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Abstract 

Remote Camera-traps as a Management Tool: Estimating Abundance and Landscape 
Effects on the Density of White-tailed Deer 

 
Grace Anne Bullington 

 
Quantifying the impacts of environmental conditions on the abundance of 

wildlife populations is important for making informed management decisions in the face 

of increasing environmental threats. Managers require robust tools to estimate 

abundance and density of wildlife rapidly and with precision. Within the context of 

studying white-tailed deer, I evaluated the use of camera-traps and a recently developed 

spatial-mark resight model to estimate deer density and evaluate habitat and land use 

factors influencing deer density. The study was conducted in central Ontario, Canada on 

approximately 16 km2 of public land including the protected Peterborough Crown Game 

Preserve. Telemetry locations from 39 radio-collared deer were used and one hundred 

camera-traps were deployed for a total of 140 days from January 2022 to May 2022. 

Using telemetry locations and camera-trap photos I built a two-step spatial-mark resight 

model to estimate deer density. Deer density varied during the study as a portion of the 

population migrated to wintering areas outside of the study area. Despite fluctuations in 

precision, estimates improved towards the end of the study as more data became 

available and deer space use stabilized. The average deer density during the entire study 

was 3.0 deer/km2 (95% CI= 0.1, 5.8; SD= 1.7; CV= 55%; N= 238 deer). The lowest mean 

density was 0.2 deer/km2 (95% CI= 0.1, 0.4; SD= 0.1; CV= 50%; N= 15 deer) from 

February 26th to March 11th and the highest mean density was 4.8 deer/km2 (95% CI= 

3.1, 6.2; SD= 0.8; CV= 17%; N= 378 deer) from May 7th to May 20th. When I incorporated 
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spatial covariates into the model to estimate effects on deer density, higher proportions 

of mixed forest, deciduous forest, and road and trail density all had negative effects on 

deer density. While models contained some uncertainty, deer density appeared higher 

in the portion of the study area protected from licensed hunting. This thesis provides a 

framework for managers to use camera-traps and the spatial-mark resight model to 

monitor deer populations and link environmental covariates to spatial variation in 

density. As environmental threats such as habitat loss and infectious diseases increase in 

severity, monitoring wildlife population numbers will be vital for informed responses to 

these threats. The two-step spatial-mark resight model with environmental covariates 

provides managers with a long-term monitoring tool to evaluate management efforts 

and population health in forested areas.  

 

Keywords: white-tailed deer, spatial-capture recapture, camera-trap, density 

estimation, wildlife management, chronic wasting disease, landscape ecology, 

population estimation 
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Chapter 1: General Introduction 
 

Human activities, from habitat loss and climate change to increased recreational 

activities in wild areas, are the primary threat to wildlife species and the ecological 

communities of which they are a part (Wong and Candolin, 2015; Reilly et al., 2017). 

These threats bring significant challenges for wildlife management and conservation. To 

maintain stable, healthy ecosystems, resource managers will need to have reliable 

information which might be improved with emerging techniques for monitoring and 

conservation (Hobbs et al., 2011). These techniques may take the form of increased 

surveillance for infectious diseases (Cardoso et al., 2022), modelling the effects of 

changing species distributions in response to a warming climate (Weiskopf et al., 2019), 

or quantifying the impacts of intentional and unintentional supplemental feeding of 

wildlife (Priesmeyer et al., 2012).  

Emerging and expanding infectious diseases pose significant threats to wildlife 

species and are the focus of numerous management and research programs (Tompkins 

et al., 2015). One such disease in North America is Chronic Wasting Disease (CWD). CWD 

is a fatal prion disease that infects members of the Cervidae family (Rivera et al., 2019). 

First identified in captive mule deer (Odocoileus hemionus) at a wildlife facility in 

Colorado, USA, in 1967 (Williams and Young, 1980), it was later classified as a 

transmissible spongiform encephalopathy (TSE) disease in 1980. In 1981, CWD was first 

detected in wild free-ranging elk (Cervus canadensis) becoming the only known prion 

disease of wild free-ranging animals (Spraker et al., 1997; Williams and Miller, 2002). 

Since its discovery, CWD has spread across much of North America and has been 
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detected in either free-ranging or captive cervids in 30 states in the United States and 

four Canadian provinces (Figure 1. A; National Wildlife Health Center, 2023). CWD has 

also been reported in Norway, Finland, Sweden, and South Korea (Ågren et al., 2021). 

Species with confirmed positive cases of CWD include mule deer, elk, white-tailed deer 

(Odocoileus virginiaus) (Spraker et al., 1997), moose (Alces alces) (Baeten et al., 2007), 

wild reindeer (Ranifer tarandus) (Benestad et al., 2016), and red deer (Cervus elaphus) 

(Vikøren et al., 2019). All species in the Cervidae family are probably susceptible to CWD 

and thus this disease poses a global threat to the health of cervids (Mawdsley, 2020). 

CWD can be transmitted horizontally or vertically (Rivera et al., 2019). Horizontal 

transmission is likely the most common (Miller and Williams, 2003) with infection 

occurring due to direct contact with an infected individual or infected saliva, feces, or 

urine (Rivera et al., 2019). The infectious prion can also persist in the environment, 

specifically in the soil, resulting in infection via grazing and local persistence of the 

disease (Haley and Hoover, 2015). In areas where the disease has become endemic, it 

has yet to be eradicated and can have significant negative effects on populations, 

especially when combined with additional pressures like hunting (Edmunds et al., 2016). 

In Wyoming, DeVivo et al. (2017) estimated an annual rate of population decline of 21% 

given the current prevalence of CWD in the southeastern mule deer population [CWD 

prevalence 24%; 95% CI = 22%-27%] but estimated the population growth rate would be 

stable if CWD were eliminated as a cause of mortality. Further, the presence of CWD 

could reduce hunting activity, thereby leading to reductions in funding available to 

combat the disease. Thus, management agencies have primarily focused on trying to 
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prevent the entry of CWD into jurisdictions, to eradicate it to avoid CWD becoming 

endemic if there is a positive case, and ultimately to reduce the prevalence if it does 

become endemic (Rivera et al., 2019).  

 As of 2023, the province of Ontario has not detected a positive case of CWD but 

has a provincial surveillance program and response plan (Ontario Ministry of Natural 

Resources and Forestry [OMNRF], 2023). OMNRF has been testing wild cervids for CWD 

since 2002, as part of their Chronic Wasting Disease Prevention and Response Plan 

(Figure 1.B; OMNRF, 2019). This surveillance includes sampling from hunter-harvested 

and opportunistically sampled white-tailed deer, moose, and elk. With increasing cases 

of CWD in surrounding jurisdictions, it is a top priority of OMNRF to monitor high risk 

areas for positive cases to prevent the spread of CWD in the province (National Wildlife 

Health Center, 2020; OMNRF, 2019). In the event of a positive CWD case, the CWD 

response plan states that OMNRF will respond to determine the control zone and 

estimate the density of cervids within the control zone (OMNRF, 2019). After which, 

OMNRF will take several measures to reduce the spread and prevalence of CWD, 

including reducing the population (e.g., herd culling) of cervids in close proximity to 

infected animals. However, the response plan does not provide clear guidance for how 

OMNRF will determine the control zone and fails to consider the complexities of 

estimating cervid population densities. Consequently, my project provides guidance for 

estimating cervid density and factors influencing it using new technologies and statistical 

models.  
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 Knowing how many cervids are on the landscape at any point of the year is 

critical for informing decisions for managing wildlife disease (Storm et al., 2013). 

However, estimating the density of animals is complex and the methods to do so are 

dependent on agency resources, environmental conditions, and study area scale (Burgar 

et al., 2018). Estimating cervid density has been an active area of research for decades 

(Forsyth et al., 2022), but recent improvements in technology and statistical modeling 

are allowing for a wider variety of estimation techniques. Recent advances include 

noninvasive genetic sampling through fecal DNA (Brazeal et al., 2017), aerial thermal 

imaging (Corcoran et al., 2021), and deploying infrared motion-activated camera traps 

(Parsons et al., 2017).  Many of these technological advancements can be combined with 

innovative statistical models to improve the probability of detection and account for 

imperfect detection of cervids, especially in densely treed areas (Forsyth et al., 2022).  

Of the technological advancements, camera-traps have become one of the 

primary tools for wildlife research and conservation (Glover‐Kapfer et al., 2019). 

Camera-traps offer numerous advantages over other tools because they are non-

invasive, non-discriminatory, cost-effective, can be placed for extended periods, and 

cover a variety of spatial scales (Burton et al., 2015). Camera-traps require image 

processing, which can be time consuming, but with advances in computer learning and 

image management, technology firms like Wildlife Insights and WildTrax are working to 

reduce processing times (Vélez et al., 2022; Wildlife Insights 2023; WildTrax 2023).  

With the ubiquity of camera-trap studies, numerous statistical advancements 

have been made in recent years to address the variety of challenges that arise when 
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estimating population abundance and density. These statistical models vary depending 

on whether the population is composed of animals that are individually identifiable, 

partially-marked, or unmarked (Palencia et al., 2021). For species whose individuals are 

naturally identifiable, e.g., tigers (Panthera tigris), the preferred method includes using 

photos of individuals to build a capture-recapture model (Karanth, 1995). For partially-

marked species, e.g., bucks with antlers, studies have used a spatially explicit capture-

recapture model to estimate the abundance for a subset of individuals that are uniquely 

identifiable (Beaver et al., 2016), or have incorporated additional information like 

telemetry and radio-collared individuals to build a spatial mark-resight model (Margenau 

et al., 2022). However, many species are not uniquely identifiable or do not have a 

subset of the population marked, so other models have been developed, with mixed 

success, to estimate population density and abundance using camera-traps. Such models 

include spatial counts (Burgar et al., 2018), time to event models (Moeller et al., 2018), 

random encounter models (Rowcliffe et al., 2008), random encounter and staying time 

models (Nakashima et al., 2018), and distance sampling (Howe et al., 2017). Further 

statistical advancements include adding a spatial component to traditional capture-

recapture models, allowing for direct estimates of density by modelling the population 

size over an explicit spatial region (Efford, 2004). These spatially explicit capture-

recapture (SCR) models reveal how population densities are influenced by the 

surrounding landscape (Chandler and Royle, 2013). Many limitations exist for camera-

trap studies (Burton et al., 2015); however, they represent a potentially attractive option 

for managers who need to estimate the density of wildlife populations or monitor a 
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population within a specific area. However, it is important to test these advancements 

prior to real-world deployment.  

