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ABSTRACT 

 

Development of Forest Degradation Indicators from Long-term Trajectories 

 of Multispectral Satellite Images, and their Projections into the Future 

under Climate Change, in Ontario, Canada 

 

Md. Mozammel Hoque 

 

Ontario forests are affected by natural and anthropogenic disturbances leading to forest degradation, 

which significantly impact local ecosystems, health, safety, and economy. This thesis develops a 

methodology for the continuous assessment, mapping, and monitoring of present and historic (1972–

2020) forest disturbances, and future forest degradation trends and projections, using remote sensing data, 

ground measurements, and predictive models in an Ontario forested area.  

After testing four supervised classification algorithms, support vector machine was found to be the most 

robust, consistent, and effective for land cover classification. Seven vegetation indices derived from 

Landsat and MODIS platforms were used to derive forest degradation indicators (FDIs), which were 

combined into one composite forest degradation indicator (CFDI) for each year, using the principal 

component analysis image fusion approach. The CFDI was the most informative indicator. The computed 

FDIs from available large multispectral image stacks were statistically related to historical climate 

variables. These relationships were used to project future FDIs related to climate variables derived from 

General Circulation Models through multiple linear regression models. Spatially-explicit maps of relevant 

climatic variables and of long-term historical forest degradation were developed from the LandTrendr 

trajectory analysis. Climate variables P, MA1, MA2, and CFDI were strongly correlated, allowing for the 

development of a model with a high coefficient of determination, R2 (0.93), and low RMSE (0.28) to 

predict future values. 
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Forest disturbances (as CFDI) were also monitored from 1972–2020. Overall, these relationships allowed 

for to the creation of spatially-explicit, long-term historical forest degradation maps derived from the 

Landtrendr trajectory analysis. 

Historical and future forest degradation maps identified the areas with projected high vulnerability to 

climate change, as well as the actual and potential changes in forest cover under climate change. The 

results indicated 2050 will experience an average temperature increase of 3.0°C, projected yearly decrease 

in precipitation of 109.5 mm, evapotranspiration increase of 73.0 mm, and moisture deficits of 28.47 mm 

(MA1) and 37.60 mm (MA2), leading to increased forest degradation. 
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CHAPTER ONE 

GENERAL INTRODUCTION 

1.1 Introduction 

1.1.1 Background 

1.1.1.1 Forest disturbance and degradation 

Forest ecosystems, in particular, are tightly bound with climate both directly through the effects of 

precipitation, temperature, and related phenomena of evaporation and evapotranspiration, as well as 

directly controlling the moisture balance, and also indirectly through the effects of disturbances. Forest 

disturbances result in changes to the composition, structure, and character of a forest ecosystem (Jonson 

and Miyanishi, 2007), affecting its future health (Duinker, 2008). Natural disturbances, such as weather, 

geological forces, or biological changes, are one reason for an unbalanced ecosystem. Natural 

disturbances, which should increase in magnitude with a changing climate, can be caused by fire, insects, 

diseases, severe wind and ice storms, floods, volcanic activity, earthquakes, droughts, long-term freezing, 

hurricanes, landslides, etc., and can significantly damage an ecosystem, even killing flora and fauna. 

Ecosystems are also affected by human activities, which are the cause of most forest disturbances, 

including clear cutting and the conversion of forest to other land uses, such as commercial and residential 

development, highways, and agriculture. Other human disturbances include uncontrolled wildfires, 

primarily caused by escaped or deliberately set fires, the introduction of non-native species, the 

elimination of species, and climate change. Slash-burning (“prescribed fire”), a well-established practice 

in Ontario (Lawson, 1990), exemplifies some of the harmful effects of anthropogenic activities. As well 

as emitting smoke and greenhouse gases (GHGs), it may have other negative repercussions, such a 

possible reduction and/or destruction of the long-term nutrient supply, effects on ecosystem structure and 

function, changes in biodiversity, and alterations in micro-organisms and organic matter in the soil 

(Fuglem, 1990).  
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Cohen et al. (2016) analyzed Landsat time series from 1985 to 2012 to show increasing nationwide forest 

disturbances in the US at a rate between 1.5% and 4.5% per year. Their results revealed a shift in 

disturbances; prior to the late 1990s, disturbances were primarily caused by anthropogenic forces, 

however, now most are caused by natural forces (e.g., climate, insects, and disease). Similarly, Ontario’s 

forests are significantly influenced by these natural and human-made disturbances. In the Ontario boreal 

forest, in particular, insect outbreaks, forest/wildfires, permafrost melting, and logging could potentially 

worsen global warming. Additionally, industrial development could weaken both the forest’s resistance 

and resilience to the intensifying negative consequences of global warming. 

Climate change, including not only the rise in average air temperatures and in extreme weather events, 

such as the increased frequency, duration, and intensity of drought as well as summer heat waves, 

hurricanes, severe thunderstorms, windstorms, and ice storms (Duinker, 2008), will have a significant 

effect on the function, composition, and structure of forest ecosystems (Soja et al., 2007; Wulder et 

al., 2007). The rising intensity and prevalence of insect disturbances will also greatly impact forests 

(Wulder et al., 2007; Duinker, 2008). On a provincial scale, in Ontario, the supply of traditional forest 

products is expected to decline, accompanied by a negative impact on the forest industry and forest-

dependent communities (Browne and Hunt, 2007). Climate change also threatens existing areas that 

protect specific natural features, species, and ecological communities (Scott and Lemieux, 2005). Besides 

the effect on biodiversity conservation, such changes can have dire consequences on nature-based 

recreation and tourism activities (Browne and Hunt, 2007). 

Forest degradation leads to a “temporary or permanent decline in the net primary productivity (NPP) of 

forest ecosystems (measured in terms of gC/m2/yr) and a deterioration in the density or structure of 

vegetation cover or its species composition” (Grainger, 1993), which reduces the forest’s ability to adapt 

to a changing climate and provide ecosystem and livelihood services, particularly that of carbon sink. It 
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is a significant worldwide concern for several United Nations (UN) organizations and conventions (e.g., 

the UN Forum on Forests). However, the lack of an agreed common definition (and monitoring 

framework) (Lund, 2009) has impeded international recovery efforts (FAO, 2010).  

1.1.1.2 Climate change 

The World Meteorological Organization (WMO) defines climate as the average weather over an extended 

time period (for instance, three decades). A region’s climate is the result of a complicated and interactive 

climate system with five main components: the atmosphere, hydrosphere, cryosphere, land surface, and 

biosphere. There are many biological, physical, and chemical processes involved in these interconnected 

elements. In the span of the past 4.5 billion years, the Earth’s climate has gradually changed.  

The Intergovernmental Panel on Climate Change (IPCC) defined climate change as “a change in the state 

of the climate that can be identified (e.g., by using statistical tests) by changes in the mean and/or the 

variability of its properties, and that persists for an extended period, typically decades or longer. Climate 

change may be due to natural processes or external forcings, or to persistent anthropogenic changes in the 

composition of the atmosphere or land use.” Due to the naturally occurring variability in the planet’s 

climate over the short-term, irrefutably identifying the long-term reasons for contemporary climate change 

poses difficulties; however, the global anthropogenic impact, which is expected to continue, is becoming 

increasingly pronounced (IPCC, 1996), leading to perceptible changes in air temperatures, precipitation, 

and extreme weather (IPCC, 2007).  

The accumulation of GHGs (e.g., carbon dioxide, methane, etc.) in the atmosphere (IPCC, 2007) causes 

global warming. This allows shorter wavelength radiation (incoming solar) to reach the surface of the 

planet while absorbing longer wavelengths (outgoing terrestrial), which is, in part, radiated back to the 

Earth. GHGs in the atmosphere come primarily from burning fossil fuels (80%), while changes in land 

use and cover, especially forest fires, forest degradation, and deforestation, contribute the rest (20%) 
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(Stern, 2007). Anthropogenic activities have increased atmospheric GHG concentration, and as a result, 

the mean annual global temperature is predicted to rise from 1.8–4°C during the 21st century, leading to 

observable and harmful changes, such as variations in rainfall patterns, a rise in sea level due to ice and 

snow melt, and an increase in the intensity and frequency of extreme weather events (IPCC, 2007). 

Therefore, time is short to stabilize and reduce GHG emissions to avoid their “devastating impacts on our 

planet” (Environment, Heritage, and Local Government, 2007). In this light, it is crucial to develop 

reliable methods for monitoring and predicting present and future changes as well as mitigating their 

effects. 

A synopsis of climate change projections for Ontario, Canada, indicated a 4.7 to 7.90C rise in average 

annual air temperature will occur in the basins of Lake Huron and the Ottawa River, when compared to 

the record of the years from 1971–2000 (McDermid et al., 2015). Climate warming is expected to lead to 

longer growing seasons (1–30% greater in length by 2100), as well as increased forest fire frequency and 

pest outbreaks in Canada. The appearance and functioning of ecosystems, by the end of this century, may 

also be very different when compared to today. Since the study area, which includes Algonquin Park (a 

designated protected area) is very important in conservation and public interest, it is crucial to have the 

information provided by updated climate warming projections at a scale useful for the management of the 

park. These will help overcome the previous disparity between climate model projections at very coarse 

scales and potential effects at fine scales in both terrestrial and aquatic ecosystems (Maclean et al., 2017; 

Nadeau et al., 2017). 

1.1.1.3 Forests and climate change 

Forests are crucial in maintaining the delicate relationship between natural ecosystems. As the climate 

and forests are interrelated, they affect each other in both direct and other ways. Unfortunately, forests are 

expected to face significant pressure in the next several decades resulting from the effects of rising GHG 
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concentrations and climate change (IPCC, 2013), potentially disrupting the important ecological, 

economic, social, recreational, and aesthetic services they provide (Eastaugh, 2008). From the perspective 

of climate change, all human activities that act to decrease the present carbon stock (carbon carrying 

capacity) in natural forests need to be included as the primary drivers and pressures on forest degradation 

(Mackey et al., 2008). 

Scientists generally agree that a higher concentration of CO2 in the Earth’s atmosphere is an important 

driver of global warming (IPCC, 2013), as well as that forests are critical for mitigating climate change 

(Nabuurs et al., 2007). Forests contain stores of approximately 45% of terrestrial carbon and, according 

to estimations, half the terrestrial primary productivity can be attributed to forests (Bonan, 2008a). As a 

result of this productivity, large absorptions of atmospheric CO2 occur. In the northern hemispheres of the 

planet, forests are great contributors to a significant portion of this carbon sink, in particular the mid- and 

high-latitude ecosystems (Goodale et al., 2002; Kurz et al., 2008b). It is projected that these high latitude 

forests will be greatly affected by climate change, which can both positively and negatively influence the 

carbon balance (Kurz et al., 2008b). For instance, a warmer climate will likely positively affect forest 

productivity, such as with longer growing seasons. However, it is also projected that a warmer climate 

will increase the impact of forest disturbances of Earth’s ecosystems (Seidl et al., 2014). In forests in 

Europe, fires, winds, and insect outbreaks have already produced signs of saturation of the carbon sink 

(Nabuurs et al. 2007). Additionally, it is likely that global warming will have further effects on the 

temporal and spatial dynamics of energy flows, as well as pest outbreaks, both in terms of the intensity 

and range (Battisti, 2008; Hicke et al., 2012). However, insect outbreaks are usually not included in large-

scale carbon modelling, the effect of which is the overestimation of forests’ carbon sequestration 

capabilities (Kurz et al., 2008b; Hicke et al., 2012). There are also significant uncertainties related to the 

quantitative effects of insect outbreaks on the carbon balance (Clark et al., 2010; Hicke et al., 2012). It is 
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crucial, therefore, to develop ways of engaging in the monitoring of insect disturbances and quantify their 

impact on carbon balances. 

The largest portion of Canadian boreal forests is located in Ontario (Ontario Ministry of Natural 

Resources, 2008b), where, since the mid-20th century, forests have been negatively impacted by human 

activities, which are projected to change the composition and function of ecosystems to a large extent 

(Schindler, 1998). Currently, a shift is being registered in the boreal forest from a net carbon sink to a net 

carbon source, primarily as a result of the increased intensity, area, and frequency of fires resulting from 

increased temperatures (Flannigan et al., 2005a, 2005b; Soja et al., 2007). The expected impact of climate 

change in boreal forests could be increases in ignitions from lightning, fire season length, and fire weather 

severity (Flannigan et al., 1998; Flannigan et al., 2001; Stocks et al., 1998, as cited in Amiro et al., 2003) 

and greatly threaten life and property. Climate change, including the rise in extreme weather events, such 

as the increased frequency, duration, and intensity of drought as well as summer heat waves, hurricanes, 

severe thunderstorms, windstorms, and ice storms (Duinker, 2008), will have a significant effect on the 

function, composition, and structure of forest ecosystems (Soja et al., 2007; Wulder et al., 2007). The 

rising intensity and prevalence of insect disturbances will also greatly impact forests and their health 

(Wulder et al., 2007; Duinker, 2008). The supply of traditional forest products is expected to decline, 

accompanied by a negative impact on the forest industry and forest-dependent communities (Browne and 

Hunt, 2007). Climate change also threatens existing areas that protect specific natural features, species, 

and ecological communities (Scott and Lemieux, 2005). Besides the effect on biodiversity conservation, 

such changes can have dire consequences on nature-based recreational activities and tourism (Browne and 

Hunt, 2007). As this social-ecological system is crucial and susceptible to climate change, it is important 

to identify effective methods for assessing and mapping the spatial distribution of forest disturbance and 

degradation, as well as identifying strategies for mitigation and adaptation. 
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1.1.1.4 Forest disturbance and degradation mapping  

Landscape disturbance mapping and monitoring is greatly dependent on scale. Therefore, the landscape 

processes and patterns discernable with a remotely sensed image source rely on the target (e.g., single tree 

or stand replacing disturbance) and the spatial, spectral, temporal, and radiometric characteristics of the 

image’s source (Perera and Euler, 2000). When detecting landscape change and disturbance, the primary 

objective is data comparison from a series of points in time by 1) controlling for all external factors due 

to differences in variables not of interest and 2) evaluating the actual changes resulting from the variable 

of interest (Lu et al., 2004). Owing to the vast number of time series approaches and detection algorithms 

created for change and disturbance detection in imagery, selecting and implementing the most appropriate 

method is crucial (Coppin et al., 2004; Lu et al., 2004). The 11 categories of change detection techniques 

developed by Singh (1989) can be grouped into five approaches (Coops et al.; in Wulder and Franklin, 

2007):  

(i) Image algebra (differencing, subtracting, or ratioing) of two or more images; 

(ii) Regression or correlation, where the developed model predicts or compares spectral responses in 

a series of images;  

(iii) Statistical techniques that compute statistical components that are then compared for temporal 

changes;  

(iv) Classification comparisons in which images are classified separately and these classifications are 

then compared; Recent advances in this field incorporate pixel-based classification, object-based 

classification, and machine-learning algorithms (e.g., support vector machines); 

(v) Tools that analyze images and other datasets within a geographic information system (GIS) 

(Examining the statistical relationships between the spatial patterns of a select group of indicators 

and climate layers in raster format could be useful in obtaining information on change over time). 
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1.1.2 Statement of the research problem 

While a significant area of Ontario forests is subject to disturbance or degradation, there are few studies 

on forest degradation and climate change in Ontario. This issue is compounded by the fact that no 

comprehensive definition of forest degradation in terms of detectable and measureable indicators exists. 

Additionally, there are no highly accurate existing land cover/land use classification maps for the area. 

The investigation of the compound effects of climate change requires a comprehensive set of tools and 

procedures for the long-term assessment, mapping, and monitoring of forest degradation. Remote sensing 

has provided an extremely suitable range of spatially explicit tools for such investigations. Thus, the 

design of a methodological framework, based on a carefully selected set of forest disturbance and 

degradation indicators derived from existing and available data, imagery, and modelling tools is necessary 

to address this assessment problem. The development of procedures for spatially-explicit forest 

degradation indicator estimation, together with spatially-explicit projections of climate change, will help 

elucidate the causality between climate change variables and the incidence of disturbances, discounting 

for anthropogenic factors, through spatial analysis with demographic layers. The ensemble of key tools 

and procedures for the mapping and continuous monitoring of the spatial pattern of forest disturbances 

and degradation over time would allow for evidence-based management and preparedness as well as 

suitable and timely policy interventions.  

A composite of the main technical issues that are part of the research problem in this thesis is shown 

graphically in Figure 1.1 below. 
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Figure 1. 1: Graphical representation of the research problems 

1.1.3 Specific research questions 

 What is the most common definition of forest degradation used by international bodies and national 

forest experts that can be applicable to Ontario forests?  

 Can degraded forests be distinguished and accurately mapped from non-degraded forests using a 

range of existing satellite imagery products and derived computed indicators of forest degradation? 

 What is the spatial pattern of forest cover change in the selected area of Ontario? 

 What driving forces affected forest cover change and degradation from 1972–2020? 

 How will present forest degradation processes be affected by climate change? 

 What is the spatial pattern of degraded forests in Algonquin Park expected for 2050 due to climate 

change?  
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1.1.4 Objectives of the study 

1.1.4.1 Overall objective 

The overall objective of this research is the development of a methodological framework for the 

continuous assessment, mapping, and monitoring of present and historic forest disturbance and 

degradation trends and their projections under climate change, using remote sensing technology, existing 

ground measurements, and predictive models, such as regional circulation models (RCMs). Specifically, 

the research will identify, test, and establish procedures for the continuous monitoring of forest 

disturbance and degradation throughout a selected portion of Ontario, and establish, to the extent possible, 

the nature and pattern of climate change impacts on these Ontario forests. 

1.1.4.2 Specific objectives  

 To examine and evaluate the accuracy of conventional and relatively new machine learning 

algorithms for highly accurate land cover classification based on Landsat imagery of central and 

northeastern Ontario, Canada.  

 To identify a suitable set of forest degradation indicators (FDIs) derived from multispectral satellite 

imagery that can be used in the region and then compared with those defined by international 

standards. 

 Develop an innovative composite forest degradation indicator (CFDI) to examine the relationship 

with climate variables and future (2050) projection of forest degradation under climate change.  

 Long-term trajectory analysis using the FDIs, including CFDI, and generating disturbance and 

degradation maps for 1972–2020. 

 To use the established methodological framework to assess the trends in forest cover change in the 

region during the longest period possible (e.g., 1972–2020), and the relationship between the trends 

of forest cover change and their underlying causative factors, particularly their relationship to 

climate change. 
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 To find out the dependence of disturbance or degradation on or at least its degree of correlation with 

climate variables. 

 To predict the expected change in forest condition (degradation) with climate change in the forest 

area for the region in the future (e.g., year 2050). 

 To determine the consequences of projected forest degradation with climate change in the region of 

study relative to GHG concentrations and fluxes. This will hopefully serve as the basis for the 

development of appropriate climate change mitigation and adaptation strategies for forest ecosystem 

and biodiversity management for the region in the future. 

1.1.5 Approach and methods 

This research used geospatial, remote sensing, computer modelling, statistical, and indicator approaches, 

as well as existent forest resource inventory data, to achieve its objectives. These tools were appropriately 

combined into a methodological framework after identification of the best options in terms of modelling, 

remote sensing and statistical tools, and procedures. As remote sensing can provide a great deal of 

pertinent environmental data over a broad range of spatial and temporal scales, it is likely to play a crucial 

role in providing environmental condition indicators. A set of indicators of forest disturbance and 

degradation were investigated, identified, and defined after an intense literature review. Direct methods 

of remote sensing were used to assess canopy damage using time series data to detect and map degraded 

forests, while indirect methods were employed to estimate the forest area affected by forest degradation 

detecting human infrastructure and land use change as “proxies.” A combination of both direct and 

indirect methods were also used to assess forest degradation. 

Parametric and nonparametric statistical techniques were employed for land cover classification and to 

examine the possible relationships between meteorological variables that indicated climate change and 

the spatial and temporal distributions of indicators of land degradation. Predictive linear multiple 
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regression models were derived based on statistically significant relationships. Analysis of variance and 

multivariate tests were incorporated into the data analysis, as required, and applied to the indicators of 

forest degradation deemed useful in this context. Machine learning algorithms (e.g., support vector 

machine) were compared to pixel-based classification to determine the land cover classes involved in the 

results of the trajectory analysis by any of the selected and commonly accepted algorithms in the scientific 

literature (e.g., LandTrendr, BFAST, etc.). The usefulness of wavelet transformations and principal 

component analysis was investigated for the fusion of multiple sources of data and platforms (e.g., 

multispectral with Landsat and MODIS data), when available. 

1.2 Study area, data, and preprocessing 

1.2.1 Study area 

The area selected for this study, in terms of spatial extent, spans from 45°8’15.32’’N to 46°16’12.38’’N 

and from 76°37’48.75’’W to 78°20’16.73’’W, defining a total of 10,000 km2. This study area (Figure 1.2) 

contains a wide range of forest and non-forest land cover types, as it is typical of forests in the boreal 

transitional zone, including Algonquin Park. For a more detailed description of the study area, please see 

Chapter 2 (Section 2.2.1). 

 

Figure 1. 2: Study area with clusters in central and northeastern Ontario, Canada 
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1.2.2 Data 

1.2.2.1 Landsat imagery 

Landsat time series stack (LTSS) 

The study area lies entirely within Landsat path 17 (MSS 18), row 28. One of the research objectives was 

to use the entire Landsat image record (1972–2020) to monitor historic, present, and future forest 

disturbance and degradation trends. This work was divided into several parts, guided by the time ranges 

within which satellite imagery were available and of good quality: Landsat 1–3 Multi-Spectral Scanner 

(MSS) (1972–1982), Landsat 4 & 5 MSS (1983–1987/92/93), Landsat 4 &5 Thematic Mapper (TM) 

(1982–2012), Landsat 7, Enhanced Thematic Mapper Plus (ETM+) (1999–present), and Landsat 8 

Operational Land Imager/Thermal Infrared Sensor (OLI/TIRS) (2013–present). 

The Landsat satellite images for 1972–2020 were acquired from USGS websites: glovis.usgs.gov and 

earthexplorer.usgs.gov. Landsat 1–5 MSS imagery from 1972–1983 were downloaded, and the collection 

of the same images was repeated when they were released in tier 2 in 2018, which had classification 

accuracy far better than older images. Landsat TM and ETM+ data were acquired for the period from 

1984–2013, as well as collected Surface Reflected data (collection-1, level-2), using the USGS “On 

Demand” option.  Landsat 8 data for 2013–2020 were also acquired, and Surface Reflected data 

(collection-1, level-2) were collected using the same technique. 

A summer season window of June 21 to the end of September was used for the satellite image selection 

period. From this time window, 3–5 images per year were downloaded, and the best one was selected 

after layer stack and pre-processing. For each year, one cloud-free or mildly cloudy contaminated image 

was chosen for the building of the LTSS; if there was no image that met these criteria, several partly 

cloudy (<10% CC) images with a similar phenology were employed as a replacement (see Table 1.1).  
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Table 1. 1: Detailed information for the Landsat satellite images (1972–2020) 

Acquisition Date Julian 

DOY 

Landsat 
Platform 

Landsat 

Sensors 
Cloud 

Cover Year Month Day 

2020 08 12 225 LC8 OLI_TIRS 0.2% 

2019 06 23 174 LC8 OLI_TIRS 0.1% 

2018 09 08 251 LC8 OLI_TIRS 0.5% 

2017 08 28 240 LE7 ETM+ 10% 

2016 06 30 182 LC8 OLI_TIRS 0% 

2015 09 16 228 LC8 OLI_TIRS 1% 

2014 06 09 160 LC8 OLI_TIRS 0% 

2013 09 26 269 LC8 OLI_TIRS 1% 

2012 10 01 275 LE7 ETM+ 6% 

2011 10 07 280 LT5 TM 0% 

2010 05 21 141 LE7 ETM+ 0% 

2009 06 27 178 LT5 TM 2% 

2007 08 01 213 LE7 ETM+ 4% 

2006 08 30 242 LE7 ETM+ 0% 

2005 09 04 247 LT5 TM 1% 

2004 08 24 237 LE7 ETM+ 0% 

2003 05 18 138 LE7 ETM+ 0% 

2002 06 24 175 LT5 TM 0% 

2001 08 24 236 LT5 TM 0% 

2000 09 22 266 LT5 TM 4% 

1998 08 16 228 LT5 TM 12% 

1996 08 10 223 LT5 TM 4% 

1995 06 21 172 LT5 TM 0% 

1994 07 04 185 LT5 TM 0% 

1993 07 01 182 LT5 TM 0% 

1992 08 15 228 LT5 TM 2% 

1991 08 29 241 LT5 TM 0% 

1990 07 25 203 LT5 TM 2% 

1988 07 03 185 LT5 TM 1% 

1987 06 15 166 LT5 TM 5% 

1986 08 31 243 LT5 TM 0% 

1985 08 12 224 LT5 TM 2% 

1984 06 22 174 LT5 TM 1% 

1981 08 18 230 LM2 MSS 0% 

1980 07 18 200 LM2 MSS 0% 

1979 06 18 169 LM2 MSS 0% 

1978 07 02 182 LM3 MSS 0% 

1976 10 01 275 LM2 MSS 0% 

1975 09 28 271 LM1 MSS 0% 

1973 10 08 281 LM1 MSS 0% 

1972 08 20 233 LM1 MSS 0% 

Note: Some years are missing since there is no available and/or usable Landsat image data for those dates. 
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1.2.2.2 MODIS imagery/MODIS NPP data products 

MODIS gap-filled yearly NPP products (MOD17A3HGF-V061) with a spatial pixel resolution of 500m 

were acquired from the NASA archive: modis.gsfc.nasa.gov. NPP products were obtained based on the 

difference of the gross primary production (GPP) and the maintenance respiration (MR). The GPP 

algorithm applies the concept of light use efficiency from both MODIS LAI/FPAR product and also 

NASA GMAO meteorological data (Running and Zhao, 2015). NPP data from 2001–2020 were acquired 

and applied in this study to create the composite forest degradation indicator (CFDI) and employ the well 

tested trajectory analysis algorithm known as “LandTrendr” to determine the long-term forest disturbance 

and degradation in the study area. 

1.2.2.3 Ground measurements, ground truth, and field sampling 

All ground data were collected from July to September 2018 (the 

area’s growing seasons). Accessibility was an important and 

determining factor for data collection in terms of the number of 

samples and sample spatial distribution. A randomized cluster 

sampling design was adopted for this heterogeneous study area, as 

it was difficult to collect field data due to the limitations of access 

roads and the risk posed by wildlife. For more information about 

field sampling, see Chapter 2 (Section 2.2.2).  

1.2.2.4 Historical and projected climate data 

1.2.2.4.1 Historic climate data 

Historical climate (daily and monthly) data for the period from 1972–2020 were acquired from the official 

climate data sources of Environment and Natural Resources Canada. In addition, historical Canadian 

climate normals data were garnered from the Environment and Climate Change Canada (ECCC) official 

Figure 1. 3: Collection of a point data from 

the field using transect 
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climate data portal. Two sets of 30-year climate normals data (1971–2000 and 1981–2010) were collected 

from 51 weather stations inside and surrounding the study area. 

1.2.2.4.2 Projected climate data: General circulation model (GCM) and downscaled RCM data 

Monthly observations of maximum temperature (Tmax), minimum temperature (Tmin), mean temperature 

(Tmean), and monthly total precipitation (P) for 2050 were acquired from the Canadian Centre for Climate 

Services (CCCS) data portal (https://climatedata.ca). These data were already calculated by the CMIP5 

climate modelling experiment dataset and statistically downscaled and bias adjusted using the 

“BCCAQv2” method under representative concentration pathway (RCP) 8.5. An ensemble of 24 GCMs 

was used. RCP8.5 was selected as it is considered the maximum concentration of greenhouse gases 

(GHGs) causing a forcing of 8.5 watts m-2. This would occur if there is minimal to no mitigation of GHGs 

(“worst case scenario”). 

1.2.3 Preprocessing 

An image stack was created for all downloaded images by selecting all the required bands using the Layer 

Stacking tool from ENVITM 5.3 software. The images from 1972–2020 were stacked for each year for 

preprocessing. 

Landsat image preprocessing included the detection and restoration of bad lines, radiometric correction, 

gap filling, cloud and cloud shadow removal, as well as composite filtering. To correct for aerosol and 

cloud effects, radiometric calibration and atmospheric correction were conducted with the Landsat 

Ecosystem Disturbance Adaptive Processing System (LEDAPS) algorithm (Masek et al., 2006). Clouds 

and their shadows were automatically screened using the function of mask (FMASK) algorithm (Zhu and 

Woodcock, 2012).  

Images with thin clouds and haze creating blurriness were cleaned with the Dark Object Subtraction tool 

in ENVI. All the images of the study area were also cleaned using Adaptive (Additive) filter “Local 
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Sigma” and the Convolution (Multiplicative) filter “Median” to remove the “salt-and-pepper” noise 

(speckle, spike, sharpness, etc.). 

Landsat 1–5 MSS images were corrected using Exelis Visual Information Solutions (ENVI TM 5.3). As it 

is not possible to calibrate or atmospherically correct old MSS data in a reliable manner, every scene from 

the 1975-era MSS (Landsat 1–5 MSS) archive was fixed radiometrically in agreement with the ETM+ 

image (as in Hall et al., 1991). 

Landsat 4–5 TM and Landsat 7 ETM+ images were atmospherically corrected to a surface reflectance 

image with the LEDAPS algorithm (Masek et al., 2006, 2013; Schmidt et al., 2013; USGS, 2017, 2020), 

which employs the Second Simulation of the Satellite Signal in the Solar Spectrum (6S) radiative transfer 

model as described by Vermote et al. (1997). LEDAPS transforms digital numbers into surface reflectance 

values and also conducts radiance calibration, atmospheric correction, and top-of-atmosphere reflectance 

conversion. The combination of atmospheric correction and normalization increases the accuracy of the 

spectral reflectance trajectory model in comparison with absolute correction (Schroeder et al., 2006). For 

remote sensing image processing, the reconstruction of gaps is a crucial concern. The SLC gap filling 

approach suggested by Romero-Sanchez et al. (2015) consisting of the Geostatistical Neighborhood 

Similar Pixel Interpolator (GNSPI) was used in the reconstruction of the imagery stack of Landsat 7 

ETM+. In this study, the ETM+ SLC-off images (2004–2017) were fixed by employing the Landsat Gap 

fill IDL Model of ENVI (ENVI 5.3.) with the GNSPI algorithm (Zhu et al., 2012). 

Landsat 8 OLI surface reflectance products were obtained already corrected by the LaSRC algorithm 

(USGS, 2016, 2020). These corrections increased the radiometric resolution and improved signal-to-noise 

ratio (Vermote et al., 2016; USGS, 2019). As a result, Landsat 8 surface reflectance product is far superior 

to the makeshift Landsat 5/7 LEDAPS product (Vermote et al., 2016; USGS, 2019). Fmask 4.0 (beta 

version), which automatically detects water, snow, clouds, and cloud shadows, was employed for Landsat 
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4–8 and Sentinel-2 images, which was developed based on Fmask and MFmask algorithms version 3.3 

(Qiu et al., 2017, 2018, 2019). Therefore, for this study, Fmask 4.0 (beta version) was employed to first 

detect and then remove clouds and cloud shadows from Landsat 4–8 images, most of which were 

“cleaned” by this algorithm. For any images that were not entirely cleaned, the Landsat Pixel Quality 

Assessment band (Pixel_qa band) was employed to remove the cloud and cloud shadows.  

1.3 Overall methodological workflow 

The overall methodology for this project consisted of a series of analytical steps that, when put in sequence, made 

up a methodological workflow, which could be organized as a flowchart. The workflow for the methodology in 

this project is shown in Figures 1.4 and 1.5. 

 

 

 

 

 

 

 



19 
 

 
 

 

Figure 1. 4: Methodological workflow for forest disturbance and degradation assessment 
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1.4 Dissertation organization  

This thesis is presented in such a way that each chapter (with the exception of the general introduction 

and conclusions) may be read independently. The research chapters all match the publication (submitted) 

or prepared for publication versions, with changes only to formatting to maintain a consistent style through 

the thesis. The thesis is composed of six chapters, four of which are research chapters (one was submitted 

to the Canadian Journal of Remote Sensing (CJRS) after review, and two abstracts were accepted for a 

symposium and a conference, including one extended abstract of 2000 words.) 

Chapter 1 presents the general introduction, background/literature review, brief description of forests and 

climate change, problem statement, objectives of the study, approach and methods, study area and data 

collection, overall methodological flow chart, and thesis/dissertation organization. 

Figure 1. 5: Methodological workflow for projected future forest degradation under climate change 
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Chapter 2 provides information about the field sampling design, study area and data collection, remote 

sensing data, methodological workflow of the chapter, land cover, image classification, and imbalanced 

training dataset. This chapter examines the performance of four classifiers with imbalanced ground truth 

data and also assesses the sensitivity of Support Vector Machine (AI) classification performance to 

training class with imbalanced data. Under the title “Evaluation of the accuracy of multispectral land cover 

classification algorithms: Comparison of Machine Learning, Maximum Likelihood, and Mahalanobis 

Distance Algorithms,” this chapter was submitted to CJRS for publication.   

Chapter 3 introduces vegetation indices that are applied as FDIs in this study. It also describes the 

innovative CFDIs derived from Landsat and MODIS image data using principal component analysis, and 

the use of the LandTrendr algorithm for long-term trajectory analysis. 

Chapter 4 details the relationship between FDIs, CFDIs, and climate variables. It provides a brief 

background of climate normals data, evapotranspiration, moisture availability, length of growing period, 

drought, and empirical Bayesian kriging (EBK) as a mechanism for optimal spatial interpolation of point-

data, forest disturbance and degradation, FDIs, Ontario forests, drought, and LandTrendr. It also involves 

a description of the historical multiple linear regression model, development of predicted (2050) multiple 

linear regression models, and the creation of the historical CFDI gridded maps of climatology (1972–

2020). 

Chapter 5 shows the methodological workflow of future climate projections. It also details the climate 

change impacts, emission scenarios, the impacts of drought under a changing climate, Ontario forests and 

climate change, forest disturbance and degradation, projection of future climate scenarios, GCMs, RCMs, 

and RCPs. In addition, it provides information about the climate change impact on the study area including 

Algonquin Provincial Park in 2050 through the creation of projected and change CFDI gridded maps of 

climatology (2050) that identify the most vulnerable forest degradation areas under the climate change 
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scenario. Under the title of “Projection of Future (2050) Forest Degradation Indicators under a Changing 

Climate in Central and Northeastern Ontario, Canada,” an abstract of this chapter was accepted for 

presentation at the 44th Canadian Symposium on Remote Sensing and by The International Environmetrics 

Society (2023). 

Finally, chapter 6 presents the overall conclusions and major findings of this research. 
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Evaluation of the accuracy of multispectral land cover classification algorithms: Comparison of 

Machine Learning, Maximum Likelihood, and Mahalanobis Distance Algorithms  

Hoque, Md Mozammel, Raul Ponce-Hernandez, Carey Gibson, Trevor Jones 

 

Abstract 
The objectives of this paper are to examine and evaluate the accuracy of conventional and relatively new 

algorithms for land cover classification based on Landsat imagery of Central and Northeastern Ontario, 

Canada. To ascertain the best supervised classifier, we compared the accuracy of resulting land cover 

maps produced by four algorithms: two non-parametric machine learning algorithms: support vector 

machine (SVM) and artificial neural networks (ANN), as well as two parametric classification algorithms: 

maximum likelihood classifier (MLC) and Mahalanobis distance (MahD).  

The overall accuracy values obtained by SVM, MLC, MahD, and ANN were 98.6%, 85.7%, 83.6%, and 

76.8%, respectively. Additionally, the results showed MLC, MahD, and ANN classification algorithms 

are highly influenced by imbalanced training data that can lead to lower accuracy, while SVM is not 

affected. The findings revealed that SVM is the most robust, consistent, and effective classifier of those 

compared. While a greater amount of time and effort was spent in making improvements to the signature 

file to increase the accuracy from 60.86% (14 hrs) to 98.62% (42 hrs) with the SVM algorithm, more 

research is needed to ascertain whether the gains were truly proportional to the extra time, effort, and 

expense.  

Keywords: Remote sensing, Land cover, Image classification, Imbalanced training dataset, F1 score, 

Tuning parameters, SVM, ANN, MLC, MahD. 

 

2.1 Introduction  

Land cover/land use (LCLU) mapping is a subject of great interest due to its multiple applications 

(Soffianian and Madanian, 2015; Wang et al., 2015) in planning and modeling ecosystem activities (Shaw 

et al., 2014; Bhattarai et al., 2015; Talukder et al., 2020). Understanding LCLU is important in habitat 
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distribution, biodiversity, global change studies (Verburg et al., 2011; Hansen, T., 2012), LU policy 

development, urban planning, nature conservation, agricultural monitoring, as well as studying the 

impacts of climate change (Shetaii and Abdi, 2008; Talukder et al., 2020). Therefore, there is a need to 

create accurate and current LCLU maps. Along with conventional field methods, remote sensing (RS) 

techniques applied to satellite imagery furnish opportunities to monitor and assess LCLU types. The 

identification and mapping of LCLU types through multispectral satellite image classification are key to 

the usefulness of the products. However, it is still a challenge to obtain reliable and accurate LCLU 

classifications from RS images due to a number of factors, such as landscape complexity, RS data 

selection, image processing, and particularly the choice of classification algorithms. Image classification 

can be a lengthy and laborious process and usually prone to inaccuracies. Developing an effective image 

classification with acceptable levels of accuracy demands time and effort, and it is dependent on the 

effectiveness of the algorithms used for the generation of a classification map. 

Although relatively new machine learning algorithms for image classification have been developed in the 

past few years, only a handful of studies have compared their applicability and performance. As 

information on forest composition is crucial for forest management and inventory, RS data and image 

processing techniques have been widely employed in mapping the spatial distribution of forest types, at 

various spatial and temporal scales (Thessler et al., 2008; Aguirre-Salado et al., 2012). While accuracy 

depends on a variety of factors, including the targets requiring classification and the inputs employed, RS, 

with its increased spatial and spectral resolution, is both accurate and much easier than ground survey 

(although ground survey is more accurate than RS). Among the synoptic and periodic observations of 

Earth Observation (EO), Landsat images are widely employed for mapping the Earth’s surface (Williams 

et al., 2006). Since the advent of Landsat 1 in 1972, Landsat images have often been employed for the 

purpose of forest monitoring due to their suitable spectral and spatial resolutions (Huang et al., 2008; Roy 
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et al., 2014), and much research has focused on forest time series analysis based on the large time series 

of satellite image stacks. Analyzing such multi-spectral images can aid in LC identification (Tigges et al., 

2013; Shim, 2014).  In particular, RS techniques, when used wisely and effectively, offer an approach that 

is accurate and time-saving when obtaining LCLU information.  

The image classification process is a multi-step workflow that involves extracting information from 

satellite imagery by separating the image pixel values into meaningful categories or LC classes 

(Chaichoke et al., 2011). Scene classification of identifiable or meaningful features or LC type classes 

results in a map such as LU and types of vegetation (Palaniswami et al., 2006). LCLU mapping is a subject 

of great interest due to its multiple applications (Soffianian and Madanian, 2015; Wang et al., 2015). 

Understanding LCLU is important in habitat distribution, forest management and inventory, evaluating 

aquatic ecosystems, biodiversity, global change studies (Verburg et al., 2011; Hansen, T., 2012), LU 

policy development, urban planning, conservation and environmental monitoring, agricultural 

monitoring, as well as studying climate change (Sellers et al., 1995; Shataeii et al., 2008). Therefore, there 

is a need to create accurate and current LCLU maps. 

 Despite the advantages of RS detailed above, creating an accurate map through the classification of RS 

imagery does present some challenges due to many factors, including landscape complexity, the choice 

of RS data, as well as image processing and classification approaches that can affect classification 

accuracy (Lu and Weng, 2007). Of particular importance is the selection and evaluation of a suitable 

classification algorithm along with a required number of “training” samples from field sampling and the 

selection of data sources (e.g., aerial photographs and satellite imagery).  

Pixel-based image classification is generally employed for information extraction and data analysis. The 

classification accuracy is affected by the resolution, purity, and size of the training dataset, heterogeneity 

of LC class as manifested on the ground, and the type of adopted classifier (Lu and Weng, 2007; Kavzoglu, 
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2009). The quality and characteristics of training data are key for classification accuracy. Additionally, 

when classifying the minor classes of interest, the size of the training dataset acquires significance. In 

some cases, there could be limitations when collecting the sampled pixels (and ground truth samples) for 

a specific class. This results in an imbalanced training dataset as the number and size of training samples 

of one specific class is smaller than those of the other classes. While this may lead to low accuracy, some 

classifiers could be highly accurate even under those conditions (Foody et al., 2006; Waske et al., 2009). 

Some studies have examined how to deal with the problem of classification with imbalanced data by 

resampling the training dataset and using classifiers such as support vector machine (SVM) (Waske et al., 

2009; Mohd Pozi et al., 2015). 

