 𝜔𝑠 + 𝑖Γ

(2.7)

where 𝐴𝑅 is the amplitude, or “oscillator strength”, Ω𝑅, is the vibrational frequency, and

Γ is the linewidth of the vibration resonance.

The anti-Stokes intensity for equation 2.5 can be expanded as:

 𝐼𝑎𝑠 ∝ |𝜒(3 |
2

= |𝜒𝑛𝑟
(3 + 𝜒𝑟

(3 |
2

= |(𝜒𝑟
(3 2 + (𝜒𝑛𝑟

(3 2 + 2𝜒𝑟
(3 𝜒𝑛𝑟

(3 |.

(2.8)

A simulated plot of equation 2.8 (shown in Figure 2.2) highlights how the combination of

the resonant and non-resonant contributions distorts the shape of a CARS spectrum. This

simulation considers the complex function presented in equation 2.7. The blue line

represents the resonant part of the non-linear susceptibility, (𝜒𝑟
(3 2, containing the

sample’s chemical information. The dashed red line represents the purely non-resonant

20

contributions, (𝜒𝑛𝑟
(3

 2, which is assumed constant and is not frequency-dependent [32].

NRB is predominantly comprised of electronic signal contributions from other non-linear

optical phenomena, that are less chemically specific [33].

Figure 2.2: Constituents of a CARS spectrum. The vibrational resonance is set to 1000

𝑐𝑚−1. 𝜒𝑛𝑟
(3

 is set constant at 0.5, the amplitude is set to 2, the linewidth is set to 5, while

both 𝐼𝑃 and 𝐼𝑆, are set to 1. The third term, the mixing term, majorly influences the shape

of the observed anti-Stokes signal. The dashed vertical line (black) was placed at the

vibrational resonance (1000 𝑐𝑚−1) to show the shifting of the peak in 𝐼𝐴𝑆. The image and

image description are adapted from [32].

The green line represents the third term, 2𝜒𝑟
(3

𝜒𝑛𝑟
(3

, an implication of the quadratic

expansion of equation 2.5, a mixture of both the resonant and non-resonant parts. This term

 he actual

resonance

 he R

signal

21

is mainly responsible for reshaping the vibrational peaks into a dispersive line shape [31],

as seen in Figure 2.2. Due to the complex nature of equation 2.8, this third term cannot be

subtracted, making retrieval of the resonant term complex. The plot shown in Figure 2.2 is

not an actual representation of experimentally measured CARS spectra but showcases how

NRB reshapes the observed spectrum. Experimentally, other factors might also add to the

complexity of experimental CARS spectra. Such factors include laser source noise, low

target molecule concentration, symmetry of the functional group, and scattering losses.

Several methods have been implemented to remove NRB from measured CARS spectra,

leaving it with resonant parts. Clearly, simple subtraction of the (𝜒𝑛𝑟
(3 2 is not enough

because of the 2𝜒𝑟
(3

𝜒𝑛𝑟
(3

 term. Mathematical methods of spectral retrieval such as methods

such as the time domain Kramers-Kronig method (TDKK), and maximum entropy method

(MEM) have their limitations when it comes to performing this task [3], [6]. The next

chapter discusses a deep learning approach's practicality in removing NRB from measured

hyperspectroscopy.

2.4 Variations of the primary CARS method

Even though the focus of this work is removing non-resonant signal from CARS signals

collected in the forward direction, I still want to draw attention to other CARS variations

because our lab has recently explored these other approaches, and thus they may benefit

from the DL approach described later in Chapter 3. The basic CARS configuration, also

known as forward-detected (F-CARS), occurs when the resonant and non-resonant signals

propagate in the same direction. Different variations include backward-detected or “epi-

22

detected” R (epi-CARS), and polarization CARS (P-CARS). epi-CARS is

implemented by detecting backward propagating resonant signals using dichroic mirrors

[34]. Compared to F-CARS, epi-CARS is extremely sensitive to the sample's size and

shape since epi-signals can be greatly suppressed by destructive interference. [35].

However, epi-CARS exhibits lower NRB and can be used to detect small scatters in the

sample’s background, so it is advantageous to simultaneously detect both the forward and

epi-scattered signals.

P-CARS works by exploiting the polarization difference between the resonant and non-

resonant signals before detection [34]. P-CARS considerably enhances CARS sensitivity

of weak Raman resonances by suppressing the background observed in the transparent

media [36], [37]. In this method, the pump and Stokes beams are purposefully polarized in

different planes. A significant CARS signal is produced by controlling the laser

polarizations and inserting a polarization analyzer before the detector, to extinguish the

non-resonant signal and pass a portion of the vibrationally resonant signal. While P-CARS

is known to reduce the influence of NRB, this comes at the cost of the observed CARS

signal intensity [37].

2.5 Hyperspectral CARS Implementations

Historically, the first implementation of CARS microscopy employed a narrowband pump

and Stokes beam to excite a single Raman mode at a time [1], [28], [38]. This approach is

most commonly implemented using a picoseconds optical parametric oscillator (ps-OPO).

A primary laser output is split into two beams, one of which serves as the Stokes beam and

23

the other for synchronously pumping an ps-OPO to generate the pump beam [39]. This

scheme allows for high-speed imaging, but it does not discriminate against molecules

having overlapped Raman modes, which is a disadvantage in spectral analysis. A multi-

color approach to this scheme gives way to “hyperspectral imaging” via wavelength

sweeping [39].

Hyperspectral imaging provides a spectral profile for each pixel [38]. As seen in Figure

2.3 (a), wavelength sweeping uses two narrowband beams and continuously tunes the

frequency of one of the beams over a range to perform hyperspectral imaging [38].

Hyperspectral imaging is also achieved in two other implementations, broadband CARS

(B-CARS) and spectral-focusing CARS (SF-CARS). The broadband scheme utilizes a

narrowband pump beam and broadband pump beam to excite all the sample's vibrational

modes simultaneously (Figure 2.3 (b)). The CARS signals are collected by an array

detector, such as a cooled charge-coupled device (CCD) acting as a spectrometer [40]. By

contrast, the spectral focusing scheme (SF-CARS) involves spatially overlapping a pump

beam with a portion of supercontinuum Stokes, wherein the frequency difference

corresponds to a single vibrational mode made possible through chirp-matching (Figure

2.3 (c)) [41]. Chirp-matching is the idea of matching the frequency vs time dependence of

both beams (pump and Stokes) to focus their frequency difference at a single vibrational

resonance [41]. Imaging is done by scanning the overlap of both chirped beams at different

frequencies, by delaying one pulse with respect to the other and collecting the observed

signals with a single detector, such as a photomultiplier tube (PMT). The last two schemes

(B-CARS and SF-CARS) are both plagued by NRB which often dominates the weaker

resonant signal of interest [40]. The deep learning approach described later in this thesis

24

was originally employed to solve this problem for B-CARS, the approach was modified to

perform the same task on our one-of-a-kind spectral focusing scheme. Our spectral

focusing scheme used to perform hyperspectral CARS is introduced in section 2.6.

25

Figure 2.3: Different schemes used to implement hyperspectral CARS. (a) The single

frequency scheme is based on the frequency-tuning of the narrowband pump and Stokes

beam. (b) The broadband scheme is achieved by simultaneously exciting all the vibrational

modes using a narrowband beam and broadband Stokes beam. (c) The spectral focusing

scheme (SF-CARS) is based on spatially overlapping a narrowband or broadband pump

with a portion of supercontinuum Stokes where the difference corresponds to a vibrational

mode; this scheme is achieved by chirp matching the pulses. The image is adapted from

[38].

 s s R

B R

 R

26

2.6 The Spectral-Focusing CARS Scheme

A scheme for our SF-CARS setup is shown in Figure 2.3. As described in both [32] and

[37], a Ti: Sapphire laser (Spectra-Physics Tsunami) generates an 800 nm beam with a

tunable pulse duration ranging from 70 femtoseconds to 200 femtoseconds. The laser

output is split into two paths: One beam serves as the degenerate pump and probe beam,

and the other path is used for the Stokes beam. The first beam is sent to a computer-

controlled optical delay stage (Thorlabs DDS220) before recombining with the Stokes. The

delay stage controls the temporal overlap between the pump and the Stokes beam [41]. The

second path is coupled into a commercial photonic crystal fiber (PCF) (FemtoWhite-

CARS, NKT Photonics) using a 40 × objective lens. The PCF can generate a

supercontinuum spanning 550 nm to 1200 nm, with the region >820 nm used for the Stokes

beam [41]. A Mitutoyo (M Plan NIR 50 ×) long-working-distance objective is used to

collimate the Stokes beam. The end-to-end coupling efficiency of the PCF is approximately

32%. The pump and Stokes beams are also co-linearly polarized by placing a half-wave

plate (HWP) in each beam path before they are recombined using an angled dichroic mirror

(Chroma T8101pxr) acting as an effective 840 nm long-pass filter (LPF). A linear polarizer

is added before the entrance to the microscope to make sure the beams are linearly co-

polarized. The Stokes and the pump beams are temporally dispersed and chirp-matched by

a 6 cm and 10 cm of S-NPH2 glass, respectively, to implement spectral focusing.

27

Figure 2.4: The schematics for the multimodal SF-CARS microscopy setup used in this

work. A Ti: Sapphire laser generates an 800 nm beam with variable pulse duration from 70

to 200 femtoseconds. The laser output is split using a beam splitter into a Stokes and pump

beam. The first beam is coupled into a FemtoWhite-CARS (NKT Photonics) module to

generate a supercontinuum spanning 550 nm to 1200 nm, with the region >820 nm used as

the Stokes beam. The delay stage controls the overlap between the pump and the Stokes

beam. A 6cm block and a 10 cm block of S-NPH2 glass are used to disperse and chirp-

match the Stokes to the pump beam, respectively. Both beams are recombined using an

angled dichroic mirror acting as an 840 nm long pass filter. A linear polarizer is added

before the entrance of the microscope to ensure both beams are co-linearly polarized; the

beams are then sent into a laser scanning microscope. The CARS and SHG signals are

detected in the forward direction, separated using a 425 nm LPF, and detected by different

PMTs. TPEF are collected in the epi-direction and detected by a PMT. A series of short-

pass, long-pass, and broadband filters are used to eliminate undesired signals. Computer

28

control, implemented via Python, is integrated into the system to manage and synchronize

various parts of the scheme, as well as for data acquisition.