A cervid species of particular concern for wildlife managers as a driving force for 

CWD spread is white-tailed deer (Joly et al., 2003). With a reduction of natural 

predators, focused management practices, and adaptation to changing landscapes, 

white-tailed deer populations have grown rapidly in many parts of North America over 

the last half century (Garrott et al., 1993; VerCauteren et al., 2011). White-tailed deer 

are a generalist browser that moves between habitats, interacting with various other 

species, and they occur at high population densities across much of their range (Garrott 

et al., 1993). Deer are valued for their recreational and cultural significance, but they can 

also be controversial, especially in high densities, due to over-browsing and the hazard 

and cost of deer-vehicle collisions. Their complex social structures (matriarchal and 

bachelor groups) and seasonal movements (dispersal and winter aggregation) 

compound the risk of spreading CWD (Storm et al., 2013). For example, Oyer et al. 

(2007) recorded a 98 km dispersal from a yearling white-tailed female out of a CWD-

endemic area, highlighting the risk for a large geographical spread of CWD.   

The spread of CWD to new areas and affecting other sensitive cervid populations 

is exacerbated by climate change. As climate change accelerates, white-tailed deer are 

expected to expand their ranges further north (Dawe et al., 2014; Dawe and Boutin, 

2016; Weiskopf, 2019), allowing them to move into areas previously uninhabited by 

deer. Increased anthropogenic changes (e.g., habitat fragmentation, road development, 

oil extraction) to the landscape are also likely to promote deer expansion (Darlington et 



 7 

al., 2022). In addition, wildlife do not adhere to geo-political boundaries; therefore 

surveillance for CWD near states and provinces with known cases of CWD is imperative.  

White-tailed deer winter aggregation is a concern for increasing the risk of CWD 

spreading (Cullingham, 2010). Near the northern limits of their distribution, white-tailed 

deer seasonally migrate between summer and winter areas to avoid heavy snows 

(Nelson, 1998). They tend to congregate in large numbers in wintering areas dominated 

by coniferous trees (Morrison et al., 2003). This high deer density increases the risk of 

direct contact between individuals and environmental contamination with CWD 

(Janousek et al., 2021), followed by large movements in the spring potentially leading to 

significant spread of disease over short time frames. Such effects might be exacerbated 

at winter supplemental feeding sites (Thompson et al., 2008). Unlike natural browse at 

wintering areas, which is spread out both vertically and horizontally, and does not get 

replaced after consumption, supplemental feeding sites increase deer concentration 

with repeated use of the sites. Many jurisdictions with CWD have banned supplemental 

feeding due to this risk (Sorensen et al., 2014). However, banning of supplemental 

feeding is often controversial among the public, many of whom rely on baiting to hunt 

and believe providing winter supplemental feed increases deer survival (Murray et al., 

2016). Understanding where deer are and how they use resources, especially in winter, 

will be important in building foundational knowledge of deer ecology when preparing to 

respond to the potential occurrence of CWD.  

One of the primary tools of population management of deer is hunting (Connelly 

et al., 2012). However, deer have developed predator avoidance strategies to reduce the 
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risk of harvest during the regulated hunting season. For example, deer may shift their 

activity patterns to avoid diurnal-only hunting (Little et al., 2016). Deer may also move to 

areas where hunting is restricted (e.g. game preserves, national parks, private 

properties; Rhoads et al., 2013). This has led to many of these refuges having 

unsustainably high deer densities, which, in turn, can lead to habitat degradation (Coffey 

and Johnston, 1997). Understanding the behavioral response of deer to predation risk 

will be important when evaluating potential management strategies to contain CWD.   

Research Questions  
 
 Ontario has a large population of white-tailed deer whose range limits are likely 

to expand northward with climate change. There has not been a case of CWD detected 

in the province, but there have been positive cases in the surrounding jurisdictions 

(Figure 1. A; National Wildlife Health Center, 2023), and thus it is likely that CWD will 

eventually be detected in Ontario. The province currently has a CWD response plan in 

place that prescribes the rapid reduction of the local deer population around a positive 

case to prevent the disease from becoming endemic. Such an approach requires 

accurate and rapid population abundance and density estimation techniques. My thesis 

aimed to test a new method of estimating deer density in Ontario to give managers a 

potential tool to assess CWD control efforts. I used camera-traps and recently developed 

spatial-capture recapture models to address two primary questions:   

1. Are camera-traps a viable option for short-term and long-term deployment to 

estimate density of white-tailed deer in Ontario?  
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2. Can spatial covariates be incorporated into a density model to evaluate how 

white-tailed deer use resources and identify areas of high local abundance? 

 

Figure 1. A) The distribution of chronic wasting disease in North America as of August, 
2023 (National Wildlife Health Center and USGS, 2023). This map indicates states and 
provinces with positive cases both in free‐ranging and captive cervid populations. B) 
Front cover of the Ontario Government 2019 Chronic Wasting Disease Prevention and 
Response Plan (OMNRF, 2019).   

Chapter 2: Connecting white-tailed deer density and landscape effects using remote 
camera-traps in central Ontario 
 

Introduction  
 

Estimating population abundance is fundamental to understanding animal 

ecology and to managing and conserving wildlife (Pierce et al., 2012). Abundance 

estimates inform policy and management decisions, providing critical indicators of the 

status of wildlife populations. As a result, researchers continually innovate and refine 

technological and statistical techniques to improve understanding of the underlying 

drivers of population abundance (Royle et al., 2018). Advancements in these techniques 
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allow ecologists to make more informed management decisions, especially in the face of 

increasing environmental threats to wildlife populations.  

Since the mid-20th century, biologists have used remote photography to 

document and monitor wildlife populations (O’Connell et al., 2011). As camera 

technologies advanced, the use of infrared motion-activated camera-traps has become 

an increasingly popular option for wildlife surveys (Burton et al., 2015). Modern camera-

traps are small, can capture photos for up to a year, store thousands of photos, and 

require minimal maintenance once deployed (Locke et al., 2012). Camera-traps are 

advantageous relative to other methods because they can collect data for an extended 

period regardless of the time of day or season. The use of camera-traps also reduces 

bias induced by human presence, as researchers need to be present only during the 

deployment and maintenance of the cameras (Caravaggi et al., 2020). In addition, 

camera-traps are non-discriminatory and can capture information on several species 

simultaneously. The data collected from camera-traps can be used to answer 

fundamental ecological questions regarding species diversity (Oliver et al., 2023), 

resource use (Hofmann et al., 2016), individual behavior (Caravaggi et al., 2017), and 

population dynamics (Karanth et al., 2006), while being cost-effective and noninvasive 

(O’Connell et al., 2011). However, there are limitations with camera-traps including 

sensor performance, initial cost, and theft (Glover‐Kapfer et al., 2019). Understanding 

these limitations allows biologists to develop more explicit methodologies to account for 

them (Burton et al., 2015). To ensure that inferences drawn from camera-trap data are 

reliable, testing study methods at varying scales and selecting appropriate statistical 
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analyses are imperative to further develop camera-traps as tools in wildlife conservation 

(Burton et al., 2015).  

 In addition to the advent of camera-traps, capture-recapture models serve as a 

foundational method for estimating population abundance. Capture-recapture methods 

were first developed in the early 1900’s to monitor the annual change in the abundance 

of wildlife (Lincoln, 1930). Since then, capture-recapture models have further developed 

as computational power has increased and statistical methods have improved (Otis et 

al., 1978; Pollock, 1991; Bolger et al., 2012). The traditional approach to capture-

recapture involves live trapping, marking, and releasing individuals, and creating capture 

histories through repeated sampling (Green et al., 2020). These individual capture 

histories and the related proportion of marked to unmarked individuals allow 

researchers to estimate the population size (Otis et al., 1978).  

A limitation of such models is that they address only the numerator of density 

estimation (Green et al., 2020). The area (over which population density is calculated) is 

often delineated arbitrarily (Green et al., 2020; Royle et al., 2014). To address this 

limitation, researchers developed spatially explicit capture-recapture (SCR) models that 

explicitly incorporate the location of traps and estimate latent activity centers of 

captured animals, allowing for density to be estimated directly in the model without 

post-hoc calculations of the area (Borchers and Efford, 2008; Royle and Young, 2008). In 

this approach, density is estimated using a spatial point process to model the 

distribution of activity centers of individuals and estimate their capture probability as a 

function of the distance between the activity centers and trap locations (Royle et al., 
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2014). This analysis assumes that individuals with activity centers closer to trap locations 

will be captured more often. Parameter estimates include 𝜆0, which is the probability of 

capturing an individual at their activity center, and 𝜎, which is the rate at which capture 

probability declines with distance measured in meters (Whittington et al., 2018). The 

sum of these activity centers represent the number of individuals in a population N 

across the defined state space S resulting in the estimated population density. By 

making the movement of individuals and trap locations explicit, researchers can 

incorporate spatial covariates into SCR models to quantify the effects of environmental 

factors on the distribution of activity centers and therefore population density (Royle et 

al., 2018). This allows researchers to connect population dynamics with landscape 

ecology to better understand the underlying processes influencing population densities 

(Linden et al., 2018; Proffitt et. al, 2015; Satter et al., 2019).   

 Nevertheless, a potentially major limitation of capture-recapture and SCR models 

is that individuals need to be marked or uniquely identifiable (Chandler and Royle, 

2013). This is possible for genetic sampling studies (Goode et al., 2014), for camera-trap 

studies involving species with unique markings (Avgan et al., 2014), or for which a subset 

of the population is uniquely identifiable (Beaver et al., 2016). This need for individual 

identifiers limits the use of standard capture-recapture and SCR models for species 

which lack individual identification when camera-traps are the detectors. However, 

recent model extensions relax the requirement for individual identification, allowing for 

abundance and density estimation of unmarked or partially marked populations 

(Chandler and Royle, 2013; Whittington et al., 2018; Margenau et al., 2022). These 
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models include spatial count models (Chandler and Royle, 2013) and spatial mark-resight 

models (Whittington et al., 2018), which can be applied to camera-trap studies. To 

improve estimates, researchers recommend that any additional information regarding 

detection probability, such as encounter histories of individuals who are uniquely 

identifiable or ancillary spatial data gleaned from radiotelemetry, should be included in 

the model (Margenau et al., 2022).   

