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ABSTRACT 

The Influence of Atmospheric Circulation on Snowmelt and Carbon Fluxes in 

the Canadian Low Arctic 

 

Alexandra Stephanie Lind Braid 

 This study examines the atmospheric (synoptic) controls on snowmelt and snow-

free season carbon dioxide (CO2) fluxes at Daring Lake, Northwest Territories.  

Atmospheric circulation patterns were derived from 500 hPa geopotential height and 

classified using the self-organizing maps artificial neural network.  Snowmelt timing was 

not found to be influenced by atmospheric circulation patterns or large-scale 

teleconnection indices, but a shift from meridional to zonal atmospheric circulation 

marked the transition from pre-melt to melt period.  Multiple linear regression identified 

heating degree days and incoming solar radiation as the most important meteorological 

predictors of melt length; however, the model would have benefitted from additional 

variables.  Analysis of CO2 (net ecosystem exchange, NEE) during the snow-free season 

highlighted a strong correlation between NEE and temperature anomalies.  Like the 

snowmelt period, no atmospheric circulation patterns were found to significantly 

influence NEE; however, these findings prompt further questions regarding snowmelt and 

CO2 fluxes in the Canadian low Arctic.  

 

Keywords: Carbon fluxes, atmospheric circulation, synoptic patterns, self-organizing 

maps, net ecosystem exchange, snowmelt 
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Chapter 1: Introduction 

1.1 Climate change and the tundra 

The Arctic is warming two times faster than lower latitudes, a phenomenon 

referred to as Arctic amplification.  Such Arctic amplification will likely have significant 

global implications through surface-climate feedback systems (Intergovernmental Panel 

on Climate Change [IPCC], 2001; Overland et al., 2015).  Furthermore, Arctic regions, 

including the tundra, are particularly vulnerable to disturbances at both local and global 

scales (Reynolds and Tenhunen, 1996).  Recent observations indicate that river discharge 

is increasing, vegetation communities are changing, and near-surface permafrost is 

warming (Box et al., 2019; Stow et al., 2004).  Multiple studies have highlighted the 

significant trends in snow cover extent (SCE) over time, underscoring a general 

consensus and understanding in its decrease in some Arctic regions over time (Brown et 

al., 2010; Foster et al., 2008; Yeo et al., 2016).   

Feedbacks in the Arctic tundra are complex mechanisms that influence several 

interconnected systems and thus have potentially wide-ranging impacts (Bonfils et al., 

2012; Wookey et al., 2009).  For example, decreasing SCE on the tundra has the potential 

to decrease mean annual albedo (Li et al., 2018; Loranty et al., 2011), intensify 

permafrost thaw (Wilcox et al., 2019) and alter the distribution and abundance of plant 

communities (Wipf and Rixen, 2010).  Decreasing seasonal SCE and seasonal albedo 

promote warmer soil and air temperatures, thus influencing active layer depth and 

permafrost thaw (Lawrence and Swenson, 2011).  The active layer refers to the 

uppermost layer of soil that experiences seasonal freezing and thawing.  Variations in 

permafrost thaw and active layer depth allow shrubs to increase in height and distribution, 
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which can further alter SCE, albedo, soil and air temperature, and active layer depth 

(Bonfils et al., 2012).  Due to the importance of these processes on a global scale, the 

feedback systems acting on the tundra have the potential to alter carbon exchange and 

storage (Wookey et al., 2009), hydrology (Marsh et al., 2010), and energy balances 

(Bonfils et al., 2012; Loranty et al., 2011), further influencing and contributing to climate 

change.  

Although the broad-scale implications of climate change in the Arctic tundra are 

relatively well understood, and the processes and interactions at local scales have been 

extensively studied, the connection between the local-scale and large-scale atmospheric 

drivers are not.  This connection is significant as there is growing evidence that 

atmospheric circulation patterns are likely to undergo changes with climate change, which 

could further impact the Arctic tundra (Rudeva et al., 2023).  To broaden our 

understanding of the impact and future of climate change in the Arctic tundra, it is critical 

to develop a general understanding of the large-scale features driving ecosystem-scale 

processes. To this end, this thesis focuses on large-scale circulation in the atmosphere and 

its connection to two important environmental processes and their interannual variability: 

1) snowmelt timing and duration and 2) carbon dioxide fluxes.  

 

1.2 Snowmelt 

Snowmelt is a profound annual event influencing many biotic and abiotic tundra 

ecosystem processes (Pedersen et al., 2015; Wilcox et al., 2019).  The onset, length and 

termination of snowmelt play crucial roles in Arctic freshwater budgets, the distribution 

of flora and fauna and surface energy budgets (Box et al., 2019; Derksen et al., 2015; 
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Pohl and Marsh, 2006).  The characteristics of snowmelt are complex and differ 

depending on geographical location.  On the tundra, several ecosystem-scale factors may 

influence the onset and duration of snowmelt locally, such as slope, aspect, vegetation 

cover, and water table height (Assini and Young, 2012; Luce et al., 1998).  Open areas 

that lack large stands of vegetation are more susceptible to wind redistribution (Marsh et 

al., 2010).  The redistribution of snow can lead to snow-free patches and causing local 

heat advection from areas of little to no snow-cover to areas with snow (Pohl and Marsh 

2006); however, areas with greater vegetation cover may also see accelerated melt due to 

radiative outputs from vegetation and decreases in surface albedo (Marsh et al., 2010).  

Snowmelt is controlled by the surface energy balance, which includes radiation inputs 

and outputs, turbulent exchanges, subsurface energy transfer, and conductive processes.  

On the tundra melt is primarily driven by turbulent energy exchanges between the 

snowpack and atmosphere (Marsh et al., 2010), which are influenced by wind speed and 

air temperature (Stigter et al., 2018).  Once the pack becomes patchy, heat advection may 

also contribute significantly to the timing and rate of snowmelt (Marsh et al., 2010).   

Although there is considerable interannual variability, it is believed that the onset 

of snowmelt in the Arctic has been advancing in recent decades (Kankaanpää et al., 2018) 

and will have varying, but uncertain, implications on factors such as the geographic 

distribution of flora and fauna (Kankaanpää et al., 2018), rate of permafrost melt (Wilcox 

et al., 2019), and carbon cycling (Aurela et al., 2004; Winchell et al., 2016).  It has been 

demonstrated that earlier spring snowmelt increases springtime carbon uptake in the 

boreal zone due to increases in season length (Pulliainen et al., 2017).  However, evidence 

from the Arctic tundra is inconsistent.  Aurela et al. (2004) first proposed that earlier 

snowmelt leading to longer snow-free seasons is associated with greater carbon uptake in 
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Arctic regions, whereas several later studies have found that timing of snowmelt had no 

effect on and in some cases hindered annual carbon uptake.  For example, Humphreys 

and Lafleur (2011) found that the timing of snowmelt had little effect on summer carbon 

uptake and instead found that variations in photosynthetic capacity were a more 

significant contributor due to variations in leaf area.  Additionally, Kudo et al. (1999) and 

Winchell et al. (2016) concluded that earlier snowmelt resulted in a decrease of carbon 

accumulation.  

Not only are snow cover extent and the timing of snowmelt important at the local 

scale, they also influence processes occurring at the global scale.  For example, Li et al. 

(2018) found that, using satellite measurements spanning 2002 to 2016, a decrease in 

Arctic snow cover resulted in a decrease in global albedo.  Additionally, changes in 

snowmelt runoff patterns have altered Arctic river discharge rates, which in turn 

influenced the movement of water masses and freshwater fluxes in the Arctic Ocean.  

These changes impacting the Arctic Ocean will likely impact global climate systems 

(Peterson et al., 2002; Rahmstorf, 2002; Semiletov et al., 2016).  Although snowmelt is 

recognized as a profound annual event influencing many ecosystem processes (Box et al., 

2019; Derksen et al., 2015), the large-scale atmospheric forces driving its temporal and 

spatial variability in the tundra remain uncertain. 

 

1.3 Tundra Carbon Exchange 

Northern circumpolar permafrost currently holds roughly 50% of the global below 

ground carbon pool (Tarnocai et al., 2009).  Climate change poses a considerable threat to 

the tundra carbon pool, yet the effects of warming temperatures on carbon fluxes (here 
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the emphasis is on carbon dioxide, CO2, fluxes) and the impacts from permafrost thaw in 

this region are uncertain.  Rising air temperatures are likely to accelerate microbial 

activity, respiration, and decomposition, which may lead to a greater efflux of carbon into 

the atmosphere (Grosse et al., 2016).  Although increasing temperatures may drive the 

efflux of carbon, they can also promote vegetation growth and lengthen the snow-free 

season, influencing the influx of carbon (Loranty et al., 2018).  Additionally, long-term 

modelling experiments suggest that future climate change may enhance photosynthetic 

uptake variability in the short-term, but ultimately result in a net loss of carbon over time 

due to changes in factors such as soil nutrients and microbial activity (Jiang et al., 2017).  

Although the fate of the tundra carbon pool is unknown, should it transition from a net 

sink to a source, surface-climate feedback systems could accelerate the impacts of climate 

change both in the tundra and globally (Christensen et al., 1999).   

Previous studies indicate a high degree of spatial and temporal variability in 

locally observed CO2 fluxes (Euskirchen et al., 2012; Lafleur and Humphreys, 2018; 

Lund et al., 2010; McGuire et al., 2002).  Locally, CO2 uptake is driven by factors such as 

soil moisture, air temperature and vegetation cover, while emissions are influenced by 

variables such as air and soil temperature, and vegetation cover (Magnani et al., 2022).  

While the spatial variability and local-scale processes driving CO2 fluxes are well studied, 

there is limited knowledge regarding the large-scale forces that drive the variability in 

snowmelt timing and CO2 fluxes in the tundra.  Assessing the impacts of large-scale 

drivers, such as atmospheric circulation, on local-scale processes is crucial in broadening 

our understanding of the large-scale systems that drive ecosystem-scale processes.  

Understanding the driving forces behind ecosystem-scale processes has become 

increasingly important due to the uncertainties associated with climate change.   
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1.4 Synoptic climatology  

Synoptic climatology is the study of how surface-level processes relate to and can 

be evaluated in the context of large-scale atmospheric circulation patterns (hereafter 

referred to as synoptic patterns) (Hewitson and Crane, 2002).  Synoptic climatology has 

been used to understand a wide range of environmental processes.  More specifically, 

synoptic climatology has been used to assess how certain atmospheric characteristics, 

such as troughs or zonal advection, impact environmental processes such as snow-

avalanches, flooding, and the movement of air pollutants (Grote, 2020; Martin and 

Germaine, 2017).  The classification of synoptic patterns allows for the examination of 

the impacts of atmospheric circulation on near-surface weather conditions and, hence, on 

ecosystem-scale processes.  Classification techniques can be either manual or automatic.  

Technique selection is subjective and depends on the objectives of the research, as larger 

data sets often benefit from automatic techniques (Dayan et al., 2012; Huth et al., 2008).  

Manual classification is accomplished with sea level pressure maps and is labour-

intensive and inconsistent, but flexible, and it allows skilled forecasters to incorporate 

their expertise (Dayan et al., 2012).  The most common automated classification 

techniques are correlation-based, such as Principal Component Analysis.  Automatic 

techniques require subjective decision making; for example, researchers are required to 

determine the desired number of pattern outputs and parameter weights, which can impact 

the detail provided by each resulting synoptic pattern (Dayan et al., 2012).  Yarnal (1993) 

found that no classification technique is consistently superior to another, and that the 

technique selected should reflect the available data and the relationships being assessed.  
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Recently, however, the usage of automated techniques, including artificial neural 

networks, have become much more widespread (Gibson et al., 2017; Sheridan and Lee, 

2011; Zhong et al., 2020).  

Self-Organizing Maps (SOMs) are a relatively new classification technique of 

potentially great value due to their capacity to classify high-dimensional data and their 

ability to capture spatiotemporal variations in atmospheric circulation (Hewitson and 

Crane, 2002).  SOMs are a class of artificial neural networks used across a broad range of 

disciplines (Kohonen, 1990).  Compared to traditional manual and automatic 

classification techniques, the SOMs method is more capable of capturing differences in 

synoptic pattern anomalies and transitional synoptic patterns (Zhong et al., 2020).  

Furthermore, SOMs possess the ability to represent the data as a continuum, whereas 

traditional techniques represent discrete synoptic patterns (Sheridan & Lee, 2011; Zhong 

et al., 2020).  The SOM approach is an iterative algorithm used to illustrate and interpret 

large and complex datasets.  SOMs consist of grid processing units referred to as 

“neurons” that organize the data into an array of two-dimensional nodes (Kohonen, 2013; 

Sheridan and Lee, 2011).   