The microscope is a modified Olympus IX73 inverted laser-scanning microscope with a

1.15 NA 40 × objective (Olympus UAPON40XW340), a Thorlabs scanning galvo system,

and a computerized sample stage [37]. CARS and SHG signals are detected in the forward

direction and are wavelength-separated using a dichroic filter (Chroma T8101pxr), acting

as a 425 nm long pass filter, with each signal sent to separate detectors [32]. Hamamatsu

H10723-01 PMTs is used to detect the SHG, while a Hamamatsu H10723-20 PMT is used

to detect the CARS signals [37]. A series of filters (short pass, long pass, and broadband)

are used to eradicate unwanted signals, as shown in Figure 2.4. The filtering system can

also be configured to allow for epi-CARS detection. A custom Phyton program is used for

instrumentation control of vital parts such as the delay stage, shutters, detectors,

galvanometer mirrors, and the microscope [32]. This program also produces an image stack

from frame-by-frame hyperspectral data acquired at different frequencies.

2.7 CARS hyperspectroscopy:

This section presents the findings from a CARS hyperspectroscopy experiment on a

sucrose sample using our setup (see Figure 2.5). The pump power was set to 75 mW, and

the PCF input was set at 150mW for supercontinuum generation. The CARS hyperspectral

stack consists of 250 × 250 pixel images at 698 spectral data points collected at different

individual frequencies; spectral filtering and the Stokes wavelength limit our detection of

CARS signals to a maximum range around 3600 𝑐𝑚−1.

29

Figure 2.5: Broadband hyperspectroscopy for a crystalline sucrose sample. (a) A

250 × 250 pixel greyscale CARS image generated with an average of 11 frames centered

at around 2800𝑐𝑚−1. (b) CARS spectra observed at two regions of interest in (a). (c) A

zoomed-in representation of ROI 2 is displayed in the spectrum to show the NRB structure.

ROI 1: Spectra observed from a region with a high sample concentration; ROI 2: Spectra

2 00 1

1011 1

30

observed from a region containing the coverslip to represent the observed non-resonant

background. The pump power was set to 75 mW, and the PCF input for supercontinuum

generation was set to 150 mW. This characteristic vibrational signals for sucrose (at 1011

𝑐𝑚−1 and 2800 𝑐𝑚−1) are shown. Other unresolved peaks and signals are a combination

of noise and non-resonant background.

The 250 × 250 pixel image shown in Figure 2.5 (a) was generated as an average of 11

frames centered at around 2800𝑐𝑚−1. (b) the CARS spectra presented were obtained from

two regions of interest. ROI 1: a region with a high concentration of the sucrose sample;

ROI 2: a region with just microscope cover slip. In the fingerprint region, spanning 600

𝑐𝑚−1 to 1400 𝑐𝑚−1, the only strong characteristic resonance for sucrose is located at

around 847 𝑐𝑚−1 [42]. Looking at the spectra presented in Figure 2.5 (b), in ROI 1, this

resonance was not detected, suggesting limited Stokes power at the corresponding

wavelengths [32]. However, ROI 1 shows a weak resonance at around 1011𝑐𝑚−1, which

can be attributed to known C-O stretching in sugars [43]. A strong resonance was detected

at around 2800𝑐𝑚−1 arising from the strong C-H vibrations in sucrose. ROI 2 highlights

the NRB contributions to the sucrose spectrum in ROI 1. According to the simulation

Figure 2.2, the non-resonant contribution is relatively constant, and this is observed from

the experimental results in ROI 2. The heavy distortions in the silent region, from 2000

𝑐𝑚−1 to 2500 𝑐𝑚−1 [3] , observed in ROI 1 spectra is attributed to the contribution from

the mixing term, as seen in equation 2.5. As discussed in section 2.3, the resonant and non-

resonant contribution mix complicates the spectrum observed, as seen in Figure 2.5 (b).

Several methods have been used to reduce this complication. In this work, a deep learning

31

approach, a convolutional neural network (CNN) is employed to achieve this, and the

results are presented in the next chapter.

32

Chapter 3

The Specnet Framework: A convolutional neural

network

3.1 Chapter Preface

This chapter provides insight into convolutional neural networks (CNNs). Section 3.2 will

discuss why CNNs work best for image-related learning and how their architecture

supports these tasks. Sections 3.3- 3.6 will introduce the Specnet framework, a proposed

deep learning model used for Raman retrieval from experimental B-CARS images and

spectra [3], how the framework was implemented, and the modification made to the

approach.

3.2 Convolutional Neural Networks (CNNs)

CNNs are used to process data with grid patterns, such as images, to learn spatial

hierarchies by assigning weights and biases for classifications down the line [44]. The core

components of a CNN are the convolutional, pooling, and fully connected layers. CNN is

divided into two phases: The first phase comprises the convolution and the pooling layer.

This phase is where feature extraction from the input is carried out. At this phase, the raw

input is transformed into smaller relevant features for processing while preserving the

original information. In the second phase, the fully connected layer maps and classifies the

33

extracted features to predict an output. Figure 3.1 provides a visual representation of the

basic CNN architecture.

Figure 3.1: A visual representation of a convolutional neural network. The neural network

can be primarily divided into two phases namely the feature extraction phase and the

classification phase. The feature extraction phase comprises the convolutional and pooling

layer. The raw input from the input layer is transformed into smaller relevant feature

maps for processing while preserving the original information at the convolutional layer.

The main function of the pooling layer is to reduce the dimensions of the extracted feature

maps to increase computational speed. The output from the pooling layer (the pooled

feature maps) is converted to 1-dimensional linear vectors via a flattening step before

they are sent to the fully connected layer. The fully connected layer is made of several

connected neurons that compile the vectors with similarly distinct features for classification

and output a confidence score between 0 and 1 indicating the if the input belongs to a

particular label (the highest confidence score was assigned to the “car” label which is the

input image used in Figure 3.2).

34

3.2.1 Input Layer

CNN inputs are usually either an image or a video file which are a collection of pixels

stored in arrays [44]. For grayscale images, the pixel values are stored in a one-dimensional

array with integers that range from 0 (dark or black shade) to 255 (light or white shade),

whereas colored images are stored in three-dimensional arrays because they are generated

from a combination of the three primary colors: red, green, and blue. Each value in the

arrays corresponds to the intensity of each color in each pixel. They also range from 0 to

255 depending on the color’s intensity. For computational applications, the images are

initially converted to their array form before processing using NumPy (a Python library).

A visual example of this conversion is shown in Figure 3.2 below and this is used as a

representation for CNN architecture in Figure 3.1. This layer is followed by the feature

extraction phase where the initial raw input read as arrays are converted into feature maps.

Figure 3.2: A colored image converted to a three-dimensional array for processing. Images

are a collection of pixels stored in arrays. Each pixel in a colored image is made up of a

combination and intensities of three primary colors which are stored in a three-dimensional

array.

35

3.2.2 Convolution Layer

The convolutional layer is the most important part of any CNN architecture. Convolution

entails using several learnable filters applied as weights (see Figure 1.6) to reduce the

dimensionality of the raw input while preserving the original information. Each filtering

operation produces an activation or a convolved feature and using the filters repeatedly

throughout the input dimension produces a map of activations known as a feature map

[45]. A typical feature map is just an amalgamation of distinct features from the input—

for example, a group of pixels containing the tires might make up a feature map from the

input image in Figure 3.2. To better understand how this convolution operation occurs,

Figure 3.3 illustrates how a single filter is applied in a rolling manner across the

dimensionality of the input. The figure shows preliminary calculation at three different

steps for a 4 × 4 grayscale image (input) with a 2 × 2 weighted filter resulting in a ×

feature map. Additionally, it shows the final feature map once the filter has been used

throughout the entire image.

36

Figure 3.3: A representation of a convolution operation. For this convolutional operation,

a 2 × 2 weighted filter (green) is applied in a rolling manner across the 4 × 4 grayscale

input (yellow) to yield a × feature map (white). The calculations and results for three

convolved features are shown. The complete × feature map which will be layer output

is also shown.

0 × 0 + 2 × 1 +
0 × 1 + (1 × 2

 2 × 0 + 1 × 1 +
1 × 1 + (2 × 2

1 × 0 + 2 × 1 +
1 × 1 + (0 × 2

37

As seen in Figure 3.3, a dot product is performed with the elements of the input data every

time the filter is applied at each stage. These dot product results make up the feature map

volume, which is the output of the convolutional layer [45]. Since the output depends on

the applied filter, the number of features extracted at each layer can be controlled using

different filter sizes. In the case of colored images, this operation is performed for the

different colored arrays (red, green, blue).

3.2.3 Pooling Layer

The main responsibility of this layer is to reduce the size of the preceding layer’s output

(feature maps) while keeping most of its dominant features [21]. The reason for having this

layer in the architecture is to further reduce the number of parameters needed, and in turn

reduces, the computational complexity of the model [45]. Several pooling methods are used

for this operation; they include tree pooling, gated pooling, average pooling, minimum

pooling, and maximum pooling [21]. Figure 3.4 demonstrates how the two commonly used

pooling methods, maximum and average pooling, perform this operation.

38

Figure 3.4: A demonstration of maximum and average pooling. A pooled feature map is

created by pooling values from a segment of the feature maps, which reduces their

dimensionality for better computational performance. Average pooling returns the mean

value in each segment and maximum pooling returns the highest value in each segment.

