
SHORT-TERM IMPACTS OF AGRICULTURAL LAND USE 

CHANGE ON SOIL HEALTH AND NITROGEN CYCLING 

MICROBIAL COMMUNITIES 

 

 

 

 

 

 

A Thesis Submitted to the Committee on Graduate Studies 

In Partial Fulfillment of the Requirements for the Degree of Master of Science 

in the Faculty of Arts and Science 

 

 

 

 

 

 

 

TRENT UNIVERSITY 

Peterborough, ON, Canada 

© Copyright by Ridmani Hansika Kularathne, 2023 

Environment and Life Sciences MSc. graduate program 

January 2024  

 



 

 

ii 

 

ABSTRACT 

Short-term impacts of agricultural land use change on soil health and N-cycling 

microbial communities 

 

Ridmani Hansika Kularathne 

 

Glyphosate burndown and tillage, followed by the cultivation of cash crops, are 

frequently used techniques in LUC from perennial cropping systems (PS) to annual 

cropping systems (AS). Agricultural LUC can result in the loss of soil nitrogen (N) via 

emission of nitrous oxide (N2O), a potent greenhouse gas (GHG). The purpose of this 

thesis is to investigate the short-term impacts of agricultural LUC from PS to AS on 

soil health parameters and the nitrogen (N)-cycling bacterial communities responsible 

for nitrification and denitrification processes that result in the emission of N2O. The 

study field site was in Stone Mills, Ontario and comprised of four fields: two annual 

cropping systems were regularly cultivated for cash crops (AS), and two perennial 

cropping systems had not been cultivated for cash crops for over 50 years (PS).  One 

PS was left intact while the other PS was subjected to LUC (converted system [CS]) 

from PS to AS within the study period. The results of this study indicate that PS 

promotes soil health, as illustrated through higher soil organic matter % (2.3 ± 0.2 %), 

beta-glucosidase activity (0.41 ± 0.04 mmol g-1 dry soil h-1), and N-

acetylglucosaminidase activity (0.18 ± 0.03 mmol g-1 dry soil h-1). The PS soils 

exhibited higher nitrifier (6.0  0.3 log10 copies per g dry soil) and denitrifier (nirS, 

nirK and nosZI: 7.8  0.05, 8.1  0.1 and 5.0  0.1 log10 copies per g dry soil, 

respectively) gene abundances compared to AS (amoA, nirS, nirK and nosZI: 5.7  0.1, 
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7.7  0.04, 7.9  0.1 and 4.8  0.1 log10 copies per g dry soil, respectively). Moreover, 

LUC from PS to AS deteriorated soil health parameters and significantly decreased the 

nosZI/16S rRNA gene ratio, leading to potential N loss through N2O emissions. A 

laboratory incubation study revealed that the use of N-containing fertilizer in 

conjunction with easily metabolized C cumulatively resulted in 64.2% increase in N2O 

and 42.1% increase in CO2 fluxes in AS soils compared to PS soils. The AS soils also 

produced 69.8% more N2O and 13.4% more CO2 when compared to CS soils. The 

results suggest that the availability of C and N promote R-strategists, leading to 

increased production of CO2 and N2O. Additionally, results also suggest that LUC 

mediates fluxes depending on resource availability. The findings of this research 

demonstrate the significance of LUC in shaping N-cycling microbial communities and 

GHG emissions, emphasizing the importance of transitioning towards less intensive 

management practices to ensure the long-term sustainability of the agri-food system. 
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Chapter 1: General Introduction 

1.1 Context 

Since the 1700s, there has been a substantial shift in land use from natural land cover 

(e.g., forest) to agricultural (e.g., cropland and pasture) (Ramankutty & Foley, 1999; 

Klein Goldewijk & Ramankutty, 2004). The trend of land use change (LUC) is 

projected to continue, and this will lead to significant environmental and ecological 

consequences (Lawler et al., 2014). Some of these include biodiversity loss (Reidsma 

et al., 2006), climate change (Dale, 1997) and soil health depletion (Tilahun et al., 2022) 

(e.g., nutrient depletion, erosion, and compaction) (Bekele, 2019; Murty et al., 2002; 

Turley et al., 2020).  

