
Modelling Request Access Patterns for
Information on the World Wide Web

A Thesis Submitted to the Committee on Graduate Studies

in Partial Fulfillment of the Requirements for the

Degree of Master of Science

in the Faculty of Arts and Science

TRENT UNIVERSITY

Peterborough, Ontario, Canada

© Copyright by Robert C. Sturgeon 2022

Applied Modelling and Quantitative Methods

M.Sc. Graduate Program

September 2022

Abstract

Modelling Request Access Patterns for Information on the

World Wide Web

Robert C. Sturgeon

In this thesis, we present a framework to model user object-level request patterns

in the World Wide Web. This framework consists of three sub-models: one for file

access, one for Web pages, and one for storage sites. Web Pages are modelled to be

made up of different types and sizes of objects, which are characterized by way of

categories.

We developed a discrete event simulation to investigate the performance of sys-

tems that utilize our model. Using this simulation, we established parameters that

produce a wide range of conditions that serve as a basis for generating a variety of

user request patterns. We demonstrated that with our framework, we can affect the

mean response time (our performance metric of choice) by varying the composition

of Web pages using our categories. To further test our framework, it was applied to

a Web caching system, for which our results showed improved mean response time

and server load.

Keywords: performance modelling, World Wide Web, Internet, Web caching, dis-

crete event simulation (DES)

ii

Acknowledgments

Developing this thesis has been a great learning experience and a fantastic oppor-

tunity for personal growth. Foremost, I am extremely grateful to my supervisor,

Dr Richard Hurley, for the many years of commitment and patience (and slogging

through the many drafts). I would also like to express my deepest appreciation to

my committee, Dr Robson De Grande, Dr James Parker, and Dr Sabine McConnell,

for their encouragement and feedback. I would like to recognize staff and faculty

for giving me the background and encouragement over my years at Trent University,

namely: Dr Brian Patrick, Brian Hircock, Bonnie McKinnon, and Nancy Smith, to

name a few. Also, I would be remiss to forget my Trent friends that I have made over

the years, especially: Kevin and Bethany (my officemates); and, Callum, Graham,

and Greg (Team ln).

I cannot express my sincere gratitude enough to my family and friends for your

continued support. I am especially grateful to my wife, Emily, and my children

James, Claire, and Meg; as well as my parents, Lois and Carl, and in-laws, Hilary

and John. Your love and support kept me going for this long adventure.

Emily, thank for your unending support, understanding, patience, proof-reading

and love.

iii

Contents

Abstract ii

Acknowledgements iii

Table of Contents iv

List Of Figures vii

List Of Tables x

List of Symbols xi

1 Introduction 1

1.1 General Environment . 2

1.2 Web Caching . 7

1.3 Thesis Outline . 8

2 Background 10

2.1 Introduction . 10

2.2 The World Wide Web . 10

2.2.1 Web Caching . 13

2.3 Modelling the World Wide Web . 19

2.4 Summary . 28

iv

3 Model 30

3.1 Introduction . 30

3.2 Model . 31

3.2.1 User-Web Interaction Model 31

3.2.2 User-Request Model . 34

3.2.3 Server Model . 35

3.2.4 Web Page Model . 37

4 Implementation and Results 41

4.1 Introduction . 41

4.1.1 Validation and Verification of the Model 42

4.2 Model Parameters . 43

4.2.1 Composition of the Web Page Set 43

4.2.2 System Stability . 49

4.2.3 Coefficient of Variation of Web Page Request Interarrival Time 50

4.2.4 System Load . 54

4.3 Varying Web Page Category . 58

4.4 Summary . 63

5 Web Caching Model and Results 64

5.1 Introduction . 64

5.2 Model . 64

5.3 Model Parameters . 69

5.3.1 Composition of the Web Page Set 69

5.3.2 System Stability . 71

5.3.3 Cached Object Access Factor 72

5.3.4 System Load . 73

5.3.5 Cache Capacity . 74

v

5.4 Varying Web Page Category with Web Caching 79

5.5 Summary . 82

6 Conclusions and Future Research 84

6.1 Contributions . 84

6.2 Suggestions for Future Research . 87

6.2.1 Additional Object Types . 87

6.2.2 Web Caching Applications . 88

6.2.3 Variations on Web Page Composition 88

6.2.4 The Internet of Things . 89

6.2.5 Vehicular Computing . 90

Bibliography 92

Appendices 96

A Simulation Implementation Overview 96

vi

List of Figures

1.1 Simplified World Wide Web Showing an Example Request/Response

Chain. 3

1.2 Example of a Web Page Request Receiving a Cached Response. . . . 8

2.1 Berners-Lee’s The W3 architecture in outline [10]. 12

2.2 Hierarchical Web Caching Example. 17

2.3 Distributed Caching Example. 18

2.4 Overview of Basic Hypertext Transfer Protocol (HTTP) Model [16]. . 21

2.5 Example of a Closure Over the Full Resolution of a URL (CURL) [2]. 22

2.6 Streams, Web Pages, Initial Pages, Client-side Interactions, and Main

/ Embedded Objects [26]. 24

2.7 Relationship Between Dynamic File Reference Model Parameters [25]. 28

3.1 User-Web Interaction Model. 32

3.2 Request-Response Timing Cycle . 33

3.3 Web Page Selection Model [25]. 35

3.4 Web Page Request Model, Showing first-come-first-serve (FCFS) Web

Server Queues. 36

3.5 Example Web Page Composition Based on Category. 40

4.1 Visual Summary of the Composition of the Web Page Set. 44

vii

4.2 Document Size with Respect to Document Type (based on [21], where

the document sizes have been scaled to between 1 and 100). 47

4.3 Summary of Web Page Composition. 50

4.4 Effect of Simulation Length on Coefficient of Variation of Web Page

Request Interarrival Time (CV). 51

4.5 The Effect of Popularity Factor (v) on CV. 52

4.6 The Effect of CV on mean response time (MRT). 53

4.7 Varying System Load with Number of Users. 55

4.8 Varying System Load with Number of Users, Highlighting Results for

N < 2000. 56

4.9 Effect of Number of Users on MRT. 57

4.10 Effect of Varying the Ratio of Web Pages per Web Page Category has

on the Mean Web Page Size for All Requests. 60

4.11 The Effect that Mean Web Page Size has on MRT and System Load. 61

4.12 The Effect of Our Final Web Page Category Ratio Test Scenario on

MRT. 62

5.1 Web Page Request Model with Caching Model. 65

5.2 Process to Calculate Web Page Transmission Time with Object Level

Web Caching. 68

5.3 Effect of HR on System Stability. 72

5.4 Effect of Cached Object Access Factor on MRT. 73

5.5 The Effect of the Number of Users on System Load. 75

5.6 The Effect of Cache Capacity on HR. 76

5.7 The Effect of Cache Capacity on HR. 78

5.8 Effect of Ratio Scenarios on MRT. 80

5.9 Effect of Varying Cache Capacity on System Load. 81

5.10 Effect of Ratio Scenarios on HR. 82

viii

A.1 Main Simulation Event Handling Loop. 98

ix

List of Tables

2.1 Summary of Web Traffic Model Results [26]. 25

2.2 Trace Characteristics by Content-type of Documents [21]. 26

3.1 Example Web Page Object Parameters 38

4.1 Comparison of Simulation MRT versus Analytic MRT for anM/M/1//N

System for Various Values of N . 43

4.2 Composition of the Web Page Object Set. 46

4.3 Number of Web Page Objects and Web Page Size for each Web page

category. 49

4.4 Web Page Category Ratio Test Scenarios. 59

4.5 Summary of Final Web Page Category Ratio Test Scenario. 62

5.1 Example Web Page Object Parameters 67

5.2 Composition of the Web Page Object Set with Web Caching. 70

5.3 Observed HR Compared with Expected HR by Web Page Category . 77

x

List of Symbols

C Number of Web caches

CV Coefficient of variation of
Web page request
interarrival time

HR Cache hit rate

i Web page identifier

j Web page object identifier

k Ratio of Web pages per
Web page category

MRT mean response time

K Number of servers

M Number of Web pages

M0 Number of potentially
popular Web pages

Mp(t) Number of Web pages
currently popular

N Number of users

pi(t) Probability of selecting
Web page

Q Number of Web page
objects

R Request service time

SHR Cache size hit rate

t Time

v Popularity factor

W Web page size

γ1 Normal-popular transition
rate

γ2 Popular-normal transition
rate

δ Cached object access factor

Θ Web page object size

Θsmall Small object size (base unit
of data size)

κ Cache capacity

λ Request rate

µ Mean service rate

ρ System load

ϕ Web page object
cacheability

ϕnot Not cacheable

ϕless Less cacheable

ϕmore More cacheable

τ Web page transmission
time

xi

1

Chapter 1

Introduction

Waiting for a Web page to load can be one of modern life’s most frustrating occasions.

The World Wide Web (WWW) is a system that has only recently — in the past

few decades — become ubiquitous to modern society as a fast and effective way to

connect people with an enormous amount of information. However, the size and

complexity of the WWW makes it a challenging study in terms of performance and

user experience.

In this thesis, we present a framework that models Hypertext Transfer Protocol

(HTTP) request patterns in the WWW which then allows us to compare the relative

performance of various architectures, and the impact these have on user experience.

As a framework, our model can be adapted to a wide range of conditions that can

be used by researchers as a tool with their own models.

An important feature of our framework is how information is represented. This

is accomplished with a Web Page Model, which determines the composition of Web

pages. Each Web page is modelled to consist of a unique set of objects, where each

object has a type and a size. The composition of Web pages is determined by the Web

page categories, which in turn determines the number of objects as well as their type

and size. In this thesis, we provide an illustrative set of categories which represent

2

an anecdotal representation of Web pages as they may appear to the user. However,

the configuration of Web page categories is a model parameter that is meant to be

modified according to the research requirements.

We use computer simulation to implement and test our model using a set of

basic parameters, and then utilize our model in an investigation of Web caching.

The main goal is to provide an unique framework to compare the performance of

various scenarios for user request patterns in the WWW. This is accomplished by

modelling the process of a user requesting and subsequently receiving a Web page

at the object-level within the WWW.

The remainder of this chapter is divided into the following parts: the general

environment, a brief discussion of Web caching, and an outline of the Thesis. The

discussion of the general environment includes a high-level description of the system,

which is then followed by a more detailed description of the system components

and processes involved. Next we discuss Web caching, the application used in this

research to test the feasibility of the model. Finally, we discuss then remaining

organization and goals of the thesis.

1.1 General Environment

At a broad level, we consider the WWW to consist of the following components:

users, Web servers, the Internet, and the information being requested. The term

user will refer an agent that is requesting information — human or machine [18].

The Internet is the communications media that interconnects the users and Web

servers. Web servers are the devices that store the information and transmit it to

the user. Finally, the information is the component found generally in the form of

Web pages.

Figure 1.1 is a simplified representation of the WWW that outlines a user making

3

The Internet

U
se

rs

O
rig

in
 S

e
rv

e
rsDa

ta
request

Intermediaries

re
sp

on
se

Data

Database server

Figure 1.1: Simplified World Wide Web Showing an Example Request/Response
Chain.

a request to a Web server for a Web page. The path that is takes is through the

Internet and is routed through multiple intermediaries. Let us consider the details

of the main concepts just presented and the process of these components interacting

to provide information. The detailed discussion of these two concepts that follow

includes: the user, the information, the network, and the Web server.

Although the main goal of the WWW is to connect users to information, nearly

half of the traffic on the WWW is due to automated processes [26]. These machine

actors are used for various activities, much of which include information indexing for

search engines and analytic algorithms.

A user requires the ability to interface with the WWW, an action which is

achieved through various types of software [17,19]. In the case of a human user,

this software is referred to as a Web browser, but for some automated users, it would

be called a spider. We will use the term browser for the software that is used to in-

teract with the WWW [19]. Generally the job of this software is to initiate requests,

4

negotiate network access, and render the data received into a format that can be

utilized by the user.

The information available within the WWW varies widely in its amount, size,

composition, and format. Some common examples of information types are text, au-

dio, video, and images. Also, these types of information exist in several technological

formats, such as plain text or binary information, and may come from a multitude

of information sources. Information is accessed by determining its location on the

WWW using a Uniform Resource Identifier (URI) (for example www.trentu.ca).

URI are logical addresses for discrete documents, referred to as Web pages. While

the URI is a logical address, its resolution is beyond the scope of our work [27].

A Web page is a unique document that is composed of various types of informa-

tion. Web pages are stored on a Web server, to which the user issues requests. A

Web server responds to a user’s request for a Web page by retrieving the Web page

from its storage and delivering it through the Internet. Interconnection between

Web pages is a fundamental property of the WWW, and is accomplished through

hyperlinks within Web pages to other Web pages [10].

The composition of a Web page can be highly varied, ranging from a monolithic

document of plain text, to a complex collection of elements of various forms. Each

Web page must contain at least one element, but normally consists of many elements

called Web page objects. The Web page therefore, can be viewed as a group of

Web page objects. In the WWW, a Web page object is an element of data of

arbitrary content, whose type is structured and named according to an international

registration organization (the Internet Assigned Numbers Authority (IANA)) [20].

Web page objects have several properties, which include size and encoding (such as

ASCII text or binary data), but for our model we are primarily concerned with their

size as this has a direct effect on the retrieval of the Web page. There are dozens of

types of Web page objects, but some of the common ones that make up a Web page

www.trentu.ca

5

are [20,26]:

hyper-text markup language (HTML): A language that is used as the basis for

encoding information in Web pages. HTML provides the method to build the

Web page structure, and includes elements such as: text information, references

to other Web page content (for example an image), and links other Web pages.

Javascript: A programming language that is used for a variety of purposes, but in

general it facilitates user interaction with a Web page.

Extensible Markup Language (XML): A markup language standard that is

used to encode information in many WWW services.

Cascading Style Sheets (CSS): A language used to control the display layout

of Web page object.

image: Binary representation of a picture.

audio: Sound information.

video: Visual and sound information.

octet: Information element that may contain any arbitrary information encoded in

binary. Examples include applications and PDF documents.

An important consideration regarding Web pages is that their content can change

with time (referred to as dynamic content) [2,24]. Although the specific content on

a Web page may change, it still represents a single resource [35]. For example, a

news main page such as www.cbc.ca/news consists of a collection of news articles

available on the site at some point in time. The collection, however, changes with

time as current news articles are added and old ones are removed. Regardless of the

news articles available, www.cbc.ca/news is still viewed as a single Web page.

www.cbc.ca/news
www.cbc.ca/news

6

Another component within the WWW is the Web server, which has an important

impact on the experience of the user. Web servers, which range from a single com-

puter to a collection of networked computers, hold the Web pages that users request

[39]. The speed at which they can respond to the request contributes in large part

to the response time.

Fundamentally, a Web server consists of the following components: an interface

to the Internet, processors for requests, storage, and software [38]. There are several

ways that these components can be organized within Web servers. In the case of

a single computer, all of the components are connected within one machine, where

the storage is a locally accessed file system. Typically, single computers are used

for small personal Web servers. For larger systems, such as for the purposes of

education, government and commerce, a Web server is made up of a collection of

multiple machines, with each one performing a specific function. In such a system

there is some combination of dedicated machines to interface with the Internet,

process requests, and manage information. Information in large systems is stored

and managed using a database management system (DBMS), which may be a system

within the local Web server facility or be a remote system [38].