Each pooling operation only takes place at a different segment of the input array, as

opposed to the filters, which are performed in a rolling fashion in the convolutional layer.

As seen in Figure 3.4, maximum pooling takes the maximum value at each portion to form

a pooled feature map, whereas average pooling just restores the average value for each

portion. The feature extraction phase is concluded once the output from the pooling layer

(the pooled feature maps) is sent to the subsequent layer for classification.

39

3.2.4 The Fully Connected Layer (FC)

The next phase in the architecture, classification, is carried out at the fully connected layer

as seen in Figure 3.1. Before data from the preceding layer (the pooled feature maps) is

sent into the fully connected layer, the output matrix is converted to 1-dimensional linear

vectors (This step is called “flattening”). This is then passed to the fully connected layer

which is made up of neurons connected to all neurons from the previous layer. The purpose

of these connections is to compile all the vectors with similar features. Weights are

assigned to the complied vectors to quantify the presence of distinct features and predict

the correct label. Figure 3.1 illustrates the layer's output, which is a set of confidence scores

(numbers ranging from 0 to 1) that indicate the likelihood that the input belongs to a

particular label (in this case, the confidence score was given to the car label which is the

images used in Figure 3.2).

3.2.5 Activation Functions

As highlighted in Chapter 1, the later component of each perceptron in a neural network is

an activation function. The major role of these functions is to predict an output using the

weighted sum of its input. This is accomplished by having the function establish a threshold

value. If this value is not exceeded, the information in the input is not sent to the next layer.

However, if the value is exceeded, the node (perceptron input) is activated, and

information is allowed to pass through. Practically, these functions are used to determine

the non-linear relation between the input and output. The three most commonly used are

the tanh, sigmoid, and rectified line unit activation functions (ReLU) but several other

40

functions can be used to perform this operation. A brief description of these three functions

is as follows:

Tanh: This function accepts real values as input, and its output ranges from -1 and 1 [21].

It's mathematically expressed as:

𝑓(𝑥 =

𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥

(3.1)

Sigmoid: This activation function only accepts real values as input, and its output ranges

from zero to one [21]. The sigmoid activation function is expressed as:

𝑓(𝑥 =

1

1 + 𝑒−𝑥

(3.2)

ReLU: This is the most popular function for implementing CNNs, and the function

employed in this work. Equation 3.3 shows the rectification at the bottom because 𝑓(𝑥 is

zero when 𝑥 (input in our case) is less than zero [21]. At the same time, 𝑓(𝑥 equals 𝑥

when 𝑥 is greater than zero. Any input with a negative weighted total is zeroed out by the

function because the threshold is set to 0.

 𝑓(𝑥 = {
0, 𝑥 < 0
𝑥, 𝑥 ≥ 0

(3.3)

41

In a basic CNN architecture (Figure 3.1), an activation function can be added to the end of

each layer to add non-linearity to the network. In the case of this work, a RELU function

was included at end of each layer in our neural network.

3.3 The Specnet Approach

In this work, we employed a deep learning approach designed and published by Valensise

et al. [3] to resolve the NRB limitations that come with broadband-rich CARS schemes.

The approach was used to retrieve the resonant part of the non-linear susceptibility,

𝜒𝑟
(3 (𝜔 , directly from a measured B-CARS spectrum, without the need for external

measurements or complex processing [3]. The relationship between CARS and

spontaneous Raman scattering, is [15]:

 𝐼(𝜔 𝑅𝑎𝑚𝑎𝑛 ∝ 𝜒𝑟
(3 (𝜔 , (3.4)

where, 𝐼(𝜔 𝑅𝑎𝑚𝑎𝑛, is the measured Raman intensity and, 𝜒𝑟
(3 (𝜔 , is the resonant

contribution to CARS. This relationship makes it possible to compare these two techniques

directly when performing spectral analysis after the non-resonant has been removed.

The following are the justifications for choosing a CNN model for this task:

• Input: The datatype (hyperspectral image stacks) is suitable for a CNN compared

to other neural networks.

• Labeling: In our case, the CARS spectrum (input), the NRB shape (input

component), and the resonant spectrum (target output) are defined for model

42

training. The model already knows what the target output should look like, so it

backtracks its calculation by changing the filter values (weights) after every training

step, so the predicted output is closer to the target vector. This process is referred

to as “Backpropagation” in literature.

• Feature extraction and classification: The most important justification for using a

CNN is its ability to retrieve information from input with the aid of shared weights

among filters and its ability to generalize the extracted information on its own [3].

3.3.1 Methodology

The goal of this study is to explore how well this approach performs at removing NRB

from experimentally measured CARS hyperspectroscopy and to determine how best to

modify this approach to suit the data obtained from our unique SF-CARS scheme. To do

this, two DL models were trained on two different sets of realistic simulated CARS spectra.

The first model “ pecnet” was trained using the dataset created by using the same

procedure seen in [3]. The second model was trained with the modified dataset. Section

3.4.1 will introduce the modification made to the approach and the resulting model is

denoted as “Specnet Plus”. The neural network and model training was implemented in a

Python environment using TensorFlow, a deep learning package. The original Specnet

code can be found in a GitHub repository [46]. The modified code can be found in

Appendix B.

The following is a chronological summary of the steps taken to accomplish this task, and

each step’s specifics are provided in the sections that follow.

43

1. Creating the input datasets (Simulated CARS spectra) using the original approach

(Specnet) and then with the updated approach (Specnet Plus).

2. Both datasets were used to train two different DL models.

3. Both models’ ability to remove to extract the resonant parts from simulated and

experimentally measured data were tested. The finding from both tests is discussed

in chapter 4.

3.4 Step 1 (a): Simulating the input data for Specnet

A large set of simulated CARS spectra was used as the input to Specnet model in order to

yield a generalizable model that can account for different experimental scenarios. This

section discusses the process used to create each CARS spectrum. The process description

is a synopsis of the approach reported by Valensise et al [3]. Specnet was configured to

accept simulated and measured data with intensity 𝐼 𝜖 [0,1], and the frequencies were also

normalized at 𝜔 𝜖 [0,1].

 𝜔 ≡
𝜔 − 𝜔𝑚𝑎𝑥

𝜔𝑚𝑎𝑥 − 𝜔𝑚𝑖𝑛

(3.5)

where 𝜔𝑚𝑎𝑥 and 𝜔𝑚𝑖𝑛 , corresponds to the maximum and minimum CARS spectrum

frequencies that our system is capable of detecting, as mentioned in Section 2.6. The

spectra used in the training dataset were manufactured by randomly sampling 15 CARS

resonances and, for each of them, the corresponding amplitude, resonance frequency, and

44

linewidth. The resonances, amplitude, bandwidth, and vibrational frequency were sampled

randomly from these distributions as described using

 𝑁~𝑈(1,15 ;

𝐴𝑖~𝑈(0.01,1 ;

Γ𝑖~𝑈(0.001, 0.00 ;

Ω𝑖~𝑈(0,1 .

(3.6-3.9)

where 𝑈(𝑥, 𝑦 denotes the uniform distribution; x is the minimum value and y is the

maximum. 𝐴𝑖 denotes the amplitude, Γ𝑖 denotes the bandwidth, Ω𝑖, denotes the vibrational

frequency, and N represents the number of CARS resonances. Each resonant spectrum,

𝜒𝑟
(3

, was coded using equation 2.7 and normalized to a maximum value of 1 to avoid model

rigidity.

The NRB, 𝜒𝑛𝑟
(3

, is represented by the product of two sigmoid functions, 𝜎, whose

parameters are also randomly sampled.

 𝜒𝑛𝑟
(3 (𝜔 = 𝜎1(𝜔 𝜎2(𝜔 (3.10)

these sigmoid functions are defined as:

𝜎𝑖(𝜔 =

1

1 + exp (−(𝜔 − 𝑐𝑖 𝑠𝑖

(3.11)

45

The parameters {𝑐𝑖, 𝑠𝑖, 𝑖 = 1,2} are randomly sampled to generate a non-uniform

background distribution across the spectral range with their amplitudes restricted to values

ranging from 0 to 1. Like the random sampling done for 𝜒𝑟
(3 (𝜔 , this accounts for various

experimental scenarios. Recall that theoretically the NRB is often considered to be

constant, but in our experimental setup, where the Stokes beam is a highly structured

broadband supercontinuum, the NRB is far from constant.

The input vector, 𝑥, is then computed as:

𝑥 =

|𝑟𝜒𝑟
(3

(𝜔 +𝜒𝑛𝑟
(3

(𝜔 |2

2
+ 𝜀(𝜔

(3.12)

where, 𝜀, is the normally distributed noise component (𝜀 ~ 𝑁(0, 𝑠) and 𝑠, is modeled to

mimic experimental noise. The factor of 2 normalizes the input vector to the maximum

possible value (1), which is obtained for a vibrational resonance, 𝜔𝑟𝑒𝑠, at these conditions:

 max (Im (𝜒𝑟
(3 (𝜔𝑟𝑒𝑠)) = 1

(3.14)

 max(𝜒𝑛𝑟
(3) = 1 (3.15)

and

46

 Re (𝜒𝑟
(3 (𝜔𝑟𝑒𝑠) = 0 (3.16)

This normalization makes sure that the inputs intensities are distributed throughout the

(0,1) range. It is crucial when using the model to process experimental CARS data that all

curves are normalized to the global maximum of each batch, ensuring that all other

amplitudes are in the (0, 1) range. This ensures the model’s ability to extract the resonant

part without losing information encoded in the peak relative intensities.