Agricultural LUC can result in the loss of organic matter in the soil, which has 

serious implications for carbon (C) sequestration and nutrient cycling (Wasis, 2012; 

Benalcazar et al., 2022). During LUC activities, such as conversion to intensive 

agriculture, the disturbance of soil can result in the release of greenhouse gases (GHGs), 

including carbon dioxide (CO2) and nitrous oxide (N2O) (United States Environmental 

Protection Agency [USEPA], 2022). Consequently, GHGs contribute to global 

warming (Chen et al., 2019; Government of Canada, 2022; USEPA, 2022). The loss of 

natural ecosystems due to LUC can lead to a reduction in biodiversity, which in turn 

affects ecosystem services (Reidsma et al., 2006). Soil degradation due to agricultural 

LUC can also lead to a decline in the abundance of soil microbial communities (SMCs) 

(Merloti et al., 2019; Liu et al., 2022). Soil microbial communities plays a crucial role 

in driving the biogeochemical cycling of nitrogen (N) in agroecosystems (Cui et al., 

2021; Wang et al., 2021), which holds notable importance because N is a key nutrient 

required for plant biomass production and physiological functioning and its availability 

in the soil is a determining factor for crop yield (Anas et al., 2020; Hanrahan & Chan, 
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2005; Wang et al., 2014; Howarth, 2022). In addition, agricultural LUC may result in 

increased emissions of nitrous oxide (N2O), a potent GHG (Bouwman, 1996; Hénault 

et al., 2012; Ruser & Schulz, 2015). Nitrogen cycling SMCs are the primary drivers of 

the N-cycle in agricultural systems (Gattinger et al., 2008; Schmitz et al., 2015) and are 

responsible for N transformation processes including nitrification, and denitrification 

(Galloway et al., 2008; Stein & Klotz, 2016; Takai, 2019), which play a crucial role in 

converting N into available forms for plants [nitrate (NO3
-)] and releasing N2O into the 

atmosphere (Isobe & Ohte, 2014; Zhang et al., 2022).  

Agricultural LUC, particularly the conversion of perennial cropping systems to 

annual cropping systems that involve chemical herbicide and fertilizer application, and 

soil disturbance through tillage can significantly impact the soil N-cycle and result in 

increased emissions of N2O (Plaza-Bonilla et al., 2014; Bayer et al., 2015; Žurovec et 

al., 2017; Wang et al., 2019). Transitioning from a perennial to an annual cropping 

system through chemical burndown (Kanissery et al., 2019; Peillex & Pelletier, 2020), 

soil tillage, and fertilization (Ziadi et al., 2014; st. Luce et al., 2022) has the potential 

to reduce SMC abundance (Shang et al., 2020; Singh et al., 2020) and contribute to soil 

health depletion (Matson et al., 1997; Pinares-Patiño et al., 2009; Zhou & Butterbach-

Bahl, 2014).  

The C:N ratio of organic matter inputs can indicate whether N is mineralized or 

immobilized (Bengtsson et al., 2003; Brust, 2019). This ratio refers to the proportion of 

C to N in organic matter present (Flavel & Murphy, 2006). Previous literature has 

shown that the availability and rate of application of an external C and N sources can 

impact N2O emissions (Yang et al., 2020). Carbon acts as an energy source for SMCs 

and N acts as electron acceptor for denitrification (Rivett et al., 2008; Zhu et al., 2015). 
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When soil is amended with an external C and N source, the amended soil can influence 

the emission of both CO2 and N2O  (Liao et al., 2016).  

While numerous studies have examined the differences in soil health and N-cycling 

microbial community size between perennial and annual cropping systems (Devkota et 

al., 2013; Kraut-Cohen et al., 2020; Sokolowski et al., 2020; Ye et al., 2020), only a 

limited number of studies have specifically focused on examining the transition from a 

perennial to an annual cropping system (Panettieri et al., 2013). Assessing soil health 

and N-cycling SMCs are crucial for evaluating the potential impact of management 

practices on the overall condition of soil and agricultural LUC related N2O emissions 

(Yang et al., 2020; Glaze-Corcoran et al., 2020; Sadras et al., 2020; Muhilan & 

Chattopadhyay, 2022). Additionally, there is a scarcity of research focusing on the 

impacts of exogenous addition of C and N sources on GHG emissions associated with 

LUC. This study will contribute to agricultural land use decision making and will 

address the gaps in knowledge, which are imperative to advance our understanding of 

these complex interactions and their implications for agricultural management. 

1.2 Thesis format and research objectives 

This thesis is structured into five main chapters, following the manuscript style. Each 

chapter outlines specific objectives, reflecting the complementary yet independent 

nature of the individual studies. The overall aim of the thesis is to investigate the short-

term (<3 months) impact of LUC from perennial to annual cropping systems on soil 

health parameters and N-cycling microbial community abundance.  