According to Lu and Weng (2007), both imagery appropriateness and the correct choice of classification 

algorithms affect the performance of LCLU mapping results. Numerous image classification algorithms 

have been developed since the first Landsat image was acquired in the 1970s (Bakr et al., 2010; Yang et 

al., 2011). Classification methods for LCLU mapping using RS data range from unsupervised algorithms 

(i.e., ISODATA or K-means) to parametric supervised algorithms, such as maximum likelihood (ML) or 

Mahalanobis distance (MahD), and nonparametric machine learning supervised algorithms. Among the 

latter, artificial neural networks (ANN), SVM, decision trees (DT), k-nearest neighbors (kNN), and 

random forest (RF) are often used. 

Much research has compared different image classification algorithms for LCLU mapping (Dixon and 

Candade, 2008; Khatami et al., 2012; Talukder et al., 2020). However, conclusions vary widely. 

Therefore, it is necessary to compare the different image classification algorithms in different 

environments, such as, in this case, the temperate and humid area in Ontario, Canada, selected for this 

study. For this area, the LC classification of Landsat data was performed using four supervised classifiers: 

two parametric algorithms (ML and MahD) and two non-parametric, machine learning algorithms (ANN 
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and SVM). The performance of these four algorithms was compared in terms of the classification accuracy 

obtained. The learning stage of the supervised classification algorithm is mainly dependent on the training 

data characteristics, specifically on the selection of the training sub-populations and their location on the 

input imagery, as well as the implemented classificatory algorithms. The sample pixel distributions are 

also vital in terms of classification performance, especially for parametric classifiers (e.g., ML) (Lu and 

Weng, 2007; Kavzoglu, 2009). The imagery and training sets are also crucial for obtaining high accuracy 

in the classification, as they rely on supervised learning (Kavzoglu, 2009). In order to successfully assess 

the influence of imbalanced training datasets on the accuracy of image classification, four different pixel-

based supervised classification methods (SVM, ML, MahD, and ANN) were selected and implemented 

for mapping LC types, and then they were compared in terms of the resulting accuracy of each 

classificatory algorithm. Performance of the classifiers depends on many factors (e.g., selection of training 

samples, the data samples selected for testing, and the input variables) (Foody et al., 1995). 

Over the last few decades, ANN classification has been extensively employed in RS as an alternative to 

statistical classification methods, a highly self-learning and self-adaptive algorithm with the capability to 

recognize and generalize complex datasets (Yu and Chen, 2020; Talukder et al., 2020; Ghayour et al., 

2021). ANN has been argued to be better than traditional statistical classification approaches (such as ML 

and MahD) because it does not make assumptions about the nature of the probability distribution function, 

which is learned from training samples (Foody, 2004). This back-propagation algorithm has been used 

extensively for a wide variety of applications (Mas and Flores, 2008), and it is often chosen specifically 

due to the fact that it is a non-parametric and non-linear classifier. However, ANNs can be problematic as 

they need a lot of computational power to obtain the desired output, are “slow learners,” and require huge 

training datasets.  
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SVM, which is based on statistical learning, is a supervised non-parametric machine learning algorithm 

that can be employed for the creation of LCLU maps (Jensen, 2005; Talukder et al., 2020). Over the last 

20 years, SVM and ANN algorithms have been popular for image classification (Pal et al., 2013). 

Generally, SVM is employed due to its potential for better classification accuracy than ANN (Foody and 

Mathur, 2004; Pal et al., 2013). SVM’s main advantage is its ability for generalization with limited 

training samples. While SVM requires parameter selection and some computational demands, in certain 

instances it has been shown to offer superior performance compared to other image classification 

algorithms, and it could furnish good classification results from data that are complex and noisy. In order 

to ensure there is little chance of misclassifying previously unseen data, the algorithm makes use of a 

structural risk minimization principle (Vapnik, 1998). Overall, the SVM classifier could offer an 

innovative approach compared to traditional parametric classifiers (e.g., ML and MahD), as well as to the 

non-parametric ANN classifier (Mountrakis et al., 2011; Srivastava et al., 2012). 

Finally, there is an immense amount of time and effort that must be invested to ensure classification 

accuracy; however, this problem has been underrepresented in the literature, in particular regarding 

“signature/reference” file preparation and achieving accuracy values. Thus, in this research, metrics of 

time and effort were developed and used in the classification process, and they were evaluated as part of 

the “cost” of obtaining the performance of the algorithms in terms of the accuracy of the results. 

This paper examined and evaluated a selected group of conventional and relatively new advanced methods 

and techniques for multispectral satellite image classification (SVM, MLC, MahD, and ANN) in terms of 

their accuracy in LC classification of Landsat imagery for central and northeastern Ontario, Canada.  The 

creation of a map of the study area with the highest possible level of accuracy was intended, since no map 

of this kind exists in the area. To support and validate the classification assessment, ground truth points 

were used to ascertain the OA, K coefficient, and F1 score metrics. A central goal of this paper was to 
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achieve a classification accuracy beyond 90%, and to examine the “cost” in terms of time and effort 

necessary for this achievement. After identifying the algorithm that produced the highest classification 

accuracy, additional investigations examined the relationships between classification accuracy and the 

“cost” in terms of time and effort required to attain it by each algorithm. To this end, the field was revisited 

multiple times for the collection of more ground truth data to review potentially misclassified factor (LC 

type) areas until reaching the highest accuracy level possible. Finally, the influence of imbalanced training 

data on the resulting classes of LC types was evaluated. 

2.2 Materials and Methods 

2.2.1 Study Area 

The area selected for this study is part of the Algonquin Park area in Ontario, Canada. Its spatial extent, 

spans from 45°8’15.32’’N to 46°16’12.38’’N and from 76°37’48.75’’W to 78°20’16.73’’W, defining a 

total of 10,000 km2. The perimeter of the area was digitized based on the Electoral District of Renfrew-

Nipissing-Pembroke (ED088) map. ED088 includes all of Renfrew County and a small section of the 

Nipissing District, which is around Algonquin Provincial Park. The original ED088 district area 

comprising the study area was 12,383.83 km2. The final study area, after exclusions of water areas of the 

Figure 2. 1: Study area with clusters in central and northeastern Ontario, Canada 
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Ottawa river and map corners was 10,000.02 km2. The Lambert Conformal Conic projection was 

converted to WGS 1984, UTM Zone 18N to keep the identical spatial reference of the acquired Landsat 

images. This study area (Figure 2.1) contains a wide range of forest and non-forest LC types, as it is 

typical of forests in the boreal transitional zone, including Algonquin Park.  

The study area is typically characterized as two distinct forested regions, namely North East Algonquin 

(Nipissing District and Renfrew County) and South West Algonquin (Bancroft, Minden and French 

Severn Forests). The southwestern portion is in a higher elevation and has sandy loam soils derived from 

glacial till, which tends to have high moisture holding capacity and is dominated by deciduous forest 

types. The northeastern side consists of coarse outwash soils and is dominated by white pine and mixed 

deciduous forests. The main tree species include red oak, red and sugar maple, trembling and large-tooth 

aspen, basswood, ironwood, white and yellow birch, beech, black and white ash, among others, and the 

coniferous tree species include mainly red, white, and jack pine; black, white, and red spruce; balsam fir; 

hemlock; and tamarack, among others (Chubey et al., 2009). 

The study area generally has a humid continental climate (Köppen, 1936) with long, snowy, and cold 

winters and warm, moist summers. The average annual temperature and precipitation of Algonquin Park 

during the period of 1971–2000 was 4.5°C and 949.0 mm, respectively (McKenny et al., 2010; Favot et 

al., 2019). Of this precipitation, approximately 25% is snowfall. On average, there are 136 days in the 

growing season, with 100 frost-free days (Chubey et al., 2009). In our study, for the periods from 1971–

2000, 1981–2010, and 2011–2020, we found the average temperature and precipitation for the study area 

were 4.9°C and 1022.0 mm; 5.1°C and 1085.5 mm; and 5.2°C and 949.0 mm, respectively. However, 

there were some missing precipitation data from most of the stations during the period from 2011–2020. 
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2.2.2 Field Sampling  

The initial study area was 100 km2 in the cluster of the Petawawa Research Forest, where most of the 

samples were collected due to the accessibility. Subsequently, the area was expanded to encompass 10,000 

km2, making field visits difficult and time consuming. Accessibility was an important and determining 

factor strongly influencing data collection and the spatial distribution of samples. A randomized cluster 

sampling design was adopted for this heterogeneous study area, as it 

was difficult to collect field data due to the limitations of access roads 

and the risk posed by potentially dangerous wild animals inside the 

forest, meaning that accessibility was a factor influencing data 

collection, especially in terms of the number and spatial distribution 

of samples. So, the time, effort, and expense involved in collection 

resulted in a limited, and sometimes unbalanced, number of ground 

samples. In total, 14 clusters of ground samples were part of the sampling effort to provide training sites 

for the classification efforts. Ground measurements were collected from 250 locations within each of the 

14 sampling clusters in the study area (Figure 2.1). To fix the misclassified LC types, sample re-collection 

was undertaken; however, these were in addition to, not included in, the 250 samples. A circular plot of 

50m in diameter and containing 50m transects was established at each of the locations (Figure 2.2), and 

one location contained 31 measurements for tree data (e.g., species, dominance, percentage of canopy 

cover, etc.). The number of transects depended on the local conditions of access. LC types were identified 

visually and recorded. Other variables, such as the height of trees and their diameter at breast height, were 

also measured and recorded, even though these variables were collected for parallel studies and are only 

supporting, not determinant, variables used in the classifications. All data were collected between July 

and September 2018 (the area’s growing seasons). 

Figure 2. 2: Collection of point data 

from the field using transect 
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The field data collection identified and recorded all LC types in and around each cluster/site. The sampling 

procedure undertaken on the ground initially identified 14 LC types (in version 1), which were 

subsequently refined into 7 LC types (in version 8) (Table 2.1, below). This field identification of LC 

types on the ground was implemented based on the study objectives and careful consideration of an initial 

analysis of the separability of LC types. 

The sampled locations showed dominance (with more than 80% canopy cover) of conifer and deciduous 

forest LC types. Mixed forest samples showed an almost equal presence of deciduous (50%) and 

coniferous (50%) forests. The class “water” was represented throughout the study area with the generic 

class “wetlands,” which were grouped into a few samples of the class “bogs,” “marshes,” and “swamps.” 

The sampling also included a few samples of the class “infrastructure.” The latter were identified using 

finer resolution satellite images. All LC type data were gathered from the ground and located using a 

handheld GPS with near meter accuracy, collecting data from clusters 1 to 13. The sampling clusters were 

located on the satellite image and searched for and found on the ground within an accuracy of 2m to 7m. 

A simple random sampling technique was applied to locate the sampling clusters and data points, of which 

70% were used for training and 30% for testing the classification results. Based on accessibility, the 

number of samples for each individual LC type ranged from 15 to 73 samples (Table 2.1).  

2.2.3 Methodological Workflow 

The overall methodology for this project consisted of a series of analytical steps that, when put in 

sequence, made up a methodological workflow, which could be organized as a flowchart. The workflow 

for the methodology in this project is shown in Figure 2.3. The first block of activities consisted of steps 

related to the preparation of an image stack and image correction processes, consisting of the SLC gap 

filling and cloud/cloud shadow masking procedures. The resulting corrected image stack allowed for the 

selection of the best Landsat image for the year 2018, which was used for the LC classification objectives. 
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The last step of the first block of procedures involved the selection of the “best” classification algorithms 

for their comparison in terms of classification accuracy and performance components. The procedures for 

accuracy assessment using ground validation samples allowed for the identification of the “best” 

algorithm in terms of accuracy of 

the classification. 

The second block of activities 

consisted of procedures for 

examining the time and effort 

investment. To increase the 

classification accuracy, eight 

versions (V1–V8) of signature 

files (ROIs/reference files) were 

created to train the algorithm to 

obtain the highest level of 

acceptable classification accuracy. 

2.2.4 Data 

2.2.4.1 Landsat Imagery and Preprocessing 

Landsat data were chosen in particular because of their availability for long-term assessment in the study 

area (from 1972–2020), which provided a more detailed picture for future projections. (Data from other 

platforms, such as SAR and Sentinel, are not as readily available in comparison with Landsat imagery). 

Multiple Landsat images were acquired during leaf-on seasons, from June 21 to September 22 (summer 

solstice to fall equinox), which coincides with the peak of the growing season, to ensure that the images 

had less than or equal to 10% cloud cover. Landsat image preprocessing included the detection and 

restoration of bad lines, radiometric correction, gap filling, cloud and cloud shadow removal, as well as 

Figure 2. 3: Flow diagram for the best algorithm selection and time-effort 

investment for the highest accuracy. Note that V1 to V8 represent the 

number of versions of the classification required to achieve the highest 

level of accuracy. 
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composite filtering. Landsat 1–5 MSS, Landsat 5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic 

Mapper Plus (ETM+), and Landsat 8 Operational Land Imager (OLI) were collected for the period from 

1972–2020 for this study from USGS platforms (e.g., glovis.usgs.gov). Digital Numbers were not 

converted to reflectance. Landsat TM and ETM+ data were acquired for the period from 1984–2013, as 

well as collected Surface Reflected data (collection-1, level-2), using the USGS “On Demand” 

option.  Landsat 8 data for 2013–2020 were also acquired, and Surface Reflected data (collection-1, level-

2) were collected using the same technique. A cloud-free Landsat 8 image of September 2018 was selected 

for LC classification after preprocessing and correcting the image stack. The study area was covered by 

one scene/tile of path 017 (MSS 018) and row 028 (no mosaic). Landsat 8 OLI surface reflectance products 

were obtained already corrected by the LaSRC algorithm (USGS, 2016, 2020). These corrections 

increased the radiometric resolution and improved signal-to-noise ratio (Vermote et al., 2016; USGS, 

2019). As a result, Landsat 8 surface reflectance product is far superior to the makeshift Landsat 5/7 

LEDAPS product (Vermote et al., 2016; USGS, 2019). Fmask 4.0 (beta version), which automatically 

detects water, snow, clouds, and cloud shadows, was employed for Landsat 4–8 and Sentinel-2 images, 

which is developed based on Fmask and MFmask algorithms version 3.3 (Qui et al., 2017, 2018, 2019). 

Landsat 1–5 MSS images were corrected with the abovementioned approaches using Exelis Visual 

Information Solutions (ENVI TM 5.3). As it is not possible to calibrate or atmospherically correct old MSS 

data in a reliable manner, every scene from the 1975-era MSS (Landsat 1–5 MSS) archive was fixed 

radiometrically in agreement with the ETM+ image (as in Hall et al., 1991). For more details about 

Landsat imagery and preprocessing, see Chapter 1.  

2.2.4.2 Sample Datasets for Training and Testing the Classifiers 

Since a large number of published works (e.g., Stehman, 1992) have already examined the impact of the 

choice of testing data on classification accuracy, in this research, emphasis was placed on the selection of 

training samples and input variables. The training dataset should have a sufficient number of independent 
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sample units of LC types for each LC class to exhibit interclass variability (Muñoz-Marí et al., 2007; 

Ghayour et al., 2021). Based on statistical theory, we applied specifically categorized training areas to 

recognized similar areas for each individual LC class. In many studies, the sample datasets are divided 

into the categories of training and testing. To ensure a high level of accuracy for the classifiers, the 

recommended proportion is using 70% of the data to train the classifiers and 30% for validation (Yousefi 

et al., 2015; Pouliot et al., 2019).  

To ensure the independence of the training and testing sample datasets for classification, a simple random 

sampling technique was implemented to select the training and testing sample datasets for calibration 

(subsequently referred to as the calibration set). The calibration datasets were kept the same for all 

classifiers to avoid sampling bias. Therefore, to train the four classifiers, 175 (70%) samples were 

randomly selected for training and the remaining 75 (30%) were used for testing to evaluate the 

performance of the classifiers. To address the misclassified LC types, the site was revisited to collect new 

samples; however, these were not included in the 250 samples. 

2.2.4.3 Training and Testing Signatures 

The training signature file (i.e., reference or “ROI” file in the ENVITM software) for image classification 

can be created using fine resolution satellite imagery and field sample data with balanced and imbalanced 

samples. As indicated earlier, a total of 250 imbalanced samples were collected from the field (not 

counting the additional samples to address the misclassification mentioned above). Of these, 175 were 

randomly selected to identify areas of the Landsat 8 image from which to collect training signatures. To 

obtain a representative spectral signature of the class, individual regions of interest (ROIs) were drawn to 

include essential pixels. The remaining 75 ground truth samples were employed in the accuracy 

assessment to compare the performance of the four classifiers. A signature file was created for training 

the four classifiers using ENVITM software with ground truth/reference data collected from the field. It 
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should be noted that for SVM, there were 8 signature files created, one for each of the 8 versions. Another 

signature file was created using 75 testing samples to compare the performance of the four classifiers and 

select the best classifier. In order to test the performance of SVM, a total of 8 signature files were also 

created, one for each of the 8 versions. 

2.2.4.4 Filtering 

Individual and combined filtering were used for this study. A combination of Median (Haralick et al., 

1987) and Local Sigma filters (Eliason and McEwen, 1990) were employed. Combined filters increased 

the smoothness and brightness of the image, as well as removed all kinds of noise, such as spot noise, 

speckle noise, etc. All classificatory algorithms were applied after these image enhancement procedures. 

However, it was noted that the SVM classification results increased in accuracy by 3.28% after 

implementation of the combined filters.  

2.2.4.5 Classification 

Supervised classification labels pixels according to user-defined classes based on previous knowledge of 

the features to be categorized. The training and testing/validation datasets were common for each 

algorithm. Further, owing to the ease of selection and the concomitant decrease in misclassification error, 

pixels in the study area were allocated into the seven dominant LC classes, which are shown in Table 2.1.  

Table 2. 1: Classified LC classes in the study area including the training and testing sample units 

LC classes Training samples Testing samples Description of LC types 

Coniferous 30 13 Coniferous and shelterwoods forest  

Deciduous 15 7 Deciduous forest 

Mixed Forest 18 8 Mixed forest 

Grassland 10 5 Crops, pastures 

Wetland 40 16 Bog, marsh, swamp, dead/dry trees 

Infrastructure 52 21 Buildings, roads, asphalt, parking lots (gravel and sandy soil) 

Water 10 5 Lakes, rivers, and reservoirs 

 

There were some minor imbalances in terms of the different classes in the training and testing samples, 

for which it should be noted that several classes, such as wetland and infrastructure, are composed of a 
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number of types of LC. However, the imbalances in the testing samples were mitigated by merging 

categories in SVM from V1–V8. While in Table 2.1, it can be seen that there are higher numbers of testing 

samples of wetland (16) and infrastructure (21) (which are equivalent to 21% and 28% of the total testing 

samples), this was only for the first version. In V8, the testing samples for wetland (8) and infrastructure 

(5) were much more balanced and representative of the actual distribution of classes in the field. 

2.2.4.6 Tuning Parameters 

Tuning parameters for classification, as used by the ENVI 5.3 software, have a significant part to play in 

ensuring highly accurate results of image classification with SVM, ANN, ML, and MahD. All four 

classifiers have different tuning parameters and procedural steps. This study tested a series of parameter 

values for each classifier’s tuning process, with the optimal parameters identified based on the highest 

overall accuracy of the classification results (Than Noi and Kappas, 2017). Such optimal parameters were 

subsequently employed in this study, when comparing the efficacy of the various classifiers. 

Accuracy metrics were used to assess the quality and performance of alternative classifiers. Therefore, in 

this study, each classifier was run separately, iterating through all parameter grid points and input datasets, 

after building the spectral signature file (reference file or ROI file in ENVI software), and using training 

datasets, setting up the tuning parameters. The results of the tuning process used a performance metric to 

rank the classifiers according to different parameters, in order to optimize a parameter for each 

classification algorithm.  

In this study, a confusion matrix and accuracy metric were employed to measure classification 

performance (with testing samples) and conduct a search of the values to determine the optimal parameter 

with which to train the classifier. The ideal parameter values of the four classifiers were found by 

implementing all combinations of the aforementioned parameter values for this study. Following the 

studies of Than Noi and Kappas (2017) and Li et al. (2014), 10 iterations were tested on ranges of values 
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for the kernel coefficient (γ) and cost (C), to find the optimal parameters of SVM. Optimal values found 

for the parameter setting are shown in Table 2.2, in order to reach the highest overall accuracy (OA).  

Table 2. 2: Tuned parameters for each supervised classifier and tuned optimum parameter value used 

 

Supervised 
classifier 

Tuned parameters Search range Optimal parameter 
Setting 

 
SVM 

Kernel coefficient for radial basis function (RBF) (γ) 
Penalty parameter for error term cost (C) 
Classification probability threshold 

0.0001–0.2 
0.1–1000 
0-1 

0.143 
100 
0 

 
ANN 

Training threshold contribution and momentum 
Training/learning rate 
Maximum number of learning iterations 

0.5–0.9 
0.1, 0.2, 0.5 
200–1000 

0.6 
0.2 

1000 

MLC Probability threshold = no threshold, single value, or 
multiple values 

Single value  
from 0–1 

Single value 

MahD Maximum distance error value None, single value, 
or multiple values 

Single value 

  

2.2.4.7 Classification Algorithms 

2.2.4.7.1 Support Vector Machine (SVM) 

SVM is being applied more frequently for LC classification owing to its ability to solve classification 

problems with a small number of training samples and its nonlinearity (Brown et al., 1999). It is a high-

performing supervised classification algorithm with four core models: linear, polynomial, radial basis 

function (RBF), and sigmoid kernels (Brereton and Lioyd, 2010). In their study, Camps-Valls et al. (2008) 

presented a new group of kernel-based methods for time series image classification. SVM employed 

kernel functions to divide classes in a higher dimensional space if two classes were not able to be separated 

linearly. Kernel functions require user-defined parameters and the option of a suitable kernel type as the 

corresponding parameters have a significant impact on SVM performance as it helps in the identification 

of the “shattering points” or “support vectors” (Melgani and Bruzzone, 2004; Talukder et al., 2020). In 

general, RBF kernel generates superior classification results (Kavzolgu and Colkesen, 2009; Otukei and 

Blaschke, 2010), meaning the SVM classifier’s RBF kernel is commonly used, needs less computational 

work, and displays good classificatory performance (Knorn et al., 2009; Shi and Yang, 2015). Importantly, 
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the RBF kernel is generally used when there is a non-linear relationship between the training samples and 

the entire dataset. This means it is an effective classifier for heterogeneous areas (Su et al., 2007). When 

using the SVM classifier with the RBF kernel, two parameters need to be set: the optimum penalty 

parameter of cost (C) and the kernel width parameter (γ) (Qian et al., 2015; Ballanti et al., 2016). The 

shape smoothing of the class-dividing hyperplane is affected by the parameter γ (Melgani and Bruzzone, 

2004). Larger C values may lead to an over-fitting model (Ghosh and Joshi, 2014), while increasing the γ 

value will influence the shape of the class-dividing hyperplane. This, in turn, may affect the accuracy of 

the classification results (Huang et al., 2002; Ghosh and Joshi, 2014). In this study, the RBF kernel 

employed for the implementation of the SVM algorithm included γ in all, the kernel function, the 

probability threshold, and the penalty parameter. The kernel function and penalty parameters were 

optimized through comparison of the classification results after adjusting them continuously through an 

iterative process. 

2.2.4.7.2 Artificial Neural Network (ANN) 

A multilayered feed-forward ANN performs a non-linear classification. The ANN system employs 

standard back propagation for supervised (machine) learning, and a simple model consists of one input 

layer, minimum one hidden layer, and one output layer. ANN creates a method from the input layer for 

the prediction (Kalantar et al., 2018; Tan et al., 2021). In satellite image classification, the topology 

consists of a neuron in the input layer representing one of the input features (e.g., one satellite image 

band), and each neuron in the output layer corresponds to one class (Srivastava et al., 2012). In the learning 

stage, it is the neural network system design, as well as the optimization of training parameters (e.g., 

learning rate), that are particularly crucial to the accuracy of results (Kavzoglu and Mather, 2003; 

Kavzoglu, 2009; Talukder et al., 2020). The learning process involves adjusting the node weights to 

decrease the difference between the output node activation and the output. Next, the error is back 
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propagated through the network, and weight adjustment is done using the recursive method (Kar and 

Kelkar, 2013). It is possible to achieve the desired output by alternating the node weights. 

The iteration gradient algorithm of back propagation generally minimizes the root mean square error 

(RMSE) between the true output of a feed forward ANN of multiple layers and the intended output. The 

iteration process is ended when the RMSE achieves the optimal level. It is important to remember that the 

training iteration number should not be too small or too large. In this study, the optimal parameter values 

of the ANN classifier were obtained by implementing different combinations. To identify suitable training 

protocols, various combinations of learning rates and momentum values were also tested. 

2.2.4.7.3 Maximum Likelihood (ML) 

ML is the most widely used classification algorithm in RS (Bailly et al., 2007; Kar and Kelkar, 2013). 

Therefore, this research employed it, considering the spectral characteristics of the satellite images and 

existing knowledge of the LC study area. The ML classifier applies the highest pixel probability to classify 

and estimate the probability of a pixel belonging to each class (Munyati, 2000; Jog and Dixit, 2016). To 

calculate the mean and variances of the training dataset classes to be implemented in the classification, 

probabilities are estimated, and changes are examined in the brightness values of each class. In order to 

classify an unknown pixel of a spectral response pattern, the Gaussian ML classifier also employs variance 

and co-variance of population distributions of classes. This classification relies on the probability density 

function connected with a particular signature. Pixels are allocated to a similar class on the basis of a 

comparison of the posterior probability that they should belong to each of the signatures under 

consideration (Vibhute and Gawali, 2013). 

2.2.4.7.4 Mahalanobis Distance (MahD) 

This algorithm assumes the bands’ histograms have normal distributions and provides maximum accuracy 

(Kar and Kelkar, 2013). Based on the correlation between variables by which different patterns can be 

identified and analyzed, this classifier assesses the similarity of an unknown to a known sample set. Its 
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approach, which differs from Euclidian distance (Talukder et al., 2020), takes care of the correlation of 

the dataset and it is scale-invariant (Vibhute and Gawali, 2013). In this method, all pixels are classified to 

the closest (i.e., shortest distance) training data (i.e., the ROI class). 

2.2.4.8 Accuracy Assessment and Performance Evaluation of the Classification Algorithms 

Classification accuracy assessments were conducted on the testing dataset after the Landsat 8 (2018) 

image was classified via the training dataset. The classification accuracy was assessed by examining and 

understanding the source of the errors (Congalton and Green, 2019; Powell et al., 2004). The errors 

included classification and other types of errors, such as positional and interpretation errors, as well as 

poor quality training or testing samples. The error matrix technique was employed for accuracy 

assessment (Foody, 2002), as well as the overall accuracy (OA) and kappa coefficient (K) metrics. These 

were all used in this study to ascertain the accuracy of classification from each of the algorithms (Aguilar 

et al., 2012; Srivastava et al., 2012). K was employed since it is the most common assessment coefficient 

(Aguilar et al., 2012) as it makes use of pixels in the wrong classes (Smeeton, 1985) and describes the 

similarity between what is on the ground (ground truth/training datasets) and what is on the screen/paper 

(classification data) (Richard, 1999). K is calculated with the following equation:  

K =
𝑃0−𝑃𝐶

1−𝑃𝐶
 (2.1) 

where, PO = correctly observed pixels, PC = hypothetical probability of the agreement of chance (expected 

agreement). 

It is crucial to validate the quality of LC products for operational applications (Cihlar, 2000; Foody, 2002). 

Therefore, this process must involve appropriate sampling strategies for the statistical assessment of 

product accuracy. In addition, to ensure robust validation, the reference data must be of sufficient accuracy 

(Wulder et al., 2006). In particular, for multiclass models with imbalanced data, recall and precision are 

informative metrics (Buckland and Gey, 1994). While precision is a measure of exactness in terms of the 
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correct number of class predictions, recall is a measure of completeness in terms of how well a class is 

detected. It is also possible to talk about precision and recall in terms of error (commission or omission). 

Thus, for performance evaluation, frequently used accuracy measures (i.e., precision/sensitivity, 

recall/specificity, and OA) were calculated with the testing dataset. OA is the total number of correctly 

classified segments divided by the total number of test segments. Precision is the true positive rate or 

producer’s accuracy (PA), and recall is the true negative rate or user’s accuracy (UA). Depending on 

whether the dataset is balanced or imbalanced, different performance measures and estimation methods 

will show different performance when they are applied to supervised algorithms. To select the best 

classifier, this study compared the performance of the selected four classifiers based on the classification 

results.  

In machine learning, a confusion matrix is a standard means of measuring the performance of a 

classification model in depth. Most classifiers produce multiple categorical outputs. However, the 

majority of error measures calculate the total error in the model, not the individual instances of errors. 

This poses a problem as the model might misclassify some categories more than others, which would not 

be identified by a standard accuracy measure. Therefore, a confusion matrix is particularly useful for 

imbalanced data, such as those in this study. The OA, precision, recall, F1 score, and K coefficient were 

calculated from the confusion matrix to compare the classified maps’ accuracy and the performance of 

the four classifiers. To select the best classifier for the study, the classifiers were also compared using F1 

score because the field training samples were imbalanced. The F1 score is a summary measure of the 

precision and recall, which is calculated as the weighted harmonic mean of both metrics (Ceri et al., 2013): 

F1 =
Precision×Recall

Precision+Recall
  (2.2) 

Metrics obtained from the confusion matrix were employed for the evaluation of the accuracy of the 

classification algorithms. To construct the confusion matrix, 30% ground truth samples were used. These 
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samples were randomly selected before definition of the classifiers; this means that these samples were 

used to fit the classification algorithms. OA, K coefficient, precision, recall, and F1 score were the metrics 

used for classification accuracy assessment. The OA, which is for general evaluation, is computed through 

the sum of correctly classified pixels divided by the validation set’s total pixels. The precision, recall, and 

F1 score metrics were employed to determine the classification quality for each LC class. The PA 

(precision) indicates that pixels for a class have been omitted, the UA (recall) represents the commission 

of pixels, and F1 score is the weighted harmonic mean of precision and recall, and thus it represents the 

degree of accuracy with which the model classifies each class. Like the OA, the K coefficient is a general 

measure of evaluation, but it is a more representative metric since it also considers wrongly classified 

samples.  

2.2.4.9 Time-effort Investment 

Immense time and effort are invested in obtaining acceptable classification accuracies. However, most 

studies rarely report on the preparation time and the effort required to set up the classification process 

(e.g., the preparation of the “signature/reference” file), with most work focusing on the time effort for 

algorithm classification processing time (Nitze, I. et al., 2012; Laborte et al., 2010). 

A great deal of effort has also been put into to evaluating the performance of LC classification algorithms 

(Huang et al., 2002; Pal and Mather, 2005; Rodríguez Galiano et al., 2012). However, few studies have 

specifically compared algorithms with time-series data (Jia et al., 2014b; Schneider, 2012) and included 

the amount of effort required in obtaining that classification. 

Finally, most researchers focus on the classification accuracy of an algorithm in terms of the confusion 

matrix values (OA, PA, UA, F1 score, and K coefficient), ignoring the time and effort spent in achieving 

these accuracies. Therefore, in order to obtain a more complete picture, for this research, metrics of time 

and effort used in the classification process were also evaluated as part of determining the accuracy of the 

results.  
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2.3 Results and Discussion 

2.3.1 Visual Examination of Classification Results 

The LC classification maps for the Landsat 8 image from September 2018 using the four algorithms are 

presented in Figure 2.4. The results of two machine-learning non-parametric classifiers (SVM, ANN) are 

shown in Figures 2.4a and 2.4d, and Figures 2.4b and 2.4c show the classification results of the two 

traditional parametric classifiers (MLC, MahD). Visual inspection of these classified maps confirms that, 

in general, all classifiers can produce functional LC maps and to a large extent, reliable classification 

results. In terms of these maps, however, it is important to remember they have been affected by 

limitations related to field sampling, including limited resources and personnel, time, expense, extent of 

Figure 2. 4 (a-d): LC classification maps created by (a) SVM, (b) MLC, (c) MahD, and (d) ANN classification 

algorithms 
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the study area, and problems of access related to terrain, weather, and risk of encountering wild animals. 

This means that the ability to extrapolate these accuracy values to the whole forested study area in Ontario 

should be examined carefully. 

2.3.2 Statistical Accuracy Assessment 

Confusion matrices resulting from the application of the four algorithms are presented in Tables 2.3 to 

2.6. In each case, the same seven land cover classes are considered. For the MahD classifier, an eighth 

“No Data” class was also needed. Moreover, the ANN classifier was unable to produce results for the 

Mixed Forest class; instead, it split samples from this class between the Coniferous and Deciduous classes. 

In terms of accuracy reflected by the confusion matrix, to the right of each matrix are three columns of 

additional statistics for each class. “Precision” is the fraction of correct predictions made by the classifier, 

transferred directly from the table. “Recall” represents the sensitivity of the model’s ability to avoid false 

negatives. Finally, the F1 score, which uses a weighted harmonic mean of the Precision and Recall values, 

gives the most complete overall assessment of classifier accuracy. At the bottom of the tables are 

additional aggregate values for OA and the K coefficient. Tables 2.3 to 2.6 below summarize the results 

of the four algorithms. 

 

Table 2. 3: Confusion Matrix (including Precision, Recall, OA, K Coefficient, and F1 Score) of the SVM 

Classifier (V8) 

Classes Water Conifer Deciduous Mixed Forest Grassland Infrastructure Wetland Total Precision Recall F1 Score 

Water 100       100 1.000 1.000 1.000 

Conifer  99.08     4.07 103.2 0.991 0.961 0.975 

Deciduous   97.5     97.5 0.975 1.000 0.987 

Mixed Forest  0.46 2.5 100    103 1.000 0.971 0.985 

Grassland     100   100 1.000 1.000 1.000 

Infrastructure      97.83  97.83 0.978 1.000 0.989 

Wetland  0.46    2.17 95.93 98.56 0.959 0.973 0.966 

Total 100 100 100 100 100 100 100 700 6.903 6.905 6.903 

Average 0.986 0.986 0.986 

OA 98.62% 

K Coefficient 0.984 
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Table 2. 4: Confusion Matrix (including Precision, Recall, OA, K Coefficient, and F1 Score) of the ML Classifier 

Classes Water Conifer Deciduous Mixed Forest Grassland Infrastructure Wetland Total Precision Recall F1 Score 

Water 87.83       87.83 0.878 1.000 0.935 

Conifer  92.17  12.94   17.65 122.8 0.922 0.751 0.828 

Deciduous   87.5 3.53    91.03 0.875 0.961 0.916 

Mixed Forest  5.07 10 80    95.07 0.800 0.841 0.820 

Grassland   1.25  81.43   82.68 0.815 0.985 0.892 

Infrastructure  2.3 1.25 3.53 18.57 100 11.31 137 1.000 0.730 0.844 

Wetland 12.17 0.46     70.14 82.77 0.708 0.847 0.771 

Total 100 100 100 100 100 100 100 700 5.997 6.116 6.006 

Average 0.857 0.874 0.865 

OA 85.69% 

K Coefficient 0.833 

 

Table 2. 5: Confusion Matrix (including Precision, Recall, OA, K Coefficient, and F1 Score) of the MahD 

Classifier 

Classes Water Conifer Deciduous Mixed Forest Grassland Infrastructure Wetland NoData Total Precision Recall F1 Score 

Water 95.1         2.9 1.36   99.3 0.965 0.957 0.961 

Conifer 0.29 80.65   8.24     10.86   100 0.807 0.806 0.806 

Deciduous   0.46 75 17.65 1.43 0.72     95.3 0.759 0.787 0.773 

Mixed Forest   11.52 21.25 68.24 1.43       102 0.773 0.666 0.716 

Grassland   0.46 1.25   87.14 0.72 1.36   90.9 0.871 0.958 0.913 

Infrastructure           83.33     83.3 0.878 1.000 0.935 

Wetland   6.91 2.5 4.71 10 6.52 79.64   110 0.775 0.722 0.748 

No Data 4.64     1.18   5.8 6.79 100 118 1.000 0.845 0.916 

Total 100 100 100 100 100 99.99 100.01 100 800 6.829 6.742 6.767 

Average 0.854 0.843 0.848 

OA 83.63% 

K Coefficient 0.813 

Table 2. 6: Confusion Matrix (including Precision, Recall, OA, K Coefficient, and F1 Score) of the ANN 

Classifier 

Classes Water Conifer Deciduous Mixed Forest Grassland Infrastructure Wetland Total Precision Recall F1 Score 

Water 100           1.81 101.81 1.000 0.982 0.991 

Conifer   70.97   43.53       114.5 0.710 0.620 0.662 

Deciduous     100 52.94       152.94 1.000 0.654 0.791 

Mixed Forest       0       0 0.000 0.000 0.000 

Grassland         68.57     68.57 0.686 1.000 0.814 

Infrastructure         31.43 100 0.45 131.88 1.000 0.758 0.863 

Wetland   29.03   3.53     97.74 130.3 0.977 0.750 0.849 

Total 100 100 100 100 100 100 100 700 5.373 4.764 4.968 

Average 0.768 0.681 0.721 

OA 76.75% 

K Coefficient 0.729 
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Figures 2.5(a) and 2.5(b) present the various aggregate scores graphically, while Figure 2.6(a–d) does the 

same broken down by LC class. 

b)

c) d)

Figure 2. 6 (a-b): (a) OA, K coefficient, and F1 score of the four algorithms compared; (b) OA, K coefficient, 

average precision, average recall, and average F1 score for the four algorithms compared 

Figure 2. 5 (a–d): Precision, recall, and F1 score of individual classes of the algorithms 
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2.3.3 Time-effort Investment 

An important contribution of this study is the examination of the time and effort invested in obtaining the 

best classification possible by each of the algorithms compared, since increasing the number of versions 

of the classification effort would continue to improve the classification accuracy, but it may be practically 

inoperable due to excess of effort and time invested. Table 2.7 shows the time effort invested for training 

the signature files used in producing the different versions of classification results. 

Table 2. 7: Time-effort investment and OA of different versions 

Versions Time Invested (Hrs) Overall Accuracy 

V1 14.00 60.86% 

V2 20.00 72.74% 

V3 25.25 85.65% 

V4 29.00 90.50% 

V5 32.25 95.13% 

V6 35.25 96.06% 

V7 38.75 97.42% 

V8 42.00 98.62% 

 

To increase the classification accuracy, eight versions (V1–V8) of signature files were created to train the 

cloud-free Landsat image from September 2018. Signature file V1 was created using 175 ground truth 

samples with 14 LC class types and a color code/scheme was assigned for each signature. It took 14 hours 

to create the signature file (Table 2.7). The Landsat image of the study area was trained with the V1 

signature file using the best classifier, SVM. The OA was 60.86% (see Table 2.8), with some classes 

poorly classified, even asphalt and dead tree classes were misclassified (false positive). The classification 

results of the 14 classes were combined into 7 classes (“NoData” class removed from the tables). 

Buildings, asphalt, and sandy soil were included in the building class and renamed infrastructure; swamp, 

marsh, bog, and dead tree were combined into swamp and renamed wetland; and coniferous and 

shelterwood were made into one coniferous class. 
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Table 2. 8 Confusion Matrix (including Precision, Recall, OA, K Coefficient, and F1 Score) of version 1 (V1) 

Class Water Coniferous Deciduous Mixed Forest Grassland Infrastructure Wetland Total Precision Recall F1-Score 
Water 99.71             99.7 0.997 1.000 0.999 
Coniferous   52.07   2.35     0.45 54.9 0.521 0.949 0.672 
Deciduous     23.75         23.8 0.238 1.000 0.384 
Mixed Forest       2.35       2.35 0.024 1.000 0.046 
Grassland         48.57     48.6 0.486 1.000 0.654 
Infrastructure       1.18 8.57 100   110 1.000 0.911 0.954 
Wetland 0.29 47.93 76.25 94.12 42.86   99.55 361 0.996 0.276 0.432 
Total 100 100 100 100 100 100 100 700 4.260 6.136 4.140 
Average 0.609 0.877 0.718 
Overall Accuracy 60.86% 

Kappa Coefficient 0.543 

 

To address the misclassified LC class types, the field was revisited before editing the signature files; 

however, the new samples were not included in the total of 250 samples. The V1 signature file was edited 

with 13 classes after deleting the dead tree signature class, which required 6 additional hours of effort 

(without time/hrs for revisiting the field), and it was renamed V2. The classification results of the 13 

classes were recombined into 7 classes. Buildings, asphalt, and sandy soil were combined into the building 

class and renamed infrastructure; swamp, marsh, and bog were classed as swamp and renamed wetland; 

and coniferous and shelterwood were combined into a single coniferous class. The classification result of 

V2 was 72.74% (OA), with an increased precision for all forest classes and some other classes, except 

asphalt, which was misclassified as a building class (false positive). 

The field was also revisited for V3 and V4 (see Table 2.9 below), which were edited with 10 classes by 

merging building and asphalt samples with infrastructure signature and shelterwood samples with 

coniferous signature. There were 18 and 23 coniferous samples in the V3 and V4 signature files, 

respectively. Both 5.25 hrs and 3.75 hrs of additional invested time effort were required for the V3 and 

V4 signature files, respectively (not including time revisiting the field). Infrastructure and sandy soil were 

combined into the infrastructure class; swamp and marsh were included in swamp and renamed wetland. 