Finally, the target vector, 𝑦, (the model output) is expressed as:

 𝑦 = lm(𝜒𝑟
(3 (3.17)

3.4.1 Step 1 (b): Simulating the input dataset for Specnet Plus

Except for the NRB shape used in creating the simulated CARS spectra, the modified

dataset used the same simulation parameters as in section 3.4. The use of a double sigmoid

function to model the slowly varying frequency response of the NRB is not sufficient for

modeling a three-color CARS system [51]. This was the justification for modifying the

NRB shape used in the simulation to mimic what we observed experimentally. The non-

resonant background spectrum collected from the coverslip used in the experiment

demonstrated in ROI 2 of Figure 2.5 is shown in greater detail below in Figure 3.5. A plot

of the spectrum’s running average was carried out to deduce which shape can be used to

mirror our experimentally observed NRB response for simulation. This was also done for

47

an NRB spectrum collected from a water sample, but only the spectrum obtained from the

coverslip in Figure 3.5 is presented in this thesis. For both experiment, two similar spectra

with three humped broad peaks of varying amplitudes and widths in both spectra. These

observed spectra shapes were significantly different from the linear line highlighted

in Figure 2.2 or the double sigmoid function used in the Specnet approach.

Figure 3.5: CARS spectrum from a glass coverslip as an experimental example of NRB in

our system. The spectrum shows a zoomed-in and processed copy of the CARS spectrum

from ROI 2 of Figure 2.5. This non-resonant background was collected from the coverslip

(black line). A plot of the running average of the spectrum was included to estimate the

shape used for simulation (red line). The shape from the running average inspired how the

NRB was simulated for the input vector 𝑥.

Four gaussian-like peaks with varying widths and amplitudes were simulated to recreate

the shape seen in the collected NRB spectra. Four peaks were used to improve the model's

generalisation capability. The peak used in each instance were chosen at random to cover

48

a wide range of experimental conditions. The gaussian peaks amplitudes were sampled

from random numbers between 1 and 4,

𝐴𝑁𝑅𝐵~𝑈(1,4

(3.17-3.18)

where, 𝑈, denotes the uniform distribution. For each amplitude, 𝐴𝑁𝑅𝐵, the assigned width

is sampled from this distribution:

 Γ𝑁𝑅𝐵~𝑈(0.1,0. ,

(3.17-3.18)

where, Γ𝑁𝑅𝐵, denotes the width for each peak. The NRB shape was added to the simulated

CARS spectrum (input x) for each permutation. The dataset with updated NRB spectra was

used to train the Specnet Plus model. Chapter 4 will discuss how this modification

performed at extracting the resonant spectrum from our experimentally measured CAR

spectrum compared to the original approach.

3.5 Model Training and Evaluation

The two datasets created from Step 1 were used to train both Specnet and Specnet Plus

models; the datasets consisted of 30000 simulated CARS spectra at 640 spectral points.

The spectral points correspond to the hyperspectral images taken at different

49

frequencies. The model's architecture consists of five 1-dimensional CLs with 128, 64, 16,

16, and 16 filters of dimensions 32, 16, 8, 8, and 8, respectively, followed by three FC

layers of 32, 16, and 640 neurons (as the output is expected to have the exact dimensions

of the input) [3]. Please see Appendix A.1 for a table summarizing the original approach's

architecture which is the same for the Specnet Plus model. ReLU was included at the end

of each CL and FC layer to add non-linearity to the network. Backpropagation was

performed using Adam (a tool for optimizing training performance and pace) with a batch

size of 256 examples [3]. The resulting number of trainable parameters was 6 × 106 [3].

Mean squared error (loss function) was computed to quantify the prediction error between

the target vector 𝑦 and the predicted one, 𝑦̂. To avoid overfitting and reduce the model's

sensitivity to noise, L2 weight regularization is utilized on the weights of the first fully

connected layer with a weight of 5 × 10−6 [3]. The training required 10-fold cross epochs,

each taking about 10 seconds on a GeForce GTX 1080 Ti graphic processing unit (GPU).

Figure 3.5 illustrates how backpropagation is done at every training step. The initial

predictions, which might be poor, are improved by updating the filters (weights and biases)

to make better predictions; each iteration is known as an epoch.

50

Figure 3.6: A summary of each training step. After an initial assigned weight and bias are

used for the first prediction, the training goes through several cycles (or epochs) of updating

the weights and biases to predict an output closer to the target vector. The arrow (IN and

OUT) indicates the transitions from one cycle to the next.

3.6 Testing both models’ prediction performance

The final stage in this approach involves testing both trained models’ viability at extracting

resonant signals from other simulated CARS spectra and measured SF-CARS

hyperspectroscopy. Appendix A.2 provides the code required to execute this test on the

measured data. Each pixel in the hyperspectral stack is processed at each spectral data

point. The predicted output from each processed pixel is accumulated together to form a

completely new hyperspectral stack, termed the “retrieved hyperspectral stack or

retrieved stack”. Figure 3.7 show a process flow diagram for testing the model on

measured CARS hyperspectral data.

 est and

 dating t e

 eig t and iases

 aining

 ata

 odel edi tion

51

Figure 3.7: A process flow diagram of how the model is used for processing. Both trained

models are used to process the measured hyperspectral stack to extract the resonant signals

from each pixel. The retrieved hyperspectral stack is created by compiling the processing

results from each frame.

52

Chapter 4

Experimental Results

4.1 Chapter Preface

This chapter reports the ability of both the published and modified Specnet model to extract

resonant signals from two randomly simulated spectra and measured SF-CARS

hyperspectroscopy on a sample containing potato starch granules and a chitin sample

obtained from the exoskeleton of a shellfish.

4.2 Simulated CARS spectra

A preliminary test of each model’s ability to extract the resonant spectrum from unknown

simulated spectra was conducted. Two extra (random) CARS spectra that weren't used in

the model's training were simulated for this test. The two spectra were simulated using the

same steps described in section 3.4, which means the resonances were randomly assigned

while creating them (i.e., the resonant spectrum for each simulation is known). Mean

squared error analysis was employed to provide a quantitative assessment of how each

model’s prediction output differed from the “known” resonant spectrum (target vector)

through the spectral range. The x-axis' frequency scale was normalized between 0 and 1;

the Raman shift might be viewed as relative as a result. This translates to 0 𝑐𝑚−1 for the

first spectral data point and 1 𝑐𝑚−1 for the 640th spectral data point.

53

Figure 4.1 (top panel) shows the prediction results from processing the first CARS

spectrum with the Specnet and Specnet Plus, respectively. The first simulation comprised

a CARS spectrum with a single resonance at 0.6 𝑐𝑚−1. Although Specnet successfully

extracted the resonance peak at 0.6 𝑐𝑚−1, the retrieval of weak spurious signals across the

whole spectral range reduced its performance. These spurious signals were retrieved at

around 0.3 𝑐𝑚−1 and in the spectral region 0.5 to 0.8 𝑐𝑚−1, excluding the resonant

frequency. Specnet Plus also retrieved the resonance at 0.6 𝑐𝑚−1 and it also retrieved

spurious signals at the same spectral regions, but they were significantly weaker in

intensity. The mean squared error for Specnet Plus was discovered to be 5 times lower than

the value for Specnet.

The second simulated spectrum had six resonances at frequencies around 0.01, 0.48, 0.52,

0.7, and 0.75 𝑐𝑚−1. The strongest peak is located at 0.52 𝑐𝑚−1 followed by the peaks at

0.01, 0.48, 0.7, and the resonance at 0.75 𝑐𝑚−1 has the lowest intensity. Figure 4.1 (bottom

panel) shows the test result from the second CARS spectrum. The resonances were

retrieved by Specnet at the same frequencies but differed in intensity and shape in some

regions. The peak height at 0.01 𝑐𝑚−1 was lower than the resonant spectrum, and the peak

shape at 0.75 𝑐𝑚−1 looks to still be distorted, indicating that the NRB presence wasn't

completely eradicated. Specnet Plus also retrieved a similar resonance as the resonant

spectrum. The resonance at 0.01 𝑐𝑚−1 had a higher intensity in the Specnet Plus-retrieved

resonance spectrum compared to the Specnet-retrieved resonance spectrum, and the

resonance at 0.75 𝑐𝑚−1 appeared to be less distorted. The mean squared value for Specnet

was 2 times greater than that of Specnet Plus. The error analysis results from both tests

54

indicate that Specnet Plus outperformed Specnet in terms of predicting the target vector

(resonant spectrum).

Figure 4.1: The prediction results obtained from using the Specnet and Specnet Plus

models on two randomly simulated CARS spectra. Top panel: The predictions result from

processing the first CARS spectrum (a and b). Bottom panel: The predictions result from

the second test (c and d). Each plot in Figure 3.5 has four subplots that show the resonant

spectrum (top), the CARS spectrum with the NRB added (second), the retrieved spectrum

55

by the model (third), and the squared error (bottom). Blue curves are the simulated “ground

truth” and the red curves are the model’s attempt at retrieving the true spectrum.

4.3 Experimentally measured CARS data

The ability of each model to extract the Raman spectrum from experimentally recorded

CARS hyperspectroscopy is reported in this section. Qualitative analysis is carried out by

comparing the retrieved resonances with the vibrational Raman mode assignment in the

literature.

4.3.1 Starch

For a variety of reasons, starch was chosen as a sample of interest. The fact that it is the

most abundant carbohydrate (a polysaccharide) in many plant cells is one example [47].

Starch is made up of amylose and amylopectin chains and exhibits several Raman

resonances including molecular vibrations in the C-H and -OH regions [47]. Because starch

is included in many everyday foods, such as potatoes, rice, beans, and others, as well as

being simple to prepare, getting a sample is inexpensive and straightforward. To prepare

the starch sample, raw potatoes were cut into pieces, steeped in water, stirred, allowed to

settle for a short period of time, and then aspirated with a pipette into a fresh vial.