Chapter 2 presents a comprehensive literature review of the impacts of 

agricultural LUC on soil health parameters and the abundance of the N-cycling SMCs, 

including the conversion from perennial to annual cropping systems, and its 

relationship to soil health and N-dynamics. Chapter 3 was a field study focused on the 
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impact of agricultural LUC, specifically conversion from a perennial to an annual 

cropping system, on soil health parameters and the gene abundances of the total 

bacterial community (16S rRNA), nitrifying bacterial community (amoA), and 

denitrifying bacterial communities (nirS, nirK, and nosZI). Quantitative polymerase 

chain reaction (qPCR) assays were used to enumerate these genes. In Chapter 4, a 

laboratory incubation study was conducted to explore the interaction between LUC and 

N2O and CO2 fluxes in the presence of C and N. Furthermore, changes in soil health 

parameters were characterized over the incubation period. 

In summary, this thesis achieves the following objectives: 

1. Compare soil health parameters and N-cycling SMC abundances between a 

perennial vs. an annual cropping system and characterize the short-term (<3 

months) impacts of agricultural LUC from perennial to annual cropping systems 

(Chapter 3). 

2. Investigate the interaction between LUC and N2O and CO2 fluxes in the 

presence of exogenous C and N (Chapter 4).  
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Chapter 2: Literature Review 

Land use refers to how land is utilized, both physically and biologically (Lambin et al., 

2000; Liu et al., 2014), and encompasses a wide range of human activities such as 

urbanization and agriculture (Zhang et al., 2012). According to the United Nations Food 

and Agricultural Organization ([FAO], 2011), land use is a major determinant of the 

quality of life for both human populations and other macro and microorganisms. 

Changes in land use can lead to significant impacts on biodiversity (Reidsma et al., 

2006) and the climate (Dale, 1997) through the production of GHGs, which trap and 

emit heat in the atmosphere and contribute to global warming (Intergovernmental Panel 

on Climate Change [IPCC], 2007).  

2.1 Agricultural land use change 

Agricultural land use refers to the practice of utilizing the land for agricultural purposes, 

including the production of crops (Verburg et al., 2011). Agricultural LUC is a 

continuous process that has occurred for a significant period through the transformation 

and modification of land for agricultural purposes. Alterations in the way land is used 

for agricultural purposes over time are referred to as agricultural LUC (Bekele, 2019). 

This can include conversions from one type of agricultural land use to another, such as 

cropland to pastureland, or changes in the intensity of land use, such as the expansion 

of agricultural production areas into areas previously not used for agricultural purposes 

(Lambin et al., 2000; Lambin & Meyfroidt, 2011; Liu et al., 2014). The consequences 

of agricultural LUC can be significant, affecting the quality of life for both human 

populations and other living organisms. Changes in land use can lead to loss of 

biodiversity (Reidsma et al., 2006), degradation of soil and water resources (Zhang et 

al., 2012), and increased GHG emissions (IPCC, 2007).  
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Agricultural LUC has a direct impact on GHG emissions, making a significant 

contribution to global warming and the overall changes in the climate (Hale et al., 2006; 

Winkler, 2021). Greenhouse gases, including CO2, methane (CH4) and N2O, play a 

crucial role in maintaining the Earth’s temperature through the greenhouse effect (Dale, 

1997; Ito et al., 2020). However, increased GHG emissions have disturbed the heat 

balance of the Earth’s surface, leading to a rise in global temperatures (IPCC, 2007; 

IPCC, 2021). This has resulted in changes in precipitation patterns, declining snow 

cover, rising sea levels, ocean acidification, and global climate change (IPCC, 2013; 

IPCC, 2021). Among GHGs, N2O is a particularly significant contributor to global 

warming and ozone layer depletion (Ravishankara et al., 2009; Ito et al., 2020), with a 

considerably higher global warming potential (298 – 300 times) compared to CO2 

(baseline at 1) and CH4 (21-25) (Kudeyarov, 2020). In the last five decades, N2O levels 

in the atmosphere have increased by 20% (Tian et al., 2020) with approximately 40% 

of these emissions being the result of human activities, including agriculture and 

associated LUC (USEPA, 2021). Moreover, some studies report that N2O emissions are 

gradually increasing over time (Galloway et al., 2004; del-Grosso et al., 2009; Syakila 

& Kroeze, 2011; Tian et al., 2020). The emission of GHGs such as N2O and CO2 from 

agricultural soils is influenced by a variety of environmental factors including 

temperature, moisture, organic C content, N availability, mechanical disturbance, pH, 

and soil texture (Oertel et al., 2016). 