 Such additional information can be incorporated into spatial mark-resight (SMR) 

models. This innovative technique represents a cost-effective way to apply SCR 

techniques because only a portion of the population needs to be marked, either 

naturally or artificially (Whittington et al., 2018). For artificial marks, individuals are 

captured once, marked (e.g., by fitting a radio collar), and capture histories are built 

through resighting of these individuals. Camera-traps are often used as re-sighting 

detectors in these instances (Whittington et al., 2018). Recently Margenau et al. (2022) 

extended generalized SMR models to incorporate long-term data and applied them to 

estimate abundance of white-tailed deer in Florida, USA. They split the estimator into 

two stages to ease computational demands and allow flexibility with long-term 

monitoring efforts. In the first stage, they estimated detection parameters (𝜎, 𝜆0) using 

telemetry from radio-collared adult female deer and camera-trap detections of these 

animals. In the second stage, they estimated adult female density using camera-trap 

detections of females, treating all deer as unmarked and using the estimated detection 

parameters from stage one as priors in the second stage. In addition to easing 

computational demands, splitting the model into two stages allows for the second stage 
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of the model to be used independently if no concurrent telemetry data are available, 

provided appropriate detection priors can be incorporated into the model. Doing so 

results in a loss of some precision but allows for long-term monitoring without the need 

for continually marking individuals as long as researchers can assume consistent 

behavior across time.  

Apart from the field and analytical procedures of population estimation, wildlife 

management often hinges on the precision and accuracy of the estimate. The accuracy 

of a population abundance estimate can rarely be determined since we do not know the 

true population size (Pierce et al., 2012). Instead, researchers can conduct simulation 

studies prior to field deployment to test the effect of different sampling scenarios on the 

accuracy of estimates (Kowalewski et al., 2015). Post-data collection accuracy can be 

inferred by comparing similar studies conducted within the study system. However, if a 

study area has never been previously sampled, researchers must rely on evaluating the 

precision of the estimates to determine their usefulness (Pierce et al., 2012). Precision is 

often evaluated by calculating the coefficient of variation (CV), which is the standard 

deviation of the estimate divided by the mean or the ratio of the sample variability to 

the abundance estimate, often reported as a percentage (Forysth et al., 2022). The 

smaller the CV, the more precise and reliable the estimate. Wildlife managers generally 

strive for CVs of ≤ 20% (Butler et al., 2020). However, researchers often fail to report 

measures of precision, especially CVs, making it difficult to compare the reliability of 

different sampling methods for wildlife management (Forsyth et al., 2022). By including 
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measurements of precision, researchers can better understand the effectiveness of 

survey methods.  

 White-tailed deer are an ideal study species to test the use of camera-traps and 

SMR model validity for estimating population density in Ontario, Canada. Deer are the 

most abundant of the province’s four cervid species and are an important species 

ecologically, socially, and economically (OMNRF, 2017). They are also a concern as a 

major driver in the spread of chronic wasting disease (CWD; Joly et al., 2003). Accurately 

and precisely estimating the population size of deer, regardless of season, will be critical 

in Ontario’s response to a positive CWD case (OMNRF, 2019). Deer also play an 

important ecological role in the systems they inhabit (Shelton et al., 2014). Deer are an 

important prey species for large carnivores, but in the absence of large carnivores they 

are often over-abundant leading to over-browsing and negative impacts on local plant 

understories (Flagel et al., 2015; Horsley et al., 2003; Rooney, 2009). On average there 

are 10,000 to 12,000 reported wildlife collisions in Ontario each year resulting in 

approximately 400 human injuries and $800 million in damages with the majority of 

these collisions being with deer (Ontario Ministry of Transportation[OMT], 2018; OMT, 

2020). Managing deer species to reduce the spread of CWD, the negative effects on 

plant communities, and vehicle collisions is difficult and requires a multi-pronged 

approach to address management objectives (McShea, 2012).  

 In addition to population size, understanding the local distribution of deer can be 

important to managing the species. Deer make decisions regarding trade-offs between 

increased predator risk (e.g., predation, hunter risk, vehicle collisions) and forage 
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availability (Dupke et al., 2017). This landscape of fear is not static; it varies spatially and 

temporally. Deer in areas with low natural predator risk, such as in suburban areas, will 

use the landscape differently and behave differently than those with high natural 

predator risk, such as in wilderness areas (Brown, 1999). Deer predation risks, including 

hunting risk, shift seasonally, which influences deer behavior and distribution (Cromsigt 

et al., 2013). Additionally, winter can be a particularly risky period for deer in the 

northern extent of their range as deep snow increases canid predation (Olson et al., 

2021; Rieucau et al., 2007). Understanding deer responses to presumed predation risk 

and why they use certain areas more than others is fundamental to managing the 

species. 

The scale is an important consideration when estimating abundance and 

examining the influence of environmental effects that vary spatially on species 

(Bissonette, 2012; McDonald et al., 2012). Much of the knowledge on variation in deer 

use of landscapes comes from studying individual behavior through direct observations 

or radio-telemetry (Little et al., 2016) (Darlington et al., 2022). The results of these 

studies are often extrapolated to entire populations, possibly introducing bias or 

uncertainty and potentially obscuring population-level patterns, which are most 

important for management decision making. By contrast, there is also a risk in studying 

these processes at too coarse a scale. If researchers make inferences across large-spatial 

scales they might miss important nuances, or be unable to resolve influential spatial 

effects (McDonald et al., 2012). Instead, when population-level studies that link density 

and spatial environmental factors can be conducted at a fine scale for a local population, 
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managers can make decisions that are directly informed by the deer population they 

manage (Royle et al., 2018). This might include decisions regarding harvest quotas, 

conservation of critical over-winter areas, or road and trail development. By modeling 

the influence of landscape factors on deer density and making specific habitat-related 

management decisions, managers can better evaluate the effectiveness of these 

management decisions.   

 Here, we assess a recently developed spatial-mark resight model for estimating 

white-tailed deer density and abundance in Ontario. Specifically, using camera-traps, we 

were interested in whether the model provided feasible and precise density estimates. 

To assess the influence of spatial environmental factors on deer density, we 

incorporated spatial covariates, which have not been tested for this SMR model. Our 

research objectives were two-fold. First, we used telemetry and camera-trap data to 

build a SMR model to estimate the abundance of a local deer population. Second, we 

built upon this model by incorporating landscape covariates to assess the effect of 

environmental factors on fine-scale variations in deer density.  

Methods  

 

Study Area 
 
 This study was conducted within a 16-km2 area near Apsley, Ontario, Canada 

(Figure 2). This area, part of provincial Wildlife Management Unit 60 (OMNRF, 2021), 

was divided into two adjacent study sites with differing deer management strategies. 

The northern portion of the study area was public land (approximately 6 km2) that 

allowed for hunting and trapping. The southern portion of the study area was part of the 
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Peterborough Crown Game Preserve (approximately 10 km2). The northern area was 

open to bow hunters from October 1st to December 15th 2021 and firearm hunters 

November 1st to November 14th 2021 (OMNRF, 2021). Except for local Indigenous 

communities, hunting and trapping was prohibited in the Game Preserve (OMNR, 1977). 

However, other recreational activities were allowed in both areas including 

snowmobiling, off-road vehicle use, cross-country skiing, and hiking. The study area was 

surrounded by private property, with a network of residential and logging roads 

throughout the area.   

 

Figure 2. Overview of the greater study area including the spatial scale boundary and 
Peterborough Crown Game Preserve boundary. Points indicate camera‐trap locations 
within the camera study boundary in central Ontario, Canada. Includes roads and trails 
throughout the study area. 
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 The study area fell within the Great Lakes-St. Lawrence Forest Region (Rowe, 

1972), and within the Bancroft-Minden Forest Management Unit (OMNRF, 2020a). The 

area was predominantly a mixed conifer-deciduous forest. The primary tree species 

includes white pine (Pinus strobus), sugar maple (Acer saccharum), eastern white cedar 

(Thuja occidentalis), red pine (Pinus resinosa), red maple (Acer rubrum), white oak 

(Quercus alba.), red oak (Quercus rubra), and balsam fir (Abies balsamea) (OMNRF, 

2020b). The climate was humid-continental, consisting of mild springs and autumns, cold 

winters, and hot summers (Peel et al., 2007). Monthly average temperature for the area 

ranged from -5.1oC in January 2022 to 27.1oC in July 2022 (Environment and Climate 

Change Canada, 2022).  

The study area was located in Peterborough County, specifically in North 

Kawartha Township which had a population of 2,877 (3.9 people/km2) in 2021 (Statistics 

Canada, 2021). This included 3,693 private residences, of which 1,364 were occupied 

year-round. In addition to the study species, other common large mammals were 

American black bear (Ursus americanus) and moose (Alces alces). Canids included red 

fox (Vulpes vulpes) and eastern coyote (Canis latrans var). Smaller mammals consisted of 

fisher (Pekania pennanti), American marten (Martes americana), American mink 

(Neovision vision), snowshoe hare (Lepus americanus), northern raccoon (Procyon lotor), 

North American porcupine (Erethizon dorsatum), and several squirrel species (Sciuridae 

family).  
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Camera Trap Monitoring Design 
 
 OMNRF staff and I deployed 100 infrared-motion activated camera-traps, set to 

operate continuously, beginning March 10th 2021 to May 21st 2022. Cameras included 69 

Reconyx UltraFire XP9 and 31 Reconyx HyperFire HC600 (Reconyx Inc., Holmen, WI, 

USA), with models distributed throughout the study area. Camera settings included 3 

pictures per trigger, 0 second delay between triggers, trigger sensitivity set to high, and 

flash active for nighttime triggers. Timelapse photos were taken at 12 pm each day to 

ensure the camera was functioning and the camera view was unobstructed. A sampling 

occasion was defined as a day that the camera was active for 24 consecutive hours with 

no malfunctions or visibility concerns preventing detection and identification of species 

triggering the camera. If all cameras were active and unobstructed then one day 

provided 100 sampling occasions.  

 We deployed the cameras using a stratified random design. A 16-hectare grid 

was overlaid across the study area resulting in one-hundred 400 m x 400 m cells for 

camera deployment, with 40 cells in the public land and 60 cells in the game preserve. 

