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Abstract 

An Investigation of a Hybrid Computational System for Cloud Gaming 

Sean Baxter 

 Video games have always been intrinsically linked with the technology available 

for the progress of the medium. With improvements in technology correlating directly 

to improvements in video games, this has recently not been the case. One recent 

technology video games have not fully leveraged is Cloud technology.  This Thesis 

investigates a potential solution for video games to leverage Cloud technology.  The 

methodology compares the relative performance of a Local, Cloud and a proposed 

Hybrid Model of video games.  We find when comparing the results of the relative 

performance of the Local, Cloud and Hybrid Models that there is potential in a Hybrid 

technology for increased performance in Cloud gaming as well as increasing stability in 

overall game play. 
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Definitions 
 

Bandwidth - The amount of data that can move through a network in a given time 
period. The throughput of a network, 

Latency - The time between a action and response in a system. 

Lossy compression - Compression style that the resulting data cannot be used to rebuild 
the original data. This style of compression allows for in general smaller resulting files 
but has a potential loss of data that cannot be restored. 

Lossless compression - Compression style where the resulting compressed data can be 
used to rebuild the original uncompressed data set. This in general means that the 
compression cannot push file sizes down as far as lossy compression, but is very useful 
when the validity of data has to be preserved. (VP9 YouTube's compression allows for 
lossless) 

Asset - Any piece of content used to assemble a game, including graphic models, 
images, textures, sound files, and code segments used to assemble and process a video 
game. 

Thin Client – a low processing power computing device to input and display results with 
minimal processing abilities. 

Thick Client – a high processing power computing device that can handle processing 
complex tasks. 

Cloud Service – On-Demand Computer Service accessible through a client device 

Cache – data storage location that allows for high-speed data retrieval 

Cloud gaming - Using an on-demand cloud service to play Video Games 

Online gaming - The act of playing a Video game that has an online component as a core 
design piece 

Interarrival Time - The time between each arrival into the system and the next.
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Chapter 1 

Introduction 

1.1 Introduction 
 

 Cloud Streaming has changed the way many people engage with digital media, 

allowing for users to access and interact with this media on a wide range of client 

devices as long as a network connection is available. This has shifted media 

consumption from physical media, and locally stored downloads, to remote access to 

Cloud storage for video, audio and image content. Video games have failed to leverage 

these new Cloud technologies because of inherent increases in network latency which 

results in an adverse effect on user enjoyment of video games.  Cloud gaming without 

latency problems would open this activity to many new users. This thesis aims to 

investigate a new approach for Cloud gaming called Hybrid Cloud gaming. 

 This thesis explores the potential of a Hybrid Cloud gaming solution to improve 

the performance of Cloud gaming. We found that leveraging both Local and Cloud 

components for Cloud gaming improves performance and leads to a more consistent 

game experience. In addition, thesis adds to the field of Cloud gaming by proposing a 

new approach to distributing computational requirements between Local and Cloud 

processing. We use simulation to compare the Mean File Transfer times of a Local, 

Cloud and our proposed Hybrid model to find that a Hybrid solution can provide a 

suitable environment for interacting with video games while leading to improvements in 

input latency inherent in Cloud gaming systems. 
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Video games are an interactive medium whereby a player, or players, use a piece 

of software to accomplish either a user-generated or design-determined goal.  Video 

games have always been reliant on advancements in hardware to allow for new 

experiences and improved quality in the medium, as technology improved, so did the 

quality and complexity of video games.  With early video games, advances in technology 

removed design limits and allowed for more complex games to be produced.  For this 

reason, the development of video games as a medium has been strongly tied to 

advances in computer hardware, most notably computer graphics.  While video games 

have continued this connection with each new advancement, attempts to utilize Cloud 

technology have had limited success. One example of this is the company OnLive which 

failed to gain a large market share and closed down in 2015 [1]. 

Multimedia streaming is the process of sending a constant series of packets 

along a network that creates a multimedia file that can be played on the client device 

without requiring the installation or direct storage of the file.  Streaming services have 

changed the landscape of media consumption, from Netflix [2] changing the way people 

experience and consume movies and television shows, to Spotify [3] becoming one of 

the most common ways for users to consume music.  This shift toward consuming 

media through streaming services has fundamentally changed the landscape of media 

production. YouTube [4] continues to be the largest force in streaming, and recently the 

shift towards live streaming, specifically on websites such as Twitch [5], has allowed 

users to both watch and provide live streaming content [6] [7]. 
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 Video game live streams have thrived with these new technologies, as many 

streamers make a living by playing popular video games through websites such as 

Twitch, which can be watched by thousands of people. Live stream technology has had a 

profound effect on how users consume the medium in a variety of different contexts.  

Specifically for video gamers, live streaming has allowed users to showcase their 

gameplay, and the increased popularity of live streaming has changed how games are 

presented to the public.  This has also had a large effect on how games are advertised  

[8]. Previously games were advertised very traditionally, relying on static print, video, 

and website-based advertisements similar to how films and television series are 

advertised.  Meanwhile live streaming games allows users to see gameplay in real-time, 

creating an environment where live streamers act as advertisers for the video games 

they play while receiving revenue from live streaming.    

Even though video game live streaming has a large cultural impact on how 

people engage with video games, Cloud gaming technology has failed to penetrate the 

gaming zeitgeist. This failure to gain traction comes from two important factors; Cloud 

gaming has failed to attract existing users, because of its performance failures on the 

technical side caused by latency [9].  Due to these limitations, the medium of video 

games has not achieved the same in utilizing streaming technologies for Cloud gaming 

as Netflix and Spotify have achieved for televisual and music media respectively.  

To properly understand video games and the way that Cloud technologies can 

interact with this medium it is important to explore previous technologies.  In this 
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chapter, I will introduce the concepts of Local Gaming, Cloud gaming as well as 

introduce my proposed solution of Hybrid Gaming.   

1.2 Local Gaming 
 

 Video games started as experiments by computer scientists to see what they 

could create using then-current technologies [10]. One of the first commercially 

released video games was Atari’s Pong in 1972, which was released on what is widely 

accepted as the first video game home console the Brown Box [11].  The Brown Box had 

moderate success but did not gain large traction in households, primarily due to its high 

price point. Following this, Atari began to focus on arcade cabinets with one of their 

largest successes being Space Invaders in 1978, along with other breakouts such as Pac-

Man, developed in 1980 by NAMCO, and Donkey Kong, developed in 1981 by Nintendo 

[11].   One interesting aspect of the arcade cabinet technology is that each cabinet was 

built for one specific purpose.  A Space Invaders cabinet would only play Space Invaders, 

while a Donkey Kong cabinet would only play Donkey Kong.  This meant that 

improvements in video game performance and graphics were intrinsically tied to the 

hardware in the cabinet.  A substantial amount of work on video games during this time 

was focused on the improvement of cabinet boards to allow for more complex and 

interesting arcade games.  

Following the arcade boom, work began to generalize video game hardware 

allowing for cabinets to swap games, rather than needing complete cabinet 

replacements with each new game release [12]. This occurred with home video consoles 
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such as the Nintendo Entertainment System (NintendoCo. Ltd), originally known as the 

Family Computer (Famicom) in Japan, and was initially released in 1983 in Japan, and 

subsequently released in 1985 in North America [11].  At the same time, arcade cabinets 

allowing for swapping games began to be developed and released, such as the Neo Geo 

Multi Video System (MVS) developed by SNK Corporation in 1990. [13] 

Video games were still limited by the technologies available, meaning that any 

improvements in hardware allowed for large technical developments in video game 

complexity and graphics.  This was particularly noticeable with the subsequent release 

of new home game consoles such as the Nintendo 64 (NintendoCo. Ltd) in 1996. These 

new consoles permitted video games to make noticeable leaps in quality, particularly 

with 3D video games becoming the new standard on home consoles.  While home 

consoles were improving, arcade cabinets still had the edge in terms of hardware 

performance, which resulted in the most visually impressive games of the era [10].  

Looking at game consoles on the market today, processing power has improved to such 

a degree that hardware is no longer a limiting factor.  We no longer see large visual 

improvements in games coming from hardware improvements but instead, see 

improvements in the form of software changes in design philosophy and innovative 

ideas built upon a mostly plateaued hardware environment.   

Video game software is one of the most complex and computationally taxing 

processes that can be run on a modern consumer-grade computer [14].  A complex 

series of tasks, simulations and rendering pipelines are necessary to produce a final 

useable result to display to the user. Contemporary video games often require 
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specialized hardware either in the form of personal computers being entirely built for 

the sole purpose of playing video games, or home consoles such as the Sony PlayStation 

and Microsoft Xbox series.  As video gaming continues to grow, more people are 

investigating what makes a Local system work and how to best design a Local video 

gaming experience.  One of the key issues is in performance, specifically reducing total 

system latency to create the best possible experience for a user. 

 Local video gaming systems have multiple delay points that factor into the 

overall system latency: input latency, simulation latency, render latency and display 

latency.   Figure 1.1 illustrates total system latency as outlined in this section.   

User sends inputs 
Next Game State 

is simualted

Next frame is 
Rendered

Graphics are sent
To display

User receives new
Game state

 

Figure 1.1 Layout of Pieces of Total System Latency in a Local System 

 

Input latency is the time it takes for a gaming controller to receive an input and 

transfer it to the Local system [15]. Input latency varies depending on the type of 
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controller, with typical controller latencies currently are around 24ms [16].  For this 

thesis, a more in-depth discussion of controller latency, and how controller latency 

changes depending on various factors, is not relevant. Thus, we will assume that the 

average controller latency for our simulation is 24ms. The Local system then checks to 

see if new inputs, based on a set time interval, have arrived and proceeds to collect 

these. [17] [16]. The Local system then uses any input that has arrived, as well as the 

current game state, to simulate the next game state. This time makes up simulation 

latency and is variable from game to game.  Once the new game state has been 

simulated, the system then renders that game stage into computer graphics through a 

graphics pipeline, this makes up render latency.  Once rendering has been completed 

the finished result is passed to the display.  The display then also has slight latency 

inherent in transferring the graphics data from the Local console to the display and 

updating the display to match the newest render, which makes up display latency. All of 

these forms of latency sum together to create total overall Local system latency.    

 Local gaming continues to be the platform of choice for the majority of video 

game players.  The strength in Local gaming is improved performance and response 

time compared to Cloud options however its weakness is the necessity of continual 

upgrading as well as being a stationary option.  In the next section, I will discuss Cloud 

gaming and the advantages and disadvantages of a Cloud environment. 

 



8 
 

 
 

 

1.3 Cloud Gaming 
 

Cloud gaming allows for video games to be run on a Cloud architecture 

permitting users to access video games that they do not have installed on their clients, 

such as Local desktops, laptops, or game consoles. It also allows for streaming to thin 

clients, such as smartphones, tablets, or low-end personal computers [18]. One such 

example is a Chrome Book that otherwise would not have the processing power 

required to properly display certain video games.   

Cloud services, such as OnLive, were early examples of Cloud technologies being 

used to deliver video games to users. In 2019 developer Google released Google Stadia 

as the most recent Cloud gaming service to deliver video game content. [19] [20]. While 

media streaming, for music and video, has reached a large audience, it is a passive 

service as the user is simply consuming content. The key difference between streaming 

media and Cloud gaming is that the user is an active participant in Cloud gaming 

streams. 

 With music and video, the content is sent through a network to the user and 

displayed once it arrives. Through buffering content in advance, interruptions to the 

stream can be hidden from the user, allowing the stream to run almost seamlessly [21].  

For a Cloud gaming experience to properly process the next result, it requires 

continuous inputs from the user.  Therefore, the typical method in the streaming of 

content, such as buffering the data for upcoming content in advance, will not work.  This 

is because the expected content in a Cloud gaming session is dependent on user input, 
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and the content cannot be predetermined as it is in a video or audio stream.  When 

listening to a song on Spotify, you are a passive consumer of the audio content.  When 

playing a Cloud game stream, you are an active participant in the creation of the next 

moment of content.  Figure 1.2 illustrates a general overview of how Cloud gaming 

services work. 

Cloud Gaming Services

 

Figure 1.2 Overview of Cloud Gaming 
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 Cloud gaming like all Cloud services has the advantage of only requiring a 

connection from the user to the Cloud storage location. As shown in Figure 1.2 a user 

can use any of multiple potential thin clients to establish a connection from the Cloud 

service and initiate a piece of media, in this case, a video game, through a Cloud stream 

and interact and use that media without having to load or process any of the media 

states on their device, instead downloading the result of the game. 

Current Cloud gaming services have an unavoidable increase in input delay, 

which is caused by the requirement for inputs to be sent through a network and the 

result being sent back across the network. These input delays, inherent in the network 

connection in Cloud gaming, cause the responses to a user’s input to feel sluggish, 

reducing engagement, and thus, user enjoyment since the experience no longer feels 

responsive. The addition of sending information through a network nearly doubles input 

delays, potentially adding 100ms of delay [14] compared to average controller input 

delays which are around 24ms as mentioned earlier in this section. 