2.2 Perennial and annual agricultural systems 

Cropping systems can be broadly classified into two main categories: perennial and 

annual. Non-disturbed perennial cropping systems involve growing perennial crops in 

the soil over multiple years (FAO, 2018; Gerke, 2022). This type of system provides a 



 

 

7 

 

stable and continuous source of food and income over the long term, while also 

contributing to soil conservation and biodiversity. These perennial systems are 

primarily utilized for cultivating feedstocks for livestock (Gerke, 2022). In contrast, 

annual cropping systems involve disturbing the soil regularly to plant cash crops for 

one growing season (FAO, 2018; Blickensdörfer et al., 2022). This type of system can 

present challenges in management compared to the perennial system, but it may offer 

increased adaptability in response to dynamic market demands (World Food Summit, 

1996; Blickensdörfer et al., 2022). Additionally, they can have higher yields compared 

to perennial systems and can be easier to rotate with other crops to reduce pest and 

disease pressures. The practice of annual cropping often requires more intensive 

management of soils such as regular tillage, application of synthetic fertilizers, and 

pesticides (Matson et al., 1997; Rubio et al., 2022; Xue et al., 2022). Such increased 

management can potentially have adverse effects on soil conservation and biodiversity 

(World Food Summit, 1996; Emmerson et al., 2016; Raven & Wagner, 2021). 

Soil tillage is a critical aspect of crop management, particularly when 

transitioning from perennial to annual cropping systems. This process involves the 

physical turning of the soil, the burial of surface residues, and the control of weeds and 

pests to prepare the seed bed (Lobb, 2008; Baumhardt & Blanco-Canqui, 2014; Feng 

& Balkcom, 2017; Lal, 2021). Soil tillage has a profound effect on soil properties, such 

as soil organic matter (SOM), structure, nutrient availability, and microorganisms 

(Plaza-Bonilla et al., 2014; Bayer et al., 2015;  Wu et al., 2017; Campanha et al., 2019; 

Chen et al., 2019). On the other hand, glyphosate (N-phosphonomethyl glycine 

[C3H8NO5P]) is widely recognized for its highly effective weed control and non-

selective herbicidal properties in agriculture (Tarazona et al., 2017). These properties 

make it useful for targeting and killing a broad range of plant species, facilitating the 
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conversion of land from perennial to annual cropping systems (Tarazona et al., 2017; 

Gillezeau et al., 2019). Glyphosate works by inhibiting a key enzyme that is essential 

for plant growth and reproduction, leading to the withering and eventual death of the 

plant. Furthermore, glyphosate is valued for its role as a chemical burndown agent, 

which assists in the removal of existing crops or forage to prepare fields for planting 

and facilitates agricultural LUC from perennial to annual cropping systems (Belfry et 

al., 2015; Gillezeau et al., 2019). Chemical burndown and tillage aid in controlling 

weeds and pests that may otherwise harm crop yield and productivity. 

The conversion from perennial to annual cropping through chemical burndown and 

tillage is widely recognized as having a significant impact on soil health (Zhang et al., 

2022). Glyphosate and tillage use have the potential to modify soil structure, fertility, 

and abundance of microorganisms, which are all critical components of soil health 

(Ozlu et al., 2019; Thomas et al., 2019). Studying the impact of agricultural LUC 

through glyphosate burndown and tillage can provide valuable insights into the changes 

that occur in soil health and their impact on soil microorganisms. This information can 

be leveraged to implement measures that mitigate negative impacts, ensuring the 

preservation of soil resources for future generations and the continued sustainability of 

agriculture. 

2.3 Soil Health 

Soil is a complex mixture of biotic and abiotic components, including living organisms, 

non-living organic material, minerals, water, and air (Cannone et al., 2008; Spath et al., 

2014). It serves as a vital medium for plant growth and is a natural resource (Barea, 

2015). The interactions between the biotic and abiotic factors result in the development 

of a dynamic ecosystem that provides essential services such as nutrient cycling and 
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food production (Meulen et al., 2016; Saccá et al., 2017; Prasad et al., 2021). Soil also 

serves as a habitat for a diverse range of organisms, from microscopic bacteria and 

fungi to macroscopic insects and earthworms (Lee & Pankhurst, 1992; Pavao-

Zuckerman, 2008; Liu et al., 2019; Altieri, 1999; Tiemann et al., 2015; Bender et al., 

2016).  