While not applied to the Arctic tundra, synoptic climatology, and the classification 

of synoptic patterns has been used to identify relationships between atmospheric 

circulation patterns, carbon fluxes and snowmelt in other regions.  For example, Bednorz 

(2009) found a relationship between meteorological patterns associated with the North 

Atlantic Oscillation and rapid snowmelt in the Polish-German lowlands. Additionally, 

Randazzo et al. (2020) found that a summer storm pattern in the Great Lakes region was 

associated with a reduction in carbon uptake by temperate forests in Michigan, USA. Liu 

et al. (2016) studied the impacts of synoptic patterns on carbon dioxide (CO2) fluxes from 
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a reservoir in central Mississippi and concluded that frequent synoptic patterns 

contributed to a 16% increase in the release of CO2 from the surface.  Synoptic 

climatology holds promise as a useful technique for studying the relationship between the 

atmosphere and ground-level processes, such as snowmelt and carbon fluxes in a diverse 

array of regions.   

 

1.5 Study Objectives 

This study is the first to investigate the influence of synoptic patterns on snowmelt 

timing and CO2 fluxes on the Arctic tundra, with a focus on assessing the relationships 

between synoptic patterns and net ecosystem exchange (NEE) of CO2 during the snow-

free season.  To evaluate these influences, the links between synoptic patterns, snowmelt, 

and snow-free season CO2 fluxes (NEE) using an extant collection of on-site data (2004 - 

2018) and atmospheric data provided by the National Centers for Environmental 

Prediction Department of Energy (NCEP-DOE; Kanamitsu et al., 2002) was assessed.  As 

few synoptic climatological studies have evaluated relationships between synoptic 

patterns and surface processes over long periods of time, the full range of data collected at 

the study site (2004 - 2018) was used for the purpose of this study.  There were two main 

objectives of this study.  First, to assess the relationships between synoptic patterns and 

the timing and duration of snowmelt, and second, to identify relationships between 

synoptic patterns and eddy covariance measurements of CO2 fluxes (NEE) in the snow-

free (summer) period.  The research questions were: 

 

1. Does the state of the atmosphere change leading up to and during snowmelt? 
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2. Do certain synoptic patterns exert greater control over snowmelt timing and 

length than others? 

3. Is more positive or negative NEE associated with certain synoptic patterns? 

4. Does the state of the atmosphere influence the interannual variability in CO2 

flux? 

 

 The remainder of this thesis is presented in four chapters, as follows.  

Chapter 2:  Methodology.  A detailed description of the research site, data sources, 

methodology for defining SOMs, results of the SOMs analysis, and descriptions of the 

resulting synoptic patterns.  

Chapter 3:  Snowmelt on the Tundra.  A qualitative analysis of the atmospheric 

conditions surrounding snowmelt, results of linear regression, and discussion outlining 

the relationships between synoptic patterns and the timing and duration of snowmelt.  

Chapter 4:  Tundra CO2 Flux.  A qualitative report on the variability in annual CO2 

fluxes and the variation in synoptic patterns, results of correlation analysis, and discussion 

describing the relationships between synoptic patterns and snow-free season CO2 flux. 

Chapter 5:  General conclusion and future research.  
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Chapter 2: Methodology 

2.1 Study Area 

The study area is located near Daring Lake in the low Arctic Ecozone of the Slave 

Geological Province of the Canadian Shield (64°52.131′ N, 111°34.498′ W), 

approximately 70 km north of the tree line and 300 km northeast of Yellowknife, 

Northwest Territories (Figure 1) (Dagg and Lafleur, 2011).  The study area is classified as 

mixed mesic tundra, containing a combination of mesic heath and shrub tussock tundra.  

Mesic heath and shrub tussock tundra are categorized by graminoids, small shrubs, 

mosses and lichens and are representative of much of the surrounding region.  The study 

area has coarse mineral soil overlain by an organic layer ranging 1 to 22 cm in depth 

(Grant et al., 2015; Humphreys and Lafleur, 2011).  The region is underlain by 

continuous permafrost spanning 160 to 350 m in thickness and has an average summer 

maximum active layer 0.3 to 1 m in depth (Dredge et al., 1999).  Winters are long and 

cold, whereas the snow-free season is short (June to early September) and has an average 

temperature of 8.6°C (Nobrega and Grogan, 2008). 

Research has been carried out surrounding the Tundra Ecosystem Research 

Station (TERS) since 1994.  There are several established study sites surrounding TERS 

(Figure 1).  The Shrub (Sb) site consists predominantly of deciduous shrubs ranging in 

height from 50 to 100 cm while the Daring Lake (DL) site (a mixed tundra) consists of 

tussock, sedges, low and dwarf deciduous and evergreen shrubs.  The Fen (Fn) site is 

categorized as a wet sedge tundra and contains graminoids, deciduous shrubs, evergreen 
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shrubs, and mosses.  The Lake Tower (LK) site is categorized as low shrub mixed tundra 

and contains primarily deciduous shrubs and mosses.  For the purposes of this research, 

the DL site was used to determine the timing and duration of annual snowmelt because it 

possessed the longest and most complete data record.  Additionally, meteorological 

variables were obtained from the Government of Northwest Territories (GNWT) 

meteorological tower (Figure 1).  

 

Figure 1. Left: map of Northwest Territories showing the territorial capital, Yellowknife, and the location 

of the study sites.  Right: Expanded view of the study sites and location of the Tundra Ecosystem Research 

Station (TERS). 

 

2.2 Snowmelt Classification and Meteorological Data 

Snowmelt onset, end, duration, and trends have been determined using an array of 

meteorological data, albedo measurements, and game camera imagery that spanned the 

study site (Table 1).  Meteorological data were obtained from the GNWT tower at a 

height of roughly 1.3 meters, albedo measurements were obtained from the eddy 



 12 

covariance station at the DL site, and game camera imagery was obtained from the DL 

site.  Meteorological data, albedo measurements, and data on snow characteristic have 

been collected near TERS since 2004.  Imagery from game cameras have been collected 

since 2010; however, collection has varied from year to year.  

 

Table 1. Sources and uses of the albedo, meteorological, and imagery data sets. 

Data set Source Use 

Albedo DL site Snowmelt classification 

Meteorological Conditions 

- Mean air temperature (°C) 

- Maximum air temperature (°C) 

- Incoming solar radiation (Wm-2) 

GNWT Snowmelt classification 

Game camera imagery DL site Snowmelt classification 

 

Snowmelt onset date at the DL site was determined using daily maximum air 

temperature (°C) and was classified as the day of year (DOY) in which hourly maximum 

temperatures were above 0°C for three or more consecutive hours in a day and for three 

or more consecutive days.  The end of snowmelt was classified as the DOY in which 

albedo was less than 0.2 and confirmed using game camera imagery to ensure snowmelt 

had occurred in the surrounding area.  The annual DOYs in which snowmelt began and 

ended at the DL site were used to classify three melt periods for this study.  The pre-melt 

period consisted of the two-week period leading up to snowmelt onset.  The onset period 

was the 3-day period consisting of the DOY in which onset occurred, the day preceding 

melt onset, and the day following the melt onset.  The length of melt period was defined 

at the day in which melt onset occurred until the tundra was snow free.  
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2.3 Carbon Flux Measurements  

CO2 flux data have been collected at the DL site since 2004 using an open-path 

eddy covariance system.  Open-path eddy covariance (EC) systems measure gas and 

energy exchanges between the surface and atmosphere.  With the use of a sonic 

anemometer and a gas analyzer, the EC system measures wind speed and temperature, as 

well as fluctuations in gas concentrations, respectively.  The statistical combination of 

these data provides estimates of gas exchange rates (Zhou et al., 2022).  The reliability of 

the open-path EC system was tested in southern Ontario before being deployed in the 

tundra (Humphreys and Lafleur, 2011, Lafleur and Humphreys, 2008; Lafleur and 

Humphreys, 2018).  Data were collected each year from late winter/early spring until 

early fall and have been quality checked and gap-filled.  Flux measurement methodology 

and data processing are fully described in Humphreys and Lafleur (2011), Lafleur and 

Humphreys (2008), Lafleur and Humphreys (2018), and Lafleur et al. (2012).  It should 

be noted that due to extensive gaps in the 2004 data record, only measurements obtained 

from 2005 to 2018 have been used in this study.  For this study, the impacts of synoptic 

patterns on CO2 fluxes were evaluated during the snow-free season, the period in the 

Arctic tundra in which peak carbon cycling activity occurs.  The snow-free season was 

defined as the period following the end of snowmelt until September 30th of each year, 

after which CO2 flux measurements were not taken.  Although CO2 exchange at the 

ecosystem level is composed of two large fluxes (gross ecosystem exchange (uptake) and 

ecosystem respiration (loss), the EC equipment directly measured the net of these fluxes, 

in other words NEE. For this study, NEE is used as the metric to assess CO2 flux at the 

study site.   
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2.4 Synoptic Pattern Classification 

2.4.1 Data Requirements and SOM Training 

To classify synoptic patterns, the SOMs artificial neural network and an average 

of 4 daily values of 500 hPa geopotential height from the NCEP-DOE Reanalysis 2 data 

products (Kanamitsu et al., 2002) were used.  The spatial domain selected in this study 

extended from 58° to 71°N and 93° to 125°W (Figure 2). This spatial extent was selected 

to ensure that the study site was central and to include possible synoptic patterns 

influenced by the Mackenzie Mountains in the west and the Hudson Bay in the east.  

SOM grid size determines the number of nodes, or in this case, synoptic patterns in a 

SOM.  For this study, a SOM grid size of four patterns by four patterns (16 total synoptic 

patterns) was selected through trial and error.  SOM grids larger than four patterns by four 

patterns tended to produce repetitive patterns, whereas smaller SOMs insufficiently 

captured transitional patterns.  All data pre-processing and SOM analyses were completed 

using the aweSOM, SynoptReg, and Kohonen packages for R in the RStudio interface 

(Boelaert et al., 2021; Lemus-Canovas et al., 2019; Wehrens and Kruisselbrink 2018). 
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A range of SOMs were computed using varying training parameters to select the 

SOM that best represented the raw data.  The SynopReg package was used to train the 

SOMs and its source code was altered to allow for flexible parameterization of SOM 

training variables (Lemus-Canovas et al., 2019).  Training parameters included SOM 

topology, learning mode, number of training iterations, neighbourhood functions, and the 

alpha learning rate.  

SOM topologies are traditionally hexagonal or rectangular; however, may be 

toroidal, or spherical in shape.  While spherical and toroidal topologies reduce the impact 

of edge effects common in rectangular and hexagonal SOMs, they are difficult to interpret 

and reduce visualization capabilities (Jagric and Zunko, 2013).  The edge effect occurs 

Figure 2. Location and extent of the data used to train the SOM. 
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with rectangular and hexagonal topologies because external nodes are less central to the 

SOM than internal nodes (Schmidt et al., 2011).  Although spherical and toroidal 

topologies offer a solution to this issue, following Schmidt et al., (2011), they were not 

tested in SOM training due to the importance of pattern visualization post-classification.  

A rectangular SOM topology was used for the purpose of this study, as it increased the 

accuracy of the resulting SOM following training iterations of both rectangular and 

hexagonal topologies (Table 2).  

 SOMs traditionally learn via the batch or online methods.  In both methods, data is 

seeded through the nodes of the SOM.  Each winning node along with the nodes in its 

neighbourhood are updated to resemble the input data (Kohonen, 2013).  Throughout 

SOM training the size of the neighbourhood decreases incrementally until only the 

winning node is altered (Kohonen, 2013).  When a SOM learns via the batch method 

winning nodes are not updated until the entire dataset has been presented to the SOM 

network, whereas nodes of a SOM trained with the online method are updated after each 

individual data object has been presented (Wehrens and Kruisselbrink, 2018).  The 

number of training iterations determines the number of times a dataset is presented to 

SOM and is often selected on the basis of ensuring robust training while preserving 

computing power.  For the purposes of this study, the Online learning method and 1500 

training iterations yielded the most favourable SOM results (Table 2).  