The OA of V3 and V4 was 85.65% and 90.50%, respectively, with increased accuracies of the individual 

classes.  
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Table 2. 9: Confusion Matrix (including Precision, Recall, OA, K Coefficient, and F1 Score) of version 4 (V4) 

Class Water Coniferous Deciduous Mixed Forest Grassland Infrastructure Wetland Total Precision Recall F1-Score 
Water 100             100 1.000 1.000 1.000 
Coniferous   98.16   10.59     5.43 114.2 0.982 0.860 0.917 
Deciduous     96.25   2.86     99.11 0.963 0.971 0.967 
Mixed Forest   0.46 3.75 83.53       87.74 0.835 0.952 0.890 
Grassland         61.43     61.43 0.722 1.000 0.838 
Infrastructure   0.92   5.88 35.71 100 0.45 143 1.000 0.588 0.741 
Wetland   0.46         94.12 94.58 0.941 0.995 0.967 
Total 100 100 100 100 100 100 100 700 6.442 6.366 6.320 
Average 0.920 0.909 0.915 
Overall Accuracy 90.50% 
Kappa Coefficient 0.889 

 

The V5, V6, V7, and V8 signature files were edited with 9 signature classes by merging sandy soil samples 

into the infrastructure signature file after again revisiting the field to collect further samples. The 

additional effort in terms of time invested for V5, V6, V7, and V8 was 3.25, 3.0, 3.5, and 3.25 hours, 

respectively, and the cumulative total time effort for V1 to V8 was 14, 20, 25.25, 29, 32.25, 35.25, 38.75, 

and 42 hours, respectively (Table 2.7). The swamp and marsh classes were combined into the swamp class 

and renamed wetland. The OA of V5, V6, V7, and V8 was 95.13%, 96.06%, 97.42%, and 98.62%, 

respectively (see Table 2.7). The increased accuracy from V1 (60.86%) to V8 (98.62%) was 37.76% 

(Tables 2.3, 2.8, and 2.10). V8 had an average precision, recall, and F1 score of 0.986 (Table 2.3). The 

classification results obtained from the Landsat images for 1972–2020 with the best algorithm, SVM, 

used the version 8 signature file (see Table 2.10 below). 
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Table 2. 10: Details of Landsat imagery including OA of SVM with version 8 reference/signature file and 

explained variability by the first principal component (PC1) 

Acquisition Landsat Landsat Overall Explained 

Year Platform Sensors Accuracy-V8 Variability (PC1) 

2020 LC8 OLI_TIRS 90.80% 94.35% 

2019 LC8 OLI_TIRS 89.21% 93.34% 

2018 LC8 OLI_TIRS 98.62% 93.02% 

2017 LE7 ETM+ 88.16% 92.99% 

2016 LC8 OLI_TIRS 92.33% 93.71% 

2015 LC8 OLI_TIRS 67.97% 92.74% 

2014 LC8 OLI_TIRS 91.39% 93.08% 

2013 LC8 OLI_TIRS 91.86% 91.72% 

2012 LE7 ETM+ 94.55% 91.22% 

2011 LT5 TM 90.14% 89.17% 

2010 LE7 ETM+ 89.01% 90.19% 

2009 LT5 TM 93.16% 88.35% 

2007 LE7 ETM+ 90.47% 93.75% 

2006 LE7 ETM+ 92.03% 92.66% 

2005 LT5 TM 94.18% 95.84% 

2004 LE7 ETM+ 91.66% 96.43% 

2003 LE7 ETM+ 86.90% 91.67% 

2002 LT5 TM 88.06% 96.10% 

2001 LT5 TM 95.58% 96.00% 

1998 LT5 TM 90.30% 99.35% 

1996 LT5 TM 84.60% 99.31% 

1995 LT5 TM 93.69% 99.36% 

1994 LT5 TM 93.99% 99.43% 

1993 LT5 TM 93.64% 99.46% 

1992 LT5 TM 91.17% 99.44% 

1991 LT5 TM 89.32% 99.33% 

1990 LT5 TM 92.24% 99.33% 

1987 LT5 TM 93.39% 99.32% 

1986 LT5 TM 94.34% 99.32% 

1985 LT5 TM 87.39% 99.40% 

1984 LT5 TM 92.03% 99.25% 

1981 LM2 MSS 94.26% 99.75% 

1980 LM2 MSS 92.84% 99.75% 

1979 LM2 MSS 82.03% 99.71% 

1978 LM3 MSS 89.42% 99.73% 

1976 LM2 MSS 84.56% 99.64% 

1975 LM1 MSS 86.48% 98.73% 

1973 LM1 MSS 85.75% 99.18% 

1972 LM1 MSS 94.99% 99.72% 

Note: Some years are missing since there is no available and/or usable Landsat image data for those dates. Please 

note that the explained variability (PC1), which was calculated using principal component analysis, was conducted 

for a separate study (PhD dissertation), meaning the details are not included this paper (details in chapter 3). 



56 
 

 
 

The graphical representation of the classification accuracy with invested time-effort and time-effort for 

each version are presented in Figure 2.7(a) and 2.7(b), respectively. The classification results in this 

research show that to obtain the highest acceptable accuracy requires the investment of more  

time, effort, and cost.  

In this regard, the increasing degree of accuracy with signature/reference file improvements meant that 

the time and effort were worthwhile. In other words, the continuous improvements in the 

“signature/reference file,” which were made for training the algorithm, led to increased gains in terms of 

accuracy. However, it was unclear whether these gains were always proportional or led to diminishing 

returns in accuracy given the amount of effort. 

2.4 Discussion  

The results of the statistical analysis in this study showed that SVM is the most accurate algorithm for 

Landsat image classification, with an OA of 98.62%, a K coefficient of 0.984, and an average F1 score of 

0.986. The SVM algorithm outperformed the other three algorithms for all the metrics tested here. Also, 

SVM was the only algorithm capable of classifying both water and grassland with 100% (F1 score=1.0) 

accuracy. It should be noted that the SVM algorithm is able to use fewer training samples to achieve a 

higher level of accuracy compared to other algorithms (Mountrakis et al., 2011).  

Figure 2. 7  (a-b): a) Classification accuracy with invested time-effort, b) Invested time-effort for each version 
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All LC classes were easily separable by all implemented classifiers, and all classes showed a high level 

of accuracy (>0.5 score), except for the ANN classifier, which could not read the mixed forest class (0%). 

Overall, SVM achieved the best classification results when compared with those of the other approaches. 

MLC displayed the next-best performance, followed by MahD, and ANN had the worst performance. 

Each algorithm showed distinct behavior for the various classes. 

For every classification run, the algorithm was trained (and evaluated) with the training and testing 

datasets. Training data are an important element of supervised learning since they may affect the expected 

results negatively or positively based on the training data characteristics and the adaptation of the learning 

algorithm to the data. Imbalanced training samples are often the result of difficulties in obtaining ground 

truth data. For this research, the impact of the imbalanced training dataset on the accuracy of the four 

different supervised classification algorithms was noticeable.  

For LU mapping purposes, one of the advantages of the SVM algorithm is that it produces highly accurate 

classified images from relatively small training datasets (Mountrakis et al., 2011; Salberg and Jenssen, 

2012). The experimental results suggested that MLC, MahD, and ANN classifications were affected by 

imbalanced training data, resulting in a lower level of accuracy, while SVM was not significantly affected 

by the training data. Thus, SVM was proven to be a very robust, efficient, and consistent classifier since 

it has the capacity to perform very well with imbalanced training data. 

Additionally, SVM exhibited high computational speed, compared to the other algorithms, and had 

appropriate values for optimization. This, in combination with the accuracy results, suggested that SVM 

is generally the optimal algorithm, followed by MLC, MahD, and ANN in order of accuracy. However, 

caution should be taken, as performance depends on a broad search of the parameter space. Additionally, 

the selection of the training sample composition has a profound impact on the accuracy obtained, meaning 

it is necessary for users to consider accuracy priorities in their sampling design.  
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One of the important objectives of this paper was to increase the classification accuracy beyond 90%. To 

this end, the field was revisited continuously to collect more ground truth data to review potentially 

misclassified classification factor (LC types) areas until reaching the highest accuracy level. However, 

information about the number of times the field was revisited and the hours spent there, as well as the 

number of re-collected samples (which were not included in the total of 250 samples), were not included 

in the time and effort invested for the signature/reference files. For SVM, the amount of time and effort 

invested led to gains, as the classification accuracy was increased from 60.86% in V1 to 98.62% in V8, 

with a time investment of 14hrs and 42hrs, respectively.  

The findings of this study are important as they show that SVM has significant advantages for LC 

classification with Landsat data for a forested area over other classification algorithms. Its high 

computational speed, the fact that it is not affected by imbalanced training data, and its production of 

highly accurate classified images from relatively small training datasets makes it a good classification 

algorithm choice, when available. Moreover, SVM will be useful in future studies in key areas examining 

the effects of climate change on forest disturbance and degradation. Ontario forests are already being 

affected by natural and anthropogenic disturbances causing forest degradation, which negatively impacts 

local ecosystem health, safety, and economy. Therefore, this study has shown that SVM could play a key 

role in developing a robust methodology using existing RS data and technology for the continuous 

assessment, mapping, and monitoring of present and historic forest disturbance and degradation trends as 

well as their projections under climate change.   

2.5. Conclusions 

In this study, the classification of Landsat 8 imagery was undertaken with two different advanced non-

parametric machine learning algorithms—SVM and ANN—as well as the two parametric traditional 

classification algorithms—MLC and MahD. These algorithms were implemented, evaluated, and 
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compared. The results were assessed in terms of LC classification accuracy, based on the use of Landsat 

image data from the study area for classification. Additionally, for classification assessment, the ground 

truth points approach was employed to determine the OA, K coefficient, and F1 score.  

SVM with an OA of 98.62%, K coefficient of 0.984, and F1 score of 0.986 is more accurate than the other 

algorithms. Additionally, SVM’s accuracy was not affected by imbalanced training data. In terms of 

individual class accuracies, SVM showed the highest accuracy for all classes (>95%). The findings 

revealed that SVM is a very robust, consistent, and effective classifier as it performs very well with an 

imbalanced dataset. While a greater amount of time and effort was spent (hours) in making improvements 

to the reference file to increase the accuracy from 60.86% (14 hrs) to 98.62% (42 hrs) with the SVM 

algorithm, it was unclear whether the gains were truly proportional to the extra time, effort, and expense.  

The results presented in this paper can be employed as the foundation for future research into satellite 

image classification of LC. First, future work would benefit from using more field data, whose collection 

was limited in this study given issues of accessibility. The collection of ground truth/field data proved to 

be expensive, time-consuming, and difficult, given the large study area, as well as the time spent preparing 

the reference/signature files. Subsequent studies should also center on algorithms with high accuracy to 

achieve the optimal parameters to ensure the accurate classification of Landsat satellite images. However, 

classifiers with balanced training field data, as well as fine resolution image data for training, should be 

investigated further when using Landsat imagery. The use of SVM on this dataset can improve the results 

owing to its capacity for the engineering of new features. Finally, further work should also compare the 

accuracy and computational complexities of the advanced machine learning algorithms in terms of the 

time and effort necessary to achieve such accuracies.  
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CHAPTER THREE 

FOREST DEGRADATION INDICATORS AND LONG-TERM TRAJECTORY 

ANALYSIS  

Abstract 

During the last few decades, vegetation indices (VIs) calculated from ratioing different wavebands of 

satellite images have been employed widely for tracking and monitoring different aspects of forest 

condition, including disturbance and degradation. VIs acquired from remote sensing-based canopies are 

relatively simple and effective mathematical combinations of image wavebands converted to algorithms 

for undertaking quantitative and qualitative evaluations of elements such as vegetation/forest cover, vigor, 

and growth dynamics. They have been broadly used with remote sensing applications that employ various 

airborne and satellite platforms that have been bolstered by modern advances in unmanned aerial vehicles. 

In this study, seven VIs were used to derive indicators of forest degradation and attempt to reduce 

dimensionality by combining them into a composite forest degradation indicator (CFDI). Normalized 

difference vegetation index (NDVI), net primary productivity (NPP), normalized burn ratio (NBR), 

enhanced vegetation index (EVI), tasseled cap brightness (TCB), tasseled cap greenness (TCG), and 

tasseled cap wetness (TCW) from remote sensing (Landsat and MODIS platforms as sources) data were 

chosen as the indicators that best described forest degradation. 

Given the prevalence and availability of image data that are multi-sensor, multi-temporal, multi-

resolution, and multifrequency from operational Earth Observation satellites, fusing such digital image 

data has become an important means of the evaluation of forest condition over time from remote sensing 

images. Recently, digital satellite image fusion in remote sensing has been able to increase the quality and 

application of image data. Image fusion involves creating a single image with the relevant information 

from a set of images. The fused image that results should be more informative and comprehensive than 

any input image alone. Principal Component Analysis (PCA) is a multivariate statistical analysis 
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technique used to transform the original image to its eigenspace, reducing dimensionality by means of 

keeping the principal components (PCs) with influencing eigenvalues (explanatory variance). PCA 

maintains the crucial features of the original image and decreases the level of unexplained variance or 

noise. 

This study also examined the usefulness of analyzing forest cover change trajectories based on Landsat 

time series through the application of LandTrendr (Kennedy et al., 2010), a well-known, ad-hoc 

developed, spectral-temporal segmentation algorithm employed for forest disturbance and recovery 

detection. This method provides estimates of discontinuous phenomena (in terms of both disturbance date 

and intensity) and continuous phenomena (such as post-disturbance regeneration) (Kennedy et al., 2010). 

With the LandTrendr algorithm, alterations in the duration, year, and magnitude of forest disturbances 

were computed and detected from the aforementioned seven indicators. As part of the following 

procedure, the inter-annual change results calculated from LandTrendr were combined through a robust 

estimation procedure based on PCA for reconstructing a change map of annual forest cover in the study 

area through time-series of imagery. 

All FDI variables were combined into a single CFDI for each year, using the image fusion technique 

reliant on PCA, with PC1 accepted with high explained variability. From 1972–1981, the CFDI variability 

ranged from 98.73%–99.75%; from 1984–1998, it was from 99.25%–99.46%; and from 2001–2020, it 

ranged from 88.35%–96.43%. The explained variability of the combined CFDIs of 1972–1981, 1984–

1998, and 2001–2020 were 85.01%, 85.69%, and 75.49%, respectively.  

Overall, it was found that the innovative CFDI (1972–2020) was the most informative FDI as the 

combination of three layers of CFDI (1972–1981, 1984–1998, and 2001–2020), and the explained 

variability of the combined CFDI was 95.32%. 
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In short, this study developed a fast and effective approach for monitoring forest disturbance and 

degradation from multiscale and multi-temporal remote sensing data. It demonstrated that multiscale 

remote sensing data have significant potential when it comes to monitoring forest degradation at the 

regional level. The results of this thesis showed that Landsat and MODIS are satellite platforms that can 

be used to derive indicators and a CFDI, which were effective in the identification and mapping of forest 

disturbance and degradation over the long term. 

Keywords: Forest degradation indicators, Landsat time series, principal component analysis, trajectory 

analysis, LandTrendr algorithm. 

3.1 Introduction 

Developing efficient methods for monitoring forest degradation is very important both in revealing the 

process of forest quality reduction, stand structure destruction, and permanent loss of forest and also 

improving our comprehension of global or regional carbon emissions and the connection with climate 

change. Recently, advances in time series remote sensing data processing have shown that yearly 

vegetation indices (VIs) produced by the MODerate Resolution Imaging Spectroradiometer (MODIS) 

might have a major part in the assessment of forest disturbance and degradation at the regional level 

(Bradley et al., 2007; Lunetta et al., 2006). 

Several studies have attempted to identify forest degradation in terms of both carbon reduction and canopy 

fraction cover decrease. For analyzing forest health and degradation level, time series of multispectral 

VIs—including normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI)—

which describe vegetation phenology, have been employed in these studies. Other indicators to describe 

forest productivity, including gross primary production (GPP)/net primary productivity (NPP), have also 

been adopted to examine the degradation level present in regional areas. However, there were variations 

in accuracy when employing different indicators and criteria (Romero-Sanchez and Ponce-Hernandez, 
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2017; Hamunyela, 2015). In addition, the effect of multiscale remote sensing indicators on the 

effectiveness and sensitivity for detection of forest degradation is as yet uncertain. Examining regional 

forest degradation from many indicators based on satellite observations data, as well as analyzing the 

impact of indicators on the accuracy of degraded forest detection, is highly significant in this study. 

When it comes to developing a robust method for forest degradation mapping from satellite or airborne 

remote sensing imagery, challenges remain. In most studies, the effects of climate and its changing trends 

on forest degradation have not been considered in the detection approaches (Hamunyela, 2015; Lambert 

et al., 2013). As a result, it is of great importance to develop an approach that includes climate’s influence 

to improve the precision of forest degradation detection using remote sensing. The goal of this study was 

to establish an indicator system for forest degradation estimation and to analyze the trajectory over a time 

series of the indicators from the Landsat and MODIS imagery, as well as to develop a method based on 

multiple indicators as a mean of forest degradation detection in the Ontario study area. 

3.1.1 Derived forest degradation indicators (FDIs) 

In this study, forest degradation indicators (FDIs) were derived from VIs; in other words, VIs were used 

as FDIs. VIs are derived from vegetation reflectance properties and constructed from reflectance 

measurements in two or more wavelengths across the optical spectrum in order to engage in the analysis 

of certain vegetation characteristics (e.g., water content and total leaf area, etc.). While over 100 VIs 

derived from band ratioing and other combinations are found in the literature, very few have a significant 

biophysical basis or have been systematically examined (Asner, 1998 [ENVITM]). VIs are grouped into 

categories that calculate similar properties, such as broadband and narrowband greenness indices, light 

use efficiency indices, and canopy water content indices (Asner, 1998 [ENVI]). However, each category 

usually supplies multiple techniques for estimation of the absence or presence of one vegetation property. 

When it comes to different conditions in the field and properties, some indices within a category are able 

to furnish results with a higher level of validity than others (Asner, 1998 [ENVI]). Estimating vegetation 
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properties over large areas is efficient with remote sensing, and spectral VIs calculated using ENVITM 

software can be employed for analyzing such properties. 

VIs involve the development of a numerical relationship between satellite data and a specific biophysical 

component as the construct of a remote sensing biophysical parameter (Raynolds et al., 2006a). 

Additionally, VIs are spectral transformations that involve two or more bands that have been designed to 

enhance vegetation property contributions and allow for the creation of reliable spatial and temporal inter-

comparisons of terrestrial photosynthetic activity and variations in tree canopy structure. Given the fact 

that they involve the simple transformation of spectral bands, VIs are computed directly and must not 

have any bias or assumptions related to land cover class, type of soil, or climate conditions. A great deal 

of research has examined the application of Landsat-derived VIs for various types of ecosystems (e.g., 

Cohen and Goward, 2004; Wulder, 2008b). Owing to their efficiency in estimating many aspects related 

to plants, such as above-ground biomass, leaf area index (LAI), and primary production, VIs are 

commonly employed (Chen et al., 2009b; Kushida et al., 2009; Walker et al., 2003). There is proof that 

VIs enhance vegetation detection (Tucker and Sellers, 1986). Ratio-based VIs are also able to minimize 

topographic-induced variance (Avery and Berlin, 1992). Generally, VI differencing has outperformed 

other multi-date methods (e.g., ratioing and image differencing) (Lyon et al., 1998).  

Concerning ecological studies, the NDVI is a very widely employed VI. The majority of studies on 

vegetation change on national to global scales that use satellite remote sensing imagery have only 

employed the NDVI to serve as a proxy for gross photosynthesis (Chapin, 2005; Vierling et al., 1997). 

An NDVI value is generally represented as a ratio of surface reflectance from the red and near infrared 

(NIR) radiometric bands, in which low values denote no vegetation (e.g., water, soil, sand) and high values 

are vegetation indicators (Campbell, 1996; Lillesand et al., 2008). Gizachew et al. (2016) revealed that in 

the assessment and monitoring of global carbon balance, forest biomass estimation in complex stand 
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structures and closed canopy forests could be monitored with accuracy using Landsat-derived NDVI. 

Employing NDVI as a greenness indicator actually helped to overcome low reflectance values in the NIR 

that otherwise would have led to saturation problems in the data, thereby rendering it unusable for 

assessments, and it has been used in Canada for monitoring and assessing boreal forests with evergreen 

conifers and relatively close canopy forest (Gerylo et al., 2002; Hall et al., 2006). 

Time series of multispectral VIs have the potential to describe vegetation phenology changes and help in 

the monitoring of terrestrial photosynthetic vegetation activity for research related to change detection 

and biophysical interpretations (Ramon et al., 2010); therefore, NDVI is beneficial since it is able to 

minimize the band-correlated noise and the influences caused by variations in a variety of elements, 

including cloud cover and topography. Additionally, EVI has the potential to detect vegetation that is 

sparsely distributed and decouple the noise caused by aerosol scattering and soil background. It does this 

through the inclusion of a blue reflectance and feedback term that does the job of simultaneous correction. 

When the goal is the detection of low-magnitude disturbances using Landsat time series, the signal 

associated with spectral change from the disturbance might be masked by noise connected with normal 

temporal variation resulting from atmospheric and geometric corrections, variations in the angle of the 

sun, vegetation phenology, and sensor degradation. Since most recent algorithms use a limited number of 

spectral bands or indices to detect disturbances, such as the “forestness index” (Huang et al., 2010), NBR 

(Kennedy et al., 2012), and tasseled cap angle (TCA) (Brook et al., 2014), it is crucial to take into account 

the comparative signal-to-noise strengths among these spectral indices. 

While NDVI does have a number of drawbacks, it remains useful for coupling climate and vegetation at 

large spatial scales (Pettorelli et al., 2005), making it popular in many studies related to land surface 

dynamics. NDVI has been shown to correlate directly with vegetation productivity (Reed et al., 1994) and 

been linked with fraction of absorbed photosynthetically active radiation (fAPAR) (Sellers et al., 1992; 
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Rautiainen et al., 2010). In many ecosystems, NDVI can be employed to determine the direct impacts of 

climate conditions on vegetation biomass and overall biomass (Nemani et al., 2003; Roerink et al., 2003; 

Zhou et al., 2003). This would allow for the assessment of the feedback effect vegetation has on the local 

climate (Jingyong et al., 2003). Additionally, NDVI has been employed to better predict and assess the 

impact of disturbances (e.g., drought, fire, flood, frost). However, time series of other variables that are 

relevant (e.g., LAI, fAFAR) and other vegetation indices (e.g., EVI, PPI) could also be beneficial in 

improving our comprehension of vegetation dynamics. 

As an optimized index, the EVI (Huete et al., 2002) was developed for increased sensitivity in high 

biomass regions and vegetation enhancement by decoupling the canopy background signal and reducing 

aerosol and atmospheric influence. Compared to NDVI, it minimizes many of the contamination issues 

and does not become easily saturated. As a result, it is a strong alternative for forested areas of the planet 

with large amounts of green vegetation. It is also possible to efficiently estimate plant canopy growth with 

the physically based plant phenology index (PPI; Jin and Eklundh, 2014), thereby facilitating better 

vegetation monitoring. 

NPP, which is the difference between photosynthesis or GPP and autotrophic respiration over a certain 

time period (Clark et al., 2001), is a key variable in the biological and chemical carbon cycle and an 

important ecological indicator of the sustainable development of Earth’s ecosystems. As a result, 

examining NPP variability over time is crucial in assessing global carbon balance and climate change 

(Potter et al., 2003; Tao and Zhang, 2010). The integration of light use efficiency and process model 

algorithms has been considered to be a potentially effective means of estimating regional and global NPP 

using remote sensing data and biophysical/ecological processes (Liu et al., 2001). Despite many 

achievements in this area in the past few decades, most researchers have focused on the global or national 

scale. However, this does not take into account that NPP is highly variable over space and time due to 
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differences or inconsistencies in both anthropogenic and natural factors (Matsushita et al., 2004; Peng et 

al., 2008). 

NPP determines the vegetation atmospheric carbon sequestration and storage rate (Huang et al., 2010; Lu 

et al., 2009) and has been used to indicate ecosystems decline (Running et al., 2004; Seaquist et al., 2003). 

Therefore, NPP can be employed both as a baseline and an indicator of forest degradation (Romero-

Sanchez and Ponce-Hernandez, 2015), if we assume that canopy cover losses will affect the capacity of 

the forest to fix carbon, reducing NPP rates. 

Tasseled cap transform (TCT) has been employed extensively for the mapping of vegetation and 

monitoring of changes in land cover and use (Cohen et al., 1995; Collins and Woodcock, 1996; Franklin 

et al., 2002). The TCT has also been employed as a means of differentiating forest cover densities, 

assessing the proportion of vegetation to non-vegetation in an area (Gomez et al., 2011; Ahmed et al., 

2014), and determining land cover classification (Hermosilla et al., 2022). It both furnishes a means for 

reducing data volume with very little loss of information and its spectral features are also able to be 

directly connected with physical land surface parameters (Crist and Cicone, 1984; Crist and Kauth, 1986; 

Crist et al., 1986). TCT involves converting satellite bands into a set of weighted sums of separate channel 

readings. One weighted sum measures the ‘brightness’ of each scene pixel, another represents the degree 

of pixel ‘greenness,’ and another the degree of vegetation ‘yellowness’ or soil ‘wetness’ (Kauth and 

Thomas, 1976). The transformation produces a series of orthogonal components–tasseled cap brightness 

(TCB), tasseled cap greenness (TCG), and TCW. Other components include tasseled cap distance (TCD) 

and tasseled cap angle (TCA).  

The first component, brightness, is a weighted sum of all the bands and is defined in the direction of 

principal variation in the reflectance of soil, meaning it measures the brightness or total reflectance of soil. 

The second component, which is greenness, involves the contrast between the NIR and visible bands. The 



74 
 

 
 

large amount of scattering that comes from infrared radiation as a result of the cellular structure of green 

vegetation and also the absorption of visible radiation by plant pigments (e.g., chlorophyll) act together 

to create high greenness values for target areas that boast high densities of green vegetation; conversely, 

the flatter reflectance curves that come from soils are expressed in low greenness values. Indices that 

utilize the contrast between short-wave and near-infrared reflectance, such as TCW, have been some of 

the more effective means of describing forest vegetation structural differences (Cohen and Goward, 2004). 

However, since MSS sensors do not have short-wave infrared bands, TCW cannot be computed for pre-

1982 Landsat data. 

3.1.2 Image fusion 

With image fusion, it is possible to combine multisource imagery by means of advanced image processing 

techniques. Its goal is the integration of data that are both disparate and complementary to enhance the 

information apparent in the images and interpretation reliability, leading to data that are more accurate 

(Keys et al., 1990) and useful (Rogers and Wood, 1990). In addition, data that are fused provide for robust 

operational performance, including reduced ambiguity, as well as improved reliability, confidence, and 

classification (Rogers and Wood, 1990). 

Image fusion that is employed for change detection makes use of the various configurations of the sensor-

carrying platforms. Through the combination of the temporal images, we can improve our knowledge of 

changes that might have taken place in the location under investigation. Temporal image fusion can be 

applied to images from the same sensor and multiple sensors. Since it is generally not possible to obtain 

multisensory data simultaneously, data fusion from different sensors usually includes a temporal factor. 

Mouat et al. (1993) provide a synopsis of image enhancement techniques for change detection with 

multisensory data (e.g., PCA, image differencing, and ratioing). 

Given the fast pace of modern technological advancements, information can now be obtained from 

multisource images in order to create a high-quality fused image containing both spatial and spectral 
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information (Susmitha and Pancham, 2009; Huang, 2010). The process of image fusion involves 

combining multiple images into one image with the greatest amount of information and that does not 

involve the production of details not present in the original images (Susmitha and Pancham, 2009; Zhang 

and Blum, 1995). It also results in an image that is more informative and more suitable for visual 

perception or computer processing (Goshtasby and Nikolov, 2007).  

As part of a novel area of research related to statistical/numerical methods, spatiotemporal data fusion has 

emerged. This method employs statistical or mathematical frameworks in order to create high spatial and 

high temporal resolution satellite images through the combination of images from different satellite 

systems with similar spectral and orbital characteristics but different temporal and spatial resolutions.  

3.1.2.1 Image fusion techniques (PCA, Wavelet transforms) 

A variety of methods exist to perform image fusion. This study examines the following approaches: 

principal component analysis (PCA) and wavelet transforms—discrete wavelet transforms (DWT) and 

continuous wavelet transforms (CWT). 

PCA 

PCA is a statistical analysis method employed in dimension reduction. By means of projecting data from 

its original space to its eigenspace, it increases the variance and reduces the covariance by keeping the 

components that correspond to the largest eigenvalues and getting rid of other components. It is easy to 

implement the linear transformation PCA in applications involving the analysis of a huge amount of data. 

PCA is commonly employed in both data compression and pattern matching by expressing the data in a 

manner that highlights the similarities and differences with very little information loss. 

The mathematical procedure of PCA involves the transformation of a number of correlated variables into 

a number of uncorrelated variables, which are termed principal components (PCs). It is used to compute 

a description of the dataset that is both concise and optimal. The first PC (PC1) accounts for as much of 
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the data variance as possible (eigenvalue), and every subsequent component accounts for as much of the 

remaining data variance as possible. In terms of the components, PC1 takes the direction that explains the 

maximum variance. The next PC (PC2) points to the direction that explains the maximum variance after 

PC1. The third PC (PC3) is taken in the direction that explains the maximum variance in the subspace 

perpendicular to the first two principal components, etc. 

For image encoding, data compression, enhancement, and fusion; digital change detection; and multi-

temporal dimensionality, PCA is very useful. With this statistical technique, it is possible to transform a 

multivariate dataset composed of intercorrelated variables into a dataset of new and un-correlated linear 

combinations of the original variables. It also produces a new set of orthogonal axes, which could be used 

to visualize the distribution of data. By using the standardized PCA, the signal-to-noise ratio can be greatly 

improved (Singh and Harrison, 1985; Shettigara, 1992). 

Wavelet transforms 

The wavelet transform, which is quite a relatively new signal analysis tool, furnishes a systematic means 

for analyzing signals at a variety of resolutions and scales. By employing CWT, it is possible to analyze 

signals (e.g., multidimensional signals such as image cubes) across a continuum of scales. Signals are 

analyzed over a discrete set of scales by using DWT. This method enables image decomposition in various 

types of coefficients preserving the information from the image. These coefficients that are derived from 

different images can be stitched together to get new coefficients, resulting in the appropriate collection of 

the information in the original images. After the merging of the coefficients, the resulting fused image is 

created via inverse discrete wavelets transform, where the information found in the merged coefficients 

is also preserved. In general, it is possible to accomplish the transform with various fast algorithms and 

customized hardware, including multiresolution dyadic filter tree implementation. 
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Various areas of remotely sensed signal processing have benefitted from the application of CWT and 

DWT. Wavelets have mainly been used for data compression in remote sensing at present (Werness et al., 

1994; Luigi-Dragotti et al., 2000). In remote sensing, wavelets can also be applied to and have shown 

themselves to be robust in areas that include image texture analysis (Fukuda and Hirosawa, 1999), image 

denoising (Zheng et al., 1999), image edge detection (Simhadri et al., 1998), and data fusion (Nunez et 

al., 1999).  

For multiscale spatial pattern analysis, wavelets are very robust methods of decomposing data into specific 

components and associating parts of total signal variance with those scales (Csillag and Kabos, 2002). 

They have been revealed to be more precise in the identification of periodicity than other existing scale-

specific techniques (Saunders et al., 2002). As a result, wavelet analysis has been used for analyzing 

temporal and spatial ecological data (Cazelles et al., 2008), such as examining gap structures in forest 

canopies (Bradshaw and Spies, 1992), regions of net primary productivity in grasslands (Csillag and 

Kabos, 2002), and relationships between understory vegetation and the canopy in boreal forests (Kembel 

and Dale, 2006). 

After reviewing and comparing PCA and wavelet transform, PCA was selected as the best method for the 

humid/semi-arid study area in central and northeastern Ontario, Canada. The PCA technique was applied 

for the combination of all individual FDIs (1972–2020) into the most informative composite forest 

degradation indicator (CFDI) and all long-term trajectory maps of 1972–1981, 1984–1998, and 2001–

2020 into the most informative disturbance and degradation map of 1972–2020. 

3.1.3 Trajectory analysis 

3.1.3.1 Trajectory analysis and change detection analysis 

Remotely sensed data have been the most important data source for environmental change study over the 

past few decades and large collections of remote sensing imagery have made it possible to analyze spatio-
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temporal patterns of environmental elements and the impact of human activities. The significant amount 

of optical satellite imagery that is available for free to researchers (e.g., Landsat) (Woodcock et al., 2008) 

offers opportunities to comprehend and reconstruct the dynamics, especially changes, in forests (Wulder 

et al., 2008).  

Despite the development of many change detection methods (DeVries et al., 2015; Kennedy et al., 2010; 

Pflugmacher et al., 2012), the challenge of how to reliably map land use change remains. While changes 

in land use can lead to both conversions and disturbances in land cover, remote sensing generally focuses 

on the mapping of conversions but not disturbances. However, it is possible that modifications may be 

more prevalent and meaningful when it comes to forest degradation than conversions. Degradation in the 

forest context is very likely to be a result of a land-cover modification with its particular duration and 

degree of intensity. 

Temporal trajectory analysis involves analyzing the sequence of changes in detection in every pixel of the 

image portion of the stack pile of imagery over a time series that is continuous. It has been proven to be 

especially useful in characterizing the dynamics of land ecosystems owing to the fact that it is efficient in 

exploiting a multi-temporal sequence of images to determine temporal patterns occurring over several 

temporal series (Hilker et al., 2009; Pflugmacher et al., 2012). Trajectory-based change detection is 

automated, requires no screening of non-forested area, and does not need any metric-specific threshold 

development. Moreover, the method simultaneously provides estimates of discontinuous phenomena 

(disturbance date and intensity) as well as continuous phenomena (post-disturbance regeneration). 

One of the important applications of remote sensing using satellite images is the change detection of 

objects. Remote sensing change detection identifies differences in intensity, frequency, spatial and 

temporal extent, as well as stability, rates, and speed between two or more images (Singh, 1989). It can 

monitor long-term surface condition changes (Wulder et al., 2008) and record their driving forces. 
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Techniques used in previous change detection studies (Coppin et al., 2004; Lu et al., 2004) did not take 

full advantage of the interrelationships among many multi-temporal images, and they could be incapable 

of distinguishing background noise from the subtle or long-term changes expected with climate change 

(Hicke et al., 2006). To improve signal-to-noise ratio in change detection, methods that consider the signal 

from multiple images have been reported by Huang et al. (2010) and Wulder et al. (2012).  

Using high-resolution optical remote sensing, various change detection techniques have been developed 

for forest monitoring (in particular clear-cut, regrowth, damage, and disease) (IPCC, 2003; Mikwa et al., 

2016). Vegetation dynamics and forest cover changes found with the “greatest change metric,” similar 

disturbance-, or recovery-based metrics try to identify vegetation dynamics that have happened prior to 

the date of image classification (e.g., Roy et al., 2014). Since land cover composition is linked to its 

disturbance history, the inclusion of disturbance-related variables should improve land cover classification 

accuracy as opposed to using single-date spectral variables.  

Change detection approaches can be characterized into two broad groups, namely, bi-temporal change 

detection and temporal trajectory analysis (Coppin et al., 2004). The former measures land cover changes 

based on a ‘two-epoch’ timescale (i.e., the comparison between two dates). Even if land cover information 

is sometimes acquired for more than two epochs, the changes are still measured on the basis of pairs of 

dates. In contrast to bi-temporal change detection, temporal trajectory analysis is mostly based on low 

spatial resolution images (e.g., MODIS), which have a high temporal resolution. The trade-off of using 

these images, however, is the loss of spatial details that makes auto-classification very difficult with low 

accuracy, so that temporal trajectory analysis is commonly restricted to, for example, vegetation dynamics 

in large areas or change trajectories of individual land cover classes. Quantitative parameters, such as 

normalized difference vegetation index (NDVI) or area of given land cover class, are often used as the 

dependent variables for the establishment of change trajectories. 
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3.1.3.2 Vegetation time series analysis 

Gradual changes are generally representative of the trends that occur in long time series of vegetation 

data; however, more abrupt changes are also possible. Changes that happen gradually are usually the result 

of long-term changes in other factors, including land degradation and management, as well as variability 

in the climate and water availability in different years (Goetz et al., 2005; Kawabata et al., 2001). On the 

other hand, abrupt changes generally occur because of disturbances, such as fire, flood/drought, 

urbanization, and insect infestation. In addition, they can be the result of an ecological- or climate-tipping 

point, wherein a slight disturbance triggers a significant response that leads to a large (and generally 

irreversible) change, for example an alteration in the regime of the ecosystem (Lenton, 2013; Scheffer et 

al., 2001). 

As a cyclical component, seasonality systematically repeats itself at certain set time intervals (Hill and 

Lewicki, 2006). Owing to the fact that vegetation seasonality is primarily driven by its phenology, changes 

that occur in vegetation seasonality can be a reflection of changes in the drivers of plant phenology (e.g., 

both precipitation and temperature and the interactions among them). Vegetation trends over the long term 

are greatly affected by external disturbances, but plant phenology can also be impacted and result in 

changes to seasonality. There are also other seasonality variations (e.g., albedo alterations resulting from 

variations in snow and moisture) that have an effect on the surface of the land, which can, as a 

consequence, influence plant seasonality. 

In short, various types of changes (e.g., gradual, abrupt, and seasonal) may be represented in the time 

series of a remotely sensed VI. While the physical causes of the changes may vary, they share underlying 

statistical properties, such as linearity or nonlinearity, allowing for their detection and quantification with 

time series analysis techniques. 
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3.1.4 Techniques and algorithms for trajectory analysis  

Changes that occur over the long term, such as in vegetation greenness (Liu et al., 2016), and other 

indicators of vegetation health, are examined through the use of annual time series. Given the five decades 

of records, as well as consistency, robust calibration, and free access since the year 2008, Landsat time 

series are crucial resources for Earth observation data for environmental research (Woodcock et al., 2008; 

Wulder et al., 2012). Earth observation time series algorithms are employed for the monitoring of changes 

that occur quickly, including deforestation (Kennedy et al., 2010; Margono et al., 2012) and wildfires 

(Goetz and Fiske, 2006; Franks et al., 2013). However, Earth observation data are, unfortunately, both 

structured and unstructured and noisy, and their direct use is generally hard (Eklundh and Jönsson, 2016). 

When it is considered that Earth observation data are scaling up in quantity to petabytes, it is beyond the 

ability of common software tools to capture, manage, and process them within a reasonable timeframe 

(Taylor-Sakyi, 2012; Chen et al., 2012; Camara et al., 2016). Fortunately, a number of time series 

algorithms for processing Earth observation data are widely utilized for analyzing the forest cover change 

process, including the following: 

(i) Breaks for additive season and trend (BFAST) (Verbesselt et al., 2010) is used for the analysis of 

seasonal trends. 

(ii) Vegetation change tracker (VCT), which was primarily developed for historical forest change 

processes that have as their basis spectral-temporal properties (Huang et al., 2010). 

(iii) TimeSat, which is employed for the monitoring of seasonal trends of land surface processes 

considering the seasonal parameters (Eklundh and Jönsson, 2016); and  

(iv) Landsat-based detection of trends in disturbance and recovery (LandTrendr) which involves the 

spectral-temporal segmentation of Landsat time series and complex statistical analysis allowing for the 

extraction of spatial patterns of land cover change magnitude, duration, and year (Kennedy et al., 2018). 
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Even when they employ the same input data, all time-series change detection algorithms do not produce 

similar results (Cohen et al., 2017). The implementation of certain algorithms is difficult, and they are 

more demanding when it comes to their computation requirements. As a result, care must be taken when 

selecting the optimal algorithm, and researchers should take into consideration the study objective, 

application domain, and supporting computational platform.  

In this study, the BFAST and LandTrendr algorithms, which were reviewed for long-term trajectory 

analysis of the study area, are briefly described below. 

3.1.4.1 BFAST algorithm 

BFAST is able to provide the interactive decomposition of time series into several components (trend, 

seasonal, and noise) with methods that enable the detection and characterization of changes found within 

the time series (Verbesselt et al., 2010). The BFAST approach is useful for analyzing different types of 

time series that are formed via imagery from different satellite platforms (such as Landsat and MODIS). 

It can also be employed in other disciplines examining seasonal and non-seasonal time series, such as 

climatology, phenology, and hydrology. It is possible to extend the BFAST algorithm to label detected 

changes with information on the parameters of the fitted piecewise linear models to the trends within 

changes. The BFAST monitor is an extension of the algorithms inside BFAST, furnishing functionality 

for the monitoring of disturbances in time series models (with trend/season/regressor terms) (Verbesselt 

et al., 2012). A variety of models exist for modelling historical behavior that is stable. As a default in 

regression modelling, a season trend model (with harmonic seasonal pattern) is utilized. 