The WWW would not be as ingrained in society were not for the underlying

networking technology that now spans most of the world (ie, the Internet). The In-

ternet is a collection of protocols for communicating across arbitrary packet-switched

networks, and is made up of three main components hosts, routers, and networks

[38]. The WWW is an application-layer process in the OSI network model that runs

on the Internet [38].

7

1.2 Web Caching

Web caching is an important technique utilized by the Internet and can have a

great deal of impact on performance and other factors. In general, Web caching

involves the temporary storage of frequently accessed Web page objects at various

intermediary storage locations between a user and a Web server. By storing Web page

objects geographically closer to a user, access latencies can be improved [36]. Some

important potential benefits of Web caching include: improved request response

times [40], reduced load on Web servers [36], reduction of network bandwidth [40],

data redundancy if the Web server is down through availability of cached data [40],

transparent to the user [40], and demand based (based on the popularity of the Web

page) so no administration is required to decide what to cache [34].

The principle of operation for Web caching is as follows: as the response to

a request for information travels via the Internet to the user, copies of Web page

objects that make up the response are stored at the intermediary storage locations

so that subsequent requests for the same information can be fulfilled by intermediary

storage locations. This can reduce the time to fulfill the next request. A simplified

example of Web caching shown in Figure 1.2, illustrates an intermediary storage

location working as a Web cache to potentially reduce the time to service a request.

Not all information can be stored in an intermediary storage location because

cache storage size is small relative to the amount of data available in the WWW. As

well, certain types of information change rapidly thus making caching impracticable.

Therefore, various Web caching topologies and approaches for handling dynamic

information have been developed to improve Web page response times [40]. While

the implementation of our model considers only distributed Web caching, three Web

caching topologies that determine the geographical configuration of Web cache site

are: hierarchical, distributed, and hybrid.

8

The Internet

U
se

rs

W
e

b
S

e
rv

er
s

Intermediary
Storage Locations
(Web caches)

Dat
a

re
qu

es
t

re
sp

on
se

Data

Figure 1.2: Example of a Web Page Request Receiving a Cached Response.

1.3 Thesis Outline

The reminder of the thesis consists of five additional chapters. Chapter 2 (Background)

discusses the background work as it relates to our thesis. This includes a brief his-

tory and overview of the WWW, including Web caching. This is then followed by a

literature review of modelling the WWW.

In Chapter 3 (Model) we present the Web Page Request Access Pattern Model.

The overall model is described in the User-Web Interaction Model, which is made up

of the User-Request Model, the Server Model, and the Web Page Model; all of which

are discussed in detail.

Chapter 4 (Implementation and Results) discusses our implementation of the Web

Page Request Access Pattern Model using discrete event simulation (DES). This

is followed with verifying our implementation by comparing simulated results to

analytic ones. We complete this chapter by presenting several scenarios that explore

a range of input into our model, without considering Web caching.

9

Our model is extended in Chapter 5 (Web Caching Model and Results) with an

expanded server model (Web caching). Continuing from Chapter 4, we add the

caching model to our implementation. Chapter 5 then compares our results between

the base model and the expanded server model.

We end the thesis by summarizing the results of the work and discussing the their

contributions in Chapter 6 (Conclusions and Future Research). During the course of

developing this work, many interesting ideas came up that would enhance or be an

exciting application of it. However, to keep the scope reasonable many of these had

to be set aside. In Section 6.2 (Suggestions for Future Research) we explore of some

of these ideas.

10

Chapter 2

Background

2.1 Introduction

In this thesis, there are two topics that on their own represent substantial bodies of

work in the field of Computer Science: modelling and the World Wide Web. The

intersection of these two topics results in a significant amount of research available.

In this chapter, we summarize the important aspects of modelling and the WWW

as they relate to our thesis. In particular, we consider the factors that affect our main

performance measure of interest, mean response time (MRT). In the next section

we discuss the WWW, including its history, an overview of its function, and Web

caching. Following our discussion of the WWW we then discuss modelling it in

Section 2.3.

2.2 The World Wide Web

The WWW is a system to organize various forms of information and present it to

users. Information is stored and retrieved in this system across a world-wide het-

erogeneous set of networked computers. The user interface and the data sources are

independent of one another and are interconnected through a well defined interface.

11

While the WWW was conceived only about thirty years ago, it has several historical

influences [9].

One of the first mentions of interconnected data retrieval systems was presented

in 1945 [12]. This conceptual system, the Memex, represented the concept of a data

storage device that links, indexes, and searches books, records, and communica-

tions, and other data. The Memex was conceived to be mainly mechanical using

microfilm and other electro-mechanical devices of the time, and was not specifically

implemented.

The WWW in its current form was conceived by Sir Tim Berners-Lee in 1989 [9].

Berners-Lee identified the need to manage large amounts of information while work-

ing with European Organization for Nuclear Research (CERN) and the Large Hadron

Collider (LHC). While the needs were motivated by his experience at CERN, Berners-

Lee envisioned that it would be global [10].

At the same time that Berners-Lee’s concept was gaining traction, the focus of

hypertext systems being used was in the user interfaces of a common application,

rather than a wide-area heterogeneous system [10]. Figure 2.1 shows Berners-Lee

et al.’s original concept of the WWW. Here the client devices such as personal

computers (PCs), Mac computers, and other client devices are connected to data

storage devices, such as servers and external databases. Clients are connected to

data storage through a large scale network (the Internet) which communicate by

way of common addressing and protocols. Some devices which do not inherently

communicate with the common protocol can still be access on the WWW using a

gateway (examples of which are shown in Figure 2.1).

An important aspect of the WWW is hypertext, a term coined by Ted Nelson who

had been researching and developing hypertext systems since the 1960s [9,17,33]. The

concept of hypertext views data as non-linear nodes related to one another through

links. Some examples of hypertext nodes Berners-Lee envisioned for the WWW are

12

Figure 2.1: Berners-Lee’s The W3 architecture in outline [10].

people, projects, and documents [9]. Hypermedia expands the concept of hypertext

with non-text content, such as graphics, speech and video [9]; Conklin goes even

further to potentially include “tastes, odors, and tactile sensations” [17].

In addition, Conklin described four categories of hypertext: macro literary sys-

tems, problem exploration tools, browsing systems, general hypertext technology

[17]. The concepts these categories encompass support large online libraries, problem

solving, reference, and general purpose systems used for reading, writing, collabora-

tion, and more. Hypertext, as implemented in the WWW, addresses all of Conklin’s

categories, and are addressed in our model.

We now provide a brief introduction to HTTP for two reasons. First, while our

model does not directly consider HTTP, it is a fundamental component of the WWW

and as such, has some influence over the nature of our model. Second, it is the basis

for examining other works that have modeled the WWW

13

HTTP is an application level protocol for transferring a variety of resources (Hy-

permedia) on the WWW [19]. In its most basic form, it facilitates a network con-

nection between a user agent and an origin server to communicate requests and

responses between one another. This request and response process is referred to

as a request/response chain, and consists of request and response methods, status,

destination addresses, and other parameters and data. The request/response chain

typically consists of intermediaries, which include proxies, gateways, and tunnels.

Each intermediary can modify messages, and perform various actions. One notable

action for intermediaries is to provide cached responses to requests, instead of relay-

ing the request further along the request chain.

An important aspect of HTTP is how it establishes and regulates network connec-

tions. Depending on the version, connections are either opened and closed for each

resource request, or can be persistent for the entire request chain. Newer versions

improve the protocol transport requirements, for example, by reducing repetitive and

verbose protocol metadata [8]. As well, as HTTP has evolved, concurrent request

pipelining has improved.

2.2.1 Web Caching

An important technology that can affect performance is Web caching. The goal of

caching is to alleviate network congestion and server overload by distributing Web

page content over multiple locations in the WWW [1,23,36,40]. This is accomplished

by storing Web page objects that are likely to be used closer to the user. Some key

advantages of Web caching are: reduced Web page request-response times, server

workload reduction, improved Web server availability, and reduced network band-

width [1,36].

There are several approaches to Web caching, but in general they can be sum-

marized in three types: browser cache, proxy cache, and origin server cache [1]. As

14

proxy Web caching plays a significant role in decreasing the request response time

and network bandwidth reduction [1], our work focuses on this approach. There are

many considerations in Web caching, such as which content to keep that is most

likely to be reused effectively and how to efficiently organize the storage. Three

typical metrics used when discussing Web caching are:

Response time: Time from the user initiating the Web page request to its com-

pletion [1].

Hit rate: Percentage of requests that are served from previously cached documents

[1,36].

Byte hit rate: Size of the data that is retrieved from the Web cache with respect

to the size of the data requested [1].

The storage size of a Web cache is limited so deciding which objects to keep is

contentious; ideally, it is popular content that will most likely be reused [40]. Web

cache replacement policies are used to remove data to make room for new data.

Wang [40] describes three main types of caching algorithms: traditional, key-based,

and cost-based. Traditional algorithms include least recently used (LRU) and least

frequently used (LFU). LRU and LFU are relatively simple and efficient, however

they tend not to account for download latency and object size [1]. As well, LFU can

also suffer from storing obsolete objects indefinitely.

There are also several algorithms associated with key-based caching, which in-

clude: Size, LRU-MIN, LRU-Threshold, Hyper-G, and Lowest Latency First [40].

These algorithms remove objects based on a primary key. For example, in the case

of Lowest Latency First, objects are assigned a key based on their download latency,

and objects are evicted based on the object with the key representing the lowest

download latency.

Cost-based algorithms use a cost function to determine which objects are evicted.

15

These cost functions often use time as a measure of cost, but can also include

other metrics (or combination of metrics) such as cost-to-fetch, size, transfer time,

and cost-to-size ratio to name a few. Some examples of cost-based algorithms in-

clude: GreedyDual-Size (GD-Size), Least Normalized Cost Replacement (LCN-R),

Size-Adjusted LRU (SLRU), and Server-assisted scheme [40].

Chankhunthod et al. mentions that there are other considerations in which ob-

jects are not cached [15]. One example is that password protected objects are not

cached. In addition, objects may be rejected based on metadata such as their URI,

time to live (TTL), and size (this is in contrast to the Size Web caching algorithm,

as objects may not even make it into the Web cache if they exceed a threshold size).

The size and topology of the Internet present significant challenges in physically

building a caching system where users and the data are widely dispersed. A Web

caching architecture strives to locate cache servers so that their placement is most

effective. Three common approaches to organize Web caches are as follows:

Hierarchical: In this system, Web caches are organized in a multilevel hierarchy,

with the users at the bottom. The levels of the hierarchy can be simplified as

bottom, institutional, regional, and national. A Web cache request is referred

up from lower levels to the higher ones until it is satisfied. If the highest

level is a miss, then the request is sent to the origin server. Once the request

is satisfied, the result propagates back to the user down the hierarchy, with

copies of the data being left at each cache server in the request chain. A

substantial disadvantage of hierarchical caching is that the bandwidth and

storage requirements increase substantially toward the upper levels. Therefore,

as the usage of the Web cache system increases, the upper level nodes become

a bottleneck [15,34,40].

Figure 2.2 presents an example scenario to illustrate an hierarchical Web caching

environment. Two users, Alice and Bob, request the same Web page from dif-

16

ferent geographic locations, and thus different points in the hierarchy. Alice is

first to make the request and receives a response. Bob follows Alice’s request,

but is able to avoid the call to the origin server and obtains the data from a

Web cache, thus reducing the overall time to satisfy the request.

Distributed: The distributed Web cache system avoids the chain of requests through

multiple levels by making the institutional nodes solely responsible for data

storage. The metadata contents of each Web cache is shared amongst all Web

caches in the system in order to refer requests to one another. If a Web cache

is unable to fulfill a request from its own storage, the Web cache seeks it from

another Web cache according to the metadata it has on the content of its

peers. In the event of a miss, the Web cache will request the data from an

origin server. Although a distributed caching system avoids the bottleneck of

the hierarchical system and allows better load sharing, two main problems are

higher connection times and higher bandwidth usage [34,36,40].

Using the same caching scenario presented in Figure 2.2, Figure 2.3 shows it

using a distributed caching topology.

Hybrid: Hybrid caching consists of a hierarchical organization of cooperating dis-

tributed Web caches. When a request cannot be satisfied by the distributed

cooperating Web caches at a level, it is referred to the next level. The number

of cooperating Web caches at a particular level is important so as to minimize

retreival latency [36,40].

17

The Internet

Object
data Object

data

Object
data

Request/
Response

Origin
server

Leaf
caches

Root
cache

Alice’s request chain

Bob’s request chain

Alice Bob

Query
(Miss)

Object
data

Request/Object data

Query (Miss)

Request/
Response

ED F

B

A

C

Query (Hit)

Query (Miss)

Figure 2.2: Hierarchical Web Caching Example.

1. Alice makes a request for a Web page.

2. The request is directed to the institutional
Web cache at node D.

3. Node D does not contain data to fulfill
the request, so it queries its parent, node
B.

4. Node B also cannot fulfill the request so
it is referred to node A.

5. Node A also does not have the requested
data, and since node A is the root Web
cache the request must be referred to the
Web server.

6. Node A receives the object data, stores
it, and passes a copy to node B. This
is propagated back down the chain until
Alice’s receives the Web page. Now nodes
A, B, and D have copies of this Web page
data.

7. Next, Bob requests the same Web page as
Alice.

8. His request is directed to the institutional
Web cache at node F .

9. The request is referred from node F up
the hierarchy to node A, where the copy
is found from Alice’s request.

10. The object data is passed back down the
request chain, storing copies at each node
along the way, and Bob’s request is com-
plete.

11. At this point any subsequent requests for
the same Web page can be fulfilled by
all nodes in our hierarchy except node
E. Any request from a user connected to
node E would require node E to obtain
the data from node B.

18

Request/
Response

Request/
Response

The Internet

Origin
server

A

D E

Alice Bob

C

Query (Miss)

Query (Miss)

B

Request/Object data

Leaf
caches

Root
cache

Query (Miss)

F

Object data

Query
(Hit)

Alice’s request chain

Bob’s request chain

Figure 2.3: Distributed Caching Example.

1. Alice makes a request for a Web page.

2. The request is directed to the institutional
Web cache at node D.

3. As was illustrated in Figure 2.2 the re-
quest moves up the network, unfulfilled,
until it reaches the root Web cache, node
A.

4. Instead of referring the request to the Web
server, however, a miss notice is sent back
down the network until it arrives at node
D.

5. Node D requests the Web page data from
the Web server, stores a copy of it, and
completes the request to Alice.

6. An ‘Advertisment’ is now propagated
from node D up to node A, notifying all
of the nodes in the branch that node D
has a copy of the data for the Web page.

7. Next, Bob requests the same Web page as
Alice.

8. His request is directed to the institutional
Web cache at node F .

9. The request is referred from node F up
the hierarchy to node A, where a refer-
ence is found from Alice’s request.

10. A notice of a request hit, and the loca-
tion of the data, propagates back down
the branch to node F .

11. Node F negotiates directly with its sib-
ling, node D, and obtains the data to
complete Bob’s request.

12. At this point nodes D and F possess
copies of the Web page, and nodes A, B,
and C have references to it. If node E
gets a request for the Web page, then it
would find out from node B that the data
can be found at node D, from which it
can get the data.

19

Aside from the expense of a Web caching system, there are several disadvantages

of caching:

� While it has shown improved request times for popular documents, less popular

documents can result in a “long circuitous path of numerous failed checks” [40].

� In some cases, stale data may be provided to the user [40].

� Individual proxy nodes, in particular in the higher levels in a hierarchical sys-

tem, represent a bottleneck as well as a single point of failure [40].