The point at which input delay is noticeable varies depending on both the video 

game and the user.  The game types that demand the fastest response times are First-

Person Shooters (FPS), Racing, Rhythm, and Fighting Games, with FPS and Racing games 

expecting 100ms or faster response times [22]. Other games such as turn-based and 

omnipresent management games are much less affected by latencies and perform well 

even with large delays. Figure 1.3 illustrates where additional latency is added to a 

Cloud gaming experience by the network. 
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Local Client

User sends inputs 

Next Game State 
is simulated

Next frame is 
Rendered

User receives new
Game state

Inputs are sent
to Cloud

Rendered frame 
converted to 

encoded video 
stream

Local Client

Video stream sent
To client device

Video stream
Sent to display

Local Cloud

 

Figure 1 3 Example of contributions to latency in Cloud gaming 

  

 The point at which most of the additional latency is added is in the transfer 

between Local and Cloud components.  Specifically, when inputs are sent through a 

network from a Local client to the Cloud process and when the video stream is sent back 

through the network from the Cloud process to the Local client.  A small additional piece 

of overhead can be found in the encoding of the video stream.   
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 While Cloud gaming provides several useful features, such as avoiding 

installation time and allowing users to play on any client, the weaknesses in Cloud 

gaming, such as increased latency and high network traffic, make Cloud gaming a less 

attractive option to many users.  In the next section, I will explore the proposed solution 

of Hybrid gaming which aims to use components of both Cloud and Local gaming to 

improve user experience. 

1.4 Hybrid Gaming 
 

The purpose of this thesis is to examine methods to reduce or bypass the delay 

inherent in the modern Cloud gaming system's use of networks by dividing 

responsibilities between the Cloud and the Local device. We believe that this approach 

can circumvent the extra delay by having critical processes handled locally, and non-

critical processes handled in the Cloud. This does limit the ability for the Hybrid gaming 

method to be used on thin clients, as the user would require a thick client to leverage 

the Hybrid Cloud system.  Given that modern 'thin' clients have significantly greater local 

processing abilities, this is less of a barrier for general users. 

A Hybrid system would in essence be a Local and Cloud system working together 

to share the load, with the time-sensitive critical process working locally and non-critical 

processes working in the Cloud. By sharing these responsibilities, the Hybrid system 

attempts to gain the advantages of both the Local and Cloud paradigms while 

minimizing their weaknesses.  Figure 1.4 illustrates the proposed simulation and its 

components.   
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Local Client

User sends inputs 

Next Game State 
is simulated

Cloud Packages 
Non-critical data 

User receives new
Game state

Non-Critical Requests
Sent to cloud

Cloud Packages 
requested Critical 

Components

Cloud sends Packaged Data
To Local

Final Composite 
Sent to display

Local Cloud

Critical Data Processed
Locally

Local and Cloud 
components 
composited 

together

 

Figure 1.4 Hybrid Game System 

  

 

 

 

 

 

 

 

 



14 
 

 
 

1.5 Thesis Overview 
 

Strategies used in video and music streaming fail to address latency issues when 

applied to Cloud gaming systems.  Current techniques applied to video streaming do 

provide improvements in Cloud gaming.   The primary performance metric, total system 

latency, is still controlled by network latency. This thesis proposes a method of sharing 

the processing requirements of a video game between the Cloud and Local client 

systems to leverage the increasing average power of client devices from personal 

computers to smartphones.  

The Hybrid simulation proposed by this thesis suggests that we perform time-

sensitive processing on the Local client leaving non-time-sensitive processes to the 

Cloud.   With this approach, a degree of latency, the time to send and receive a message 

from the Cloud, can be reduced from the overall system latency. Critical files and 

information can be downloaded to the client device, with the result being that all of the 

core pieces of a game experience can be stored and treated as if the game is run locally.  

This leaves the less sensitive game assets and features being calculated and processed 

on the Cloud.  Our approach aims to provide as close an experience to a Local gaming 

experience as possible while also preserving some of the reduced hardware 

requirements achieved by a Cloud system.  

In this thesis, I will be comparing the results of three simulations.  The first is a 

Local gaming simulation, the second a Cloud gaming simulation, and the third, and the 

final, simulation being the proposed Hybrid gaming simulation.  By comparing the 
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results of these three simulations I aim to test if Hybrid gaming is a viable video gaming 

solution.  

Chapter 2 will discuss the specific details of a general media stream, and the 

technologies that make them possible.  This will cover the common issues, and 

differences, between current online video games and Cloud gaming.  Finally, Chapter 2 

will examine the state of the industry to develop solutions for current models of Cloud 

gaming.  
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Chapter 2 

Background 
 

2.1 Introduction 
 

 In this chapter, we will cover the importance and effect of streaming on general 

media consumers and the techniques used in both multimedia streaming and online 

gaming to provide high-quality user experiences. Examining the effects streaming has 

had on general media consumption allows us to see the effect high-quality Cloud 

Gaming could have on the medium, and the benefits possible through leveraging Cloud 

technologies. To properly understand how to improve Cloud Gaming we have to 

understand the techniques being used in multimedia streaming to provide a fluid 

experience, as well as the fundamental differences between multimedia streaming and 

Cloud Gaming. We will also analyze common techniques in online video game 

experiences for potential solutions to the latency in Cloud Gaming services. Finally, we 

also look at some techniques proposed specifically for increasing Cloud Gaming 

performance.  
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2.2 What is Streaming 
 

Streaming has dramatically changed the way users consume content on the 

Internet [23]. A user is no longer required to obtain a physical copy or install a file on 

their device. Instead, streaming allows users access to almost all media content, rapidly 

and reliably. This discussion on streaming is necessary to our understanding of how 

Cloud Gaming builds on this technology. One of the effects that streaming has had is an 

increase in sales of games being streamed by players [24]. Boosted visibility allows for 

viewers to watch gameplay in an uncontrolled Livestream environment, permitting 

consumers to access hands-on information on gameplay, without direct influence from 

the marketing efforts of either the game’s studio or publisher.  This gives a more 

accurate representation of the game and allows for a more informed purchasing 

decision from the perspective of stream viewers.  Also, when video games, with smaller 

player communities, are acknowledged and played up by a popular streamer, the 

game’s sales have a chance of increasing due to its expanded visibility [24].  One 

example of this is the social deduction game Among Us (InnerSloth LLC, 2018), which 

saw a spike in popularity in the year 2020 due to multiple streamers discovering the 

game during that year [25]. Some games, such as The Jackbox Party Pack (Jackbox 

Games, 2014), have specifically designed features to create a better streaming 

experience such as viewer participation.  

Streaming is the process of packaging, sending, receiving and presenting media 

that is stored on a remote service. Cloud streaming services refer to steaming services 
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made available to users over the Internet.  These services allow for a constant, on-

demand flow of data from Cloud storage to the user, allowing them to consume the 

content when they desire instead of only at a predetermined time.  What makes Cloud 

storage fundamentally different from traditional media acquisition over a network is 

that Cloud streaming, such as video streaming, allows for content to be viewed and 

consumed without the entire file being present.  “Video streaming addresses the 

problem of transferring video data as a continuous stream.  With streaming, the end-

user can start displaying the video data or multimedia data before the entire file has 

been transmitted” [26].  This allows users to access content without having to install or 

download complete files.   

Streamed content is stored in a Cloud service where a user can nearly instantly 

request their desired content. This is then packaged into a useable format determined 

by the style of request, and the content is sent along a network to the requester’s client. 

Most streaming services are designed to work with either thin or thick clients so the 

Cloud service can serve as many users as possible.  The content is split into packets of 

data by the Cloud server and these packets are reassembled into the whole media file 

on the user’s client [21] [27]. Packets of information are typically buffered ahead of 

time, allowing for breaks in the stream of packets to be hidden from the user. Figure 2.1 

shows an example of how a buffer can be used to improve the playback of streamed 

media files. 
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Figure 2.1 Effect of playout buffer on reducing the number of late packets [21] 

 

This allows the client to continuously present the streaming media to the user, 

as long as a buffer of information is present [21] [27]. These systems do not require the 

full media file to be present, but instead aim to have just enough of a media file 

processing the data which has already arrived, giving the client enough time to receive 

the next section of the file. This is why many streaming services have a buffer period 

before the media file begins to play on the Local client. The system buffers enough data 

to be able to package, send, reassemble, and present the remainder of the file without 

pauses or interruptions in the user experience.   

The delay at the beginning of a media stream creates a buffer that allows for 

hiding the download of the next part of a media file. The size of the buffer required 
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depends on multiple factors, such as file size download speed, bandwidth, and the 

variability of these factors. Since download speeds are not always consistent an extra 

amount of room is factored into the buffer. If the buffer runs out before the next piece 

of data can be provided then the media playback either needs to pause and wait for the 

missing files to arrive, or skip to the next currently available section of media.  

As an example, we can look at the time interval between frames to be Δ.  

"Δ is 33 ms for 30 frames / s video... Each frame must be delivered and decoded by its 

playback time, therefore the sequence of frames has an associated sequence of deliver/ 

decode/ display deadlines:  

- Frame N must be delivered and decoded by time    

- Frame N + 1 Must be delivered and decoded by time       

- Frame N + 2 Must be delivered and decoded by time        

- Etc."  

[21] 

 

By adding delay to the beginning of a video or any media stream we can increase 

the time Δ to allow for more space for frames to arrive on time to be used by the client. 

An increased delay also allows for frames to arrive out of order, meaning frames that 

arrive ahead of time are still displayed on time giving the stream more overall time to 

work with. Many current streaming services also store an already encoded version of 
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the media files to avoid having to encode on the fly and decrease the time to transmit a 

frame to the client device. 

To improve efficiency video files on most video streaming services are pre-

encoded and stored in multiple formats [27] [26]. This allows for videos to be stored on 

forward cache server locations which can then be sent to many users. Figure 2.2 shows 

an example of a forward cached media server. 

 

 

Media File

Media Server
Uploaded to 

Server

File Storage

File Converted to multiple
Formats

Forward Cache

Forward Cache

Forward Cache

Commonly Requested
Files moved to 
Forward cache

 

Figure 2.2 Example of forward caching 

  

This allows for all the required files at multiple levels of quality to be sent when 

requested rather than needing to encode on the fly. The level of detail in a file sent 
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along to the user has been selected automatically to best suit the connection speed and 

quality [28]. 

A popular streaming service is YouTube, (Alphabet Inc., 2005) which provides a 

streaming video service, but is also commonly used for podcasts and music streaming. 

The primary advantage of streaming is convenience since it allows a user to access a 

wide variety of content on nearly any client without the need for the media to be stored 

locally. As an example, a user who accesses music through a streaming service can get 

access to their full music library on an Internet connection, without having to store large 

amounts of music files on a client device.  

A disadvantage to streaming services is the quality of the content because 

increasing the quality causes the file size to increase, which makes it more difficult to 

send the file through a Cloud service. One example of this can be seen on YouTube, 

where video files are served in various resolutions from 240p, which contains 426x240, 

102240 total pixels, to 2160p which contains 3840x2160 pixels, 8294400 total pixels or 

approximately 81 times more pixels. This results in 81 times more data needing to be 

moved through the network, assuming there is no compression to properly serve the 

video to a client. YouTube provides a range of video resolutions to allow a user to adjust 

the video they are accessing to either improve the speed at which the content is served 

or allow for the user to trade speed and convenience for improved image quality.  

In this section we discussed the common practical techniques for improving the 

performance of multimedia streams, particularly through ahead of time buffering, 
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encoding and forward caching.  These techniques work well in typical non-interactive 

media streams [21]. In the next section, we will discuss Cloud Gaming, how it is different 

from other forms of multimedia streaming, and how effective techniques for latency 

reduction change. 

 

2.3 Cloud Gaming 

2.3.1 What is Cloud Gaming 
 

In this discussion of Cloud Gaming, we are referring to streaming services 

involving users playing video games as Cloud Gaming in place of the term video game 

streaming. As of this writing, the popular lexicon uses the phrase video game streaming 

to imply the act of watching a presenter play video games on streaming services such as 

Twitch. 

 Cloud Gaming has been an interest of the gaming industry for many reasons, 

particularly as a means of lowering the barrier to entry for new users and expanding the 

user base of video games. This is achieved by removing the requirement to download 

and/or install a full game before playing [18].  

Currently, on modern video game consoles, such as the PlayStation 4 (PS4) (Sony 

Group Corp., 2013) or the Xbox One (Microsoft Corp., 2013), many individual video 

games cost between sixty to eighty dollars and require lengthy download and 

installation times [29] [30]. This means that simply trying a new game is costly in terms 

of both time and money. Cloud Gaming however allows for a game to be played without 
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downloading or installing the content, saving the user both time and storage space on 

their device of choice. Additionally, the cost to use these services commonly occurs 

through a monthly subscription allowing access to multiple games, which can be more 

cost-effective than purchasing a single title. While the exact pricing changes from 

service to service, Cloud Gaming services provide a way to potentially reduce cost and 

lower barriers for both new and enfranchised gamers.  