Three 250 × 250 CARS images of the potato starch sample are shown in Figure 4.2 (top

panel). These images were generated by averaging eight frames within a hyperspectral

stack centered around 3011 𝑐𝑚−1. The first stack contained the experimentally-measured

56

raw CARS hyperspectroscopy. The second stack was the retrieved hyperspectral stack that

was obtained after the Specnet model was used to process the original stack. The third stack

was the processing results from the modified model (Specnet Plus). The pump power and

the PCF input were set at 120 mW and 180 mW, respectively. These powers are weak

enough to avoid photobleaching and sample degradation. The measured hyperspectral

stack was acquired by scanning the delay stage which translates to 467 spectral data points

spanning frequencies approximately between 50 𝑐𝑚−1 to 3600 𝑐𝑚−1. One of the training

parameters (the data points size) was adjusted to fit the measured experimental data (It was

changed it from 640 points, as seen in section 3.5, to 467 spectral data points as it is our

measured data size). This allows us to retrieve a hyperspectral stack with the same spectral

points as the measured stack.

Spectral analysis:

Starch's characteristic Raman resonances at 3200, 2900, 930, and 477 𝑐𝑚−1 are associated

with molecular vibrations in amylose and amylopectin molecules [48]. The two strongest

resonances, at around 477 𝑐𝑚−1 and between 2900 and 3100 𝑐𝑚−1, are attributed to the

vibrations in the pyranose ring of the glucose and the C-H stretching, respectively. Bands

around 860 𝑐𝑚−1 and 930 𝑐𝑚−1 are assigned to the 𝐶𝐻2 deformations, and the C-O-C

vibrational mode [48]. The bands around 3100 𝑐𝑚−1 to 3600 𝑐𝑚−1 for starch are assigned

to the -OH stretching [49].

The measured CARS spectrum derived from the highlighted region of interest (Figure 4.2

bottom panel) shows strong resonances at 488 𝑐𝑚−1 and 3011 𝑐𝑚−1, but the non-resonant

57

contribution severely distorts them. The -OH stretching assignment was seen at 3209

𝑐𝑚−1. It is challenging to locate the resonance at 930 𝑐𝑚−1 since it appears to be

overpowered by the NRB shape. The CARS spectra obtained from both retrieved

hyperspectral stacks, derived from the same region of interest, are also presented in Figure

3.9 bottom panel. Both of the strong resonances, at 488 𝑐𝑚−1 and 3011 𝑐𝑚−1 were

retrieved by both models and thus appear less distorted with a more Lorentzian-like peak

compared to the measured CARS spectrum; the Lorentzian-like shape does indicate proper

Raman retrieval. Furthermore, obtaining CARS signals below 800 𝑐𝑚−1 has been quite

difficult historically [50]. The resonance at 3209 𝑐𝑚−1 was retrieved by Specnet Plus but

Specnet failed to retrieve it. Specnet did predict a new peak at 3313 𝑐𝑚−1, which had a

higher peak height than the anticipated resonance at 3209 𝑐𝑚−1. The new peak retrieved

by Specnet is most likely a misinterpretation that occurred during processing, according to

the resonance assignments found in literature. The resonance at around 930 𝑐𝑚−1 was not

retrieved by either model, suggesting the vibrational mode was never excited. This non-

excitation may be a result of insufficient Stokes light was provided at that frequency. The

resonances retrieved between 1000 𝑐𝑚−1 and 3000 𝑐𝑚−1 were neglected during analysis

because they are not included in the characteristic resonance used for identifying starch

[48]. The CARS spectrum from the Specnet Plus model appears to be less noisy than that

from Specnet, suggesting that the applied modification resulted in a better reduction of

observed NRB and image denoising.

58

Figure 4.2: SF-CARS hyperspectroscopy of a potato starch grain and the retrieved

hyperspectral data from Specnet and Specnet Plus. Top panel: The three CARS images

presented were obtained from averaging the same eight frames centered around 3011 𝑐𝑚−1

in each hyperspectral stack. (a) Image obtained from the measured CARS hyperspectral

stack, (b) Specnet processed image, and (c) Specnet Plus-processed image. Bottom panel:

the CARS spectra obtained from the highlighted region of interest in (a-c). The measured

CARS spectrum (blue line), the Specnet processed CARS spectrum (red line), and the

Specnet Plus processed CARS spectrum (green line).

4

4

 011

 011

4

R easured

R pecnet lus

R pecnet
 1

 20

 011

 20

59

Image analysis:

Since every pixel at every spectral data point in the original stack is processed by the model

by updating them with its prediction, it could be a good idea to establish a metric that

compares not only the spectrum but also how the approach influenced imaging. Structural

similarity index metric (SSIM) was employed to perform this image analysis; an objective

measure that quantifies the overall difference in pixel magnitudes between a processed

image and its original. The three CARS images presented in Figure 4.2 (top panel) was

used for this test (these images were taken at a resonant frequency). The test resulted in a

similarity score of 25.8% between the measured and the Specnet processed image, whereas

the test reported a 34.3% similarity between the measured and the Specnet Plus-processed

image. Images obtained at a different frequency deemed off-resonance were also used in

this test to see how it performs with primarily NRB signals present. The second set of

images was collected by averaging eight frames around 3310 𝑐𝑚−1, which was the

frequency where the unknown peak was retrieved by Specnet during spectral analysis

(Figure 4.3). This region is deep into the O-H vibrational region and is thus reflective of

water content or of NRB. The result was a similarity score of 9.98% between the measured

and Specnet-processed images. A 7.63% similarity was obtained from testing the measured

with the Specnet Plus-processed image. These test results do suggest NRB reduction during

processing because of the low similarity score observed from both retrieved images

compared to the original, but they do not give a clear answer as to which model

performed better.

For images collected at resonance, the similarity score is expected to be closer to the

original image, whereas images taken off-resonance should have a low similarity score.

60

The results from both models supported this hypothesis, which raises the possibility that

the Specnet Plus may have performed better but these similarity scores by themselves

cannot be used to determine which prediction was more accurate. The best way to use this

measure to determine which model had a better prediction performance is to integrate some

level of supervision by specifying which frame contains predominately the resonant signals

and the ones that have the non-resonant signals.

The contrast disparity seen in the two retrieved images in Figure 4.3 demonstrates how

both models differed in removing NRB. The image obtained from the measured stack

shows a higher contrast in the regions around the starch granule which is predominantly

water. The Specnet-processed image shows little starch contrast whereas the retrieved

Specnet Plus stack showed no contrast in both regions. he image analysis didn’t yield a

definite answer to which model performed better at retrieving the resonant signals, but it

was worth noting it did show that this approach reduced our experimentally measured

NRB.

61

Figure 4.3: SF-CARS images of the potato starch sample gotten at an off-resonance

frequency. The three CARS images were obtained by averaging the same eight frames

centered around 3313 𝑐𝑚−1 in each hyperspectral stack. (a) Image obtained from the

measured hyperspectral stack, (b) Specnet processed image, and (c) Specnet Plus processed

image.

4.3.2 Chitin

The second most prevalent carbohydrate after starch, chitin is made up of repeating units

of N-acetylglucosamine (Nag), the amide derivative of glucose [47]. Chitin can be found

in arachnids, insect exoskeletons, shells of crustaceans, and invertebrates (an example of

this is shrimp) [47]. Because chitin is a carbohydrate similar to starch but has several other

distinct molecular vibrations such as amide stretching, it was chosen as a sample for

imaging. The chitin sample was obtained from the exoskeleton of a shrimp. Figures 4.4

(top panel) shows three 250 × 250 CARS images generated by averaging twelve frames

centered at around 2670 𝑐𝑚−1 with each hyperspectral stack; the measured hyperspectral

stack, the Specnet retrieved stack, and the Specnet Plus retrieved stack. The pump input

was set to 75 mW and the PCF input was set to 180 mW; these powers were weak enough

to avoid photobleaching and sample degradation. Imaging was done by scanning from one

62

point on the delay stage to another which translated to 567 spectral data points collected at

different frequencies spanning 0 to 3700 𝑐𝑚−1.

Figure 4.4: SF-CARS hyperspectroscopy of a chitin sample and the retrieved

hyperspectral data from Specnet and Specnet Plus. Top panel: The three CARS images

presented were obtained from averaging the same twelve frames centered around 2670

𝑐𝑚−1 in each hyperspectral stack. (a) Image obtained from the measured hyperspectral

stack, (b) Specnet processed image, and (c) Specnet Plus processed image. Bottom panel:

the CARS spectra obtained from the highlighted region of interest in (a-c). The measured

CARS spectrum (blue line), the Specnet processed CARS spectrum (red line), and the

Specnet Plus processed CARS spectrum (green line).

2 426 0

26 0

26 0

2 0

2 0

1645

1 1

10 1

 1

1645

1645

1 1

1 1

 15

 15

R easured

R pecnet

R pecnet lus

63

Spectral analysis:

Table 3.1 summarizes the Raman resonance assignments for Chitin found in the spectrum

obtained from the region of interest of Figure 3.11.

Table 3.1: Summary of detected Raman resonance for Chitin. [51], [52]

Figure 4.4 (bottom panel) shows the experimentally measured CARS spectrum from the

highlighted region of interest. The resonance detected at 2670 𝑐𝑚−1 is the C-H stretching

vibration of methyl and methylene groups of the pyranoid ring [51]; the resonance detected

at 2734 𝑐𝑚−1 can be attributed to the 𝐶𝐻2 stretching [51], [52]; and the amide and C=O

stretching detected at 1645 𝑐𝑚−1 . Methylene bending and C-O-H in-plane bending

assignment are found at 1381 𝑐𝑚−1 ; the C-O stretching or alicyclic chain is found at 1031

𝑐𝑚−1 ; and the C-O-C stretching detected at 813 𝑐𝑚−1 [51]. Similar resonances are visible

in the CARS spectra from the same region of in the Specnet and Specnet processed stacks

(Figure 3.11 bottom panel) at 1381 𝑐𝑚−1 , 1645 𝑐𝑚−1 , and 2670 𝑐𝑚−1 . The strong

denoising of the large distortions in the silent region between 2000 𝑐𝑚−1 to 2500 𝑐𝑚−1

suggests that NRB was reduced by both models. The previously reported C-O-C and C-O

contributions, which were found at both 813 𝑐𝑚−1 and 1031 𝑐𝑚−1 , appear to have been

Frequency Range (𝒄𝒎−𝟏) Assignment

800-970 C-O-C stretching

1000-1200 C-O Stretching/ Alicyclic chain stretching

1380-1470 Methylene bending/ C-O-H in-plane bending

1500-1680 Amide I and C=O stretching

2700-3000 C-H stretching

64

interpreted as NRB during processing. Both models extract a peak at 915 𝑐𝑚−1 , indicating

that C-O-C contribution is, in fact, present at this wavenumber. Looking at the two CARS

spectra from the Specnet and Specnet Plus stacks, the band at 2734 𝑐𝑚−1 was retrieved at

2880 𝑐𝑚−1 , illustrating both resonances are present at a later frequency but were reshaped

by NRB. Both models predicted similar vibrational peaks, but the modified model appears

better suited for our SF-CARS setup, with a less noisy retrieved spectrum compared with

the Specnet model.