Both the BFAST and BFAST monitor approaches classify individual pixel changes by fitting a harmonic 

model, testing observations from the monitoring period, and calculating the medium of the residuals for 

all expected and actual observations in that period (DeVries et al., 2015). 
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3.1.4.2 LandTrendr algorithm 

LandTrendr is a package of routines that help extract information from time series imagery (e.g., Landsat 

TM, ETM+). Its process employs straight line segments to simplify the temporal trajectory of each 

Landsat pixel’s time series (Kennedy et al., 2010). In the process of label mapping, user-defined rules are 

imposed for the conversion of the segmentation output into maps highlighting certain processes of 

vegetation growth or loss. The maps that are produced display the timing and condition at the start of a 

growth or loss process; this includes the nature of change during the process and the period over which 

the change took place (Cohen et al., 2010). Kennedy et al. (2010) detailed a segmentation approach that 

has been shown to be effective in identifying disturbances within forested areas with long time series 

originating from the Landsat archive (Ahmed et al., 2014a; Frazier et al., 2014; Pflugmacher et al., 2012, 

2013). Unfortunately, this procedure requires more processing to be useful, in particular when it comes to 

ecological applications (Kennedy et al., 2014). 

When the goal is the detection of low-magnitude disturbances using Landsat time series, the signal 

associated with spectral change from the disturbance might be masked by noise connected with normal 

temporal variation resulting from atmospheric and geometric corrections, variations in the angle of the 

sun, vegetation phenology, and sensor degradation. Initially, the LandTrendr algorithm was tested by 

Kennedy et al. (2010) for the detection of forest disturbance and recovery in the US, Pacific Northwest, 

Oregon, and Washington. The model was able to outperform the bi-temporal change detection that had 

previously been conducted (Cohen et al., 1998) to track forest disturbances and detect other trends 

associated with forest regrowth and phenology in the same study area. Kennedy et al. (2010) discovered 

that different spectral indices varied in their ability to accurately detect subtle disturbance signals. In this 

case, the NDVI’s performance was less effective than that of the NBR or TCW. Many subsequent studies 

have shown the effectiveness of LandTrendr algorithms for investigating forest disturbance and recovery 

patterns (e.g., Cohen et al., 2018; Fragal et al., 2016). In addition, trends related to land cover change 
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resulting from mining based on LandTrendr-Google Earth Engine (GEE) were successfully tracked in 

South Africa (Dlamini and Xulu, 2019) and Australia (Yang et al., 2018). 

With a single pixel from a generated Landsat VI, this algorithm iterates it to identify breakpoints 

separating periods of durable changes or stability in spectral trajectory, as well as recording the year of 

the change. Defined by the year and spectral index value, these break points allow for a representation of 

the spectral history of a particular pixel as a series of vertices that bound line segments. Such segments 

make it possible for the tracking of a trajectory between years. The algorithm was developed to remain 

consistent in predictive mapping over time. An annual forest classification in LandTrendr, for instance, 

will not generally produce inconsistent model outputs (e.g., young, mature, and old-growth conifer 

classifications) in the same spatial and temporal settings due to small differences in spectral reflectance 

coming from elements such as the atmosphere, shadows, or cloud cover. 

Following the Landsat image archive opening in 2008 (Wulder et al., 2012), time series analysis of 

Landsat imagery has progressed at a rapid pace leading to the creation of new algorithms and capabilities 

that facilitate the process of change detection (Zhu, 2017). The LandTrendr algorithm was at the front line 

of such innovations (Kennedy et al., 2010), employing temporal segmentation of spectral trajectories to 

distill and extract meaningful change information from the copious amounts of data provided by the 

Landsat archive (Kennedy et al., 2007). However, this algorithm still has some challenges. First, since the 

code was written in a proprietary processing language (interactive data language [IDL]), its cost and 

learning curve have impeded access. Next, its workflow for building time-series image stacks required 

considerable human investment in image pre-processing and data management before running the 

algorithm. Finally, the computing time for running the algorithm is excessive, often, several days were 

required for a single Landsat scene on a typical computer. Taken together, these issues certainly limited 

the algorithm to users with significant computational resources and expertise in remote sensing. However, 
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innovations in Earth observation big data analytics and cloud computing systems have altered our ability 

to handle such big data (Zhu, 2017). Recently, the implementation of the LandTrendr algorithm in the 

GEE platform fostered opportunities for the online collection of all variable Landsat data and their 

processing within a cloud-based environment that boast an application programming interface that is user 

friendly (API) (Kennedy et al., 2018). 

As a multi-temporal segmentation tool, LandTrendr can be employed for the generation of trajectory-

based spectral time series results generally absent of inter-annual signal noise. Originally, it was 

implemented in IDL, the proprietary coding language of ENVITM. Google engineers relayed the IDL code 

to the open-source GEE coding platform through JavaScript (Kennedy et al., 2018). Implementing 

LandTrendr through GEE almost eliminates the burdensome data management, time, and image pre-

processing aspects associated with the IDL implementation (Kennedy et al., 2018).  

For this study, the BFAST and LandTrendr algorithms were reviewed, applied and compared. LandTrendr 

was selected as the best method for the study area in central and northeastern Ontario, Canada.  

The objectives of this chapter are: (i) to identify a suitable set of FDIs derived from multispectral satellite 

imagery that can be used in the region and then compared with those defined by international standards, 

(ii) develop an innovative CFDI to examine the relationship with climate variables and future (2050) 

projection of forest degradation under climate change, and (iii) long-term trajectory analysis using the 

FDIs, including CFDI, and generating the disturbance and degradation maps for 1972–2020. 
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3.2 Materials and methods  

The methodological workflow describing the steps taken for the computation of the CFDI from individual 

forest degradation indices, and the subsequent change detection of CFDI through trajectory analysis is 

shown in figure 3.1 below. 

3.2.1 Spectral indices 

In total, seven spectral indices—NDVI (Tucker, 1979), NBR (Key and Benson, 2005), EVI (Huete et al., 

1997), TCT (TCB, TCG, TCW) (Crist and Cicone, 1984), and NPP (MODIS, 2001–2020)—were 

calculated from multiple band combinations for unmasked pixels. These were employed as a means of 

testing the time series trajectory response performance with regards to forest disturbance/degradation. The 

radiometric transformation takes advantage of the ability to combine information from multiple spectral 

bands into a single spectral index. The spectral indices are able to form time-series trajectories for the 

Figure 3. 1: Methodological workflow of CFDI, trajectory analysis, and forest 

disturbance/degradation trend map 
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interpretation of slow or rapid changes. Details and equations for each index are presented in the following 

sections. 

Normalized difference vegetation index (NDVI) 

NDVI was developed by Rouse et al. (1974) for the production of a spectral VI that is able to separate 

green vegetation from background soil brightness with digital data from Landsat MSS. It is expressed as 

the difference between the NIR and red bands that have been normalized by the sum of those bands. 

Generally, it is employed as a VI since it maintains the ability to minimize topographic effects while also 

having the ability to produce a linear measurement scale. NDVI may represent fuel conditions, including 

both the level of litter and vegetation greenness (Thoha, 1998).  The NDVI is particularly successful with 

extant vegetation spectral indexes because it enables the comparison of inter-annual and seasonal changes 

that occur in vegetation. 

NDVI = 
NIR − R

NIR + R
   (3.1) 

Normalize Burn Ratio (NBR) 

The NBR is used to highlight burned areas in large fire zones (García and Caselles, 1991) and for fire 

severity assessments. The NBR formula combines both NIR and shortwave-infrared (SWIR) wavelengths, 

with a high NBR value usually denoting healthy vegetation and a low value indicating bare ground and 

areas that have recently been burned. 

The equation for NBR is similar to that for NDVI, except it uses NIR and SWIR wavelengths. The burn 

severity map, which highlights burned areas and burn severity, was created with NBR using the following 

equation:  

NBR = 
NIR − SWIR

NIR +SWI R
  (3.2) 
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Enhanced vegetation index (EVI)  

EVI, which is an optimized vegetation index, enhances the vegetation signal with greater sensitivity in 

regions with significant biomass and better monitoring of vegetation by means of a de-coupling of the 

canopy background signal and a decrease in atmospheric influences. It is linearly correlated with the green 

Leaf Area Index (LAI) and shows sensitivity to variations in the canopy (Boegh et al., 2002). While it is 

quite similar to NDVI, it has less sensitivity to atmospheric and background noise. Additionally, its 

saturation is less than that of NDVI when locations with very dense green vegetation are viewed, 

especially in LAI regions. 

The relevant equation is as follows: 

EVI = G 
NIR − Red

NIR + C1 X Red –C2 X Blue+L 
   (3.3) 

 

Where L is the canopy background adjustment addressing nonlinear, differential NIR, and red radiant 

transfer occurring through a canopy; and C1 and C2 are the coefficients of the aerosol influences term, 

which employs the blue band to correct for atmospheric aerosol scattering in the red band. The coefficients 

that have been adopted in the EVI algorithm are as follows: L=1, C1=6, C2=7.5, and G (gain factor) = 2.5 

(Huete et al., 1997). The equation is as follows: 

EVI = 2.5 * 
NIR − Red

NIR + 6∗Red – 7.5∗ Blue+1 
  (3.4) 

Net primary productivity (NPP) 

Generally, the estimation of NPP is based on light use efficiency (LUE) theory, which has two 

assumptions as its foundation: (i) NPP is related to the absorbed photosynthetically active radiation 

(APAR), with LUE determining the amount of dry matter produced per unit of APAR; and (ii) 

environmental stress (e.g., low temperature, water shortage) negatively impact LUE (Monteith, 1972; 

Verstraeten et al., 2006). 
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NPP can be employed as a direct indicator of the condition and trend of changes in forest ecosystems over 

time, with a decrease in NPP signaling degradation. NPP is also directly related to the ability of a forest 

to sequester atmospheric carbon. 

NPP can be computed from its component photosynthetically active radiation as follows (Huang et al., 

2010; Yuan et al., 2007): 

NPP = ε . fPAR. PAR     (3.5) 

 

Where, PAR is photosynthetically active radiation (MJm-2month-1); fPAR represents the fraction of PAR 

absorbed by the vegetation canopy; ε is the light use efficiency coefficient (g of C/MJ-1)) and includes 

plant respiration costs (Running et al., 2000).  

MODIS gap-filled yearly NPP products (MOD17A3HGF-V061) with a spatial pixel resolution of 500m 

were acquired from the NASA archive (modis.gsfc.nasa.gov). NPP products were obtained based on the 

difference of the gross primary production (GPP) and the maintenance respiration (MR). The GPP 

algorithm applies the concept of light use efficiency from both MODIS LAI/FPAR product and also 

NASA GMAO meteorological data (Running and Zhao, 2015). NPP from 2001–2020 were acquired, 

500m data was resampled into 30m, and it was applied in this study to create the CFDI and employ the 

LandTrendr algorithm to determine the long-term forest disturbance and degradation trends/trajectories 

as represented by CFDI. 

Tasseled cap transformation (TCT) 

Tasseled cap indices provide a measure of the brightness, greenness, and wetness (yellowness for MSS 

data) of a pixel and employ a linear combination of 6 Landsat bands: Landsat TM/ETM+ (bands 1–5 and 

7), Landsat 8 (bands 2–7), and MSS bands 1–4 (or 5–8) including two pseudo bands. Each of the TCT 

indices can be calculated using Tables 3.1, 3.2, and 3.3 and applied to the following equation: 
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TCTi = Coeff i1 * b1 + Coeff i2 * b2 + ……………. + Coeff in * bn  (3.6) 

 

Where TCTi is the calculated TCB, TCG, and TCW/TCY depending on the coefficients that are employed;  

i1, i2, …., in are the coefficients of bands b1, b2, …, bn for Landsat MSS, TM, and ETM+ sensors and bands 

b2, b3, …., bn (band 2–7) for the Landsat 8 (OLI) sensor. 

The reflectance of the surface reflectance data for the tasseled cap coefficients was calculated from a 

Landsat image on “top of atmosphere (TOA)” calibrated bands, and the coefficients for the TCT for 

Landsat MSS, Landsat TM, and ETM+ including Landsat 8 (OLI) are shown in Tables 3.1, 3.2, and 3.3 

respectively. 

Table 3. 1: Weight/coefficients of the TCT of Landsat MSS data (according to Kauth and Thomas, 1976) 

Component Band 1 Band 2 Band 3 Band 4 

Brightness 0.433 0.632 0.586 0.264 

Greenness –0.290 –0.562 0.600 0.491 

Yellowness –0.829 0.522 –0.039 0.194 

 

 

Table 3. 2: Weight/coefficients of the TCT of Landsat TM and ETM+ (according to Crist and Cicone, 1984)  

Component Band 1 Band 2 Band 3 Band 4 Band 5 Band 7 

Brightness 0.3037 0.2793 0.4343 0.5585 0.5092 0.1863 

Greenness –0.2848 –0.2435 –0.5436 0.7243 0.0840 –0.1800 

Wetness 0.1509 0.1793 0.3299 0.3406 –0.7112 –0.4572 

 

 

Table 3. 3: Weight/coefficients of the TCT of Landsat 8 (according to Baig et al., 2014) 

Component Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 

Brightness 0.3029 0.2786 0.4733 0.5599 0.508 0.1872 

Greenness –0.2941 –0.243 –0.5424 0.7276 0.0713 –0.1608 

Wetness 0.1511 0.1973 0.3283 0.3407 –0.7117 –0.4559 
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The reflectance of the surface reflectance data was calculated from Landsat image on “top of atmosphere 

(TOA)” measurement/calibrated bands. (Tasseled cap coefficients were calculated for TOA reflectance 

data from the Landsat TM and ETM+ sensors, MSS). 

As previously stated, the TCT of the TOA calibrated bands of OLI are computed using a similar method 

to those employed for images from Landsat 7 (ETM+). It is only the greenness, brightness, and wetness 

that are determined with the weights presented in Table 3.3. The following equations (3.7, 3.8, and 3.9) 

are examples of the Landsat 8 OLI sensor. 

TCB= 0.3029 b2 + 0.2786 b3 + 0.4733 b4 + 0.5599 b5 + 0.508 b6 + 0.1872 b7 (3.7) 

TCG= –0.2941 b2 – 0.243 b3 – 0.5424 b4 + 0.7276 b5 + 0.0713 b6 – 0.1608 b7 (3.8) 

TCW= 0.1511 b2 + 0.1973 b3 + 0.3283 b4 + 0.3407 b5 – 0.7117 b6 – 0.4559 b7 (3.9) 

3.2.2 Satellite image fusion approaches 

 Spatiotemporal data fusion approaches 

Spatiotemporal data fusion methods were introduced by Gao et al. (2006) as part of their work to produce 

daily synthetic surface reflectance images at 30m spatial resolution through the combination of both 

Landsat (30m spatial resolution at 16-day intervals) and MODIS (500m spatial resolution at 8-day 

intervals) surface reflectance images. This effort aimed at the greatest use possible of imagery data. 

A number of other spatiotemporal data fusion techniques have been developed lately (Zhang et al., 2013b; 

Fu et al., 2013; Weng et al., 2014) and evaluated with different satellite images (e.g., Landsat 5 & 7 and 

MODIS) (Gao et al., 2006; Fu et al., 2013). The primary goal was the fusion of low-temporal/high-spatial 

resolution data with high-temporal/low-spatial resolution data in order to improve interpretations in 

various environmental applications, inter alia: (i) surface temperature (Weng et al., 2014), (ii) NDVI 

(Meng et al., 2013), (iii) surface reflectance (Gao et al., 2006; Zhang 2013), and (iv) evapotranspiration 

(Anderson et al., 2011). These spatiotemporal data fusion techniques fall into three groups: (i) 
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spatiotemporal adaptive fusion approaches, (ii) unmixing-based spatiotemporal fusion approaches, and 

(iii) sparse representation-based spatiotemporal fusion approaches. In this study, spatiotemporal adaptive 

fusion approaches were employed. 

Spatiotemporal adaptive fusion  

Mathematical operations were employed by these methods to complete the data fusion. Gao et al. (2006) 

presented the STARFM that is used to blend surface reflectance data from Landsat and MODIS imagery. 

This empirical fusion technique employs the spectral and orbital similarities between Landsat and 

MODIS, combining them for the production of a synthetic Landsat image that has temporal resolution 

(resampled MODIS 500m yearly data into 30m). 

By combining data with different characteristics (varying in spectral, spatial, and temporal resolution), 

images that are fused can provide better interpretation capabilities and results that are more reliable 

because they give a more complete view of the observed objects. 

In addition to the creation of new images better suited to human visual perception, the goal of image 

fusion is also object detection and target recognition. Using multisensory data, including both visible and 

infrared images, has resulted in better recognition rates in various applications (e.g., the automatic 

recognition of targets) (Zhou and Hecht-Nielsen, 1993). In order for image fusion to succeed, multi-sensor 

images must be in correct alignment on a pixel-by-pixel basis. 

3.2.3 Principal component analysis (PCA) 

PCA is a statistical transformation that involves the conversion of intercorrelated multispectral bands into 

a set of uncorrelated components by means of orthogonal reprojections of the spectral space. A reverse 

PCA transform is employed to fuse the high-resolution image into the low-resolution multispectral bands 

(Zhang, 2004; Basaeed et al., 2013). It is possible to calculate the same number of output PC bands as 

input spectral bands. The variance decreases incrementally with each spectral band, with the largest 
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percentage of data variance in the first band. As they contain very little variance, most of which is due to 

noise in the original spectral data, the final PC bands seem noisy. PC bands create more colorful composite 

images than spectral color composite images owing to the fact that the data is uncorrelated. It is possible 

for the ENVI software used to analyze these images to accomplish both forward and inverse PC rotations 

(Richards, 1999 [ENVITM]). 

3.2.4 Long-term trajectories and trends of FDIs and CFDI 

In this study, the LandTrendr algorithm was employed to generate the spectral-temporal trajectories with 

FDIs and the CFDI indicator during the period from 1972–2020. Except for EVI, all the other six FDIs 

were applied in the LandTrendr algorithm for the assessment of the trajectories and trends of forest 

disturbance and degradation from 1972–2020 of the LTSS. 

LandTrendr 

The cloud-based geospatial processing platform from Google Earth EngineTM provides a large number of 

user-friendly API for the analysis of free and readily available satellite images, the creation of statistics 

and maps, and the graphical representation through parallel computing of phenomena that have been 

investigated (Gorelick et al., 2017). With this platform, two elements work together: Google Earth Engine 

Playground and Google Engine Explorer (Gorelick et al., 2017; Sidhu et al., 2018). LandTrendr, however, 

involves a set of trajectories and a spectral-temporal segmentation algorithm beneficial for the detection 

of annual land cover disturbance and recovery. It takes into account the intensity of the land cover 

disturbance, that is the magnitude of the change, the event duration in years, and the year when the 

disturbance or recovery takes place (Kennedy et al., 2010). Such detection is conducted with the collection 

of Landsat time-series data as its foundation. 
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LandTrendr functions by fitting the spectral-temporal trajectory to each image pixel in an annual time 

series and engages in tracing the evolution over time of that same pixel in image time series. Since every 

pixel is able to tell a story, Landsat has the advantage of being able to provide a historical record of a 

landscape. By making reference to a single band/index, these trajectories can be employed for the 

identification of a specific land cover type change event in space and time at the pixel level. This algorithm 

provides information on the change (year detected, duration, and magnitude; see Figure 3.2). 

Figure 3.2 illustrates the conceptual model of LandTrendr fitting spectral index (e.g., NDVI) values of 

spectral-temporal segments for spatiotemporal dynamics of a pixel that has experienced disturbance 

(“loss”), recovery (“gain”), and stability over the course of 49 years. The first temporal segment, stretching 

from the first vertex to the second vertex, shows the original model with a slight sequential change.  In 

this illustration, the model is fitted to a no-change event. From the second to third vertices, there was a 

significant disturbance in the pixel representing an important land cover change. This was followed by a 

recovery period from the third to fourth vertices. The final land cover changes in this pixel were 

Figure 3. 2: Conceptual/schematic model of the LandTrendr algorithm, original trends and fitting model of the 

spectral index value (e.g., NDVI) vs year of long-term trajectories 
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characterized by stable interannual variations. This illustration of a conceptual model was adapted from 

Kennedy et al. (2010). 

The LandTrendr program (version 3.0) provided Kennedy et al. (2013) was used with necessary 

preliminary image processing before radiometric and geometric corrections were undertaken, to create an 

LTSS compatible to be used with the acquired version of the LandTrendr algorithm.  

In order to accomplish the stacking (or collection) of individual Landsat bands for a single image year 

into one file, the “Layer Stacking” option in ENVI 5.3TM was used (ENVI 5.3, 2015). Both the WGS-84 

datum and UTM Zone 18 north projection of the level 1 product generation system (LPGS) processing 

were retained. Two band-sequential (BSQ) format files were created for the TM/ETM+ images: a six-

band stack for the optical bands from 1–5 and 7, as well as one for the thermal band(s). For Landsat 8, 

six-band layer stacks for band 2 to band 7 were applied. 

During the layer stacking procedure, spectral and spatial modifications were necessary for employing the 

MSS imagery in the assessment. Pixel resampling from 60m to 30m was conducted using a nearest 

neighbor resampling algorithm to ensure consistent spatial resolution. Subsequently, bands 5 and 7 of the 

MSS images were interchanged owing to the close approximation of band 7 to the NIR TM/ETM+ band 

4 (Bhatt, 2009; Chander et al., 2009). The version of LandTrendr employed during the study was designed 

to accept only a six-band image stack (for instance, bands 1–5 and 7 for TM/ETM+) and image files with 

fewer than six bands were rejected (such as four-band MSS data). Two pseudo bands of band 1 and band 

6 were inserted into each MSS four-band BSQ file to create the requisite six-band image stack (Table 

3.4). These additions were appropriate for this study as the amalgamated image stack was employed only 

for evaluating NDVI, which assesses band 3 and 4 only. The result was that all LandTrendr preprocessing 

and data transformations could be applied correctly to the appropriate MSS bands without changing any 

outputs or results in a significant way. 
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Table 3. 4: Band order for the transformed MSS image stack used in the LandTrendr algorithm 

Image stack bands True Landsat bands 

Landsat TM/ETM+ Landsat 8 Landsat MSS 

Band 1 Band 2 Band 1/pseudo/false band 

Band 2 Band 3 Band 4 

Band 3 Band 4 Band 5 

Band 4 Band 5 Band 7 

Band 5 Band 6 Band 6 

Band 7 Band 7 Band 7/pseudo/false band 

Note: MSS bands are labelled as bands 4–7 because bands 1–3 were selected for the return beam vidicon (RBV) 

sensor. 

Two preprocessing techniques were used, namely radiometric correction and cloud/cloud shadow 

masking. These were performed on the LTSS with the LandTrendr standard operating procedures of 

Nelson et al. (2010) using ENVI 5.3TM and ENVI+IDL 8.5TM software packages (ENVI 5.3, 2015).  

The LandTrendr algorithm was employed to generate the spectral-temporal trajectories (for the free 

version of this algorithm, see http://landtrendr.forestry.oregonstate.edu), thereby producing simplified 

spectral-temporal trajectories.  

In this study, the LandTrendr algorithm detailed by Kennedy et al. (2010) was employed. This algorithm 

is able to examine each pixel’s history, which is termed temporal trajectory (for instance, spectral time 

series) and consists of yearly index values. Up to six straight-line segments statistically capturing the 

overall shape of the trajectory are fitted to spectral index values. The potential seven anchor index values 

are called “vertices” in the fitted temporal trajectory and describe the beginning and end of each linear 

segment. Through the process of fitting these linear segments, trends or changes that occur in a single 

spectral index can be better described via the reduction of noise inherent in time series datasets. After the 

identification of vertices and fitting of linear segments in the target spectral index (here CFDI), the 

resulting fitted solution can be applied to other spectral indices (e.g., NDVI, NBR, NPP, TCT) and 

minimizing year-to-year noise across any other spectral index. Here, the terms “temporal segments” and 
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“temporal segmentation” are employed to refer to the resultant segments and the fitting process, 

respectively. 

The LandTrendr algorithm engages in the decomposition of the trajectory into a series of straight-line 

segments in order to capture broad features and also sub-trends of the trajectory (Kennedy et al., 2010). 

This information is necessary to create forest cover change maps or act as predictor variables to forecast 

future developments. The LandTrendr algorithm is also able to fairly accurately detect minute alterations 

in an ecosystem, including growth and degradation-related pests/insects (Cohen et al., 2010). LandTrendr 

temporal segmentation was completed in this study through the running of the algorithm using a fixed set 

of segmentation parameter values (See Table 2 of Kennedy et al., 2012 or check the parameter set up for 

this study) (Appendix 3A–G), regardless of the band/index that was employed.  

3.3 Results and discussion 

3.3.1 FDIs, CFDI, PCA 

From 1972–2020, individual FDIs were calculated from the corrected image stack. A total of seven 

vegetation indices were employed, namely—normalized difference vegetation index (NDVI), net primary 

productivity (NPP), normalized burn ratio (NBR), enhanced vegetation index (EVI), tasseled cap 

brightness (TCB), tasseled cap greenness (TCG), and tasseled cap wetness (TCW)—as the indicators 

selected that best described forest degradation. They were calculated from the satellite images (Landsat 

and MODIS platforms) using ENVITM software. All FDI variables were combined into a CFDI for each 

year, using the image fusion technique reliant on PCA, and the first principal (PC1) was accepted with 

high explained variability, as shown in Table 3.5.  

According to PCA theory, it is possible that the variable responsible for the highest loading could be 

representative of a PC that is of particular interest (Meng et al., 2009). For instance, (in this study), PC1 
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consisted of four, six, and seven indicator variables during the periods from 1972–1981, 1984–1998, and 

2001–2020, respectively. Table 3.5 shows the explained variability of each PC1 from 1972–2020. 

Table 3. 5: Explained variability by PC1 of CFDI from 1972–2020 

Indicators Years 

Explained 

Variability Indicators Years 

Explained 

Variability 

CFDI 

1972 99.72% 

CFDI 

2001 96.00% 

1973 99.18% 2002 96.10% 

1975 98.73% 2003 91.67% 

1976 99.64% 2004 96.43% 

1978 99.73% 2005 95.84% 

1979 99.71% 2006 92.66% 

1980 99.75% 2007 93.75% 

1981 99.75% 2009 88.35% 

CFDI 1972–1981 Combined 85.01% 2010 90.19% 

CFDI 

1984 99.25% 2011 89.17% 

1985 99.40% 2012 91.22% 

1986 99.32% 2013 91.72% 

1987 99.32% 2014 93.08% 

1990 99.33% 2015 92.74% 

1991 99.33% 2016 93.71% 

1992 99.44% 2017 92.99% 

1993 99.46% 2018 93.02% 

1994 99.43% 2019 93.34% 

1995 99.36% 2020 94.35% 

1996 99.31% CFDI 2001–2020 Combined 75.49% 

1998 99.35% NDVI 2001–2020 Combined 85.55% 

CFDI 1984–1998 Combined 85.69% NPP 2001–2020 Combined 80.95% 

CFDI combined 1972–2020 95.32% 

Note: Some years are missing since there is no available and/or usable Landsat image data for those dates. 

 

The CFDI variability from 1972–1981 ranged from 98.73% to 99.75%; from 1984–1998, it ranged from 

99.25% to 99.46%. From 2001–2020, the explained variability ranged from 88.35%–96.43%. The 

explained variability of the combined CFDI of 1972–1981, 1984–1998, and 2001–2020 was 85.01%, 

85.69%, and 75.49%, respectively. The explained variability of the combined NDVI and NPP of 2001–

2020 was found to be 85.55% and 80.95%, respectively. The explained variability (most informative) of 

the overall combined (innovative) CFDI for 1972–2020 was 95.32%. According to PCA statistical 
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interpretation, a combined new indicator (CFDI) is more informative that an individual indicator (FDI); 

hence, CFDI is advanced as a more informative than an individual FDI. 

3.3.2 Remote sensing-derived CFDI maps 

The CFDI from 1972–1981 was computed resulting from the multivariate (PCA) as part of the integration 

of four individual FDIs, namely NDVI, TCB, TCG, and TCW. Figure 3.3(a-b) shows the CFDIs for the 

initial and final years of 1972 and 1981, respectively. 

 

Figure 3. 3 (a–b): a) CFDI of 1972 (left); and b) CFDI of 1981 (right) 

It is apparent that the spatial patterns of CFDI from 1972 and 1981 are very similar in their spatial 

distribution. However, there are changes in the intensity of degradation as shown by the CFDI. There 

appears to be less degradation in 1972 (0.030) compared to 1981 (0.227), which is to be expected. It is 

difficult to attribute this to any given cause, either of forest management, ecological phenomena or 

climate, from the CFDI values alone. 
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From 1984–1998, the CFDI was computed resulting from the multivariate (PCA) integration of six FDIs, 

namely NDVI, NBR, EVI, TCB, TCG, and TCW. Figure 3.4 (a-b) presents the CFDIs for 1984 (left) and 

1998 (right) (initial and final years, respectively). 

 

Figure 3. 4 (a-b): a) CFDI of 1984 and b) CFDI of 1998 

It is apparent that the spatial patterns of the CFDIs from 1984 and 1998 are not similar. There are changes 

in the intensity of degradation as shown by the CFDI for 1998. A comparison derived from the visual 

interpretation of both maps showed that the 1998 CFDI map indicated degraded areas in the northern and 

middle-eastern part of the study area.  

In contrast, the CFDI from 2001–2020 was computed from the multivariate (PCA) integration of seven 

FDIs: the previous six (NDVI, NBR, EVI, TCB, TCG, and TCW) plus NPP. It was assumed that this 

would be more explanatory given that NPP would be expected to be more closely related to vegetation 

health. Figure 3.5 (a-b) shows the CFDIs for the initial (2001) and final year (2020) of the run, 

respectively. 
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Figure 3. 5 (a–b): a) CFDI for 2001; and b) CFDI for 2020 

It is apparent (through visual interpretation) that the spatial patterns of CFDI for the initial year (2001) 

and final year (2020) are very similar in nature. However, there are changes in the intensity of degradation 

as shown by the CFDI. The 2001 and 2020 CFDI maps were smoother and finer in resolution than the 

other CFDI maps (1972–1998). This may be due to the inclusion of the NPP indicator. 

3.3.3 Combined CFDI maps of 1972–1981 and 1984–1998 

The combined CFDI maps derived from remote sensing are a combination of 1972–1981 and 1984–1998 

indicator variables (FDIs). A layer stack was created using the CFDI of each individual year from 1972–

1981 before applying the PCA option “Forward PCA rotation new statistics and rotate” in ENVITM 5.3 

software. Another layer stack was created for 1984–1998 using the same procedure. 

Overall, the CFDI of 1972–1981 involved four FDIs (NDVI, TCG, TCB, and TCW), and each year was 

combined for the CFDI using PCA. The CFDI of 1984–1998 involved six FDIs (the four above plus NBR 

and EVI), and images for each year were combined for the CFDI using PCA.  

Finally, the combined CFDI was created with PC1. The results are shown in Figure 3.6 (a and b). 
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Figure 3. 6 (a-b): a) combination of CFDI from 1972–1981 and b) combination of CFDI from 1984–1998 

The explained variability was 85.01% and 85.69% for the combined years of 1972–1981 and 1984–1998, 

respectively. Through the combination of all variables (FDIs), the most informative in terms of explained 

variability, was created as the CFDI. 

3.3.4 Combined CFDI maps of 2001–2020 and 1972–2020 

The composite indicator (CFDI) map values are a combination of 2001–2020 map data and the overall 

combination of the 1972–2020 CFDI.  The CFDI of 2001–2020 involved seven FDIs (NDVI, NPP, NBR, 

EVI, TCG, TCB, and TCW), with each year of the CFDI combined using the previously mentioned fusion 

technique. The overall CFDI of 1972–2020 involved all indicators (FDIs) with each year of the CFDI 

combined using the same fusion technique.  

A layer stack was created using the CFDI of each individual year from 2001–2020 using the previously 

mentioned PCA option in ENVITM. Additionally, another layer stack was created for 1972–2020 with 

three CFDI map layers (1972–1981, 1984–1998, and 2001–2020) using the same procedure. Finally, the 

combined CFDI was created with PC1. These maps are shown in Figure 3.7 (a–b). 
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Figure 3. 7 (a-b): a) combination of CFDI from 2001–2020 and b) combination of CFDI from 1972–2020 

The explained variability was 75.49% and 95.32% for the combined years of 2001–2020 and 1972–2020, 

respectively. The CFDI for 1972–2020 is the combined CFDI layer stacks of 1972–1981, 1984–1998, and 

2001–2020, with the contribution of all CFDIs providing the most informative CFDI, in terms of explained 

variability. 

3.3.5 Combined maps of NDVI and NPP (2001–2020) from satellite imagery 

The combined NDVI and NPP indicator map values are a combination of 2001–2020 individual indicator 

maps. For the period from 2001–2020. Maps of individual year NDVI and NPP were combined using 

PCA to create composite NDVI and NPP maps. A layer stack was created using the NDVI of each 

individual year layer for 2001–2020 before applying the PCA technique. Similarly, another layer stack 

was created for NPP. Finally, the combined NDVI and NPP map was created by the previously mentioned 

fusion technique, and the most informative indicator (explained variability) was accepted by PC1. These 

maps are shown in Figure 3.8 (a–b). 

 



104 
 

 
 

 

Figure 3. 8 (a–b): a) combination of NDVI from 2001–2020, and b) combination of NPP from 2001–2020 

The explained variability for NDVI and NPP were 85.55% and 80.95%, respectively. These combined 

NDVI and NPP (Figure 3.8a-b) maps are more informative in terms of explained variability (PC1) than 

individual year maps. A detailed discussion of the combined NDVI and NPP is provided in chapter 4. 

3.3.6 Results from the long-term trajectories of forest degradation indicators  

As previously mentioned, except for EVI, the trajectory of all the other six FDIs and CFDIs were 

computed from the LandTrendr algorithm for the assessment of forest disturbance and degradation 

trajectories from 1972–2020 of the LTSS including MODIS NPP of 2001–2020. The spectral trajectories 

were calculated and are shown in Figure 3.9 and 3.10. There were many runs of the LandTrendr 

segmentation algorithm to ascertain the optimal parameters for analysis. For the parameters applied in the 

final model, see Appendix 3 (A–G). 

In this study, ENVI+IDL 8.5 and ENVI Classic 5.3 tools were employed in order to run the LandTrendr 

algorithm and evaluate the temporal trajectories of the pixels and for the interpretation of the results in 

the form of output maps. First, LandTrendr was run in “segmentation evaluation mode” to ensure the 
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existence of no problematic residual clouds or cloud shadows, no images that have been misregistered, or 

no images that have unpredictably odd phenological signals (LandTrendr Users Guide V3.0, 2013). The 

batch file that was created for running the LandTrendr evaluation mode is shown in Appendix 3A. 

Interpretation of the results of the “segmentation evaluation mode” is complicated. The interpreter must 

be cautious in determining whether the change is real or an algorithm artifact, meaning the draft 

disturbance map must be analyzed for suspicious patterns, which then must be looked at for problems, 

such as issues with cloud mask (LandTrendr Users Guide V3.0, 2013). 

Assessment of disturbances involves both visual interpretation and problem-solving for the assessment of 

the disturbance output maps and anomalous features. If any are found, examination must be made of the 

core outputs resulting from the segmentation. The images are then subject to “full segmentation mode,” 

and the cloud masks are applied (LandTrendr Users Guide, 2013). 

The output files (e.g., “source,” “fitted,” and “greatest disturbance”) of the “segmentation evaluation 

mode” results have one layer (e.g., in ENVITM software these are indicated as bands for each year of the 

time series data, employed as an input image). To interpret the preliminary trajectory maps, three layer 

bands were used as R, G, and B color maps. 

There are three types of output images used to evaluate the segmentation (evaluation mode) runs. The first 

is the “source” image showing the actual spectral values derived from the pre-processed imagery stack. It 

is this raw material that is employed by segmentation for the discovery of temporal patterns. The second 

is the “fitted” image showing how the source image was simplified by the algorithm into straight-line 

segments; and the third is the “greatest disturbance” image that recorded the disturbance segment in each 

pixel’s time series using the labeling rules (see Appendix 3D: “nbr_label_parameters”) 

Temporal segmentation is the foundation of LandTrendr. In short, an algorithm is fed a time-series of 

numbers. This employs statistical rules in order to fit a series of straight lines to the aforementioned 
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“source” numbers, which then come out as “fitted” numbers. Another set of routines within the algorithm 

then queries those straight lines while looking for particular sequences or patterns in the data. Generally, 

the objective is to discover segments consistent with the occurrence of a disturbance, for example, the 

disturbance that resulted in the most significant change in spectral values (the “greatest disturbance”). 

While it runs, the algorithm writes files to record the source, fitted, and greatest disturbance numbers of 

each pixel (LandTrendr v2.0, 2012). 

Once the evaluation mode has been run and the user is confident the cloud masks are appropriate and there 

are no other anomalies in the input images, the batch file can be prepared for running LandTrendr in “full 

segmentation mode” (see Appendix 3A). To run the LandTrendr algorithm smoothly in “full segmentation 

mode,” in this study, the pre-processed/cleaned satellite images from 1972–2020 were employed. 

In LandTrendr, all controlling parameters are contained in separate text files referred to by the main calling 

sequences, and these files are needed to run the algorithm. There are many parameters (see Appendix 3A–

G) that define how LandTrendr segments each pixel. LandTrendr has a range of products based on a 

variety of combinations of segment label and magnitude of the change, duration, vertex-year, etc. So, a 

change map can have different change categories, including disturbance types (e.g., fire, clear-cut, insect 

disturbance), change year, and duration time compared to bivariate change response (simply “change” or 

“no change”) used for traditional change maps. 

The trajectory was both fitted and labeled according to the description provided by Kennedy et al. (2010), 

with the batch file run by LandTrendr presented in Appendix 3A–G. The LandTrendr segmentation 

algorithm identified periods of time when spectral trajectories were consistently “up” or “down,” resulting 

in segments with vertices and fitted values to be viewed. However, such information is difficult to interpret 

or summarize in a simple fashion. To make these data more interpretable, this study used an IDL batch 

file (see Appendix 3A–G) to categorize the segments into “change classes” based on the direction and 
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magnitude of change, time of occurrence, and duration. For example, capturing the disturbance events, 

such as fires or landslides (LandTrendr Users Guide, 2013). 

Vegetation covers and cover change models are applied for filtering potential segmentation with 

LandTrendr, and this study ran the filtering batch file with this algorithm (see Appendix 3A–G).  Spatial 

filtering codes are class-specific and added onto the end of the class code. The batch file is presented in 

Appendix 3A–G. 

To examine the long-term trajectory maps (disturbance, recovery, no disturbance, etc.), the change 

labeling results with 8 layers/bands shown in Table 3.6 were applied. Long-term historical forest 

degradation trajectory maps “greatest disturbance maps” were created with the LandTrendr algorithm. 

The standard change label file has 8 layers, as shown in Table 3.6. 

Table 3. 6: Description of how the bands correspond to the segments 

Bands/layers Definition of bands/layers  

Band 1 Year of event onset for focal segment 

Band 2 Magnitude of event for focal segment 

Band 3 Duration of event for focal segment 

Band 4 Pre-event vertex value for focal segment 

Band 5 Post-event-segment start year 

Band 6 Post-event-segment magnitude 

Band 7 Post-event-segment duration 

Band 8 Post-event-vertex value 

 

The NBR is the most sensitive FDI for capturing disturbance events. A spectral (z) profile was created for 

the “source” and “fitted” output files to check the “spectral profile” of a single pixel. The “source” image 

is the NBR value fed to the segmentation algorithm; the “fitted” image is the NBR value that emerges 

from the segmentation algorithm. 
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The image of the output results for “greatest disturbance” records the greatest disturbance segment in each 

pixel’s time series, with the labeling rules that are captured in the “label_parameters.txt” (see Appendix 

3A–L). Figure 3.9 and 3.10 show an example of spectral trajectories of NBR from the source LTS for 

1984–1998 and the final LandTrendr segmentation fitted algorithm of the aforementioned years. 

The spectral profile of NBR showed in Figure 3.9 indicates greater disturbance and degradation in 1990. 

The spectral profile for the source image allows for the identification of a very clear disturbance (“loss”) 

or recovery (“gain”) trajectory: from 1984–1998, there was a minor disturbance (almost no change); a 

disturbance occurred in 1990; and recovery following from 1991, with 1992 displaying stability and 1993–

1995 indicating the disturbance. The rest of the years (1995–1998) of the trajectory showed a trend of no 

change. 

 

Figure 3. 9: Example spectral profile/trajectories of NBR for the source file (LTSS) outputs (NBR 1984–

1998) 
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The spectral profile represents the temporal sequence of the spectral values for a single pixel in the fitted 

image. There is a big drop in the source image when a large disturbance happens, such as the profile of 

the trajectory of the NBR indicator from 1984–1998 shown in figure 3.9, which indicates greater 

disturbance and degradation in 1990. 