� Web cache misses may increase access latency [36].

� By avoiding requests directly to the origin server, caching makes it more diffi-

cult for content providers to maintain metrics on there pages [40].

Cáceres et al. discuss that other factors not accounted for may oversimplify the

situation [13]. For example, low-level details such as Web cookies are shown in

trace-driven simulation to affect the cachability of recourses.

2.3 Modelling the World Wide Web

In order to narrow the scope to relate to our work, we have paid particular attention

to works that model Web page retrievals at the object-level, as this is an important

component of our model. In this section, we start with a review of models that

principally examine object-level WWW traffic patterns. This is then followed by

an overview of models that investigate file migration in a distributed file system,

including Web caching, and is the basis for our model.

We start our review into the nature of traffic in the WWW with [16], who created

a model of the pattern of traffic on a simulated network that attempts to replicate

patterns on a real network. In the model, they considered the interaction of system

20

components, including: HTTP, network protocol, browsers, and Web servers. As

well, they accounted for complex browsing patterns. For example, users intentionally

or accidentally opening multiple browsers, users abandoning pages, and the ability

of browsers to request multiple pages at once.

Work prior to [16] tended to use Web pages as the basic unit, whereas in contrast,

Choi and Limb use the Web-request, which they identify as a sequence of requests

that consist of multiple resources. The results of their paper showed that they were

able to generate synthetic traffic from the model and found that it corresponds well

with the trace data.

The work in [16] identifies two kinds of objects: a main object and objects that are

linked from the main object, called in-line objects. The data in the model is mapped

to alternating states: retrieving a Web-request (HTTP on), and a viewing period

(HTTP off). On-time is a function of the number of in-line objects, in-line inter-

arrival time, main-object size, in-line-object size, and a stall time (the tim between

TCP bursts). These states and the relationship of the model entities are shown

in Figure 2.4. The authors also collected Web-interaction trace data from Georgia

Tech campus for 24,000 client browsing sessions of 1,900 clients. They excluded

certain data that may have been affected by campus servers, and machine-generated

traffic. Trace data were are separated parsed into Web-requests, which identified

main objects and their associated in-line objects. Object classification was achieved

by examining its file extension, which was further backed up by examining its MIME

type.

To address the procedure and timing of Web page request patterns, we utilize the

ideas presented by [2]. Their model addresses the problem of users experiencing Web

browsing degradation as a result of slow response times due to the the increasing

volume of traffic. They identify a wide range of causes, including: network delay,

browser design, server overload or poor HTML page design. To analyze the situation,

21

Figure 2.4: Overview of Basic HTTP Model [16].

a structured timing model was presented to capture the total delay and methods for

measuring constituent parts of total delay.

The model represents the period of time from when a user requests a Uniform

Resource Locator (URL) to the resolution of all of it constituent parts (files, applets,

etc); this period is referred to as Closure Over the Full Resolution of a URL (CURL).

Figure 2.5 shows an example of a CURL. CURL assumes that two fundamental

standards associated with the WWW are HTML and HTTP, where HTML the

defines the structure of Web pages, and HTTP forms a client-server, request-response

model, and that all requests are handled successfully.

A CURL is generalized in three phases: (A) client-side HTML parse and request

generation, (B) server-side request processing, (C) client-side rendering time. Phase

(C) may result in further requests to the server. During a CURL, there are two types

of network transit times: NCS, the time taken for the communication phase between

the client and server; and, NSC, the time taken for the communication phase between

the server and client.

The model presented in [2] decomposes the factors in the request-response process

that contribute to the MRT. In particular, they conclude that network overhead is

not substantial and rendering content on the client side and server processing time

account for most of the wait [2]. While the paper is a bit dated, the work can provide

22

a relative basis for the input parameter values chosen in our model implementation,

and a comparison tool for model validation.

Figure 2.5: Example of a CURL [2].

NCS Client to server network transmission time.

NSC Server to client network transmission time.

Recognizing the rapid change in the nature of the WWW, [26] analyzed a signifi-

cant amount of real Web data, and presented a novel analysis technique that provides

insight into Web traffic patterns [26,27]. Using their results, they developed a Web

caching approach designed for low-bandwidth and resource-limited developing world

environments. These works are of particular interest as they provide specific data on

general Web page object types and their rates of occurrence in WWW while being

recent enough to be applicable to our work.

The data set utilized in [26] was large and detailed enough to provide insight into

dynamic user-side interactions, and content-based Web caching approaches. Previous

work by others focused on static Web pages, which does not require full content,

just access logs (as it typically used in trace-driven WWW traffic analysis). The

authors use five years of WWW traffic data (2006 to 2010) from the CoDeeN content

distribution network, a globally distributed proxy system spread over 187 countries,

23

seeing over 70,000 users per day. Their data set consisted of a sample of the month

of April for each year, isolating four countries: United States, Brazil, China, and

France. The overall data set represented 48 to 137 million requests, 689 to 1,903 GB

traffic, and 70 to 152 thousand users per month.

Ihm developed and employed their own analysis technique referred to as Stream-

Structure [26,27]. The input data that was analyzed was a temporally related stream

of HTTP objects, with no indication of their relationship to Web pages. The Stream-

Structure algorithm analyzes the objects within the data stream to identify groups of

related objects that correlate as a Web page request. The authors compare Stream-

Structure to two alternatives. The first was a time-based approach in which groups

of objects are considered to be from the same page request if the idle time between

objects is short enough, based on a predetermined threshold [7,30,37]. The other

technique was type-based in which an HTML object is considered to be the main

Web page object, and all subsequent non-HTML objects are assumed to be part of

the same request [16]. One problem that they identified is that client-side interaction

(such as in embedded code) can cause longer client-side idle times, thus leading to

inaccurate results in time-based approaches [26]. As well in the case of the type-based

approach, misclassified data can result in erroneously identifying a request that is

actually part of another request[26].

StreamStructure uses three stages to associate objects to Web pages: (1) grouping

of streams, (2) detecting main objects, and (3) identifying initial pages. The entities

and their relationships that result from this algorithm are described in Figure 2.6 In

grouping of streams, the algorithm relates objects that have the same HTTP referer

[sic] field to create groups of multiple independent streams. The referrer (misspelled

in the HTTP standard) is an HTTP field which contains the address of the originator

of the request [19]. An empty referrer field indicates a the root of a new stream.

In [26], Ihm assumes that the information gathered using this referrer field can be

24

relied on because it is enabled by default in most browsers being used at the time.

In the second stage, the main object is detected from the grouped streams iden-

tified in the first stage [26]. This uses a combination of previously mentioned type-

based and time-based approaches. Objects that are not identified as a main object

are then labeled as embedded objects and linked to the main object that preceded

them. Finally, in the last stage, the initial pages are identified from the main ob-

jects, which also include user-side interactions. This stage again uses a time-based

approach, but since the idle time includes domain name server (DNS) lookups which

can vary widely, a different approach is used. Instead, the occurrence of the event

DOMContentLoaded reported to a Google Analytics server indicates that the Web

page is successfully loaded, and from that point the time-based approach is used to

identify initial pages [26].

Figure 2.6: Streams, Web Pages, Initial Pages, Client-side Interactions, and Main /
Embedded Objects [26].

Using their StreamStructure algorithm to analyze their data, Ihm developed a

Web traffic model [26]. They divided all Web pages into three groups, categorized

by total page time as follows: short — less than 25th percentile, medium — 25th

to 75th percentile, and large — more than the 75th percentile. Of the many IANA

media types, they considered the following eight Web page objects: HTML, CSS,

XML, JavaScript, image, flv-video (Flash video), other-video, and octet. A summary

25

of their observations are shown in Table 2.1.

Total Page Request Median Number Additional

Time frequency (%) of Objects Observations

short 5 4 � consist mostly of HTML
� mainly related to search activ-

ities

medium 40 12 � have many images
� mixture of content between

small and large
� eg. news, blogging

long 55 30 � heavy client interaction
� higher percentage of video and

octet-stream bytes (indicative
of video watching and large file
downloads)

Table 2.1: Summary of Web Traffic Model Results [26].
(based on approximately 8.6× 106 requests from the US in 2010.)

In [26], Ihm went on to examine Web caching, with a focus on comparing object-

based to content-based caching. In object-based caching the whole object is cached,

which means that if the content remains unchanged but its URLs changes, it is

uncacheable. Content-based caching (also known as micro-caching), however, splits

an object into chunks and caches each chunk [26,41]. Content-based caching is

protocol independent. The authors found that content-based caching is more effective

than object-based caching. While hit rates between the two were similar, the byte

hit rate for content-based caching is around two times that of object-based caching.

When calculating ideal byte hit rate based on infinite cache storage, they also found

that object-based caching results in 27-37 %, which is in contrast to an actual byte

hit rate of 17-28 %.

Object cacheability was also discussed in [26]. To determine the cacheability of

objects, they used HTTP fields from their full data from 2010. Overall, about 20-

26

32 % of URLs were uncacheable, which represents roughly 22-28 % of total requests,

and 10-15 % of total bytes. HTML and JavaScript were found to be less cacheable,

which they assume is because they tend to be dynamically generated. Interestingly,

the authors noted some differences in the cacheability of some content types be-

tween countries, due to the regional popularity of some applications and browsing

behaviour.

The effect of various cache replacement policies with respect to types of Web re-

sources were examined in [21]. Examples of resources they considered include images,

text, video, which relate to our work. They used a workload trace of HTTP requests

from a cache research project (IRCACHE Web Caching project). The content-types

they considered were: applications, audio, images, text, and video, which they ana-

lyzed the request characteristics according to document size and content-type. One

notable assumption that they made with respect to our work is that they eliminated

requests that are dynamically generated as these are considered not cacheable. For

the purpose our work, we are most interested in their results as shown in Table 2.2.

We will see in Chapter 4, that with this data, we can establish a frame of reference

for our own object sizes.

App. Audio Images Text Video

Mean (Kbytes) 41 123 4 14 260

Median (Kbytes) 3 7 1 3 573

Std. Dev. (Kbytes) 761 948 21 104 974

Requests (%) 8.08 0.28 75.54 15.77 0.12

Bytes (%) 33.51 3.49 36.33 23.15 3.19

Distinct documents (%) 26.90 38.00 45.98 33.92 75.02

Table 2.2: Trace Characteristics by Content-type of Documents [21].

In [25], Hurley developed a model to investigate file migration in a distributed file

system. The distributed file system under study consisted of a collection of homoge-

27

neous file storage sites and a finite number of user workstations interconnected by a

high-speed LAN. Each storage site consists of a single processor, and is represented

as a single server queue. A file request is served by the storage site that contains the

file, whose location is predetermined. Requests are placed into the storage site queues

in a first-come first-served fashion. Service times are exponentially distributed. If

a storage site becomes congested, as indicated by a measure of queue length, a file

migration is initiated. The file i which has the highest possible gain (PGi for some

file i) is chosen for migration and it (along with corresponding requests) are moved

to the storage site with the smallest queue length.

File request popularity, which is a feature adopted in our work, was modelled

using a piecewise function to produce the request probability distribution, pi [25].

Two states were used to model file popularity, popular and normal, which affect

the level of variability in the file access intensities. A file in a popular state is

requested more frequently so it has a higher request probability. The ratio of request

probabilities of popular to normal files is v, and there are assumed to be M files, of

which Mp are popular files, and M −Mp are normal. Equation (2.1) presents the

dynamic version of request probabilities. The probability of requesting a page at

time t is pi(t).

pi(t) =


v

vMp(t)+(M−Mp(t))
if file i is in the popular state

1
vMp(t)+(M−Mp(t))

if file i is in the normal state

(2.1)

In addition to the probability of requesting a Web page, Hurley uses two types

of files in the model, potentially popular and conventional. Potentially popular files

transition from a normal to popular state at a rate of γ1, and from popular to normal

state at a rate of γ2. Conventional files always stay in the normal state. Potentially

normal files are represented as M0 ≤ M . Figure 2.7 displays this dynamic scenario

with its potentially popular and conventional files.

28

Figure 2.7: Relationship Between Dynamic File Reference Model Parameters [25].

The model has since been adapted to explore Web caching in the WWW [22,24].

In this work, Web caches are synonymous to the file storage sites in the original

research, and the files being migrated now represent Web pages. Several topics have

been successfully explored in these subsequent investigations, including distributed

and hierarchical Web caching architectures, partitioning, effects of dynamic content,

the effects of file size, and load balancing in Web caching [23,24].

2.4 Summary

We have presented an introduction to the history and functionality of the WWW.

This included a discussion of HTML and HTTP, which are both important for un-

derstanding the WWW. As well, an overview of Web caching was given, as this will

be used as an application for our model. Our overview of the WWW was then fol-

lowed by a review of five other models. Some of these models were conducted at

the object level, which is important to us in our own model. Much of that other

work relies on collecting trace data and applying a model to classify the nature of

the data [2,16,21,26]. However, in contrast, Hurley uses a queuing model to repre-

sent the interarrival of files [25]. In that queuing model, the basic unit of data is

29

individual files, whereas in our research (Chapter 3), we build upon [25] to develop

a model that has the Web page object as the basic unit of data.

30

Chapter 3

Model

3.1 Introduction

In this chapter, we present our User-Web Interaction Model that represents the pro-

cess of users interacting with the WWW to obtain Web pages. We use a queuing

model to capture the behaviour of the user requests that are sent to the Web servers

containing the Web pages, and the return of the requested pages. A novel feature of

our model is that Web pages are represented at the object-level. The main perfor-

mance metric in which we are interested is MRT: the time from when a user requests

a Web page until the Web page (and all of its objects) has been delivered. This

performance measure can influence a user’s experience substantially [17].

Our Web Page Request Access Pattern Model provides a facility to evaluate a

variety of parameters that affect performance which will allow us to generate a

multitude of scenarios. The reality of the WWW is that it is complex: it involves the

transmission of large and varied amount of informations via the Internet, through

a variety of devices spanning many regions, countries, and even into space. This

model attempts to capture much of this and allows for the relative comparison of

the performance of various system configurations.

31

The remainder of this chapter is organized as follows: in Section 3.2.1, we present

the User-Web Interaction Model, which captures the overall behaviour where users

submit requests for Web pages to Web servers, and then receive the desired Web

pages. This high-level model is comprised of three sub-models: the User-Request

Model (Section 3.2.2) which represents the set of users that make requests for Web

pages as well as how they select Web pages, the Server Model (Section 3.2.3) which

consists of a set of Web servers that respond to user requests, and the (Section 3.2.4)

which represents the Web pages in the system.

3.2 Model

3.2.1 User-Web Interaction Model

The high-level model for User-Web Interaction is shown in Figure 3.1 and represents

the total process of a user requesting a Web page from a server, and that server’s

subsequent response. To capture the behaviour of the users, servers, and Web pages,

the model in Figure 3.1 is comprised of three sub-models: User-Request Model, Server

Model, and Web Page Model. The User-Request Model manages the state of the users

and their requests. Requests are received and processed by Web servers within the

Server Model. The Web Page Model captures the Web pages in terms of their object

composition and location. The basis of the model is an M/M/K/N/N queuing

system; with K Web servers and N users [28].