 SOM neighbourhood functions determine the rate at which neighbouring nodes 

are updated to resemble a winning node (Natita et al., 2016).  The most used 

neighbourhood functions are Gaussian and Bubble.  When SOMs employ the Gaussian 

neighbourhood function, the rate at which a neighbouring node is updated increases with 

proximity to the winning node.  SOMs that employ the Bubble neighbourhood function 
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will update the entire neighbourhood to the same degree (Chen et al., 2021).  Similarly, a 

SOM’s learning rate determines the degree to which an input data object will impact a 

winning node and its neighbours (Zhang et al., 2018).  Learning rates decrease linearly 

over time and typically range from 0.1 to 0.01 or 0.05 to 0.01 (Zhang et al., 2018).  In this 

study, the Gaussian neighbourhood function paired with a learning rate of 0.1 to 0.01 

produced the most optimal SOM outcome (Table 2).  An overview of the complete SOM 

learning process is provided in Figure 3.  

 

Table 2. Parameters used for SOM training (* indicates parameter was selected for the final SOM). 

Topology 
Learning 

Mode 

Training 

Iterations 

Neighbourhood 

Function 

Learning Rate 

(alpha) 

Rectangular* 

Hexagonal 

Batch 

Online* 

500 

1500* 

2000 

Gaussian* 

Bubble 

0.1 to 0.01* 

0.05 to 0.1 
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Figure 3. An overview of the SOM learning process with options for Online or Batch learning methods, 

and Gaussian or Bubble neighbourhood functions. 
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2.3.2 SOM Results and Synoptic Patterns 

Several metrics exist for evaluating SOM performance. Topographical error 

measures the SOM’s ability to self-organize and identifies the first and second-best SOM 

nodes for each input data vector (Forest et al., 2020).  A topographical error occurs when 

the first and second-best nodes are not neighbours on a map.  Topographical errors range 

from 0 to 1, with lower values indicating a higher degree of topographical preservation 

(Boelaert et al., 2021; Forest et al., 2020).  Quantization error evaluates how well the 

SOM fits the distribution of the original dataset and measures the mean euclidean 

distance between the centroid of a winning node and input data vector without accounting 

for the SOM’s topology (Forest et al., 2020; Schmidt et al., 2011).  The combined error, 

established by Kaski and Lagus (1996) incorporates aspects of the topographical and 

quantization errors.  The Kaski-Lagus combined error is defined as the sum of the mean 

euclidean distance between input data vectors and their winning node and of the mean 

distance between input data vectors and their second-best node (Boelaert et al., 2021; 

Kaski and Lagus, 1996).  The combined error can range in size, from small such as 0.5 to 

larger values greater than 55.  The measure of these values depends on factors such as 

SOM shape and the number of training iterations (Le Thi and Nguyen, 2014). 

 In this study, the Kaski-Lagus combined error was used to select the final SOM, 

which had a rectangular topology, gaussian neighbourhood, online learning method, 

underwent 1500 training iterations and possessed a learning rate that declined linearly 

from 0.1 to 0.01 (Table 2).  The SOM had a combined error of 8.12, topographical error 

of 0.02, and quantization error of 18.74.  Additionally, the final SOM explained 80.87% 

of the variance of the original dataset.  The final SOM displayed a range of meridional, 



 20 

transitional, and zonal patterns with a varying range of height anomalies (deviation of a 

pattern’s geopotential height from the long-term average) (Figure 4; Figure 5).  

Meridional patterns displayed a north-south flow of atmospheric circulation while zonal 

patterns displayed west-east atmospheric circulation.  Transitional patterns were neither 

zonal or meridional and occurred at high geopotential heights, while gradient patterns 

displayed atmospheric circulation over a steep geopotential height gradient.  The 

following is a brief description of each SOM node, with each representing a synoptic 

pattern. 

 Pattern 1 was transitional and displayed a more positive 500 hPa geopotential 

height anomaly compared to all other patterns, a steep ridge, and flow from the west to 

the southeast.  Patterns 2 and 3 were transitional, occurred at relatively high heights with 

a gentle height gradient, and displayed west to southeast flow.  Pattern 4 displayed 

meridional flow from the north to the southeast and occurred at heights between 5400 and 

5600 m.  Pattern 5 possessed a steeper height gradient and meridional shape, with flow 

from the west and northwest to the east.  Patterns 6 and 7 both displayed zonal flow from 

west to east.  Pattern 8 was meridional with a gentle height gradient.  Like pattern 5, 

pattern 9 possessed a steep gradient with meridional shape, and flow from the west and 

southwest to the southeast.  Patterns 10 and 11 were relatively similar, displaying zonal 

flow from west to east and declining height from the south to the north.  Flow associated 

with pattern 12 occurred from the northwest to southeast over a weak height gradient, 

whereas the flow associated with pattern 13 occurred in the same direction, but over a 

steep height gradient.  Patterns 14, 15, and 16 all possessed a steep height gradient, but 

differed slightly in shape.  Pattern 14 possessed a zonal shape whereas patterns 15 and 16 
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approached a meridional shape.  Pattern 16 occurred at the lowest height compared to all 

other patterns (Figure 4).  
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Figure 4. 500 hPa geopotential height of the 16 classified synoptic patterns. Heights are displayed in meters above 

sea-level. 
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 Figure 5. 500 hPa geopotential height anomalies of the 16 classified synoptic patterns. Anomalies are defined as the 

deviation in meters from average 500 hPa geopotential height. 
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Pattern occurrence (frequency) was defined as the number of days per period in 

which a pattern occurred (Figure 6).  These days were summed to span the entirety of the 

study period (2004 – 2018).  The average occurrence for all patterns spanning the pre-

melt, onset, melt, snow-free and the entire study period (sum of snowmelt and snow-free 

periods) were 2.9, 1.4, 2.3, 8.8, and 9.8 days, respectively.  Total pattern occurrences are 

presented in Figure 7.  Pattern 1 did not occur during in any year during the pre-melt or 

onset periods, was not dominant during the melt period; however, was dominant during 

the snow-free season.  Similarly, Pattern 2 was not dominant during the pre-melt or onset 

periods; however, occurred for a higher-than-average number of days during the melt and 

snow-free periods.  Patterns 3, 4, 5, 6, and 7 occurred predominantly during the melt and 

snow-free periods.  Pattern 8 was dominant during the pre-melt, onset, and melt periods 

and had a low frequency of occurrence during the snow-free season.  Patterns 9 and 10 

had low occurrences during the pre-melt and onset periods; however, increased 

occurrence during the melt period and snow-free season.  Pattern 11 occurred more than 

average during the pre-melt and melt periods and was dominant during the onset period; 

however, did not occur frequently during the snow-free season.  Pattern 12 was dominant 

during pre-melt; however, did not display dominance during the onset, melt, or snow-free 

periods.  Patterns 13 and 14 occurred during each period but were not dominant.  Patterns 

15 and 16 each occurred for a higher-than-average number of days during the pre-melt 

period; however, displayed little occurrence during the onset, melt, and snow-free 

periods.  Over the entire study period, patterns 1, 5, and 2 had the highest overall 

occurrences. 
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Figure 6. Average pattern occurrence over time in the pre-melt (A), onset (B), melt (C), snow-free (D), and entire study period (E). 
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For this study, persistence was defined as the maximum number of successive 

days a pattern occurred.  Like pattern occurrence, persistence was calculated over the 

entire study period for the pre-melt, onset, melt, snow-free, and total combined periods 

(Figure 8).  During the pre-melt period, patterns 8, 12, 15, and 16 persisted for the longest 

periods of time.  During the onset period, patterns 2, 8, 11, and 12 displayed the longest 

periods of persistence, while during the melt period, only pattern 8 displayed a dominant 

length of persistence.  Patterns 1, 2, 9, 14, and 15 persisted for the longest periods of time 

Figure 7. Occurrence (total days) during the pre-melt (A), onset (B), melt (C), snow-free (D) and total study 

period (E) over the entire study period (2005-2018). 
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during the snow-free season.  Overall, patterns 1, 2, 8, and 16 persisted for the longest 

periods of time.   

 

 

Figure 8. Persistence (maximum number of days a pattern occurred) during the pre-melt (A), onset (B), 

melt (C), snow-free (d), and total study period (D) over the entire study period (2004-2018). 

 

The meteorological conditions associated with each pattern varied during the pre-

melt periods (Figure 9).  It should be noted that patterns 1 and 5 did not occur during the 

melt period, and thus present null meteorological values (Figure 9).  Pattern 6 was the 

only pattern to produce a positive average air temperature, whereas pattern 16 was 

associated with the coldest average, minimum, and maximum temperatures.  Patterns 2, 3, 
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4, and 6 did not produce precipitation, whereas pattern 14 and 16 produced the largest 

volume of pre-melt period precipitation.  Average surface air pressure was comparable 

for each pattern. Similarly, average incoming solar radiation was comparable across all 

patterns, except for patterns 9 and 6 which were associated with the greatest and smallest 

amounts of solar radiation, respectively.  Average surface wind speed was also similar 

between patterns apart from pattern 6, which was associated with higher wind speeds.  

Onset period meteorological conditions varied more than pre-melt conditions; 

however, it should be noted that patterns 1, 3, 5, 6, 15, and 16 did not occur during the 

onset period and thus did not contribute to the observed variation in meteorological 

conditions (Figure 10).  Pattern 14 was associated with the coldest average, minimum, 

and maximum air temperatures, while pattern 9 produced the only positive average and 

maximum air temperatures during the onset period.  Although there was little 

precipitation during the onset period, pattern 9 was associated with the largest volume.  

Like the pre-melt period, average surface air pressure and shortwave radiation were 

comparable across all patterns.  Most patterns also produced similar values of average 

surface wind speed; however, patterns 4 and 7 were associated with slightly higher 

values.   

 More variation in meteorological conditions was observed during the melt period 

(Figure 11).  The only pattern that did not occur during melt was pattern 16, which thus 

did not contribute to the variability in observed meteorological conditions.  Pattern 5 was 

associated with the warmest average, maximum, and minimum air temperatures, whereas 

pattern 15 was associated with the coldest temperatures.  There was some variation in the 

amount of precipitation associated with each pattern.  For example, patterns 1 and 4 did 

not produce any precipitation, whereas patterns 6, 3, and 7 were associated with the 
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largest volumes of precipitation.  Like the pre-melt period, surface air pressure was fairly 

consistent across all patterns, apart from pattern 12, which displayed a lower surface air 

pressure.  Additionally, incoming solar radiation was similar between patterns, apart from 

patterns 2, 4, and 5 which were associated with higher values of solar radiation.  Average 

surface wind speed varied across all patterns.  Patterns 4 and 13 displayed the lowest 

values of wind speed, whereas patterns 11, 15 and 16 were associated with the fastest 

wind speeds.  

 Variation in the meteorological conditions associated with each synoptic pattern 

was also observed during the snow-free season (Figure 12).  Pattern 1 was associated with 

the warmest temperatures, whereas pattern 16 was associated with the coldest 

temperatures.  Patterns 3 and 7 were associated with the highest volumes of average daily 

precipitation, whereas patterns 4 and 12 were associated with the least.  Like the melt 

periods, surface air pressure was comparable between all patterns.  Incoming solar 

radiation was also similar between patterns, except for patterns 11, 12, 15, and 16, which 

were associated with lower values of incoming solar radiation.  The average surface wind 

speed associated with each pattern was similar, except for pattern 16 which was 

associated with the fastest observed wind speeds during the snow-free period.   
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Figure 9. Average daily surface air temperature (A), maximum daily surface air temperature (B), minimum 

daily surface air temperature (C), average daily precipitation (D), average surface air pressure (E), average 

shortwave radiation (F), an average surface wind speed (G) for each pattern during the pre-melt period. 
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Figure 10. Average daily surface air temperature (A), maximum daily surface air temperature (B), 

minimum daily surface air temperature (C), average daily precipitation (D), average surface air pressure 

(E), average shortwave radiation (F), an average surface wind speed (G) for each pattern during the onset 

period. 
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Figure 11.  Average daily surface air temperature (A), maximum daily surface air temperature (B), 

minimum daily surface air temperature (C), average daily precipitation (D), average surface air pressure 

(E), average shortwave radiation (F), an average surface wind speed (G) for each pattern during the melt 

period. 
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Figure 12.  Average daily surface air temperature (A), maximum daily surface air temperature (B), 

minimum daily surface air temperature (C), average daily precipitation (D), average surface air pressure 

(E), average shortwave radiation (F), an average surface wind speed (G) for each pattern during snow-free 

period. 
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2.4 Synoptic Pattern Clustering 

To assist in assessing the relationship between synoptic patterns, snowmelt 

characteristics, and carbon fluxes, the 16 patterns were subjectively divided into clusters.  