Image analysis:

Figure 4.5: SF-CARS images of the chitin sample at an off-resonance frequency. The

three CARS images were obtained by averaging the same twelve frames centered around

2450 𝑐𝑚−1 in each hyperspectral stack. (a) Raw CARS image, (b) Specnet processed

image, and (c) Specnet Plus processed image. The lack of contrast in (c) suggests that

Specnet plus model worked as expected.

SSIM was also employed to compare images of the chitin sample that were taken both on

and off resonance. The chitin CARS images presented in Figure 4.4 (top panel) taken at a

resonant frequency (obtained by averaging twelve frames centered at around 2670 𝑐𝑚−1)

65

was used for the initial test. The comparison between the original image at resonance and

the Specnet processed image at the same frequency yielded a similarity score of 33.0%,

while comparing the original image with the Specnet Plus processed image was 39.9%.

Three CARS images shown in Figure 4.5 were generated by averaging twelve frames

centered around 2450 𝑐𝑚−1 (at a frequency off-resonance) in a hyperspectral stack. The

same test on the images obtained off-resonance yielded a similarity score of -6.50% and -

10.10% for the Specnet and Specnet Plus models, respectively. A negative SSIM score

indicates that processed images differ significantly from the originally measured one. This

result also agreed with the test hypothesis mentioned in section 4.3.1 (image analysis)

indicating Specnet Plus may have performed better. The contrast difference between the

three images in Figure 4.5 also shows that the non-resonant signals were removed more

effectively using the Specnet Plus. The Specnet Plus image showed no contrast at all while

the Specnet image still showed a dark contrast at the region contain the chitin sample.

66

Chapter 5

Summary, Conclusion, and Future Work

This work explores a deep learning approach, the Specnet framework, proposed by others

in [3] to remove non-resonant background from measured B-CARS spectra to determine:

• How practical is this approach at retrieving the vibrationally resonant signals and

reducing the presence of NRB observed in our SF-CARS setup?

• How best to integrate it into our spectral analysis workflow?

The Specnet model was built as a convolutional neural network consisting of 7 hidden

layers. The model was trained on a large dataset of realistic simulated CARS spectra to

achieve high generalization capabilities when interpreting and extracting unwanted NRB

signals. The NRB shape used to simulate the input dataset (the simulated CARS spectra)

was changed to mirror the NRB response observed experimentally to better integrate the

proposed approach into our spectral analysis workflow; the resulting model from this

modification was termed Specnet Plus. Both models (Specnet and Specnet Plus) were used

to retrieve resonant spectra from two randomly simulated spectra and measured CARS

hyperspectral stacks from our setup. Since the original resonant spectrum of the simulated

spectra is known due to how they were made, an error analysis was done to provide a

quantitative assessment of each model's performance. When compared to Specnet, the

retrieved resonant spectra from Specnet Plus were more consistent with the original

resonant spectra and had a smaller average mean squared error value for both cases. This

67

preliminary test confirmed that modification improves performance; both qualitatively and

quantitatively.

The presence of reduced distortions in the spectra shape in the retrieved spectra suggests

that the proposed Specnet framework eradicates the non-resonant signals from our

experimentally measured SF-CARS spectra. Also, the approach was able to retrieve most

of the identified Raman resonances for both test samples. However, the retrieved Specnet

Plus spectra appears to be less noisy than that of Specnet suggesting the modification

resulted in better denoising (i.e., performed better at removing the non-resonant

background from each CARS spectrum). The structural similarity index metric (SSIM)

results also indicated the presence of lesser noise in the retrieved stacks from Specnet Plus.

The results from the image analysis indicate updated NRB model agreed with the test

hypothesis, but some level of supervision is needed to deduce which model actually

performed better. The contrast difference observed in the processed images demonstrates

how the two models’ interpretation of the resonant signals varied. Although the model with

the best performance could not be determined with certainty using the contrast difference

and image similarity score, it is still important to note how the modification changed how

the measured data was processed. The results from the preliminary test and the appearance

of a less noisy retrieved resonant spectra from the measured CARS hyperspectroscopy

suggest performance was enhanced by modifying the approach to emulate spectra obtained

from our CARS platform, indicating that future work should indeed expand on this

methodology.

A recommendation made by others in [53] is to use measured spectra recorded from our

CARS platform for model training for better prediction, but this would be cumbersome

68

work and would require a large volume of measured data. Furthermore, it is not strictly

possible to obtain a ground truth Raman spectrum for a given recorded CARS spectrum

[53]. As highlighted in [15], the relationship between Raman and CARS should be used

with caution, as the non-linear susceptibility probing mechanism is different from the

Raman process. Any algorithm used to retrieve a CARS spectrum would necessarily be an

approximation, which would compound errors in the retrieval network [53]. Tailoring the

simulation parameters such as amplitudes, widths, and frequencies to emulate measured

spectra across the spectral ranges will be vital in reducing these approximation errors. The

results show that when the simulated NRB shape is changed to match the measured spectra,

performance improves. This supports the suggestion that in future work, the input data be

tailored to mimic the measured spectra.

Other deep learning approaches, as seen in the work done by Wang et al. [53] and

Abdolgadher et al. [6], which are both based on unsupervised learning should also be

explored to determine if they are better suited for our setup. Any improvements to this

work will only positively affect CARS imaging and spectral analysis.

69

Bibliography

[1] . Li, Y. Li, R. Yi, L. Liu, and J. Qu, “ oherent nti-Stokes Raman Scattering

 icroscopy and ts pplications,” Front Phys, vol. 8, p. 515, Dec. 2020, doi:

10.3389/FPHY.2020.598420/BIBTEX.

[2] . D. Duncan, J. Reintjes, and . J. anuccia, “ canning coherent anti-Stokes

Raman microscope,” Opt Lett, vol. 7, no. 8, p. 350, Aug. 1982, doi:

10.1364/OL.7.000350.

[3] C. M. Valensise, A. Giuseppi, F. Vernuccio, A. de La Cadena, G. Cerullo, and D.

 olli, “Removing non-resonant background from CARS spectra via deep learning,”

APL Photonics, vol. 5, no. 6, Jun. 2020, doi: 10.1063/5.0007821.

[4] Y. Liu, Y. J. Lee, and . . icerone, “Broadband R spectral phase retrieval

using a time-domain Kramers–Kronig transform,” Opt Lett, vol. 34, no. 9, p. 1363,

May 2009, doi: 10.1364/ol.34.001363.

[5] M. T. Cicerone, K. A. Aamer, Y. J. Lee, and E. Vartiainen, “ aximum entropy and

time-domain Kramers-Kronig phase retrieval approaches are functionally

equivalent for R microspectroscopy,” Journal of Raman Spectroscopy, vol. 43,

no. 5, pp. 637–643, May 2012, doi: 10.1002/JRS.3169.

[6] P. Abdolghader et al., “Unsupervised Hyperspectral timulated Raman icroscopy

Image Enhancement: Denoising and Segmentation via One-Shot Deep Learning

NRC-u ttawa Joint entre for Extreme hotonics, ttawa N K1N 6N5 anada”.

[7] . Downes and . Elfick, “Raman pectroscopy and Related Techniques in

Biomedicine,” Sensors 2010, Vol. 10, Pages 1871-1889, vol. 10, no. 3, pp. 1871–

1889, Mar. 2010, doi: 10.3390/S100301871.

[8] W. L. eticolas, “ pplication of Raman spectroscopy to biological

macromolecules,” Biochimie, vol. 57, no. 4, pp. 417–428, Jun. 1975, doi:

10.1016/S0300-9084(75)80328-2.

[9] L. P. Choo-Smith et al., “ edical applications of Raman spectroscopy from proof

of principle to clinical implementation,” Biopolymers, vol. 67, no. 1, pp. 1–9, 2002,

doi: 10.1002/BIP.10064.

[10] R. R. Jones, D. . Hooper, L. Zhang, D. Wolverson, and V. K. Valev, “Raman

 echniques undamentals and rontiers,” Nanoscale Research Letters 2019 14:1,

vol. 14, no. 1, pp. 1–34, Jul. 2019, doi: 10.1186/S11671-019-3039-2.

[11] . antarero, “Raman cattering pplied to aterials cience,” Procedia

Materials Science, vol. 9, pp. 113–122, Jan. 2015, doi:

10.1016/J.MSPRO.2015.04.014.

70

[12] “Raman pectroscopy.” https //integratedoptics.com/Raman-Spectroscopy

(accessed Oct. 02, 2022).

[13] R. mith, K. L. Wright, and L. shton, “Raman spectroscopy an evolving

technique for live cell studies,” Analyst, vol. 141, no. 12, pp. 3590–3600, Jun. 2016,

doi: 10.1039/C6AN00152A.

[14] . L. ussell, . somäki, and . J. trachan, “Nonlinear ptical maging-

 ntroduction and harmaceutical pplications”.