Within each cell, a single camera was placed within 30 m of a randomly generated point. 

The points were randomly generated before the camera deployments using the 

geospatial software ArcGIS Pro 2.7.0 (ESRI, Redlands, CA, USA). Cameras were deployed 

to maximize detections of deer, including facing game trails. If there was not a suitable 

place to set up the camera within 30 m of the randomized point due to land cover types 

lacking trees for camera attachment, specifically open fields or bodies of water, we set 

the camera on the edge of the open area (Beaver et al., 2016). Cameras were placed 
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approximately 1 m off the ground to avoid visual obstruction by snow and facing north 

to avoid sun obstruction. We revisited the cameras every 3 to 4 months to replace the 

SD card, check the battery level, and ensure each camera was functioning. Photos were 

processed and uploaded to Wildlife Insights (Wildlife Insights, 2023). All photos were 

reviewed by trained personnel for species identification, number of individuals present, 

sex identification when possible, age classification when possible, and individual 

identification for radio-collared deer.  

Although the cameras were active from March 10th 2021 to May 21st 2022, for 

this study, I used a sub-sample of the camera data to coincide with the deployment of 

GPS radio-collars on deer within the study area. Specifically, I used data from January 1st 

2022 to May 20th 2022 for a total of 140 days and 13,190 sampling occasions.  

Radio-collared Deer 
 
 From December 2021 through March 2022, deer were captured using Clover 

traps (Clover, 1956) baited with a small amount of corn. We followed animal handling 

and care protocols approved by the Ontario Ministry of Natural Resources and Forestry 

and the Trent University Animal Care Ethics committees with guidelines set by the 

Canadian Council on Animal Care (OMNRF and Trent University permit #22-460). 

Capture protocols also followed the guidelines of the American Society of Mammalogists 

(Sikes et al., 2019). Captures were non-discriminatory, resulting in the capture of both 

sexes and deer of varying age classes (adult, yearling, fawn). Every captured deer that 

was deemed to be in sufficient condition to wear a collar was fitted with a Lotek 

LiteTrack Iridium 420 global positioning system (GPS) collar (Lotek Wireless Inc, 
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Newmarket, ON) programmed to send one GPS location every 2 hours via satellite to the 

online Lotek Web Service. Magnetic expanders were added to the collars deployed on 

males to accommodate neck growth during the rutting season. Collars were equipped 

with a timed drop-off mechanism that could be remotely triggered if needed. Collars 

were fit with a rubber gasket that would degrade over time to ensure collars dropped in 

the event of a drop-off failure. Unique ID placards were added to both sides of all the 

collars (Figure 3). These placards, in addition to GPS movements, allowed for 

identification of radio-collared individuals in camera-trap photos. GPS-telemetry 

locations collected within one-week post-capture were not included due to potential 

atypical movements related to capture.   

 

Figure 3. Example photo of radio‐collared white‐tailed deer with identifying placard 
(#07) captured by a camera‐trap in central Ontario, Canada. 
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Generalized Spatial Mark-Resight Model 
 
 I used the generalized spatial-mark resight model developed by Margenau et al. 

(2022) to estimate density (number deer/ km2) and abundance (population size) of deer 

in the study area. This model consisted of two stages which reduced the computational 

demands of hierarchical modeling, while still using recursive Bayesian inference to fit 

spatial capture-recapture (SCR) models. In the first stage, telemetry data and camera 

detections of collared deer were used to estimate the detection parameters (𝜆0, 𝜎) 

using a SCR model. The encounter rate, 𝜆0, represented the probability of detecting an 

individual if the distance (di) from the activity center (si) of the individual to a camera 

location (xj) was zero. The spatial scale parameter, 𝜎 (measured in meters), was the rate 

at which the detection probability of an individual decreases as a function of Euclidean 

distance between the camera and activity center. In the second stage, these estimated 

detection parameters were used as priors to estimate density and abundance, with all 

deer treated as unmarked using an unmarked SCR model. Density was allowed to vary 

across two-week sampling periods, but a first-order autoregressive (AR[1]) time-series 

model was included in both stages to account for autocorrelation in detection and 

density.  

 The models were broken into consecutive primary periods t = 1, …, T, each 

consisting of 2 weeks during which I considered the deer population to be closed (i.e. 

limited deaths and dispersal). Each primary period was then broken into 14 secondary 

periods k. The 78.93-km2 state space S included the 16-km2 camera array and a 2-km 

rectangular buffer. The buffer ensured that individuals with activity centers outside the 
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state space or near the edge of the space had a near-zero probability of being detected 

at cameras and was based on the maximum 𝜎 value across sampling periods. 

 I did not differentiate between male and females when estimating detection 

parameters and assumed that there are no differences in movements between the 

sexes. To help validate this assumption I estimated each deer’s home range using a 

minimum convex polygon (MCP, 95% confidence area) during each two-week primary 

period. I then conducted a Wilcoxon signed-rank test comparing the average home 

ranges of radio-collared males and females to ensure they were not significantly 

different from one another. The alpha value (α) was adjusted using a Bonferroni 

correction (α/n) to avoid type I errors when running the ten Wilcoxon signed-rank tests. 

The alpha was adjusted from α= 0.05 to α=0.005 (α= 0.05/10). 

Stage 1: Model of Marked Deer 
 
 In the first stage of the model fitting, I used the telemetry locations and the 

detection histories of marked individuals to estimate detection parameters for each 

primary period. I only used the GPS-telemetry locations of deer that were within the 

camera grid or the surrounding rectangular buffer (2 km) at some point during the 140-

day sampling period (Figure A1). The telemetry locations informed the model on the 

activity centers of the marked individuals, while the detection histories of marked 

individuals provided information on the probability of detection. The activity center for 

marked individual, 𝑖, during primary period, 𝑡, was assumed to be distributed uniformly: 

𝑠𝑖𝑡~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(𝑆), where 𝑆 was the spatial domain of the study area plus the 2 km 

buffer. The telemetry locations of individual, 𝑖, during primary period, 𝑡, and secondary 
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period, 𝑘, were modeled using a bivariate normal distribution with the latent activity 

center as the mean: 𝑢𝑖𝑘𝑡~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝑠𝑖𝑡 , 𝜎2 𝐼) .  The expected number of detections 

(𝜆𝑖𝑗𝑘𝑡) of a marked individual 𝑖 at camera 𝑗 on secondary sampling period 𝑘 and during 

primary period 𝑡 was assumed to decrease with Euclidean distance (𝑑𝑖𝑗𝑡) between the 

activity center and the cameras. To estimate the expected number of detections at each 

camera, I used a common encounter rate function 𝜆𝑖𝑗𝑘𝑡 =  𝜆0,𝑡𝑒
−

𝑑𝑖𝑗𝑡
2

2𝜎𝑡
2

 which allowed the 

probability of detection to decrease as a function of distance of the camera from the 

activity center. The individual-level encounter histories of the marked deer were 

modeled with a Bernoulli distribution. For each secondary period I used a binary 

detection (1) or non-detection (0) of marked individuals at cameras: 

𝑦𝑖𝑗𝑘𝑡 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(1 − 𝑒−𝜆𝑖𝑗𝑘𝑡𝑧𝑖𝑡). A first-order autoregressive (AR[1]) process model on 

the detection parameters was used to allow for temporal variation between primary 

periods with a logarithmic link to account for temporal autocorrelation:  

𝑓(𝐷𝑡) = 𝑋𝑡
′𝛽𝑡 + 𝜖𝑡  

𝜖𝑡~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝛼𝜖𝑡−1, 𝜏2) 

where f() was the link function, 𝑋𝑡 was a vector of covariates, 𝛽𝑡 was a vector of 

coefficients, 𝜖𝑡 was the error term, 𝛼 was the autocorrelation parameter, and 𝜏2was the 

variance of the error terms.  

In the second stage of the model fitting, I used the joint posterior distribution for 

𝜆0,𝑡 and 𝜎𝑡samples from the first stage. I fit the first stage of the model using STAN from 

the package rstan (Stan Development Team, 2023) in the R statistical software (R Core 

Team, 2022). I made inference using 60,000 posterior samples from four Markov chains 
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after a burn-in of 15,000 iterations. I checked convergence of the posterior samples 

using visual inspection of the MCMC chains and using the Gelman-Rubin convergence 

statistic (𝑅̂), with 𝑅̂ <1.1 indicative of convergence (Brooks and Gelman, 1998).  

Stage 2: Model of Unmarked Deer 
 
 By treating all deer as unmarked in the second stage, this modelling approach 

avoided the need to model different spatial distributions of marked and unmarked 

individuals. In addition, since the marked individuals were presumably a random subset 

of the population, I assumed they had similar spatial distributions as unmarked 

individuals. These assumptions help avoid the biased inferences that can arise when 

combining data on marked and unmarked individuals, when differences in spatial 

distributions are not taken into consideration (Margenau et al., 2022).   

 I used the estimated posteriors of 𝜆0,𝑡 and 𝜎𝑡 from stage one for each primary 

time period to inform the prior multivariate normal distribution in stage two. This 

allowed for more precise estimates of the detection parameters for the stage two 

unmarked SCR model. Similar to the first stage, an AR[1] model was used to account for 

temporal variation in density and abundance between primary periods with an identity 

link that ensured density was strictly positive.  

 Instead of putting a prior directly on abundance (𝑁𝑡), I used a data augmentation 

approach that specified an augmented population size during each primary period, 𝑀𝑡 

that fixed the dimensions of the parameter space. The augmented population size must 

be larger than the possible abundance (𝑀𝑡 ≫ 𝑁𝑡)(Margenau et al., 2022). Abundance 

was modeled as 𝑁𝑡 = ∑ 𝑧𝑖𝑡
𝑀𝑡
𝑖=1  with 𝑧𝑖𝑡~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜓𝑡) and 𝜓𝑡 =

𝐸(𝑁𝑡)

𝑀𝑡
=

𝐷𝑡𝐴

𝑀𝑡
, with 𝐴 
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being the area of the region within which 𝑁𝑡 individuals occur. The latent variable 𝑧𝑖𝑡 

indicated whether an individual of the augmented population was an actual member in 

the study population. The implication of this model was that the marginal distribution of 

abundance is 𝑁𝑡~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑀𝑡 , 𝜓𝑡), which because 𝑀𝑡 was large, was equivalent to a 

Poisson assumption used in point process models.  