 While Cloud Gaming has great potential, previous attempts have failed to 

address specific game-related concerns in streaming technology.  Gaming is one of the 

most computationally expensive uses of modern consumer-grade computational 

hardware and places many constraints on the performance of that hardware to create a 

good user experience.  Most importantly, video games are greatly affected by latency 

and responsiveness, two issues current Cloud Gaming services fail to address 

adequately. The latency that Cloud Gaming services introduce can be 85% to 800% 

higher than Local executions [31]. Video game experiences are such that there is 

constant user input which creates a higher focus on responsiveness.  While listening to a 

song through a streaming service only requires the selection or play, pause and skip for 

the vast majority of user engagement, video games typically require large amounts of 

complex inputs from the user at all times.  Even in the best-case scenario network 

latency can introduce noticeable dips in in-game responsiveness which negatively 

impacts user experience.   

To illustrate this disadvantage, when a video game proposes a time-reliant 

challenge to the user, such as dodging an enemy’s attack or performing an input at the 
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correct time, there is a very small window of opportunity for the player to act. The 

additional latency imposed by streaming technologies can either greatly reduce the 

window in which a user has to perform the correct input, or make performing the input 

within the required timing window impossible. If Cloud Gaming cannot provide a good 

user experience, then it loses the ability to bring in new users even with the service’s 

lower barriers to entry.  

2.3.2 Cloud Gaming Advantages 
 

 Current Cloud Gaming services work as a Cloud service, where input is collected 

at the user’s client and then sent along a connection to the Cloud where the game is 

running. The input is processed and a video stream, similar to Netflix, (Netflix Inc., 1997) 

is sent back to the user’s client for display. This method has both advantages and 

disadvantages which we will analyze and discuss. 

The largest advantage to Cloud Gaming is the low computational cost which 

allows for low power and thin clients to be utilized. The collection of user input and 

display of the video stream are comparatively light parts of the processing and are easily 

within the scope of common thin client computational power. Another advantage is that 

this model does not induce any additional development time onto the game's creation, 

as the Cloud runs the game on its system and creates and encodes a video stream that is 

sent along to the user. This means no additional development time is required for the 

creation of the game because the environment that the game will run on the Cloud is 

similar enough to the environment that the game would be processed on a user’s 
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hardware. Therefore, no changes are needed to get the game running on Cloud 

hardware.  

2.3.3 Cloud Gaming Disadvantages 
 

 The largest disadvantage of Cloud gaming is that all inputs have to be processed 

in the Cloud adding a not-insignificant amount of delay between an input being pressed 

and that input being processed by the system. This adds a large amount of operating 

time to the Cloud gaming service and is the main source of the increased latency over a 

locally run process.  

While a focus on methods that allow for the use of thin client machines does 

decrease the barriers to entry further, as potential users do not need to purchase 

additional hardware outside of currently owned devices, it does limit the potential 

techniques that can be used to increase the efficiency of Cloud Gaming services. Some 

of the possible ways to improve a thin client-based system would include routing 

connections to other Cloud devices with a better connection, compression of the video 

stream to move the full stream faster and more efficiently. While these optimization 

techniques do reduce the overhead latency they still run into the issue of having to 

transmit inputs from the thin client to the Cloud for processing.  
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Figure 2.3 Example of typical message transfer through a Cloud gaming system 

 This creates a situation where all actions performed on a Cloud system is equal 

to the time to process input(P) + latency from client to server (L) + latency from server 

to client (S) while a Local system responds in only time P. Meaning the expected 

increase in input latency is L + S which is the largest unavoidable piece of latency. As an 

example of the effects of latency, we can look at the game Street Fighter V (SF5) 

(CAPCOM Co., Ltd., 2016). SF5 is a fighting game where combination attacks are 

performed by inputting specific sequences of commands with precise timing.  One of 
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the smaller timing windows to perform a combination attack in three frames, and SF5 

runs at sixty frames a second 3/60*1000 = 50ms.  Therefore the timing window for a 

three-frame combination attack in SF5 is 50ms. Assuming a user has a very good 

connection of L + S = 20ms a player would have an additional 20ms delay on inputs.  If 

the player uses a visual or sound cue to time their input for the combination attack that 

cue is sent to the player on a 10ms delay from the server then the input is sent to the 

server on a 10ms delay shrinking the timing window from 50ms to 30ms or changing the 

timing from a 3 frame window to a 2 frame window.  This means that each timing 

window is more difficult to perform.  

This problem is also seen when reacting to non-player character (NPC) actions. If 

a user is playing SF5 against an NPC opponent, reacting to visual and sound cues from 

the NPCs actions is required to avoid taking damage or failing an in-game challenge. 

Moves in SF5 can have very low start-up frames, which are the “wind up” animation to 

an action essentially the warning to a player that an action is about to occur. The fastest 

actions in SF5 have four frames (66ms) of start-up. In fighting games, start-up frames 

refer to the frames where a piece of animation is starting but the move has not had an 

active effect.  This gives players time to react to their opponent's choices. Again using 

our L = 10ms and S =10ms a four-frame start-up animation is created on frame one, the 

visuals arrive 10ms later still during frame one of the animation. The player reacts to the 

action of the client which is sent with a 10ms delay. This causes the reaction of the 

player to be delayed by one full frame, making reacting to a move with a four-frame 

start-up require the same reaction time as if the move had a three-frame start-up time. 
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The 10ms delay on server communications is also an unrealistically fast connection in 

most cases and even slowing L+S from 10ms each to 16ms each which removes 2 full 

frames of reaction times, at 64ms total delay a four-frame start-up becomes impossible 

to properly react to for the player.  

Frame 1

NPC Attack begins
On Frame One

Attack hits on 
Frame Five as 

player input was 
delayed

Attack Animation
 Begins on Client
On Frame Two

Player inputs Block 
on Frame Four

Frame 2 Frame 3 Frame 4 Frame 5

Block Command 
from player 

arrives a Frame 
too late due to 

network latency

 

Figure 2.4 Example of effects of latency on user reactions 

 

2.3.4 Effects of Latency in Online Gaming  
 

 Similar situations are commonly seen in online games such as Counter-Strike: 

Global Offensive (Valve Corporation, 201), Valorant (Riot Games Inc., 2020) or Tom 

Clancy’s Rainbow Six Siege (Ubisoft Entertainment SA, 2015). Online games are when 

multiple users connect over a network, either to each other or to a central server to 

participate in a multi-player experience.  This is in contrast to Cloud Gaming, which is a 
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singular user connecting to a Cloud service to play a single-player activity.  Both services 

have to contend with the issues created by network latency, and some solutions from 

online gaming can be applied to Cloud Gaming.  For this reason, a comparison of the 

issues caused by network latency in online gaming applies to Cloud Gaming and will be 

illustrated through the example of Peeker’s Advantage.  

Online First Person Shooters commonly run into issues with network 

connections, one of the most common is known as Peeker's Advantage. Peeker's 

Advantage refers to a reaction time advantage gained from network latency [32]. This 

occurs when the server managing the game knows all locations of all players and has 

sent that information along to all players, meaning a player’s client knows the location 

of all players so it can properly render any information without needing to obtain 

additional data from the server. This can result in a situation where, for example, one 

player is watching a doorway while another player is approaching the doorway to pass 

through it. Since the locations of both players have been sent along to the client when 

the player approaching the doorway moves through it, their client already knows the 

location of the player watching the doorway and can render them without additional 

data needed from the server. The player that was watching the doorway instead needs 

to get an update from the server that a player has moved and then the client can render 

the new player location. This means the player walking through the doorway will be able 

to spot the player watching the door before the player watching the door can spot the 

player moving through it [33].  
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While there are several different ways to try and prevent or mitigate Peeker's 

Advantage, such as buffering incoming data, the best way to combat Peeker's 

Advantage in online games is faster connections [34]. It is an inherent part of client 

server-based online games and adding a client/server relation to a single-player game 

can add similar situations and delays to gameplay that is normally run completely locally 

and has no network latency-related delays or inconsistencies.  

Another Issue faced particularly in peer-to-peer games that require the inputs of 

all players to generate the next game state are the delays caused by waiting until all 

user inputs have arrived before providing the next state. This issue is particularly 

common in Fighting games. Previously games would determine the amount of time 

required to allow for all player inputs to arrive and add a delay to synchronize these 

inputs to arrive at the same time for each player. However this can cause play inputs to 

feel unresponsive or cause the game to pause if inputs are dropped. To address this 

challenge Fighting games have recently embraced the use of the Good Game Peace Out 

(GGPO) library also known as "Rollback netcode" to use predictive techniques to allow 

for a more responsive game feel and provide a more smooth experience for players 

[35].   

Rollback works by predicting the input of a user when it has not arrived in time 

to process the next game state, most commonly through dead reckoning techniques, 

discussed in section 2.5.3. In the case where a predicted input is different than the input 

that arrives the game will in the background rewind to the time where inputs became 

desynced, then replay the game with the corrected inputs to determine if those inputs 
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end up with a new game state or if the predicted game state is correct. If the predicted 

game state and reprocessed game state do not match the reprocessed game state is 

sent to the players as the enforced correct game state. While Rollback does allow for 

predictive processing to be implemented in online games and could be extended to 

Cloud Gaming solutions Rollback and GGPO requires significant development effort to 

implement requiring specific design decisions to allow for it to be integrated into a game 

or retrofitted into games. One example of specific requirements for implementing 

rollback is disconnecting rendering and game state processing, as the game state needs 

to able to be processed quickly in the background without effecting the rendered scene, 

as well as being able to remove potentially lingering graphical effects that are not part 

of a reprocessed game state.  

2.4 Existing Cloud Gaming Services 
 

Cloud Gaming requires a thin client, Internet connection and a Cloud system. In 

current Cloud Gaming systems, this thin client can be anything from a phone to a high-

powered personal computer. Powerful Internet connections have become the main 

bottleneck for Cloud Gaming, with the newest systems requiring not only high download 

speeds but also high bit rates for a Cloud Gaming experience to live up to consumer 

expectations. Systems such as Google Stadia (Alphabet Inc., 2019) have a recommended 

10Mbs connection speed [36] as well as a high amount of data usage per hour, with the 

minimum recommended settings using 4.5GB per hour. Many large games now have 
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playtimes in the fifty hours or above range meaning to play a full game on Google 

Stadia's lowest settings could use 225GB or more. 

2.4.1 OnLive 
 

 OnLive (Lauder Partners, 2009) was one of the earliest Cloud Gaming services 

beginning its service in 2009 [37]. While OnLive was an interesting first look at what 

Cloud Gaming could do, the service was met with middling reviews [38]. OnLive was 

impressive and innovative for the time, but its latency issues caused it to be seen as a 

less viable way to play video games than the competing options on the market, 

specifically home consoles and personal computers (PC). OnLive did allow for gaming on 

completely thin clients, such as smartphones, but unless the user had access to a fast 

network connection, the performance would flounder making it near impossible to 

consider using the system on slow connections. OnLive service ended in 2015 when 

Sony, owner of the current Cloud Gaming service PlayStation Now (Sony Group Corp., 

2014) purchased OnLive's patents [1]. 

2.4.2 PlayStation Now (PS Now) 
 

 PS Now is Sony's subscription-based Cloud Gaming service, aimed specifically at 

streaming games that are normally exclusive to PlayStation consoles, allowing these 

games to be streamed on either a PC or PlayStation without downloads or installation 

[39]. While PS Now has had some success as a Cloud Gaming solution, it typically does 

not offer newer games. Instead, the service focuses on hosting older titles that users 

either want to revisit, but no longer have a copy on the self, or experience for the first 
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time at a lower cost. PS Now also has issues with internet speeds of less than 10 Mbs, 

especially for more demanding games that require an even faster connection to get a 

good quality play session.  This means that even a slight connection drop will end the 

game session which can cause problems [40]. PS Now does provide the benefit of a large 

selection of games to play but does continue to suffer from imprecise controls and slight 

interruptions dropping the entire connection ending a session. 