The interaction of our three sub-models form the request-response process. This

process begins with the user selecting a Web page using the Web Page Selection

Model described in Section 3.2.2. The Web page request is transmitted to the Web

server that eventually supplies the requested Web page to the user. If the Web server

is currently busy servicing another user request, then the request is placed into a

wait queue; otherwise the request is serviced immediately. The time to service a

32

Web pages are
stored on servers

Users select
Web pages

Servers respond to user requests
according to the Mean Service Rate (µ)

Users send Web page requests
at a rate according to a Mean Think Time (z)

Web Page
Model

User-Request
Model

Server Model

Figure 3.1: User-Web Interaction Model.

request is based on many factors, including the composition of the Web page, the

number and size of the Web page objects, as well as their media type. Once the user

receives the response to their request, they cease interacting with the system until

their next request (this is referred to as the think time).

The timing of the request-response process for a single user is demonstrated

in Figure 3.2. This shows the user alternating between two states: thinking and

waiting. Each of these states have a corresponding duration, the think time (z) and

the reponse time. The think time is a parameter in our model. The reponse time is

the time from the user initiating the request until receiving the response; with the

MRT of all requests that occur in the system being our main performance measure.

Response time represents the sum of the transmission latency, the time in queue that

the request awaits processing, and the request processing time — which we refer to

as request service time (Ri).

Web servers can be in one of two states: idle or busy (see Figure 3.2). While a

server is idle it is waiting to receive a request. While busy, a server is processing a

request and can only process one at a time. If another request is received by the

server, it goes to the server’s wait queue. When a server becomes idle, we assume

that requests waiting in its queue are processed on a first-come-first-serve (FCFS)

basis.

33

R
espo

nse

Request

`

User state

Thinking

W

ai
tin

g

Transmission

P
ro

ce
ss

in
g

In Queue

Transmission

Server state

Request-Response P
rocessIdle

Bus
y

Time

Think
Time (z)

Response
time

R
eq

ue
st

S
er

vi
ce

 ti
m

e
(R
i)

Figure 3.2: Request-Response Timing Cycle

The think time controls the rate at which users request Web pages. A lower

think time leads to a greater load on the Web servers. When not in the system

waiting for a request to be served, a user is in a think state, which represents a user

processing a previously retrieved Web page. We assume that the think time for users

is independent and exponentially distributed, with a mean z. A user will not request

another Web page until they have completed their think state.

34

3.2.2 User-Request Model

The User-Request Model represents the process of a user selecting and requesting a

Web page. This sub-model consists of two main components: the User Set and the

Web Page Selection Model. The purpose of the User Set is to model the users in the

system and how they interact with the WWW. We use a finite population model

which incorporates the user think time in the request-response process as discussed

in Section 3.2.1 [6].

The Web Page Selection Model represents the mechanism by which users select

Web pages. Our model incorporates the File Reference Model developed in [25] and

shown in Figure 3.3, where the probability that a user selects a particular Web page

is not uniform, but instead dynamic.

The model uses a Web page popularity that varies according to a discrete Markov

Chain. With this approach, the M Web pages are assumed to be either in a popular

or normal state: where popular pages have a higher chance of being selected than

normal ones (by a factor of v). However, not all pages are able to be popular;

a subset of Web pages are assumed to be potentially popular (M0) and all others

are considered conventional (M −M0). This is done to achieve a higher coefficient

of variation, which is typical of a Web page request in the WWW environment

[3]. The potentially popular pages are assumed to alternate between normal and

popular states, whereas conventional Web pages remain in the normal state. The

rates at which potentially popular Web pages transition to popular is governed by an

exponentially distributed parameter γ1, and return to the normal state at a rate of

γ2. At any given time there are Mp(t) Web pages currently popular. The probability

of selecting a Web page, i, at time t, is represented by the equation for pi(t) shown

in Equation (3.1).

35

γ1γ2 Potentially
Popular
Web Pages

Popular

Normal

Normal

Requests

1
Conventional
Web Pages

M
M0

v
Web Page Set

Mp(t)

Legend

M number of Web pages

M0 number of potentially popular Web pages

Mp(t) number of Web pages currently popular

v popularity factor

γ1 normal-popular transition rate

γ2 popular-normal transition rate

Figure 3.3: Web Page Selection Model [25].

pi(t) =



v

vMp(t) + (M −Mp(t))
, if Web page i is in the popular state

1

vMp(t) + (M −Mp(t))
, if Web page i is in the normal state

(3.1)

3.2.3 Server Model

The set of Web servers in our model consist of one or more devices which store

the Web pages and service the requests. The role of each Web server is to process

requests and transmit the response back to the user (in the form of the Web page

and all of its individual objects).

36

Figure 3.4 presents the detail of our Server Model within the User-Web Inter-

action Model. When a request is received at a server, the server is marked busy.

We assume that Web servers can only process one request at a time. If a request is

received at a server that is busy, then the incoming request is placed in the server’s

wait queue (we assume FCFS, however, this discipline may be modified to suit the

desired investigation). Once a server completes a request, its status is set to idle,

and then it looks to the wait queue for the next request. If the wait queue is empty,

then the server sits idle waiting for the next request.

Server Model

Web pages are stored on
serversU

se
rs

 s
el

e
ct

W
eb

 p
ag

es

Servers respond to users requests

Users make Web page requests

· · ·

2

1

KWeb Page
Model

User-Request
Model

Figure 3.4: Web Page Request Model, Showing FCFS Web Server Queues.

The request service time (Ri), the main parameter of the Server Model, is the

time to process and retrieve Web page i and to transfer it to the user. It begins

when a Web server removes a request from its queue, and completes once the page

(and all its objects) is transfered to the user. The Web page size (Wi) influences the

request service time, as we assume that Web page size is equal to its transmission

time (τi). We show in Equation (3.2) that the Web page size is the sum of the object

sizes, where Web page i consists of a unique set of Qi objects, and each object has a

size Θij. The service time is assumed to be exponentially distributed with a mean of

37

µ−1τi (Equation (3.3)). Thus, the service time for a Web page is proportional to its

Page Size. The number of objects (Qi) and their object type is an important aspect

of our model, and one that can be varied as needed to suit the desired Web Access

Model.

τi = Wi =

Qi∑
j=1

Θij (3.2)

Ri = µ−1τi (3.3)

3.2.4 Web Page Model

The Web Page Model represents the totality of information that is requested and

delivered to the user. It is modelled as a collection of Web page objects that are

transmitted from the Web server to the user upon request. Each Web page object is

assumed to be transmitted independent of one another, but a Web page request is

not fulfilled until all objects that compose the Web page are received. Each Web page

is unique, and consists of the Web Page Object Set, which is determined according

to a Web Page Category.

Web Page Object Set

A Web page consists of a collection of one or more Web page objects, which we refer

to as the Web page object set. The composition of the object set is assumed to be

determined by both the number and type of objects. The distribution of the objects

and their object types is influenced by the Web page category, which is a parameter

of the Web page and will be discussed shortly.

Each object consists of two main attributes: object type and size. The Web Page

Object parameters are summarized in Table 3.1, which shows each object type with

their assumed size and examples. We have generalized the media types described

38

in [26] into the following object types : text, program script, CSS, image, audio, and

video. While this set is not exhaustive, these six Web page object categories account

for the majority of information being transferred via the WWW [26]. As shown in

Equation (3.3), object sizes directly effect the Web page size, and thus influences the

request service time (R). Size is categorized as either small, medium, or large.

Object Type Size Examples

text small HTML, XML, text

script small, medium JavaScript

css small CSS

image small, medium .png, .gif, jpg

audio small, medium .ogg, .mp3, .wmv

video medium, large .flv, .mov

Table 3.1: Example Web Page Object Parameters

Web Page Category

The next feature of each Web page is the Web page category which characterizes the

composition of Web pages as defined by our model and as presented to the user. The

Web page category provides a means to define the composition of Web page objects

within the model by specifying how objects are distributed based on their object

type, and size within the object set of each Web page. It is assumed that the page

category of a Web page affects the retrieval time of Web pages due to the potentially

inherent differences in Web page sizes and Web page object cacheability.

In our model, we specify three Web page categories: article, media, mosaic. These

choices are based on anecdotal observations, somewhat influenced by [26], while

other page categories and their compositions are certainly possible. The following

summarizes our three Web page categories:

article: Typically contains information about one specific topic. Its composition

39

is greatly influenced by a substantial amount of script and text and a large

number of images, but has very little audio or video information.

Examples: news articles, Wikipedia article pages.

media: While this page category is similar to articles, the main difference is that a

media page provides more audio and/or video. Media is dominated by large

amounts of video and/or audio information, and a moderate to large amount

of image information.

Examples: image collages such as Google Images, Flickr, Pinterest; image

pages, music and video streaming.

mosaic: Web pages that provides multiple links and summaries to other specific

topics. Their Page Sizes are primarily influenced by text and script, with some

image information and a moderate amount of audio and/or video.

Examples: search results such as Google Web search, Pinterest image search;

website main pages, social media threads, Wikipedia’s main page.

The breakdown of Web pages into Web page categories in our system is an input

parameter. Web pages in each page category are configured according to an input

table that describes the way in which objects are to be distributed. Figure 3.5 show

a graphical example of this configuration for M Web pages and their distribution

using the Web page categories. Some of the Web pages are shown to be potentially

popular, according to M0. Figure 3.5 displays one example Web page from each of

the three Web page categories to illustrate how the page category affects the object

distribution. Each example object is represented as a bar graph showing the number

of objects per object type, where the size and colour of the object indicates its size.

From Figure 3.5, we can observe that the Web page that is an article is dominated

by several text objects, each of a medium size, as well as several small images with

only a few of each of the other objects. In contrast to an article Web page, media Web

40

Article
(50%)

Web Page Set Object Set per Web Page

Text

Script

CSS

Image

Audio

Video

Text

Script

CSS

Image

Audio

Video

Text

Script

CSS

Image

Audio

Video

Mosaic
(30%)

Media
(20%)

M

Number of objects

- Small - Medium - LargeObject Size:- Potentially popular

Figure 3.5: Example Web Page Composition Based on Category.

pages are dominated by a moderate number of large audio and video objects. The

mosaic Web page, however, has several medium sized image objects and a moderate

number of other objects.

41

Chapter 4

Implementation and Results

4.1 Introduction

Based on our model presented in Chapter 3, we have developed a simulation to

test our model and conduct experiments. In this chapter, we will briefly discuss its

implementation, validation and verification, and consider various model parameters.

We evaluated our simulation in two ways: by conducting an execution trace, and by

comparing simulated to analytic results (this will be discussed in Section 4.1.1).

Our examination of model parameters will begin with Web page composition

and determine its relationship to our main parameter of interest, MRT. Several key

parameters contribute to the Web page composition including: Web page category,

object size, object type, as well as number of objects. With these parameters estab-

lished, we then identify and examine the parameters that affect simulation stability

and system load. As well, we investigate coefficient of variation of Web page request

interarrival times, including its effect on MRT. Finally, we present an experiment

that varies the ratio of Web page categories to observe its effect on MRT.

We use a discrete event simulation (DES) approach to implement our model.

DES is a technique by which events are managed at discrete time units. In the

42

simulation, time is captured by a global clock which is advanced each time an event

is processed[6]. Between each event, the status of the system remains unchanged.

Events are generated randomly and added to a Future Events List (FEL) that is

ordered by time such that next available event has the lowest time. A more in-depth

discussion of the simulation is provided in the Simulation Implementation Overview

(Appendix A).

4.1.1 Validation and Verification of the Model

To verify that our simulation was implemented correctly, we examined detailed sam-

ple output data from an execution trace. The parameters for this trace were chosen

to permit a manual review of the data to be accomplished in a reasonable amount

of time. For this trace, we used four Web servers, 100 users, 100 Web pages, and a

simulation length of 200. We followed events and reviewed the status of each Web

page request. The focus during this review was to ensure that each request went

to the correct server, verified timings including request service time, and monitored

that that Web server queues were correct. Through this trace, we verified that the

Web page request chain was fulfilled correctly.

In addition to the execution trace, we also compared our simulation results to

analytic results. This was accomplished by running our simulation as a M/M/1//N

queuing system. We used one Web server with a think time of 100, the number of

Web pages set to 100, and zero potentially popular Web pages. In order to achieve

a mean service rate of 1, we used a single Web page category and single Web page

object media type that has a size of 1. Results of this experiment are shown in

Table 4.1 and do establish that the scaled-down version of our simulation model is

correct as our simulated mean response time does seem to match that computed

from analytical model (with a 95 % confidence interval).

43

N
Simulated

Analytic Mean

Mean 95 % Confidence Interval

10 1.10 [1.10, 1.10] 1.10

25 1.31 [1.30, 1.31] 1.31

50 1.90 [1.89, 1.90] 1.90

75 3.30 [3.30, 3.30] 3.31

100 8.18 [8.17, 8.19] 8.19

Table 4.1: Comparison of Simulation MRT versus Analytic MRT for an M/M/1//N
System for Various Values of N .

K = 1, µ = 1, z = 100, M = 100, M0 = 0

4.2 Model Parameters

4.2.1 Composition of the Web Page Set

The Web Page Set consists of several parameters that affect the performance of our

system, in particular MRT. We refer to the collection of parameters that determine

the make up of the Web Page Set as the Composition of the Web Page Set. Ultimately

our goal here is to establish the sizes of all Web pages in the system, which vary

according to Web page categories. There are several model parameters that influence

the Web page size, which we present here.

Recall that in Chapter 3.2 we introduced our Server and Web Page models.

In these models we described the parameters that compose the Web Page Set.

Figure 4.1 provides a visual summary of the relationship between these parameters.

The Web Page Set consists of M Web pages, where each Web page has a composi-

tion that follows one of our three Web page categories: article, mosaic, media. The

number of Web pages of each category in our Web Page Set is broken down by the

Ratio of Web Pages per Web Page Category. Each Web page, i, has a Web Page

Object Set, which consists of Qi objects of various types and sizes. The object types

and sizes, as well as the quantity for a given Web page, are determined by the Web

44

page category. The sum of the object sizes in the Object Set determines the size of

each Web page (Wi).

text script css image audio video

Category:

Ratio of Web pages per
category:

The Web Page Set consists
of M Web pages:

The number of objects of an
object type and their size is
according the Web page
category:

Web Page i consists of Qi

objects:

Each category has kM Web
pages:

article mosaic media

30% 40% 30%

Figure 4.1: Visual Summary of the Composition of the Web Page Set.

The Ratio of Web Pages per Category describes how many Web pages of each

category there will be in the Web Page Set. Ratios are expressed as a percentage of

M , and are expected to be greater than 0 %. We now introduce the term kcategory to

be the proportion that a category represents in the Ratio of Web Pages per Category.

Thus, there are kM Web pages per category.

We next introduce the concept of Web Page Category Base Scenario to be the

basis for establishing other model parameters in this section. It has the following

ratio of Web pages per category: karticle = 30 %, kmosaic = 40 %, and kmedia = 30 %.

The values for the Base Scenario were estimated to result in approximately the

middle of the range of possible mean Web page size for all requests. Later in this

chapter, we will investigate the effect that the Ratio of Web Pages per Category has

on MRT.

45

As stated earlier, the main performance measure of interest in our research is

MRT, which we assume to be proportional to the request service time. Since request

service time is proportional to Web page size (Equation (3.3)), we can conclude that

Web page size is proportional to MRT. Thus, we can then predict the effect that

Ratio of Web Pages per Category has on MRT by observing the Mean Web Page

Size for All Requests (W). This is an output value of the simulation, and is the

sum of all requested Web page sizes divided by the number of requests. We can

use Equation (4.1) to estimate the Expected Mean Web Page Size for All Requests

(E
(
W
)
).