Soil health refers to the capacity of the soil to perform vital ecosystem functions that 

support the growth and survival of plants, animals, and humans (Glaze-Corcoran et al., 

2020; Sadras et al., 2020; Muhilan & Chattopadhyay, 2022). As a plant growth 

substrate, soil provides crucial nutrients and water for the physiological needs of plants 

(Kearney & Porter, 2009), making soil health a critical factor for the overall well-being 

of both plants and animals (Das & Varma, 2010). Agricultural LUC from perennial to 

annual cropping systems by chemical burn down combined with turning the soil and 

returning remaining residues via shallow tillage has the potential to negatively impact 

soil health and contribute to increased GHG emissions and NO3
- leaching (Matson et 

al., 1997; Doran, 2002; Pinares-Patiño et al., 2009; de Corato, 2020). Characterizing 

soil health is essential for assessing the impact of LUC on soil function and developing 

effective strategies to preserve soil health and to ensure the sustained productivity and 

viability of agricultural lands over the long term. 

2.3.1 Soil health parameters in an agroecosystem 

Soil health assessment has gained prominence in the field of sustainable agriculture in 

recent years (Bünemann et al., 2018). This practice involves evaluating a combination 

of soil physical, chemical, and biological attributes to determine soil health (Lehmann 

et al., 2020; Simfukwe et al., 2021), which reflects the soil’s ability to provide 

ecosystem services (Williams et al., 2020). The selection of suitable soil health 

parameters is important as they should be correlated with the targeted function and 
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responsive to changes in soil management practices (Table 2.1) (Arshad & Coen, 1992; 

Wu & McGechan, 1998; Pulleman et al., 2000; Karlen et al., 2003; Andrews et al., 

2004; Kunhikrishnan et al., 2012; Kavamura et al., 2019). 
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Table 2.1: Soil health parameters and their functions. 

Category Soil health parameter Function References 

Physical 

parameters 

Soil texture Influences water holding capacity, nutrient retention, soil structure, 

aeration, and microbial activity, all of which are crucial for plant growth 

and ecosystem functioning.  

Huluka & Miller, 

2014 

Soil porosity Allows for the movement of air and water, promoting soil aeration, 

drainage, and nutrient uptake by plants. It is recommended to maintain 

a minimum air-filled porosity of 10% in soil. 

Lipiec et al., 2006 

Bulk density Influences soil compaction, root growth, and water movement, which 

can affect plant growth, nutrient uptake, and soil erosion. An ideal bulk 

density for agricultural purposes is typically considered to be equal to 

or less than 1.3 g cm−3. 

Logsdon & Karlen, 

2004 

Aggregate stability Improves soil structure and water infiltration, promotes aeration and 

root growth, and reduces erosion, which contributes to healthy plant 

growth and ecosystem functioning. For agricultural purposes, it is 

Beare et al., 1994 
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desirable for soil to possess a minimum aggregate stability of 50% - 

80%. 

Water holding capacity Determines the amount of water that can be stored in the soil, which 

affects plant growth and survival, nutrient availability, and soil erosion. 

It is recommended to maintain a soil water holding capacity of 60%. 

Harding & Ross, 1964 

Chemical 

parameters 

Soil organic matter Improves soil fertility, nutrient cycling, water holding capacity, soil 

structure, and microbial activity, which are critical for healthy plant 

growth and ecosystem functioning. Agricultural soils typically exhibit 

a soil organic matter content ranging from 3% to 6%. 

Fließbach et al., 2007 

Soil N content Influences plant growth, microbial diversity, nutrient cycling, and the 

production of enzymes and other biochemical compounds that are 

essential for plant productivity and adaptation. The recommended N 

content for agricultural purposes is typically 40 ppm. 

van Groenigen et al., 

2015 

Soil pH and electrical 

conductivity 

Improves soil fertility, nutrient availability, microbial activity, and plant 

growth and health, making them important indicators of soil health and 

ecosystem functioning. A pH range of 6-6.5 and an electrical 

Miller & Curtin, 1982 
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conductivity of ≤ 750 µS m-1 are considered favorable indicators of 

good soil quality for agricultural purposes. 

Biological 

parameters 

Soil active carbon Labile fraction of carbon in soil serves as an important indicator of soil 

microbial activity, organic matter decomposition, and the supply of 

carbon for heterotrophic organisms. A range of 1000 to 3000 mg kg-1 of 

active carbon is often regarded as desirable for agricultural soils. 