2.4.3 Google Stadia 
 

 Google Stadia was a recent addition to the Cloud Gaming Space and Google's 

entrance into the Cloud Gaming world. Google Stadia approaches the Cloud Gaming 

pricing model uniquely from PS Now or OnLive. Instead of providing a subscription 

service that allows the user to play all the games on the service, games on Stadia are 

purchased individually, typically for the same price as purchasing a copy of the game 

you can download and play locally. This places Google Stadia in an odd position for 

Cloud Gaming as it features the same issues that PS Now and OnLive experienced, such 

as reduced graphical quality and the occasional input lag or disconnect, without the 

benefit of a reduced price that their subscription services offered. This means that there 

are very few reasons for a player to purchase video games through Google Stadia, when 

they can buy the same title, at a consistently higher quality, for the same price 

elsewhere. Google closed their internal game development studios for Google Stadia, 

which put doubt on the continued support of the service [41]. Those doubts were 

confirmed when Google Stadia was closed down in January 2023 [42]. 
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2.4.4 Xbox Cloud Gaming 
 

 Microsoft has also recently moved into the Cloud ace with their Xbox Cloud 

Gaming beta [43]. Which is an extension of Microsoft's Project xCloud and an addition 

to Microsoft's existing Xbox Game Pass product. While Microsoft's Cloud is  remains 

similar to  previous Cloud gaming solutions, the most interesting aspect of Microsoft's 

venture is the use of a subscription model that is more similar to services such as 

Spotify. The use of a monthly subscription, cost instead of a monetization plan like what 

was seen with Stadia where users had to pay full price for each game, could result in 

Xbox Cloud Gaming being better received by users. This could also lead to users being 

more receptive of performance issues because of the lower cost. Currently in a beta 

release, the list of games available for Xbox Cloud Gaming is limited but Microsoft does 

find themselves well positioned because of an already existing data center 

infrastructure that can be additionally used for the Cloud service. 

2.4.5 NVIDIA GeForce NOW 
 

 NVIDIA has also moved into the Cloud Gaming space recently with the GeForce 

NOW service [44]. This is another subscription based service with a much larger 

selection of games then the current Xbox Cloud Pass service. While the GeForce NOW 

system provides users access to a large set of games, rather than the need to purchase 

each individually, they also permit free access to their game library for short sessions. 

These free sessions have a one-hour time limit and permit users to try the Cloud service. 

Time limits also apply to the paid services, with their Priority Plan limiting sessions to 



36 
 

 
 

six-hours and the Ultimate Plan limiting sessions to eight-hours. These time limits could 

reduce user interest in the system; a six to eight hour session sounds like a long time, 

but it is not uncommon for a game session to spend longer than that as a resulting in 

interruptions to a Cloud session. These interruptions could have large negative impacts 

on the user experience. 

2.5 Previous Research 

2.5.1 Video Compression 

 

Cloud Gaming works by gathering inputs on a Local client and then sending them 

across a network to the Cloud system where the inputs are processed. The next game 

state is then created and sent back to the client and the Cloud system delivers the next 

game state through a video stream. The main bottleneck is the network connections as 

it is involved in both sending inputs and receiving a video stream from the Cloud system. 

A particular focus of research on improving Cloud gaming systems has been on the video 

stream portion. The video stream contributes in terms of input response latency, the 

data transmission cost of using the Cloud gaming system as well as being useful in other 

media streams outside of Cloud gaming.  

The larger the video stream files per frame, the longer it takes for each frame of 

information to arrive, which increases the monetary cost of maintaining that video 

stream. One of the major costs of running a streaming service is transmitting media 

through a network.  Better compression technologies reduce the amount of data being 

transmitted which reduces the cost and improves the performance of media streams. 



37 
 

 
 

These compression techniques can also be used in other video streaming systems 

allowing for research in this area to be used more broadly. 

  Most video and image compression comes from reducing similar colours among 

the pixels in a video frame, omitting parts of the new frame that do not change from the 

previous frame, and removing detail from less noticeable pieces such as backgrounds 

[45] [46]. For example, consider an image of something that is mostly one colour, such 

as a brick wall, we could have the pixels representing that wall be reduced.  Instead of 

potentially hundreds or thousands of pixels per brick in an image, at high levels of 

compression, a brick can be represented by a single pixel. While this would remove any 

texture detail from the bricks making up this wall, it would also greatly reduce the 

amount of data that needs to be transferred per frame of video, reducing costs and 

transfer time. Compression can also be done across frames, such as if an element in the 

next frame is identical to an element in the previous frame, no updates to that area are 

needed and no new data needs to be transferred.  

 Three of the most common encoding schemes for video streams are 

H.265/MPEG-HEVC, H.264/MPEG-AVC and Google's VP9 [47]. Of Primary concern for 

these schemes has been the efficiency of encoding a frame of gameplay into a video 

stream. For a Cloud Gaming service to achieve a good user experience it would have to 

provide a minimum of thirty frames per second video stream of the gameplay to 

compete with the performance from home consoles. This means that those thirty 

frames need to be encoded, transferred and decoded fast enough for the end-user to 
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not have a noticeable increase in latency. Any inefficiencies in the encoding scheme 

could add an overhead of latency per frame encoded.  

While video streaming services such as YouTube and Netflix have the advantage 

of having the complete video file ready at the time the stream is accessed, Cloud 

Gaming streams need to build this video file on the fly. Past work has also focused on 

video encoding because of the cross-discipline potential for these encoder 

improvements, as they can be applied to any web-based video rather than just to Cloud 

Gaming. Improvements in encoding reduce latency by improving video compression, 

lessening the load on bandwidth and improving throughput, meaning more frames of 

information can be transferred through the Cloud gaming system per time slice.   

Video encoding uses movement vectors to store movement between frames 

rather than redrawing an entire frame each time a new one arrives. This technique is 

known as interframe compression [48]. This means that if a person is walking through a 

frame in front of a wall of solid colour, the video is encoded by using the movement 

vectors of the person through the frame while the solid background does not change. 

Videos with high amounts of movement or changes are harder to encode and longer to 

transfer. For example, the appearance of confetti in a video. Confetti, and other small 

moving objects in a frame, can quickly overload an encoder as it is unable to keep up 

with all the movement between frames [49]. Within Cloud Gaming, this issue can be 

found in new complex particle systems and the high amount of activity that happens in 

modern action games. Whether separately or combined, these factors result in 

encoders having a difficult time keeping up with Cloud Gaming streams. So while the 
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improvements in encoding and compression seen in current systems do decrease 

latency, they can, in some cases, degrade video quality to the point of having a 

detrimental impact on user experience. With new improvements on the horizon in 

home gaming hardware, as with the PlayStation 5 (Sony Group Corp., 2020) and Xbox 

Series X (Microsoft Corp., 2020) consoles, there is an expectation for particle systems 

and effects to get more complex, thus further taxing current encoding schemes more 

than ever.  

In Are All Games Equally Cloud-Gaming-Friendly? [50] Lee et al. explore the 

challenges created by Cloud Gaming and the effects of video encoding. They find that a 

game's playability, which they defined as “friendliness”, on Cloud Gaming setups could 

be modelled by comparing the screen dynamics to the input rate required by the game. 

Lee et al. found that many techniques used in “‘traditional’ network games, which 

render graphics on a players' computers, [the] impact on network games can be 

somewhat mitigated by using delay compensations techniques, such as dead reckoning. 

However, such techniques cannot be applied to Cloud games because their functions all 

require game state information, which is not available in Cloud gaming clients." [50]. 

This implies that Cloud Games cannot use all techniques normally found in online 

gaming, and are unable to use techniques used in video streaming, meaning improving 

the performance of Cloud Gaming either requires new techniques or a new architecture.  

  Lee et al.’s approach to determining the friendliness of a game in a Cloud 

Gaming system was by having subjects play nine different games at five different latency 

levels.  Following this, the authors used their findings to create an approximate on how 
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friendly a game will be to a Cloud Gaming environment. The genres of games tested 

were First Person Shooters (FPS), role-playing games (RPG) and action games, with the 

emotional responses of the players, which were measured at various latencies. Lee et al. 

found that there were negative emotions at all levels of increased latency, with different 

games having different baselines of when the player began to experience these negative 

emotions, and that the effect of increased latency was also varied for each game.  

Using the results from these experiments the authors developed a computation 

to measure how friendly a game will be to Cloud Gaming, which they called command 

heaviness.  

                   
               

          
 

 Where screen dynamics is the amount of movement required between each frame and 

input rate is the rate of inputs required by the game. "If a game's commands are mostly 

"heavy," i.e., associated with long and large amounts of screen changes, such as power 

attacks in SM5 [Sangoku Musou 5], the game will be less susceptible to latency because 

the timing of such attack commands is not so critical" [50]. The basic idea is that if an 

input has a large effect on the game state, and is not very input sensitive, the game will 

play well with Cloud systems. 

  Turn-based strategy games would be only lightly affected by Cloud Gaming 

systems as there is no time sensitivity on the inputs and the effects these inputs have on 

gameplay are large. Conversely, FPS games that require quick responses that are 

generally considered "light" commands, would be greatly affected by Cloud Gaming. The 
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authors used command heaviness as a predictor of real-time strictness (or latency 

sensitivity) and found a correlation between command heaviness and real-time 

strictness in games. While this research is based on a small set of games, and the 

classification of games into genres is not perfect, it does provide evidence that 

command heaviness could be a good predictor of how well a game performs on a Cloud 

service.  

 As games improve graphically and aim for even more detailed and realistic 

scenes, the limitations imposed by video encoding will become more pronounced. This 

could result in Cloud Gaming having issues going forward and requiring the use of less 

compressed video to keep up with the increases in graphical quality of games. The 

implication is that Cloud Gaming may provide a lower quality visual performance, as 

games trend towards more graphically complex and chaotic environments which require 

faster and more reliable network connections to provide an enjoyable experience to 

users. This is especially noticeable with particle-effect heavy games and fast-paced 

games, as they create visuals similar to confetti. This can refer to large amounts of small 

objects and lights moving quickly, which is difficult for current encoding solutions to 

properly preserve visual quality.  

These current trends regarding in-game graphics also shift more actions towards 

light inputs, making the game more sensitive to network delays and reducing visual 

quality, both of which have negative effects on user experience. Improvements in video 

encoding would help to balance the effects caused by a shift towards more confetti-like 

visuals and light action inputs, but the main limiting factor will still be network 
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connections and bandwidth. With video encoding being primarily developed for non-

interactive video streaming such as television and movies, improvements specific to the 

issues found in Cloud Gaming remain to be solved. Better encoding would improve the 

user experience in Cloud Gaming but at this time, no solution can remove the quality 

and latency losses caused by a network connection. 

 

2.5.2 Graphics Culling 

 

Graphics culling is a technique that removes graphical details not visible in the 

current scene. One of the most common techniques is occlusion culling, which aims to 

hide polygons that are behind other polygons and scene objects to reduce the render 

load of a scene [51]. By determining if a polygon or set of polygons are visible in the 

current scene, effects, objects, and lighting can be removed from the scene to greatly 

reduce the load on the hardware rendering. This is one of the core techniques that allow 

large worlds to be feasible in technically advanced video games. Something one can 

observe in older games is that they tend to be made up of hallways and rooms, taking 

place in smaller areas which greatly limit sightlines into the distance. This was done so a 

game could easily be divided into small sections that only need to be rendered in small 

numbers [52].  

Consider the 2002 game Metroid Prime (Retro Studios, 2002).  This game was 

made on a series of rooms of various sizes, with distinct doors between each one [53]. 
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While the game world is rather large, very few rooms are rendered at any time with 

load triggers that a player needs to activate before the game loads the next room. When 

a player activates the load trigger to the next area, the game unloads the graphical 

information for the rooms the player is not in, then loads the graphical information for 

the room the player is trying to access. Once the room has been loaded, the door opens 

and allows the play to move into the new area. This keeps the load on the system 

manageable as the player explores a large game world. Though this system hides 

loading screens in the opening of doors, this does lead to small breaks in pacing and 

action on occasion and prevents scenarios where a player can be in one room and see 

into another room. With changes in video games to having more open areas, the player 

now has larger open sightlines. Different techniques have become popular to allow for 

games to move away from the load one room at a time method; a common technique 

being occlusion culling.  

 Most research into improving Cloud Gaming services has focused on improving 

the performance of the Cloud system processing the game, or reducing the size of the 

video stream through compression or visual culling [54]. Hemmati et al. propose an 

approach to cull unimportant or unneeded details from a computer graphic 

environment, specifically to improve render times. This has the added benefit of 

allowing common video compression schemes to further reduce the size of the video 

streams. Moreover, culling is a commonly used practice in video games as well, allowing 

for the removal of any unnecessary rendering [54]. Hemmati et al. propose a system 

that removes superfluous assets and models from a game to reduce the load on the 
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Cloud system, as well as to improve the compression on the video stream. While this 

does achieve some speed improvement, this approach has a greater impact on visual 

quality and stream bit rate. These practices reduce the costs of running a Cloud system 

but do not improve the service noticeably for the end-user.  In some cases, the removal 

of scenery by the system detracts from the end-user experience. Culling assets may 

improve the performance of the Cloud system and the performance of video stream 

compression, but it does not improve the time delay between user input and a response 

from the server in a noticeable way [54].   