 Density was assumed to be spatially uniform. This allowed for each individual’s 

spatial distribution to be modeled as 𝑠𝑖𝑡 ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(𝑆), where 𝑠𝑖𝑡 was an individual’s 

activity center within the two-dimensional spatial region 𝑆. The expected number of 

detections of each individual (𝜆𝑖𝑗𝑘𝑡) was modeled with the same encounter rate function 

as in stage one. However, because not all deer were uniquely identifiable, I used binary 

counts if at least one deer was detected (1) or not-detected (0) at each camera on each 

secondary sampling occasion instead of using a Bernoulli distribution to model the 

individual-level encounter as per stage one. It was assumed that the number of 

independent detections of each individual was Poisson distributed with the model of the 

binary data specified as: 𝑛𝑗𝑘𝑡~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(1 − 𝑒−Λ𝑗𝑘𝑡) where Λ𝑗𝑘𝑡 =  ∑ 𝜆𝑖𝑗𝑘𝑡𝑧𝑖𝑡
𝑀𝑡
𝑖=1 . I fit 

the second stage of the model using the Nimble package in R (de Valpine et al., 2017; R 

Core Team, 2022). I made inferences using 67,500 posterior samples from three Markov 

chains after a burn-in of 5,000 iterations and a thinning rate of 2. I checked convergence 

of the posterior samples using visual inspection of the MCMC chains and using the 

Gelman-Rubin convergence statistic, with values 𝑅̂ <1.1 indicative of convergence 

(Brooks and Gelman, 1998). Additionally I calculated the coefficient of variation (CV) for 

each primary period and the entire study period. CV was calculated as the 
𝑆𝐷

𝑚𝑒𝑎𝑛
∗ 100.  
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Incorporating Covariates into the Model 
 
 Next, I ran a model to understand how spatial covariates influenced deer density. 

Again, I used the posterior distributions of 𝜆0,𝑡 and 𝜎𝑡from stage one as priors in the 

covariate model. However, instead of estimating density across the entire area, I 

estimated the density within 80 1-km2 cells that overlapped the state space. These 

smaller units were chosen to match the space use size of individual deer to approximate 

the area and ecological features to which a deer respond. The same model used in stage 

two was applied to each grid cell with an additional equation to account for spatial 

effects on density. This equation 𝐸𝐷𝑔𝑡 = 𝐸𝐷𝑡 + β1𝑋1 + 𝛽2𝑋2 + ⋯ 𝛽𝑛𝑋𝑛 represented 

the estimated deer density of grid cell 𝑔 at primary period 𝑡 as a function of the 

estimated density during that primary period and a 𝑛 number of covariates 𝑋𝑛 with a 

vector of regression coefficients 𝛽𝑛. With the additional spatial covariates, the latent 

variable 𝑧𝑖𝑔𝑡indicated whether an individual was a member of the population and had an 

activity center within that grid cell. This allowed me to model deviations of average 

density of the study area across all the time periods based on these spatial covariates.  

 Eight spatial covariates were chosen and summarized for each 1 km2 cell (Table 

1). These included hunted area (private and public land where licensed hunting is 

allowed), protected area (Peterborough Crown Game Preserve), mixed forest, 

coniferous forest, deciduous forest, grassland, water, and road and trail density. The 

percent of cell coverage for each covariate was determined using the ArcGIS Pro V 2.7.0 

zonal statistics tool (Esri, Redlands, CA, USA) for each covariate data source. Each 

covariate was standardized (to mean of 0 and standard deviation of 1) prior to inclusion 
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in the model to allow me to compare effect sizes. This also helped with model 

convergence. 

Table 1. Descriptive statistics of the spatial covariates incorporated in the model. 
Includes the mean, median, SD, minimum, and maximum percent of cell coverage for the 
80 1‐km2 cells used to estimate deer density.  

Spatial Covariate Mean Median SD Min Max 

Hunted Area 0.63 0.95 0.42 0.00 1.00 

Protected Area 0.45 0.15 0.47 0.00 1.00 

Mixed Forest 0.47 0.50 0.18 0.02 0.79 

Coniferous 

Forest 
0.25 0.17 0.23 0.00 0.96 

Deciduous Forest 0.13 0.08 0.14 0.00 0.55 

Grassland 0.01 0.01 0.02 0.00 0.16 

Water 0.10 0.04 0.19 0.00 0.95 

Road and Trail 

Density (km/km2) 
1.07 1.03 0.98 0.00 4.12 

  

To assess the impact of hunting regulation type on deer density, I used the 

Crown Game Preserves layer from Land Information Ontario to map the Peterborough 

Crown Game Preserve polygon. I assumed licensed hunting was allowed on all land 

outside the game preserve. I considered the land area within the game preserve to be a 

refuge for deer and determined the percent of hunting regulation type (hunted vs 

protected) for each cell.  

 To assess the effect of landcover type on deer density, I used landcover classes at 

30m resolution from the North American Land Cover dataset based on 2020 Landsat 

satellite imagery (NALCMS, 2023). Five landcover classes were selected (mixed forest, 

coniferous forest, deciduous forest, grassland, and water) based on their potential 



 30 

importance to deer, especially during winter (DelGiudice et al., 2013), and their relative 

abundance on the landscape. I created separate layers for each landcover class. To do 

this I coded the focal layer as 1 and all other landcover types as 0. This allowed me to 

use the zonal statistics tool in ArcGIS Pro to calculate the percentage of area covered in 

each cell by each landcover class.  

 The final covariate included in the model was road and trail density. These data 

were obtained from the Canada National Road Network dataset (Statistics Canada, 

2022), Ontario Trail Network dataset (OMNRF, 2022), and field observations of GPS 

tracks of ATV and snowmobile trails. Highways, roads, and trails were combined into one 

layer to assess influence of human created linear features on deer density. The road 

density (km/km2) was determined by calculating the sum length of road and trails within 

each cell and dividing it by the total area of the cell. 

 I examined pairwise correlations between all covariates and removed highly 

corelated covariates from the same model when |r| > 0.7 (Dormann et al., 2013). I fit 

the SMR covariate model using the Nimble package in R (de Valpine et al., 2017; R Core 

Team, 2022). I made inference using 67,500 posterior samples from three Markov chains 

after a burn-in of 5,000 iterations and a thinning rate of 2. I checked convergence of the 

posterior samples using visual inspection of the MCMC chains and using the Gelman-

Rubin convergence statistic, with 𝑅̂ <1.1 indicative of convergence (Brooks and Gelman, 

1998). 
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Results  
 

Capture and Resight Statistics  
 

During the 140-day sampling period, camera-traps recorded 40,619 photos, of 

which 23,010 photos contained deer representing 1,069 unique detections. We 

captured and radio-collared 84 deer between December 2021 to March 2022. This 

included 58 females (29 adults, 7 yearlings, 22 fawns) and 26 males (13 adults, 1 

yearling, 12 fawns). Of the 84 deer captured we used telemetry locations and capture 

histories of 39 deer who were within the study area boundary at some point during the 

study, resulting in the analysis of 18,336 GPS-telemetry locations. The 39 deer included 

27 females (17 adults, 2 yearlings, 8 fawns) and 12 males (7 adults, 5 fawns). Of the 39 

individual deer with GPS locations within our study boundary, 19 were re-sighted by a 

camera trap on 89 occasions. The average area used by these marked individuals during 

the study period was 7.65 km2 (95% CI= 0.21, 59.14; SD= 16.43) and 7.14 km2 (95% CI= 

0.05, 57.71; SD= 21.02) for males and females, respectively. Using the Bonferroni 

adjusted alpha level of 0.005, there was no significant difference (p ≤ 0.005) in the area 

used of female and male deer during the 10 two-week study periods (Table A1).  

Stage 1 SCR for Detection Parameters 
 

The stage one model successfully converged based on the visual inspection of the 

MCMC chains of posterior samples of the spatial scale parameter 𝜎 and the encounter 

rate log𝜆0 with the 𝑅̂ <1.05 for each primary period (Figure A2, Figure A3). The mean 

spatial scale parameter (σ) for the 140-day sampling period was 469.74 m (95% CI= 

261.80 m, 841.83 m; SD= 169.63 m; Figure 4). The mean baseline encounter probability 
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(𝜆0) for the 140-day sampling period was 3.35e-04 (95% CI= 3.98e-08, 0.0026; SD= 7.45e-

04; Figure 4). Estimates of σ varied due to seasonal movement of deer, reaching a peak 

during the fifth primary period (02-26 to 03-11). Estimates of 𝜆0 were low due to the 

small sample size of resights relative to the number of sampling occasions. Additional 

model parameter summary statistics can be found in the appendix (Table A2).   

 
Figure 4. Posterior mean estimates and 95% confidence intervals of σ, logσ, λ0, logλ0 for 
ten, two‐week primary periods (MM‐DD) of collared deer in central Ontario. Month and 
day represent the start of the primary period. σ estimate was measured in meters and λ0 

was measured as a probability. 

Stage 2 SCR for Deer Density and Abundance 
 

The stage two model successfully converged based on the visual inspection of 

the MCMC chains of posterior samples of the density (D) and abundance (N) estimates 

with the 𝑅̂ value for each primary period <1.05 (Figure A4). The mean deer density 

during the study period was 3.0 deer/km2 (95% CI= 0.1, 5.8; SD= 1.7; CV= 55%) with a 

mean abundance of 238 deer (95% CI=10, 460; SD= 131; CV= 55%). There was a large 

fluctuation in density and abundance during the study period between individual 
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fortnights (Figure 5). The lowest mean density was 0.2 deer/km2 (95% CI= 0.1, 0.4; SD= 

0.1; CV= 50%) during the fifth primary period (02-26 to 03-11) with an abundance 

estimate of 15 deer (95% CI= 6, 32; SD= 7; CV= 47%). The highest mean density was 4.8 

deer/km2 (95% CI= 3.1, 6.2; SD= 0.8; CV= 17%) during the tenth primary period (05-07 to 

05-20) with an abundance estimate of 378 deer (95% CI= 244, 490; SD= 66; CV= 17%). 

The coefficient of variation (CV) varied considerably during the study with four primary 

periods where CV ≤ 20% (the target for survey precision) and six primary periods where 

CV > 20% (Figure 6). The autocorrelation for density estimates was 𝛼 = 0.59 (Table 2). 