DuPont et al., 2010 

Soil microbial 

community abundance, 

diversity, and 

composition 

Influences nutrient cycling, organic matter decomposition, and disease 

suppression, making them key factors in regulating soil health, plant 

productivity, and ecosystem functioning.  

Gattinger et al., 2008 

Microbial extracellular 

enzyme activity  

Influences organic matter decomposition and nutrient cycling, making 

it a key factor in regulating ecosystem functioning and plant growth. 

Uwituze et al., 2022 
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2.4 Nitrogen 

Nitrogen is a critical component for all living organisms as it plays a vital role in the 

synthesis of proteins and nucleic acids (Navarro-González et al., 2001). With its abundant 

presence as the fourth common element in the environment, N can be found in various 

forms, including dinitrogen (N2) which accounts for 78% of the atmospheric gas content 

(Navarro-González et al., 2001; Robertson & Vitousek, 2009; Stein & Klotz, 2016; Bloch 

et al., 2020). However, for most organisms, N2 is largely inaccessible and must be 

transformed into NH4
+ to become available for primary producers (Knapp et al., 2012). In 

addition to N2 and NH4
+, N also exists in organic forms, such as amino acids and nucleic 

acids, and inorganic forms, such as NO3
- (Fowler et al., 2013; Stein & Klotz, 2016). The 

transformation of N from one form to another is referred to as the N cycle, and it is essential 

to ensure the availability of N in the ecosystem (Stein & Klotz, 2016; Takai, 2019). 

 2.4.1 Nitrogen Cycle 

The N-cycle is comprised of five main processes: N-fixation, mineralization, 

immobilization, nitrification, and denitrification (Stein and Klotz, 2016). Atmospheric N2 

enters the soil during the N-fixation process. While N2 is inaccessible to plants for direct 

uptake (Knapp et al., 2012), a group of prokaryotes known as diazotrophs can reduce N2 to 

NH4
+ by using a nitrogenase enzyme complex, which is encoded by the nifH gene 

(Wallenstein & Vilgalys, 2005; Penton et al., 2013; Wang et al., 2017). The process of N-

fixation requires a significant amount of energy, in the form of 16 moles of adenosine 

triphosphate (ATP), which is supplied by plants through a symbiotic relationship (Gupta et 

al., 2019; Shah et al., 2017). The primary processes that transform N into forms that are 

usable by plants (NH4
+ / NO3

-) and result in the release of N2O and N2 are mineralization, 
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nitrification and denitrification (Pajares & Bohannan, 2016). The transformations of N in 

these pathways are dependent on the activities of microorganisms, such as bacteria, 

archaea, and fungi (Galloway et al., 2008; Fowler et al., 2013), and edaphic conditions, 

such as oxygen availability, moisture content, and C and N availability and access 

(Masclaux-Daubresse et al., 2010; Huber et al., 2011). Enzymes produced by SMCs 

catalyze N transformations in the denitrification and nitrification pathways and are encoded 

by specific N-cycling functional genes (NFGs) (Bothe et al., 2006; Pérez-Álvarez et al., 

2013; Pajares & Bohannan, 201).   

         In agricultural soils, the major sources of N are inorganic synthetic N fertilizers and 

plant and animal debris (Fuertes-Mendizábal et al., 2018; Castillo-Díaz et al., 2022). 

Synthetic N fertilizers provide readily available forms of N, such as NO3
- and NH4

+, for 

direct uptake by plants (Pan et al., 2016). On the other hand, the return of organic matter 

to agricultural soils provides organic N that is subject to degradation through the process 

of N-mineralization by SMCs (Bengtsson et al., 2003; Butterbach-Bahl & Dannenmann, 

2011). This process is essential in breaking down complex organic N into more readily 

available forms for plant uptake. The energy required for N-mineralization is supplied by 

SMCs through the degradation of complex organic matter and nutrient absorption 

(Tarazona & Ramos-Peralonso, 2014). The mineralized N in the form of NH4
+ can then be 

absorbed by plants or undergo further transformation reactions (Butterbach-Bahl & 

Dannenmann, 2011; Risch et al., 2019). Nitrogen immobilization is a process where soil 

microorganisms consume N for their growth and metabolic processes, leading to a 

temporary reduction in soil N availability to plants (Bengtsson et al., 2003; Freppaz et al., 
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2007). This process ties up N in microbial biomass, making it unavailable for plant uptake 

until release from cellular death (Dalias & Christou, 2022).  