This reduced redundancy in evaluating similar trends between like patterns.  Patterns 

were sorted based on their synoptic type and were either zonal, meridional, transitional, or 

gradient in nature, where gradient refers to patterns possessing a steep 500 hPa 

geopotential height gradient.  A visual representation of the subjective division of patterns 

into clusters is presented in Figure 13. 

 

Class 1 

Transitional 

Class 2 

Transitional 
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Transitional 

Class 4 

Meridional 
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Zonal 
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Gradient 
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Gradient 
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Gradient 

Figure 13. The organization of SOM patterns into the transitional, zonal, gradient, and meridional clusters. 
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2.5 Statistical Analyses 

2.5.1 Assessing the Impacts of Synoptic Patterns on Snowmelt 

 Relationships between meteorological conditions and snowmelt length were 

assessed via multiple linear regression where melt period meteorological conditions were 

the independent variables and snowmelt length was the dependent variable.  The 

meteorological conditions selected for multiple linear regression included heating degree 

days (HDDs), mean daily incoming solar radiation (W m2), and mean daily total 

precipitation (mm) during the length of the melt period.  It should be noted that 

precipitation was not distinguished between snow and rainfall during this period.  HDDs 

were calculated by subtracting the average daily temperature at melt onset from each 

subsequent day’s temperature within the melt period.  The sum of these values 

represented the heating degree days for each melt period.  Heating degree calculations 

were calculated for each year of the study period.  The most parsimonious model was 

selected using Akaike information criterion (AIC).  These results were also used to 

interpret the relative importance of synoptic patterns and the meteorological conditions 

associated with them on the conditions of snowmelt at the study site. 

 To assess trends in the state of the atmosphere surrounding snowmelt, pattern and 

cluster occurrences were calculated as percentages of the total number of occurrences for 

the pre-melt, onset and melt periods.  Snowmelt pattern and cluster occurrences were 

compared to annual melt onset dates and lengths.  Phases of the Arctic Oscillation (AO) 

and North Atlantic Oscillation (NAO) were compared to snowmelt onset dates to 

determine if trends between major teleconnection indices and snowmelt existed at the 

study site via correlation coefficients.  Phases, either negative or positive were defined as 
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the average index for the month or months in which snowmelt occurred.  Mann-Kendall 

tests were performed on pattern occurrences for each of the pre-melt, onset, and melt 

periods to assess changes in pattern occurrence over time.  

 

 

2.5.2 Assessing the Impacts of Synoptic Patterns on Carbon Fluxes 

 Trends in NEE, meteorological conditions, and pattern occurrence over the entire 

study period (i.e., end of snowmelt to Sept. 30) were evaluated using Mann-Kendall tests.  

The relationship between average daily NEE and air temperature over the course of the 

study period was further examined via spearman rank correlation analysis.  Additionally, 

Spearman rank correlation analysis was also used to investigate the potential relationships 

between the occurrence and persistence of synoptic patterns and NEE.  These correlation 

analyses were performed for the entire study period, on an annual basis, and a monthly 

basis, which encompassed data from all instances of May, June, July, August, and 

September throughout the snow-free study period.  Furthermore, to assess differences in 

the corresponding CO2 fluxes associated with each cluster during different periods of the 

snow-free season (entire snow-free season and on monthly timescales), Kruskal-Wallis 

tests were used as data were not normally distributed.   
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Chapter 3: Snowmelt on the Tundra 

3.1 Results 

3.1.1 Characteristics of snowmelt 

Snowmelt period characteristics are presented in Table 3.  Timing of melt onset 

was variable throughout the study period, ranging from DOY 116 to 149 with a mean 

onset of DOY 134. The average melt length was 15 days.  The longest melt period 

occurred in 2011 and lasted 24 days, while the shortest melt occurred in 2005 and lasted 8 

days.  Variations in late-winter snow-depth and average daily temperatures generally did 

not correspond with increases and decreases in melt period length (Table 3).  For 

example, greater than average snow depth was observed in 2017; however, melt was 

average in length.  Slightly longer melt periods were observed in years in which melt 

occurred earlier in the year (Figure 14).  There was no significant trend in melt onset at 

Daring Lake between 2004 and 2018 (Figure 15).  Similarly, although variable, there was 

no significant trend in the length of melt period (Figure 16).   
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Table 3. Annual melt onset, end, and length.  Annual mean daily surface air temperature (°C), incoming 

solar radiation (W m-2), total daily precipitation (mm), heating degree days for the duration of the melt 

period.  Snow depth (cm) at melt onset are also presented. 

Year Onset End Length Temperature  
Solar 

Radiation  
Precipitation HDD 

Snow 

Depth  

2004 146 156 11 -0.5 244.5 0.8 19.9 9.0 

2005 146 153 8 2.5 304.8 0.1 32.5 23.0 

2006 116 130 15 -1.5 242.5 0.1 29.0 35.5 

2007 139 152 14 1.0 278.1 0.0 52.5 40.5 

2008 133 143 11 0.2 267.2 0.1 41.8 26.3 

2009 149 160 12 1.3 310.0 0.3 29.7 17.4 

2010 144 154 11 3.2 323.9 0.2 81.9 24.0 

2011 126 149 24 1.3 254.1 0.5 131.2 N/A  

2012 124 144 21 1.2 228.3 0.4 91.5 7.0 

2013 136 151 16 2.7 257.4 0.6 73.5 N/A 

2014 132 146 15 0.8 220.3 1.1 53.0 15.5 

2015 127 141 15 2.5 293.8 0.0 98.9 19.5 

2016 119 136 18 0.2 216.2 0.2 31.2 40.2 

2017 127 144 18 2.7 276.0 0.3 54.6 60.3 

2018 142 153 12 1.3 266.0 0.7 11.4 29.7 

 

 

 

Figure 14. Length of melt and melt onset (DOY) throughout the study period. 
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Figure 15. Annual variations in melt onset (DOY). 

 

 

Figure 16. Annual variations in melt length (days). 
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3.1.2 Analysis of Meteorological Factors Impacting Snowmelt Length 

Several linear regression models were tested to evaluate the impact of melt period 

meteorological conditions on snowmelt length (Appendix 1).  Correlation analysis 

revealed that heating degree days, mean daily incoming solar radiation, and mean daily 

total precipitation were the most important meteorological variables during snowmelt, 

while average daily surface wind speed did not correlate significantly with melt length 

(Table 4).  The most parsimonious model did not include precipitation as a significant 

predictor of melt length (Table 4).  The model, which included heating degree days and 

incoming solar radiation as significant predictors of melt length, had an adjusted R2 value 

of 71.5% and P-value of 0.00021 (Table 4).  As heating degree days increased melt length 

increased, while melt length decreased with increasing incoming solar radiation (Figure 

17).  The counter intuitiveness of the relationship where melt length increases with 

increasing heating degree days suggests potential issues within the model and raises the 

question if such a model is capable of adequately capturing tundra melt-meteorological 

condition relationships.  

 

Table 4. Multiple linear regression variable terms, coefficients, standard errors, and most parsimonious 

model results where melt length is the dependent variable.  

Variable Term Coefficient Standard Error 

Intercept b0 29.56 4.98 

Heating degree days x1 0.087 0.018 

Mean daily incoming solar radiation (W m-2) x2 -0.074 0.019 

Mean daily total precipitation (mm) x3 N/A N/A 

Equation Adjusted R2 AIC P-Value 

Y = b0 + b1x1 + b2x2 71.47 71.7 0.00021 

 

 



 41 

 

 

 

Figure 17. Relationships between melt length, heating degree days (A) and annual average daily incoming 

solar radiation (B).  

 

A 

B 
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3.1.3 The state of the atmosphere during snowmelt 

Neither major teleconnection index (AO or NAO) correlated with snowmelt onset 

(Table 5).  During the pre-melt period, the coldest temperatures were associated with the 

gradient cluster, whereas during the onset and melt periods, the coldest temperatures were 

associated with the meridional cluster (Figure 18).  The transitional cluster produced the 

warmest temperatures during all three melt periods (Figure 18).  Similarly, the transitional 

cluster was associated with the most incoming solar radiation in all melt periods (Figure 

19).  The zonal cluster was associated with the least incoming solar radiation in the pre-

melt and melt periods, whereas the gradient cluster was associated with the smallest 

amount of solar radiation during the onset period (Figure 19).  Overall, values of 

incoming solar radiation were greatest during the onset period and smallest during the 

melt period (Figure 19). 

 There was little precipitation during snowmelt; however, the pre-melt period was 

associated with the largest quantities of daily solid precipitation (Figure 20).  The gradient 

cluster produced the largest amount of precipitation during the pre-melt period, whereas 

the transitional cluster produced none (Figure 20).  Little precipitation occurred during 

the onset and melt periods; however, in each period the zonal cluster was associated with 

the largest quantity of precipitation (Figure 20).   
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Table 5. Annual melt onset, Arctic Oscillation (AO) and North Atlantic 

Oscillation (NAO) phases.  Correlation coefficients between teleconnection 

phases and melt onset are also presented. 

Year Onset AO NAO 

2004 146 -0.09 0.19 

2005 146 -0.76 -1.25 

2006 116 0.15 0.05 

2007 139 0.89 0.66 

2008 133 -1.21 -1.73 

2009 149 -0.08 0.24 

2010 144 -0.92 -1.49 

2011 126 1.12 1.21 

2012 124 0.07 -0.22 

2013 136 0.49 0.57 

2014 132 0.46 -0.92 

2015 127 0.99 0.44 

2016 119 -0.54 -0.20 

2017 127 -0.41 -0.09 

2018 142 0.78 1.61 

AO Correlation 

Coefficient 
-0.16   

  
NAO Correlation 

Coefficient 
-0.08 
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Figure 18. Pre-melt (A), onset (B), and melt (C) period average daily temperatures grouped by cluster. 

 

Figure 19. Pre-melt (A), onset (B), and melt (C) period average daily incoming solar radiation grouped by cluster. 
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Figure 20. Pre-melt (A), onset (B), and melt (C) period average daily precipitation grouped by cluster. 
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3.1.4 Synoptic Pattern Variability During the Pre-Melt Period 

The pre-melt period was marked by dominant gradient and meridional patterns, 

where each accounted for ~40% of the total pre-melt time. Zonal patterns were only 

marginally important (accounting for ~17% of the time) and transitional patterns (P1, P2 

and P3) were almost non-existent during pre-melt.  Meridional P8 and P12 had the 

highest mean occurrences throughout the pre-melt period.  On Average, each pattern 

accounted for 19% of the pre-melt period.  P16 had the highest pre-melt period one-time 

occurrence (79% in 2001); however, was only significant in one other year (43% in 2006) 

(Table 6).  There was no clear relationship between pattern or cluster occurrence and 

snowmelt onset (Table 6).  When melt onset occurred earliest (2006), pattern 16 of the 

gradient cluster was dominant; however, in 2016 when onset was also early, no pattern 

was dominant (Table 6).  When melt onset occurred later in the season, dominant patterns 

were meridional and gradient in nature.  For example, in 2009, when onset occurred latest 

in the study period pattern 8 of the meridional cluster was dominant.  Similarly, in 2004 

and 2005, patterns 12 and 13 of the meridional and gradient clusters, respectively, were 

dominant.  It should also be noted that pattern 13 possessed a steep height gradient yet 

was still meridional in orientation.  Additionally, pattern 8 dominated the pre-melt period 

both in years in which melt was short and average in length (Table 6).  Similarly, patterns 

16 and 12 were each dominant in years in which melt was long and average in length 

(Table 6).   
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3.1.5 Synoptic Pattern Variability During Melt Onset 

The onset period was a short 3-day period occurring each year bracketing the first 

day of melt. Compared to the pre-melt period there was a clear shift in the state of the 

atmosphere and a distinct trend in cluster occurrence was evident (Table 7).  The 

meridional cluster continued to be of relatively high importance; however, the zonal 

cluster increased in importance.  For example, the meridional cluster accounted for 37.8% 

of the overall melt periods, whereas the zonal cluster accounted for 42.3% of the overall 

melt periods (Table 7).  Additionally, P11 of the zonal cluster had the highest overall 

mean onset period occurrence (24.4%) over the entire study period (Table 7).  

Transitional patterns were only prominent during onset in one year (2005) and the 

gradient patterns were only important in 2018. As with the pre-melt period, no clear 

relationship between onset cluster occurrence and snowmelt length was found (Table 7).  