Hemmati et al.’s approach found a 2-8% decrease in file size per encoded video 

frame. Their system does have some issues. The first is that it requires game developers 

to mark what elements in the game world are viable to be removed from a scene, and 

under what conditions that element could be removed. The authors propose removing 

elements that serve as obstacles to movement while the player is aiming, as these 

elements are irrelevant to the task at hand. If elements are being added and removed as 

the player’s actions change, this could lead to pop-in which can be distracting to a user’s 

experience. Pop-in is when an asset finishes loading and is added to a scene after the 

user has already absorbed the state of the game world. A common example is trees in 

the distance loading slower than closer assets, thus a bare area in the distance can 

suddenly be covered by a forest. Since the eye is drawn to changes and movement, the 

sudden addition of trees appearing on a landscape can distract the user. This type of 

situation further reminds the user that they are interacting with a video game, which in 

turn draws them out of the experience. 
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2.5.3 Remote Rendering 
 

 An important part of Cloud gaming is the rendering system which can deploy 

various solutions for reducing the latency experienced by the end user. This section will 

cover techniques used for Cloud gaming rendering systems. The first technique is the 

process of rendering the scene remotely and sending an image along the network to 

display on the client computer. This technique is common in Cloud technologies for its 

lower bandwidth requirements and ease of implementation, as well as allowing for a 

thin client [55]. While rendering scenes in this fashion allows thin clients to display the 

game using lower bandwidth than transmitting the assets required for a scene to be 

rendered locally, it is the least responsive of potential solutions. This is because scenes 

delivered to the thin client incur a network delay with responses also being delayed by 

the network. This solution does allow for an easy to implement, high quality image 

stream to be transmitted but adds a large amount of latency which could negatively 

impact the experience. 

 One technique for reducing this latency is Dead Reckoning [55]. Dead Reckoning 

is a technique used to predict the next game state depending on user input and the 

current game state. Dead Reckoning is also commonly used to reduce the appearance of 

latency in online games.  An example of the use of Dead Reckoning would be in a Racing 

game; the speed and direction of the vehicle being piloted by the player is known by the 

game as well as the previous inputs from the player. From this data, the Dead Reckoning 

algorithm can predict the likely next game state. This allows a Cloud gaming system to 

create the next game state images ahead of time and transmit over the network in an 
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attempt to get ahead of the latency. This Solution can cause problems in cases where 

the Dead Reckoning algorithm is incorrect in its prediction; images are either displayed 

incorrectly or the system has to throw the images out and wait for the correct images to 

arrive after a delay. 

  Additionally, while Dead Reckoning is a powerful strategy for Cloud gaming as 

well as Online gaming, it works best in games with a lower amount of possible next 

game states. These include games where the players (and other game entities) next 

position is predictable, such as racing, rhythm and other on-rails type games.  Games 

with a large number of potential next moves, such as character action or open world 

games are more difficult for Dead Reckoning techniques to accurately predict. 

 Pre-fetch strategies can also be used to reduce the latency of a Cloud gaming 

system. Similar to Dead Reckoning, Pre-fetch solutions predict the most likely set of next 

moves by a user and asks for all possible situations to be transmitted [55]. If the 

predictions are accurate, the pre-fetched scene can be displayed and the next scene 

requested. While this approach does lead to greatly reduced latency, it does have many 

potential draw backs. Video games are very intensive programs which render complex 

scenes. Having to render (and transmit) many potential scenes would be a large increase 

in processing time which can be costly in terms of the necessary hardware available on 

the Cloud to perform the required Pre-fetch rendering. This would also significantly 

increases the bandwidth required by the Cloud Gaming System as multiple image 

streams would have to be sent with only one of those streams being used. While Pre-

fetch is a powerful technique for reducing latency, it also increases the cost to run a 
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Cloud gaming system significantly and could potentially preventing the use of lower 

quality network connections. 
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Chapter 3 

Simulation Development 
 

3.1 Introduction 
 

This chapter provides an overview of the three file service models developed and 

compared for the core work of this thesis. This section begins with a discussion on how 

file requests and cache hit events are modelled. We designed three different models to 

represent the three use cases that we envisioned when running video games. The first 

model is the Local System Model, with the client-side running of a video game. The 

second model is the Cloud System Model which captures current Cloud video gaming 

solutions. The third, and final, model is our proposed Hybrid System Model which was 

created to test the performance of a system that uses local caching with the goal of 

gaining some performance advantages over the Local and Cloud-based Systems. We 

begin by discussing file request generation as it is a core component of all three models. 

3.2 File Request Generation 
 

 

 File requests are generated from an exponential distribution to model the time 

between batches of file requests. We use two file request generators to better match 

the two common load cases for video games; the first creates frequent small requests to 

match minute-to-minute gameplay, and frequent loads of small assets; the second 

models the loading screens where gameplay is paused to complete a large file load of 

game assets. File requests from the load screen generator are issued  in batches to 
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better capture the scenario of loading large sets of game information as observed with 

loading screens or level-streaming events [56].  For example, if a game needs to load an 

scene, e.g. a room, all the components of that scene must be loaded with each asset in a 

scene requiring one or more files with each file generating a request. The location of the 

file requested is generated at the same time the batch is generated. File requests are 

processed in order of time created with the earliest created file requests being 

completed first. 

 We assume three potential file sizes, with the file sizes being relative to one 

another and can be adjusted for different runs of the simulation. The sizes under 

consideration are small, (files measured in kilobytes), medium (files measured in 

megabytes) and large (files measured in gigabytes). The file sizes are relative to each 

other rather than being absolute values. Examples of small-sized file requests would be 

text files used for in-game descriptions. For a medium-sized file request, an example 

would be background textures. Finally, an example of a large file request would be level 

topography and three-dimensional models. However, it should be noted that file sizes 

are very game-dependent. 

 Each file size also has a probability that a request for a file of that size being 

generated: these are given by P(small), P(medium), and P(large).  As there was not 

currently a large base of research and subsequent analysis of file sizes in video games, 

we used a cross-section of the games in a personal PC game library and used those as an 

estimate of the file size distribution in video games. See the Appendix for a full list of 

games used. We found that overwhelmingly, the majority of files in the collection of 
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video games analyzed were extremely small, about 4KB or less, these results are 

presented in Figure 3.1 below.   

 The selection of games chosen gives a representation of video games by having a 

mix of smaller independent games, midsized games as well as many games produced by 

large studios. Some files were removed from our data, specifically  BLOB files.  These 

were omitted because they are contiguous collections of binary data made up of 

multiple image, audio and other files [57]. BLOB files are the binary of multiple files 

connected together to make storing them and performing operations to move all of the 

files faster and more efficient, as well as reducing total size on disc for files by 

compressing multiple files together. Because we cannot profile file loads for the games 

in our data set, BLOB file loading cannot be profiled with the data we have.  Since BLOB 

files are a collection of data they are not commonly loaded in their entirety and instead 

specific subsections of a BLOB are requested and loaded.  Because we cannot profile 

how any of the games access and load these files they were all omitted from our data 

set as outliers.  The removal of BLOB files does not negatively affect our dataset as our 

analysis included a wide variety of file sizes reaching 10+ GB in size as shown by the 

large tail in Figure 3.1 and continues to contain files in a wide variety of sizes and from a 

wide variety of games. 
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Figure 3.1 Histogram of File Size Distribution (bin width 5 KB) Y limited to 500 for ease of 
reading size 4KB has 25000 observations 

Using this information, we determined that if a small file was being accessed by 

the models, it would likely be about 4KB in size because the vast majority of the files we 

examined were in this range. This information was used as the basis for designing the 

small file request event generator, which creates requests for small files with a short 

interarrival time. This still left out large loading events in video games, such as loading 

screens, where the data set included a large number of files that were in the MB and GB 

in size. To better capture this we decided to introduce a second separate file generator 

that would produce medium and large file requests (of the magnitude of MB and GB-

sized files). For MB-sized files, we found the majority of files were in the 40MB to 

300MB range (See Figure 3.2). For GB-sized files, we found that the majority of files 

were centred around 1GB ranging down to 0.5 GB and up to 3.0 GB (See Figure 3.3).  
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Figure 3.2 Analysis of MB Size Files (minimum size is 40MB) (bin width 1 MB) 

 

 

Figure 3.3 Analysis of GB Size Files (minimum size 0.5GB) (bin width 0.25 GB) 
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 The analysis of the file size distribution proved challenging; while many 

distributions could account for the large number of very small files in the data set, it was 

difficult to find a distribution that could properly capture the long tail, along with the 

order of magnitude difference between the largest and smallest files. We eventually 

concluded that the closest match would be the Pareto distribution, particularly because 

of its ability to handle large tails in file sets. After performing fit testing with the data set 

in the programming language R, we found the Pareto distribution to be a good match 

for the data. When we applied the Pareto distribution to medium and large file 

requests, we found the majority of the results generated fell near the mean but also 

included the long tail found in video game file sizes. 

 The Pareto distribution models used in our research were based on the same 

data set that was used to generate Figures 3.1-3.3. Upon deciding on the Pareto as the 

distribution to use for our model we performed a parameter estimation for the Pareto 

distribution using our data set. This resulted in a Pareto distribution for the medium files 

with a mean centred at 40 MB and a shape of 0.9137, and a Pareto distribution for the 

Large file requests with a mean of 518 MB and a shape of 1.395. These distributions 

were then used for all medium and large file request generations for our three models. 

The Pareto's long tail being able to create infrequent very large files while also matching 

the shape of the files we found in our analysis of real game file sizes made it a great fit 

for our file generators.  
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3.3 Local System Model 
 

 We begin with a discussion of our Local System Model which has two storage 

locations that are utilized when a file is loading  (shown in Figure 3.4).  There is both 

short-term storage (RAM) and long-term storage (Hard Drive) that model the available 

storage in a local gaming setup. 

Long Term Storage 
(Hard Drive)

Short Term Storage 
(RAM)

Local

Client

 

Figure 3.4 Local simulation Overview 

 

  When a file request is generated, it is either determined to be a cache hit, (the 

file request is in short-term storage), or a cache miss, (the file request is in long-term 

storage). In all Models, the storage locations are implemented as priority queues, that 

prioritize the earliest created file request. As the oldest request for a storage location is 

served first this created a First in First out(FIFO) system for each storage location. The 

priority queue then calculates the file request's time in the system and records that 

information for all file requests moving through the system.  The short-term and long-

term storage have a performance relative to each other. The short-term storage is the 
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faster of the two and can complete the service of a  file request faster than the long-

term storage. The time that a storage component takes to process a file request through 

the system is: 
                 

              
. This gives us our service time for a file in all models as a 

linear relation between the file transfer speed of the storage location and the file size. 

Both storage locations can move data independently. The storage components in all 

three of our models are implemented as priority queues, which we prioritize by file 

request arrival time. The Model calculates how long it would take for a file to be 

processed and then move the file out of the system, each file request's time in the 

system is recorded for analysis. This is done by using time slices where at the beginning 

of each time slice the file request at the front of the queue is checked using 

                 

              
 to see if it can be completed in the current time slice.  If a file request can 

be completed in the current time slice it is completed marked with a completion time 

and moved to the client, if a file request cannot be completed within the time slice it is 

marked as partially complete and placed at the front of the queue to be addressed in 

the next time slice. When a file request is completed in less time than a full-time slice 

the remainder of the time slice is applied to the following file request, continuing 

through the queue until the entire time slice is used.  Neither the short-term nor long-

term storage components factor in network latency since all components are local to 

the client. 
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3.4 Cloud System Model 
 

 The Cloud System Model has two storage locations that are accessed for file 

loading: Cloud-based short-term storage (conceptually similar to RAM) and Cloud-based 

long-term storage (conceptually similar to Hard Drives) shown in Figure 3.5. As with the 

Local System Model, both storage locations have an access time, however, Cloud-based 

storage would also include network latency.   

 

Long Term Storage 
(Hard Drive)

Short Term Storage 
(RAM)

Cloud 

Client Delay Queue

 

Figure 3.5 Cloud simulation Overview 

 



57 
 

 
 

Network latency is modelled using a delay queue, where by all file requests that 

move through the network are also passed through the delay queue which adds to a file 

requests time in the system. This behaviour is similar to the Local System Model 

because current Cloud-based gaming implementations are constructed by connecting to 

a Local system via a network. 

 
 

3.5 Hybrid System Model 
 

 The Hybrid System Model has four storage locations that are accessed for file 

loading (shown in Figure 3.4); Local short-term storage (RAM); Local long-term storage 

(Hard Drive); Cloud-based short-term storage (conceptually similar to RAM); and Cloud-

based long-term storage (conceptually similar to Hard Drive). 



58 
 

 
 

Long Term Storage 
(Hard Drive)

Short Term Storage 
(RAM)

Cloud 

Delay Queue

Long Term Storage 
(Hard Drive)

Short Term Storage 
(RAM)

Local

Client

 

Figure 3.6 Hybrid simulation Overview 

Network latency is also present in the Hybrid System Model for requests that 

involve files stored in Cloud locations. The Hybrid System Model assumes that files 

loaded into Local short-term storage or Local long-term storage are the pre-loaded and 

cached files, while the files loaded from the Cloud-based storage sites are the result of 

cache misses.  
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 When a file request is Local, no network latency is incurred. In this situation, a 

file request from both short-term and long-term storage would be pre-cache hits in our 

system with the short-term storage serving file requests faster than the long-term 

storage mirroring operation of the Local System model.  