In this study, the NDVI, NPP, and CFDI indicators were interpreted as being indirectly related to soil 

moisture availability or “wetness.” 

 

3.3.7 Long-term Trajectory of forest disturbance and degradation maps of 1972–2020 (1972–1981, 

1984–1998, and 2001–2020)  

3.3.7.1 Forest disturbance and degradation maps for 1972–1981 

The results of the trajectory analysis from 1972–1981 were employed in the LandTrendr algorithm in 

order to generate “greatest disturbance maps” of the study area at small and large scales, as shown in 

Figure 3.11 (a-b). The greatest disturbance map is based on 8 bands and color images, and the following 

color RGB maps were prepared as b7, b5, and b3. 

 

Figure 3. 10: Example spectral profile/trajectories of NBR, the final LandTrendr segmentation fitted outputs 

for 1984–1998 
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Figure 3. 11 (a-b): Greatest disturbance map (CFDI) of the study area and large-scale map for 1972–1981 

 

Each block of color in Figure 3.11 (a–b) above, indicates the disturbance/degradation or change in 

landscape during the period from 1972–1981, and the various colors denote different years of 

disturbance/degradation or change shown on the large-scale map (Figure 3.11a–b) above. 

The greatest disturbance map presented all disturbances from 1972–1981 (as an example), whereas the 

source and fitted maps are presented in 3 layer/band (3 years) combinations (1976, 1977, and 1980 are 

presented in Figure 3.11b). 

3.3.7.2 Forest disturbance and degradation maps for 1984–1998 

The results of the trajectory analysis from 1984–1998 were employed in the LandTrendr algorithm in 

order to generate a “greatest disturbance map” of the study area, which is shown in Figure 3.12. 
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Each block of color in Figure 3.12 indicates the disturbance/degradation or change/no change in the 

landscape during the period from 1984–1998, and the various colors denote different years of 

disturbance/degradation or change/no change. 

3.3.7.3 Forest disturbance and degradation maps for 2001–2020  

The results of the trajectory analysis from 2001–2020 and the “greatest disturbance maps” are shown in 

Figure 3.13 (a-b) (for details, see chapter 4). 

Figure 3. 12: LandTrendr of NBR: Greatest disturbance map of the study area for 1984–1998 

Figure 3. 13 (a-b): (a) Disturbance map (2001–2020, NDVI) of the study area; (b) Large-scale disturbance map 
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3.3.8 The combined forest disturbance and degradation maps for 1972–2020  

Long-term historical forest degradation trajectory maps were created for the periods from 1972–1983, 

1984–2000, and 2001–2020 using the LandTrendr algorithm. To ascertain the long-term degradation trend 

in the selected study area, these three degradation maps were combined into one for 1972–2020 using the 

image fusion technique (PCA) (Figure 3.14) (a detailed discussion of the combined map is provided in 

Chapter 4). 

 
Figure 3. 14 (a-b): a) Disturbance/degradation map (1972–2020) of the study area; b) Large-scale 

disturbance/degradation map (1972–2020) [Note: PC1 = showing the pixels as values not as year] 

By combining the “greatest disturbance” output files of 1972–1981, 1984–1998, and 2001–2020, it was 

possible to compute a composite disturbance map for the entire time-length of 1972–2020. This was 

created using PCA for the most informative combined map (PC1) showing the long-term trajectories. 

3.4 Discussion 

The purpose of monitoring the continuous detection of vegetation dynamics is the production of data and 

information that are related to the land area, spatial extent, change patterns, and degree of vegetation cover 

in the study area, which can be useful for forest management decisions. The reconstruction of forest 
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disturbance histories is necessary for various applications. This study introduced and tested an approach 

that is efficient and effective for the identification and generation of disturbance histories from the use of 

the Landsat time series stack. The LandTrendr algorithm was designed to exploit differences in the 

magnitude and direction of changes that exist in spectral indices (as FDIs in this study), which act in the 

capacity as “proxies” for the physiological processes that occur after different types of disturbances and 

degradations in forests. In this work, the capability of the LandTrendr algorithm to achieve the objectives 

through the use of an illustrative application in the forest cover of the study area was examined.  

Through employing the abovementioned algorithm and Landsat imagery, forest disturbance and recovery 

patterns were detected for each year, and this study presented the forest disturbance and degradation 

outputs, including raster maps, for the periods from 1972–1981, 1984–1998, and 2001–2020. In this sense, 

the use of already available and tested algorithms, such as LandTrendr, was found to be convenient and 

reliable. This study also explored the potential for fusing Landsat and MODIS FDIs into a CFDI that is 

the most informative indicator of combined forest degradation, by creating a combined map for the long 

image run from 1972–2020. The resulting disturbance maps and statistics were found to be effective in 

improving our understanding of the spatial-temporal land cover change trajectories in the study area, over 

the 49 years from 1972–2020. The results of this thesis showed that Landsat and MODIS derived imagery, 

despite their differences in spatial and temporal resolutions, can be the basis for the computation of FDIs 

(NDVI, NPP, NBR, EVI, TCB, TCG, TCW) and that their combination into a CFDI was effective in the 

identification and mapping of forest degradation.  

For the period from 1972–2020, the LandTrendr trajectory analysis was able to clearly identify patterns 

of forest disturbance, including duration and progress of rehabilitation. However, this study found that 

maps of forest disturbance derived from the LandTrendr algorithm using the FDIs and CFDI were quite 

different. This may be due to the information loss that occurs when only PC1 is used as part of the 
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integration of all FDIs. This study also revealed the critical nature of synergistically employing archived 

Landsat and MODIS images with trajectory analysis as implemented in the LandTrendr algorithm, for the 

continuous monitoring of land cover change reconstruction. Moreover, the recently launched Google 

Earth Engine cloud computing environment provides accessibility to these computing tools. Using 

combined (1972–1981, 1984–1998, and 2001–2020 disturbance maps) LandTrendr indicators were found 

to be effective in compensating for the gap values that are commonly seen in single LandTrendr-derived 

indicators. 

This study adopted a combination of LandTrendr-derived indicators to achieve reliable intermediate 

results. The combination of several indices in characterizing the land surface properties was considered 

effective. The results were similar to those of Cohen et al. (2017), who emphasized the usefulness of 

multiple indices in time series analysis instead of employing a single band/index. Additionally, the 

LandTrendr framework was discovered to be highly customizable and extendable. The indices were 

combined taking into account PC1 employed to compute the magnitude of the change with filled no-data 

values. Omitting PCA and simply using LandTrendr with individual FDIs would lead to gaps and 

discontinuous patches in the maps that could potentially have a negative effect on the interannual land 

cover change trajectories conducted for the study area. 

A wide range of spectral variables of VIs have been employed in Landsat time series analysis based on 

their enhanced sensitivity to vegetation greenness. The differences that are found in the performance of 

individual VIs are generally related to their varied sensitivity to external factors, including atmospheric 

conditions and topography. When choosing the most suitable VI, one must consider the application. In 

particular, tasseled components are popular in many applications, especially when experts want to 

combine a multispectral scanner system and data obtained from other sensors. However, more research is 
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still required into quantifying the extant uncertainties given the varying spectral responses of different 

sensors in the time series analysis when employing TCT and other indices. 

The analysis of the spectral response of vegetation with both remote and proximal sensing could prove to 

be an efficient and rapid way to examine and define plant health. However, it is still necessary to develop 

more effective data analysis procedures, especially given the ever-rising amount of data that is being 

furnished by numerous sensors (e.g., hyperspectral). It is an ongoing challenge to develop methods for 

automatic fusion of images and interpretation of multi-source, multi-temporal sensor data, especially 

given the rapid development of various sensor technologies, including VHR optical, SAR, and LiDAR 

sensors on terrestrial, airborne, and space-borne platforms. Concerning hyperspectral datasets, 

multivariate statistical techniques may be critical. The combined method applied in this study was based 

on employing PCA to reduce the dimensionality of the problem with minimum loss of information. PCA 

was effective in summarizing the redundant radiometric information in a reduced number of indicators of 

plant or ecosystem status. 

In relation to the sensitivity of green vegetation detection, combined individual VIs have led to significant 

improvements. Various environments provide their own unique variables and complex characteristics, all 

of which must be taken into account in the selection and use of the different VIs. This means that every 

single VI has a specific expression of green vegetation, sensitivity for a particular study, and its 

limitations. VIs, therefore, must be carefully chosen by considering and examining positives and negatives 

of existing VIs and then combining them for application in a specific environment of interest. VIs can be 

tailored to specific applications, instrumentation, and platforms to be used in a given study. Since 

innovations are ongoing in this field, including the development of hyperspectral and multispectral remote 

sensing technology, new VIs can be created to broaden the research that is possible. 
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3.5 Conclusions 

This study developed a fast and effective approach to monitoring forest disturbance and degradation in 

the Ontario study area from multiscale, long-term remote sensing data. First, seven indicators (NDVI, 

NPP, NBR, EVI, TCB, TCG, and TCW) from satellite observation data were selected to describe forest 

degradation. Then, an approach to forest degradation detection was developed using large stacks of time 

series Landsat and MODIS data. 

All FDI variables were combined into a CFDI for each year, using the image fusion technique reliant on 

PCA, with PC1 accepted with high explained variability. The explained variability of the combined NDVI 

and NPP of 2001–2020 were found to be high at 85.55% and 80.95%, respectively. Overall, the innovative 

CFDI (1972–2020) was the most informative FDI as the combination of three layers of CFDI (1972–1981, 

1984–1998, and 2001–2020), and the explained variability of the combined CFDI was 95.32%. 

The contribution of all CFDIs provided the most informative CFDI associated with the long-term 

trajectories. In the spectral profile for the fitted image, there was a very clear disturbance and recovery 

trajectory: from 1984–1998, there was a minor disturbance; a disturbance occurred in 1990; and recovery 

following from 1991.  

In short, this study demonstrated that exploiting the “big data” from multispectral sensors combining 

spatial and temporal resolutions has significant potential in monitoring forest degradation at the regional 

level. The FDIs used in this study, in general, could effectively detect long-term forest disturbance and 

degradation.  
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Appendix 3 
3A: File name: run_ledaps_landtrendr_processor_1728_nbr_eval  

retall 

;this batch file controls all of the ledaps landtrendr preprocessing steps 

;---please state the landsat path/row ID and path to the data as described following each variable--- 

ppprrr = '017028' 

path = 'C:\017028\' 

useareafile = 'C:\017028\images\studyarea.bsq' 

segparamstxt = 'C:\myworkspace\myproject\paramfiles\nbr_segmentation_parameters.txt' 

template_hdr = 'C:\myworkspace\myproject\paramfiles\utm_template_headerfile_LT5.hdr' 

label_parameters_txt = 'C:\myworkspace\myproject\paramfiles\eval_label_params.txt' 

class_code_txt = 'C:\myworkspace\myproject\paramfiles\eval_class_codes.txt' 

;---- if running ftv with post-processing detrending, need to specfy the 

; file with the percent cover, etc. values 

; otherwise specify 'none' 

;post_process_file = '/projectnb/trenders/helperfiles/nbr_label_parameters.txt' 

;PROCESSING SWITCHES 

;1=do this, 0=don't do this, or as described 

resume_segmentation  = 0  ;if segmentation crashed mid-process set this to 1 to begin on the chunk it let off, else 

leave at 0  

segmentation_eval    = 1  ;runs landtrendr in evaluation mode 

segmentation         = 0  ;creates segmentation outputs 

fit_to_vertices      = 0  ;use 1 to run bgw, 2 to run b5,b4,b3, 3 to run both, 5 for NBR and BGW-Hoque 

dist_rec_snapshots   = 0  ;create disturbance and recovery slice outputs 

dark_seg_outputs     = 0  ;creates an output used to make a forest-nonforest mask 

progressbaryesno     = 1  ;set to 1 to have a graphical progress bar during segmentation, 0 to use text  

 

;(OPTIONAL) ADJUST THE IMAGES TO RUN THROUGH SEGMENTATION   

image_list = [0] ;list image dates to leave in or take out of segmentation - leave as 0 if you want to use all images 

  ;image date format: single: [1984226] multiple: [1984226,1985196,1992216]   

image_list_type = 1 ;1 = exclude above dates ::::::: 2 = run only on above dates 

run_params = {ppprrr:ppprrr,$ 

  path:path,$ 

  segmentation_eval:segmentation_eval,$ 

  segparamstxt:segparamstxt,$ 

  segmentation:segmentation,$ 

  resume:resume_segmentation,$ 

  useareafile:useareafile,$ 
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  fit_to_vertices:fit_to_vertices,$ 

  dist_rec_snapshots:dist_rec_snapshots,$ 

  dark_seg_outputs:dark_seg_outputs,$ 

  image_list:image_list,$ 

  image_list_type:image_list_type,$ 

  template_hdr:template_hdr, $ 

  progressbaryesno:progressbaryesno, $ 

  label_parameters_txt:label_parameters_txt, $ 

  class_code_txt:class_code_txt} 

  .run tbcd_v2 

ledaps_landtrendr_processor, run_params 

 

3B: File: run_ledaps_landtrendr_processor_1828_wetness [MSS image pathe=018, row=028] 

 

retall 

;this batch file controls all of the ledaps landtrendr preprocessing steps 

;---please state the landsat path/row ID and path to the data as described following each variable--- 

ppprrr = '018028' 

path = 'C:\018028\' 

useareafile = 'C:\018028\images\useareamss.bsq' 

segparamstxt = 'C:\myworkspace\myproject\paramfiles\wetness_segmentation_parameters.txt' 

template_hdr = 'C:\myworkspace\myproject\paramfiles\utm_template_headerfile_MSS.hdr' 

;---- if running ftv with post-processing detrending, need to specfy the 

; file with the percent cover, etc. values 

; otherwise specify 'none' 

;post_process_file = 'C:\myworkspace\myproject\paramfiles\wetness_label_parameters.txt' 

;PROCESSING SWITCHES 

;1=do this, 0=don't do this, or as described 

resume_segmentation  = 0  ;if segmentation crashed mid-process set this to 1 to begin on the chunk it let off, else 

leave at 0  

segmentation_eval    = 0  ;runs landtrendr in evaluation mode 

segmentation         = 1  ;creates segmentation outputs 

fit_to_vertices      = 1  ;use 1 to run bgw, 2 to run b5,b4,b3, 3 to run both 

dist_rec_snapshots   = 0  ;create disturbance and recovery slice outputs 

dark_seg_outputs     = 1  ;creates an output used to make a forest-nonforest mask 

progressbaryesno     = 0  ;set to 1 to have a graphical progress bar during segmentation, 0 to use text  

 

;(OPTIONAL) ADJUST THE IMAGES TO RUN THROUGH SEGMENTATION   

image_list = [0] ;list image dates to leave in or take out of segmentation - leave as 0 if you want to use all images 

  ;image date format: single: [1984226] multiple: [1984226,1985196,1992216]   

image_list_type = 1 ;1 = exclude above dates ::::::: 2 = run only on above dates 

 

run_params = {ppprrr:ppprrr,$ 
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  path:path,$ 

  segmentation_eval:segmentation_eval,$ 

  segparamstxt:segparamstxt,$ 

  segmentation:segmentation,$ 

  resume:resume_segmentation,$ 

  useareafile:useareafile,$ 

  fit_to_vertices:fit_to_vertices,$ 

  dist_rec_snapshots:dist_rec_snapshots,$ 

  dark_seg_outputs:dark_seg_outputs,$ 

  image_list:image_list,$ 

  image_list_type:image_list_type,$ 

  template_hdr:template_hdr, $ 

  progressbaryesno:progressbaryesno} 

  .run tbcd_v2 

ledaps_landtrendr_processor, run_params 

 

3C: File: ndvi_segmentation_parameters 

run_name             = paramset01 

base_index           = ndvi 

background_val       = 0 

divisor              = 1 

minneeded            = 3 

kernelsize           = 3  

pval                 = 0.05 

fix_doy_effect       = 1 

max_segments         = 5  

recovery_threshold   = 1 

skipfactor           = 1 

desawtooth_val       = 0.9 

distweightfactor     = 1 

vertexcountovershoot = 3 

bestmodelproportion  = 0.75 

mask_image       = na 

ulx        = na 

uly                  = na 

lrx                  = na 

lry                  = na 

 

Note: Applied/replaced other FDIs instead of NDVI such as base_index = nbr, wetness, etc.  

3D: File: nbr_label_parameters 

static_model         = static_nbr_model_pilot_scenes 

change_model         = none 

pct_tree_loss1       = 10 
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pct_tree_loss20      = 3 

pre_dist_cover       = 20 

pct_tree_gain        = 5 

collapse_dist_angle  = 15 

collapse_recv_angle  = 15 

run_name             = nbr_lt_labels 

merge_recovery       = yes 

extract_tc_ftv       = no 

use_relative_mag     = yes 

end_year             = -1 

start_year           = -1 

 

Note: Applied/replaced other FDIs instead of NBR such as run_name = ndvi_lt_labels, wetness_lt_labels, etc.  

3E: File: run_lt_labelfilt_1728_wetness 

;landtrendr post-segmentation change labeling\map creation and spatial filter and patch aggregation  

;-------------inputs------------- 

;full path to the diag.sav files in the outputs folder that you want to run labeling and filter on 

diag_files=["C:\017028\outputs\wetness\LT_v2.1_wetness_017028_paramset01_20210314_004645_diag.sav"] 

;full path to label parameter .txt files.  these correspond to the above daig_files so one must exist 

;for for each, they do not have to be the same, but can be      

label_parameters_txt=["C:\myworkspace\myproject\paramfiles\wetness_label_parameters.txt"] 

;full path to a single class code file that defines what map outputs will be created     

class_code_txt = "C:\myworkspace\myproject\paramfiles\wetness_label_codes.txt" 

;full path to a projection template file   

templatehdr = "C:\myworkspace\myproject\paramfiles\utm_template_headerfile_LT5.hdr" 

;-------------run the program-------------  

run_lt_label_and_filtering, diag_files, label_parameters_txt, class_code_txt, templatehdr 

 

Note: Applied/replaced other FDIs instead of wetness.  

3F: File: utm_template_headerfile_LT5 

ENVI 

description = { 

  File Imported into ENVI.} 

samples = 4411 

lines   = 4279 

bands   = 1 

header offset = 0 

file type = ENVI Standard 

data type = 2 

interleave = bsq 

sensor type = Unknown 
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byte order = 0 

x start = 2014 

y start = 2739 

map info = {UTM, 1.5000, 1.5000, 240375.000, 5128875.000, 3.0000000000e+001, 3.0000000000e+001, 18, 

North, WGS-84, units=Meters} 

coordinate system string = 

{PROJCS["WGS_1984_UTM_Zone_18N",GEOGCS["GCS_WGS_1984",DATUM["D_WGS_1984",SPHEROI

D["WGS_1984",6378137.0,298.257223563]],PRIMEM["Greenwich",0.0],UNIT["Degree",0.0174532925199433

]],PROJECTION["Transverse_Mercator"],PARAMETER["False_Easting",500000.0],PARAMETER["False_Nor

thing",0.0],PARAMETER["Central_Meridian",-

75.0],PARAMETER["Scale_Factor",0.9996],PARAMETER["Latitude_Of_Origin",0.0],UNIT["Meter",1.0]]} 

wavelength units = Unknown 

 

3G: File: studyarea 

ENVI 

description = { 

  Gain and Offset Correction [Tue Jan 19 23:07:17 2021]} 

samples = 4411 

lines   = 4279 

bands   = 1 

header offset = 0 

file type = ENVI Standard 

data type = 2 

interleave = bsq 

sensor type = Unknown 

byte order = 0 

x start = 2014 

y start = 2739 

map info = {UTM, 1.5000, 1.5000, 240375.000, 5128875.000, 3.0000000000e+001, 3.0000000000e+001, 18, 

North, WGS-84, units=Meters} 

coordinate system string = 

{PROJCS["UTM_Zone_18N",GEOGCS["GCS_WGS_1984",DATUM["D_WGS_1984",SPHEROID["WGS_19

84",6378137.0,298.257223563]],PRIMEM["Greenwich",0.0],UNIT["Degree",0.0174532925199433]],PROJECT

ION["Transverse_Mercator"],PARAMETER["False_Easting",500000.0],PARAMETER["False_Northing",0.0],P

ARAMETER["Central_Meridian",-

75.0],PARAMETER["Scale_Factor",0.9996],PARAMETER["Latitude_Of_Origin",0.0],UNIT["Meter",1.0]]} 

wavelength units = Unknown 

data ignore value = 0 

band names = { 

 Gainoff (Mask (Resize (Band 1:Exported_Reclass_b1_1984.tif):Resize_b1_1984):Studyarea_mask_b1_1984)} 
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CHAPTER FOUR 

RELATIONSHIP BETWEEN CLIMATE VARIABLES AND FOREST 

DEGRADATION  

Abstract 

While there are relationships between traditional forest degradation indicators (FDIs), calculated from 

multispectral satellite imagery stacks, representing time-series, and climate variables, they have not been 

fully explored. In this study, therefore, FDIs were analyzed as indicators of the variations that occurred in 

the vegetation in the study area throughout time and space. A geostatistical analysis of climate was also 

conducted. To ascertain how historic climate variables related to FDIs, the computed FDIs from available 

multispectral image stacks were statistically related to historical climate variables, and in order to use such 

relationships to project FDIs, a multiple linear regression (MLR) model was developed. This research 

examined both the usefulness of some FDIs in explaining patterns of forest disturbance and established 

quantitative relationships between useful FDIs and climate variables.  

In this study, forest degradation was monitored from 1972–2020. The composite forest degradation 

indicator (CFDI) was computed using principal component analysis (PCA) resulting from the integration 

of seven FDIs—normalized difference vegetation index (NDVI), net primary productivity (NPP), 

normalized burn ratio (NBR), enhanced vegetation index (EVI), tasseled cap brightness (TCB), tasseled 

cap greenness (TCG), and tasseled cap wetness (TCW), which were calculated from the satellite images 

(Landsat and MODIS) using ENVI. The relationships between remote sensing indicators (CFDI, NDVI, 

and NPP) and climate variables—temperature (T), precipitation (P), evapotranspiration (ETo), and 

moisture availability (estimated from two regimes: MA1 and MA2)—led to the creation of spatially-

explicit maps of relevant climatic variables as well as long-term historical forest degradation maps, which 

were developed via the trajectory analysis computed with the LandTrendr algorithm (Kennedy et al., 

2010). 
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This study focused on an analysis of the forest dynamic changes in the study area during the period from 

1972–2020. The impacts of changes in T, P, ETo, MA1, and MA2 on forest vegetation conditions were 

studied from the perspective of the effects of temperature and water deficit. To understand the nature of 

the quantitative relationships between climate variables and FDIs, simple and MLR analysis was 

employed and an MLR model was developed to predict future dynamic changes in forest cover in the 

study area. 

The findings for 1972–2020 indicated climate variables P, MA1, and MA2 had the strongest correlation (-

0.95, -0.91, and -0.93, respectively) with CFDI, which enabled for computing an MLR model with a high 

coefficient of determination, R2 (0.93), and low RMSE (0.28). Additionally, findings for 2001–2020 

showed climate variables P, MA1, and MA2 had the most significant correlation with CFDI, NDVI, and 

NPP. This strong relationship allowed for the establishment of future models with a high coefficient of 

determination, R2 (0.83, 0.80, 0.92, respectively), and low RMSE (0.39, 0.38, 0.26, respectively). 

Finally, projected MLR models were established based on the highly correlated FDIs (CFDI, NDVI, and 

NPP) and climate variables (P, MA1, and MA2). 

Trends in temperatures within and near the study area are showing a rise in daily average temperature, 

which was 4.90C, 5.10C, and 5.20C during the periods from 1971–2000, 1981–2010, and 2011–2020, 

respectively. Additionally, the Ontario study area forests displayed evidence of moisture stress, 

particularly in the summer months (June–August) from 1971–2010. The results showed forest cover will 

likely experience future losses and large fluctuations, putting the area’s ecosystem at risk. Therefore, this 

method of monitoring forest degradation by integrating remote sensing tools could assist and improve 

climate change risk management, in particular by providing data on climate impacts on forest/vegetation. 

Keywords: Forest disturbance and degradation, forest degradation indicators, Ontario forests, drought, 

LandTrendr. 
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4.1 Introduction  

There is a deficiency of long-term, reliable, measured, and well-distributed meteorological variables in 

the study area of Ontario, Canada. These variables include, but are not limited to, the following: 

precipitation (P), ground runoff, evapotranspiration (ETo), soil moisture, including snow-water 

equivalent, and temperature (T). Many studies would benefit from having well-distributed (both in terms 

of time and space) and reliable estimates of these meteorological variables, which are crucial in many 

fields, including land use/land cover (LULC) planning and climate change studies. Unfortunately, in 

Ontario, Canada, this type of data is so incomplete (both temporally and spatially) that it has limited 

usefulness in ecosystem studies. This is a result of two factors: 1) the lack of resources to measure these 

variables over a large area and 2) the difficulty in measuring these variables reliably and accurately. 

Additionally, despite the relatively high density of meteorological stations in certain areas of the country, 

other parts (especially remote areas) have very few measurement stations (e.g., northern Ontario).  

In fact, several studies have identified the importance of monitoring LC changes and vegetation dynamics 

for modelling the impacts of both climate and hydrological scenarios (Montandon and Small, 2008; 

Olmos-Trujillo et al., 2020). Widely used multi-spectral and multi-temporal images, which are sensed 

from Earth observation satellite systems, such as Landsat 8, can be employed in the study of LCLU 

changes over space and time, including mapping of vegetation and forest resources (Cui et al., 2013; 

Olmos-Trujillo et al., 2020). As vegetation responds to environmental characteristics, vegetation indices 

(VIs) have been found to be correlated with climatic (e.g., T and P) and other significant environmental 

variables (e.g., geomorphology and altitude) (De Keersmaecker et al., 2015; Olmos-Trujillo et al., 2020). 

In order to monitor forest cover changes over time, forest degradation indicators (FDIs) computed from 

remote sensing imagery have proved particularly useful. Recent studies have shown the high efficiency 

of some indices (e.g., NDVI, NPP, LAI, and EVI) for the evaluation of spatial and temporal changes that 



139 
 

 
 

occur over forested areas across various scales (Prince et al., 2009; Fensholt et al., 2012; Eskandari 

Dameneh et al., 2021). Furthermore, FDIs are useful in the evaluation of ecosystem conditions (Zheng et 

al., 2018). The most common computed VIs (e.g., NDVI, NBR, EVI, TCT, and NPP) derived from 

multispectral imagery are also taken as indicators of vegetation and ecosystems conditions. These use the 

reflectance from vegetation and function under the same constraints as the source Landsat surface 

reflectance and MODIS products. They have their basis in the measurement of the radiation intensity of 

certain bands of the electromagnetic spectrum emitted, reflected, or transmitted by vegetation, as well as 

the estimated quality, development, and quantity of the vegetation (Vermote et al., 2016; Krakauer et al., 

2017). Correlations between the NDVI and climate variables (e.g., T and P) are widely employed in many 

studies. However, other indicators (e.g., NPP, NBR, EVI, TCT) are also used as they are effective 

indicators of the response of different aspects of forest vegetation analysis in semi-arid/humid regions, 

such as the study area in central and northeastern Ontario, Canada.  

While it is true that NDVI is one of the most commonly employed VIs, other indices have improved 

spectral surface response and attenuated other potentially confounding factors (e.g., soil, atmosphere, and 

light conditions) for exploration. In other studies, VIs have been compared based on a variety of different 

criteria (Fatiha et al., 2013; Olmos-Trujillo et al., 2020). For instance, Piedallullu et al. (2019) examined 

how climate change impacts vegetation cover; and Birtwistle et al. (2016) employed an alternate method 

for mapping the spatial and temporal variation of precipitation input along transient stream channels 

through NDVI taken from Landsat Thematic Mapper imagery. 

In this study, the relationships between climate variables (T, P, ETo, and MAs) and FDI variables (NDVI, 

NPP, NBR, EVI, TCB, TCG and TCW) were identified and analyzed. In order to conduct this evaluation, 

remote sensing, GIS, and geostatistical tools were employed. The NDVI, NBR, EVI, TCG, TCB, and 

TCW were computed from multispectral Landsat imagery from 1972–2020, and NPP was obtained from 
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the MODIS platform for the series 2001–2020. A multiple linear regression model was developed, based 

on the most correlated FDIs and climate variables. The highest correlated variables were used to develop 

a multiple regression model for future prediction. In this study, all these indicators were combined for the 

creation of a novel, innovative, and more informative composite forest degradation indicator (CFDI) and 

the development of predictive models of future degradation (2050). 

4.2 Background 

According to the WMO, a climate normal is an arithmetic mean for a fixed 30-yr period that ends in a 

“10s” year (WMO, 1989). It is meant, in particular, to describe the mean seasonal cycle in terms of 

standard meteorological variables (e.g., P and T). Climate normals are commonly employed as baselines 

when characterizing and describing a particular meteorological dominant condition in an area. They are 

problematic, however, since, according to Arguez and Vose (2011), “climate normals are calculated 

retrospectively, but are often utilized prospectively.” So, when climate normals are compared with 

weather forecasts, there is an assumption that they provide an estimate of the expected weather up to a 

certain date. However, this does not account for ongoing warming in temperatures. Additionally, when 

monthly datum is included in a temperature- and precipitation-normal calculation, no more than three 

consecutive days and no more than a total of five days can be missing for that particular month, which is 

known as the WMO “3 and 5 rule” (Braun et al., 2015).  

As part of the process of creating spatial models, it is necessary to decide between more complete records 

and greater station density. So, in Canada, as in other parts of the world, one must make choices related 

to station data to be used for such models. Prior studies have resulted in the creation of a wide range of 

spatial models that cover various temporal and spatial extents (Price et al., 2000; Hutchinson et al., 2009; 

McKenney et al., 2011). While extensive testing has been part of these efforts, no study has revealed the 

relationship between monthly normals record completeness and model quality (Environment Canada, 
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1986a, b; Natural Resources Canada, 2011a, b). Instead, research in Canada has generally held that more 

station data are preferable, even when they are incomplete for the period, although many regions (such as 

central and northeastern Ontario) suffer from low station density. 

As the Canadian climate network has temporal and spatial limitations, in this study the use of short- and 

long-term climate normals was optimized for the generation of spatial grids for monthly Tmax and Tmin, as 

well as precipitation normals. Daily minimum and maximum temperature and precipitation are variables 

employed in a wide variety of applications related to moisture balances. As a result, many experts have 

attempted to summarize them in various ways. For instance, daily minimum and maximum surface 

temperature can be accessed in the form of monthly averages for many 30-yr “normal” periods (e.g., 

1971–2000, 1981–2010, 1991–2020). 

Evapotranspiration (ETo) involves the transfer of water into the atmosphere due to evaporation from the 

surface of soil or water and from transpiration from plants. ETo returns to the atmosphere the moisture 

brought down by precipitation. It also has a close relationship with energy as measured indirectly by 

temperature (Tmax, Tmin, Tmean) and other climate parameters (e.g., wind velocity). The availability of 

moisture (MA) for plant growth, strictly speaking, should consider factors such as soil water holding 

capacity, infiltration rates, and ground water retention. However, for the purpose of a simple atmospheric 

balance, without incorporating the complexities of the soil and sub-soil media, it is calculated using a 

simple metric of cumulative P–ETo. The sum total of evaporation and transpiration processes, ETo 

depends on many conditions (e.g., radiation, energy, and wind) and vegetation factors (FAO-56; Allen et 

al., 1998). ETo links the energy and water cycles, which makes it an important contributor of water vapor 

to the demands of the atmosphere (Salam and Islam, 2020; Jerin et al., 2021). It is also a controlling factor 

in the water requirements for the growth of vegetation, amount of runoff from the soil, water loss from 

bodies of water and reservoirs, and water requirements for ecological sustainability. As a crucial player 
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in the water cycle, the estimation of ETo is fundamental to estimate a water balance, which in turn impacts 

every organism in ecosystems and, therefore, a wide range of sectors, including forestry (Ajjur and Al-

Ghamdi, 2021). 

WMO prescriptions are employed to obtain significant analyses for a full 30 years of observations (WMO, 

2008); however, it must be considered that this would result in ETo underestimation stemming from 

ongoing climate change (Arguez and Vose, 2011). So, to ensure reliable and uniform ETo calculations, 

the FAO (FAO-56; Allen et al., 1998) has simplified the process through a parametrization of the Penman-

Monteith equation (Trajkovic and Kolakovic, 2010; Valiantzas, 2013) resulting in the most reliable 

method for estimation of ETo. The calculation of potential ETo is done in standard conditions, that is to 

say, in an area that is completely vegetated, is uniform, and has a permanent water supply with shading. 

The estimation of ETo is influenced by several factors, such as T and P (Tabari and Talaee, 2014), vapor 

pressure (Irmak et al., 2006), relative humidity (Gong et al., 2006), and LU (Eichelmann et al., 2018). 

ETo is also reliant on a number of climatic parameters (e.g., solar radiation (SR), sunshine duration (SD), 

air temperature (T), relative humidity (RH), and wind speed (WS)), as well as their complex interactions, 

for which the ETo Calculator tool (FAO-56; Allen et al., 1998) offers default values for standard 

conditions that are identified and entered by the user of the tool. 

Fully understanding and predicting how forests respond to disturbances is crucial for the management of 

forests and source-water areas, such as the study area, with a relatively high ETo regime. There is a 

particular and pressing concern in areas where a combination of factors (e.g., global warming and past 

management) has had negative impacts on the environment, including the following: (i) intense and wide-

ranging wildfires (McKenzie et al., 2004; Westerling, 2006; North et al., 2015a), (ii) high incidence of 

forest mortality related to drought (Allen et al., 2010; Anderegg et al., 2015), and (iii) a reduction in runoff 

(Barnett et al., 2005; Goulden and Bales, 2014). The response of runoff to ETo could be greater than its 



143 
 

 
 

response to disturbances and interannual changes in temperature and precipitation, depending on many 

other contextual circumstances. Therefore, evapotranspiration is an important metric for determining 

changes in the moisture balance which will determine moisture availability for forested areas. Many 

studies in different ecosystems (Jiapaer et al., 2015; Ren et al., 2020) over recent decades have shown 

how vegetation dynamic changes are closely related to climatic variation. So, the analysis and prediction 

of vegetation dynamic changes, especially with the increasing influence of climate change, are key to 

understanding its significance in determining carbon sequestration in vegetation biomass, litter, and soil 

organic matter (Fu et al., 2010; Zhou et al., 2020). 

Since forests are dynamic systems, they can react to biomass reductions in a variety of ways in relation to 

their water usage (Tague et al., 2018). With the emergence of high-confidence spatial-ETo estimates that 

are driven by a strong relationship between vegetation greenness estimates (e.g., NDVI, and others, 

derived from multispectral satellite images, and ground-point measurements of ETo in various 

ecosystems; Goulden et al., 2012; Goulden and Bales, 2019), moisture balance can be estimated with high 

spatial resolution across forested landscapes. For forest management, this ETo mapping tool allows the 

user to estimate the ETo changes resulting from previous wildfires and fuel treatments (Roche et al., 

2018), as well as predict future changes from treatments, disturbances, and degradation (Roche et al., 

2020). Additionally, ETo, which functions as another basic part of the hydrological cycle and is related 

to water and energy exchange between the Earth’s surface and its atmosphere, has the capacity to 

determine the energy and water transport in the crucial soil-vegetation-atmosphere system (Shi et al., 

2017; Zhou et al., 2020). Many studies have also been conducted on how ETo impacts vegetation dynamic 

changes (Sun et al., 2012; Zhang et al., 2019; Zhou et al., 2020). As a thorough comprehension of ETo 

has the potential to assist in ecosystem services and water resource management, it is worthwhile to 
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explore the influence of ETo on NDVI, including other VIs, to ensure vegetation changes are monitored 

in a dynamic way (Zhou et al., 2020).  

In every region, climate is distinctly characterized by precipitation and temperature. In regions where the 

ETo exceeds P, there is a moisture deficit, which falls into a variety of classes. For instance, the South 

Saskatchewan River Basin (SSRB) is classified as semi-arid, dry-subhumid, sub-humid, or humid 

according to the definitions below (Marchildon, 2009): 

Semi-arid: P is less than 1/2 ETo (P<0.5 ETo) 

Dry-subhumid: P ranges from 0.5 to 0.6 ETo  

Subhumid: P ranges from 0.6 to 1.0 ETo 

Humid: P is greater than ETo (P>ETo) (MA1= P-ETo is positive) 

Drought, which can be defined as a deficiency of P relative to ETo over an extended period (a season or 

more) leading to a water shortage with adverse impacts on living organisms, is a crucial threat to the future 

functioning of the boreal forest ecosystems. Evaporative demand, which can be represented by the 

equation to estimate ETo, is a result of the combined effects of radiative heating and atmospheric humidity 

deficit (e.g., Monteith and Unsworth, 2008). The estimation of ETo, which can be defined as the estimated 

water vapor loss from vegetation that is healthy and productive and growing in soil with adequate 

moisture, is obtained with simple equations that employ either a combination of long-term monthly 

temperature and solar radiation-related data (Jensen-Haise method; see Hogg, 1994) or only temperature 

data (simplified Penman-Monteith method, Hogg, 1997).  

Hogg (1997) detailed the development of a regional climate moisture index (CMI), which is equivalent to 

moisture availability (MA). The MA is calculated as P minus ETo, wherein P is the (daily or monthly) 

average precipitation (including rain and snow melt) and ETo is the daily or monthly ETo, both of which 

are expressed in cm or mm of water per year. If the MA values are positive, this means conditions are 
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moist or wet and that there is enough precipitation to sustain a forest with a closed canopy. On the other 

hand, negative MA values are an indication of dry conditions that, in the best-case scenario, have the 

ability to sustain discontinuous forests. The MA values are positive (P>ETo) in the boreal forest, whose 

landscape is primarily composed of conifers and peatlands, and water runoff on an annual basis is 

sufficient to ensure and maintain ongoing stream flow and lake levels that are stable (Campbell et al., 

1994). In contrast, where MA values are negative (p<ETo), it is rare to find conifers or peatlands. 

Based on a moisture balance model, the length of growing period (LGP) quantifies the length of time 

during which sufficient moisture is available to sustain the growth of vegetation. It can be defined as the 

number of days when the temperature allows for plant growth and soil moisture supply is greater than half 

ETo (P>0.5ETo). When considered in combination with common precipitation distribution patterns, such 

a definition accounts for moisture requirements of vegetation in the early growth stages and at 

maturation/ripening that are lower than full ETo, and that in between the requirements are close to full 

ETo. Growth periods during which there is a sub-period when precipitation exceeds full potential ETo are 

labelled normal LGPs, as opposed to intermediate LGPs, where precipitation is greater than 0.5 ETo but 

does not attain full ETo. These different LGP types are considered in the assessment of vegetation yield 

potentials (FAO, 1978–81). Basic climate data are employed in the calculation of derived climate 

variables, daily moisture balance, ETo, T zones, as well as LGP pattern and length. The LGP analysis for 

potential circumstances that might imply increased CO2 concentrations takes into consideration the 

slowing down of transpiration that results from the partial closure of leaves’ stomata, by means of the 

modification of the canopy resistance term for the ETo formula. Determining the potential changes in 

LGP of vegetation is one means of assessing the impact of climate change as studies have shown how 

plants’ LGP can be significantly increased or decreased as a result of climate change. In order to develop 

a detailed picture of the effects of climate shifts on the growth and development of plants (which can be 



146 
 

 
 

positive or negative), LGP can either be combined with or compared to other elements of projected climate 

change (e.g., changes in T).  

In terms of interpolation techniques for climate data, kriging is advantageous due to its greater accuracy 

since the weight selections are not arbitrary; rather, these are chosen depending on the behavior of the 

semi-variogram function over the space (Kitanidis, 1997). Kriging also furnishes the means to make an 

evaluation of the magnitude of estimation error (Kitanidis, 1997). This technique fits the theoretical 

variogram to the experimental variogram by automatically adjusting the model parameters obtained from 

simulation-based optimization (Krivoruchko, 2012a). Kriging with an external drift appears to have 

greater sensitivity with respect to the quality of radar data (Berndt et al., 2014). EBK has the following 

positive characteristics: the specification of the prior distributions for the model parameters is not 

required; it permits the non-stationarity of moderate local and large global data; and locally, it transforms 

data to the Gaussian distribution, if necessary. EBK allows for varying measurements of error; employs 

covariates in order to enable co-regionalization estimation, if needed. Moreover, EBK works faster and 

produces outputs that are reliable resting on default parameters. The use of EBK in analysis and spatial 

prediction (Esri, 2019a, c; Krivoruchko, 2012; Krivoruchko and Frączek, 2015) has been conducted 

through software applications. Given its features, this study used EBK for the interpolation of the climate 

variables within multi-climate datasets of the study area by first selecting the best-fitting EBK semi-

variogram model to understand the spatial and temporal variability of the research zone daily multi-

climate variables.  