 

3.1.6 Synoptic Pattern Variability During the Melt Period 

During the melt period, the zonal cluster continued to dominate.  It accounted for 

31.3% of overall melt period cluster occurrence (Table 8).  The occurrence of transitional 

patterns also increased substantially compared to previous melt periods (Table 8).  A 

weak, negative correlation was identified between the gradient cluster and snowmelt 

length; however, cluster occurrence overall did not appear to overtly influence melt 

length (Table 9).  The lack of relationship is especially evident when evaluating certain 

pattern occurrences, such as P8, which was important during years in which melt 

occurred over both short and long periods of time (Table 8).  Overall, during the melt 
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period, cluster occurrence was fairly similar between clusters, unlike the pre-melt and 

melt periods.  
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Table 6. Annual pre-melt period pattern occurrence (%).  Total cluster occurrence and correlation with snowmelt onset dates are presented for each year of the 

study.  Bolded values represent earlier and later than average melt dates (Onset), shorter or longer than average melt durations (Length), and higher than average 

pattern occurrence.   

Cluster Transitional Gradient Zonal Meridional 

Year Onset Length P1 P2 P3 Total P5 P9 P13 P14 P15 P16 Total P6 P7 P10 P11 Total P4 P8 P12 Total 

2004 146 11 0 0 0 0 0 0 0 0 21 0 21 0 0 0 0 0 0 36 43 79 

2005 146 8 0 14 7 21 0 0 43 0 7 0 50 0 29 0 0 29 0 0 0 0 

2006 116 15 0 0 0 0 0 0 14 0 7 43 64 0 0 0 29 29 0 0 7 7 

2007 139 14 0 0 0 0 0 0 0 0 21 0 21 7 7 0 36 50 0 0 29 29 

2008 133 11 0 7 7 14 0 0 0 0 0 0 0 0 0 0 7 7 7 71 0 79 

2009 149 12 0 0 0 0 0 0 14 0 0 14 29 0 0 0 0 0 0 50 21 71 

2010 144 11 0 0 0 0 0 7 7 0 21 7 43 0 0 29 14 43 0 14 0 14 

2011 126 24 0 0 0 0 0 0 0 0 14 79 93 0 0 0 0 0 0 0 7 7 

2012 124 21 0 0 0 0 0 0 0 0 7 0 7 0 0 0 14 14 0 14 64 79 

2013 136 16 0 0 0 0 0 0 0 7 57 14 79 0 0 0 7 7 0 0 14 14 

2014 132 15 0 0 0 0 0 0 0 7 0 0 7 0 7 14 7 29 0 50 14 64 

2015 127 15 0 0 0 0 0 0 0 0 0 14 14 0 0 0 21 21 7 29 29 64 

2016 119 18 0 0 0 0 0 0 0 29 21 0 50 0 0 0 14 14 0 14 21 36 

2017 127 18 0 0 0 0 0 0 0 0 29 29 57 0 0 7 7 14 0 0 29 29 

2018 142 12 0 0 0 0 0 0 29 0 50 0 79 0 7 0 0 7 0 7 7 14 

Mean 134 15 0.0 1.4 0.9 2.4 0.0 0.5 7.1 2.9 17.0 13.3 41.0 0.5 3.3 3.3 10.4 17.6 0.9 19.0 19.0 39.1 

Standard 

Deviation 
10 4.2 0.0 3.9 2.5 6.4 0.0 1.8 13.0 7.6 17.7 22.2 29.4 1.8 7.7 8.1 11.1 15.5 2.5 23.0 17.9 30.1 

Onset Date Correlation  0.2 -0.1 0.0 0.1 
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Table 7.  Annual onset period pattern occurrence (%).  Total cluster occurrence and correlation with snowmelt onset dates are presented for each year of the 

study.  Bolded values represent earlier and later than average melt dates (Onset), shorter or longer than average melt durations (Length), and higher than average 

pattern occurrence.   

Cluster Transitional Gradient Zonal Meridional 

Year Onset Length P1 P2 P3 Total P5 P9 P13 P14 P15 P16 Total P6 P7 P10 P11 Total P4 P8 P12 Total 

2004 146 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 33 33 0 33 33 67 

2005 146 8 0 100 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2006 116 15 0 0 0 0 0 0 33 0 0 0 33 0 0 0 67 67 0 0 0 0 

2007 139 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 33 33 0 33 33 67 

2008 133 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 100 

2009 149 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 33 67 0 100 

2010 144 11 0 0 0 0 0 0 0 0 0 0 0 0 0 33 33 67 0 33 0 33 

2011 126 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 100 

2012 124 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 33 33 0 33 33 67 

2013 136 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 100 0 0 0 0 

2014 132 15 0 0 0 0 0 0 33 0 0 0 33 0 33 33 0 67 0 0 0 0 

2015 127 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 67 67 0 33 0 33 

2016 119 18 0 0 0 0 0 0 0 33 0 0 33 0 33 33 0 67 0 0 0 0 

2017 127 18 0 0 0 0 0 0 0 0 0 0 0 0 67 33 0 100 0 0 0 0 

2018 142 12 0 0 0 0 0 67 33 0 0 0 100 0 0 0 0 0 0 0 0 0 

Mean 134 14.7 0.0 6.7 0.0 6.7 0.0 4.5 6.6 2.2 0.0 0.0 13.3 0.0 8.9 8.8 24.4 42.3 2.2 22.1 13.3 37.8 

Standard 

Deviation 
10.4 4.2 0.0 25.8 0.0 25.8 0.0 17.3 13.7 8.5 0.0 0.0 27.6 0.0 19.8 15.1 32.1 36.8 8.5 30.0 27.6 41.6 

Melt Length Correlation  NA -0.1 0.2 0.1 
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Table 8. Annual melt period pattern occurrence (%).  Total cluster occurrence and correlation with snowmelt onset dates are presented for each year of the study.  

Bolded values represent earlier and later than average melt dates (Onset), shorter or longer than average melt durations (Length), and higher than average pattern 

occurrence.   

Cluster Transitional Gradient Zonal Meridional 

Year Onset Length P1 P2 P3 Total P5 P9 P13 P14 P15 P16 Total P6 P7 P10 P11 Total P4 P8 P12 Total 

2004 146 11 0 18 27 45 0 0 0 0 0 0 0 0 9 0 27 36 0 0 18 18 

2005 146 8 13 25 0 38 38 25 0 0 0 0 63 0 0 0 0 0 0 0 0 0 

2006 116 15 0 0 13 13 0 0 0 13 27 0 40 0 0 0 27 27 0 7 13 20 

2007 139 14 0 0 0 0 0 7 29 14 0 0 50 14 0 7 14 36 0 14 0 14 

2008 133 11 0 0 0 0 0 9 0 0 0 0 9 0 0 9 18 27 0 64 0 64 

2009 149 12 0 33 8 42 0 8 8 0 0 0 17 0 0 0 0 0 33 8 0 42 

2010 144 11 0 27 9 36 9 0 0 0 0 0 9 9 9 9 9 36 18 0 0 18 

2011 126 24 21 17 0 38 4 0 0 0 0 0 4 8 4 8 8 29 17 4 8 29 

2012 124 21 0 0 0 0 0 0 0 0 0 0 0 0 19 0 10 29 0 57 14 71 

2013 136 16 25 13 13 50 13 0 0 0 0 0 13 13 0 6 13 31 6 0 0 6 

2014 132 15 0 0 0 0 0 0 13 13 7 0 33 0 27 20 20 67 0 0 0 0 

2015 127 15 13 0 0 13 27 13 13 7 0 0 60 0 0 0 7 7 13 7 0 20 

2016 119 18 0 0 0 0 0 11 28 0 0 0 39 6 17 17 0 39 0 22 0 22 

2017 127 18 0 11 11 22 0 0 0 0 0 0 0 6 44 6 0 56 17 6 0 22 

2018 142 12 0 0 0 0 0 25 0 8 17 0 50 17 0 17 17 50 0 0 0 0 

Mean 134 14.7 4.8 9.6 5.4 19.8 6.1 6.5 6.1 3.7 3.4 0.0 25.8 4.9 8.6 6.6 11.3 31.3 6.9 12.6 3.5 23.2 

Standard 

Deviation 
10.4 4.2 8.7 11.8 8.0 19.6 11.6 8.8 10.3 5.6 8.0 0.0 23.0 6.1 13.0 6.9 9.3 18.8 10.3 20.5 6.4 21.4 

Melt Length Correlation  -0.2 -0.4 0.3 0.3 
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3.1.7 Energy transport across the SOM grid 

As noted above, the pre-melt period was dominated by meridional and gradient 

synoptic patterns that promoted energy transport from the northwest to southeast.  During 

the pre-melt period, temperatures northwest and west (Paulatuk and Norman Wells, 

NWT) were warmer than average temperatures at Daring Lake (Figure 21).  The onset 

and melt periods were each dominated by zonal patterns.  These zonal patterns carried 

heat from the west, inducing above-zero temperatures that promote snowmelt (Figure 22, 

Figure 23).  During the onset and melt periods, temperatures west of the study area 

exceeded those at Daring Lake (Figure 22, Figure 23).  As noted above, transitional 

pattern occurrences, characterized as energy transport from the southwest and west, also 

increased during the melt period.   

 

Figure 21. Average pre-melt period surface air temperatures (°C) across the SOM grid over the entire study 

period. 
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Figure 22. Average onset period surface air temperatures (°C) across the SOM grid over the entire study 

period. 

 

Figure 23. Average melt period surface air temperatures (°C) across the SOM grid over the entire study 

period. 
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3.2 Discussion 

3.2.1 Snowmelt at Daring Lake 

Although some researchers have shown a trend toward earlier onset of snowmelt 

throughout the Arctic in recent decades (Foster et al., 2008; Wilcox et al., 2019), there 

was no observed trend in melt onset at Daring Lake between 2004 and 2018.  Similarly, 

although variable, there was no observed trend in melt period length.  The trend in 

snowmelt advancement commonly observed throughout the tundra may not apply at 

Daring Lake due to the continentality of the region.  Daring Lake is in a remote region of 

the Arctic tundra, at least 300 km from the Arctic coast and 1000 km from Hudson Bay, 

and as such may not be as easily influence by changes in sea ice cover, such as duration 

or break up timing, compared to other Arctic regions.  Thus, the lack of distinct changes 

in snowmelt timing and length at Daring Lake may be attributed to its geographic 

situation and limited relationship to coastal climate dynamics.  The large variability in 

annual snowmelt onset dates and melt length observed at the study site are likely, in part, 

due to differences in snowpack conditions, meteorological conditions, or site-level 

characteristics such as vegetation (Bednorz, 2009; Pedersen et al., 2015).  There was a 

tendency for slightly longer melt periods to occur in years where melt occurred earlier in 

the year, which is likely attributed to depleted sources of radiative energy and lower air 

temperatures earlier in the late-winter/early-spring (Musselman et al., 2017). 

 

3.2.2 Meteorological Controls on Snowmelt 

The most parsimonious multiple linear regression model assessing the relationship 

between meteorological conditions and snowmelt length identified heating degree days 
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and incoming solar radiation as the most important predictors of snowmelt.  It should be 

noted that the observed counterintuitive relationship, where melt length increased with 

greater HDDs, raises questions about the model's capacity to capture the intricacies of 

tundra snowmelt and meteorological conditions.  The observed relationship between 

HDDs and snowmelt length was contradictory as HDDs were calculated cumulatively 

over the melt period, and therefore, to some extent, they are dependent on snowmelt 

length. Thus, the selection of HDDs as an independent variable led to a circular argument, 

as HDDs themselves are influenced by the phenomenon (snowmelt length) that it is 

supposed to explain. It might be concluded that this approach did not provide meaningful 

insights into the meteorological influences on snowmelt length.   

Additionally, the model’s satisfactory adjusted R2 value of 71.47%, may also be 

due to the complexity of snowmelt as an ecosystem scale process. The omission of 

unavailable meteorological variables such as longwave radiation, or additional variables 

such as air temperature, which have been found to provide significant energy inputs to 

melting snowpacks (Zhang et al., 1997), may have improved the model’s explanatory 

power. The relationship between air temperature and snowmelt is well known, as 

significant melt cannot occur until the air has reached a temperature equal to or greater 

than 0°C. Several studies have explored the relationship between air temperature and 

snowmelt in the Arctic and have found that air temperature is a significant determinant of 

spring snowmelt onset and length (Tan et al., 2011), which can have an impact on spring 

and summer runoff (Yang and Zhang, 2002) and the distribution of vegetation (Groendahl 

et al., 2007).  It is recommended that future studies incorporate air temperature as an 

independent variable rather than HDDs. 
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3.2.3 The atmosphere and snowmelt 

The AO and NAO are closely related and have been found to influence the timing 

of snowmelt in several Arctic regions (Foster et al., 2013; Zheng et al., 2022).  It has been 

found that phases of the AO and NAO correspond with snowmelt timing, in which 

positive (negative) phases correlate with earlier (later) spring snowmelt (Foster et al., 

2013; Zheng et al., 2022).  Although the relationship between teleconnection phase and 

snowmelt is evident in some regions of the Arctic, several factors such as geography and 

the incorporation of time lag effects in analysis can influence results (Mioduszewski et 

al., 2014).  No significant relationships between the AO or NAO and snowmelt onset or 

end-of-melt were found for Daring Lake.  The AO and NAO were, however, similar in 

their respective phases throughout the study period.  Despite the observed relationships 

between teleconnection phases in some Arctic areas, the absence of a relationship at 

Daring Lake may warrant further investigation.  However, it should be noted that the 

relatively short data record used in this study (14 years) may have contributed to the lack 

of a relationship in these findings. 