There was a small positive temporal population trend (β1 = 0.013; Table 2) with a 

posterior probability of 0.56 that the trend was positive during the study period.  

 

Figure 5. Posterior mean estimates and 95% confidence intervals of abundance (N) and 
density (D) for ten two‐week primary periods (MM‐DD) of deer in central Ontario, 
Canada. Month and day represent the start of the primary period.   
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Figure 6. Stage 2 percent coefficient of variation (CV) for the mean abundance of deer 
for each two‐week primary period (MM‐DD). Target CV in abundance estimates is ≤ 20% 
indicated with dashed line. Combined CV for the 10 two‐week periods was 55% when 
the standard deviation was 131 deer and the mean was 238 deer. Month and day 
represent the start of the primary period.   

 
Table 2. Stage 2 parameter summary statistics averaged across the 10 two‐week primary 
periods including the mean, median, standard deviation (SD), 95% confidence intervals 
(CI) of parameter estimates. 

Stage 2 
Parameter 

Mean Median SD Lower CI Upper CI 

α 0.59 0.65 0.30 -0.15 0.98 

β0 3.80 3.80 1.18 1.35 6.11 

β1 0.013 0.014 0.092 -0.172 0.188 

εSd 1.53 1.55 0.28 0.96 1.97 

σ̅ 467.02 429.37 166.4 261.72 828.01 

λ̅0 0.04 0.03 0.03 0.01 0.10 
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Covariate Model  
 
 Three of the six spatial covariates had a significant effect on average deer density 

in the study area. Mixed forest, deciduous forest, and road and trails had significant 

negative influences on the average deer density (Table 3). On average, for every 10% 

increase in mixed forest percentage there was a 0.12 (deer/km2) decrease in deer 

density. Similarly, on average for every 10% increase in deciduous forest there was a 

0.14 (deer/km2) decrease in deer density. The coniferous landcover covariate was not 

included in the model, but instead used as the reference covariate due to high 

collinearity with the mixed forest landcover (|r|=0.77). Finally, on average for every 1 

km/km2 increase in road and trail density there was a 0.21 (deer/km2) decrease in deer 

density. The difference between the three significant 𝛽 estimates was not statistically 

significant and they appear to influence deer density equally (Table 3).  

The game preserve had a positive influence on average deer density, but the 95% 

confidence intervals overlapped zero (Table 3). However, there was a posterior 

probability of 0.95 that the game preserve had a positive influence on deer density. 

There was an average 9% (95% CI= 4%, 22%; SD= 6%) increase of deer density inside the 

game preserve compared to outside the game preserve during the study period. 

Presence of grassland had a non-significant positive influence on deer density and water 

had a non-significant negative influence on deer density (Table 3).  
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Table 3. Covariate model results with magnitude of  parameter estimates, median, 
standard deviation (SD), 95% confidence intervals (CI) of spatial covariate effects on 
average deer density in Apsley, Ontario. Spatial covariates were standardized (mean = 0, 

sd= 1) meaning  parameter estimates predict the change in standard deviations of deer 
density with one standard deviation change of the corresponding covariate.  

Spatial 
Covariate 

𝜷 Estimate Median SD Lower CI Upper CI 

Game 
Preserve 

0.1160 0.1160 0.0702 -0.0205 0.2550 

Mixed Forest -0.2130 -0.2130 0.0733 -0.3590 -0.0698 
Deciduous 
Forest 

-0.1920 -0.1920 0.0828 -0.3580 -0.0317 

Grassland 0.0762 0.0767 0.0938 -0.1070 0.2590 
Water -0.0975 -0.0984 0.0871 -0.2650 0.0744 
Road and 
Trails 

-0.20270 -0.2070 0.0807 -0.3660 -0.0495 

Note: Bold text indicates  estimates with significant effects (95% confidence intervals 
do not include 0). 

 

Discussion 

   
Quantifying population abundance and understanding how animals are 

distributed on the landscape are integral to the ecological study and management of 

wildlife populations (Herrando-Pérez et al., 2012). We used a recently developed, two-

stage SMR model to estimate abundance of a partially marked population of white-

tailed deer in central Ontario. Furthermore, we modified the model to incorporate 

spatial covariates, which allowed us to assess what environmental factors influenced 

variation in deer density at a fine resolution. The results revealed temporal dynamics in 

abundance, while indicating deer avoidance of mixed and deciduous forests during 

winter and our approach provides a framework for wildlife managers to estimate 

population abundance of deer using camera-traps.   
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Specifically, our stage two estimates captured temporal changes in abundance 

due to seasonal fluctuations in the number of deer in the study area as deer migrated to 

and from winter deer-yards (Figure 5). The results of our spatial covariate model indicate 

that deer in the area occurred at higher densities in coniferous forests, with mixed forest 

and deciduous forest having lower deer density (Table 3). The density of deer in the 

protected game preserve was marginally higher than outside the game preserve, but not 

significantly. In addition, deer preferred areas with lower road and trail density. 

Deer Density and Model Assessment 
 

Despite occupying much of North America and expanding their range northward, 

white-tailed deer densities can vary widely based on local conditions. As habitat 

generalists, deer occupy a variety of habitats, but some habitats and conditions are 

more suitable, leading to high densities and localized overabundance (Vercauteren et al., 

2011). Deer densities can be particularly high in suburban and exurban areas due to the 

patchwork landscape types, including a mixture of forest, residential, and farmland 

(Lovely et al., 2013). These areas often have fewer natural predators and hunters 

resulting in deer densities up to 80 deer/km2, in stark contrast to the target densities in 

many jurisdictions of <10 deer/km2 (Williams et al., 2013). On the other hand, areas with 

less human development, higher hunter participation, and more predators tend to have 

lower deer populations. For example, deer density in areas of northern Michigan with 

wolves were 2.3-5.8 deer/km2 (Potvin et al., 2005). In Adirondack Park in New York, USA 

winter deer density estimates ranged were 0- 5.7 deer/km2 with most of the park 

supporting less than 2 deer/km2 (Hinton et al., 2022). As our study area was more similar 
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to Northern Michigan and the Adirondack Park than suburban areas our average deer 

density estimate of 3.0 deer/km2 is comparable. Even on the higher end of our density 

estimates, including primary period ten (05-07 to 05-20) with 4.8 deer/km2, our 

estimates were similar to those found in other forested areas with hunting, some human 

development, and natural predators (Figure 5). It is likely that deep winter snows, 

hunting outside of the protected game preserve, and canid predators are keeping this 

study population of deer within similar densities to comparable study systems. However, 

possibly due to the refuge provided by the protected game preserve, our density 

estimates are at the higher end of the published range for comparable landscapes.  

Our data revealed strong temporal dynamics in deer density driven by the 

seasonal migration of individuals to winter range. Prior to this study, the extent of 

winter migration by deer in this area was unknown. Although violating model 

assumptions of closure, the model did capture the exodus of deer in February and their 

return in mid-March through changes in abundance and density (Figure 5). Northern 

white-tailed deer often migrate to avoid extreme cold and/or deep snow (Nelson, 1998). 

These wintering areas often support large numbers of deer in a concentrated area. 

Studies have recorded deer densities at over-winter sites from 36 deer/km2 in 

southeastern Minnesota to 12 deer/km2 in New Brunswick (Augustine and Frelich, 1998; 

Morrison et al., 2002). In north-central and northeastern United States, deer densities in 

wintering areas are typically >10 deer/km2 (Russell et al., 2001). In our study, although 

we did not sample the area most deer migrated, it is likely the density was comparable 

to other studies. However, this migration and the resulting closure violation is important 
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when interpreting our results. Beginning in late March (03-26), the abundance stabilized 

at an average of 345 deer (95% CI= 216, 480; SD= 69; CV= 20%) until the end of the 

study. To quantify the potential seasonal bias in deer abundance estimates, deer should 

continue to be monitored for at least a year to capture abundance during the summer 

and autumn seasons. In addition, expanding the study area to include surrounding deer 

wintering areas would address the population closure concerns related to migration.  

  

For estimating animal densities, coupling the use of camera-traps with SMR 

modelling is a recent development (Bengsen et al., 2022; Margenau et al., 2022; 

Whittington et al., 2018). My thesis provides an important test of a method that shows 

promise for application across multiple systems. In such an assessment, it is essential to 

evaluate the precision, typically through calculating the coefficient of variation (CV), of 

results as accuracy cannot be directly measured. Wildlife managers typically strive for a 

CV threshold of ≤ 20% to improve management decisions based on the abundance 

estimate (Butler et al., 2020). Our overall CV (i.e., across all primary periods) was 55%, 

which is 2.75x greater than the accepted minimum CV threshold. This CV was similar to 

precision estimates of Margenau et al. (2022) who developed this model across three 

study sites over a three-year study (North Addition Lands: 29% < CV < 32%; Bear Island: 

43% < CV < 53%; Florida Panther National Wildlife Refuge: 61%< CV <89%; based on the 

reported 95% CI intervals). However, in our study, there was a wide variation amongst 

individual primary periods, with four periods meeting the threshold criteria of ≤ 20%. 

This variation was due to changes in available data between primary periods. The 
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primary period with the largest CV (03-12 to 03-25, CV= 49%; Figure 6) only had 12 

marked deer with 346 telemetry points to build the stage one model, and only 64 

camera detections of deer for the stage two model. This result was due to the 

movement of deer out of the study site; such violation of the closure assumption likely 

renders this estimate invalid. In contrast, the primary period with the smallest CV (05-07 

to 05-20, CV= 18%; Figure 6) included 26 marked deer with 3566 telemetry points for 

stage one, and 139 camera detections for the stage two model. To obtain precise 

estimates it is likely the model needs a minimum of 12 marked deer with 1550 telemetry 

locations for the first stage of the model and a minimum of 123 independent detections 

for the second stage of the model based on the four primary periods that had a CV of ≤ 

20%. That we obtained a CV of ≤ 20% for some periods indicates that if the goal is to 

estimate population abundance for a short-term study when deer movement and 

behavior is stable, this model offers a reliable option. However, for a long-term 

monitoring study, caution needs to be applied as temporal variation in deer movement 

and behavior can greatly influence the precision of the model. These issues could be 

resolved by using a broader study extent, but with increased cost and logistical 

constraints.  