The overall objective of this research was to ascertain how changing environmental conditions impact 

forest degradation in the study area, by conducting an analysis of the vegetation dynamic changes during 

the period from 1972–2020, and projecting changes in 2050. Accounting for the effects of T, P, and ETo 

on vegetation from the perspective of water deficit, multiple linear regression analysis was employed as 
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the basis for developing predictive models. With these predictive models and the meteorological data from 

general circulation models (GCMs), specifically from CMIP5 experiments, the future dynamic changes 

of forest degradation in the study area were projected, assuming the relationships found with historic data 

will remain unmuted and can be projected into the future. In particular, this work aimed (i) to use the 

established methodological framework to assess the trends in forest cover change in the region during the 

longest period possible (e.g., 1972–2020), and the relationship between the trends of forest cover change 

and their underlying causative factors, particularly their relationship to climate change, and (ii) to find out 

the dependence of disturbance or degradation on or at least its degree of correlation with climate variables. 

4.3 Materials and methods  

Daily minimum and maximum temperatures (Tmin, Tmax), and precipitation (P) are data frequently used 

for climate assessments. Historical climate (daily and monthly) data for the period from 1972–2020 were 

obtained from the official climate data sources of Environment and Natural Resources Canada. In 

addition, historical Canadian climate normals data were acquired from Environment and Climate Change 

Canada. Two 30-year climate normals datasets (1971–2000 and 1981–2010) were collected from 51 

weather stations inside and surrounding the study area, including a few stations in the Province of Quebec, 

in order to acquire accurate data within the rectangular perimeter of the research zone. These 51 stations 

(Figure 4.3) meet the WMO “3 and 5 rule” described above (Braun et al., 2015). As a large portion of the 

study area is uninhabited, it has very few weather stations and sparse observed climate data. Thus, only 

precipitation and temperature data are available from observed meteorological datasets over the whole of 

the study area. 

For this study, it was determined that at least 20 years of data must be available for a station to be included 

in the analysis. This goal was to include the largest number of meteorological stations possible for 

maximum spatial coverage and to capture the pattern of temporal variability. Stations were distributed 
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uniformly across the study area with a slightly lower station density in the north (Figure 4.3). To mitigate 

the boundary edge effect during the spatial interpolation of each variable, some station data were collected 

from the neighboring province of Quebec. Station location and elevation data (which ranged between 69m 

and 490m) were also recorded. The period of 1971–2000 was chosen since data from the maximum 

number of meteorological stations was available in Ontario, even if the records are incomplete for the 

period being studied (Environment Canada, 1986a, b; Natural Resources Canada, 2011a, b), particularly 

in a region where station density is relatively low. 

Seven different VIs derived in this study as FDIs, such as NDVI, NPP, NBR, EVI, TCG, TCB, and TCW, 

were calculated using ENVITM 5.3 software. These were employed to analyze the relationship between 

FDI variables and climate variables (T, P, ETo, MA1, and MA2) from 1971–2020. The selected indicators 

were calculated from the Landsat multispectral imagery, including moderate resolution imaging 

spectroradiometer (MODIS) images. Since Landsat images have a spatial resolution of 30m, the MODIS 

products (MODIS NPP, etc.) were resampled to 30m, to match the spatial resolution of the Landsat 

imagery. Pearson correlation coefficients (r) between FDIs and climate variables were investigated. The 

correlation matrix is shown in Table 4.5. All FDIs were combined into a CFDI variable to obtain the most 

informative FDI. This was achieved using an image fusion technique based on PCA within the ENVI 

computing environment. In order to ensure consistency with the indicators’ data run length (i.e., from 

1972–2020), meteorological data from 1971–2020 were also selected to match the dates. Unfortunately, 

1991–2020 climate normals data have not yet been released, so a manual calculation was used on the 

2011–2020 daily historical data. 

ETo refers to the atmospheric demand for evaporation and transpiration from a reference static vegetation 

surface when there are no water limitations and is calculated with the Penman-Monteith equation 

furnished by the Food and Agriculture Organization of the United Nations (FAO) (Yao et al., 2018; Allen 
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et al., 1998). This method requires the following data: Tmax and Tmin, daily average dew-point T (or the 

equivalent, which is vapour pressure or vapour pressure deficit), downward shortwave radiation, and wind 

speed. The software tool (ETo Calculator) in which the ETo method was implemented is capable of 

providing adequate default values for difficult-to-obtain variables (e.g., vapour pressure, radiation, etc.). 

Climate normals data for the two historical periods (1971–2000 and 1981–2010) were compiled for ETo 

calculation, according to the guidelines from The ETo Calculator Reference Manual Version 3.2 (FAO, 

2012). Some essential intermediate formulas and procedures were necessary to solve the equation selected 

to calculate reference potential ETo based on the Penman-Monteith method (Hargreaves and Samani, 

1982; Allen et al., 1998). The observed ETo was unavailable in the study area. Therefore, the Penman-

Monteith (FAO-56) method was used to calculate the ETo, which is recommended as the ideal technique 

by the FAO when observed ETo is not readily available (Allen et al., 1998; Feng et al., 2017), something 

that has proven true for various climate settings and time-step calculations lacking local calibration 

(Valiantzas, 2013; Feng et al., 2017; Islam et al., 2019). The estimation of ETo from the Penman-Monteith 

simplified method is obtained from equation 4.1 below:  

 ETo =
0.408∆(Rn−G)+ 

900
(T+273)

u2
(es−ea

)

∆+(1+0.34u2
)

  (4.1) 

Where ETo indicates the reference potential evapotranspiration (mmday-1); Rn represents net radiation 

(MJm-2day-1); G represents soil heat flux density (MJm-2day-1); T indicates Tmean (0C); es stands for mean 

saturation vapor pressure at air T (KPa); ea represents actual vapor pressure derived from RH mean (KPa); 

∆ represents the slope of saturation vapor pressure curve at Tmean (kPa0C-1); ϒ indicates theoretical 

psychrometric constant (KPa
0C-1); and U2 represents wind speed at 2m above the ground (ms-1). 

The FAO-56 Penman-Monteith equation was also employed to calculate daily soil moisture levels. To 

determine ETo rates on a surface, this equation makes use of the following four climatic parameters 

averaged over each day: wind speed (WS) (ms-1), solar radiation (SR) (MJm-2day-1), air T (0C), and dew-
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point T (0C) (Zontarelli et al., 2010). On days with copious precipitation, the moisture lost through ETo 

is replenished, which will raise the moisture content of the soil. Reference ETo rates (mm) that have been 

estimated by the Penman-Monteith method rely on the assumption that the available water is unlimited, 

which negates the moisture-retention capacity of different soils. Alternately, physical-based approaches 

to ETo scaling necessitate a number of attributes (spatially resolved radiation, humidity, temperature, 

wind speed, etc.) that display substantial variation over small distances, resulting in highly uncertain 

extrapolations of mountainous meteorological conditions on a fine scale (Goulden et al., 2012). 

The climate moisture index (CMI) shows a good correlation with tree growth in the ecosystems of 

temperate and boreal forests (Berner et al., 2017; Hogg et al., 2013). CMI (MA) (cm/month-1) (mmday-1) 

values were calculated as precipitation (P) (mm/day-1) minus ETo (mm/day-1) (P–ETo) (based on Hogg, 

1997). ETo, which was estimated in mm/day-1 and included the expected rate of water vapor loss to the 

atmosphere, was calculated from average daily Tmin and Tmax (0C) for each month (monthly average of 40 

years from 1971–2010) of climate normals data using the FAO-56 (Allen et al., 1998) and “ETo 

Calculator” version 3.2. In this study, a 12-month window (January to December) was employed for MA 

(P–ETo) calculation. Then, the MA was calculated using the daily average of 12 months for one station. 

Positive MA values indicate wet or moist conditions, whereas negative ones denote dry conditions. The 

ETo, MA1, and MA2 were calculated in the same way for all 51 stations, where MA1=P-ETo and MA2=P- 

0.5ETo. In this study, daily results for ETo were used only after comparing the performance of the 

calculated daily and monthly calculations. The P–ETo difference was also employed to calculate the soil-

moisture deficit. Statistical modelling (as well as interpolation methods) were conducted using 

spreadsheet in ArcGISTM and ArcGIS ProTM software for the analysis. 

Derived 40-year average daily raster/gridded maps of MA1 and MA2 involve an estimate of the moisture 

amount available for runoff or storage recharge (i.e., excess) or the amount of moisture required from 
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storage (i.e., deficit) to maintain estimated annual/daily ETo. The reason for computing two values of MA 

was to attempt to understand the relationship between FDIs and two levels of moisture deficit or 

availability, whereby MA1 is more restrictive than MA2, which is more permissive, given that only half 

of the ETo is subtracted. The latter MA is employed in global assessments (FAO, 1978–81) to calculate 

the LGP for vegetation.  

The linear trend for a time series analysis is computed with the least square method, which is represented 

by linear regression equation (LRE) 4.2: 

Yn(t) = a0 + a1t  (4.2) 

Where the slope a1 is the estimated trend, and a1X10 is called the climate tendency rate, which presents 

its change rate per decade. A negative value of a1 signifies a negative trend, and a positive value is 

indicative of a positive trend. 

Multiple linear regression (MLR) 

MLR, which employs least squares, involves minimizing the sum of the squares of the deviations of the 

observed response from the fitted response (Naoum and Tsanis, 2003; Zhang et al., 2018). With CFDI 

being the dependent variable, a model was constructed involving the environmental variables and their 

corresponding parameters. The model’s general form is presented below: 

CFDI = β0 + β1X1 +β2X2 + . . . +β5X5  (4.3) 

Where CFDI is the degradation indicator; X1–X5 are T, P, ETo, MA1, and MA2, respectively. 

Furthermore, β0—β5 are the corresponding parameters of the regression function. Stepwise regression was 

employed to avoid multicollinearity and LRE overfitting. For the whole time period, the significant 

correlation between VIs/FDIs and climate variables was found to be at the 0.05 significance level, while 

the other four factors had no significance at the 0.1 level. Thus, the regression relationship was founded 

based on CFDI, P, MA1, and MA2. 
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The equations to predict the CFDI values from climate variables were constructed on the basis of the MLR 

model. For each grid, the CFDI values can be expressed as a function of T, P, ETo, MA1, and MA2. 

Therefore, using the values of the indicators from 1972–2020 as the dependent variables and the climate 

variables during the period from 1971–2010 as the independent variables, the regression equation could 

be expressed in the following manner: 

CFDI = β0 + β1T + β2P + β3ETo + β4MA1 + β5MA2 + ε  (4.4)  

Where β0=intercept, β1–β5 are the coefficients (slopes) of the multiple regression equation (independent 

variables), and ε is a constant/residual.  

In order to provide spatially explicit models of variability, the regression equations were built in the raster 

calculator of GIS software in order to generate raster maps of elevation, T, P, ETo, MA1, and MA2 

meteorological variables over the entire study area at 30m spatial resolution. Additionally, given the fact 

that the data from the weather stations and the Landsat products came from different sources with different 

reference projections for the environment under study, ArcGISTM was employed to adapt them to a 

consistent geographic coordinate system. During this process, the weather station locations were 

converted to the point geometry feature class with the ArcGIS tool. Moreover, mean meteorological 

attributes (T, P, ETo, MA1, MA2) were spatially interpolated to create several weather layers. The method 

chosen for spatial interpolation and spatial resolution of the meteorological stations is significant because 

it could have an effect on the ETo spatial pattern (Tang et al., 2013; Feng et al., 2017). For this study, the 

EBK method was shown to have the lowest mean error when compared to other interpolation methods; 

therefore, EBK was used in the creation of T, P, ETo, MA1, and MA2 raster/gridded maps in the ArcGISTM 

environment. An output cell size was chosen to match the spatial resolution (30mX30m) of FDIs. The 

final output consists of daily average maps for the study period from 1971–2010 using the daily average 

climate normal data from that period. Additionally, mean annual NDVI, NPP, and CFDI products series 
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and mean annual P, MA1, and MA2 gridded maps were overlapped for statistical analysis of the forest 

degradation trend, resulting from analysis with the LandTrendr algorithm (details in Chapter 3). Finally, 

least squares regression model fit was employed to examine the relationships between the climate 

variables and FDIs. 

The goal of this study was to produce the most accurate gridded dataset of T, P, ETo, MA1, and MA2 for 

the study area based on measured climate normals data from 1971–2010 so that relationships between 

climate and forest degradation indicators could be explored. In order to create useful gridded 

meteorological datasets from the station data, many different methods exist to interpolate such data. 

However, P and T are the only meteorological variables measured throughout the study area with enough 

spatial and temporal density to guarantee meaningful results from spatial interpolation. The choice of an 

accurate method of optimizing the interpolated values could be subjective. However, this is a crucial step 

in producing accurate distribution maps of phenomena that are in and of themselves continuous, such as 

T and P (Addis et al., 2016; Wright, 2020). 

Various semi-variogram models were considered to model the spatial variability of meteorological 

variables (i.e., Spherical, Circular, Exponential, Gaussian, K-Bessel, J-Bessel, and Hole Effect). They 

were scrutinized for their significant effect on predicting unknown climate variable values. Cross-

validation focusing range parameter estimation was used in this study (Ali et al., 2021) to optimize the 

semi-variogram models and associated parameters, including nugget, range, and sill (Hunter et al., 2020). 

Li and Heap (2011) reviewed 53 studies and 72 interpolation methods/sub-methods frequently used in 

environmental sciences. Their results revealed that overall, kriging methods display better performance 

than non-geostatistical methods at annual or monthly time scales (Li and Heap, 2008; Li et al., 2011; 

Bolivar, 2020). In order to ascertain the best-performing method, the choice of parameters/models (e.g., 

semi-variogram models) among other criteria is significant in the accuracy of results. Unfortunately, 
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finding the most robust method for a certain study is generally a long process and affected by decisions 

on the acceptable prediction error for a particular location and variable of interest (e.g., soil properties). 

To determine the optimal methods for spatial prediction, standardized indicators were considered: as MSE 

represents the standardized error average, it should come close to zero, in addition to RMSE, which 

denotes the distance the expected values deviate from the real value, with one representing the ideal match 

between predicted and measured. For the interpolation process, the value with the lowest residual was 

deemed to have the best reliability.  

The interpolation of daily climate/multi-climate data, which was done from the irregularly spaced station 

locations to the nodes present on a regularly spaced 30m grid, was completed with the use of the EBK 

spatial interpolation algorithm. Despite the exploration of other methods (e.g., kriging, thin plate splines), 

the low topographic complexity of and high station density in the study area showed relatively high-

quality results with the EBK interpolator. The present study employed EBK in an ArcGIS Pro 

environment to confirm its robustness and also visualize the spatial variability of the meteorological 

variables (which can also create a relationship with FDIs, including CFDI). As previously stated, EBK 

automates the most complicated feature, which is the semi-variogram modelling, in the construction of a 

valid kriging model, which is also the aspect of spatial interpolation that is the most challenging within 

the geostatistical methods (Gupta et al., 2017). EBK was also selected since it furnishes more accurate 

spatial estimation of the meteorological variables (T, P, ETo, MA1, and MA2). Additionally, its 

performance is extremely high in goodness-of-fit tests of r (correlation coefficient) and RMSE compared 

to other kriging methods (Gupta et al., 2017). 

In this study, the spatial interpolation of the datasets was performed for the average of 40 years (1971–

2010) using the ordinary kriging (OK) and EBK geostatistical modelling techniques. Prior to their 
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application, the collected datasets were assessed for their regularity and correctness. Subsequently, 

attributes that were relevant to the data locations were assigned in the GIS platform.  

Cross-validation assesses the results of a statistical analysis concerning an independent dataset (Chen and 

Liu, 2012). It helps in the selection of the optimal geostatistical model that furnishes the best predictions 

over the space (Tveito et al., 2008). It is primarily employed to estimate a predictive model’s accuracy 

and to establish the objective to gain a high level of prediction accuracy. Additionally, it has been widely 

used to evaluate the accuracy of geostatistical modelling techniques. There are two goodness-of-fit criteria 

(i.e., Pearson correlation coefficient (r) and coefficient of determination (R2)) that are generally employed 

with the cross-validation technique for determining the best-fit model in hydrological studies. 

For spatial data analysis, large datasets can generally be divided with the result that the selected EBK 

model can be successfully fitted to the data in each subset. The EBK’s default model is intrinsic random 

function kriging (IRFK) with power semi-variogram. This effectively predicts locally varying data and 

generally functions well with dependent stationary data. In order to decrease computation time, the default 

model employs only the 10 nearest observations. Owing to their smaller number of model parameters, the 

IFRK models work much faster than other options. Therefore, as one might expect, the longest running 

time is seen in the model with the largest number of parameters, the K-Bessel with linear trend models, 

and data transformation (which was used for this study as the most flexible and accurate model). 
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For those using Geostatistical Analyst, there will be a difference in the semi-variogram modelling in the 

Geostatistical Wizard. As shown in Fig. 4.1, the semi-variogram model appears to have a zero “nugget 

effect” parameter in cases where individual measurement errors are furnished as EBK-model input, while 

the data variation at zero distance between the data locations is sustainable in instances where 

measurement errors are unavailable for geostatistical modelling. It should be noted that the nugget tab is 

missing in the former case. 

 

User-defined subsets are chosen or the parameters for the creation of new subsets are accepted or defined. 

Next, the default EBK model can be run by the user. Alternately, the generalized covariance model, the 

neighborhood search parameter, simulation number, and the model’s output before running the model can 

be altered. There is a geostatistical layer created by the software, which involves a data structure that 

stores both the source-data path and the parameters applied for interpolating values. The geostatistical 

layer is employed for map creation (quantile, prediction and prediction standard error, and probability of 

Figure 4. 1: Screenshot of the semivariogram model fitted to data, including other tabs 
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exceeding a specified threshold value), and to evaluate/update models already created in the Geostatistical 

Wizard. It is also possible to produce model diagnostics for point locations and separate data-subset 

summaries. However, rather than straight lines, the data transformation to Gaussian distribution and the 

chordal distance metrics are employed automatically on occasions where the linear mixed model (LMM) 

is used without covariates and the data coordinates are latitude and longitude, respectively.  

Various cross-validation parameters are employed to assess the performance of the different interpolation 

methods. This is a common statistical approach used to examine the exactness of interpolated data. Error 

determination is conducted through the estimation of the difference between each observed (measured) 

value and its predicted counterpart. These error tests should function as reasonable evaluation estimators 

that can be used to compare different interpolation models, thereby acting as the foundation for the method 

selection process. Generally, studies employ only one or two parameters to choose the most appropriate 

interpolation method. RMSE and R2 are the most commonly used for this process (Guenni et al., 1998; 

Lai et al., 2019). In applied geostatistics literature, it is generally recommended to employ a neighborhood 

with 8–16 observations (Chilès and Delfiner, 1999). The EBK data subsets are limited to 1000 

observations, all of which can be used for predictions. For unsampled locations in EBK, however, the 

maximum number of allowable observations for prediction is 64.  

The mean value of climate variables for 1971–2000 and 1981–2010 (average of two climate normal 

periods) were employed as baseline conditions in the current study. Mean climate variables for 

observation point were interpolated monthly in GIS (interpolated by EBK) to create a 30 X 30m grid (for 

a full account of the methodological workflow for this chapter, see Appendix 4). 

4.4 Results and discussion 

Two sets of 30-year climate normals data (1971–2000 and 1981–2010) were collected from 51 weather 

stations inside and surrounding the study area, including a few stations from the neighboring province of 
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Quebec, in order to acquire accurate data within the rectangular perimeter of the research zone. The data 

were compiled and prepared to calculate the ETo using the ETo Calculator tool (FAO-56), MA1, and MA2 

for all 51 weather stations. Table 4.1 shows a fraction of the calculated summary with one set of 30-year 

average climate normals data for the Combermere meteorological station.  

Table 4. 1: Summary of the 30-year climate normals (1981–2010) data for the Combermere station in Ontario 

(calculated as daily and monthly averages) 

Months 
Daily Average Monthly Average Daily Average Monthly Average 

T P ETo P ETo MA1 MA2 MA1 MA2 

January -11.6 2.0 0.6 63.3 18.6 1.442 1.742 44.700 54.000 

February -9.4 1.8 0.9 49.5 25.2 0.868 1.318 24.300 36.900 

March -3.8 1.9 1.5 58.9 46.5 0.400 1.150 12.400 35.650 

April 4.4 2.2 2.5 66.8 75.0 -0.273 0.977 -8.200 29.300 

May 11.5 2.5 3.9 78.2 120.9 -1.377 0.573 -42.700 17.750 

June 16.8 2.7 4.8 81.0 144.0 -2.100 0.300 -63.000 9.000 

July 19.4 2.4 5.0 75.4 155.0 -2.568 -0.068 -79.600 -2.100 

August 18.1 2.2 4.3 68.9 133.3 -2.077 0.073 -64.400 2.250 

September 13.4 2.9 3.1 85.5 93.0 -0.250 1.300 -7.500 39.000 

October 6.7 2.7 1.8 85.0 55.8 0.942 1.842 29.200 57.100 

November 0.4 2.6 1.0 79.0 30.0 1.633 2.133 49.000 64.000 

December -6.8 2.1 0.7 65.5 21.7 1.413 1.763 43.800 54.650 

Average 4.9 2.3 2.5 71.4 76.6 -0.162 1.092 -5.167 33.125 

Total    857 919   -62 397.5 

 

The figures for Combermere station indicated a moisture deficit from April to September in this very 

demanding area in terms of moisture availability, particularly during the summer months. In contrast, 

when precipitation is compared to 0.5ETo (MA2; as in most moisture balances used for estimation of the 

LGP, e.g., FAO framework, 1978–81), only in the mid-summer month (e.g., July) there appears to be a 

moisture deficit in the study region. Yearly average results also revealed a moisture deficit (daily and 

monthly average deficits were 0.162mm and 5.167mm, respectively in the Combermere station area) 

(Table 4.1), even though for some stations, an increase in precipitation was also accompanied by a 

moisture deficit due to the rise in temperature resulting in higher evapotranspiration. 
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Table 4. 2: Calculated results for comparison of the daily and monthly ETo, MA1, and MA2 for 21 meteorological 

stations 

  Daily Average Monthly Average 

Stations Lat Long Elev T P ETo MA1 MA2 P ETo MA1 MA2 

Arnprior Grandon 45.42 -76.37 107 5.7 2.2 2.4 -0.221 0.991 67.1 74.1 -6.942 30.100 

Beatrice 45.13 -79.4 297.2 4.8 3.3 2.6 0.671 1.975 99.8 79.6 20.183 59.996 

Chalk River 46.05 -77.37 121.9 5.6 2.4 2.5 -0.112 1.121 71.6 75.3 -3.692 33.963 

Chelsea QC 45.52 -75.78 112.5 5.9 2.7 2.4 0.283 1.483 81.7 73.3 8.425 45.071 

Combermere 45.37 -77.62 287 4.9 2.3 2.5 -0.162 1.092 71.4 76.6 -5.167 33.125 

Dorset Moe 45.22 -78.93 323.1 5.0 2.9 2.5 0.398 1.648 88.2 76.3 11.858 50.029 

Drummond Centre 45.03 -76.25 145 6.1 2.4 2.7 -0.267 1.066 73.0 81.4 -8.408 32.308 

Dwight 45.38 -78.9 404 4.3 3.2 2.4 0.880 2.063 98.8 72.3 26.550 62.675 

Haliburton 45.03 -78.53 330 5.0 2.9 2.7 0.257 1.599 89.5 81.9 7.542 48.504 

Huntsville 45.35 -79.17 320 5.5 2.8 2.4 0.415 1.623 86.2 73.8 12.383 49.275 

Luskville QC 45.53 -76.05 68.9 5.6 2.6 2.7 -0.084 1.245 78.4 81.2 -2.792 37.796 

Madawaska 45.5 -77.98 316.4 4.2 2.4 2.7 -0.358 0.997 71.6 82.7 -11.117 30.242 

North Bay 46.36 -79.42 370.3 4.2 2.9 2.2 0.709 1.784 87.1 65.7 21.400 54.229 

Ottawa CDA 45.38 -75.72 79.2 6.6 2.5 2.4 0.108 1.312 76.6 73.5 3.083 39.854 

Ottawa-McDonald 45.32 -75.67 114 6.4 2.6 2.5 0.133 1.358 78.6 74.8 3.825 41.229 

Powassan 46.12 -79.25 274.3 4.4 2.6 2.4 0.214 1.406 79.2 72.8 6.367 42.758 

Rapid D Joachims QC 46.2 -77.7 137.2 5.2 2.4 2.6 -0.135 1.157 74.6 78.9 -4.317 35.125 

Renfrew 45.48 -76.7 129.5 5.0 2.2 2.7 -0.489 0.844 66.3 81.5 -15.175 25.558 

Shawville QC 45.62 -76.47 167.6 5.1 2.5 2.5 -0.061 1.197 74.8 76.9 -2.092 36.338 

Sheenboro QC 45.97 -77.25 137.2 5.0 2.3 2.6 -0.309 1.012 71.1 80.7 -9.567 30.763 

Wright QC 46.07 -76.05 141.7 4.7 2.6 2.5 0.047 1.309 78.3 77.1 1.208 39.767 

 

Monthly average temperature data was applied as input, which is a prerequisite for the ETo Calculator 

tool. Canadian climate normals precipitation data were acquired as monthly totals. To determine the best 

performance (between monthly and daily average calculation for EBK application), the predicted scatter 

plots (best fit) were compared using monthly and daily average data. Daily average showed better 

performance (Figure 4.2a). 
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4.4.1 Results of calculations for 51 stations 

Daily averages of T, P, ETo, MA1, and MA2 were calculated for 51 meteorological stations for the climate 

normals of two 30-yr periods: 1971–2000 and 1981–2010 (Table 4.3). The results of the two sets of 

calculations were combined into one as a 40-yr average (1971–2010). 

 

 

 

 

 

 

Figure 4. 2 (a-b): The predicted best fit model with prediction errors of (a) daily average precipitation data and 

(b) monthly average precipitation data (Note that daily geo-statistical layer maps are smoother than monthly) 
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Table 4. 3: Daily averages of 40 years (1971–2000 and 1981–2010) for T, P, ETo, MA1, and MA2 were calculated 

for 51 climate stations (compiled/summary table) 

Stations Lat Long Elev T P ETo MA1 MA2 

Angers QC 45.55 -75.55 91 4.9 2.7 2.5 0.203 1.488 

Arnprior Grandon 45.42 -76.37 107 5.6 2.1 2.4 -0.223 0.986 

Beatrice 45.13 -79.4 297.2 4.6 3.2 2.5 0.692 1.986 

Chalk River 46.05 -77.37 121.9 5.4 2.3 2.4 -0.113 1.12 

Chelsea QC 45.52 -75.78 112.5 5.7 2.6 2.3 0.35 1.521 

Cheneville QC 45.9 -75.08 222.5 4.2 3 2.4 0.514 1.76 

Combermere 45.37 -77.62 287 4.7 2.3 2.4 -0.133 1.114 

Dorset Moe 45.22 -78.93 323.1 4.9 2.9 2.5 0.409 1.659 

Dunchurch 45.62 -79.88 268.2 4.7 3 2.5 0.5 1.778 

Dwight 45.38 -78.9 404 4.1 3.2 2.3 0.883 2.062 

Haliburton 45.03 -78.53 330 4.9 2.8 2.5 0.292 1.572 

Huntsville 45.35 -79.17 320 5.5 2.8 2.3 0.432 1.63 

Kemptville 45 -75.63 99.4 6 2.6 2.4 0.14 1.382 

Luskville QC 45.53 -76.05 68.9 5.5 2.5 2.6 -0.127 1.201 

Madawaska 45.5 -77.98 316.4 4.1 2.3 2.7 -0.375 0.976 

Minden 44.93 -78.73 274.3 5.4 2.8 2.7 0.142 1.508 

Mont Laurier QC 46.57 -75.55 244 3.7 2.7 2.4 0.323 1.537 

Muskoka 44.97 -79.3 281.9 5 3 2.5 0.511 1.763 

Nominingue QC 46.4 -75.08 274 3.4 2.9 2.3 0.569 1.761 

North Bay 46.36 -79.42 370.3 4 2.8 2.1 0.662 1.735 

Ottawa CDA 45.38 -75.72 79.2 6.4 2.5 2.3 0.125 1.317 

Ottawa McDonald 45.32 -75.67 114 6.1 2.5 2.4 0.157 1.369 

Powassan 46.12 -79.25 274.3 4.3 2.5 2.4 0.165 1.372 

Rapid Des Joachims QC 46.2 -77.7 137.2 4.9 2.4 2.5 -0.103 1.181 

Renfrew 45.48 -76.7 129.5 4.9 2.1 2.6 -0.454 0.872 

Russell 45.26 -75.36 76.2 6.3 2.6 2.5 0.123 1.392 

Shawville QC 45.62 -76.47 167.6 4.8 2.4 2.5 -0.049 1.208 

Sheenboro QC 45.97 -77.25 137.2 4.8 2.3 2.6 -0.267 1.042 

South Mountain 44.97 -75.48 84.7 6.2 2.6 2.4 0.124 1.364 

Wright QC 46.07 -76.05 141.7 4.4 2.6 2.5 0.092 1.347 

Chats Falls 45.47 -76.23 93.9 6.1 2 2.3 -0.304 0.891 

Chenaux 45.58 -76.68 84.1 5.8 2.2 2.5 -0.218 1.039 

Chute St Phillipe QC 46.65 -75.25 251.5 3 2.9 2.5 0.43 1.709 

Claybank 45.42 -76.4 106.7 5.6 2.2 2.4 -0.188 1.019 

Crystal Falls 46.45 -79.87 227.1 3.5 2.5 2.4 0.115 1.357 

French RC Dam 46.13 -80.01 198.1 4.7 2.5 2.4 0.077 1.294 

Katrine Doe Lake 45.53 -79.4 305.1 5.5 3.1 2.3 0.784 1.968 

Lake Traverse 45.95 -78.07 236.2 4 2.2 2.5 -0.365 0.925 

Maniwaki UA QC 46.3 -76.01 188.6 3.7 2.4 2.5 -0.022 1.231 

Notre Dame Du Laus QC 46.12 -75.63 213.4 4.1 2.6 2.3 0.316 1.508 

Petawawa A 45.95 -77.32 130.1 4.1 2.2 2.6 -0.441 0.896 

Petawawa Nat Forestry 45.98 -77.43 183 4.3 2.3 2.4 -0.115 1.109 

Purdy 45.32 -77.72 490.7 4.6 2.3 2.4 -0.097 1.147 

Trout Creek 46.03 -79.38 333.1 4.2 2.8 2.4 0.469 1.677 

Wakefield QC 45.6 -75.9 152.4 5.1 2.7 2.5 0.234 1.513 

Waltham QC 45.92 -76.92 112.5 4.1 2.5 2.6 -0.124 1.213 

West Guilford 45.1 -78.68 327.2 4.1 3.3 2.5 0.825 2.104 

Drummond 45.03 -76.25 145 6.1 2.3 2.6 -0.267 1.065 

St Albert 45.29 -75.06 80 6 2.8 2.5 0.388 1.638 

Ste Anne Du Lac QC 45.85 -75.33 262.1 3.1 2.8 2.4 0.387 1.616 

Bancroft 45.05 -77.85 327 4.8 2.4 2.5 -0.081 1.198 

Average of 51 stations       4.8 2.6 2.5 0.144 1.394 
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The compiled dataset (Table 4.3) was open in ArcGIS after the calculation of ETo, MA1, and MA2 with 

historical climate normals data (average of 1971–2010) for 51 meteorological stations, and a point feature 

map was created.  

Almost half the weather station (Tables 4.2 and 4.3) results showed negative moisture availability (MA1), 

meaning there was a moisture deficit during the months from April to September (Table 4.1, highlighted), 

even though for some stations, an increase in precipitation was also accompanied by a moisture deficit 

due to the rise in temperature resulting in higher evapotranspiration (ETo). 

Figure 4.3 shows the spatial distribution of the 51 climate stations located throughout the study area, 

including in the rectangular region surrounding the study area extending into the neighboring province of 

Quebec. It also presents all the attributes of the Madawaska Weather Station (the geostatistical 

temperature layer map was created using 1971–2010 climate normals data). 

 

Figure 4. 3: Spatial distribution of the 51 climate stations located throughout the rectangular region of the study 

area (Note the point features of the geostatistical layer temperature map showing all attributes of the Madawaska 

station) 
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4.4.2 Forest disturbance and degradation trajectory maps 1972–2020 (LandTrendr product) 

Long-term historical forest degradation trajectory maps were created for the periods from 1972–1983, 

1984–2000, and 2001–2020 using the LandTrendr algorithm (details in Chapter 3). To ascertain the long-

term degradation trend in the selected area, these three degradation maps were combined into one for the 

period from 1972–2020 using the image fusion technique (PCA) (Figure 4.4 (a-b)) (details in Chapter 3). 

The graduated color in Figure 4.4 indicates the low to high degradation areas during the period from 1972–

2020 (4a), and the large-scale map indicates different years of degradation (4b). 

4.4.3 Historical (1971–2010) interpolated maps of climatology 

ETo, MA1, and MA2 computed with historical climate normals data (average of 1971–2010) from 51 

meteorological stations (point feature map) were spatially interpolated to generate prediction/gridded 

maps of Elev, T, P, ETo, MA1, and MA2 using the EBK interpolation procedure in ArcGIS (Figures 4.5 

a-b, 4.6 c-d, and 4.7 e-f). 

Figure 4. 4 (a-b): a) Disturbance/degradation map (1972–2020) of the study area; b) Large-scale 

disturbance/degradation map (1972–2020) 
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Figure 4.5(a) shows the interpolated map of the elevation of the study area, which ranged from 115m to 

373.2m. Higher elevations are found in the southwest side and lower elevations in the eastern side of the 

study area. The graduated color ramp of the interpolated map for the 40-year average temperature (Figure 

4.5b) indicated lower temperatures in the western part (higher elevation area) and the highest temperatures 

in the southeastern parts of the study area (4.20C to 5. 50C). 

Figure 4. 5  (a-b): (a) Elevation map and (b) Spatial distribution/pattern of temperature maps (historical climate 

normals for 1971–2010) 

Figure 4. 6 (c–d): Spatial distribution of the evapotranspiration (ETo) (c) and precipitation (d) prediction maps for 

historical climate normals (1971–2010)  
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The graduated color ramp combination for the 40-year daily average ETo (2.46mm–2.54mm) interpolated 

map (4.6c) highlights the higher ETo in the southwestern and mid-eastern part, as well as moderate ETo 

in other parts of the study area. The graduated color ramp of light blue to dark blue for daily average 

precipitation (2.13mm–2.54mm) shows lower to higher precipitation for the interpolated map (4.6d) and 

40-year daily average indicating lower precipitation in the southeastern parts, gradually increasing in the 

middle portions, and high precipitation in the western parts of the study area. 

The graduated color ramp of light blue to dark blue for daily average MA1 (-0.311mm to 0.025mm) reveals 

the lower to higher MA1 deficit of the interpolated map (4.7e) and 40-year daily average indicating a 

lower moisture deficit in the south and eastern parts, gradually increasing in the middle section, and a high 

deficit in the western parts of the study area. The graduated color ramp of MA2 (4.7f) (0.917 to 1.303) 

also indicated a similar direction for MA1. 

 

 

Figure 4. 7 (e–f): Spatial distribution of MA1 (e) and MA2 (f) interpolated maps (historical climate normals for 

1971–2010) 
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4.4.4 Historical (2001–2020) remote sensing-derived maps (CFDI, NDVI, NPP) 

Historical composite remote sensing maps (Figure 4.8 a-c) of CFDI, NDVI, and NPP values are a 

combination of 20 years (2001–2020) of map data. Overall CFDI involves seven FDIs (NDVI, NPP, NBR, 

EVI, TCG, TCB, and TCW) for each year in a 20-year period combined using PCA. NDVI and NPP are 

also the combination of 20 years of NDVI and NPP, respectively. 

 

In Figure 4.8(a), there is no degradation in the dark green areas; the light green areas indicate 

medium/moderate degradation; and red areas indicate more degradation. For the historical NDVI map 

(Figure 4.8b), dark green indicates high NDVI (no degradation); light green represents medium NDVI (a 

little degradation); and red denotes a low NDVI (highly degraded areas). The graduated single-color ramp 

map (Figure 4.8c) of NPP employs deep green for no degradation; light green denotes medium/moderate 

degradation; and no green represents strong/more degradation. 

4.4.5 Developing multiple linear regression models from site-specific pixel selection from fully 

overlapping maps (1972–2020) 

The historical CFDI and prediction maps of climatology were fully overlapped pixel to pixel onto the 

forest disturbance and degradation map for site-specific pixel selection and analysis, and the pixel values 

were recorded for three different periods from 1972–1981, 1984–1998, and 2001–2020. These three 

Figure 4. 8 (a-c): Historical (2001–2020) composite remote sensing maps of CFDI (a), NDVI (b), and NPP (c) 
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datasets were combined into one for the period from 1972–2020 to examine the potential statistical 

relationships between CFDI and climate variables. These are shown in Table 4.4. 

Table 4. 4: Combined pixel values of forest disturbance/degradation for the study area (1972–2020) 

Station Name Long Lat T P ETo MA1 MA2 CFDI 

Petawawa A -77.32 45.91 4.6 2.29 2.51 -0.238 1.048 1.112 

Petawawa Nat Forestry -77.66 45.96 4.5 2.28 2.48 -0.245 1.032 0.943 

Chalk River -77.38 46.05 4.6 2.32 2.48 -0.194 1.089 0.703 

Rolphton -77.94 46.16 4.5 2.32 2.48 -0.178 1.090 1.228 

Lake Travers -78.08 45.91 4.3 2.31 2.48 -0.208 1.057 1.447 

Madawaska -78.00 45.50 4.3 2.39 2.54 -0.139 1.134 -0.165 

Gunters/South AP -78.14 45.34 4.4 2.51 2.50 -0.004 1.273 -1.079 

Combermere -77.62 45.37 4.6 2.27 2.46 -0.211 1.060 1.180 

Renfrew -77.02 45.44 5.0 2.21 2.49 -0.258 1.017 2.009 

Chenaux -76.68 45.58 5.2 2.21 2.50 -0.259 1.010 1.696 

Spotswood -76.84 45.86 4.7 2.34 2.52 -0.192 1.101 0.431 

 

To examine the relationship between the CFDI and climate variables, a Pearson correlation matrix (Table 

4.5) was created based on the pixel values of the long-term (1972–2020) forest degradation trajectory 

map, with the CFDI derived from remote sensing and climate variables for the period from 1972–2020. 

For this study, an arbitrary criterion was established for the acceptance of the correlation coefficient (r) 

value as significant. Correlation coefficients greater than or equal to 0.75 (r≥0.75) were deemed 

significant. Variable values that are shaded and presented in bold denote that they are highly correlated. 

Table 4. 5: Correlation matrix of CFDI and climate variables   

  T P ETo MA1 MA2 CFDI 

T 1  

P -0.66 1  

ETo -0.06 0.36 1  

MA1 -0.53 0.97 0.27 1  

MA2 -0.52 0.98 0.31 0.99 1  

CFDI 0.57 -0.95 -0.46 -0.91 -0.93 1 

 

Regression analysis was conducted based on the highly correlated dependent variable (CFDI) and 

independent climate variables (P, MA1, and MA2). The resulting equations are shown in Table 4.6.  
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Table 4. 6: Regression equation, projected models, and evaluation of model performance (1972–2020) 

Indicators Regression equations and predicted models Validation 

R2 RMSE/SE 

CFDI vs P CFDI= – 10.067 P + 24.153  

CFDI (Ŷ) = 24.153 – 10.067 P 

0.91 

0.91 

- 

0.28 

CFDI vs MA1 CFDI = – 9.8271x – 1.4512 

CFDI (Ŷ) = –1.249 – 10.929 MA1 

0.81 

0.82 

- 

0.39 

CFDI vs MA2 y = – 9.8514x + 11.116 

CFDI (Ŷ) = 12.942 – 11.154 MA2 

0.83 

0.87 

- 

0.34 

Predicted CFDI CFDI (Ŷ) = 42.532–8.888 P +15.625 MA1–16.703 MA2 0.93 0.28 

For example, a scatter plot, including regression lines and their computed coefficients of determination 

(R2), for the dependent and independent variables, such as CFDI vs MA1, were created (Figure 4.9). A 

model for the prediction of the CFDI as a function of MA1 resulting from P-ETo is shown in Figure 4.9. 

CFDI = –10.929 MA1–1.249, where r = –0.91, R2=0.82, RMSE=0.39 

 

In the multiple regression analysis, the best-fitted relationship included the CFDI with climate variables 

P, MA1, and MA2 (R2=0.93 and RMSE=0.28). There was an expected high level of correlation among the 

climate variables denoting moisture availability (MA1, MA2) and precipitation over long periods, with the 

CFDI, but ETo and temperature were not individually correlated (Table 4.5). A very strong correlation 

between CFDI and moisture availability (MA1=-0.91 and MA2=-0.93) was found. When the temperature 

variable was included in the regression analysis (see the Materials and Methods section), the coefficients 

were either not significant or denoted relationships opposite to those with the MA variables. In all cases, 

Figure 4. 9 Scatter plot of CFDI vs MA1 
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multiple regressions involving temperature and ETo led to weaker relationships and lower R2 (as well as 

r) values than those based on moisture availability. 