[15] B. R. asters and . . . o, “Handbook of Nonlinear ptical icroscopy,”

PNAS, 2008.

[16] Y. Wang, C.-Y. Lin, . Nikolaenko, V. Raghunathan, and E. . otma, “ our-

wave mixing microscopy of nanostructures,” 2011, doi 10.1364/ .3.000001.

[17] R. Mostany, A. Miquelajauregui, M. Shtrahman, and C. Portera- ailliau, “ wo-

photon excitation microscopy and its applications in neuroscience,” Methods Mol

Biol, vol. 1251, pp. 25–42, 2015, doi: 10.1007/978-1-4939-2080-8_2.

[18] . Rubart, “ wo-photon microscopy of cells and tissue,” Circ Res, vol. 95, no. 12,

pp. 1154–1166, Dec. 2004, doi: 10.1161/01.RES.0000150593.30324.42.

[19] R. Vargas, . osavi, and L. Ruiz, “DEE LE RN NG REV EW,” 2017.

[20] “ n introduction to deep learning - B Developer.”

https://developer.ibm.com/articles/an-introduction-to-deep-learning/ (accessed Jun.

14, 2022).

[21] L. Alzubaidi et al., “Review of deep learning concepts, NN architectures,

challenges, applications, future directions,” Journal of Big Data 2021 8:1, vol. 8,

no. 1, pp. 1–74, Mar. 2021, doi: 10.1186/S40537-021-00444-8.

[22] “ upervised vs. Unsupervised Learning What’s the Difference? | B .”

https://www.ibm.com/cloud/blog/supervised-vs-unsupervised-learning (accessed

Oct. 06, 2022).

[23] K. Gurney and N. York, “ n introduction to neural networks,” 1997.

[24] “What are Neural Networks? | B .” https //www.ibm.com/cloud/learn/neural-

networks (accessed Jun. 16, 2022).

[25] “ NN vs NN vs RNN | ypes of Neural Networks.”

https://www.analyticsvidhya.com/blog/2020/02/cnn-vs-rnn-vs-mlp-analyzing-3-

types-of-neural-networks-in-deep-learning/ (accessed Jun. 16, 2022).

[26] R. W. Terhune, P. D. Maker, and . . avage, “ easurements of Nonlinear Light

 cattering,” Phys Rev Lett, vol. 14, no. 17, p. 681, Apr. 1965, doi:

10.1103/PhysRevLett.14.681.

71

[27] R. . Begley, . B. Harvey, and R. L. Byer, “ oherent anti‐ tokes Raman

spectroscopy,” Appl Phys Lett, vol. 25, no. 7, p. 387, Oct. 2003, doi:

10.1063/1.1655519.

[28] . Zumbusch, G. R. Holtom, and X. . Xie, “ hree-Dimensional Vibrational

Imaging by Coherent Anti- tokes Raman cattering,” Phys Rev Lett, vol. 82, no.

20, p. 4142, May 1999, doi: 10.1103/PhysRevLett.82.4142.

[29] H. Huang et al., “ oherent anti-Stokes Raman scattering and spontaneous Raman

spectroscopy and microscopy of microalgae with nitrogen depletion,” Biomedical

Optics Express, Vol. 3, Issue 11, pp. 2896-2906, vol. 3, no. 11, pp. 2896–2906,

Nov. 2012, doi: 10.1364/BOE.3.002896.

[30] R. W. Boyd, Nonlinear Optics. Elsevier Inc., 2008. doi:

10.1201/9781420004694.ch5.

[31] . üller and . Zumbusch, “ oherent anti-Stokes Raman Scattering

 icroscopy,” ChemPhysChem, vol. 8, no. 15, pp. 2156–2170, Oct. 2007, doi:

10.1002/CPHC.200700202.

[32] Jeremy orquez, “ DV N ED BR DB ND R R Y B ED

ON A SUPERCONTINUUM-GENERATING H N RY L BER,”

PHD dissertation , Trent University, Peterborough, 2019.

[33] . H. * amp, Y. J. Lee, and . . icerone, “Quantitative, omparable oherent

Anti-Stokes Raman Scattering (CARS) Spectroscopy: Correcting Errors in Phase

Retrieval,” 2015.

[34] L. G. Rodriguez, . J. Lockett, and G. R. Holtom, “ oherent anti-stokes Raman

scattering microscopy biological review,” Cytometry Part A, vol. 69A, no. 8, pp.

779–791, Aug. 2006, doi: 10.1002/CYTO.A.20299.

[35] I. W. Schie et al., “ imultaneous forward and epi-CARS microscopy with a single

detector by time-correlated single photon counting,” Optics Express, Vol. 16, Issue

3, pp. 2168-2175, vol. 16, no. 3, pp. 2168–2175, Feb. 2008, doi:

10.1364/OE.16.002168.

[36] R. Brakel, V. Mudogo, and F. W. chneider, “ olarization sensitive resonance

 R spectroscopy,” J Chem Phys, vol. 84, no. 5, p. 2451, Aug. 1998, doi:

10.1063/1.450363.

[37] R. ole, “ REQUEN Y-TIME AND POLARIZATION CONSIDERATIONS IN

SPECTRAL-FOCUSING-B ED R R Y,” rent University,

Peterborough, 2021.

[38] . Zhang and J. X. heng, “ erspective oherent Raman scattering microscopy,

the future is bright,” APL Photonics, vol. 3, no. 9, p. 090901, Jul. 2018, doi:

10.1063/1.5040101.

72

[39] . L. Evans, E. . otma, . uoris’haag, D. Côté, C. P. Lin, and X. S. Xie,

“ hemical imaging of tissue in vivo with video-rate coherent anti-Strokes Raman

scattering microscopy,” Proc Natl Acad Sci U S A, vol. 102, no. 46, pp. 16807–

16812, Nov. 2005, doi:

10.1073/PNAS.0508282102/SUPPL_FILE/08282MOVIE1.MP4.

[40] . H. arekh, Y. J. Lee, K. . amer, and . . icerone, “Label-Free Cellular

Imaging by Broadband Coherent Anti- tokes Raman cattering icroscopy,”

Biophys J, vol. 99, no. 8, p. 2695, Oct. 2010, doi: 10.1016/J.BPJ.2010.08.009.

[41] J. G. Porquez and A. D. lepkov, “ pplication of spectral-focusing-CARS

microscopy to pharmaceutical sample analysis,” AIP Adv, vol. 8, no. 9, Sep. 2018,

doi: 10.1063/1.5027273.

[42] . de Veij, . Vandenabeele, . de Beer, J. . Remon, and L. oens, “Reference

database of Raman spectra of pharmaceutical excipients,” Journal of Raman

Spectroscopy, vol. 40, no. 3, pp. 297–307, Mar. 2009, doi: 10.1002/JRS.2125.

[43] J. ierna, . bbas, . Dardenne, and V. Baeten, “Discrimination of orsican

honey by FT-Raman spectroscopy and chemometrics,” Biotechnologie, Agronomir,

Societe et Environnement, 2011.

[44] R. Yamashita, . Nishio, R. Kinh, G. Do, and K. ogashi, “ onvolutional neural

networks an overview and application in radiology”, doi 10.1007/s13244-018-

0639-9.

[45] K. ’shea and R. Nash, “ n ntroduction to onvolutional Neural Networks”.

[46] “GitHub - Valensicv/ pecnet.” https //github.com/Valensicv/ pecNet (accessed

Aug. 02, 2022).

[47] L. Kong, . Lee, . H. Kim, and G. R. Ziegler, “ haracterization of tarch

Polymorphic Structures Using Vibrational Sum Frequency Generation

 pectroscopy,” J Phys Chem B, vol. 118, no. 7, 2014, doi: 10.1021/jp411130n.

[48] S. Wang and P. Guo, Botanical Sources of Starch. Springer Singapore, 2020. doi:

10.1007/978-981-15-0622-2_2.

[49] T. Oniszczuk et al., “ hysical assessment, spectroscopic and chemometric analysis

of starch-based foils with selected functional additives,” PLoS One, vol. 14, no. 2,

Feb. 2019, doi: 10.1371/JOURNAL.PONE.0212070.

[50] A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, D. J. Moffatt, and A. Stolow,

“Hyperspectral multimodal R microscopy in the fingerprint region,” J

Biophotonics, vol. 7, no. 1–2, pp. 49–58, Jan. 2014, doi: 10.1002/JBIO.201200171.

[51] E. raveen, . urugan, and K. Jayakumar, “ nvestigations on the existence of

piezoelectric property of a bio-polymer-chitosan and its application in vibration

73

sensors,” RSC Adv, vol. 7, no. 56, pp. 35490–35495, 2017, doi:

10.1039/C7RA04752E.

[52] B. Gieroba et al., “ urface hemical and orphological nalysis of hitosan/1,3-

β-d-Glucan Polysaccharide Films Cross-Linked at 90 ° ,” Int J Mol Sci, vol. 23,

no. 11, Jun. 2022, doi: 10.3390/IJMS23115953.

[53] Z. Wang, K. ’ Dwyer, R. uddiman, . Ward, . H. amp, and B. . Hennelly,

“VE R Very deep convolutional autoencoders for non-resonant background

removal in broadband coherent anti- tokes Raman scattering,” Journal of Raman

Spectroscopy, vol. 53, no. 6, pp. 1081–1093, Jun. 2022, doi: 10.1002/JRS.6335.

74

Appendix A

A.1 The proposed Specnet model architecture summary [3].