 Similarly, no single synoptic pattern or cluster of patterns was found to directly 

trigger an early or late snowmelt.  This is likely due to the complexity of snowmelt as a 

process, which depends on several factors acting on different scales.  For example, snow 

redistribution may result in snow-free patches and local energy advection from areas of 

little snow-cover to areas with snow (Marsh, 1999; Pohl and Marsh 2006).  Snowmelt 

also depends on turbulent energy exchanges between the snowpack, atmosphere, and 

surrounding vegetation, all of which may vary on an annual basis (Marsh et al., 2010; 

Prince and Dunne, 1976; Tarboton et al., 1994). 
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Although no particular pattern or cluster was associated with early or late 

snowmelt, there was a clear shift in the state of the atmosphere between the pre-melt and 

melt periods.  The pre-melt period was marked by dominance of meridional and steep 

gradient patterns.  Both clusters were associated with cool temperatures and energy 

transport from the northwest to southwest.  The onset and melt periods displayed a clear 

shift in the state of the atmosphere, with zonal patterns promoting the advection of warm, 

moist westerly air from the North Pacific (Stone et al., 2002).  The shift to zonal patterns 

likely increased the energy available for snowmelt and is a well-documented synoptic 

pattern during snowmelt onset across North America (Ballinger et al., 2019; Cline, 1997; 

Newton, 2018).  Additionally, in this region, advective energy has been found to play a 

more important role in snowmelt than radiative energy, highlighting the role of zonal 

patterns in snowmelt onset (Mioduszewski et al., 2014).  
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Chapter 4: Tundra CO2 Flux 

4.1 Results 

4.1.1 Interannual variability in snow-free season NEE 

Average daily NEE indicated a net uptake of CO2 in most years; however, NEE 

was variable throughout the study period (Table 9, Appendix 2).  Mean daily snow-free 

season NEE for the study period was -0.23 g C m2 day1 with a standard deviation of 0.16 

g C m2 day1.  Peak carbon uptake typically occurred in July (Appendix 2). 

Snow-free season period cluster occurrences for each year are presented in Table 

9.  Over the course of the study period, gradient cluster occurrence had a range of 23% to 

47%, indicating substantial interannual variability. A potential relationship appeared to 

exist between the frequency of the gradient pattern and the trends in NEE as higher 

occurrences of gradient patterns appeared to align with more negative annual NEE values, 

indicating greater CO2 uptake during these cluster patterns.  Occurrences of meridional 

patterns were least prevalent throughout the study period, ranging from 1% to 23%.  The 

occurrences of these pattern did not appear to align with any trends in annual NEE.  

Transitional and zonal pattern occurrences displayed a large range in interannual 

occurrence; however, there were no clear relationships between transitional or zonal 

pattern occurrences and NEE.   
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Table 9. Snow-free season average daily NEE (g C m2 day1) per year. Total annual snow-free season 

cluster occurrence (%) is also presented.  Negative values indicated an average net CO2 uptake, while 

positive values indicate release. 

Year 
Average Daily 

NEE 

Cluster Occurrence (%) 

Gradient Meridional Transitional Zonal 

2005 -0.012 32 6 19 43 

2006 0.013 28 11 38 22 

2007 -0.119 28 23 23 26 

2008 -0.153 37 11 24 27 

2009 -0.298 38 1 32 29 

2010 -0.353 24 13 46 17 

2011 -0.097 23 6 43 28 

2012 -0.007 28 11 41 20 

2013 -0.378 41 6 39 14 

2014 -0.339 41 11 27 21 

2015 -0.276 30 9 38 23 

2016 -0.365 30 1 46 24 

2017 -0.385 28 7 40 26 

2018 -0.447 47 11 18 24 

Mean -0.23 32.50 9.07 33.86 24.57 

Standard 

Deviation 
0.16 7.13 5.48 9.87 6.76 

 

 Cluster occurrences were also variable among study period months (Appendix 3).  

During the May/June period, occurrence of each cluster was variable and there was no 

clear trend between cluster occurrence and NEE.  The occurrences of July clusters 

exhibited variability, except for the meridional cluster, which displayed a negligible 

frequency of occurrence.  Of July occurrences, transitional patterns were dominant and 

accounted for 54.4% of all pattern occurrences (Appendix 3).  Although cluster 

dominance was fairly consistent, there were no clear trends between cluster occurrence 

and NEE. Transitional cluster patterns, accompanied by gradient cluster patterns 

remained fairly dominant in the month of August.  Like previous months, there was no 

clear trend between cluster occurrence and NEE.  September cluster occurrences 

remained variable; however, dominance shifted to the gradient and zonal patterns.  As 

with other months, there were no clear trends between cluster occurrence and NEE. 
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4.1.2 Atmospheric controls on NEE 

 Over time, there was a statistically significant decrease in NEE (more uptake over 

time) (Figure 24).  The significant increase in CO2 uptake over time was not matched by a 

significant increase in average daily temperature (Figure 23).  It should be noted, 

however, that there was an observed trend of increasing temperatures over time (Figure 

25).  Additionally, the significant increase in CO2 uptake was matched by a statistically 

significant increase in average daily maximum temperature over time (Figure 26).  There 

were no statistically significant differences in pattern occurrence (Appendix 4) or 

persistence (Appendix 5) over time.  

 

 

Figure 24. Trend in average daily NEE (g C m2) over time. 
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Figure 25. Trend in average daily temperature (°C) over time. 

 

 

Figure 26. Trend in maximum daily temperature (°C) over time. 
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Additionally, there was a significant negative correlation between monthly 

temperature and NEE anomalies (p < 0.0001, R2 = -0.74, Figure 27).  A positive trend in 

temperature anomalies was accompanied by a negative trend in NEE anomalies (Figure 

28).  This indicated that more positive temperature anomalies (warmer temperatures) 

were associated with increased carbon uptake (more negative NEE anomalies).   

 

 

Figure 27.  The relationship between average daily NEE and air temperature anomalies for each month of 

the study period. 
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Throughout the study period, there were few significant spearman rank 

correlations (rs) between cluster occurrence, persistence, and NEE (Table 10).  On a 

monthly timescale (encompasses each month occurring over the entire study period), 

there was a significant negative correlation between transitional cluster occurrence and 

NEE (rs = -0.62, p < 0.05).   Moreover, a significant negative correlation between 

gradient cluster occurrence and NEE was found specifically during the month of August 

(rs = -0.62, p < 0.05).  

Relationships between cluster persistence occurred at a higher frequency (Table 

10). On a monthly timescale, there was a negative correlation between transitional cluster 

persistence and NEE (rs = -0.57, p < 0.05).  Positive correlations between meridional 

cluster persistence (rs = 0.46, p < 0.05) and zonal cluster persistence (rs = 0.27, p < 0.05) 

were also observed.  It should be noted that there was also a positive correlation between 

meridional cluster persistence and NEE (rs = 0.64, p < 0.05).   
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Table 10. Significant (p < 0.05) Spearman correlation coefficients (rs) showing the relationship between 

total cluster occurrence (days), average cluster persistence (days), and NEE (g C m-2 day-1). Correlation 

coefficients are presented for the entire study period on a monthly basis (each month occurring over the 

entire study period), annually, and for specific monthly periods (May/June, July, August, and September).  

Negative correlation values signify that greater cluster occurrence and persistence are associated with more 

negative values of NEE, whereas positive correlation values indicate that cluster occurrence and persistence 

correlate with more positive values of NEE. 

NEE Transitional Gradient Meridional Zonal 
Occurrence 

Monthly -0.62  
   

Annual       
May/June       

July       
August   -0.62    

September       
Persistence 

Monthly -0.57  0.46 0.27 
Annual       

May/June    0.64   
July       

August       
September         

 

 

Kruskal-Wallis analysis identified a significant difference in average daily 

temperatures between clusters over the entire study period (H = 541.68, p < 0.05, Figure 

29).  Over the study period, the transitional cluster was associated with the highest air 

temperatures, while the meridional cluster was associated with the coldest temperatures 

(Figure 29).  Overall, the range in temperatures among clusters was fairly consistent, 

although both the transitional and gradient clusters exhibited temperature outliers. (Figure 

29).  Similarly, during each month of the study period the transitional cluster was 

associated with the warmest temperatures while the meridional cluster was associated 

with the coldest temperatures (Figure 30).  Temperatures between clusters during each 

month were significantly different from one another (Figure 30).  
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Figure 29. Average daily snow-free season air temperatures (°C) associated with each pattern cluster over 

the entire study period. 
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A) B) 

C) D) 

Figure 30. Average daily snow-free season air temperatures (°C) associated with each pattern cluster in the May/June (A), July (B), August (C), and 

September (D) periods. 
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Over the entire study period, there was a statistically significant difference in NEE 

between clusters (H = 175.36, p < 0.05, Figure 31).  Days in which the transitional cluster 

occurred were associated with the greatest average daily CO2 uptake (Figure 31).  Days in 

which the meridional cluster occurred were associated with the least amount of CO2 

uptake (i.e., positive NEE, Figure 31).  Over the entire study period, the meridional and 

zonal clusters were the only clusters to display a positive median NEE.  Although the 

transitional cluster was associated with greatest average CO2 uptake, it also exhibited the 

most extensive variation in NEE (Figure 31).   

 

 

Figure 31. Average daily snow-free season NEE (g C m-2) associated with each pattern cluster over the 

entire study period. 

 

Across individual monthly periods, there were also significant differences in NEE 

between clusters during the May/June period (H = 35.59, p < 0.05) and during the August 
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period (H= 29, p < 0.05).  During the May/June period, the transitional cluster was 

associated with the most negative NEE and the meridional cluster was associated with the 

most positive NEE (Figure 32, A).  During the July period, NEE was comparable across 

all cluster occurrences, while the greatest range in NEE was observed on days in which 

the transitional and gradient clusters occurred (Figure 32, B).  The zonal cluster was the 

only cluster associated with positive NEE during the August period, and there was a large 

range in NEE associated with days in which the transitional cluster occurred (Figure 32, 

C). NEE was similar across the occurrences of each cluster during the September period 

(Figure 32, D). 
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A) B) 

C) D) 

Figure 32. Average daily snow-free season NEE (g C m-2) associated with each pattern cluster in the May/June (A), July (B), August (C), and September (D) 

periods. 
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4.2 Discussion 

 Developing an understanding of the role that atmospheric circulation plays in 

carbon fluxes on the Arctic tundra is crucial for comprehending future and current trends 

in the Arctic carbon cycle.  In this study, the relationships between CO2 fluxes (NEE) and 

synoptic patterns were assessed.  Although relationships between synoptic patterns cand 

CO2 fluxes have been observed elsewhere (Randazzo et al., 2020), the analysis of 

synoptic cluster occurrence and NEE at Daring Lake did not indicate any consistent 

relationships.  This is likely due to the complexity of the ecosystem-scale processes and 

characteristics that drive NEE such as soil moisture, soil temperature, and permafrost 

dynamics which likely cannot linearly be explained by synoptic patterns (Mu et al., 2017; 

Neff and Hooper, 2002).   

 Trends in NEE and maximum air temperature were observed over time at the 

study site.  The statistically significant increase in the negativity of NEE indicated an 

increase in carbon uptake over time.  There is evidence of increases in carbon uptake at 

other sites throughout the Arctic due to factors such as increased vegetation productivity 

or changes in temperature and snow dynamics (McGuire et al., 2009).  The findings of 

this study emphasize the importance of long-term studies on carbon cycles on the Arctic 

tundra due to their sensitivity to change over time.  Although a trend in daily maximum 

air temperature was observed, there were no significant trends in average daily air 

temperatures or synoptic cluster occurrences.  This suggested that factors beyond synoptic 

patterns, such as permafrost dynamics, or nutrient availability may exert a greater 

influence over the observed changes in NEE over time (Mack et al., 2004; Schneider von 

Deimling 2015).  Due to the complexity of the interplay of the factors contributing to the 



 72 

variability in NEE, including synoptic patterns, future studies should extend the ground 

measurement of variables such as soil characteristics to gain a more robust understanding 

of carbon dynamics on the Tundra.   