4.4.6 Trajectory analysis of forest disturbance and degradation maps 2001–2020 (LandTrendr 

product) 

The results of 20 years of disturbance trajectory analysis (2001–2020) used in the LandTrendr algorithm 

to generate “disturbance maps” of the area at small and large scales are shown in Figure 4.10 

Each block of color in Figure 4.10 (a–b) indicates the disturbance/degradation or change in landscape 

during the period from 2001–2020, and the various colors denote different years of 

disturbance/degradation or change on the large-scale map (Figure 4.10b) above. 

4.4.7 Developing multiple linear regression models from site-specific pixels from fully overlapped 

maps (2001–2020) 

The CFDI for 2001–2020 is the most informative FDI, and a combination of seven FDIs (NDVI, NPP, 

NBR, EVI, TCB, TCG, and TCW) was also included in the analysis.  

The historical (2001–2020) remote sensing (CFDI, NDVI, NPP) maps and historical (1971–2010) 

prediction maps of climatology were fully overlapped pixel-to-pixel to the forest disturbance/degradation 

Figure 4. 10 (a-b): (a) Disturbance map (2001–2020) of the study area; (b) Large-scale disturbance map 
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map (2001–2020) in order to conduct a site-specific pixel selection. The pixel values from these raster 

maps were recorded to examine the relationship between FDIs and climate variables (Table 4.7). 

 

Table 4. 7: Summary of all fully overlapped map values for the study area (2001–2020) 

Station Name Long Lat T P ETo MA1 MA2 NDVI NPP CFDI 

Petawawa A -77.33 45.92 4.6 2.29 2.51 -0.236 1.050 1.24 0.88 0.88 

Petawawa Nat Forestry -77.66 45.96 4.5 2.28 2.48 -0.245 1.032 0.54 0.86 0.65 

Chalk River -77.61 46.05 4.6 2.30 2.48 -0.213 1.065 0.40 0.68 0.49 

Rolphton -78.04 46.15 4.5 2.32 2.47 -0.168 1.096 1.01 0.58 0.73 

Lake Travers -78.07 45.95 4.3 2.31 2.48 -0.201 1.062 0.17 0.89 0.98 

Madawaska -78.00 45.50 4.3 2.39 2.54 -0.139 1.134 -0.36 -0.45 -0.46 

Gunters/South AP -78.12 45.35 4.4 2.50 2.50 -0.016 1.261 -0.69 -0.94 -1.34 

Combermere -77.54 45.50 4.6 2.25 2.48 -0.249 1.027 0.98 1.49 0.48 

Renfrew -77.02 45.44 5.0 2.21 2.49 -0.258 1.017 1.70 1.38 1.69 

Chenaux -77.19 45.57 4.8 2.24 2.49 -0.258 1.023 1.19 1.33 0.69 

Spotswood -76.95 45.76 4.8 2.28 2.51 -0.235 1.052 0.30 0.46 0.14 

 

A Pearson correlation coefficients matrix (Table 4.8) was created based on all climate variables—

including CFDI, NDVI, and NPP—for the period from 2001–2020 to examine the strength of the 

relationships between indicators derived from remote sensing and climate variables.  

Table 4. 8: Correlation matrix of all variables (climate variables were measured from 1971–2010 climate normals 

data; CFDI, NDVI, and NPP variables were measured from 2001–2020 satellite data) 

  T P ETo MA1 MA2 NDVI NPP CFDI 

T 1   

P -0.67 1   

ETo -0.09 0.40 1   

MA1 -0.58 0.98 0.33 1   

MA2 -0.54 0.98 0.38 0.99 1   

NDVI 0.70 -0.85 -0.43 -0.78 -0.79 1   

NPP 0.56 -0.95 -0.59 -0.91 -0.93 0.87 1   

CFDI 0.51 -0.87 -0.50 -0.83 -0.86 0.86 0.88 1 

 

Regression analysis was conducted based on the highly correlated dependent (CFDI, NDVI, NPP) and 

independent (P, MA1, and MA2) variables to develop predictive MLR models using the historical satellite 

image-based map data and historical gridded prediction map of climate normals data (1971–2010), within 
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the disturbance/degradation area, identified by the LandTrendr tool. The regression equations fit yielded 

the regression line and R2, which are shown in Table 4.9 

4.4.8 Correlations between FDIs and climate variables 

The relationship between CFDI/FDIs and climate variables (Tables 4.5 and 4.8), as previously discussed 

in the methodologies, is open to various interpretations depending on the variable pairs chosen. Their 

direct relevance to the study objectives also varies.  

Correlations between different FDIs (Table 4.8) provide some indication of confidence in the different 

indicators; however, interpolations must be done carefully as these indicators are not necessarily 

independent in their derivation and correlation (or lack thereof) leads to the question of which one 

provides the most meaningful information for study goals. Additionally, owing to its stronger central place 

within the correlation matrix, CFDI was considered as the best degradation indicator for the interpretation. 

The correlations between climate variables and degradation indicators (Tables 4.5 and 4.8) are likely to 

provide the most direct insights related to the objective of this study. In particular, they might furnish 

evidence of naturally occurring changes in the environmental landscape and also help distinguish the 

effects of temperature and precipitation.  

The correlation coefficients between climate variables and FDIs were calculated in order to ascertain the 

climate variables most highly correlated to the CFDI in the study area; meaning that they would, of course, 

best represent the actual conditions (Table 4.9).  

Table 4.9 shows the regression equations based on highly correlated FDIs, climate variables, and equation 

validations. The regression model’s efficiency was evaluated on the basis of the smallest RMSE value 

and the highest coefficient of determination value, R2. 
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Table 4. 9: Regression equations, predicted models, and evaluation of model performance (2001–2020) 

Indicators Regression equations and predicted models Validation 

R2 RMSE/SE 

CFDI vs P y = – 8.6481x + 20.455 0.82 – 

CFDI vs MA1 y = – 9.8271x – 1.4512 0.81 – 

CFDI vs MA2 y = – 9.8514x + 11.116 0.83 – 

Predicted CFDI  CFDI(Ŷ)= 0.9506 NDVI – 0.1125 0.74 0.42 

Predicted CFDI  CFDI(Ŷ)= 0.9318NPP – 0.1578 0.77 0.40 

Predicted NPP NPP(Ŷ)= 0.903 NDVI + 0.118  0.75 0.39 

Predicted CFDI CFDI(Ŷ)=17.082–3.092P+2.002MA1–8.398MA2 0.83 0.39 

Predicted NDVI NDVI(Ŷ)=29.206–14.654P+2.755MA1+5.349 MA2 0.80 0.38 

Predicted NPP NPP(Ŷ)=38.90–10.464P+12.216 MA1–10.848 MA2 0.92 0.26 

 

The paired statistics affect the variation in the rationale for correlation. First, the degree of correlation 

between the different FDIs (CFDI, NDVI, and NPP for the period from 2001–2020; Table 4.9) shows 

their robustness. In addition, the correlation between the climate variables (T, P, ETo, MA1, and MA2; 

Table 4.5) reveals the nature of climate forcing. Finally, the correlations (or their absence) between 

degradation indicator variables and climate variables may distinguish the natural/climatic and 

anthropogenic factors behind landscape change. The various relationships are bolded differently in Table 

4.5 and Table 4.8 to help clarify their interpretation. 

Correlations among CFDI, NDVI, NPP, T, P, ETo, MA1, and MA2 over time are summarized for the time 

series in Table 4.8. The CFDI shows a strong positive correlation with NDVI and NPP indicators. The 

correlation between CFDI, T, and ETo was weaker, but still significant, at α< 0.05, and that between 

NDVI, NPP, and T was positive, although below the threshold (r or R2>0.75) of significance. In 

accordance with expectations, the climatic variables correlate inversely. However, no significant 

correlations were observed between some climatic variables (T, ETo) and degradation indicators. 

When looking at the correlation (or lack thereof) between climate and degradation indicator variables, the 

role of seasonality in the often hot/humid and semi-arid climate of the study area becomes clear. Of the 



173 
 

 
 

climate variables, CFDI is the most closely linked to the forest vegetation response, and it is not strongly 

correlated with temperature and ETo, but it is strongly correlated with other variables (P, MA1, and MA2). 

Finally, two historical (1972–2020 and 2001–2020) CFDI gridded maps were created (Figure 4.11 a-b) 

using the following predicted MLR models, calculated by the raster calculator tool in ArcGIS (using 

historical gridded maps of P, MA1, and MA2, shown in Figures 4.6d and 4.7e-f). 

Predicted CFDI (Ŷ) = 42.532 – 8.888P + 15.625MA1 – 16.703MA2  (4.5) 

Predicted CFDI (Ŷ) = 17.082 – 3.092P + 2.002MA1 – 8.398MA2 (4.6) 

A high level of degradation is presented in red; green denotes very low or no degradation; and shades in 

between red and green indicate a low level of degradation. 

4.5 Discussion 

The objective of this study was the development of an empirical model to assess the effects of climate 

change on forest cover in an ecologically important study area in Ontario by integrating field data, remote 

sensing, and climate projection to predict future forest degradation.  

Figure 4. 11 (a-b): a) Historical CFDI gridded maps of climatology created based on the prediction 

models of (a) 1972–2020 (Eq 4.5) and (b) 2001–2020 (Eq 4.6) 
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Although there have been numerous studies on the impact of climate change on vegetation cover change 

(Sun et al., 2020; Ruiz-Benito et al., 2020) and its response to global warming (Lawal et al., 2019; Ma et 

al., 2020), as well as the prediction of future LULC (Schirpke et al., 2017; Yang et al., 2019), there has 

been little exploration of identifying vulnerable areas by quantifying the effects of climate change on 

vegetation cover in the forest ecosystem. While this is not the first study to examine the impact of climate 

change on vegetation/forest cover, it recommends a new prediction MLR model that provides a forest 

vegetation cover degradation map under the projected climate scenario of 2050. 

The findings for 1972–2020 indicated climate variables P, MA1, and MA2 had the strongest correlation (-

0.95, -0.91, and -0.93, respectively) with CFDI, which enabled the computing of an MLR model with a 

high coefficient of determination, R2 (0.93), and low RMSE (0.28). Additionally, findings for 2001–2020 

showed climate variables P, MA1, and MA2 had the most significant correlation with CFDI, NDVI, and 

NPP. This strong relationship allowed for the establishment of future models with a high coefficient of 

determination, R2 (0.83, 0.80, 0.92, respectively), and low RMSE (0.39, 0.38, 0.26, respectively). 

Finally, projected MLR models were established based on the highly correlated FDIs (CFDI, NDVI, and 

NPP) and climate variables (P, MA1, and MA2). 

Trends in temperatures in and close to the study area reveal a rise in daily average temperature, which 

was 4.90C, 5.10C, and 5.20C for 1971–2000, 1981–2010, and 2011–2020, respectively. Additionally, the 

Ontario study area forests displayed evidence of moisture stress, particularly in the summer months (June–

August) from 1971–2010. The results furnished evidence that forest cover will likely experience losses 

and large fluctuations in the future, putting the area’s ecosystem at risk. Therefore, this method of 

monitoring forest degradation through the integration of remote sensing tools could assist and certainly 

improve climate change risk management, in particular by providing data on climate impacts on 

forest/vegetation. 
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As a result of a great deal of effort, daily grids of mean temperature, precipitation, ETo, as well as MA 

(MA1 and MA2) at 30m spatial resolution were produced for the study area for 1971–2010. This dataset 

is a complete, multi-decadal, spatiotemporally comprehensive database suitable for regional climate 

analysis, risk assessment, ecosystem modelling, as well as planning and management purposes. Its 

production was achieved with a much higher station density, greater spatiotemporal resolution, and longer 

data record than was possible in many previous studies with gridded databases (McKenney et al., 2006). 

The gridded and interpolated climate maps reveal the weather patterns that reflect the seasonal 

atmospheric processes in the region under investigation. However, both the chosen spatial interpolation 

(e.g., algorithm, parameterization) and quality of input data affect the accuracy of our climatological grids. 

4.6 Conclusions 

Since climate change will likely be a driving force in the change in future forest cover in a wide variety 

of ecosystems, a range of remote sensing and climate variables was applied to assess the potential of forest 

degradation measurement through this research. In terms of environmental planning and management, 

this research bridges current knowledge related to the spatial distribution, temporal trends (over the short 

and long term), and patterns in the climate over the last few decades.  

The best practice taken with any data modelling approach is to judge it by its efficacy, and the results of 

testing EBK models have shown that this method is a good approach for both real and simulated data. 

EBK-obtained prediction intervals have good coverage probabilities in instances when there are changes 

in the data variation that are rapid and also dissimilar in different parts of the data. It is common for EBK 

to surpass all other predictors in terms of its performance, especially with data complexity and when a 

number of typical geostatistical data modeling assumptions are violated. 

This research analyzed the possible relationship between climate variables and FDIs in order to provide 

forest degradation prediction maps for the study area. As the results of losses and large fluctuations in 
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vegetation in the future pose risks to the ecosystem in the area, this method of monitoring forest 

degradation through the integration of tools could assist and certainly improve climate change risk 

management and planning, in particular by providing data on climate impacts. 
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Appendix 4  

Methodological workflow of the relationships between climate variables and forest degradation 
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CHAPTER FIVE 

PROJECTED FUTURE FOREST DEGRADATION INDICATORS UNDER 

CLIMATE CHANGE  

Abstract 

Global warming causing climate change, as a result of greenhouse gas (GHG) emissions, is predicted to 

significantly affect the frequency and severity of extreme weather events and ecological disturbances (e.g., 

forest fires). By the end of this century, on average, the forest area burned will likely double or even triple 

under the expected increases of the concentration of CO2. In 2022, the Intergovernmental Panel on Climate 

Change (IPCC) warned North America is set to reach, or even surpass, the 1.50C level by 2050 if carbon 

emissions are not reduced. Ontario forests are already being affected by natural and anthropogenic 

disturbances (e.g., insect-induced damage, clear-cut harvesting) leading to forest degradation, which can 

significantly damage an ecosystem and impact a community’s health, safety, and economy. 

To ascertain how historic climate variables relate to forest degradation indicators (FDIs), the computed 

FDIs from available multispectral image stacks were statistically related to historic climatic variables, to 

used such relationships to project FDIs into the future with projected climate variables derived from 

General Circulation Models (GCMs). This research evaluated the usefulness of some FDIs in explaining 

patterns of forest disturbance and established quantitative relationships between useful FDIs and climate 

variables. Then, under the assumption such relationships with historical data will hold in the future, it 

employed these quantitative relationships to predict how future climate would determine the state of future 

FDIs in a designated protected area (Algonquin Park) in central and eastern Ontario, Canada. Signs of 

climate change impacts on Algonquin Provincial Park are evident. Trends in temperatures in and near the 

area are a reflection of the rise in daily average temperature, which was 4.90C, 5.10C, and 5.20C during 

the periods from 1971–2000, 1981–2010, and 2011–2020, respectively. 
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This study focused on an analysis of the forest dynamic changes in the Algonquin Park study area from 

1972–2020 and generating predictions of possible changes in 2050. The effects of temperature (T), 

precipitation (P), evapotranspiration (ETo), and moisture availability (estimated from two regimes: MA1 

and MA2) changes on forest vegetation conditions were examined from the perspective of the effects of 

temperature and water deficit. To determine the quantitative relationships between climate variables and 

FDIs, Pearson correlation coefficients and multiple linear regression (MLR) analysis were used for 

predicting future dynamic changes in forest cover. These quantitative relationships were used to compute 

forest degradation projection maps, which revealed forest cover will likely experience losses and 

significant fluctuations in the future, thereby putting the area’s ecosystems at risk. 

Moreover, in a parallel line of enquiry in this study, alterations in forest cover (forest degradation) were 

monitored from 1972–2020. These were derived from the composite forest degradation indicator (CFDI) 

computed from the multivariate (Principal Component Analysis [PCA]) resulting from the integration of 

seven FDIs. The relationships between remote sensing indicators (CFDI, NDVI, and NPP) and climate 

variables (T, P, ETo, MA1, and MA2) resulted in the creation of spatially-explicit maps of relevant climatic 

variables as well as from the long-term historical forest degradation maps (created by the trajectory 

analysis computed with LandTrendr) (Kennedy et al., 2010). 

Forest cover changes under different climate change scenarios were subsequently evaluated based on both 

projected forest degradation scenarios resulting from the regression equations between indicators and the 

projected climate variables. Historical and future forest cover maps were produced to identify the areas 

with projected high vulnerability to climate change given their forest cover type. Finally, the difference 

maps of historical (1971–2010) and projected future (2050) forest cover were generated to discover 

potential changes in forest cover and vulnerable areas in the future, according to the projected climate. 
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An MLR model for the CFDI was fitted to historic climate variables and applied to the projected (2050) 

climate variables under the representative concentration pathway 8.5 (RCP8.5) scenario. Based on the 

differences between the historical (past and present) and future (year 2050) CFDI map, a future forest 

cover map was produced. The results predicted forest cover reductions, mostly in the south and 

southeastern portions of the study area. 

The findings also indicated what climate variables (P, MA1, and MA2) had the strongest correlation (-

0.95, -0.91, and -0.93, respectively) with the CFDI. This strong relationship allowed for computing an 

MLR model with a high coefficient of determination, R2 (0.93), and low RMSE (0.28). This model was 

used for projecting the CFDI into the future (2050). A comparison of the historical average of 50 years 

(1971–2020) of climate normals (1971–2010), including average daily climate data (2011–2020), 

indicated that 2050 will experience daily average temperature and evapotranspiration increases (3.0°C, 

0.2 mm, respectively). In addition, there will be a decrease in daily average precipitation (-0.3 mm) and 

the projected daily average moisture deficits, MA1 and MA2, will be 0.078 mm and 0.103 mm, 

respectively. It is also projected that the yearly decrease in precipitation will be 109.5 mm, the ETo 

increase will be 73.0 mm, and the moisture deficits will be 28.47 mm (MA1) and 37.60 mm (MA2) 

respectively. All these factors will result in increased forest degradation as determined by the FDIs.  

Keywords—Climate change impacts, Ontario forests, forest disturbance and degradation, forest 

degradation indicators, LandTrendr. 

 

5.1 Introduction  

5.1.1 Climate change  

The World Meteorological Organization (WMO) defines climate as the average weather over an extended 

time period (for instance, three decades). Climate change can be considered a shift over the long term 

(decades) in the weather on a global scale or for a particular place and time of the year resulting directly 
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or indirectly from anthropogenic activities and that can be identified by changes in the mean and/or 

variability of climatic properties (IPCC, 2013). A region’s climate is the result of a complicated and 

interactive climate system with five main components: the atmosphere, hydrosphere, cryosphere, land 

surface, and biosphere. There are many biological, physical, and chemical processes involved in these 

interconnected elements. The climate is variable over space and time. In the span of the past 4.5 billion 

years, the Earth’s climate has gradually changed.  

In the past few decades, a great deal of progress has been made in understanding the climate system. It is 

clear now that anthropogenic factors, especially following the advent of industrialization, affecting 

atmospheric composition, are the primary actors responsible for the recent global warming trend. This is 

revealed by the fact that since industrialization in the 19th century, climate change has occurred at an 

increasing rate, in particular after 1970. Recently, the rapid nature of climate change has become apparent 

through rises in global mean temperature and global mean sea level (GMSL), the alarming rate of ice melt 

around the globe, the increased frequency of extreme weather events, as well as changes in sea water 

acidification, precipitation, atmospheric moisture, and oceanic and atmospheric circulation patterns 

(IPCC, 2013). 

Since 2001, 16 of the 17 warmest years on record have been experienced (NASA, 2018). In 2016, it was 

0.990C warmer when compared to the average for the approximately 30-year period from 1951–1980. The 

Intergovernmental Panel on Climate Change (IPCC) recently (2022) warned that North America will 

likely reach, and even surpass, the 1.50C level by 2050. Without a reduction in GHG emissions (e.g., 

CO2), the warming trend will continue, resulting in predicted rises in global temperature ranging from 

approximately 1.5 to 5.50C for the rest of this century (IPCC, 2014a). A synopsis of climate change 

projections for Ontario, Canada, indicated a 4.7 to 7.90C rise in average annual air temperature will occur 

in the basins of Lake Huron and the Ottawa River, when compared to the record of the years from 1971–
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2000 (McDermid et al., 2015). Climate warming is expected to lead to longer growing seasons (1–30% 

greater in length by 2100), as well as increased forest fire frequency and pest outbreaks in Canada. By 

reducing and mitigating carbon emissions, warming can be slowed down and possibly the consequences 

to humanity and the environment could be avoided.  

By the end of this century, in comparison with 1986–2005, the IPCC (2013) has predicted an increased 

global surface temperature from about 0.30C (in a low emissions scenario) to 4.80C (in a high emissions 

scenario). The appearance and functioning of ecosystems, by the end of this century, may also be very 

different when compared to today. Since the study area, which includes Algonquin Park (a designated 

protected area) is very important in conservation and public interest, it is crucial to have the information 

provided by updated climate warming projections at a scale useful for park management. These will help 

overcome the previous disparity between climate model projections at very coarse scales and potential 

effects at fine scales in terrestrial and aquatic ecosystems (Maclean et al., 2017; Nadeau et al., 2017). 

5.1.2 GHG emission scenarios 

The Earth’s atmosphere is mainly composed of oxygen and nitrogen gases, with greenhouse gases (GHG) 

making up only a small part of the atmosphere. However, GHGs have a profound effect on the climate 

since they act as a radiation blanket that plays a role in warming the surface of the Earth. This “greenhouse 

effect” ensures our planet is warm enough for habitation by humans and other species. The accumulation 

of GHGs in the atmosphere (IPCC, 2007) causes global warming. This allows shorter wavelength 

incoming solar radiation to reach the surface of the planet while absorbing longer wavelengths (outgoing 

terrestrial), which is, in part, radiated back to the planet. In Earth’s atmosphere, water vapor is the most 

abundant GHG, but its atmospheric concentration is moderated by temperature and not directly affected 

by anthropogenic activities. Unfortunately, a series of other GHGs—chlorofluorocarbons (CFCs), carbon 

dioxide (CO2), nitrous oxide (N2O), methane (CH4), and ozone (O3)—are strongly associated with human 
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activities. CO2 is of special significance due to its long life and great abundance. GHGs in the atmosphere 

come primarily from burning fossil fuels (80%), while changes in land use and land cover, especially 

forest degradation and deforestation, contribute the rest (20%) (Stern, 2007).  

Over the last few decades, a significant amount of evidence related to climate change had been compiled. 

With the goal of estimating future emissions and atmospheric concentrations of GHGs, IPCC Working 

Group I has created long-term emission scenarios, now based on representation concentration pathways 

(RCPs), instead of scenarios based on development pathways. These scenarios, however, omit natural 

emission sources, such as volcanic eruptions. It is the goal of such scenarios to provide a description of 

how radiative forcings have the potential to influence the future emission scenarios of energy balance 

between radiative energy absorbed by the planet and that radiated to the outer atmosphere. These are the 

RCPs that are dependent on GHG concentrations in the atmosphere.  By employing the approximate total 

radiative forcing in 2100 compared to that in 1750, four RCPs (2.6 Wm-2 for RCP 2.6, 4.5 Wm-2 for RCP 

4.5, 6.0 Wm-2 for RCP 6.0, and 8.5 Wm-2 for RCP 8.5) are detailed in the IPCC Fifth Assessment Report 

(AR5) (IPCC, 2013). These RCP categories differ depending on when carbon emission reductions are 

implemented (i.e., early, mid-century, late, or not at all). These categories are RCP2.6 (no longer used due 

to the timeframe of 2010–2020), RCP4.5 (CO2 peaks in 2040 then declines), RCP6.0 (CO2 peaks in 2060 

then declines), and RCP8.5 (status quo continues with CO2 continuing its upward trajectory at the current 

rate). This study used RCP8.5 for 2050 (GHG emissions continue at their current rate and CO2 

concentrations continue to increase) in order to have projections of outcomes if no mitigation at all occurs 

(worst-case scenario). 

Considering the essential role vegetation plays in material, energy, and carbon balance; the hydrological 

cycle; the reduction of GHGs; and climate stability (Zhang et al., 2013), understanding vegetation 

responses to climate change is crucial to the survival of all life on Earth. Many recent studies in different 



189 
 

 
 

ecosystems (Jiapaer et al., 2015; Ren et al., 2020) have shown how vegetation dynamic changes are 

closely related to climatic variation. So, the analysis and prediction of vegetation dynamic changes 

becomes imperative, especially with the increasing influence of climate change (Fu et al., 2010). 

Obtaining remote sensing data for studying the dynamic changes in vegetation is fortunately easier today 

than in the past due to progress in remote sensing technology (Huete, 2016). In addition, the fast pace of 

evolution in computer technology and popularization of remote sensing data have facilitated the large-

scale monitoring of environmental phenomena (Shi and Chen, 2018; Wang et al., 2019). The most 

important indicator in remote sensing, the normalized difference vegetation index (NDVI), has been 

frequently employed as the basis of detection of vegetation photosynthetic activity, enabling the 

examination of variables such as vegetation coverage, vegetation condition index (VCI), vegetation 

productivity, leaf area index (LAI), net primary productivity (NPP), normalized burn ratio (NBR), 

enhanced vegetation index (EVI), and tasseled cap transformation (TCT). Climate change is the primary 

instigator of vegetation changes (Gu et al., 2018; Zhang et al., 2020). Additionally, ETo, which functions 

as another basic part of the hydrological cycle and is related to water and energy exchange between the 

Earth’s surface and its atmosphere, has the capacity to determine the energy and water transport in the 

crucial soil-vegetation-atmosphere system (Shi et al., 2017). ETo impacts vegetation dynamic changes 

(Sun et al., 2012; Zhang et al., 2019) and is involved in the moisture balance that assists in ecosystem 

services and water resource management. The relationships between ETo and NDVI should be explored, 

including other vegetation indices/indicators, to ensure the dynamic monitoring of vegetation changes.  

5.1.3 Assessment of potential impacts under a changing climate 

5.1.3.1 Assessment process of climate change impacts  

Temperature and precipitation are the most relevant meteorological variables when it comes to climate 

impact studies (Bronstert et al., 2007). However, modelling precipitation is more complicated than 

temperature, primarily due to its nonlinear nature, and its high level of spatial and temporal variability. 
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Precipitation patterns and the frequency of extreme events are both affected by higher temperatures and 

increasing evapotranspiration (Trenberth, 2011). Climate change effects on regional water resources are 

evaluated to create future climate scenarios acquired from general circulation model (GCM) simulations. 

These are highly complex multi-layer models of the physics of the atmosphere, over course scales 

covering the entire planet at finite time steps, against the input of a range of GHG emission scenarios.  

The IPCC both collects and reviews GCMs as a component of the International Climate Change 

Assessment Report (IPCC, 2013). The main function of GCMs is to comprehend the dynamics of the 

physical aspects that make up the climate system (ocean, atmosphere, land and sea ice) and to create 

projections based on future GHG and aerosol forcings. When these models from different sources are 

combined through “experiments” of model inter-comparisons, they are called the CMIP (Meehl et al., 

2000). A framework for coordinating climate change experimentation is provided by CMIP phase 5 

(CMIP5) (Taylor et al., 2012). Over the last several years, it has provided novel information about the 

climate system and the process that leads to climate change and variability. There are approximately 20 

modelling groups that contribute to the CMIP5 simulations through over 50 GCM models (Taylor et al., 

2012). GCM outputs are calculated under four main RCPs representing potential future emissions and 

concentration scenarios (Moss et al., 2010). Each RCP (8.5, 6.0, 4.5, and 2.6) furnishes the amount of 

radiative forcing expected to be created by GHGs in 2100 in units of Watts per meter squared (W/m2). 

RCPs have the benefit of providing the climate modelling community with a suitable foundation for 

exploring a wide range of potential climate outcomes. RCP8.5 is characterized by rising GHG emissions 

over the course of time, which will likely result in the equivalent of more than 1370 ppm of CO2 by 2100 

(Van Vuuren et al., 2011). 

GCM and Regional Circulation Models (RCM) projections are employed for the downscaling of GCMs 

(GCM–RCMs couples). According to existing 21st century GHG scenarios, climate change should result 
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in elevated air temperatures. However, what precipitation changes might occur in the future are highly 

uncertain for many regions and estimates vary in response to the GCMs employed (Ma and Xie, 2013). 

In order to formulate estimations about and determine the probability of potential future scenarios, impact 

studies employing the outputs of a wide variety of GCMs or GCM–RCM couples are necessary.  

5.1.3.2 Potential impacts of drought under a changing climate 

Determining the length of growing period (LGP) of vegetation is a commonly used procedure for 

assessing the impact of climate change. The LGP is the period (expressed in days) during a year when 

precipitation is greater than half the potential evapotranspiration (P>0.5ETo) and ambient temperatures 

are above the “dormancy period” (6.5 0C). A period of this type fully meets the ETo demands of vegetation 

and replenishes soil moisture. Plants’ LGP can be significantly increased or decreased as a result of 

climate change, particularly concerning not only moisture balance but the expected increases in air 

temperature above the dormancy period. There are also potential positive and negative impacts of changes 

in growing season length. 

In order to develop a detailed picture of the effects of climate shifts on the growth and development of 

vegetation, LGP should incorporate other elements of projected climate change (e.g., temperature 

changes). Remote sensing based estimates of meteorological variables have been increasingly used due 

to their availability and easy access. Kuo et al. (2005) formulated a new process by applying remote 

sensing data for the estimation of evapotranspiration employing the Penman-Monteith method. 

For the assessment of the future of forested ecosystems in the study region, it is important to elucidate 

whether climate change will result in drier conditions, as well as how these conditions might affect growth 

and disturbance in forest ecosystems. In particular, forests experiencing drought-stress are likely to be 

more vulnerable to damage by diseases and insect infestations, especially those that thrive in warmer 

temperatures (Volney and Hirsch, 2005). Computer-generated GCMs of climate change projections 
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generally agree that significant warming will occur. However, the predictions for moisture regimes are 

particularly uncertain. Even with slight increases in precipitation, could still see drier conditions as a result 

of warmer temperatures that increase evapotranspiration.  

Drought is the main actor constraining tree growth and distribution in a landscape with limited water; 

however, fire is a potential agent of rapid change at the landscape level. Throughout Canada, the fire 

regime has already shaped the composition of the boreal forest with a gradual decrease in fire-intolerant 

balsam firs from the wet eastern boreal extending all the way to the much drier western boreal forest. 

While it is clear that climate change presents serious concerns for the future of forest productivity in this 

area, it is possible some negative consequences would be offset by the positive scenarios of warmer soils, 

longer growing seasons, and the CO2 fertilization effect. 

5.1.4 Ontario forests and climate change 

Forests play a key role in maintaining the delicate relationship between natural ecosystems. As the climate 

and forests are interrelated, they affect each other directly and indirectly. However, forests are expected 

to face significant pressure in the coming decades from rising GHG concentrations and climate change 

(IPCC, 2013), potentially disrupting the important ecological, economic, social, and aesthetic services 

they provide (Eastaugh, 2008). 

In Canada, there has been a significant, although variable, warming trend since the end of the Little Ice 

Age (1850), which seems to be increasing (Environment Canada, 1992). Researchers established that the 

incidents of forest fires have risen dramatically over the past 40 years (Duinker, 2008). Flannigan et al. 

(2005b) projected that by the end of this century, on average, the area burned in Canada will increase by 

74% to 118% in a 3×CO2 scenario. Ontario, a large and diverse geographical area that experiences marked 

climatic variations, has seen a rise in surface air temperatures from 0.5–0.7°C since 1895 (Gullett and 

Skinner, 1992). Global warming of 1–3.5°C is predicted over the century, which will result in changes to 
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climate and weather patterns that will greatly affect forest ecosystems, in particular through an increase 

in fire and insect activity (Cohen et al., 2016). 

The boreal regions, such as those in the study area, are expected to undergo an increase in temperature of 

4–10°C over the next 50–100 years as the planet’s atmosphere experiences a doubling or even tripling of 

atmospheric CO2 concentrations (IPCC, 2007). The largest portion of Canadian boreal forests is in Ontario 

(Ontario Ministry of Natural Resources, 2008b), where, since the mid-20th century, forests have been 

impacted by human activities, which are projected to change the composition and function of ecosystems 

significantly (Schindler, 1998). At present, a shift is being registered in the boreal forest from a net carbon 

sink to a net carbon source, primarily as a result of the increased intensity, area, and frequency of fires 

resulting from increased temperatures (Flannigan et al., 2005a, 2005b; Soja et al., 2007). The expected 

impact of climate change in boreal forests could be increases in ignitions from lightning, fire season 

length, and fire weather severity (Soja et al., 2007). 

The most important effects of climatic change in Ontario forests are likely to be changes in forest 

disturbance regimes (e.g., fire and insect outbreaks). Using climate projections from GCMs and derived 

RCMs, studies have extrapolated how climate change and variability may impact the trends of lightning, 

temperature, precipitation, fuel moisture, and other relevant meteorological parameters that could increase 

fire occurrence and forest degradation. The size of the area burned, fire season length, and severity of 

boreal fires will likely increase due to climate change (Flannigan et al., 1998; Flannigan et al., 2001, as 

cited in Amiro et al., 2003) and greatly threaten life and property. Potential burn in the Ontario boreal 

forest could double or even triple by the end of the century, producing global implications by releasing 

GHGs, which will alter the energy balance on the Earth’s surface. As this social-ecological system is 

vitally important and susceptible to climate change, it is imperative to identify and map effective methods 

to assess forest disturbance and degradation, as well as strategies for mitigation and adaptation. 
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5.1.5 Climate change and forest disturbance and degradation 

Forest ecosystems, in particular, are tightly bound with climate both directly through the effects of 

precipitation, as well as temperature, and indirectly through the effects of disturbances. Forest 

disturbances result in changes to the composition, structure, and character of a forest ecosystem (Jonson 

and Miyanishi, 2007), affecting its future health (Duinker, 2008). Natural disturbances, such as weather, 

geological forces, or biological changes, are one reason for an unbalanced ecosystem. These disturbances, 

which should increase in magnitude with a changing climate, can be caused by fire, insects, diseases, 

severe wind and ice storms, floods, volcanic activity, earthquakes, droughts, long-term freezing, 

hurricanes, landslides, etc., and can significantly damage an ecosystem, even killing flora and fauna. Over 

the past 20 years, studies have shown that disturbance regimes are changing rapidly (Turner, 2010). 

Projections for the future have revealed that fires are likely to become more frequent and severe, leading 

to a change in the relationships among fire, climate, and vegetation (Lutz et al., 2009; Westering et al., 

2011). Recently, more research has been conducted on interactions among disturbances; however, 

understanding interactions is still a challenge from the perspective of ecology (Turner, 2010). 

Ecosystems are also affected by human activities (Cohen et al., 2016), which are the cause of most forest 

disturbances, including clear cutting and the conversion of forest to other land uses, such as commercial 

and residential development, highways, and agriculture. Other human disturbances include uncontrolled 

wildfires, primarily caused by escaped or deliberately set fires, the introduction of non-native species, the 

elimination of species, and climate change. Ontario’s forests are significantly influenced by these natural 

and human-made disturbances. In the Ontario boreal forest, in particular, insect outbreaks, forest wildfires, 

permafrost melting, and logging could potentially worsen with global warming. Additionally, industrial 

development could weaken both the forest’s resistance and resilience to the intensifying negative 

consequences of global warming. Slash-burning (“prescribed fire”), a well-established practice in Ontario 
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(Lawson, 1990), exemplifies some of the harmful effects of anthropogenic activities. As well as producing 

smoke and GHGs, it may have other negative repercussions, such a possible reduction and destruction of 

the long-term nutrient supply, micro-organisms, and organic matter in the soil (Fuglem, 1990).  

Climate change, including the rise in extreme weather events, such as the increased frequency, duration, 

and intensity of drought as well as summer heat waves, hurricanes, severe thunderstorms, windstorms, 

and ice storms (Duinker, 2008), will have a significant effect on the function, composition, and structure 

of forest ecosystems (Soja et al., 2007; Wulder et al., 2007). The rising intensity and prevalence of insect 

disturbances will also greatly impact forests (Wulder et al., 2007; Duinker, 2008). On a provincial scale, 

in Ontario, the supply of traditional forest products is expected to decline, accompanied by a negative 

impact on the forest industry and forest-dependent communities (Browne and Hunt, 2007). Climate 

change also threatens existing areas that protect specific natural features, species, and ecological 

communities (Scott and Lemieux, 2005). Besides the effect on biodiversity conservation, such changes 

can have dire consequences on nature-based recreation and tourism (Browne and Hunt, 2007). 

5.1.6 The selection of climate change projections: The ensemble model approach 

Globally, for climate change projections, combining models into an ensemble furnishes a method of 

‘average’ projected change that might occur as a result of the rise in GHG emissions. By downscaling 

GCMs to the regional scale (RCM), climate change projections are more relevant to human activity, plant 

life, and animal species. This is useful for planning purposes and to better comprehend how climate 

warming impacts ecosystems.  

5.1.7 Bias correction of downscaling 

Interactions among various elements—ocean, cryosphere, atmosphere, and land surface—can be 

simulated in the new generation of GCMs. On a global scale, these are presently the optimal modelling 

tools for predicting the long-term climate system responses to gradual GHG increases. Owing to the 
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development of greater computing power recently, GCM grid resolution has been improved from a few 

hundred to about 100 km (10 km X 6 km). A variety of downscaling methods have been developed for 

transferring climate data from the coarse-scale GCM outputs to scales that are regional or local. For the 

downscaling of GCM information, statistical and dynamical downscaling are mainly employed; however, 

there are other basic methods (e.g., interpolation) that have been utilized (Fowler et al., 2007).  

Unfortunately, historical climate bias results greatly affect the sensitivity of future climate change 

projections using GCM simulation (Liang et al., 2008). When a GCM reasonably simulates conditions for 

the current and historical climate, its credibility will be higher for future climate projection. This is 

possible if a downscaling model is able to provide value to historical, present, and future GCM projected 

climate variables.  

There is no good representation for the process governed from the regional to local scale in GCMs 

(Volosciuk et al., 2015). Additionally, given the significant biases in GCM simulations, they are patently 

unsuitable for direct use when trying to determine climate change impact at the local level. At this scale, 

one must complete downscaling and/or bias corrections prior to conducting an analysis of the effects of 

climate change (Onyutha et al., 2016). Owing to the fact that they employ physical or statistical methods, 

downscaling and bias correction attempt to remove as much small-scale information from GCMs as 

possible (Bürger et al., 2012).  

5.1.8 Projected future climate scenarios 

A future climate scenario can be defined as the predicted rise of carbon in the atmosphere that results from 

factors that include population and economic changes, the deployment of alternative energy sources, and 

new technology distribution around the world. Given the many different factors that can affect the Earth’s 

climate, a wide variety of future climate scenarios exist (IPCC, 2007). Analyzing these potentialities is 

made more complicated by many different climate models for estimating temperature and precipitation 
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changes based on the various scenarios. Each one will lead to different results although they might employ 

the same data related to future atmospheric carbon conditions. Therefore, a myriad of possible values for 

temperature and precipitation exists depending on the climate scenario and model selected. For instance, 

the assumption that the atmospheric CO2 concentration will reach 850 ppm in 2100 (IPCC, 2007). 

 With the updating of model scenarios (IPCC, 2014b), our certainty related to the weight of evidence has 

improved (Cook et al., 2016), and the ability to downscale GCMs has ameliorated climate projections on 

the regional scale. Being able to project climate effect in the study area at a grid scale of 10 X 6 km allows 

for the evaluation of change in the region. Since the Algonquin Park landscape includes various forest 

types, growing conditions, and topographic scenarios, conducting a comprehensive assessment of change 

inside its boundaries (and the surrounding area of study) is a crucial step in comprehending patterns of 

climate change affecting all ecosystems in the study area. 

Using present conditions, the multiple linear regression (MLR) model was fitted to data in order to project 

and identify the most vulnerable forest degradation areas under the climate change scenario. In order to 

achieve this objective, a composite forest degradation-based indicator (CFDI) was developed to determine 

the relationship between climate variables and forest cover under the current conditions. The data for 

1971–2010 (average for a 40-year period) were processed and a multiple regression equation was created 

using forest degradation indicators (FDIs) as the dependent variables and climate variables as the 

independent variables. 

Forest cover changes under the climate change scenario (RCP8.5) were subsequently evaluated based on 

both the regression equation and projected climate variables. Further, the historical, present, and future 

(under the RCP8.5 climate scenario) forest cover maps were produced to identify areas that are vulnerable 

in terms of their degradation of forest cover. Finally, the difference maps of historical (1971–2010) and 
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projected future (2050) forest cover were generated to map out potential changes in forest cover and 

vulnerable areas in the future. 