 When a file request requires a file from Cloud storage, a delay queue is used to 

model a network latency. The Cloud-based short-term stores files that are pre-cached 

on the Cloud system, while a Cloud-based long-term request is a cache miss for files on 

the Cloud system, this mirrors the Cloud Model. The goal of this model is to evaluate a 

system that shares the load between Local and Cloud hardware permitting time-

sensitive user inputs to be handled on the Local hardware while less time-sensitive 

requests are handled in the Cloud. This would allow the model to perform actions that 

are most greatly impacted by increases in latency, completely locally and bypassing the 

most common impacts of latency on the users experience.  The Hybrid Model aims to 

provide a performance improvement by leveraging resources from both Local and Cloud 

locations. 

 

3.6 Model Verification 
 

 To ensure that the simulation models produced valid results multiple stages of 

testing and verification were used. The following section outlines the issues found in the 



60 
 

 
 

simulations and how they were corrected, as well as any assumptions that were made 

for reducing computational complexity. 

 Packet loss is omitted from the Cloud Model. While packet loss does affect Cloud 

Systems, the primary focus of our research is in reducing average input latency and file 

load performance. Additionally packet loss in the Cloud system does not affect the file 

transfer speeds since all of those transfers are handled by the Cloud server.  

 On the user side, packet loss is normally only noticeable in a video stream when 

multiple full frames are lost and the systems in place for current video streaming 

technology hide most packet losses from the user [57]. Packet loss can also be 

noticeable to the user if an input is lost. The impact of lost user input can be lessened by 

sending multiple copies of the same input, which would mean that multiple adjacent 

packets need to be lost in a row to prevent the input from arriving. If enough packet 

losses have happened to be noticeable to the user, then the system's quality of service 

will be low enough that users will likely stop using the system [58].  

 Packet loss is also omitted from the Hybrid Model as the effect of packet loss is a 

slight increase in total file transfer time based on a probabilistic amount of packet loss. 

Since the model already uses a distribution of total file transfer time, adding packet loss 

to the model adds an extra layer of complexity without having a noticeable effect on the 

results of the model. 

 The file request generation process was chosen to be the same for the Local, 

Cloud and Hybrid models. This was because most current Cloud gaming systems are very 
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similar to Local systems in implementation with the addition of a network delay for user 

inputs and results. The metric we were primarily interested in for this research, mean 

file transfer time, is the of time it takes for game files to be transferred to a location 

where the game system can utilize those files.  This means that for models operating 

over a network, actions such as creating, compressing and transferring a video stream 

are not factored into model analysis. The Network in our Models is represented by a 

delay queue, adding a network delay to all file requests that are transmitted along the 

network. This delay queue is handled as a FIFO queue and adds a set amount of delay to 

all files transmitted along the Network. 
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Chapter 4 

Results 
 

4.1 Introduction 
 

As discussed in Chapter 3, we have created three models to examine streaming 

systems for Cloud gaming: Local, Cloud and our proposed Hybrid approach. In this 

chapter, each of these models will be tested against twelve different scenarios factoring 

in; changes to file size frequency, cache hit miss rate, and file request interarrival time. 

We will discuss the results of each model, how they were impacted by the changes to 

input parameters, and how the models relate to one another. 

 The first parameter that we will investigate is the interarrival time of file 

requests. We use two scenarios: a short interarrival time (    ), and a long 

interarrival time (    ). This permits us to evaluate how each model performs as the 

interarrival time between file requests decreases. 

 The second parameter to be varied is the file size frequency, where these values 

are determined from our analysis in Chapter 3. We use a Pareto distribution for 

generating file sizes for the large and medium file requests. Let    be the probability of 

requesting a large file, let    be the probability of requesting a medium-sized file. 

The three scenarios we used for file size were: 1) High Frequency of Medium File 

Size Requests where         and       , 2) Balanced Frequency of Medium and 

Large File Size Requests where        and       , and 3) High Frequency of 

Large File Size Requests where        and       . Note that the number of 
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small file requests generated is not affected by changing this parameter. Small file 

requests are generated independently with their own separate file request generator. 

The rate of small file request generation is consistent across all cases for all models. All 

Models used the same file size distribution as we were primarily interested in file 

transfer speeds to move files to locations where the system can generate the next game 

state rather than transmitting image streams for the Cloud and Hybrid models. 

The final parameter considered for the models is the cache hit rate. We let    be 

the probability of a cache hit and examine two cases:       , and        . These 

higher cache miss rates were used in our experiment as less optimal system operation 

was a primary performance concern of our research.  

Using these various parameters, we end up with twelve Model Test Cases: 

 Table 4.1 Model Test Cases 

 

 
 

 

Model Test Case (short hand)             
SFBH                               
SFBM                             
SFLH                              
SFLM                              
SFMH                             
SFMM                             
LFBH                                
LFBM                              
LFLH                              
LFLM                              
LFMH                             
LFMM                             
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 Model results are measured in two ways, mean file transfer time and 

performance consistency as seen through interquantile range (IQR) values.   

 Mean file transfer time is the mean of time taken for a file to be transferred (i.e. 

the time it is requested until the time it is delivered). The lower the mean file transfer 

time, the faster the system can perform. A faster file loading time results in a higher 

quality user experience, typically demonstrated by faster loading screens and reduced 

pop-in. For our analysis we use a generic time unit for our mean file transfer time as we 

are interested in the relative performance between models rather than the absolute 

performance of each model. 

 The other important result of interest is performance consistency, which is based 

on IQR. In gaming, a consistently performing system is a much better user experience 

than an inconsistently performing system. In particular, consistency is experienced and 

perceived through input latency. In fact, game performance that has a consistently 

longer input latency would provide a better user experience compared to games that 

only intermittently experienced periods of longer input latency. Inconsistent 

performance changes are much more noticeable to a user than consistent game 

performance.  This is analogous to driving on a highway through a large city. If you can 

drive completely through at a consistent speed, the driving experience is better than if 

you have to speed up and slow down multiple times, even if the consistent speed is 

lower than the maximum speed limit. Smaller IQR values demonstrate greater 

consistency since there is less difference in the majority (50% of all results) of mean file 

transfer times from the median mean file transfer time of a model. This means that a 
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model with a larger IQR has less consistent performance than a model with a smaller 

IQR value. 

4.2 Local Model Results 
 

 The first of the three models we will be discussing is the Local Model. The Local 

Model will provide the baseline performance for both latency and file loading. The Local 

Model represents local game systems that are considered specialized hardware. Notable 

examples of these include the PlayStation or Xbox gaming consoles, as well as 

consumer-grade personal computers. In this section, we investigate the performance of 

the Local Model by examining the various test cases mentioned in Section 4.1.   

The performance of Local Model by test case is presented in Figure 4.1. This 

figure illustrates the Local Model's performance by case. 

 

Figure 4.1 Performance by Case in Local Model 
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 Interestingly, the Local Model performed most inefficiently in terms of mean file 

transfer time with the LFMM case. This could be a result of higher variability in 

performance with a high cache miss rate as other test cases performed as expected. 

Observing the overall performance of all test cases for the Local Model, we observe that 

having a high cache miss rate is the largest predictor of a higher mean file transfer time 

and as such, the most accurate predictor of poor performance in the Local Model. 

 We now move on to examine the three input parameters introduced in Section 

4.1. We start with file interarrival time where we will compare the scenarios of      

and     . The results are shown in Figure 4.2 where we compare the mean file 

transfer times for the Local Model for      and     . 

 

Figure 4.2 Comparison of Mean File Transfer Time in Local Model for Short and Long File 
Request Interarrival Times 
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 Our results show that on average, cases with a shorter interarrival time achieve 

inferior performance to cases with a longer interarrival time. This follows directly from 

the fact that a lower file request interarrival time will lead to an increase in the number 

of file requests which results in an increase in the amount of load placed on the system. 

The λ = 10 scenario results in a 15% higher mean and a 72% higher median file transfer 

time over the λ = 20 scenario. We can conclude from these results that file interarrival 

time has a significant effect on the performance of the Local Model. There is also a 

significant effect on the variability in the file transfer time: the IQR for      is 214.37 

while for      it is 145.05 (a 32.34% lower value). The IQRs are of particular interest 

for our scenarios because a smaller IQR represents a more consistent performance. We 

see an increase in both the file transfer times and the IQR values in the λ = 10 scenario 

because of an increased time spent waiting for all file requests regardless of file size. 

The reduced time between file request arrivals gives the model less time to move 

through all current requests before more file requests arrive and creates more 

situations where a large file request prevents many small file requests from being 

completed. The IQR increase also tells us that this creates more inconsistency in file 

transfer times as a string of small file requests can be served quickly while the arrival of 

a large file request negatively impacts the mean file transfer time of multiple requests.  

 The next parameter we evaluate for our Local Model is the proportion of the file 

sizes being requested. We will consider three scenarios: 1) there is a small number of 

large file requests, 2) there is a balanced number of medium and large size file requests, 
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and 3) there is a large number of large file requests. The primary effect of these 

scenarios is to change the time to service a file request rather than a change in the total 

number of file requests as seen with the previous parameter. This implies that while the 

average number of file requests in the model is similar for all three scenarios, the large 

file requests require more work and as such, should decrease the performance of the 

system. We can observe the results in Figure 4.3 for the Local Model. 

  

 

Figure 4.3 Comparison of Mean File Transfer Time in Local Model for all File Size Frequency 
Scenarios 

 

 From these results we can observe that as the size of the files requested 

increases, so does the mean file transfer time. This demonstrates that when the 

majority of file requests are not for large files, the mean file transfer time is smaller. 
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When a large percentage of file requests are for large files, the mean file transfer time 

increases and this increase is consistent across all of our scenarios:    = 20% where 

most files requested are medium sized,    = 50% where a balanced number of medium 

and large files are requested and    = 80% where the majority of files requested are 

large. Numerically, this is captured in the 43.5% percent increase between          

and         scenarios, as well as a 13% percent increase between the        and 

       scenarios. We can see from these results that when the majority of file 

requests are medium the model performs the best and moving to a 50% of file requests 

being large gives us our most significant decrease in performance, continuing to 

increase the number of large file requests impacts the mean file transfer times less as 

seen in the only 13% increase in mean file transfer time from the 50% to 80% scenario. 

The decrease in mean file transfer time performance from the 20% to 50% scenario is 

likely from two aspects; a) more time is being spent waiting for small and medium files 

to be transferred while waiting for large files to be processed (grocery analogy) and b) 

an increase in mean file size which leads to an increase in time to transfer each file. The 

smaller increase in mean file transfer time is likely from a small increase in the minimum 

time that files take to transfer. 

Now concerning the IQRs, the        scenario has a value of 122.38, the 

       scenario has a value of 154.86, and the        scenario has a value of 

232.18. This gives us a 26.5% increase in the IQR between the        and        

scenarios and a 49.9% increase in the IQR between        and       . We 

suspect that the larger increase in IQR between the        and        test 
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scenarios come from larger file requests not only taking longer to process individually 

but delaying the system from moving onto new file requests, both increasing the time 

file requests spent waiting and the time file requests spent processing. The increase in 

IQR from the 20% and 50% scenario follows the increase seen in the mean file transfer 

times but interestingly the increase in IQR from the 50% to 80% is larger than the 

increase in mean file transfer time seen from the 50% to 80% scenario. This is likely 

because of an increase in the inconsistency of performance for small files that end up 

waiting more often for large file requests to be processed. 

 The final subset of experiments we conduct for the Local Model is with varying 

the cache hit rates. A high cache hit rate value indicates a scenario where files are pre-

cached into fast access storage which should significantly cut down on the time to 

transfer a file to the user. A cache miss is where a file is stored in a distant or slow 

access memory which impacts the speed at which a file can be sent to the user. In Figure 

4.4, we compare the mean file transfer times for the Local Model using a high cache hit 

rate (      ) and a low cache hit rate (      ). 
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Figure 4.4 Comparison of Mean File Transfer Time in Local Model by Cache Hit Rate 

 

 We observe that based on medians, there is a 262% difference in the file transfer time 

between the high and low cache rate scenarios. The cache hit rate seems to have the greatest 

impact on our mean file transfer time performance metric. This makes sense as a much 

larger percentage of file requests are using the much slower long term storage, which 

greatly decreases the throughput of files through the system. As for the IQRs, we find a 

value of 53.90 when       , and a value of 155.27 when       . This represents 

a 188% increase in IQR. The cache hit and miss rate is the largest contributor to the 

performance of our Local Model in terms of mean file transfer time. Additionally, the 

IQR results show a high cache hit rate leads to a significantly more consistent model 

performance. 
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4.3 Cloud Model Results 
 

 The second of the three models we will be examining is the Cloud Model. This 

model represents the current video streaming methods used in Cloud gaming and is 

expected to have a similar, but slightly decreased, overall performance to the Local 

Model. This is because the current Cloud solutions for Cloud gaming have very similar 

hardware to that used in Local Model solutions.   