Layer (Type) Output Shape Parameter Number

Batch Normalization (None, 640,1) 4

Activation (None, 640,1) 0

Convolution Layer 1

(Using Conv1D)

(None, 609, 128) 4,224

Convolution Layer 2

(Using Conv1D)

(None, 594, 64) 131,136

Convolution Layer 3

(Using Conv1D)

(None, 587, 16) 8,208

Convolution Layer 4

(Using Conv1D)

(None, 580, 16) 2,064

Convolution Layer 5

(Using Conv1D)

(None, 573, 16) 2,064

Fully Collected Layer 1

(Dense)

(None, 573, 32) 544

Fully Collected Layer 2

(Dense)

(None, 573, 16) 528

Flatten layer (None, 9168) 0

Dropout Layer (None, 9168) 0

Fully Collected Layer 3

(Dense)

(None, 640) 5,540,480

Total number of parameters: 6, 016, 932

Number of Trainable Parameter: 6, 016, 930

Number of Non-trainable Parameter: 2

75

A.2

This code used processing both measured hyperspectral stack with the Specnet and Specnet

Plus model is presented below.

import tensorflow as tf

import os, time

import tifffile

import numpy as np

from scipy.interpolate import interp1d

import pathlib

import multiprocessing as mp

import tensorflow as tf

import keras.backend as K

from keras.models import Sequential

from keras.layers import Dense, Conv1D, Flatten, BatchNormalization,

Activation, Dropout

from keras import regularizers

model = tf.keras.models.load_model('model/467_model.h5')

model.summary()

x_values = np.arange(467)

x_values= np.arange()

def open_tiff(file_path):

 # *This step changes the tiffile pulled numpy array from 2-D to 3-D

 image = tifffile.TiffFile(file_path)

 pages = image.pages

 page_shape_rows, page_shape_cols = image.pages[0].shape

 output_image = np.zeros((len(pages), page_shape_rows, page_shape_cols))

 for i in range(len(pages)):

 output_image[i] = image.pages[i].asarray()

 return output_image

76

def chi3(data):

 # get the shape of the unprocessed tiff file

 z, y, x = data.shape

 # create an empty array for the Raman-retrieved tiff file

 # z-axis should be 640 data points, same as with the trained model

 new_data = np.empty((467, y, x))

 # generate arbitrary values to the _x ('wavenumber') component of the

raw data

 # to be used for interpolation purposes later

 # Note. The retrieval algorithm doesn't need actual wavenumbers but only

needs the pixel / frame number.

 _x = np.linspace(0, 467, z)

 # process each pixel of the image

 # process along the row axis

 for i in range(y):

 # process along the column axis

 for j in range(x):

 print(f"processing row: {j} column {i}", end="\r")

 # extract the raw CARS spectrum at pixel j, i

 _y = data[:, i, j]

 # re-map the spectrum to 640 points to be compatible with the

model

 # _x is 640 points

 # _y is whatever number of data points

 f = interp1d(_x, _y)

77

 # retrieve the Raman spectrum

 new_data[:, i, j] = model.predict(f(x_values)[np.newaxis, :,

np.newaxis]).flatten()

 return new_data

process the files in this directory

rootdir = r"C:\Users\damil\OneDrive\Desktop\pharma"

get time-stamp to measure how long the process will take

print(time.strftime('%Y_%m_%d %H:%M:%S'))

for subdir, dirs, files in os.walk(rootdir):

 for file in files:

 filepath = pathlib.Path(subdir, file)

 print(f"processing {file}")

 data = open_tiff(filepath)

 #obtain new file path for processed file

 new_file =

pathlib.Path(pathlib.Path(file).parent,"results_pharma_test", file)

 new_file.parent.mkdir(parents=True, exist_ok=True)

 processed = chi3(data)

 # Save tiff_file

 tifffile.imsave(new_file, processed)

 #tifffile.imsave(os.path.join("results", file), processed)

print(time.strftime('%Y_%m_%d %H:%M:%S'))

78

Appendix B Copyrighted Material

The code for training the DL model with the modification is shown in this section (the

bolded parts). The section also includes a copy of the MIT license for the original code,

which permits me to use it as I wish for this project.

Source code for building the modified Model

The Original code for the Specnet model can be found in the GitHub Repository [46].

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

import tensorflow as tf

MIT

License

Copyright (c) 2020 Valensicv

Permission is hereby granted, free of charge, to any person obtaining a copy

of this software and associated documentation files (the "Software"), to deal

in the Software without restriction, including without limitation the rights

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

copies of the Software, and to permit persons to whom the Software is

furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all

copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE

SOFTWARE.

79

import keras.backend as K

from keras.models import Model, Sequential

from keras.layers import Dense, Conv1D, Flatten, BatchNormalization,

Activation, Dropout

from keras import regularizers

from datetime import datetime

max_features = 15

n_points = 640

nu = np.linspace(0,1,n_points)

def random_chi3():

 """

 generates a random spectrum, without NRB.

 output:

 params = matrix of parameters. each row corresponds to the

[amplitude, resonance, linewidth] of each generated feature (n_lor,3)

 """

 n_lor = np.random.randint(1,max_features) # take a random int between 1

and max_features

 a = np.random.uniform(0.01,1,n_lor) # take a random number between 0

and 1 with shape n_lor

 w = np.random.uniform(0.001,1,n_lor) # take a random number between 0

and 1 with shape n_lor

 g = np.random.uniform(0.001,0.008, n_lor) # take a random number between

0.001 and 0.008 with shape n_lor

 params = np.c_[a,w,g]

 return params

random_chi3()

def build_chi3(params):

 """

 buiilds the normalized chi3 complex vector

80

 inputs:

 params: (n_lor, 3)

 outputs

 chi3: complex, (n_points,)

 """

 chi3 = np.sum(params[:,0]/(-nu[:,np.newaxis]+params[:,1]-

1j*params[:,2]),axis = 1)

 return chi3/np.max(np.abs(chi3))

def sigmoid(x,c,b):

 return 1/(1+np.exp(-(x-c)*b))

def generate_nrb():

 number_of_undulations = np.random.randint(1,4)

 a = np.random.random(number_of_undulations)

 a.sort()

 x0 = np.random.random(number_of_undulations)

 sigma = np.random.uniform(0.1,0.3,number_of_undulations)

 sigma.sort()

 print(f"x0 :\t{x0}")

 print(f"a :\t{a}")

 print(sigma)

 all = np.exp((-(nu-np.c[x0])**2)/(2*(np.c_[sigma]**2)))

 result = np.sum(_all,axis=0)

 return result/result.max()

test function

#plt.plot(generate_nrb())

generate nrb and store in variable, _nrb

_nrb = generate_nrb()

81

plt.plot(_nrb)

def get_spectrum():

 """

 Produces a cars spectrum.

 It outputs the normalized cars and the corresponding imaginary part.

 Outputs

 cars: (n_points,)

 chi3.imag: (n_points,)

 """

 chi3 = build_chi3(random_chi3())*np.random.uniform(0.3,1)

 nrb = generate_nrb()

 # nrb = _nrb

 noise = np.random.randn(n_points)*np.random.uniform(0.01,0.03)

 cars = ((np.abs(chi3+nrb)**2)/2+noise)

 return cars, chi3.imag

cars, chi3 = get_spectrum()

#plt.plot(cars)

#plt.plot(chi3)

#plt.show()

nrbfig=plt.plot(_nrb)

carsfig=plt.plot(cars)

chi3fig=plt.plot(chi3)

plt.show()

Seperate the plots here

tf.keras.backend.clear_session()

model = Sequential()

model.add(tf.keras.Input(shape=(n_points,1)))

82

Batch normalization

model.add(BatchNormalization(axis=-1,

 momentum=0.99,

 epsilon=0.001,

 center=True,

 scale=True,

 beta_initializer='zeros',

 gamma_initializer='ones',

 moving_mean_initializer='zeros',

 moving_variance_initializer='ones',

 beta_regularizer=None,

 gamma_regularizer=None,

 beta_constraint=None,

 gamma_constraint=None,

 # input_shape = (n_points, 1) # can be deprecated

by input layer

))

gives batch normalization activation 'relu'

model.add(Activation('relu'))

Conv1D is for pattern detection

there are 128 kinds of filters and kernel size (32) is convolution window

adds 128 (filters) to the next dimension

reduces samples by 32 but adds 1 --> 640 - 32 + 1 = 609

model.add(Conv1D(128, activation = 'relu', kernel_size = (32)))

do 64 filters, 16 window kernel

model.add(Conv1D(64, activation = 'relu', kernel_size = (16)))

so on...

model.add(Conv1D(16, activation = 'relu', kernel_size = (8)))

model.add(Conv1D(16, activation = 'relu', kernel_size = (8)))

model.add(Conv1D(16, activation = 'relu', kernel_size = (8)))

83

Dense Layers == Fully connected layers

32 units, 573 features

model.add(Dense(32, activation = 'relu',

 kernel_regularizer=regularizers.l1_l2(l1 = 0, l2=0.1)))

16 units, 573 features

model.add(Dense(16, activation = 'relu',

kernel_regularizer=regularizers.l1_l2(l1 = 0, l2=0.1)))

Flattens out the previous layer

573 * 16 = 9168

model.add(Flatten())

Dropout. With rate 0.25. Randomly sets a value to zero to prevent

overfitting

model.add(Dropout(0.25))

Return to previous number of data points

model.add(Dense(n_points, activation='relu'))

model.compile(loss='mse',optimizer='Adam',

metrics=['mean_absolute_error','mse','accuracy'])

model.summary()

def generate_batch(size = 10000):

 X = np.empty((size, n_points,1))

 y = np.empty((size,n_points))

 for i in range(size):

 X[i,:,0], y[i,:] = get_spectrum()

 return X, y

X, y = generate_batch(10)

X has shape (10, 640, 1)

y has shape (10, 640)

84

X, y = generate_batch(50000)

history = model.fit(X, y,epochs=10, verbose = 1, validation_split=0.25,

batch_size=256)

plt.plot(history.history['loss'])

plt.plot(history.history['val_loss'])

plt.title('Model loss')

plt.ylabel('Loss')

plt.xlabel('Epoch')

plt.legend(['Train', 'Test'], loc='upper left')

plt.show()

model.save('model/640_model.h5')