In this chapter, vegetation dynamic changes were analyzed for 1972–2020, and possible changes in 2050 

were examined for the study area. The effects of temperature, precipitation, and ETo on moisture 

availability (MA1 and MA2) in forests from the perspective of water deficit were considered, with MLR 

analysis being used as the foundation for creating projection models. By employing these projection 

models and the future meteorological data from CMIP5 models, the future dynamic changes of forest 

vegetation were predicted for the Ontario study area. In particular, the goal of this work was to (i) predict 

the expected change in forest condition (degradation) with climate change in the forest area for the region 

in the future (e.g., year 2050), and (ii) determine the consequences of projected forest degradation with 

climate change in the region of study relative to GHG concentrations and fluxes. This will hopefully serve 

as the basis for the development of appropriate climate change mitigation and adaptation strategies for 

forest ecosystem and biodiversity management for the region in the future. 

5.2 Materials and methods 

5.2.1 Methodological workflow 

In this research, projected meteorological data provided by the IPCC were employed. The IPCC published 

a series of four emission scenarios (i.e., RCP2.6, 4.5, 6.0, 8.5) in 2013, each representing a different GHG 

emission concentration influence by anthropogenic activities (IPCC, 2013; Shi et al., 2018). This study 

chose only the future meteorological data under the RCP8.5 high-emissions “worse-case” scenario. The 

multi-models/ensemble average was used to evaluate the future changes in an effort to achieve more 

reliable results. For the purposes of unifying the spatial resolution of the VIs, the cell sizes of the 

meteorological variables were resampled to 30m resolution using the robust EBK interpolation method, 

which is superior to all other interpolation methods.  
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Although it is common for models to be comprised of multiple ensemble members, for the Ontario study 

area, only the first member from each model ensemble was employed. As a result, each model used in this 

study was given equal weight for the performance of simple model statistical analysis on the downscaled 

ensemble (Moss et al., 2010; Flato et al., 2013). The period 1971–2010 was taken as the reference period 

for the bias correction. Changes in the year 2050, relative to historical conditions, were investigated. 

Accordingly, results garnered from precipitation, temperature, and some derived variables were analyzed 

and presented for these periods (Table 5.2). 

The future climate projection workflow methodology was constructed in three main steps (Figure 5.1): (i) 

Forest degradation map (long-term historic trajectory) (details in Chapter 3 and 4); (ii) Gridded raster map 

(historic climate variables) (details in Chapter 4); and (iii) GCM data (downscaled to RCM data) using an 

ensemble of 24 GCMs. 

 

 



200 
 

 
 

5.2.1.1 Forest degradation map from long-term historic trajectory   

In this study, seven FDIs—normalized difference vegetation index (NDVI), net primary productivity 

(NPP), normalized burn ratio (NBR), enhanced vegetation index (EVI), tasseled cap brightness (TCB), 

tasseled cap greenness (TCG), and tasseled cap wetness (TCW)—were calculated from the satellite 

images (Landsat and MODIS platforms) using ENVITM software. All FDI variables were combined into 

a CFDI, using the image fusion technique reliant on principal component analysis (PCA) (details in 

Chapter 3). 

A long-term (1972–2020) historical forest degradation trajectory/trend map was created by the “trajectory 

analysis procedure” computed from the LandTrendr algorithm (Kennedy et al., 2010). A correlation 

matrix was developed based on the pixel values of the degradation area for 1972–2020 as revealed by 

LandTrendr results to examine the relationship between indicators derived from remote sensing and 

Figure 5. 1: Methodological workflow for projected future forest degradation under climate change 
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climate variables. For the future projections, regression analysis was conducted based on the highly 

correlated dependent (CFDI) and independent (P, MA1, and MA2) variables (details in Chapter 4). The 

structure of the MLR model is as follows: 

CFDI (Y) = β0 + β1P + β2MA1 + β3MA2 + ε   (5.1) 

Another correlation matrix was created based on all climate variables—including CFDI, NDVI, and 

NPP—for 2001–2020 to examine the correlations between indicators derived from remote sensing and 

climate variables. For the future projection, regression analysis was conducted based on the highly 

correlated dependent variables (CFDI, NDVI, NPP) and independent variables (P, MA1, and MA2) (details 

in Chapter 4). The structures of the MLR models for NDVI and NPP are as follows: 

NDVI (Y) = β0 + β1P + β2MA1 + β3MA2 + ε     (5.2) 

NPP (Y) = β0 + β1P + β2MA1 + β3MA2 + ε   (5.3) 

Finally, these equations were implemented on P, MA1, and MA2 maps to spatially interpolate the values 

of meteorological variables over the entire targeted area at 30m spatial resolution using the EBK 

interpolation method. 

5.2.1.2 Gridded raster maps of historic climate variables 

Historical climate (daily and monthly) data for 1972–2020 were acquired from the official climate data 

sources of Environment and Natural Resources Canada. In addition, historical Canadian climate normals 

data were garnered from the Environment and Climate Change Canada (ECCC) official climate data 

portal. Two sets of 30-year climate normals data (1971–2000 and 1981–2010) were collected from 51 

weather stations inside and surrounding the study area. The geostatistical modelling has as its foundation 

the spatial auto-correlation as depicted by the semi-variogram, which requires point data for as many 

locations as possible. 
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These data were compiled for ETo calculations for all 51 weather stations. ETo was calculated using the 

Penman-Monteith method (ETo Calculator version 3.2), furnished by the Food and Agriculture 

Organization of the United Nations (FAO-56) (Allen et al., 1998; Yao et al., 2018). ETo calculation was 

required for MA1 (P-ETo) and MA2 (P-0.5ETo) calculation (see Chapter 4 for details). While MA1 is a 

more demanding estimate of water balance due to its use of full evapotranspiration returns of moisture to 

the atmosphere, MA2 using half of the evapotranspiration has been calibrated and is more commonly used 

in the estimation of the length of the growing period (LGP) for vegetation growth, globally (FAO, 1978) 

As previously stated in Chapter 4, EBK automates the most complicated feature in the construction of a 

valid semi-variogram model, which is also the aspect of spatial interpolation that is the most challenging 

within the geostatistical method (Gupta et al., 2017). The K-Bessel semi-variogram model was also 

selected since it is very flexible and accurate in furnishing spatial estimation of meteorological variables 

(e.g., T, P, ETo, MA1, and MA2). 

The compiled data table (Table 4.3 in Chapter 4) was open in ArcGIS after completion of the calculations 

of ETo, MA1, and MA2 with historical climate normals data (average of 1971–2010) for 51 meteorological 

stations, and a point feature map was created. This feature map was applied to create the 

prediction/gridded raster maps of Elev, T, P, ETo, MA1, and MA2, using the EBK interpolation method 

in ArcGISTM software (see Figures 4.4, 4.5, and 4.6 in Chapter 4). A correlation matrix was developed 

based on the pixel values of the long-term (1972–2020) forest degradation trajectory map, and the 

relationships between FDIs derived from remote sensing and climate variables were examined. For the 

future projections, regression analyses were conducted based on the highly correlated dependent (CFDI) 

and independent (P, MA1 and MA2) variables (details in Chapter 4).  

The projection model of the CFDI was constructed based on the MLR equation. For each raster map, the 

NDVI, NPP, and CFDI values were expressed as a function of P, MA1, and MA2. Therefore, using the 



203 
 

 
 

values of the indicators from 1972–2020 as the dependent variable and the climate variables during the 

period from 1971–2010 as the independent variables, the structure of the projected regression model is 

expressed as follows: 

Projected CFDI (Y) = β0 + β1P + β2 MA1 + β3 MA2 + ε  (5.4) 

Where the dependent variable CFDI is the composite forest degradation indicator; the independent 

variables P, MA1, and MA2 are the climate variables; and β0, β1, β2, and β3 are the corresponding regression 

coefficients (ε is a residual). 

5.2.1.3 GCM data (downscaled to RCM data) 

Monthly observations of maximum temperature (Tmax), minimum temperature (Tmin), mean temperature 

(Tmean), and monthly total precipitation (P) for the year 2050 were acquired from the Canadian Centre for 

Climate Services (CCCS) data portal (https://climatedata.ca). These data were already calculated by the 

CMIP5 climate model dataset and (statistically) downscaled and bias adjusted using the “BCCAQv2” 

method under scenario RCP8.5. Bias-correction constructed analogues with quantile mapping BCCAQ is 

a hybrid downscaling method of bias-correction constructed analogues (BCCA-Maurer et al., 2010) and 

quantile mapping (QMAP; Gudmunsson et al., 2012). An ensemble of 24 GCMs was used.  

As in the section above, these data were compiled and prepared using a spreadsheet for ETo calculations 

for all 32 weather stations inside and near the research zone. ETo was calculated using the Penman-

Monteith method (ETo Calculator version 3.2), which was required for MA1 (P-ET0) and MA2 (P-0.5ETo) 

calculation (details in Chapter 4). EBK, which automates the complex process of creating a valid kriging 

model, and the K-Bessel semivariogram model, which provides more accurate spatial estimation of the 

meteorological variables, were also employed. 

The compiled dataset was open in ArcGIS after completion of the calculation of ETo, MA1, and MA2 with 

projected (2050) data from 32 meteorological stations, and a point feature map was created. Next, the 
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interpolated feature class (gridded map) was applied to create the future projection maps of the climate 

variables P, MA1, and MA2 for 2050. The future projected map of CFDI was produced using the future 

(2050) projection maps of the climate variables P, MA1, and MA2. The raster calculator tool was applied 

to calculate the projected map using the following projection MLR model: 

CFDI (Y) 2050 = β0 + β1P(2050) + β2MA1(2050) + β3MA2(2050) (5.5) 

5.2.2 Downscaling techniques 

In principle, downscaling techniques can be used to refine any type of data (Rummukainen, 2010). Having 

a GCM output that is coarse might be satisfactory (e.g., when the variation in a single grid cell is low or 

for global assessment). While GCMs have value when used as predictive tools, they lack the ability to 

account for heterogeneity on a fine scale and are unable to reflect on certain types of features (such as 

bodies of water, mountains, infrastructure, land cover characteristics, breezes along coastlines, and 

convective clouds). Unfortunately, it is very challenging to address this disparity between climate model 

resolution and regional and local scale processes. 

GCMs, which are efficient and trustworthy tools for global scale climate analyses, are developed on the 

basis of numerical representations of the climate system. They include physical, chemical, and biological 

processes/properties of climate variables and feedback relationships that exist between these variables. 

GCMs are able to create simulations of the present climate and offer predictions of future climate change 

with forcing by GHGs and aerosols. However, as GCMs provide global scale data, tools are needed for 

regional studies to translate this information to the local scale. Downscaling techniques are widely used 

for transferring coarse-scale climate information to regional and local scales. There are two different 

downscaling techniques: dynamical and statistical. 
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5.2.2.1 Dynamical downscaling 

Dynamical downscaling (DD) is based on complex algorithms of the atmospheric radiative, energy, and 

thermodynamic processes. It is one method of downscaling large-scale GCM climate output into a finer 

spatial resolution by taking the outputs of the GCM and running the physics and other complementary 

software packages within a given GCM “boxel.” DD relies on the nesting of a finer scale RCM, one that 

is as fine as 10km X 10km in horizontal resolution in GCMs (Wood et al., 2004). This type of downscaling 

has only been attempted using three approaches: (i) simulating a regional scale model using GCM 

information for geographical boundary conditions; (ii) running a global scale experiment that has high-

resolution atmospheric GCMs, as well as coarse GCM data acting as initial and partial boundary 

conditions; and (iii) using a global model with variable resolution.  

The goal of DD is the spatial and temporal refinement of climate data for a specified region engaging in 

the description of phenomena and forcings that are unresolved in GCMs. In order to achieve this objective, 

DD employs large-scale lateral boundary conditions with the aim of ensuring the GCMs are able to create 

higher resolution outputs through the nesting of an RCM in the GCM. In this process, RCMs parameterize 

and resolve atmospheric processes. As a result, they are able to provide realistic simulations of regional 

climate features for the production of higher resolution outputs (approximately 0.1 to 0.50 in latitude and 

longitude). These include orographic precipitation (e.g., Frei et al., 2003), climate events that are extreme 

in nature (e.g., Fowler et al., 2005; Frei et al., 2006), and climate anomalies at the regional scale. GCM–

RCM couples (RCM outputs) even have the capacity to provide representations of non-linear effects, for 

instance those connected with the El Niño Southern Oscillation (e.g., Leung et al., 2003).  

When it comes to a DD framework, however, it should be noted that RCM skills depend greatly on biases 

coming from the driving GCM and also the existence and strength of regional scale forcing (e.g., 

orography, contrast between land and sea, and vegetation cover) (Fowler et al., 2007). This means that 
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the substantial errors inherited from the driving GCMs are retained in the GCM–RCM couples 

(Rummukainen, 2010; Hall, 2014). For simulations related to temperature, the uncertainty from the RCMs 

may, in fact, be less than that arising from the emission scenario (RCPs); however, the opposite is true for 

precipitation simulations (Fowler et al., 2007). Their great dependency on GCM boundary forcing is one 

of the primary downsides of RCMs. Therefore, GCM–RCM couples generally are unable to accurately 

reproduce the average seasonality of precipitation or average annual precipitation for the historical period, 

something that has been revealed for various regions (Tramblay et al., 2013; Dakhlaoui et al., 2019; 

González‐Zeas et al., 2019). This means that RCM raw outputs usually need additional statistical bias 

correction before they can be employed for hydrological model inputs. In short, the primary downsides of 

this downscaling method include model complications, high computational requirements, dependence on 

boundary conditions gleaned from GCMs, and a lack of transferability to other regions. 

5.2.2.2 Statistical downscaling 

Statistical downscaling (SD), which is also called empirical/statistical or statistical/dynamical 

downscaling (Mearns et al., 2003), has as its basis the concept that regional climate is primarily affected 

by two factors: the large-scale climate and local/regional features (topography, land use, land-sea 

distribution) (Fowler et al., 2007; Wilby et al., 2004). In contrast to DD, SD transforms large-scale GCM 

(or GCM–RCM couples) outputs into a much finer resolution. It employs an empirical relationship 

between predictors (in this case, large-scale GCMs simulated climate variables) and predictands (in this 

case, regional scale variables, such as precipitation). There are currently three SD approaches: (i) 

classification/weather typing methods (Hughes and Guttorp, 1994; Mehrotra and Sharma, 2005), (ii) 

regression/transfer function methods (Wilby et al., 2002; Chen et al., 2014), and (iii) weather generator 

(WG) (Wilks and Wilby, 1999; Srivastav and Simonovic, 2014; King et al., 2015). In addition, when SD 

is employed, three assumptions are made (Hewitson and Crane, 1996): (i) the predictor variables are 
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modelled in a realistic manner by GCMs, (ii) the empirical relationship presented is valid for any climatic 

conditions necessary (both stationary and non-stationary), and (iii) the predictor is a good representation 

of the climate change signal. Due to its low level of computational requirements, simple modelling 

structure, and the ability to make easy modifications for use at various locations, SD is more popular, 

adaptable, and flexible. However, while there is computational efficiency in the statistical approach, in 

addition to its ability to downscale the GCM output to the station-scale level using enough climate 

information, SD must be performed with a long series of reliable historical data for proper calibration. 

The SD process involves two steps. First, statistical relationships between the GCM projections and local 

variables must be established with observed historical climate information. Next, employing the statistical 

relationships, the GCM projections are transformed to regional or local scales. Using SD, it is possible to 

simulate multiple outputs—maximum and minimum temperature, precipitation, relative humidity, solar 

radiation, and wind speed (Parlange and Katz, 2000)—at the same time. This is significant, especially 

when it comes to impact studies (Wilby et al., 2004).  

The performance of this downscaling technique is dependent on the selection of the regional domain 

(Wilby and Wigley, 2000), something that is generally not taken into account in practice (Benestad, 2001), 

and on the regionalization methods (Wilby et al., 2004). In their study, Gutierrez et al. (2013) examined 

the performance of SD approaches generally employed for downscaling temperature (including MLR, 

analogue methods, weather typing techniques, and regression conditioned on weather types) in terms of 

their robust applicability in climate change research. They established a novel validation framework that 

exploits anomalous warm historical periods. Based on this framework, the authors concluded regression 

methods are the most appropriate for climate change studies. These methods outperformed the others as 

weather typing underestimated the temperature in moderately warmer conditions and analogue methods, 
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although they were the best for the reproduction of the observed distributions, they were responsible for 

significantly underestimating warm period temperatures when compared to the values observed.  

For regression models, statistical linear or nonlinear relationships between observed local climate 

variables and the GCM outputs should be established (Wilby et al., 2002). Despite the fact that these 

methods are quite simple, their downside is the likely lack of a stable relationship between GCM outputs 

and observations (Wilby and Wigley, 1997). For weather typing, it is necessary to group local 

meteorological variables in terms of their relationship to different atmospheric circulation classes 

(Bárdossy and Plate, 1992; Von Storch et al., 1993). This allows for the close linking of local variables to 

large-scale global circulation. It should be mentioned, however, that its reliability is dependent on there 

being a stationary relationship between local climate and large-scale circulation, in particular when it 

comes to precipitation. The WG method has as its basis the perturbations of climate parameters according 

to the changes projected between current and potential climate change by GCMs (Qian et al., 2010; Wilks, 

2010). As stochastic models, WGs can be employed to create synthetic weather series that have unlimited 

lengths and that can be consistent with the present and also possible future climate change (Wilks, 2010). 
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5.3 Results and discussion  
Monthly average Tmin, Tmax, and Tmean and monthly total precipitation (P) were acquired from 32 weather 

stations in and around the research zone. The data were compiled and prepared to estimate the ETo (with 

the Penman-Monteith method), MA1, and MA2 for all 32 weather stations. Table 5.1 shows a summary of 

calculated results for the Algonquin Park East Gate station. 

Table 5. 1: Summary of calculated results of ETo, MA1, and MA2 for the Algonquin Park East Gate station 

Months Lat Long Elev Tmax Tmin  Tmean P Daily P ETo MA1 MA2 

January 45.54 -78.29 397 -2.4 -12.2 -7.1 86.1 2.8 0.7 2.079 2.429 

February       -1.5 -13.0 -7.3 74.4 2.7 1.0 1.655 2.155 

March       3.8 -7.7 -2.0 68.0 2.2 1.5 0.693 1.443 

April       11.2 -0.9 5.3 72.4 2.4 2.6 -0.186 1.114 

May       19.9 6.3 13.2 89.4 2.9 4.3 -1.417 0.733 

June       25.1 11.7 18.6 78.3 2.6 5.3 -2.691 -0.041 

July       28.3 15.4 21.6 63.0 2.0 5.6 -3.568 -0.768 

August       26.6 13.6 20.1 75.0 2.4 4.9 -2.482 -0.032 

September       22.1 10.0 16.2 105.9 3.5 3.5 0.028 1.778 

October       14.7 3.7 9.1 83.2 2.7 2.1 0.584 1.634 

November       6.5 -1.3 2.5 99.8 3.3 1.0 2.326 2.826 

December       0.2 -8.3 -3.8 89.4 2.9 0.7 2.185 2.535 

Average           7.2 82.1 2.7 2.8 -0.066 1.317 

 

Projections of daily average ETo, MA1, and MA2 were also estimated for all 32 meteorological stations 

for 2050. Averages resulting from the summary tables of all individual 32 stations were compiled into the 

following table: 
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Table 5. 2: Calculated results of all projected climate variables of 2050 (GCM/RCM data) for 32 stations 

Station’s name Lat Long Elev T P ETo MA1 MA2 

AP Achray Campground 45.86 -77.75 228.0 7.7 2.4 2.841 -0.428 0.991 

AP Basin Depot 45.71 -77.79 260.0 7.9 2.4 2.883 -0.503 0.938 

AP East Gate 45.54 -78.29 397.0 7.2 2.7 2.766 -0.066 1.317 

AP Sand Lake Gate 45.87 -77.54 184.0 8.1 2.4 2.85 -0.499 0.925 

Arnprior 45.46 -76.38 107.0 9.1 2.4 2.841 -0.475 0.945 

Bancroft 45.04 -77.88 348.0 8.1 2.6 2.875 -0.236 1.201 

Barry's Bay 45.53 -77.67 289.6 7.9 2.4 2.875 -0.447 0.99 

Combermere 45.29 -77.63 287.0 8.0 2.5 2.858 -0.394 1.034 

Deep River 46.09 -77.49 142.0 7.9 2.5 2.858 -0.403 1.026 

Eganville 45.52 -77.16 223.0 8.5 2.3 2.891 -0.581 0.863 

Haliburton 45.04 -78.54 330.0 8.1 2.9 2.875 0.061 1.499 

Huntsville 45.29 -79.21 320.0 8.3 3.1 2.758 0.317 1.696 

Kemptville 45.04 -75.63 99.0 9.6 2.6 2.833 -0.224 1.192 

Lake Traverse 45.96 -78.04 236.0 7.8 2.4 2.866 -0.426 1.006 

Lavant Station 45.03 -76.70 274.3 8.7 2.5 2.833 -0.309 1.106 

Madawaska 45.54 -77.96 316.0 7.4 2.5 2.866 -0.321 1.111 

Maniwaki QC 46.37 -75.96 189.0 7.5 2.7 2.816 -0.085 1.323 

Matawatchan 45.13 -77.14 393.0 8.3 2.5 2.85 -0.383 1.041 

Mattawa 46.31 -78.70 186.0 7.7 2.6 2.725 -0.124 1.237 

Mont-Laurier QC 46.54 -75.54 244.0 6.9 3.0 2.741 0.219 1.59 

Muskoka 45.04 -79.63 282.0 9.0 3.0 2.741 0.25 1.621 

North Bay 46.29 -79.46 370.0 7.9 2.8 2.616 0.149 1.457 

Notre Dame QC 46.12 -75.63 213.0 7.4 2.9 2.75 0.157 1.532 

Ottawa 45.46 -75.71 114.0 9.3 2.7 2.758 -0.069 1.31 

Pembroke 45.86 -77.25 161.0 8.6 2.4 2.9 -0.541 0.908 

Petawawa 45.87 -77.29 183.0 8.4 2.4 2.875 -0.523 0.913 

Powassan 46.12 -79.29 274.0 7.7 2.8 2.646 0.109 1.432 

RD Joachims QC 46.21 -77.71 137.0 7.8 2.5 2.816 -0.295 1.113 

Renfrew 45.46 -76.71 130.0 8.8 2.3 2.883 -0.544 0.896 

Shawville QC 45.62 -76.54 168.0 8.6 2.5 2.866 -0.393 1.039 

Spotswood 45.87 -76.88 124.0 8.6 2.5 2.883 -0.403 1.037 

Stonecliffe 46.21 -77.89 196.0 7.8 2.5 2.816 -0.327 1.081 

Average       8.1 2.6 2.82 -0.242 1.168 

Most of the weather station results (26 out of 32 stations for the study region in Table 5.2) showed negative 

moisture availability (MA1), meaning there was a moisture deficit during the months from April to August 

along with the Algonquin Park East Gate station (Table 5.1, highlighted). The average results of these 

stations also revealed an overall moisture deficit (-0.242mm or 0.242mm/day and 88.33mm/year), even 

though for some stations, an increase in precipitation was also accompanied by a moisture deficit due to 

the rise in temperature resulting in higher evapotranspiration (ETo). It was found that the moisture deficits 
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projected for 2050 would likely be 24.1 mm in the Algonquin Park East gate area and 88.3 mm in the 

overall study region. 

5.3.1 Trends of changing climate (1971–2020 and 2050) 

Temperature trends (Table 5.3) within and near the area of study are a reflection of a significant rise in 

daily average temperature of 4.90C, 5.10C, 5.20C, and 8.10C during the periods from 1971–2000, 1981–

2010, 2011–2020, and 2050 (projected), respectively. 

Table 5. 3: Trend of rising temperatures from 1971–2020 and 2050 (Calculated summary results of climate 

variables) 

Results summary T (°C) P (mm) ETo (mm) MA1 (mm) MA2 (mm) 

1971–2000 = 30-yr average 4.9 2.8 2.5 0.155 1.399 

1981–2010 = 30-yr average 5.1 2.9 2.7 0.174 1.143 

2011–2020 = 10-yr average 5.2 NA NA NA NA 

1971–2020 = 50-yr average 5.1 2.85 2.6 0.164 1.271 

Average (2050) 8.1 2.6 2.8 –0.242 1.168 

Difference 3.0 –0.3 0.2 –0.078 –0.103 

Note: NA (not available): ETo, MA1, and MA2 were not calculated due to missing precipitation data for most of 

the stations from 2011–2020. 

A comparison of the historical average of 50 years (1971–2020) of climate normals (1971–2010), 

including average daily climate data (2011–2020), indicated that 2050 will experience daily average 

temperature and evapotranspiration increases (3.0°C, 0.2 mm, respectively) on average. In addition, there 

will be a decrease in daily average precipitation (-0.3 mm), and the projected daily average moisture 

deficits MA1 and MA2 will be 0.078 mm and 0.103 mm, respectively. It is also projected that the yearly 

decrease in precipitation will be 109.5 mm, the ETo increase will be 73.0 mm, and the moisture deficits 

will be 28.47 mm and 37.60 mm respectively. All of this will result in increased forest degradation as 

determined by the FDIs. 

Historical climate normals for 1971–2000 and 1981–2010 indicated an increasing trend of precipitation, 

and 2050 projected results showed a decrease in precipitation and increase in evapotranspiration (even 
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though an increase in precipitation was also accompanied by a moisture deficit due to the rise in 

temperature resulting in higher evapotranspiration).  

5.3.2 Prediction raster maps of climatologies (2050) 

The compiled data table (Table 5.2) was opened in ArcGIS after completing the calculations of ETo, MA1, 

and MA2 with projected (2050) data from 32 meteorological stations to create a point feature map. Based 

on the climate variables highly correlated with FDIs, the raster maps of predicted P, MA1, and MA2 were 

created using the EBK interpolation method in ArcGIS (Figure 5.2 a-c).  

The graduated single color ramp combination for the year 2050 showed daily average precipitation from 

2.30 mm–2.73 mm. The prediction map (Figure 5.2a) indicated that the projected (2050) precipitation 

would likely decrease in most of the study area, except the southwestern section. 

The graduated color ramp of light blue to dark blue for daily average MA1 (–0.578 mm to –0.063 mm) 

and MA2 (0.862 mm–1.322 mm) reveals the lower to higher moisture deficit of the prediction map (Figure 

5.2b-c) and the daily average indicating a greater moisture deficit in the south, eastern, and middle portions 

of the study area. 

 

Figure 5. 2 (a-c): Prediction (2050) gridded maps of (a) P, (b) MA1, (c) MA2 
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5.3.3 Projected maps of climatology (2050) 

An MLR model was developed based on the highly correlated dependent variable (CFDI) and the 

independent variables (P, MA1, and MA2) (details in Chapter 4). The interpolated feature class (gridded) 

map of 2050 was applied to create the future projected map. The MLR model for CFDI was fitted to the 

climate variables and applied to the projected (2050) climate variables under the representative 

concentration pathway 8.5 Wats/m2 (RCP8.5) scenario. The 2050 projected model (based on 1972–2020 

historical data) is as follows: 

Projected CFDI2050 (Ŷ) = 42.532 – 8.888 P(2050) + 15.625 MA1(2050) – 16.703 MA2(2050)   (5.6) 

The future projected map of CFDI was produced using the future (2050) prediction maps of the climate 

variables (P, MA1, and MA2). The raster calculator tool was employed to calculate the projected map 

(Figure 5.3a), fed by 2050 prediction climatic maps. 

Another MLR model was developed (see Chapter 4) based on the highly correlated dependent variable, 

CFDI, and independent variables, P, MA1, and MA2, for 2001–2020, and the interpolated (raster) feature 

class maps of 2050 were employed to create the future projected map using the following projected model: 

Projected CFDI (Ŷ)(2050) = 17.0842 – 3.0950 P(2050) + 2.0014 MA1(2050) – 8.3937 MA2(2050)  (5.7) 
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The CFDI projected model (5.7) was fed by the 2050 prediction maps of climatology, and the projected 

map was produced using the raster calculator tool in ArcGIS (see Figure 5.3b).  

 

The colour-coded resulting maps indicate a high level of degradation in red; green denotes very low or no 

degradation. A lower level of degradation is represented by shades in between the green and dark red 

colors (Figure 5.3a–b). 

5.3.4 Estimation of projected change map to 2050 of FDIs and mapping with climate change, 

relative to historic   

In Chapter 4, two historical CFDI gridded maps were created using the predicted MLR models (Eq 4.5, 

1972–2020 and Eq 4.6, 2001–2020). The models were fed by the historic prediction maps of climatology, 

and the calculations for the maps (Figure 5.4a-b) were once again undertaken with the raster calculator 

tool in ArcGIS.  

 

 

Figure 5. 3 (a-b): a) Projected (2050) CFDI map based on 1972–2020 model; (b) Projected CFDI map of 2050, 

based on 2001–2020 model 
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Based on the differences between historical (1972–2020) (Figure 5.4a) and projected (2050) (Figure 5.3a) 

CFDI maps, a future forest cover change map was produced (Figure 5.5). 

Change Map for 2050 = CFDIHistoric – CFDI2050  

The areas of forest cover most 

vulnerable to climate change were 

ascertained and highlighted with a 

color ramp (Figure 5.5). Based on the 

change map of CFDI 2050 (forest 

cover difference map), the projected 

results indicated forest cover 

reductions and that the southeastern 

region should be considered extremely 

vulnerable. 

Figure 5. 4 (a-b): a) Historical CFDI gridded maps of climatology created based on the prediction models of (a) 

1972–2020 and b) 2001–2020 

Figure 5. 5:  Change map of CFDI 2050 
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5.4 Discussion 

The objective of this study was the development of a set of procedures to ascertain the significant 

statistical relationships between historic and projected (2050) climate variables and a range of FDIs.  The 

relationships are based on an empirical projected MLR model for the CFDI that could assess the effects 

of climate change (through the integration of field data, remote sensing, and climate projections) on forest 

status in an ecologically important study area in Ontario, by using climate variables to project conditions 

for 2050 under the RCP8.5 scenario.  

Daily grids of mean temperature, precipitation, ETo, as well as MA (MA1 and MA2) at 30m spatial 

resolution have been produced for the study area for 1971–2010. This dataset is a complete, multi-decadal, 

spatiotemporally comprehensive database suitable for regional climate analysis, risk assessment, 

ecosystem modelling, as well as planning and management purposes. Its production was achieved with a 

much higher station density, greater spatiotemporal resolution, and longer data record than was possible 

in many previous studies with gridded databases (McKenney et al., 2006; Thornton et al., 1997). 

From the perspective of climate change, all human activities that act to decrease the present carbon stock 

(carbon carrying capacity) in natural forests need to be included as the primary drivers and pressures on 

forest degradation (Mackey et al., 2008). Climate change is already affecting the study area, including 

Algonquin Provincial Park. Earlier ice-out dates occurring on lakes and a general warming trend in the 

landscape that surround the park over the last 100 years are clear proof of the effects of local climate 

change. Area trends are a reflection of the rise in daily average temperature during the periods from 1971–

2000, 1981–2010, and 2011–2020 of 4.90C, 5.10C, and 5.20C, respectively. However, the most important 

effects of climatic change in Ontario forests are likely to relate to forest disturbance regimes. In this study, 

alterations in forest cover (forest degradation) were monitored from 1972–2020 with a computed CFDI 

resulting from multivariate integration (from seven FDIs) via the image fusion technique (PCA). The 
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findings also indicated what climate variables (P, MA1, and MA2) had the strongest correlation (-0.95, -

0.91, and -0.93, respectively) with CFDI. This strong relationship allowed for computing an MLR model 

with a high coefficient of determination, R2 (0.93), and low RMSE (0.28). This model was used for 

projecting the composite CFDI into the future (2050). A comparison of the historical average of 50 years 

(1971–2020) of climate normals (1971–2010), including average daily climate data (2011–2020), 

indicated that 2050 will experience daily average temperature and evapotranspiration increases (3.0°C, 

0.2 mm, respectively). In addition, there will be a decrease in daily average precipitation (-0.3 mm) and 

the projected daily average moisture deficits MA1 and MA2, will be 0.078 mm and 0.103 mm, respectively. 

It is also projected that the yearly decrease in precipitation will be 109.5 mm, the ETo increase will be 

73.5 mm, and the moisture deficits will be 28.47 mm (MA1) and 37.60 mm (MA2). As a result, there will 

be increased forest degradation as determined by the FDIs.  

5.5 Conclusions 

In this study, forest cover changes under different climate change scenarios were evaluated based on both 

the (projected) regression models and projected climate variables. Next, historical and present forest cover 

maps were produced, and future forest cover maps were also created under the RCP8.5 climate scenario, 

to identify areas that are more vulnerable in terms of their forest cover. Finally, the difference maps of 

historical (1971–2020) and projected (2050) forest cover were generated to discover potential changes in 

forest cover and identify the vulnerable areas in the future. 

This study focused on examining the dynamic changes in the forested Algonquin Park study area from 

1972–2020 and the generation of predictions of possible changes to 2050. The impacts of changes in 

temperature (T), precipitation (P), evapotranspiration (ETo), and moisture availability (estimated from 

two regimes: MA1 and MA2) on forest vegetation condition were studied based the effects of temperature 

and water deficit. To understand the nature of the quantitative relationships between climate variables and 
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FDIs, MLR analysis was employed to predict future dynamic changes in forest cover. These quantitative 

relationships were used to compute forest degradation projection maps for the study area. The results 

furnished evidence that forest cover will likely experience losses (mostly in the south and southeastern 

portions of the study area) and large fluctuations in the future, putting the area’s ecosystem at risk. 

Finally, GCM outputs projected a drier climate for the study area. This is a fine example that 

methodologies for local management on the ground should rely more on GCM projections, which are 

supposed to act as indicators of future climate change on a large and continental scale. Although extant 

trends may or may not continue into the future at the same rate, they form the most rational foundation 

for the development of adaptation strategies, which means they should be employed in combination with 

GCM projection. RCM output is currently being employed to develop a new generation of climate change 

scenarios, providing unparalleled opportunities to reach more detailed projections about the future 

climate. Since they provide both better spatial and temporal resolution, it will be possible to determine the 

effects of climate change on specific areas. Management changes should be based on models, but 

adaptation strategies should only be implemented on the ground when the observed trend confirms the 

projections.  
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CHAPTER SIX 

CONCLUSIONS 

 

This research developed a methodological framework for the continuous assessment, mapping, and 

monitoring of present and historic forest disturbance and degradation trends, and their future projections 

under climate change. The framework rests mainly on remote sensing technology, supported by ground 

measurements, and predictive models. The methodological framework identified and tested procedures 

for the continuous monitoring of forest disturbance and degradation in a forested area of Ontario.   

First, this thesis examined and evaluated the accuracy of conventional and relatively new artificial 

intelligence algorithms (i.e., machine learning) for land cover classification based on Landsat imagery of 

Central and Northeastern Ontario, Canada. A map with the highest possible level of accuracy for the study 

area was created as a result of these efforts to address the lack of an accurate existing land cover map. In 

the process, four algorithms—two non-parametric machine learning algorithms: support vector machine 

(SVM) and artificial neural networks, as well as two parametric classification algorithms: maximum 

likelihood classifier and Mahalanobis distance. The results demonstrated that SVM is the most accurate, 

robust, consistent, and effective algorithm for Landsat image classification in all investigated metrics, 

including in terms of imbalanced training data. For SVM, the amount of time and effort invested led to 

gains in accuracy from 60.86% in version 1 to 98.62% in version 8, with a time investment of 14hrs and 

42hrs, respectively.  

A suitable set of forest degradation indicators (FDIs) derived from multispectral satellite imagery was 

identified and computed and then compared to those of international standards. An innovative composite 

forest degradation indicator (CFDI) emerged from the synthesis of FDIs, which was employed to examine 

its relationship with climate variables and projected future (2050) forest degradation under climate 
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change. Long-term trajectory analysis of the FDIs, including the CFDI, proved useful in the development 

of disturbance and degradation maps for 1972–2020. 

An innovative component of this research was the fusion of Landsat and MODIS (in spite of their 

differences in spatial and temporal resolutions) computed FDIs (NDVI, NPP, NBR, EVI, TCB, TCG, 

TCW) into a combined and more explanatory CFDI that is the most informative indicator of combined 

forest degradation, for a combined map for 1972–2020. The disturbance maps were found to be effective 

in improving our understanding of the spatio-temporal land cover change trajectories from 1972–2020. 

Overall, the innovative CFDI (1972–2020) was the most informative as the combination of three layers 

of CFDI (1972–1981, 1984–1998, and 2001–2020), and the explained variability of the combined CFDI 

was 95.32%.  

The LandTrendr algorithm was able to clearly identify patterns of forest disturbance, including the 

duration and progress of disturbance and recovery. Therefore, this study revealed how critical it is to 

synergistically use archived Landsat and MODIS images with trajectory analysis to continuously monitor 

land cover change.  

A geostatistical analysis of relevant climate variables related to FDIs computed from available 

multispectral image stacks found relationships that were useful in projecting FDIs through multiple linear 

regression (MLR) models, which were used to examine the impact of climate change on forest cover, and 

to provide a forest vegetation cover degradation map under the projected climate scenario of 2050. The 

relationships between remote sensing indicators and climate variables led to the creation of spatially-

explicit long-term historical forest degradation maps.  

The results for the period from 1972–2020 indicated climate variables P, MA1, and MA2 had the strongest 

correlation (-0.95, -0.91, and -0.93, respectively) with CFDI, which enabled for computing of a model 

with a high coefficient of determination, R2 (0.93), and low RMSE (0.28). Additionally, findings for 
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2001–2020 showed climate variables P, MA1, and MA2 had the most significant correlation with CFDI, 

NDVI, and NPP. This strong relationship allowed for the establishment of future models with a high 

coefficient of determination, R2 (0.83, 0.80, 0.92, respectively), and low RMSE (0.39, 0.38, 0.26, 

respectively).  

The Ontario study area forests displayed evidence of moisture stress, particularly in the summer months 

(June–August) from 1971–2010. The impacts of changes in temperature, precipitation, 

evapotranspiration, and moisture availability on forest vegetation conditions showed evidence that forest 

cover is likely to suffer major losses and fluctuations in the future as related to climate variables 

(especially moisture availability), which will put the area’s entire ecosystem at risk. Thus, this method of 

monitoring forest degradation through the integration of remote sensing tools could assist and certainly 

improve climate change risk management, in particular by providing data on climate effects on vegetation. 

Potential changes in forest cover and vulnerable areas in the future, according to the projected climate 

under the representative concentration pathway 8.5 scenario were mapped. Based on the differences 

between the historical (past and present) and future (year 2050) CFDI map, the future forest cover map 

predicts forest cover reductions, mostly in the south and southeast of the study area. 

Projecting the CFDI into the future is a useful tool for visualizing the future of forests in the area. Based 

on 50 years of historical data, it is possible to predict that 2050 will experience daily average temperature 

and evapotranspiration increases (3.0°C, 0.2 mm, respectively). There will also be a decrease in daily 

average precipitation (0.3 mm), and the projected daily average moisture deficits, MA1 and MA2, will be 

0.078 mm and 0.103 mm, respectively. It is also projected that the yearly decrease in precipitation will be 

109.5 mm, the evapotranspiration increase will be 73.0 mm, and the moisture deficits will be 28.47 mm 

(MA1) and 37.60 mm (MA2). Additionally, study area temperature trends are a reflection of the rise in 

daily average temperature, which was 4.90C, 5.10C, and 5.20C for the years from 1971–2000, 1981–2010, 
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and 2011–2020, respectively. All the factors detailed here are likely to lead to increased forest degradation 

as determined by the FDIs.  

This study developed a fast and effective approach for monitoring forest disturbance and degradation from 

multiscale and multi-temporal remote sensing data. Exploiting the “big data” stacks from multispectral 

sensors and combining spatial and temporal resolutions has significant potential in monitoring regional 

scale forest degradation. The FDIs used in this study could effectively detect long-term forest disturbance 

and degradation. The results of this thesis showed that Landsat and MODIS satellite platforms can be 

combined and used to derive FDIs, which were effective in the identification and mapping of forest 

disturbance and degradation over the long-term. The analysis of the spectral response of vegetation with 

both remote and proximal sensing could prove to be an efficient and rapid way to examine and define 

forest health. However, more effective data analysis procedures should be developed, especially given the 

ongoing increase in the amount of data furnished by numerous sensors. 

This research also bridged current knowledge related to the spatial distribution, temporal trends, and 

patterns in the relationship between climate variables and FDIs, in order to provide forest degradation 

prediction maps for the study area. Since the negative impacts of losses and large fluctuations in vegetation 

in the future may lead to ecosystem vulnerability, this method of monitoring forest degradation through 

the integration of tools could assist and certainly improve climate change risk management and planning, 

in particular by providing data on climate impacts on forest vegetation. The consequences of projected 

forest degradation with climate change in the region of study relative to greenhouse gas concentrations 

and fluxes were not addressed in this study. Therefore, future work should address this gap to aid in the 

development of appropriate climate change mitigation and adaptation strategies for forest ecosystem and 

biodiversity management for the region. 



230 
 

 
 

General circulation model projections should be employed in combination with regional climate model 

outputs to develop climate change scenarios providing more detailed projections about the future climate 

with better spatial and temporal resolution. Management changes should be based on models, but 

adaptation strategies should only be implemented on the ground when the observed trend confirms the 

projections. 