Maximum daily temperatures increased significantly over the study period along 

with increases in the negativity of NEE over time.  The relationship between temperature 

and NEE was also observed in the significant correlation between temperature and NEE 

anomalies, indicating that increased carbon uptake was associated with higher 

temperatures.  This correlation was likely due to the temperature dependence of 

photosynthesis and ecosystem respiration, as warmer temperatures generally enhance 

plant growth and photosynthetic rates, thus influencing NEE (Zhou et al., 2019).  Similar 

trends have been observed elsewhere on the tundra (Welker et al., 2004); however, it 

should be noted that the dynamics and magnitude of NEE in the Arctic tundra under 

warmer conditions are still uncertain and likely influenced by an array of factors such as 

changes in nutrient availability, active layer depth, or microbial activity (Natali et al., 

2012; Schuur et al., 2009).  The observed interactions between temperature and NEE at 

the study site further highlight the importance of ongoing investigations of carbon 

dynamics and their changes over time on the tundra.   

 Over the entire study period, there was a significant negative correlation between 

the occurrence of the transitional cluster and NEE.  Interestingly, the transitional cluster 

was characterized by warmer temperatures compared to other clusters.  These findings 

indicated that the transitional cluster may have created favourable conditions for CO2 

uptake; however, the mechanisms in which this correlation occurred warrants further 

investigation.  In contrast, the occurrence of the gradient cluster also exhibited a negative 

correlation with NEE during the August periods.  The gradient cluster, unlike the 
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transitional cluster, was characterized by average temperatures.  This difference in 

relationship between clusters and their associated temperatures indicated that factors 

beyond atmospheric circulation interact to influence carbon dynamics at different 

timescales and that synoptic patterns alone likely cannot linearly describe the variability 

in NEE at the study site.   

 To assess the importance of the consecutive occurrence of a synoptic cluster, the 

relationship between NEE and cluster persistence was also investigated.  Over the entire 

study period, the persistence of the transitional cluster possessed a significant negative 

correlation with NEE.  The negative correlation suggested that the longer persistence of 

this cluster created a longer period in which conditions for CO2 uptake were favourable.  

These conditions may have included factors such as optimal growing or photosynthetic 

conditions; however, must be studied further.  Additionally, over the entire study period, 

the persistence of the meridional and zonal clusters exhibited weak positive correlations 

with NEE.  Over the entire study period, the meridional cluster was characterized by the 

coldest temperatures and the zonal cluster was associated with average temperatures; 

however, both clusters were associated with slightly positive NEE.  The lack of consistent 

correlation between the conditions associated with these clusters again indicated that the 

complex interactions of factors such as active layer depth or microbial activity may be 

more dominant than the suggested linear correlation between NEE and atmospheric 

circulation (Law et al., 2002; Verburg et al., 2004).  The contrasting conditions and 

correlations between cluster persistence and NEE further emphasize the importance of 

further investigation of the non-linear interaction of factors at play in Arctic tundra 

carbon exchanges.   
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 Although this study did not highlight strong relationships between atmospheric 

circulation and NEE, it must be acknowledged that non-linear relationships between NEE 

and atmospheric circulation may exist.  For example, the complex interactions of the 

driving factors of NEE may contribute to a non-linear response in carbon exchange at the 

study site (Reyes et al., 2017; Sun et al., 2020).  Additionally, lag effects may contribute 

significantly to carbon fluxes over time due to the varying and staggered impacts that 

atmospheric circulation has on ecosystem-scale processes (Zhang et al., 2015).  Future 

studies should include broader temporal and spatial scales that comprise of multiple 

ecosystem processes and their interactions to encompass the full extent of the non-linear 

relationships between the atmosphere and Arctic tundra NEE.   

 This study sought to highlight the complex relationships between synoptic 

patterns and NEE in the Arctic tundra.  While no consistent relationships between 

atmospheric circulation and NEE were found, long-term analysis revealed changes in 

NEE and maximum daily temperature over time.  This finding highlighted the 

relationship between temperature and NEE on the Arctic tundra.  The analysis of the 

impacts of synoptic cluster occurrence and persistence on NEE indicated that synoptic 

patterns alone cannot linearly explain the variability in NEE at the study site.  It is 

suggested that the possibility of non-linear relationships between atmospheric circulation 

and NEE be investigated further on the Arctic tundra.  These studies should possess a 

broader spatial scale and consider various ecosystem processes and interactions.  By 

broadening the scope of this investigation, current and future trends in carbon exchanges 

in the region may be identified, providing valuable insight into the potential for change 

over time in a highly important, but vulnerable ecosystem. 
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Chapter 5: General Conclusions and Future Research 

5.1 General conclusions 

5.1.1 Synoptic controls on snowmelt 

Large interannual variability in melt onset and length was observed throughout the 

study period, however there was no significant advancement in snowmelt onset or 

differences in the length of melt throughout the study period.  Typically, melt length 

corresponded with recorded snow depths, where melt occurred over longer periods of 

time when snow depth was greater and vice versa.  Longer melt periods also occurred in 

years where melt occurred earlier in the year.  The increase in melt length in these cases 

was likely a result of lower air temperatures and depleted sources of radiative energy 

earlier in the spring.   

Heating degree days and incoming solar radiation were identified as important 

predictors of melt length through multiple linear regression.  However, the use of heating 

degree days as an independent variable to the model was questioned due to its 

dependence on melt length.  The model produced satisfactory results that may have been 

improved with the inclusion of additional variables such as downwelling longwave 

radiation, or air temperature in place of heating degree days.   

Large-scale teleconnection indices and locally derived synoptic patterns were not 

associated with early or late melts.  This is likely due to the continentality of the region.  

Daring Lake is situated in a remote region of the Arctic and as such may not be as closely 

impacted by factors such as changes in sea ice cover and coastal climate dynamics 

compared to other Arctic regions.  During the transition from pre-melt to melt period, the 

atmosphere shifted from dominant meridional patterns to zonal patterns.  This indicated 
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that the advection of warm westerly air triggering above-zero temperatures was an 

important factor in snowmelt onset at Daring Lake.   

Snowmelt is a profound annual event on the tundra that influences many 

ecosystem-scale processes and characteristics (Wipf, 2010) such as carbon cycling 

(Aurela et al., 2004; Winchell et al., 2016) and the distribution of flora and fauna 

(Kankaanpää et al., 2018).  Due to the variability of snowmelt timing in the tundra, it is 

crucial to develop an understanding of the controls on snowmelt to better understand the 

impacts that changing climates and snowmelt characteristics may have in the Arctic and 

globally.  Although melt onset and length were not well correlated with specific synoptic 

patterns, the suggestion that a switch to zonal patterns was important for melt onset was 

notable.  This finding requires further investigation as to what initiates these zonal 

patterns, and if this same association is present in other areas of the Arctic.  Furthermore, 

the incidence of these patterns under conditions of climate change should also be 

investigated.   

 

5.1.2 Synoptic Controls on CO2 Flux 

Studying the relationship between atmospheric circulation and Arctic tundra 

carbon fluxes is essential for understanding both current and future trends in Arctic tundra 

NEE.  This study employed the use of a synoptic climatology approach to assess these 

potential relationships.  Annual synoptic cluster occurrences were not significantly related 

to annual NEE at Daring Lake.  This lack of observed relationship is likely due to the 

complexity of the controls on NEE, such as soil moisture, permafrost dynamics, and 

vegetation composition, (Mu et al., 2017; Neff and Hooper, 2002). 
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Mann-Kendall tests revealed a significant increase in the negativity of NEE, and 

an increase in maximum air temperature over time.  No significant trend in average daily 

temperature was observed.  The increase in the negativity of NEE indicated that CO2 

sequestration has increased over time, which has been observed at other Arctic sites 

(McGuire et al., 2009).  This change over time highlights the importance of prolonged 

carbon flux studies in the Arctic tundra to capture temporal changes and underscores a 

need to understand these changes further. 

Although there was no significant change in average daily temperature, there was 

a strong correlation between temperature and NEE anomalies throughout the study 

period.  This is likely due to the complex role of temperature in processes such as plant 

growth and photosynthesis.  It must be noted that current and future NEE dynamics under 

warmer conditions in the tundra are not well understood and are likely to be influenced by 

several factors such as nutrient availability, active layer depth, or microbial activity 

(Natali et al., 2012; Schuur et al., 2009).  

Over the entire snow-free period, a negative correlation between the occurrence of 

the transitional cluster and NEE was observed.  Similarly, a negative correlation between 

August gradient cluster occurrence and NEE was also observed.  Although both clusters 

were associated with warmer than average temperatures, consistent trends between 

clusters, their associated temperatures, and NEE were not observed.  The lack of 

consistency in these relationships is likely due to the complex interplay of factors 

controlling NEE such as soil moisture, permafrost dynamics, and vegetation cover (Mu et 

al., 2017; Neff and Hooper, 2002).   

Similarly, a significant negative correlation was observed between the entire study 

period transitional cluster persistence and NEE, indicating that the increased persistence 
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of patterns in this cluster may have provided favourable conditions for CO2 uptake.  A 

slight positive correlation between the persistence of the meridional and zonal clusters 

and NEE was also observed.  Like the correlations among cluster occurrence and NEE, 

there were no clear or consistent patterns in these relationships.  This potential 

relationship could be a focus of further investigation of the impacts of synoptic pattern 

persistence and their impacts on ecosystem-scale processes.   

Although clear relationships between atmospheric circulation and NEE were not 

consistently evident, the potential for the existence of non-linear relationships between 

the two must be acknowledged.  The complex interconnectedness of the factors 

contributing to NEE may potentially be impacted by the lag effects of past synoptic 

patterns (Zhang et al., 2015).  Overall, this study has highlighted the complexity of NEE 

at the Arctic tundra, and the need to broaden the scope of our knowledge over time and 

space.  

 

5.2 Summary of Findings and Research Questions 

Research Question 1:  Does the state of the atmosphere change leading up to and 

during snowmelt? 

Meridional and steep gradient patterns dominate the pre-melt period.  Although the steep 

gradient and meridional patterns belong to two separate clusters, they are all meridional in 

shape.  These patterns are associated with cool temperatures and energy transport from 

the west and northwest to the southwest of the SOM grid.  The atmosphere undergoes a 

shift from meridional patterns during the pre-melt period to zonal patterns during the 

onset and melt periods.  These patterns are associated with the transfer of warm, moist 
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North Pacific air from the west of the SOM grid.  Zonal patterns are commonly observed 

during snowmelt across North America.   

 

Research Question 2:  Do certain synoptic patterns exert greater control over 

snowmelt timing and length than others? 

There were no patterns associated with early (late) snowmelt or short (long) melt 

periods.  This is likely due to the complex nature of snowmelt in the Daring Lake region, 

which depends on several factors such as geographical location, meteorological 

conditions, and energy transport.  Similarly, large teleconnection indices were not found 

to influence the timing of snowmelt.  The lack of relationship between small scale 

synoptic patterns, large-scale teleconnection, and snowmelt may warrant further 

investigation into the geographical impacts on ecosystem-scale processes such as 

snowmelt in the region. 

 

Research Question 3:  Is more positive or negative NEE associated with certain 

synoptic patterns?  

Over the course of the study period, the occurrence and persistence of the 

transitional cluster correlated with more negative NEE.  Furthermore, the August 

occurrence of the gradient cluster also possessed a negative correlation with NEE; 

however, this relationship was not observed across any other months.  Additionally, 

several positive correlations between the monthly persistence of the meridional and zonal 

clusters were also observed; however, there were no clear patterns in these correlations.  

These findings suggest that synoptic patterns alone may not be able to explain the 

variability in NEE as the study site.   
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Research Question 4:  Does the state of the atmosphere influence the interannual 

variability in CO2 flux? 

During the study period an increase in the negativity of NEE was observed over 

time.  The variability in NEE over time was not matched by any changes in cluster 

occurrence or persistence.  Additionally, no consistent correlations were found between 

NEE and pattern occurrence or persistence.  While no consistent relationships were 

found, this study highlighted the importance of the ongoing investigation of surface-

atmosphere relationships and their potential to change over time.  