2.4.2 Nitrification 

Nitrification (Figure 2.1) is a two-step oxidation process in which NH4
+ is converted into 

NO3
-, with nitrite (NO2

-) serving as an intermediate (Barnard et al., 2005; Stein & Klotz, 

2016). This process is conducted by distinct types of SMCs. The first step, which is the 

rate-limiting reaction step of the pathway is carried out by ammonia-oxidizers and involves 

the oxidation of NH4
+ into NO2

- via the intermediate hydroxylamine (NH2OH) (Stams et 

al., 1991; Stein & Klotz, 2016; Pajares & Ramos, 2019). This reaction requires two 

enzymes: (i) ammonia monooxygenase, encoded by amoA and crenamoA in ammonia-

oxidizing bacterial (AOB) and ammonia-oxidizing archaea (AOA), respectively (Bothe et 

al., 2006; Li et al., 2015; Nunes-Alves, 2016; Wang et al., 2021), and (ii) hydroxylamine 

oxidoreductase, encoded by the hao gene (Richardson & Watmough, 1999; Whittaker et 

al., 2000; Bothe et al., 2006; Pérez-Álvarez et al., 2013).  

In anaerobic conditions, nitrite-oxidizing bacteria, such as AOB, can perform 

nitrifier-denitrification by utilizing NO2
- as an electron acceptor instead of oxygen (O2), 

leading to the production of N2 or N2O. During this process, nitric oxide (NO) and N2O are 

produced as obligate intermediates and escape from bacterial cells into the atmosphere. 

The oxidation step in this process occurs due to the action of the hydroxylamine 

oxidoreductase enzyme (hao), which oxidizes NH2OH (Richardson & Watmough, 1999; 

Caranto & Lancaster, 2017). Previously, nitrifier-denitrification was thought to be carried 

out exclusively by AOB species. However, recent research has indicated AOA are also 

involved in nitrifier-denitrification (Könneke et al., 2005).   



 

 

17 

 

The second stage of nitrification involves the oxidation of NO2
- into NO3

- by nitrite-

oxidizing bacteria (Stams et al., 1991; Pajares & Ramos, 2019;)  which is catalyzed by the 

enzyme nitrite oxidoreductase encoded by nxr genes (Norton & Ouyang, 2019; Richardson 

& Watmough, 1999; Stein & Klotz, 2016). Although this step yields only a minimal 

amount of energy due to the electrons being partially extracted during the first stage of 

nitrification, it is essential for completion of the nitrification process (Stams et al.,1990; 

Richardson and Watmough, 1999; Stein and Klotz, 2016). Nitrite oxidation is energetically 

unfavorable and requires high activation energy, but without it, toxic NO2
- can accumulate, 

inhibiting the growth of other microorganisms involved in N-cycling. Additionally, NO3
- 

is a crucial nutrient for many plant species, and completing the nitrification process is 

necessary for maintaining healthy and productive ecosystems (van Kessel et al., 2015; 

Norton et al., 2018; Norton & Ouyang, 2019; Pajares & Ramos, 2019).  

 

Figure 2.1: Nitrification. Oxidation process of ammonium (NH4
+) to nitrate (NO3

-). Genes 

encoding for nitrification enzymes are shown on the top of each arrow. Ammonium 

(NH4
+→NH3) is oxidized via ammonia monooxygenase (encoded by amoA) to 

hydroxylamine (NH2OH), which is further oxidized via hydroxylamine oxidoreductase 

(encoded by hao) to nitrite (NO2
-) and to nitrate (NO3

-) via nitrite oxidoreductase (encoded 

by nxr).  
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2.4.3 Denitrification  

Denitrification (Figure 2.2) is a reduction reaction series that transforms NO3
- into N2. This 

process results in the release of N2 into the atmosphere and reduces leaching losses of N 

from the soil (Delwiche & Bryan, 1976; Stein & Klotz, 2016). The end product of 

denitrification is N2, however, intermediate gaseous N forms such as NO and N2O are also 

produced during this process (Skiba, 2008). When O2 levels are limiting, facultative and 

obligate anaerobic SMCs can use denitrification as an alternative respiratory pathway 

(Bollmann & Conrad, 1998; Richardson & Watmough, 1999; Boyer et al., 2006; 

Wallenstein et al., 2006; Liou & Madsen, 2008). The denitrification process relies on the 

presence of C and NO3
- as essential components. Furthermore, denitrification is particularly 

important in agriculture, as it helps to reduce the loss of NO3
- (e.g., applied in fertilizers) 

from the soil system, which is both harmful and costly (Delwiche and Bryan, 1976; Stein 

and Klotz, 2016). 