Factors Influencing Spatial Variation in Deer Density 
 
 Few studies have incorporated spatial covariates into their SCR models to 

estimate the effects of environmental factors on white-tailed deer density (Engebretsen 

et al., 2023; Johnson et al., 2021). Most studies that have used SCR models and 

incorporated spatial covariates studied the ecology, density, and distribution of 
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carnivore species (Proffitt et al., 2015; Royle et al., 2011; Sollmann et al., 2011; Tourani 

2022). In addition, many of the SCR models that have linked habitat-density effects used 

genetic capture-recapture sampling methods, not camera-traps (Kendall et al., 2016; 

Linden et al., 2018; Brazeal et al., 2017). Our study aimed to address the knowledge gap 

of linking white-tailed deer density and spatial covariates using SCR methods, specifically 

using camera-traps, to understand the underlying landscape factors affecting deer 

density. Further, we aimed to extend the two-stage SMR approach of Margenau et al. 

(2022) by incorporating spatial covariates.  

Deer density appeared to be moderately influenced by broad harvest 

management strategy when comparing an area protected from licensed hunting and an 

area that can be hunted. Deer use predator-avoidance strategies in response to hunting 

pressure during the hunting season (Cromsigt et al., 2013), including moving to refuges 

where hunting is restricted (Zagata and Haugen, 1974; Root et al., 1988; Rhoads et al., 

2013). We expected deer density in our study area to be greater in the game preserve 

where hunting was restricted. Although the 95% confidence intervals for the effect of 

the game preserve on density overlapped zero, they did so only slightly, and the effect 

of the game preserve was in the expected, positive direction (Table 3). Shortly after the 

conclusion of the hunting season to the end of our study, study cells in the game 

preserve on average had a 9% higher deer density than those outside. Similarly, others 

have determined that roughly twice as many female deer restricted their movements to 

within refuge limits after the hunt compared to 25-30% using the refuge pre-hunt 

(Rhoades et al., 2013). Their findings indicate deer will selectively move to refuges 
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during a hunting season and remain in the refuge after the season ends. Our sampled 

period occurred after the conclusion of the 2021 hunting season (17 days), so hunting 

pressure should have subsided. Presumably hunting would have a decaying effect on 

deer behavior after cessation of the hunting season. The deer in our study area could 

have returned to normal behavior and space use thus reducing the need for seeking 

refuge in the game preserve. It is also possible that the deer within the game preserve 

were not deploying predator avoidance strategies, but instead were potential residents 

within the game preserve. Deer that reside within refuges have higher survival rates 

than deer that disperse and reside in unprotected areas (Nixon et. al, 1991). In addition, 

environmental factors could be influencing the effect of the game preserve (e.g. 

preferred habitat). Further monitoring that overlaps the hunting season could help 

resolve the influence of the game preserve on deer density and better understand 

whether deer are selectively moving to the game preserve to avoid hunting pressures, 

have a higher survival rate inside the game preserve, or the area includes preferred 

habitat.   

 Deer often selectively use areas with dense conifer landcover in winter 

(DelGiudice et al., 2013; Hurst and Porter, 2008; Morrison et al., 2002). In our study 

area, we expected the same. Indeed, in our model the coniferous land cover covariate 

was the reference category and we found that deer occurred at lower densities on 

average in mixed and deciduous forests (Table 3). Water and grassland landcover types 

had no effect on average density in the study area, suggesting that deer density was 

positively associated with coniferous forests. Coniferous trees provide better thermal 
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cover with less snow accumulation (DelGiudice et al., 2013). Deer will use areas 

abundant with balsam fir, cedar, and hemlock trees. These areas often have better 

forage availability, albeit less nutritious, during winter compared to mixed forest and 

deciduous forest areas (Dumont et al., 2005). As such, traditional wintering areas of deer 

that experience high densities are typically dominated by coniferous trees (Morrison et 

al., 2002). These coniferous stands are important resources for deer survival in the 

winter.  

 For managers, deer-vehicle collisions are a serious concern. Such collisions are a 

major human safety risk and are an increasing threat in areas with high deer densities 

and increasing human development (DeNicola and Williams, 2008). We expected that 

deer would avoid roads and multi-use trails due to the higher mortality risk and 

increased human presence, but we also expected potential nuances in this relationship 

since deer will use roads and trails for movement corridors (Hinton et al., 2022). 

Although many studies have investigated deer mortality in relation to roads (Feldhamer 

et al., 1986; Grovenburg et al., 2008; Kautz et al., 2022; McShea et al., 2008; Ng et al., 

2008) fewer studies have looked at the direct effect of road or trail density on deer 

density or distribution. Amongst those studies, there are mixed findings on the effect of 

road and trail density indicating a context-dependent response to roads and trails. 

Several studies have found white-tailed deer abundance increases with road density 

(Bowman et al., 2010; Fuller et al., 2022; Hinton et al., 2022; Munro et al., 2012). In 

eastern Ontario, paved road density had a positive influence on relative deer abundance 

(Munro et al., 2012). Studies in the Boreal Forest have found a positive relationship 
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between deer abundance and road density, theorizing human-made linear features 

allow for deer expansion into previously uninhabited areas (Bowman et al., 2010; Fuller 

et al., 2022). Within Adirondack Park (approximately 24,280 km2) in New York, USA, deer 

density increased with proximity to roads particularly during winter, with researchers 

hypothesizing that deer used the roads as travel networks to avoid deeper snow (Hinton 

et al., 2022). Conversely, our study, working at finer scales (approximately 16 km2), 

found that, on average, deer density decreased with increasing road and trail density. In 

addition, sampling directly on human used trails and roads may lead to bias as animals 

could be using the linear features for short periods of time to travel between areas, but 

spend a majority of their time away from these features (Kolowski and Forrester, 2017). 

When comparing deer mark-recapture abundance estimates between road surveys and 

camera-traps, road survey abundance estimates were significantly lower than the 

camera-trap estimates (Roberts et al., 2006). This suggests the deer population was 

more abundant across the study area than the sampled area near roads.  

The drivers of the responses of deer to roads are multi-faceted. As prey species, 

deer balance tradeoffs between predation risk and forage availability. Roads can 

decrease natural predator risk as predators often avoid roads (Fahrig and Rytwinski, 

2009) , but increase the risks of vehicle mortality risk (Kautz et al., 2022) and hunting 

mortality, given that hunters tend to focus their activities near roads and trails (Lebel et 

al., 2012; Paton et al., 2017).  On the other hand, roads can also increase forage 

opportunities for deer by increasing edge habitat in forested areas with more productive 

non-forested vegetation, typically introduced grasses, found in roadside ditches 



 45 

(Anderson et al.,2013; Ng et al., 2008). However, the predator-prey and forage trade-off 

is highly dependent on the system and the human use of the area. The deer in our study 

area likely avoided roads and trails due to the high-use from humans (personal 

observation), and the likely higher harvest risk along roads in the hunted area. Several of 

the trails in our study area are popular snow-mobile routes and deer avoid highly 

trafficked snow-mobile trails (Dorrance et al., 1975). In addition, our study area was well 

populated by humans, with deer likely avoiding roads due to high vehicular use.  

Conclusion 
 
 Estimating the abundance of white-tailed deer is challenging for resource 

management agencies, particularly in heavily forested regions. Instead, agencies often 

rely on proxies of abundance such as hunter harvest data to monitor population trends 

and to guide management decisions (Kahlert et al., 2015; Priadka et al., 2020; Stephens 

et al., 2014). For example, in Ontario hunters are required to report how many days they 

hunted, how many deer they saw, and whether they were successful (OMNRF, 2017). 

Managers use this yearly data to decide whether changes in hunter reports warrant 

changes in management strategy. However, more detailed estimates of deer numbers 

are necessary to appropriately respond to the increasing threat of climate change and 

chronic wasting disease (CWD) on deer populations. In the face of these stressors, and 

specifically CWD, wildlife managers will need to reliably, accurately, and quickly estimate 

deer population density and abundance. Deer density in particular is essential for 

understanding the spread and prevalence of infectious diseases (Storm et al., 2013). 

Conducting seasonal or fine temporal scale estimates will be necessary as deer 
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movements and distribution can vary dramatically throughout the year. Despite 

imprecision associated with the model due to migration, our study demonstrates that 

camera-traps coupled with SCR modelling provide a useful means for managers to 

estimate deer abundance with the opportunity to link landcover features to better 

understand environmental effects on population densities. Through repeated sampling, 

increasing the study area, and longer monitoring, future research can improve precision 

and document additional temporal changes in covariate effects. We believe that our 

study points to a valuable opportunity for managers to better understand and respond 

to the population ecology of white-tailed deer.  

Chapter 3: Conclusion 
 
 With advancements in technology and statistical modeling, biologists now have a 

wide range of tools for estimating the abundance of wildlife, along with an improved 

understanding of their behavior and distribution (Margenau et al. 2022; Royle et al., 

2018; Whittington et al., 2018). However, new methods require continued assessment 

and refinement to ensure their applicability to new contexts. In this thesis, I aimed to 

address whether camera-traps in conjunction with a recently developed spatial-mark 

resight (SMR) model were a useful option for estimating white-tailed deer density and 

abundance in Ontario. In addition, I tested whether spatial covariates could be 

incorporated into the model to better understand some of the environmental drivers 

influencing deer density. 

 Using a combination of radio-telemetry and camera-trap data, I fit a SMR model 

to estimate the density and abundance of a small population of partially marked white-
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tailed deer in central Ontario. During the 140-day study, density and abundance varied 

by an order of magnitude due to the seasonal movement of deer to and from wintering 

areas. Due to this movement, the variance of the average abundance estimate (CV= 

0.55) was greater than the widely accepted level of a coefficient of variation of ≤ 0.2. 

Nevertheless, outside this period of substantial movement, precision was generally 

acceptable.  

Moreover, using a modified version of the SMR model, I determined the effect of 

environmental factors on deer density. As predicted, deer density was greater in patches 

of coniferous forest, highlighting the importance of conifers as thermal cover during 

winter months. Deer density was lower where road and trail density was higher, likely 

due to the perceived risk of predation. Although marginal, deer density was slightly (9%) 

higher in the protected game preserve. This could be the result of deer seeking refuge 

from hunters in the protected game preserve, or higher survival of deer inside the game 

preserve. Overall, this thesis demonstrates that the SMR model can be applied to deer 

populations in northern environments, though seasonal movements present some 

challenges. Further, by including spatial covariates we identified some key factors 

affecting local deer population density.  