E
(
W
)

= karticleWarticle + kmosaicWmosaic + kmediaWmedia (4.1)

The Composition of the Web Page Object Set is important as it establishes the

size of each Web page. Consider Table 3.1, which lists the Web page objects in our

model. We expand this table to represent our complete Composition of the Web Page

Object Set, which now includes the Web page categories and their associated Web

page object media types. Each category and object type has a categorical object

size, and a number of objects. This updated table representing Composition of the

Web Page Object Set is shown in Table 4.2. We continue our discussion by laying

out criteria to establish values we used to complete Table 4.2.

We begin by establishing the categorical Object Sizes (Θ) for each object type.

The Object Sizes given in Table 4.2 are influenced by the percentage of bytes per

page type described in [26], combined with an anecdotal representation of a Web

page in each category. The Composition of the Web Page Object Set attempts to

generalize the various Web Page Object Media Types of real world objects. Consider

for example, video which represents a large range of data sizes with many consider-

ations, such as: video length, quality, and format. In our model, we have captured

this range of sizes with three categories: small (Θsmall), medium (Θmedium), and large

46

Category Object Type Θ Q

Article text small 25

script small 20

css small 5

image small 25

audio small 5

video — —

Mosaic text small 60

script medium 10

css small 5

image small 60

audio medium 2

video medium 1

Media text small 20

script small 15

css small 5

image medium 15

audio medium 5

video large 3

Table 4.2: Composition of the Web Page Object Set.

47

(Θlarge). In our simulation, we assigned a value for each Object Size.

We assume that these Object Sizes are fixed in our model with Θsmall = 1, and

Θlarge = 100 (Θmedium will be discussed in the following paragraph). As we are only

interested in the relative effect of object sizes, we do not attempt to correlate them

to bytes or octets. Thus, we assume the small object size (Θsmall = 1) to be the base

unit for all measures of data size in our model.

In order to define the value for the Medium Object Size (Θmedium) we looked to

previous research. Figure 4.2 summarizes the mean document sizes from [21] (refer

to Table 2.2 in Chapter 2), in which the document sizes have been scaled to our small

and large Object Sizes (between 1 and 100) and sorted from smallest to largest. By

choosing the median of the document sizes (which is Application and equal to 14.3) as

our Medium Object Size, we approximate the shape of the graph. We can therefore

set Θmedium = 15. The resulting three Object Sizes have been overlaid on Figure 4.2

as dashed lines to show their relative sizes.

Images Text Appli-
cation

Audio Video
Θsmall

Θmedium

Θlarge

Document Type

0

20

40

60

80

100

S
ca

le
d
 D

o
cu

m
e
n
t

S
iz

e

Figure 4.2: Document Size with Respect to Document Type (based on [21], where
the document sizes have been scaled to between 1 and 100).

48

Web page categories are a key feature of our model, as they allow us to character-

ize the effect that different compositions of Web pages have on MRT. Thus, the size

per Web page in each category should be sufficiently different from those of other

categories as to impact the MRT when the Ratio of Web Pages per Category varies.

While examining Web traffic patterns in [26], the authors modelled Web pages as

being short, medium, or long in terms of total page load times. They observed that

medium pages took 3 times longer than short pages, and long pages took 6 times

longer than short pages.

We apply their observations of short, medium, and long pages to our Web page

categories (article, media, mosaic) in how they affect MRT. This provides a basis for

us to establish our differences in mean Web page size between categories. However,

to exaggerate this effect we, used higher multipliers (4 and 8) than those observed

in [26]. Thus, using Warticle as the basis, we set the approximate Web page size per

category to be:

Wmosaic ≈ 4Warticle (4.2)

Wmedia ≈ 8Warticle

The absolute value of Warticle is not important as again we are only concerned with

the relative size differences between the Web page categories.

Our last task in establishing the Composition of the Web Page Object Set is to

determine the Number of Objects that a Web page contains. For this task we use

Equation (4.2) as a guide. The Number of Objects is an important consideration for

this research because we will be applying our model in Chapter 5, by introducing

object-level Web caching. We assume that it is important for Web pages to have a

sufficient Number of Objects available for caching. To accomplish this, we introduce

one additional assumption that the average Number of Objects per Web page is

49

approximately 100 [4]. With these criteria in mind, and influenced by [26], we arrive

at the Number of Web Page Objects (Q) that are shown in Table 4.2.

Based on Table 4.2, Table 4.3 shows the number of objects and the Web page

size for each Web page according to their category. Finally, Figure 4.3 provides a

visual summary of the data from Table 4.3.

The number of objects across our three categories (80, 138, and 63) have an

average of 94, which we feel is reasonable, as it is near our goal of 100. The resulting

size of each Web page corresponds to the size ratios determined by Equation (4.2),

that is:

Warticle = 80

Wmosaic = 320 = 4.0Warticle

Wmedia = 640 = 8.0Warticle

(recall that all size units are in terms of Θsmall = 1). Therefore, we will use the values

from Table 4.2 for the object composition for all remaining experiments.

Category Qi Wi

Article 80 80

Mosaic 138 320

Media 63 640

Table 4.3: Number of Web Page Objects and Web Page Size for each Web page
category.

4.2.2 System Stability

The goal of examining system stability is to establish a simulation length which pro-

vides stable results (not affected by the transient period). We assume that when the

50

Article Mosaic Media

Web Page Category

0

200

400

600

0

40

80

120

Wi
Qi

W
e
b

 P
a
g

e
 S

iz
e
 (
W

i)

N
u
m

b
e
r

o
f

O
b
je

ct
s

(Q
i)

Figure 4.3: Summary of Web Page Composition.

performance measure (such as coefficient of variation) converges with the expected

value, the simulation has reached equilibrium.

In Figure 4.4, we plot the measured CV value to an expected CV over various

simulation lengths for K = 5 and K = 10 Web servers. These two scenarios appear

to converge at a simulation length of around 30 × 106. Thus, going forward, we

assume a reliable value of simulation length for experiments to be 80× 106.

4.2.3 Coefficient of Variation of Web Page Request Interar-

rival Time

The coefficient of variation of Web page request interarrival time (CV) is a metric we

use for characterizing the Web page request process (coefficient of variations greater

than three are common [25]). The parameters we use to control the coefficient of

variation are: the number of potentially popular Web pages (M0), the popularity

transition rates (γ1 and γ2), and the popularity factor (v). For the number of poten-

tially popular Web pages (M0), we assume M0 = 0.1M (10 % of files are potentially

51

0 20 40 60 80 100

Simulation Length (x106)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

C
V

Expected CV
Measured CV, K = 5
Measured CV, K = 10

Figure 4.4: Effect of Simulation Length on Coefficient of Variation of Web Page
Request Interarrival Time (CV).
v = 90, ρ ≈ 85 % (K = 5, N = 480, z = 35,000, Web Page Category Base Scenario)

popular) [25]. Through experimentation, we found that the popularity transition

rates γ1 = γ2 = 200,000 seem to achieve a range of CV from 1-5.

To determine the popularity factor (v), we examined the effect that varying v has

on the coefficient of variation; these results are shown in Figure 4.5. We can see in

Figure 4.5 that CV increases with respect to v, with little variation. As v increases

CV begins to level off, which is expected [25].

Finally, Figure 4.6 shows the effect that the coefficient of variation has on MRT.

This graph shows that MRT seems to gradually increase linearly as CV increases.

The variation in MRT also increases with CV as can be seen in the anticipated

increase in the confidence interval (95 %) [25]. The reduced variation after CV = 4

52

0 100 200 300 400

Popularity Factor (v)

0

1

2

3

4

5

6

C
V

Figure 4.5: The Effect of Popularity Factor (v) on CV.
K = 5, M = 10,000, M0 = 1,000, γ1 = γ2 = 200,000,

ρ ≈ 87 % (K = 5, N = 500, z = 35,000, Web Page Category Base Scenario)

seems to follow the leveling that was shown in Figure 4.5, which makes sense as the

CV levels off so, too, would MRT variation. In experiments going forward, we will

maintain v = 90 to keep CV ≈ 3.

53

1 2 3 4 5 6

CV

0

1000

2000

3000

4000

5000

6000

M
R

T

Figure 4.6: The Effect of CV on MRT.
K = 5, M = 10,000, M0 = 1,000, γ1 = γ2 = 200,000,

ρ ≈ 87 % (K = 5, N = 500, z = 35,000, Web Page Category Base Scenario)

54

4.2.4 System Load

We define system load (ρ) to be the mean observed utilization of all servers over

the duration of the simulation. It is influenced by several parameters, most notably:

number of users (N), mean Web page size for all requests (W), number of servers

(K), and coefficient of variation (CV).

In Figure 4.7, we examine how the system load varies with the number of users

and the number of servers (where K = {1, 5, 10}), with a constant Mean Web Page

Size for All Requests (determined by Web Page Category Base Scenario). We see

that as the K increases, N must increase to achieve equivalent ρ, and for all servers

system load increases with N . In all three Web server scenarios, there is a distinct

leveling off at higher system loads, where the system load transitions from a high

rate of change to a lower one until ρ = 100 %. These results generally follow expected

ones [28].

Figure 4.8 highlights system load versus the number of users and is shown in

Figure 4.7 for lower values of N . We can see that for all three servers the rate of

system load increases nearly linearly until the change points mentioned above, at

which point the change in system load transitions to a considerably lower rate. As

well as a reduced rate of system load, we can see a notable amount of variation (this

was not as evident in Figure 4.7 due to different sample periods). The results agree

with expected results [28].

55

1 10 100 1000 10000
0%

20%

40%

60%

80%

100%

S
y
te

m
 L

o
a
d

 (
ρ)

Number of Users (N)

(a) K = 1

10 100 1000 10000 100000
0%

20%

40%

60%

80%

100%

Number of Users (N)

S
y
te

m
 L

o
a
d

 (
ρ)

(b) K = 5

10 100 1000 10000 100000 1000000
0%

20%

40%

60%

80%

100%

Number of Users (N)

S
y
te

m
 L

o
a
d

 (
ρ)

(c) K = 10

Figure 4.7: Varying System Load with Number of Users.
M = 10,000, M0 = 1,000, CV ≈ 3, Web Page Category Base Scenario.

56

0 500 1000 1500 2000
0%

20%

40%

60%

80%

100%

K = 1
K = 5
K = 10

Number of Users (N)

S
y
te

m
 L

o
a
d

 (
ρ)

Figure 4.8: Varying System Load with Number of Users, Highlighting Results for
N < 2000.

M = 10,000, M0 = 1,000, CV ≈ 3, Web Page Category Base Scenario.

57

We continue our investigation of system load in Figure 4.9, where we observe

the effect of varying the number of users on MRT. Lower values of N have minimal

effect on MRT. However, as N continues to increase, the effect on MRT transitions

to a higher rate of change. This transition corresponds to approximately the same

points where the change in slope levels off in Figure 4.7. After this, the rate of

change in MRT increases linearly until system load approaches 100 %. It is evident

in Figure 4.9 that increasing K reduces the MRT.

0 500 1000 1500 2000
0

20000

40000

60000

80000

100000

M
R

T

K = 1
K = 5
K = 10

Number of Users (N)

Figure 4.9: Effect of Number of Users on MRT.
M = 10,000, M0 = 1,000, K = 5, CV ≈ 3, Web Page Category Base Scenario.

58

4.3 Varying Web Page Category

As was mentioned in Section 4.2, our analysis of Web page categories is a key feature

of our model as it characterizes the effect that different compositions of Web pages

have on MRT. In this section, we present results of varying the Ratio of Web Pages

per Web Page Category on MRT. As well, we develop two additional Web page

category scenarios (in addition to our Web Page Category Base Scenario) to use in

experiments in Chapter 5.

Table 4.4 shows the thirty-six Web Page Category Ratio Test Scenarios that we

have developed, which are made up of permutations of Ratio of Web Pages per Web

Page Category in increments of 10 %, starting at 10 %. Figure 4.10 presents a graph

of the results of the various test scenarios on Mean Web Page Size for All Requests

(W). We can see a general trend where, with low ratios of Article Web Pages, W

tends to be high, being dominated by the larger Mosaic and Media Web Pages.

Conversely, with higher ratios of Article Web Pages, Mosaic and Media Web Pages

tend to contribute less to W . This makes sense since the relative difference in Web

page size has Mosaic and Media Web Pages 4 and 8 times larger than Article Web

Pages.

The Mean Web Page Size for our Base Scenario is shown in Figure 4.10, and has

a value of 344.7. This puts it roughly in the middle of the minimum and maximum

Mean Web Page Sizes (158 and 554). This confirms our goal to have the Mean Web

Page Size for our Base Scenario be near the middle range of W . As well, using

Equation (4.1), we can compare this value to the Expected Mean Web Page Size for

All Requests of E
(
W
)

= 344. Since the mean value nearly matches our measured

value, it helps to verify our implementation of Web page categories.

59

Scenario karticle kmosaic kmedia

1 10 10 80

2 10 20 70

3 10 30 60

4 10 40 50

5 10 50 40

6 10 60 30

7 10 70 20

8 10 80 10

9 20 10 70

10 20 20 60

11 20 30 50

12 20 40 40

13 20 50 30

14 20 60 20

15 20 70 10

16 30 10 60

17 30 20 50

18 30 30 40

Scenario karticle kmosaic kmedia

19 30 40 30

20 30 50 20

21 30 60 10

22 40 10 50

23 40 20 40

24 40 30 30

25 40 40 20

26 40 50 10

27 50 10 40

28 50 20 30

29 50 30 20

30 50 40 10

31 60 10 30

32 60 20 20

33 60 30 10

34 70 10 20

35 70 20 10

36 80 10 10

Table 4.4: Web Page Category Ratio Test Scenarios.

60

5 10 15 20 25 30 35
Web Page Category Ratio Test Scenario

0

100

200

300

400

500

600

1

Base Scenario

M
e
a
n
 W

e
b

 P
a
g

e
 S

iz
e
 (
W

)

Figure 4.10: Effect of Varying the Ratio of Web Pages per Web Page Category has
on the Mean Web Page Size for All Requests.

61

Next we examine how the Mean Web Page Size affects MRT and system load.

These results are shown in Figure 4.11. We can observe that MRT increases non-

linearly as W increases, and at higher values of W , ρ flattens out around ρ = 90 %.

This is inline with the results we saw in Section 4.2.4. The system load for our Base

Scenario is 85.3 %. This is not a coincidence, as we have chosen parameters so that

Base Scenario results in ρ ≈ 85 %.

100 200 300 400 500 600
0

6000

12000

18000

24000

30000

M
R

T

0%

20%

40%

60%

80%

100%

MRTρ

Mean Web Page Size (W)
S
y
te

m
 L

o
a
d
 (
ρ)

Figure 4.11: The Effect that Mean Web Page Size has on MRT and System Load.
M = 10,000, M0 = 1,000, CV ≈ 3, K = 5, N = 480, z = 35,000

Of particular interest for the experiments in Chapter 5, is that we can now choose

three Final Web Page Category Ratio Test Scenarios to represent the range of Web

page category permutations. Along with our Base Scenario, we have added Low and

High scenarios. These three Test Scenarios are summarized in Table 4.5.

We can see the effect that these Test Scenarios have on MRT in Figure 4.12, in

62

which MRT increases as W increases. This makes sense since W is proportional to

request service time. The relationship between W and MRT is non-linear, but we

can see that the differences between the values of the MRT and the values of W are

pronounced. One of our goals in Section 4.2.1 was that each Web page category be

different enough to impact MRT. We assume that these differences meet this goal.