 Of the results for the performance of the Cloud Model are presented in Figure 

4.5 for the twelve test cases. The Cloud Model performance is in line with our 

expectations; they follow closely the trends seen in the Local Model. This is expected 

because the underlying design is very similar between the Local and Cloud Models.   

 

Figure 4.5 Performance by Case in Cloud Model 
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The Cloud Model performed worst in the SFLM case which follows the trends 

shown in the Local Model that cases with a higher amount of inconsistency in file 

requests, in this case with more file requests arriving closer together and with a higher 

chance of a cache miss, perform worse overall compared to the more balanced file 

arrival cases seen in LFMH, LFBH and LFLH cases. 

We will begin our more detailed examination of the Cloud Model performance 

with file request interarrival times. In Figure 4.6, we plot the Mean File Transfer Time 

against Interarrival time for      and         

 

 

Figure 4.6 Comparison of Mean File Transfer Time in Cloud Model for Short and Long File 
Request Interarrival Times 
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 We see from Figure 4.6 that as file interarrival time decreases the mean file 

transfer time increases. This is caused by an increased amount of files waiting in a queue 

to be processed. The results from the lower file interarrival time (    ) were  36.62%  

higher in mean file transfer time than the results with the larger interarrival time 

(    ). The IQR for the two test scenarios are not substantially different for the 

     scenario the value is 192.22, while for      , the result is 177.37. This 

illustrates that while the long file interarrival time scenarios have shorter mean file 

transfer times, the consistency of performance shown by IQR values does not differ 

substantially between the test scenarios. Interestingly the difference in the IQRs is 

smaller than in the Local Model which could be a result of the additional overhead 

added to file transfers by having to pass through a network. This would raise the lower 

file transfer times but the large file transfer time would not increase significantly, 

causing a smaller difference in IQRs. 

 As with the Local Model, the next experiment (results shown in Figure 4.7) 

examines the three scenarios based on varying proportions of file sizes: 1) a small 

number of large file requests (      ), 2) a balanced number of medium and large 

file requests (      ), and 3) a large number of large file requests (      ).   
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Figure 4.7 Comparison of Mean File Transfer Time in Cloud Model for all File Size Frequency 
Scenarios 

 

As shown in Figure 4.7, as the proportion of the larger files being requested 

increases, the mean file transfer time also increases. This is demonstrated by the 41.4% 

increase in median file transfer time between the results for        and       . 

There is a further 32.6% increase in median file transfer times between        and 

      . The Cloud Model follows the Local Model in seeing the largest increase in 

mean file transfer time between the 20% and 50% scenarios, interestingly the Cloud 

Model is more impacted by the change from the 50% to 80% scenarios. This is most 

likely due to an additive combination of the increase in delays in file requests moving 

through a network and the increased average size of a file requested.    
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In the final subset of experiments we conduct on the Cloud Model we vary the 

cache hit rate. Displayed in Figure 4.8 is the mean file transfer time performance 

between a high cache hit rate          and a low cache hit rate        ).   

 

Figure 4.8 Comparison of Mean File Transfer Time in Cloud Model By Cache Hit Rate 

 

 In the scenario with the higher cache hit rate (      ), the IQR is 46.14 and 

tends to perform substantially better than the scenario with a lower cache hit rate 

(      ). For the scenario where       , the IQR is 114.20, which is a 147.5% 

increase over       . The low cache hit rate scenario also has a 312.4% higher 

median file transfer time. The large increase in mean file transfer time for the        

scenario likely comes from the Cloud Model having to not only wait for a file transfer on 

a cache miss but also the additional network delay resulting from having to access the 
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correct locations to retrieve the requested files. Overall, the cache hit rate seems to be a 

good predictor of performance in the Cloud Model. 

4.4 Hybrid Model Results 
 

 The final model we will analyze is our proposed Hybrid Model for a Cloud gaming 

system. This model is different from the Local and Cloud Models as it contains multiple 

locations from where files can load. We are particularly interested in how this model 

responds to the various test cases as good performance could indicate a possible 

solution for enhancing the user experience of Cloud Gaming. 

 In Figure 4.9 we examine the performance of the Hybrid Model for the twelve 

specific test cases. 

 

 

Figure 4.9 Performance by Case in Hybrid Model 
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 Our initial observation is the performance of the Hybrid Model seems to follow 

the trends found in both the Local and Cloud model. Scenarios that performed well in 

both Local and Cloud models continue to perform well in the Hybrid Model showing that 

the contributing factors to model performance are similar between all models. 

Interestingly the Hybrid Model did not see large performance decreases until reaching 

the worst performing scenarios from the Local and Cloud models (e.g. scenarios with 

larger files with lower cache hit rates). 

 We now move on to the more detailed analysis of the Hybrid Model with an 

examination of the impact of varying the file interarrival times (    ,     ). The 

results are shown in Figure 4.10. 

 

Figure 4.10 Comparison of Mean File Transfer Time in Hybrid Model for Short and Long File 
Request Interarrival Times 
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 Observing the results, we can see that there is a large difference in performance 

between       and     . The higher file request interarrival time (    ) has a 

mean file transfer time which was 93.2% faster than the system with the lower file 

request interarrival time (    ). The IQR for      is 38.29 and for     , the IQR 

is 19.37. While both scenarios have small IQR values, the IQR for      is 97.6% higher 

than that of the     . We conclude that a decrease in time between file requests 

does significantly increase the time waiting to be processed causing large increases in 

both the mean file transfer time and IQR.  

From Figures 4.2 and 4.6, we can observe that the mean file transfer time for the 

Hybrid Model is significantly lower than the mean file transfer time of the Local and 

Cloud Models. This is likely because the Hybrid Model has two file transfer locations, 

avoiding the bottleneck of a single file transfer location as is present in the Local and 

Cloud Models. When one file transfer queue is delayed in the Hybrid Model because of a 

backlog of rapidly arriving file requests, the second queue may be unaffected and can 

deliver file requests without a significantly increased waiting time. When a backlog 

forms in the Local or Cloud Model, this affects all files waiting to be transferred and has 

a much greater impact on both the mean file transfer time and the IQR. The Hybrid 

Model has significantly lower mean file transfer times than the other two models, 

however, increasing the frequency of arrivals still has a notable impact on performance. 

While the Hybrid model has an increased ability to process file requests, overall 

performance is still negatively impacted when a backlog of file requests forms. 
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 We now examine the effect of the proportion of file size has on the performance 

of the Hybrid Model. As before, we examine three choices: (1) a small number of large 

file requests,       , (2) a balanced number of medium and large file requests, 

      ,  and finally (3) a high number of large file requests,       . The results 

are presented in Figure 4.11. 

 

Figure 4.11 Comparison of Mean File Transfer Time in Hybrid Model for all File Size Frequency 
Scenarios 

 

 We found that the impact on the performance of the proportion of files sizes 

(  ) is less than with the file request interarrival time ( ). For mean file transfer time, 

the difference between        and        is 35.1% while the difference 

between        and        is only 18.2%. The        scenario has an IQR of 

27.98, the        scenario has an IQR of 35.00, and the        scenario has an 
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IQR of 28.81. The IQR values increased by 25% between the        and       , 

but decreased by 17.6% between        and       . The similar ranges, as well 

as a decrease in range size from balanced to large scenarios, lead us to believe that file 

size proportions do not have a significant effect on the Hybrid Model's performance. We 

observe that the greatest reduction in performance occurs between the        and 

       scenarios. This most likely occurs because the waiting time for the results are 

not significantly increased from the        to         scenario. The reduction in 

IQR when moving to the        is interesting and likely caused by an increase in the 

shortest length of time for a file transfer to occur without seeing a significant change in 

the longest lengths of time files take to transfer. This likely occurs because smaller files 

interspersed amongst larger files are taking longer to complete due to increased waiting 

times while larger files are being processed. Essentially this causes the range of file 

transfer times to narrow decreasing IQR while increasing mean file transfer time. 

 The final results we present for the Hybrid Model involve the effect that the 

cache hit rate (  ) has on mean file transfer time. In Figure 4.12 we examine two 

scenarios, a high cache hit rate (      ) and a low cache hit rate (      ). 
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Figure 4.12 Comparison of Mean File Transfer Time in Hybrid Model for High and Low Cache 
Hit Rates 

 

 We found that a high cache hit rate seems to have a moderate impact on mean 

file transfer time. There is a 46.52% increase in median times between the high hit rate 

and the low hit (high miss) rate scenario. The IQRs were also greatly affected by cache 

hit rate, with the        scenario having an IQR of 21.93 while the        

scenario has an IQR of 40.03. This is an 82.5% increase in IQR between the two 

scenarios. The increase in mean file transfer time is as expected and it follows the 

results of the Local and Cloud Models. We see that cache hit rate is the largest predictor 

of IQR in the Hybrid model, a lower cache hit rate greatly widens the times taken to 

serve files. The higher number of file transfer times at each end of the speed spectrum 

(shorter and longer) gives a greater variation in performance that is seen in the large 

difference in IQRs for each cache hit scenario.   
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4.5 Comparison of Model Results 
 

 The final results were interesting with the Local and Cloud Models performing as 

expected relative to each other. Both the Local and Cloud Models responded similarly to 

changes in cache hit rates, file interarrival times, and file size variations. The Cloud 

Model performed slightly worse than the Local Model overall, largely due to the time to 

send data through a network. From the results across all 12 test cases, the median file 

transfer time for the Local Model is 115.93, while the median time for Cloud Model was 

124.4, resulting in a 7% degradation in performance from the Local to the Cloud Model. 

The overall difference between the performance of the two models is small with the 

main difference being attributed to the additional time required for transmitting files 

through a network.  

The performance of the Hybrid Model was especially noteworthy. The Hybrid 

Model responded well to changes in cache hit rates, file interarrivals and file sizes with 

less variation in mean file transfer time compared to both the Local and Cloud Models.   
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Figure 4.13 Comparison of Mean File Transfer Time for the Test Cases 

  Figure 4.13 presents the results for all three models for the 12 test cases. In all 

test cases, the Hybrid Model outperformed the Local and Cloud Models when it comes 

to mean file transfer time. The Hybrid Model had a median file transfer time of 42.45 

across the 12 test cases which is a 63.00% decrease in the mean file transfer time 

compared to the Local Model, and a 65.87% decrease compared to the Cloud Model. 

We feel that the reason for the Hybrid Model's improved performance can be correlated 

to the bottlenecks imposed in the Local and Cloud Models. The Local and Cloud Models 

only have one path for files to move through the system. While the Hybrid Model has 

two paths that share the load of files. Thus, the Hybrid Model results in a higher 

throughput of files in the system and a large portion of the performance increases can 

be attributed to this increase in resources.   
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Another interesting observation from our performance analysis is the Hybrid 

Model performed better overall twelve scenarios with less variation. This is best 

illustrated in Figure 4.14 where we use a Violin Plot to show the mean file transfer times 

for all 12 test cases for each of the three models. The Hybrid Model shows a 

concentration of values falling within the lower range of mean file transfer time which is 

represented in the graph by the wide base in the violin shape of that model. 

 

Figure 4.14 Comparison of Mean File Transfer Time by Violin Plot for all Models 

 

The Local and Cloud Model plots are similar with a slight increase in the results in the 

higher mean file transfer time for the Cloud Model compared to the Local Model (which 

can be attributed to network delay). Figure 4.14 does show a stark difference between 

the Local and Cloud Models compared with the Hybrid Model. The Hybrid Model has the 
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vast majority of its mean file transfer times in the lower fifth of all performance and 

overall has much higher consistency in mean file transfer times for all cases. The Hybrid 

Model shows a significant decrease in the mean file transfer time across all test cases. 

  This increase in consistency is particularly noteworthy under cases with an 

expected higher amount of variations in file transfer time, as it shows that the Hybrid 

Model is more consistent in cases that tended to have high IQRs in the Local and Cloud 

Models. This is demonstrated by the concentration of results in the bottom section of 

the Violin Plot, compared to the evenly distributed results seen in the Local and Cloud 

Model plots. These performance characteristics could potentially provide not only a 

better user experience than current Cloud technologies, but also potentially have a 

more consistent performance under less-than-ideal networking capacity. This is because 

of the Hybrid Model’s ability to perform faster file transfers throughout variable 

conditions and would allow the Hybrid Model to better address current Cloud gaming 

issues and potentially expand the availability of Cloud gaming to users with lower-end 

network capabilities. 