 

5.3 Recommendations for Future Research 

5.3.1 Snowmelt at Daring Lake 

To better capture the intricacies of snowmelt at Daring Lake, several 

recommendations for future research are listed below.  A broader range of meteorological 

variables, such as longwave radiation, should be included in snowmelt models.  The 

possibility of including data on vegetation cover and snowpack conditions should also be 

explored.  Increasing the length of the snowmelt record and calculating the odds ratios of 

pattern occurrence (probability of pattern occurrence vs. probability of non-occurrence) 

may provide further insights into potential relationships between melt timing and 

characteristics and synoptic patterns or large-scale teleconnection indices.  Furthermore, 

the exploration of lag effects of synoptic patterns is recommended for future research, as 

past synoptic patterns may influence future snowmelt conditions.  Finally, increasing the 

spatial scale of this study, either encompassing a greater area of the Daring Lake region, 
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or by including several Arctic regions, may highlight the potential differences in the 

influence of synoptic patterns on snowmelt depending on geographic location.   

 

5.3.2 NEE at Daring Lake 

As mentioned in Chapter 4, there are several recommendations for further 

research studying the impacts of atmospheric circulation on carbon fluxes.  Future 

research should expand the spatial scale at which the study is conducted by including a 

broader range of data on carbon fluxes throughout the Arctic tundra.  Additionally, to 

examine the full extent to which synoptic patterns may influence carbon fluxes non-

linearly, the impacts of lag effects should be explored.  These recommendations aim to 

broaden our understanding of the large-scale driving forces on carbon fluxes in the Arctic 

tundra and may help shed light on their potential to change over time.  
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Appendices 

Appendix 1.  Melt period multiple linear regression models, adjusted R2, AIC and P-

values.  
Equation Adjusted R2 AIC P-Value 

Y = b0 + b1x1 38.48 82.43 0.00807 

Y = b0 + b2x2 22.55 85.88 0.04216 

Y = b0 + b3x3 -0.06 90.60 0.6638 

Y = b0 + b1x1 + b2x2 + b3x3 70.38 72.96 0.00083 

Y = b0 + b1x1 + b2x2 71.47 71.70 0.00021 

Y = b0 + b1x1 + b4x3 37.14 83.55 0.02446 

Y = b0 + b2x2 + b3x3 18.86 87.38 0.11320 
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Appendix 2: 5-day running means of daily values of average daily NEE (g C m-2 day-1) 

over the entire study period. 
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Appendix 3.  Pattern occurrence, organized by cluster and by annual average daily NEE (g C m-2 day-1) where A) represents 

May/June pattern occurrence, B) represents July pattern occurrence, C) represents August pattern occurrence, and D) represents 

September pattern occurrence.  Bolded occurrences represent patterns or clusters displaying dominance.   

 

A) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Year 

Mean 

Daily 

NEE 

Cluster 

Transitional Gradient Zonal Meridional 

P1 P2 P3 Total P5 P9 P13 P14 P15 P16 Total P6 P7 P10 P11 Total P4 P8 P12 Total 

2005 0.46 0 0 14 14 0 14 11 7 0 0 32 25 21 4 4 54 0 0 0 0 

2006 0.12 16 10 2 27 14 8 2 6 0 0 29 2 14 8 6 29 14 0 0 14 

2007 0.02 17 3 3 24 7 3 10 3 0 0 24 10 7 3 3 24 10 17 0 28 

2008 0.17 0 3 5 8 13 13 0 0 5 0 31 15 21 8 5 49 5 5 3 13 

2009 -0.38 0 10 10 19 0 0 19 10 0 0 29 19 29 5 0 52 0 0 0 0 

2010 -0.21 11 15 4 30 4 0 26 0 0 0 30 7 11 15 0 33 7 0 0 7 

2011 -0.12 28 3 0 31 0 3 9 6 9 0 28 3 9 9 6 28 6 6 0 13 

2012 -0.26 18 16 8 42 0 3 3 0 0 0 5 5 5 8 0 18 21 13 0 34 

2013 -0.07 50 3 7 60 23 0 0 0 0 0 23 13 3 0 0 17 0 0 0 0 

2014 -0.47 26 3 9 37 3 0 6 6 0 0 14 17 0 9 0 26 20 3 0 23 

2015 -0.18 8 3 3 13 15 5 33 3 0 0 55 5 13 5 5 28 5 0 0 5 

2016 -0.41 11 11 20 41 9 4 7 4 0 0 24 17 7 7 2 33 2 0 0 2 

2017 -0.50 5 8 8 22 14 11 3 3 3 0 32 16 8 8 0 32 8 0 5 14 

2018 -0.43 0 7 21 29 25 7 0 0 0 0 32 29 4 0 0 32 0 7 0 7 

Mean -0.161 13.6 6.7 8.1 28.3 9.0 5.1 9.1 3.4 1.2 0.0 27.8 13.2 10.8 6.3 2.2 32.5 7.1 3.7 0.6 11.4 

Standard 

Deviation 0.280 14.1 4.9 6.4 13.8 8.5 4.8 10.1 3.2 2.8 0.0 10.9 8.1 8.0 3.9 2.5 11.5 7.1 5.6 1.6 10.7 
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B) 

Year 

Mean 

Daily 

NEE 

Cluster 

Transitional Gradient Zonal Meridional 

P1 P2 P3 Total P5 P9 P13 P14 P15 P16 Total P6 P7 P10 P11 Total P4 P8 P12 Total 

2005 -0.52 6 3 16 26 6 10 16 0 0 0 32 16 10 16 0 42 0 0 0 0 

2006 -0.53 0 29 13 42 16 35 0 0 0 0 52 3 0 0 0 3 3 0 0 3 

2007 -0.85 39 16 0 55 26 0 0 0 0 0 26 19 0 0 0 19 0 0 0 0 

2008 -0.81 10 19 19 48 23 6 0 0 0 0 29 16 0 3 0 19 3 0 0 3 

2009 -0.86 42 0 3 45 13 10 0 6 0 0 29 23 0 3 0 26 0 0 0 0 

2010 -0.94 35 23 19 77 16 3 0 0 0 0 19 3 0 0 0 3 0 0 0 0 

2011 -0.69 23 29 23 74 6 6 0 0 0 0 13 13 0 0 0 13 0 0 0 0 

2012 -0.32 42 29 0 71 19 6 0 0 0 0 26 3 0 0 0 3 0 0 0 0 

2013 -1.11 29 23 0 52 23 0 13 0 0 0 35 3 3 3 0 10 3 0 0 3 

2014 -0.89 55 3 3 61 16 3 6 0 0 0 26 6 3 3 0 13 0 0 0 0 

2015 -0.68 19 39 6 65 13 10 3 0 0 0 26 0 0 6 0 6 3 0 0 3 

2016 -1.07 55 3 0 58 16 6 0 16 0 0 39 0 0 3 0 3 0 0 0 0 

2017 -0.79 29 13 0 42 16 16 6 3 0 0 42 10 0 3 0 13 3 0 0 3 

2018 -1.26 26 13 6 45 32 10 3 0 0 0 45 6 0 3 0 10 0 0 0 0 

Mean -0.81 29.3 17.3 7.8 54.4 17.3 8.8 3.5 1.8 0.0 0.0 31.3 8.8 1.2 3.2 0.0 13.1 1.2 0.0 0.0 1.2 

Standard 

Deviation 0.250 16.8 12.0 8.5 14.4 7.0 8.8 5.3 4.5 0.0 0.0 10.4 7.4 2.7 4.2 0.0 10.8 1.6 0.0 0.0 1.6 
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C) 

Year 

Mean 

Daily 

NEE 

Cluster 

Transitional Gradient Zonal Meridional 

P1 P2 P3 Total P5 P9 P13 P14 P15 P16 Total P6 P7 P10 P11 Total P4 P8 P12 Total 

2005 -0.18 0 23 6 29 19 10 0 3 0 0 32 26 6 3 0 35 3 0 0 3 

2006 0.06 10 39 6 55 3 6 0 0 0 0 10 29 0 6 0 35 0 0 0 0 

2007 -0.10 3 3 6 13 3 10 6 10 0 0 29 16 0 3 3 23 35 0 0 35 

2008 -0.22 19 16 0 35 16 10 0 10 0 0 35 0 3 10 0 13 0 16 0 16 

2009 -0.36 19 13 10 42 13 26 0 0 0 0 39 16 0 0 0 16 3 0 0 3 

2010 -0.70 16 23 19 58 23 0 0 0 0 0 23 3 6 0 0 10 10 0 0 10 

2011 -0.13 13 26 26 65 0 0 0 0 0 0 0 6 23 6 0 35 0 0 0 0 

2012 0.1 23 3 6 32 23 10 6 0 0 0 39 23 0 6 0 29 0 0 0 0 

2013 -0.39 42 0 0 42 13 16 0 10 6 0 45 3 3 3 0 10 0 3 0 3 

2014 -0.28 6 0 0 6 42 13 0 0 0 0 55 16 10 10 0 35 0 3 0 3 

2015 0.10 26 19 19 65 6 6 0 0 0 0 13 10 13 0 0 23 0 0 0 0 

2016 -0.29 55 16 6 77 13 0 0 0 0 0 13 10 0 0 0 10 0 0 0 0 

2017 -0.18 58 16 6 81 3 3 0 0 0 0 6 10 0 3 0 13 0 0 0 0 

2018 -0.40 0 0 0 0 3 29 13 13 0 0 58 0 13 16 6 35 3 3 0 6 

Mean -0.220 20.7 14.1 8.1 42.9 12.9 9.9 1.8 3.2 0.5 0.0 28.3 12.0 5.5 4.8 0.7 23.0 3.9 1.8 0.0 5.8 

Standard 

Deviation 0.209 18.8 11.6 8.1 25.4 11.3 8.9 3.9 4.9 1.7 0.0 18.2 9.3 6.9 4.7 1.9 11.1 9.5 4.3 0.0 9.7 
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D)  

Year 

Mean 

Daily 

NEE 

Cluster 

Transitional Gradient Zonal Meridional 

P1 P2 P3 Total P5 P9 P13 P14 P15 P16 Total P6 P7 P10 P11 Total P4 P8 P12 Total 

2005 0.24 0 0 7 7 0 3 0 3 13 10 30 7 17 3 17 43 0 0 20 20 

2006 0.46 23 7 7 37 7 7 3 3 0 0 20 13 3 0 0 17 3 17 7 27 

2007 0.49 0 0 0 0 0 0 23 10 0 0 33 0 7 7 23 37 0 0 30 30 

2008 0.18 0 0 7 7 0 0 17 10 30 0 57 3 7 7 7 23 3 7 3 13 

2009 0.41 13 0 3 17 17 10 3 20 3 0 53 7 3 7 13 30 0 0 0 0 

2010 0.49 0 7 10 17 3 0 0 0 23 0 27 13 3 3 3 23 3 17 13 33 

2011 0.57 0 0 0 0 3 13 3 23 10 0 53 0 7 17 13 37 7 0 3 10 

2012 0.54 7 0 10 17 7 3 10 27 3 0 50 10 0 10 10 30 0 3 0 3 

2013 0.08 0 0 3 3 3 37 3 17 0 0 60 0 13 3 3 20 3 7 7 17 

2014 0.33 0 0 0 0 0 0 23 33 17 0 73 0 0 0 10 10 0 17 0 17 

2015 -0.37 0 10 7 17 0 3 0 7 3 7 20 3 10 10 10 33 0 0 30 30 

2016 0.35 3 0 3 7 7 0 3 23 13 0 47 7 7 7 27 47 0 0 0 0 

2017 -0.04 0 0 17 17 13 13 0 3 0 0 30 3 27 13 0 43 3 7 0 10 

2018 0.32 0 0 0 0 0 0 3 10 30 7 50 0 0 7 13 20 0 3 27 30 

Mean 0.288 3.3 1.7 5.2 10.2 4.3 6.4 6.7 13.6 10.5 1.7 43.1 4.8 7.4 6.7 10.7 29.5 1.7 5.5 10.0 17.1 

Standard 

Deviation 0.258 6.9 3.4 4.8 10.4 5.3 10.0 8.4 10.3 11.0 3.4 16.4 4.8 7.4 4.7 8.0 11.1 2.2 6.6 11.8 11.6 
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Appendix 4: Average annual transitional (A), gradient (B), meridional (C), and zonal (D) cluster occurrence (%) over the entire study 

period. 

 

A) 

C) D) 

B) 
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Appendix 5: Average annual transitional (A), gradient (B), meridional (C), and zonal (D) cluster persistence (days) over the entire 

study period  

 

C) 

A) B) 

D) 
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