Scenario karticle kmosaic kmedia E
(
W
)

Measured W

Low 70 10 20 216 213.5

Base 30 40 30 344 344.7

High 10 30 60 488 487.1

Table 4.5: Summary of Final Web Page Category Ratio Test Scenario.

200 300 400 500
0

4000

8000

12000

16000

M
R

T

High = (10%, 30%, 60%)

Base = (30%, 40%, 30%)

Low = (70%, 10%, 20%)

Mean Web Page Size (W)

Figure 4.12: The Effect of Our Final Web Page Category Ratio Test Scenario on
MRT.

K = 5, N =, z = 35,000, CV ≈ 3, ρLow ≈ 57 %, ρBase ≈ 85 %, ρHigh ≈ 93 %

63

4.4 Summary

In this chapter, we implemented our Web Page Request Access Pattern Model us-

ing DES, verified it using manual trace analysis, and validated our simulation using

analytical results. We established and evaluated system parameters, which included

parameters that determine the composition of the Web page set, CV, and the system

load. We demonstrated that there is a relationship between MRT and the compo-

sition of the Web Page Set by examining the effect that Web page categories have

on MRT for various Ratios of Web Pages per Web Page Category. Based on those

results, we developed three Web Page Category Ratio Test Scenarios (Base, Low,

and High) that we will use for experiments with Web Caching in Chapter 5.

64

Chapter 5

Web Caching Model and Results

5.1 Introduction

Having developed our Web Page Request Access Pattern Model in Chapter 3, and

examined its baseline performance in Chapter 4, we now apply it by incorporating

it into an application that involves Web access. The application we chose is Web

caching which was discussed in Chapter 2. Web caching is a system that is intended

to improve user experience by reducing response times, improving availability, low-

ering server load, and reducing bandwidth. Implementing a Web caching system is a

complex and expensive endeavor, but with our model, one can evaluate various Web

caching strategies with relatively little physical investment.

5.2 Model

We have adapted our model by replacing the Web server sub-model with an expanded

version that includes object-level Web caching, the results of which are shown in

Figure 5.1. The expanded server model (Web caching) consists of a homogeneous

set of C Web caches, where each cache maintains a list of objects that it stores.

Requests for Web page i are decomposed into a sequence of requests for each object

65

in the Web page. These requests are received by the Web caches, eventually returning

the required objects to the user.

Web pages are
stored on servers

Users select
Web pages

Servers respond to user requests

Web Page
Model

Users send Web
page requestsUser-Request

Model

Server Model

Objects are retrieved
from the Web Servers

if not found in Web caches

Web Caches

· · ·

2

1

C

Web Servers

Figure 5.1: Web Page Request Model with Caching Model.

This expanded server model is based on the assumption that an object that is

cached has a transmission time that is smaller than if it were retrieved from the

origin server. We introduce a new parameter, the Cached Object Access Factor (δ),

where δ ≤ 1, that allows us to modify the transmission latency for cached objects.

66

Recall from Chapter 3, Equation (3.3), that request service time (Ri) is proportional

to the Web page transmission time (τi). This, in turn, is proportional to the Web

page size. Equation (5.1) expands on Equation (3.2) to include the Cached Object

Access Factor for objects that are cached. For Ri, Equation (3.3) remains as it was

defined in Chapter 3.

τi =

Qi∑
j=1


Θij, if object is in not cache,

δΘij, if object is in cache.

(5.1)

In the WWW, the cacheability of objects can vary greatly, from being easily

cacheable to not cacheable at all, which is influenced by a myriad of considerations

[1,23,26,36,40]. We capture this behavior of cacheability with a parameter, the Web

page object cacheability (ϕ). This parameter represents the probability that an object

is copied to cache after being requested, and is based on its Web page category

and object type. Our system can have multiple Web page object cacheabilities —

potentially one for every combination of Web page category and object type. To

simplify, however, we propose three object cacheabilities levels: not cacheable (ϕnot),

less cacheable (ϕless), and more cacheable (ϕmore). We have expanded Table 3.1 by

adding the Web page object cacheabilities (see Table 5.1).

Based on observations in [26], we assume the values of our object cacheabilities

to be as follows: ϕnot = 0 %, ϕless = 25 %, and ϕmore = 75 %. Also, since our inter-

pretation of the text object type incorporates several Web page object media types

that represent dynamic objects, we assume that text objects are not cacheable. This

implies that for a less cacheable object, when it is not already cached and has to

be retrieved from the origin server, there is a 25 % chance that it will be copied to

cache. Conversely, there is a 75 % chance of caching the object if it is in the more

cacheable category.

Our Web cache servers are assumed to have a Cache Capacity which is represented

67

Object Type Size Cacheability Examples

text small not cacheable HTML, XML, text

script small, medium less cacheable JavaScript

css small more cacheable CSS

image small, medium more cacheable .png, .gif, jpg

audio small, medium more cacheable .ogg, .mp3, .wmv

video medium, large more cacheable .flv, .mov

Table 5.1: Example Web Page Object Parameters

by the parameter κ. When the sum of the cached object sizes in a server reaches the

Cache Capacity, a cache replacement policy is utilized to determine which object or

objects are removed to make room for an incoming object. For our cache replacement

policy, we chose to implement an LRU algorithm [1]. To accomplish this, we track at

which time objects are last accessed, and remove the objects with the oldest reference

time, until there is enough room for the incoming object.

We summarize our Web caching process in Figure 5.2, which starts with a request

for Web page i and ends with its transmission time (τi). This process examines the

cache status of all the objects in the Web page. For objects that have been cached,

the Web page transmission time includes the Cached Object Access Factor (δ) along

with the sizes (Θij). Otherwise, the size alone is added to the Web page transmission

time. If an object is not already cached, it is considered for caching according to

its Web page object cacheability. Before objects are copied to the cache, the cache

replacement policy is used if there is not enough room in the Web cache server.

68

Web page
request

Web Page
Transmission

Time

τi = 0

Object j
cached?

τi = τi + Θijτi = τi + δΘij

Get Object Set
for Web page i

Copy object
to cache

All objects
processed?

Cache
objecta?

Cache
Replacement

Policy
Yes

No

NoYes

Yes

No

a Accoding to Web page object cacheability (φ)

Figure 5.2: Process to Calculate Web Page Transmission Time with Object Level
Web Caching.

69

5.3 Model Parameters

In Chapter 4, we explored the parameters from our base model. Many of these

parameters still apply to our expanded server model. For example, since CV is a

function of the Web Page Selection Model (which we have not altered), we assume

the results from Chapter 4 will still apply to this model. However, some other

parameters need to be reexamined, such as system stability and system load. With

the introduction of new parameters, we need to look at their effect as well. This

includes an examination of the effect of Cache Capacity (κ) and Cached Object

Access Factor (δ).

It is interesting to note that, with the additional complexity that Web caching has

added to our model, we have found that the run-time performance of the simulation

is much slower than that of the base simulation. This can, in large part, be attributed

to the added complexity of managing the cached content of the Web cache servers.

For example, each object’s last access time must be maintained and ordered so that

the oldest objects can be removed by the LRU algorithm.

5.3.1 Composition of the Web Page Set

The parameters that determine the composition of the Web page set, which we

established in Chapter 4.2.1, will remain constant in our expanded server model.

In particular, this includes the Composition of the Web Page Object Set defined in

Table 4.2. As such, the number and size of the objects remain unchanged. We will

continue to consider the small object size (Θsmall = 1) to be the base unit for all

measures of data size in our model. In Table 5.2 we have expanded Table 4.2 to

include Web Page Object Cacheability (ϕ).

At the end of Chapter 4, we explored how varying the ratio of Web pages per Web

page category affects the mean Web page size for all requests (W), and consequently

70

Category Object Type Θ Q ϕ

Article text small 25 not

script small 20 less

css small 5 more

image small 25 more

audio small 5 more

video — — —

Mosaic text small 60 not

script medium 10 less

css small 5 more

image small 60 more

audio medium 2 more

video medium 1 more

Media text small 20 not

script small 15 less

css small 5 more

image medium 15 more

audio medium 5 more

video large 3 more

Table 5.2: Composition of the Web Page Object Set with Web Caching.

71

the MRT. Later in this chapter, we will re-examine the effect of varying Ratios of Web

Pages per Category in this new environment of Web caching using the test scenarios:

Base, Low, and High. The Web Page Category Base Scenario that we defined in

Chapter 4 will continue to be used in this chapter. As a reminder, for the Web

Page Category Base Scenario we chose the Ratios of Web Pages per Category to be:

karticle = 30 %, kmosaic = 40 %, and kmedia = 30 %. This ratio resulted in W ≈ 344 and

ρ ≈ 85 % with K = 5. Thus, for consistency, we will continue to use the Web Page

Category Base Scenario with C = 5 when examining parameters in our expanded

server model.

5.3.2 System Stability

To determine simulation stability in Chapter 4, we considered the effect that simu-

lation length had on CV. For the Web caching environment, we examined the effect

of simulation length on the cache hit rate (HR) as well as CV. HR refers to the

ratio of the number of Web page objects retrieved from a cache to the total number

requested. Figure 5.3 shows the HR and CV for Web caching assuming an infinite

Cache Capacity (κ), a Cached Object Access Factor (δ) of 0.6, and C = 5. We ob-

serve that while CV converges quickly as it did without Web caching, it takes much

longer for HR to reach equilibrium. This longer time is due the time it takes for

the cacheable objects in the system to fill the caches. There is an initial increase in

HR, but after around 50× 106 the change is slight, only to meet the expected HR at

approximately 140 × 106. Thus, we assume that the system is stable at 150 × 106,

which is the simulation length that we will use for all of our experiments with Web

caching.

72

0 50 100 150 200

Simulation Length (x106)

0%

20%

40%

60%

80%

100%

H
R

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

C
V

HR
CV

Expected HR

Figure 5.3: Effect of HR on System Stability.
δ = 0.6, κ =∞, δ = 0.6, ρ ≈ 90 % (C = 5, N = 770, z = 35,000,

Web Page Category Base Scenario)

5.3.3 Cached Object Access Factor

The Cached Object Access Factor (δ) represents the reduction by which the trans-

mission time of a cached object is improved. We restrict it to a practical range of

δ ≤ 1 (although theoretically δ can be greater than 1, this would represent a penalty

for Web caching.) As δ decreases we expect that MRT will decrease because we are

reducing the total time to satisfy each cached Web page request. We do observe

this effect in Figure 5.4 where we examine the effects of δ on MRT and system load

(ρ). We also see that system load (ρ) decreases as δ decreases. It is interesting to

note that, when δ = 1.0, the system load is approximately 85 % and MRT is approx-

imately 3,878. This is consistent with the results with no Web caching that were

73

shown in Figure 4.12 (for the Web Page Category Base Scenario when ρ ≈ 85 %).

As we continue our experiments with our expanded server model, we will focus

on one value for δ. In [29] they found that, at best, caching and prefetching together

reduced total latency by 60 %, and so, we will use δ = 0.6.

0.0 0.2 0.4 0.6 0.8 1.0

Cached Object Access Factor (δ)
0

800

1600

2400

3200

4000

M
R

T

0%

20%

40%

60%

80%

100%

S
y
st

e
m

 L
o
a
d

 (
ρ)

MRTρ

Figure 5.4: Effect of Cached Object Access Factor on MRT.
C = 5, κ =∞, HR ≈ 60 %, N = 480, z = 35,000,

Web Page Category Base Scenario

5.3.4 System Load

Due to the substantial increase in simulation run-time for our expanded server

model, we were unable to get a comprehensive data set for system load as we did in

Section 4.2.4. Instead we focus on the following three load scenarios: low ≈ 50 %,

medium ≈ 85 %, and high ≈ 100 %, the results of which are shown in Figure 5.5,

74

where we plot number of users (N) against system load (ρ) for three values of the

number of Web caches (C).

When compared to the results in Section 4.2.4, we can see that system load

follows the same general pattern. As the number of users increases, the system load

increases quickly until shortly after 85 %, when the rate of change of system load

decreases slowly as it approaches 100 %. With our expanded server model, however,

the number of required users is higher for equivalent system loads without caching.

In the case of ρ ≈ 85 % with C = 5 cache servers, the number of users is 720, as

opposed to with no caching, which is 480. As we saw in the previous section Web

caching reduces the system load, so it make sense that the number of users is greater

to maintain equivalent system loads. For the remainder of our experiments in this

chapter, we will use C = 5 and N = 720 to aim for an approximate system load of

85 %.

5.3.5 Cache Capacity

Next we examine the Cache Capacity parameter (κ), which is the maximum amount

of storage space that a Web cache server has available to cache objects. The units

for capacity are in terms of small object size (Θsmall = 1). If the amount of data

currently stored in a cache is 100 % of the Cache Capacity then it will not accept

more objects. Cache capacity has a range of [0,∞) (where 0 means that Web caching

does not occur, and ∞ means that everything is cached).

In addition to expressing Cache Capacity in terms of small object size, it is useful

to compare it to the maximum space required to cache all Web pages in the system.

This maximum storage space is a function of the composition of the Web page set

(defined in Table 5.2), the number of Web pages, and the number of Web caches.

Given M = 10,000 and C = 5, we expect that the maximum cache size for Web Page

Category Base Scenario is approximately 614,000. This value applies to experiments

75

10 100 1000 10000 100000 1000000

Number of Users (N)

0%

20%

40%

60%

80%

100%

S
y
st

e
m

 L
o
a
d
 (
ρ)

C = 1
C = 5
C = 10

Figure 5.5: The Effect of the Number of Users on System Load.
δ = 0.6, κ =∞, HR ≈ 60 %, z = 35,000, Web Page Category Base Scenario.

in this chapter using the Web Page Category Base Scenario, where κ =∞.

Figure 5.6 shows the results of our experiment intended to investigate the effect

that varying κ has on HR and SHR. Cache size hit rate (SHR) is the ratio of the

size of data retrieved from cache to the total size of the requested data. Overall, the

HR increases as cache capacity increases, since, as the cache capacity increases more

objects are cached and thus are more likely to be found in cache. As we increase

κ, HR is low but increases quickly until between approximately 7 %, where at lower

cache capacities objects are swapped out frequently which make it less likely for an

object to be found in cache. However, as the cache capacity increases, fewer objects

have to be removed so change the rate of change of HR slows down. After 20 %

HR continues increasing gradually until κ reaches 100 %. Once κ reaches 100 %, HR

76

no longer changes, since all of the data that can be cached has been cached. In

addition, SHR follows similar pattern as HR, but has a higher magnitude (HR is a

ratio of discrete values, whereas SHR compares quantities, and thus will have higher

magnitudes that HR).

0% 20% 40% 60% 80% 100%

Cache Capacity (κ)
0%

20%

40%

60%

80%

100%

H
R

/S
H

R

HR
SHR

Figure 5.6: The Effect of Cache Capacity on HR.
δ = 0.6, ρ ≈ 85.2 % . . . 92.4 % (C = 5, N = 720, z = 35,000,

Web Page Category Base Scenario)

77

From Figure 5.6, we see that the HR approaches 62 % (when κ is at 100 %).

This is the maximum HR for our Web Page Category Base Scenario which is the

composition of the Web page set. The observed HR for each Web page category

is detailed in Table 5.3 with respect to the expected HR. The expected HR is the

ratio of cacheable objects per category to the total number of objects per Web page

category (from Table 5.2). We can see that the observed values are very close to

expected ones.