A major impetus of this research was to assess the practicality of using camera 

traps to estimate density in the forested environments that present significant 

challenges to typical population estimation techniques. The Ontario Ministry of Natural 

Resources and Forestry does not regularly estimate the abundance or density of deer in 

the province (OMNRF, 2017). Instead, managers rely on hunter harvest data to monitor 
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population trends and make management decisions. As such, there is no standardized 

alternative method for estimating population abundance and density of deer in Ontario. 

However, with increasing concern for the effect of chronic wasting disease (CWD) on 

deer populations, wildlife managers will need to reliably estimate local deer density and 

abundance to make informed decisions (OMNRF, 2019). To control the potential spread 

and prevalence of the disease in Ontario, and to avoid its endemicity, the province will 

need to act quickly to contain the disease (Rivera et al., 2019). To do so, Ontario 

managers must be able to efficiently estimate the density of deer within a containment 

zone, as the density of individuals is intrinsically linked to the spread of CWD (Storm et 

al., 2013). Estimating how density varies across the landscape will be key to 

understanding the potential for spread and allow managers to more effectively deploy 

population control measures. In addition, continued monitoring of changes in density 

will allow managers to evaluate the effectiveness of their population control efforts and 

adjust as needed. 

 This thesis provides the framework for Ontario wildlife managers to estimate 

cervid density within a designated CWD containment zone using camera-traps. However, 

the utility of this method is context dependent. In the event of a positive CWD case, 

managers will want to estimate population abundance as quickly as possible to develop 

a targeted management plan (OMNRF, 2019). Although the SMR method can provide 

precise estimates, the time it takes to produce the final estimate (i.e., 10 week minimum 

in this case) may be too long. Between camera deployments, radio-collar deployments, 

data collection, photo review, telemetry review, and model fitting, local managers might 
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prefer to use a more established method like aerial or road surveys, which will take less 

time (Forsyth et al., 2022). In addition, Ontario managers would be employing 

population reduction tactics congruently during the assessment window (OMNRF, 2019). 

Such a decline in abundance would violate the assumption of closure. However, 

depending on the season and location of the CWD case detection, the SMR camera-trap 

method would be advantageous; aerial and road surveys are most practical during the 

winter with no canopy cover or in non-forested areas. Further, under a scenario where 

there was a positive case of CWD, it is valid to assume that significant resources could be 

put towards a more rapid estimation, which would at least expedite steps such as 

camera deployment and photo ID. Compared to aerial surveys, camera-traps are more 

cost effective (especially after the initial investment of purchasing cameras), less 

stressful for wildlife, and safer for personnel (Taylor et al., 2021). In addition, the SMR 

method provides managers the opportunity to monitor a population over a longer 

period (Margenau et al., 2022). Most other abundance estimation techniques provide an 

estimate at a moment in time and do not capture the seasonal or annual fluctuations in 

abundance. Conversely managers using camera-traps would be able to continue to 

monitor a population within a containment zone and could determine the success of a 

population reduction effort with before and after estimates. Further, they could develop 

a better understanding of the spatial distribution and temporal behaviors of the 

population. In addition, clinical signs of CWD can take up to two years to present, so if 

managers continue using camera-traps they could use photos or videos to monitor the 

population for symptoms (e.g. malnourishment, drooping head, abnormal behavior; 
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Rivera et al., 2019). Camera-traps are also an advantageous data collection method since 

they collect data on multiple species at once. This would allow managers to better study 

areas where there are multiple at-risk cervid species (e.g., moose, elk, deer) (Bengsen et 

al., 2022).  

 There may be additional considerations regarding use of the SMR model 

employed here. We captured, marked, and used radio-collars to track a sub-sample of 

the population. I used the telemetry locations and resighting history of these individuals 

in the first stage of the model to estimate priors for the second stage. Not all 

populations of deer will have the required marked individuals to develop the first stage 

priors. However, the parameter estimates of 𝜆0, the probability of capturing an 

individual at their activity center, and 𝜎, the rate at which capture probability declines 

with distance (measured in meters), are key components of the model (Whittington et 

al., 2018).  Managers would either need to capture and mark a sub-sample from the 

population, use prior estimates from other populations, or approximate λ0 and σ 

estimates. Although, in the second stage the marked individual data is not used, treating 

all deer as unmarked, there could be a loss of precision in the abundance and density 

estimates if not using λ0 and σ priors derived from the study population during the same 

time period (Margenau et al., 2022). In addition, I combined male and female data to 

estimate an overall population abundance as male and female deer had similar home 

range sizes during winter and early spring. However, during the rest of the year, males 

and females employ different space-use and movement strategies. Males tend to 

increase their home ranges, especially during the rut, to prioritize forage quantity when 
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access to high-quality forage is risky (Beier and McCullough, 1990; Ofstad et al., 2016). 

By contrast, females usually have smaller home ranges to care for young, prioritizing 

high-quality forage and cover (Beier and McCullough, 1990; DePerno et al., 2003). These 

differences are also highly context dependent (Massé and Côté, 2009). Therefore, as 

more datum becomes available and the sexes are easier to distinguish (i.e., males with 

antlers) in photos, the model should be run separately for males and females to better 

understand the behavioral differences between the sexes. 

To address closure assumptions, managers would need to have a general idea of 

the boundaries of the population they are monitoring, especially if there is seasonal 

movement to wintering areas. However, unlike other species, deer are not territorial, 

except for short periods including postpartum for females (Schwede et al., 1993) and 

during the rut for males (Peterson et al., 2017), so home ranges and extents of the area 

used by populations are not fixed. Yearling male deer will frequently disperse to new 

areas, compounding issues of study closure (Oyer et al., 2007). It would be necessary for 

managers to sample across the entire area in which deer primarily congregate. However, 

even when increasing a camera grid to cover a larger area to ensure most of the space 

used by the population is sampled, a population will never truly be closed for long-term 

monitoring. This is especially true when the sampling period overlaps a period of 

increased mortality (e.g. hunting season, herd culling) or during the birthing season. 

Instead, there is also an opportunity to convert the model to an open population model 

(Efford and Schofield, 2020), which would account for emigration, immigration, births, 
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and deaths in the population. However, such models are more complex and 

computationally demanding (Margenau et al., 2022). 

This thesis demonstrates the complexity of estimating wildlife abundance and 

density. It provides an example of how to estimate deer density with camera-traps while 

incorporating landscape features, but the benefits and drawbacks highlighted above 

should be considered when using this approach for management decisions. This method 

provides an additional tool for wildlife managers who are confronting unprecedented 

levels of environmental threats to the wildlife populations they manage. Advances in 

research and monitoring allow for more informed decisions, but these advances require 

continual assessment and refinement to better understand the species and ecosystem 

dynamics. Conserving wildlife will become more difficult with climate change, 

environmental degradation, habitat fragmentation, and emerging infectious diseases; 

we will be better prepared to meet these challenges with the information and 

knowledge derived from sustained scientific research. 
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Appendix  
 
Table A1. Results of the MCP test and Wilcoxon signed‐rank test comparing average male 
and female 95% MCP spaced used estimates for each two‐week primary period. 
Bonferroni adjusted alpha for analyzing significance was 0.005 (α=0.05/10) Month and 
day represent the start of the primary period.   

  Primary Periods (MM-DD) 

  01-01 01-15 01-29 02-12 02-26 03-12 03-26 04-09 04-23 05-07 

Male 

(km2) 

Mean 12.14 23.41 2.25 3.34 1.67 5.89 22.80 1.72 1.27 2.01 

SD 19.17 36.48 2.79 2.74 1.92 9.46 23.42 1.10 0.39 1.40 

Female 

(km2) 

Mean 5.03 16.94 2.45 1.66 6.81 5.22 31.83 1.51 1.17 1.06 

SD 10.03 29.26 3.14 1.65 14.64 9.62 47.79 1.72 0.74 0.54 

P-Value 0.35 0.74 0.99 0.18 0.18 0.66 0.76 0.29 0.25 0.03 

                      Note: P ≤ 0.005 significant value denoted by (*) 
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Figure A1. Visual representation of the Stage 1 telemetry points from the 39 radio‐
collared deer who were within the study area boundary, including the 2‐km buffer, at 
least once during the 140‐day study period. Each map represents the GPS points of the 
collared deer for each two‐week primary period (MM‐DD; first day of the primary 
period). The pluses represent the camera‐trap locations. If a deer was resighted by a 
camera‐trap during the primary period it is denoted with the corresponding deer id color 
surrounding the camera‐trap location. All camera‐trap and GPS points are configured in 
UTM. 
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Figure A2. Stage 1 SCR models for all ten two‐week primary periods (MM‐DD) converged 
based on posterior σ samples from four chains of 15,000 iterations with corresponding 
Gelman‐Rubin convergence statistic (R ̂<1.05). Month and day represent the start of the 
primary period.   

 

 

Figure A3. Stage 1 SCR models for all ten two‐week primary periods (MM‐DD) converged 
based on posterior logλ0 samples from four chains of 15,000 iterations with 
corresponding Gelman‐Rubin convergence statistic (R ̂<1.05). Month and day represent 
the start of the primary period.   
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Table A2. Stage 1 parameter summary statistics averaged across the 10 two‐week 
primary periods including the mean, median, standard deviation (SD), 95% confidence 
intervals (CI) of parameter estimates. 

Stage 1 
Parameter 

Mean Median SD Lower CI Upper CI 

σ 469.74 431.53 169.63 261.80 841.83 

β0logσ 5.876 5.938 0.329 5.21 6.41 

α σ 0.587 0.645 0.280 -0.08 0.97 

ε σ 0.413 0.379 0.130 0.24 0.69 

logλ0 -4.644 -4.594 1.264 -7.40 -2.59 

β0logλ0 -4.455 -4.453 0.556 -5.53 -3.22 

α λ0 0.336 0.350 0.338 -0.42 0.92 

ε λ0 1.345 1.303 0.348 0.78 2.08 
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Figure A4. Stage 2 SCR models for all ten two‐week primary periods (MM‐DD) converged 
based on posterior density (D) and abundance (N) samples from three chains of 22,500 
iterations with corresponding Gelman‐Rubin convergence statistic (R ̂<1.05). 
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