 

4.6 Summary 
 

 The Local Model is our baseline performance for gaming solutions and 

performed within our expectations. Overall, for all test cases the Local Model has an IQR 

of 164.88 and an average of 115.93 for the median file transfer time. As illustrated in 

Table 4.1 the Local Model performed best in cases LFBH and LFMH with very small 
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differences between the performance. The worst performances for the Local Model 

were observed in test cases SFLM and LFMM. 

 

Model Test Cases Mean File Transfer Time Total Observations 

SFBH 130.18 1883738 

SFBM 289.07 1771816 

SFLH 105.22 1887910 

SFLM 362.48 1769790 

SFMH 74.94 1881607 

SFMM 287.82 1772925 

LFBH 38.57 1594304 

LFBM 204.99 1592166 

LFLH 51.98 1592830 

LFLM 249.44 1596238 

LFMH 38.93 1592404 

LFMM 504.1 1592676 

 

Table 4.2  Mean File Transfer Time for the Local Model by Test Case 

 

 The Cloud Model performed very similarly to the Local Model and again was 

within our expectations as the technology that powers a Cloud gaming solution is 

currently very similar to a Local gaming solution. The Cloud Model performed slightly 

worse in most cases than the Local Model, which can be attributed to the delays found 

from having to utilize a network connection. The Cloud Model has an IQR of 178.84 and 

a median file transfer time of 124.4, which is a decrease in overall performance when 

comparing it to the Local Model. As illustrated in Table 4.2 the Cloud Model performed 

best in the LFBH case and the LFMH case with very small differences between the 

performance.  
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Model Test Cases Mean File Transfer Time Total Observations 

SFBH 84.15 1885351 

SFBM 346.91 1771460 

SFLH 110.23 1879261 

SFLM 365.97 1771316 

SFMH 62.96 1883680 

SFMM 216.17 1768772 

LFBH 38.47 1590926 

LFBM 232.4 1591254 

LFLH 45.78 1593792 

LFLM 273.92 1594000 

LFMH 33.91 1592533 

LFMM 243.64 1590133 

 

Table 4.3 Mean File Transfer Time for the Cloud Model by Test Cases 

 

This coincides with our understanding of current Cloud infrastructures being 

slightly modified versions of the Local solutions. Cache hit rate continues to be the best 

predictor and largest influence on case performance, as all cases with a high cache hit 

rate performed substantially better than their low cache hit counterparts. 

  The Hybrid Model gave some surprising results with an IQR of 35.07 and a 

median file transfer time of 42.45. This points toward the large potential performance 

gains to be found in Cloud technology by implementing a Hybrid Model solution. As 

illustrated in Table 4.3, the Hybrid Model has a similar performance characteristic to the 

Local and Cloud Models in the areas of its best-performing cases. The Hybrid Model's 

best-performing cases are the LFMH, LFBH and LFLH.   
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Model Test Cases Mean File Transfer Time Total Observations 

SFBH 52.44 1886547 

SFBM 81.33 1884610 

SFLH 49.52 1884186 

SFLM 256.47 1884216 

SFMH 36.55 1884216 

SFMM 65.34 1884938 

LFBH 21.08 1590460 

LFBM 42.37 1592912 

LFLH 28.85 1592195 

LFLM 48.76 1590034 

LFMH 20.05 1591769 

LFMM 159.02 1591249 

  

Table 4.4 Mean File Transfer Time for the Hybrid Model by Test Case 

 

Interestingly, unlike the Local and Cloud Models, a balanced case, rather than a 

small file size case, was within its two best-performing cases. This shows that the Hybrid 

Model is more resilient to a wide variety of file requests. We can also note that while 

cache hit rate was still the largest predictor of performance and the largest difference in 

performance between cases, in general, most cases for the Hybrid Model did not see as 

large an increase in mean file transfer time in a low cache hit scenario compared to a  

high cache hit rate scenario when compared to the Local and Cloud Models. The 

increase of resources in the Hybrid model from leveraging Cloud components along with 

Local components allows for a more stable and better performing experience for the 

user. 
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Chapter 5 

Conclusion and Future Work 
 

5.1 Conclusions 
 

Observations of the performance of the Local and Cloud Models were consistent 

with our expectations at the outset of the analysis. However, the performance of the 

Hybrid Model under our scenarios has resulted in some interesting observations. The 

improved consistency and mean file transfer speeds provided by the Hybrid Model 

imply that it is a viable potential solution for improving performance in Cloud gaming 

technologies. The particularly important observation is the increase in consistency of 

performance when utilizing the Hybrid Model, as consistency is a crucial factor in a 

gaming experience. A user tends to remember the instances where a connection or 

responsiveness is unstable rather than the majority of the time where performance is 

reaching the user's expectations. A blip or a drop in performance at an inopportune 

time can result in a large loss in the quality of a user’s experience, and repeated or 

continuous drops would greatly degrade the user experience. The potential 

improvement in consistency provided by the Hybrid Model would be a large boon to 

improving the user experience for a Cloud gaming solution. 
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5.1.1 Cost Benefit Analysis 

 

While our exploratory analysis of a Hybrid Model for Cloud gaming has shown 

potential for a substantial increase in performance in file loading and reducing user 

input latency, the Hybrid Model solution also has several detriments that could 

potentially impact the decision to implement this type of system. Further work into the 

performance increases and costs is necessary to determine if a Hybrid Model is feasible. 

Table 5.1 presents a cost-benefit analysis of implementing a Hybrid system for Cloud 

gaming.   

Benefits Costs 

Noticeable reduction in input latency because 
time sensitive processing can be performed 
locally 
 

Higher costs for users to supply processing 
capable hardware locally 
 

Noticeable reduction in loading times (both 
initial game load and ongoing gameplay 
loading) 
 

Higher costs for developers due to the added 
complexity of the file request management, 
plus likely reengineering costs for existing 
games to migrate to the Hybrid model 
 

More resilient to unstable connections than 
traditional streaming  
 

Effort required to synchronize the game state 
between Local and Cloud  
 

 

Table 5.1 Cost Benefit Analysis of the Proposed Hybrid Model 

 

As noted in Table 5.1, the largest benefit gained by the Hybrid Model is the 

reduction of input latency to be equal to, or near Local system levels. This leads to a 

direct increase in performance on the most influential part of a Cloud gaming system's 

user experience. Another important benefit is found in the file transfer speeds through 
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the Hybrid system which could potentially lead to improved loading speeds when 

compared to a completely Local system. The Hybrid system also demonstrated itself as 

being more resilient to unstable connections when compared to traditional Cloud 

gaming solutions. This is very important when dealing with lossy connections, such as 

Wi-Fi, or on connections that are not as powerful within areas with less-developed 

Internet infrastructure, as this would allow a Hybrid system to better reach these areas 

and users. These three factors taken together could allow for a greatly improved user 

experience compared to current traditional Cloud gaming systems, and potentially 

provide a better user experience than a Local system in some cases.  

While the Hybrid system could offer some very powerful improvements in Cloud 

gaming technology, it does also have some detriments that are seen by the user. The 

first of these is that a Hybrid system would come at a higher cost to users than current 

Cloud gaming experiences resulting from the necessity to purchase the capable 

hardware. Current Cloud gaming experiences can work on an entirely thin client such as 

a laptop or older mobile phone that have a lower processing power. A Hybrid system 

would require additional processing power to handle the user interaction locally, which 

in turn would require a more powerful device which would be a cost borne by the user. 

The ability to use a thin client is one of the main draws to current Cloud gaming as it 

greatly reduces the barrier to entry. As a result, a higher barrier required by the Hybrid 

system may reduce the number of users willing to enter Cloud gaming.   

The second major detriment to implementing a Hybrid system would be the 

increased cost on the development side. Currently, a Cloud gaming solution is a very 
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easy migration from a Local version to a Cloud version, as Local and Cloud solutions 

currently run very similar architecture. This allows for the migration costs from Local to 

Cloud to be kept down, as a Local version will run on most Cloud systems without a 

large number of edits required. For a Hybrid system however additional work would be 

required to determine which components of a game need to be run locally and which 

components of a game will need to be run in the Cloud location. Also, more work would 

be required into a file loading scheme specific to each game developed for the Hybrid 

system. As seen in our performance metrics in Chapter 4, the Hybrid system's primary 

performance increase comes from an anticipatory file loading scheme and a high cache 

hit rate of file loads.  

The final barrier to a Hybrid system that we mentioned in Table 5.1 is the 

requirement to develop a solution for keeping the Local and Cloud components of the 

Hybrid system in sync. If a part of the system ends up ahead of the other, the lack of 

synchronization in the data being processed at both locations could greatly reduce user 

experience by causing a visual tearing in the game world, making the game unplayable. 

Some work has already been done in synchronizing two games across multiple clients, 

particularly in one-on-one multi-player competitive games, such as fighting games with 

GGPO netcode [59], synchronization is instrumental to an enjoyable and balanced user 

experience. Existing examples such as GGPO might allow a starting point into 

synchronizing the Local and Cloud components of the Hybrid system, but would also 

introduce further costs into the development of a Hybrid system as one has to consider 
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the migration of any existing games as well as in the development of any new games 

specifically targeting to a Hybrid system.    

  

5.2 Future Work 
 

Taking into account these benefits and detriments of a Hybrid system solution to 

Cloud gaming, it is not clear at this time if a Hybrid system is the best choice for moving 

forward with Cloud gaming technology. Additional work needs to be done to determine 

if the benefits of the system outweigh the various costs and if the synchronization of 

Local and Cloud components is viable for a system being used for Cloud gaming.   

Future work on this topic could focus on the implementation of a 

synchronization system for Local and Cloud components, as this would be one of the 

major hurdles for creating a Hybrid system, and/or building and designing a Hybrid 

system using a current video game as a proof of concept. Building a Hybrid system 

would be a costly endeavour, however, if one was attempted, it would be best to not 

use an older game as the performance profiles are not indicative of modern game 

performance profiles and would not well represent modern Cloud gaming. Creating and 

testing a Hybrid system would allow for better comparisons of end-to-end input delay 

and give more accurate metrics to test the Hybrid systems performance. An area that 

could be expanded on the current model would be a more complex network layer, as 

the current network layer is greatly abstracted, adding variable network delay or testing 
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the model under variable bandwidths. Additionally testing multiple clients accessing a 

Cloud and Hybrid system would allow insights into how scalable these methods are. 
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Appendix 
Sean Baxter Personal Steam library of installed games as of July 6th 2020 

Large Blob files removed from dataset to avoid skewing the numbers to larger file request 

results. This is because these files are very large in size but are not normally completely loaded 

into game memory, instead parts of the file are loaded. Keeping the full sized files in the data set 

would have skewed the file requests to being much larger on average. 

Game Title Total Size in 
MB 

Arcade Spirits 498 

Armello 1583 

Atelier Sophie The Alchemist of the Mysterious 
Book 

6563 

Audiosurf 2 1022 

Autonauts 775 

Baba Is You 67 

Bastion 1264 

BATTLETECH 35416 

Cities_Skylines 11167 

Cosmic Star Heroine 1962 
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Counter-Strike Global Offensive 22594 

Crusader Kings II 2947 

DarkestDungeon 4403 

Dead Cells 685 

DemonCrawl 399 

Disco Elysium 14259 

Divinity Original Sin 2 59122 

DNFTM 951 

Donut County 310 

dota 2 beta 25665 

Dungeons 3 6459 

Elite Dangerous 131 

Eternal Card Game 1928 

Evil Genius 1365 

Factorio 1512 

Fallen ~Makina and the City of Ruins~ 973 

Fell Seal 1059 

FINAL FANTASY XIII 58986 

FINAL FANTASY XIV Online 47359 

Gang Beasts 1886 

GarrysMod 4349 

Grim Dawn 9639 

GRIS 3868 

HatinTime 7525 

Hearts of Iron IV 2583 

Heaven's Vault 4120 

Helltaker 366 

HITMAN2 14037 

Hob 2477 

Hollow Knight 7566 

Jotun 3911 

Katana ZERO 216 

Kindred Spirits on the Roof 794 

Left 4 Dead 2 12721 

Momodora RUtM 242 

Monster Train 1158 

Noita 929 

One Step From Eden 493 

OxygenNotIncluded 1664 

Path of Exile 129 

Pillars of Eternity II 52652 
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Planet Zoo 10766 

Pyre 8606 

Risk of Rain 2 2072 

Salt and Sanctuary 6 

Sid Meier's Civilization VI 17489 

Skyrim Special Edition 12997 

SlayTheSpire 537 

Slime Rancher 1418 

Sniper Elite 4 27699 

SoulcaliburVI 3675 

Spin Rhythm 640 

Stardew Valley 497 

Sundered 2347 

Temtem 4590 

Terraria 280 

they bleed pixels 572 

Thumper 975 

tModLoader 36 

Torchlight II 1764 

Transistor 3764 

TreeOfSavior 418 

Underlords 2918 

wallpaper_engine 742 

Warframe 7124 

West of Loathing 233 

XCom-Enemy-Unknown 18967 

Grand Total 575882 

 