Category Expected HR (%) Observed HR (%)

Article 68.8 68.2

Mosaic 56.5 56.2

Media 68.3 67.7

Table 5.3: Observed HR Compared with Expected HR by Web Page Category

In Figure 5.7, we examine the effects of cache capacity (κ) on system load (ρ),

we observe that ρ decreases as κ increases. This makes sense, since for a constant

number of users, a smaller κ will increase transmission time which is expected to

increase wait times and thus system load. When κ is at 100 %, the system load

corresponds to the results described in Section 5.3.4 for C = 5, where the system

load was approximately 85 % with κ =∞.

78

0% 20% 40% 60% 80% 100%

Cache Capacity (κ)
0%

20%

40%

60%

80%

100%

S
y
st

e
m

 L
o
a
d
 (
ρ)

Figure 5.7: The Effect of Cache Capacity on HR.
δ = 0.6, C = 5, N = 720, z = 35,000, Web Page Category Base Scenario

79

5.4 Varying Web Page Category with Web Caching

In this section, we continue our exploration of the impact of the ratio of Web pages

per category that we began in Chapter 4.3. That experiment explored 36 Web page

category ratio test scenarios covering a wide range of mean Web page sizes for all

requests (W). We selected three target ratios (Low, Base, High) to be representative

of the range of W (for brevity, we refer to these scenarios as Ratio Scenarios). For

this experiment, we have incorporated Web caching to our previous experiment (from

Chapter 4.3).

In addition to our Ratio Scenarios, we consider four Web caching scenarios: Small,

Medium, and Large Cache Capacities (κ), and a No Caching scenario for reference.

The values we chose for the three Cache Capacities (κ) correspond to the points in

Figure 5.6 where the HR was approximately 20 %, 40 % and 60 %, which correspond

to maximum cache sizes of about 3 %, 7 %, and 80 % respectively.

In Figure 5.8 presents the results for Ratio Scenarios versus MRT for different

cache capacities (κ). In general, we observe that MRT increases as the W increases,

which is consistent with our results from Chapter 4.3. This is not surprising since

W is proportional to request service time. For the Low Scenario, there is less MRT

variation between the three cache capacities. However, for the Base Scenario and the

High Scenario, the variation in MRT between cache capacities is more pronounced.

This is related to the larger SHR for the Base and High scenarios with respect to

the Low Scenario.

Overall from Figure 5.8, we can see that the MRT is improved through Web

caching, and the improvement is more pronounced as the W increases or κ increases.

It makes sense that as κ increases, MRT decreases since more cache size means more

cache hits, thus reduced MRT. As well, smaller Web pages benefit less from changes

in κ than larger ones. This is due to larger Web pages having to be removed more

frequently than smaller ones for equivalent Cache Capacities.

80

Low Base High

Ratio Scenario

0

8000

16000

24000

32000

40000

M
R

T

Small κ
Medium κ
Large κ
No caching

Figure 5.8: Effect of Ratio Scenarios on MRT.
δ = 0.6, C = 5, N = 720, z = 35,000

The effects on system load versus our Ratio Scenarios and our four Web caching

scenarios is shown in Figure 5.9. These results plot κ with respect to ρ to highlight

how system load relates to caching. We observe that as W increases, ρ increases.

This is because as request service time increases (from an increase in Web page

size), system load would also expect to increase. As κ increases, we see a decrease

in system load with the Low Scenario and a slight decrease with the Base Scenario.

It makes sense that smaller Web pages (and thus lower request service times) being

cached more frequently will result in a lower system load. There is little change for

the High Scenario, possibly due to the system load being large enough that it leveled

off (as was observed in Section 4.2.4). In summary, these results show that system

load may be improved with Web caching, although with diminishing returns as the

81

amount of data increases or the cache capacity decreases.

No caching Small Medium Large

Cache Capacity (κ)
0%

20%

40%

60%

80%

100%

S
y
te

m
 L

o
a
d

 (
ρ)

Ratio Scenario = Low
Ratio Scenario = Base
Ratio Scenario = High

Figure 5.9: Effect of Varying Cache Capacity on System Load.
δ = 0.6, C = 5, N = 720, z = 35,000

Finally, in Figure 5.10, we show HR and SHR for the three chosen cache capacities

(κ). In each case, HR and SHR tend to decrease with larger W . This makes sense

because, as W increases, the ability to fit objects into Web caches decreases as a

result of the increased number of objects per Web page. We observe that for the

Base Scenario the HR for the three κ are approximately 20 %, 40 %, and 60 %, which

was our goal in choosing our values of κ.

Figure 5.10 also shows that HR increases as κ increases, which is not surprising

since, as the cache capacity increases more objects are cached and thus more objects

are found in cache (as was discussed in Section 5.3.5). This corresponds to the

decrease in MRT observed in Figure 5.8, which is expected since, with an increase in

82

HR, Web page transmission time (τ) decreases, thus decreasing the request service

time and consequnetly MRT.

Ratio Scenario

0%

20%

40%

60%

80%

100%
H

R
/S

H
R

Low Base High

SHRHR

Low Base High

Small κ Medium κ Large κ
Figure 5.10: Effect of Ratio Scenarios on HR.

δ = 0.6, C = 5, N = 720, z = 35,000

5.5 Summary

In this chapter, we incorporated our Web Page Request Access Pattern Model into

an object-level caching system. We did this by replacing the Web server sub-model,

presented in Chapter 3, with a homogeneous set of Web caches. These Web caches

respond to user requests with an improved service time when objects are cached. A

Cached Object Access Factor is applied to objects to represent an improved Web

page transmission time. When requests are made for an object that is not cached,

the Web page object cacheability parameter is used to determine if it is cacheable.

In the event that there is not enough room for an object to be added to a cache,

83

a LRU cache replacement policy is applied to remove objects from cache to make

room.

We modified our simulation from Chapter 4 to include Web caching. This model

introduced several Web caching parameters that we evaluated. We found that the

Cached Object Access Factor does result in a reduction in both MRT and system

load. When examining cache capacity, our results showed that increasing this leads

to an increase HR and SHR, and a decrease in MRT.

Our final experiment varied the ratio of Web pages per Web page category in

a Web caching environment. We evaluated four Cache Capacity scenarios while

varying our Web page category ratio test scenarios (Base, Low, High). The results

demonstrated that the amount of data being requested (represented by ratios of Web

pages per category) and cache capacity both had a positive effect on HR. Overall,

we found that Web caching both improved MRT and server load.

84

Chapter 6

Conclusions and Future Research

6.1 Contributions

This research aimed to develop a model to represent the process of object-level

requests to Web pages in the World Wide Web (WWW). We used mean response

time (MRT), which is the time that it takes to fulfill a user request, as the main

measure of user experience. In Chapter 3, we established our model, the User-Web

Interaction Model, that consists of three sub-models: the User-Request Model, the

Server Model, and the Web Page Model. Our model represents Web pages at a

finer granularity the than previous work that represented Web pages at the file level.

Our model can form the basis of a unique framework that can be utilized for future

research that requires Web page request access patterns.

Our main contribution is the Web Page Model, which represents the Web pages

in the system, and is used to define the composition of the set of Web pages available

in the system for user requests. The Web Page Model categorizes the composition

of Web pages at the object-level, and represents the presentation of the Web page

from the user’s perspective. We generalize a variety of objects into six types, each

of a specific size. In the Web Page Model, we characterize the composition of Web

85

pages with three Web page categories (article, mosaic, and media), each with its

own combination of Web page objects of varying size.

The User-Request Model represents the Web page selection and request by a user.

It uses a file reference model to represent which Web pages are selected by a user, in

such way that a higher coefficient of variation of Web page request interarrival time

(CV) is attained. Our Server Model contains a homogeneous set of parallel Web

servers. Each server has its own queue and fulfills the users requests.

In order to study the performance of the various parameters on user experience,

we developed a discrete event simulation (DES) for our Web Page Request Access

Pattern Model and presented the research in Chapter 4. We developed additional

parameters that affect the composition of the Web page set, and established their

values. One of those, the ratio of Web pages per Web page category, is used to

determine how many Web pages of a particular category are available to the user.

We also determined a set of ratios, referred to as the Base Scenario, for determining

other parameters.

From our User-Request Model, we considered the parameters that affect CV, and

established those to maintain a CV of approximately 3. When examining the effect

of varying the number of users, we found that system load decreased as the number

of servers increased. As well, we found that the MRT increases with the number of

users.

Since the composition of Web pages is a distinct feature of our Web Page Request

Access Pattern Model, we also examined the effects of varying Web page categories

in Chapter 4. In this experiment, we developed 36 test scenarios, where we varied

the ratio of Web pages per category in each scenario. Our results showed that we

could predictably control the mean Web page size for all requests by varying the

ratio of Web pages per category. We also found that MRT increased as the mean

Web page size for all requests increased. We proposed three scenarios (Low, Base,

86

and High) to be representative of the 36 test scenarios. The parameters that we

established in Chapter 4 produce a wide range of conditions, that will serve as a

basis for generating a variety of user request patterns in the WWW.

The final aim in our research was to incorporate our Web Page Request Access

Pattern Model into Web server application. The one we chose was Web caching,

and this was explored in Chapter 5. We adapted our base model to regard the Web

servers as Web cache servers with limited storage capacity. It assumes that a cached

object has a lower transmission time than one that is not cached. To produce a

lower time we developed the cached object access factor parameter. The Web page

composition, developed in Chapter 3, was expanded to include object cacheability,

a parameter which represents the probability that an object is cached. Since cache

size is limited, we use a least recently used (LRU) algorithm as a cache replacement

policy.

The implementation of our Server Model was expanded to include Web caching,

and was described in Chapter 5. While investigating the cached object access factor,

we found it effective at reducing MRT, with diminishing effect as it was reduced.

The base value for the cached object access factor was established to be 0.6. This

means that the contribution to transmission time of an object that is found in cache

is 60 % of that of an uncached object. We examined cache capacity and found that

increasing cache capacity affects HR, with lower sizes having a large effect on HR

and with diminishing returns as cache capacity increases.

We concluded Chapter 5 with an investigation into varying Web page categories

with Web caching. We accomplished this by using our three scenarios (Low, Base,

and High) from Chapter 4, which produce three distinct and consistent mean Web

page sizes for all requests. Along with these Web page category scenarios, we also

examined four categories of cache capacity (small, medium, and large, as well as

one with no caching for reference). We found that for the no caching system, the

87

results were consistent with those in Chapter 4, which showed that as we increased

the mean Web page size for all requests the MRT increased. When Web caching was

utilized, our results showed that HR increases with an increase in cache capacity.

We also found that the system load decreased as cache capacity increased, although

with diminishing returns as mean Web page size for all requests increased. Our main

parameter of interest, MRT, was shown to improve with Web caching, especially as

cache capacity increased.

Overall, we found that with our expanded server model (Web caching) access la-

tencies can be improved (improved MRT) and can reduce load on Web servers. These

are two important features of Web caching, and as such were were able effectively

incorporate caching into our Web Page Request Access Pattern Model.

6.2 Suggestions for Future Research

6.2.1 Additional Object Types

A goal of our framework is to allow model components to be incorporated into other

research. We proposed six Web page object media types that generalize the many

that are available in the WWW. One such example of this generalization is the text

object type, which is intended to be representative of hyper-text markup language

(HTML) and Extensible Markup Language (XML) objects. These objects, when

compared to one another, have been shown in previous studies to have different

request rates and represent different request size proportions. As well, for simplicity

we assumed that text objects are not cacheable at all, however, 10-20 % of HTML

objects can contribute to byte savings from Web caching. In contrast, XML provides

little savings. Another object type, octet, was left out of our model, and it represents

a moderate amount of data transferred on the WWW, especially for larger Web

pages. Octet objects are often related to video watching and large files. It would be

88

interesting to see the effect of modelling these, and other object types.

6.2.2 Web Caching Applications

In our research, the Web caching model that we developed was limited in scope,

and as such, there are a number of areas that interest to which our framework can

be expanded. One area is the caching architecture. We used a simple homogeneous

distributed caching architecture, however hierarchical and hybrid architectures would

also be suited for our model. To do this, a multi-stage server configuration could be

used. The cached object access factor (which we model as a single value parameter)

could be adapted to be applied to the various configurations of the architecture being

modeled. For example, in the case of a hierarchical cache, which has layers of caches

based on geographic levels, cached object access factor would vary according to the

level of the cache, smaller for regional caches and larger for national caches.

Another caching consideration is cache replacement policy, which is the algorithm

used to determine how a cache adds and replaces objects. We chose to implement an

LRU algorithm. There are several other replacement policies of interest, including

least frequently used (LFU), Size, LRU-MIN, Least Normalized Cost Replacement

(LCN-R), and Size-Adjusted LRU (SLRU) to name a few. Some of these were

reviewed in Chapter 2.

6.2.3 Variations on Web Page Composition

We regarded our Web page categories as being representative of the Web page object

composition as presented to the user. Our model established three categories based

on anecdotal classification from a user’s perspective. However, there are different

ways to characterize the composition.

One example is to categorize Web pages terms of page load time: short, med,

long (based on observations from [26]). These categories are composed of similar

89

Web page object media types as we developed in our model, with the addition of

the octet type. As well, HTML and XML could replace our text object type. Short

Web pages represent a small amount of Web traffic volume, and are dominated by

HTML objects, and image objects. Medium Web pages make up about a third of

the traffic volume, with about half of the objects being image, some video, and a

smaller percentage of HTML. About half of the traffic volume consists of long Web

pages, with images making up much of the content, and video and octet a smaller

amount. The number of Web page objects in these categories vary substantially,

with an order of magnitude difference between each one.

6.2.4 The Internet of Things

Another application for our framework is the Internet of Things (IoT). The IoT is

a concept of interconnecting small devices and other systems for exchanging data.

Examples of IoT devices include: smart home devices (such as: appliances, security

systems, and lighting), health care devices, personal jewelry, embedded systems, and

sensor networks, to name a few. The types of IoT devices span a large range of

computing capabilities and data requirements. Some assumptions to characterize

the Web page composition are as follows:

� IoT devices represent a high ratio of Web pages with respect to our developed

categories.

� A page is made up of a small number of objects

� Small object size.

� Low cachability.

With the decrease in cost and miniaturization of computing devices their availability

have increased substantially. Our framework could provide the opportunity to study

the effects of the IoT.

90

6.2.5 Vehicular Computing

For a final topic of future research, we look at the evolving field of information

technology in vehicular computing; more specifically, vehicular cloud computing. In

general, vehicular computing is the transfer of information between vehicles and

other networks. Some applications of vehicular computing include: urban surveil-

lance, road safety, traffic efficiency, passenger access to Internet, messaging, and

infotainment [11]. Recent innovations in cloud computing are being researched for

use with vehicular computing.

Cloud computing uses a shared pool of computing resources for on-demand com-

putation or storage systems [5]. Advantages of cloud computing include a large pool

of resources that can scale dynamically to current demands with a high availability.

Cloud computing facilitates ad-hoc networks, with large numbers of fast-changing

vehicular computing nodes. This can allow computation to be distributed to net-

work edges (that is, the vehicles) where underutilized vehicle resources can be used.

[11,31].

Modelling such a system as a vehicular cloud adds a number of complications

beyond the model presented in this thesis. One aspect to consider is the complex set

of traffic flow models consisting of several mathematical models which include time-

variant acceleration, speed, and position parameters. As well, the network topology

goes beyond a simple client-server model, where there exists a large number of vehicle

nodes that form a combined client-server and peer-to-peer network. A model for a

vehicular cloud can be modelled as a hybrid of peer-to-peer and client-server models

such as described in [32], and for peer-to-peer queueing networks we can look at [14].

Some of the information in a vehicular cloud could be modelled in part, as we have

in this thesis (to represent typical user behaviour in the WWW). However, the model

would need to be expanded to combine additional information concerning urban

surveillance, road safety, and traffic efficiency. Some typical sources of information

91

in a vehicular network are [11,31]:

Social networks: represent the most popular form of information in the network,

and contain a large amount of data with a lot of variation in the amount and

frequency.

Infrastructure: data does not alter frequently. Examples of which include: road

network data, road description, geographical information, points of interest,

local business data.

Urban surveillance: consists of images or video data of somewhat constant size

with regular frequency.

Traffic data: vehicle telemetry that allows for the temporal and spacial tracking of

vehicular traffic.

Local sensors: can include environmental, smart phone, and vehicle sensors. These

would result in relatively low data sizes, but with highly dynamic and frequent

transmission.

These information sources would be represented as Web page categories, each being

a mix of static and dynamic data of various sizes and complexity.

92

Bibliography

[1] W. Ali, S. M. Shamsuddin, and A. S. Ismail. “A survey of web caching and
prefetching”. In: Int. J. Advance. Soft Comput. Appl. Vol. 3. 1. ICSRS Publi-
cation, 2011, pp. 18–44.

[2] C. Allison, M. Bramley, and J. Serrano. “The World Wide Wait: Where Does
the Time Go?” In: Proceedings. 24th EUROMICRO Conference (Cat. No.98EX204).
Vol. 2. Aug. 1998, 932–938 vol.2. doi: 10.1109/EURMIC.1998.708124.

[3] M. F. Arlitt and C. L. Williamson. “Web Server Workload Characterization:
The Search for Invariants”. In: Proc. of the 1996 ACM Sigmetrics, 1996, pp.
126–137.

[4] Average Number of Web Page Objects Breaks 100. 2012. url: http://www.
websiteoptimization.com/speed/tweak/average-number-web-objects/

(visited on 11/04/2021).

[5] L. Badger et al. NIST SP 800-146 Cloud Computing Synopsis and Recomen-
dations. Tech. rep. National Institute of Standards and Technology (NIST),
2012.

[6] J. Banks et al. Discrete-Event System Simulation. 4th. Pearson Education Inc,
2005.

[7] P. Barford and M. Crovella. “Generating Representative Web Workloads for
Network and Server Performance Evaluation”. In: SIGMETRICS Perform.
Eval. Rev. 26.1 (June 1998), pp. 151–160. issn: 0163-5999. doi: 10.1145/

277858.277897. url: https://doi.org/10.1145/277858.277897.

[8] M. Belshe, R. Peon, and E. M. Thomson. RFC 7540. Hypertext Transfer Pro-
tocol Version 2 (HTTP/2). 2015.

[9] T. Berners-Lee. Information Management: A Proposal. Tech. rep. CERN, 1990.

[10] T. Berners-Lee et al. “World-Wide Web: The Information Universe”. In: Elec-
tronic Networking 2.1 (Spring 1992), pp. 52–58.

[11] A. Boukerche and R. E. De Grande. “Vehicular cloud computing: Architec-
tures, applications, and mobility”. In: Computer Networks 135 (2018), pp. 171–
189. issn: 1389-1286. doi: https://doi.org/10.1016/j.comnet.2018.
01.004. url: https://www.sciencedirect.com/science/article/pii/
S1389128618300057.

[12] V. Bush. “As We May Think”. In: The Atlantic Monthly (1945).

https://doi.org/10.1109/EURMIC.1998.708124
http://www.websiteoptimization.com/speed/tweak/average-number-web-objects/
http://www.websiteoptimization.com/speed/tweak/average-number-web-objects/
https://doi.org/10.1145/277858.277897
https://doi.org/10.1145/277858.277897
https://doi.org/10.1145/277858.277897
https://doi.org/https://doi.org/10.1016/j.comnet.2018.01.004
https://doi.org/https://doi.org/10.1016/j.comnet.2018.01.004
https://www.sciencedirect.com/science/article/pii/S1389128618300057
https://www.sciencedirect.com/science/article/pii/S1389128618300057

93

[13] R. Cáceres et al. “Web Proxy Caching: The Devil is in the Details”. In: SIG-
METRICS Perform. Eval. Rev. 26.3 (Dec. 1998), pp. 11–15. issn: 0163-5999.
doi: 10.1145/306225.306230. url: http://doi.acm.org/10.1145/306225.
306230.

[14] C. D. Carothers and R. Lafortune. “A Case Study in Modeling Large-Scale
Peer-to-Peer File-Sharing Networks using Discrete Event Simulation”. In: In
Proceeding of the International Mediterranean Modeling Multiconference. 2006,
pp. 617–624.

[15] A. Chankhunthod et al. “A Hierarchical Internet Object Cache”. In: In pro-
ceedings of the 1996 USENIX technical conference. 1995, pp. 153–163.

[16] H.-K. Choi and J. O. Limb. “A Behavioral Model of Web Traffic”. In: Proceed-
ings of the Seventh Annual International Conference on Network Protocols.
ICNP ’99. USA: IEEE Computer Society, 1999, p. 327. isbn: 0769504124.

[17] J. Conklin. A Survey of Hypertext. Tech. rep. Microelectronics and Computer
Technology Corporation, 1987.

[18] D. Evans. The Internet of Things: How the Next Evolution of the Internet Is
Changing Everything. Tech. rep. 2011.

[19] R. Fielding et al. RFC 2616, Hypertext Transfer Protocol – HTTP/1.1. 1999.
url: http://www.rfc.net/rfc2616.html.

[20] N. Freed and M. Kucherawy. Media Types. @ONLINE April 27, 2017 https:

//www.iana.org/assignments/media-types/media-types.xhtml. 2017.

[21] F. González-Cañete, E. Casilari-Pérez, and A. Triviño. “Characterizing Doc-
ument Types to Evaluate Web Cache Replacement Policies”. In: Feb. 2007,
pp. 3–11. doi: 10.1109/ECUMN.2007.11.

[22] R. T. Hurley, W. Feng, and B. Li. “Partitioning in Distributed and Hierar-
chical Web-Caching Architectures: A Performance Comparison”. In: Proc. of
the16th International Conference on Computer Applications in Industry and
Engineering 11.13 (Nov. 2003).

[23] R. Hurley and B. Li. “A Performance Investigation of Web Caching Architec-
tures”. In: (2008).

[24] R. Hurley and B. Li. “Effects of Dynamic Content on Web Caching”. In: ().

[25] R. Hurley. “An Investigation of File Migration in a Distributed File System”.
PhD thesis. University of Waterloo, 1994.

[26] S. Ihm. “Understanding and Improving Modern Web Traffic Caching”. PhD
thesis. Princeton University, 2011.

[27] S. Ihm and V. S. Pai. “Towards Understanding Modern Web Traffic”. In: Pro-
ceedings of the 2011 ACM SIGCOMM Conference on Internet Measurement
Conference. IMC ’11. Berlin, Germany: ACM, 2011, pp. 295–312. isbn: 978-1-
4503-1013-0. doi: 10.1145/2068816.2068845. url: http://doi.acm.org/
10.1145/2068816.2068845.

https://doi.org/10.1145/306225.306230
http://doi.acm.org/10.1145/306225.306230
http://doi.acm.org/10.1145/306225.306230
http://www.rfc.net/rfc2616.html
https://www.iana.org/assignments/media-types/media-types.xhtml
https://www.iana.org/assignments/media-types/media-types.xhtml
https://doi.org/10.1109/ECUMN.2007.11
https://doi.org/10.1145/2068816.2068845
http://doi.acm.org/10.1145/2068816.2068845
http://doi.acm.org/10.1145/2068816.2068845

94

[28] L. Kleinrock. Queueing Systems Volume I: Theory. Wiley Interscience, 1975.

[29] T. Kroeger, D. Long, and J. Mogul. “Exploring the Bounds of Web Latency
Reduction from Caching and Prefetching”. In: (Dec. 1997).

[30] B. Mah. “An empirical model of HTTP network traffic”. In: Proceedings of
INFOCOM ’97 2 (1997), 592–600 vol.2.

[31] R. Meneguette et al. “Vehicular Edge Computing: Architecture, Resource Man-
agement, Security, and Challenges”. In: ACM Comput. Surv. 55.1 (Nov. 2021).
issn: 0360-0300. doi: 10.1145/3485129. url: https://doi.org/10.1145/
3485129.

[32] R. Mu and F. Zhao. “CDN and P2P Network Model Based on HCDN Tech-
nology”. In: Journal of Software Engineering (2015), pp. 469–486. doi: 10.
3923/jse.2015.469.486.

[33] T. H. Nelson. “Getting it out of our system”. In: Information Retrieval: A
Critical Review (1967). Ed. by G. Schechter, pp. 191–210.

[34] D. Povey and J. Harrison. “A Distributed Internet Cache”. In: Proceedings of
the 20th Australian Computer Science Conference (Feb. 1997).

[35] V. Presutti and A. Gangemi. “Towards an OWL Ontology for Identity on the
Web”. In: (2020).

[36] P. Rodriguez, C. Spanner, and E. W. Biersack. “Analysis of Web Caching
Architectures: Hierarchical and Distributed Caching”. In: IEEE/ACM Trans.
Netw. 9.4 (Aug. 2001), pp. 404–418. issn: 1063-6692. doi: 10.1109/90.944339.
url: http://dx.doi.org/10.1109/90.944339.

[37] F. D. Smith et al. “What TCP/IP protocol headers can tell us about the web”.
In: Proceedings of the Joint International Conference on Measurements and
Modeling of Computer Systems, SIGMETRICS 2001, June 16-20, 2001, Cam-
bridge, MA, USA. ACM, 2001, pp. 245–256. doi: 10.1145/378420.378789.
url: http://doi.acm.org/10.1145/378420.378789.

[38] W. Stallings. Data and Computer Communications. 8th ed. Pearson Prentice
Hall, 2007.

[39] A. S. Tanenbaum and M. van Steen. Distributed Systems: Principles and Paradigms.
2nd ed. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 2006. isbn: 0132392275.

[40] J. Wang. “A Survey of Web Caching Schemes for the Internet”. In: SIGCOMM
Comput. Commun. Rev. 29.5 (Oct. 1999), pp. 36–46. issn: 0146-4833. doi: 10.
1145/505696.505701. url: http://doi.acm.org/10.1145/505696.505701.

[41] X. S. Wang, A. Krishnamurthy, and D. Wetherall. “How Much Can We Micro-
Cache Web Pages?” In: Proceedings of the 2014 Conference on Internet Mea-
surement Conference. IMC ’14. Vancouver, BC, Canada: ACM, 2014, pp. 249–
256. isbn: 978-1-4503-3213-2. doi: 10.1145/2663716.2663739. url: http:
//doi.acm.org/10.1145/2663716.2663739.

https://doi.org/10.1145/3485129
https://doi.org/10.1145/3485129
https://doi.org/10.1145/3485129
https://doi.org/10.3923/jse.2015.469.486
https://doi.org/10.3923/jse.2015.469.486
https://doi.org/10.1109/90.944339
http://dx.doi.org/10.1109/90.944339
https://doi.org/10.1145/378420.378789
http://doi.acm.org/10.1145/378420.378789
https://doi.org/10.1145/505696.505701
https://doi.org/10.1145/505696.505701
http://doi.acm.org/10.1145/505696.505701
https://doi.org/10.1145/2663716.2663739
http://doi.acm.org/10.1145/2663716.2663739
http://doi.acm.org/10.1145/2663716.2663739

95

Appendices

96

Appendix A

Simulation Implementation

Overview

To achieve our results, we use discrete event simulation (DES), which is a simulation

approach where events are managed at discrete time units. Events are generated

randomly (except for the end of simulation event) and added to a Future Events List

(FEL). The FEL is ordered by the event time, where the next event has the lowest

time. Time is managed by a master clock, which is advanced when the next event

is processed. Between each time unit, the status of the system remains unchanged.

The simulation time scale is not directly related to real time, consequently, time is

only used as a basis for relative comparison of performance.

There are three general classes of events: request-response, popularity changes,

and simulation control, which are described as follows:

Request-response: uses two events to implement the User-Web Interaction Model

(Section 3.2.1). These are the user request events and server response events.

Effectively, a user alternates cyclicly between request and response, as de-

scribed in Figure 3.2.

Upon simulation initialization, every user in the system starts in a thinking

97

state, and has a user request event scheduled. When a user request event is

received, the user state is set to waiting and the request is either serviced (if

the server is idle) by creating a server response event, or placed in the server’s

queue (if the server is busy). When a server response event is received, the

user state is set to thinking and the response is considered complete. At this

point, the request-response cycle starts again by creating a new user request

event for the user. If there are already requests in the current server’s queue

after the current server response event is handled, the next queued request

is served by creating a new server response event (according to the queueing

discipline presented in Section 3.2.1).

Popularity changes: are responsible for changing the state of potentially popular

Web pages. These events are independent of the other event types. Potentially

popular Web pages alternate between normal and popular, as described in

Section 3.2.2 and Section 4.2.3.

Simulation control: uses one event type, the end of simulation event, which when

encountered, terminates the simulation. A single end of simulation event is

scheduled during the simulation initialization, and is an input variable that is

used to determine the simulation length. The simulation length is discussed in

Section 4.2.2 and Section 5.3.2.

The details of these events are shown in Figure A.1, which provides an overview

of the main simulation event handling loop.

98

START Initilization

END

Get
next event

Write
simulation

results

Send
request to

server

Schedule
server

response

not empty empty

Add to
Server
queue

Schedule
next user
request

Gather
simulation

data

simulation
status

enabled

Set
user state
to waiting

Set
user state
to thinking

idle busy

Set
server status

to idle

Get next
request

Schedule
server

response

Set
server status

to busy

Set
server status

to busy

disabled

Set
Web page
to popular

Set
Web page
to normal

User request
Popularity
change:

to normal
Server response

Advance
simulation

clock

Popularity
change:

to popular

Schedule
Web page’s

next
popularity
change to

normal

Schedule
Web page’s

next
popularity
change to
popular

End of
simulation

simulation
status =
disabled

Server
Queue

server
status

Figure A.1: Main Simulation Event Handling Loop.

	Abstract
	Acknowledgements
	Table of Contents
	List Of Figures
	List Of Tables
	List of Symbols
	Introduction
	General Environment
	Web Caching
	Thesis Outline

	Background
	Introduction
	The World Wide Web
	Web Caching

	Modelling the World Wide Web
	Summary

	Model
	Introduction
	Model
	User-Web Interaction Model
	User-Request Model
	Server Model
	Web Page Model

	Implementation and Results
	Introduction
	Validation and Verification of the Model

	Model Parameters
	Composition of the Web Page Set
	System Stability
	Coefficient of Variation of Web Page Request Interarrival Time
	System Load

	Varying Web Page Category
	Summary

	Web Caching Model and Results
	Introduction
	Model
	Model Parameters
	Composition of the Web Page Set
	System Stability
	Cached Object Access Factor
	System Load
	Cache Capacity

	Varying Web Page Category with Web Caching
	Summary

	Conclusions and Future Research
	Contributions
	Suggestions for Future Research
	Additional Object Types
	Web Caching Applications
	Variations on Web Page Composition
	The Internet of Things
	Vehicular Computing

	Bibliography
	Appendices
	Simulation Implementation Overview