The reactions in denitrification are catalyzed by specific enzymes, namely nitrate 

reductase, nitrite reductase, nitric oxide reductase, and nitrous oxide reductase (Richardson 

and Watmough, 1999; Bothe et al., 2006; Perez-Alvarez et al., 2013). These enzymes are 

encoded by nar, nir, nor, and nos genes respectively in bacterial communities (Bothe et al., 

2007; Perez-Alvarez et al., 2013; Wang et al., 2017). The NO2
- reduction gene, referred to 

as nir, occurs as two distinct types, namely nirS and nirK, which are functionally equivalent 

but possess different structural features. The active site of nirK is comprised of copper (Cu 

type), whereas nirS contains cadmium as a cofactor (cytochrome-cd1 type) (Lin et al., 

2022). Additionally, nir genes are present as a single copy per genome, and the 

simultaneous presence of both the nirS and nirK genes within a single bacterial species is 
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a rare occurrence (Sun and Jiang, 2022).  The nosZ gene encodes the N2O reductase 

enzyme, which plays a critical role in the degradation of N2O in the N-cycle. This gene has 

been classified into two phylogenetic clades, nosZI, and nosZII, based on their sequence 

similarities and evolutionary relationships (Orellana et al., 2014). The inhibition of nosZII 

gene expression by high NO3
- concentrations could lead to a potential increase in N2O 

emissions (Semedo et al., 2021).  

The detection of nar genes and nor genes is also important in understanding the 

complexities of N-cycling. The nar gene encodes the nitrate reductase enzyme, which is 

fundamental in transforming NO3
- to NO2

-, and it consists of various types of enzyme 

subunits (Richardson and Watmough, 1999; Bothe et al., 2006; Perez-Alvarez et al., 2013). 

The nor gene encodes the nitric oxide reductase enzyme, which plays a crucial role in 

denitrification by catalyzing the reduction of NO to N2O (Bothe et al., 2006; Perez-Alvarez 

et al., 2013). However, high concentrations of NO can have cytotoxic effects (Bothe et al., 

2006). Identifying specific nor genes responsible solely for NO reduction through 

denitrification is a challenge, as non-denitrifying organisms may possess nor genes with 

additional functions, such as involvement in pathways beyond denitrification. These 

difficulties with regards to nar and nor genes are further compounded by the genetic 

diversity and low abundance of these genes, making polymerase chain reaction (PCR)-

based detection methods less sensitive and less specific (Dandie et al., 2007). 

Figure 2.2: Denitrification. Reduction of nitrate (NO3
-) to dinitrogen (N2) and the genes 

that encode specific enzymes. Nitrate (NO3
-) is reduced to nitrite (NO2

-) by a nitrate 
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reductase (encoded by nar genes), which is further reduced to nitric oxide (NO) via a nitrite 

reductase (encoded by nirS or nirK). NO is then reduced to nitrous oxide (N2O) by a nitric 

oxide reductase (encoded by nor genes) and in some species, N2O is further reduced to 

dinitrogen (N2) via a nitrous oxide reductase (encoded by nosZ). 

2.5 Impacts of agricultural land conversion on N-cycling SMCs 

The conversion of perennial to annual cropping systems through chemical burndown and 

tillage modifies the habitats of SMCs (Young and Ritz, 2000; Kraut-Cohen et al., 2020). 

The composition of these communities is shown to be sensitive to changes in land use 

(Frøslev et al., 2022). In studies carried out by Smith et al. (2016) and Singh et al. (2021) 

the effects of soil tillage and crop type on SMC abundances were investigated. Smith et al. 

(2016) discovered that bacterial communities involved in N-cycling were more abundant 

in perennial cropping systems when compared to annual cropping systems. Singh et al. 

(2021) found that soils planted with perennial species have a greater abundance of genes 

related to N-cycling, specifically amoA, and nirK, compared to soils with annual cropping. 

Furthermore, they suggest perennial agricultural systems lead to enhancements in soil 

structure, organic matter content, and C content, ultimately providing an environment 

conducive to the growth and activity of SMCs. 

Research conducted by Wang et al. (2019) and Grave et al. (2018) investigated the 

impact of agricultural practices on the abundance of nitrifier and denitrifier genes as well 

as N2O emissions. Wang et al. (2019) found no significant difference in bacterial 16S rRNA 

gene abundance (representing the size of the total bacterial community) between a 

perennial system with zero tillage and an annual system with conventional tillage that was 

planted to winter wheat. However, archaean ammonia oxidizer (crenamoA) gene 
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abundances were highest in the soil from the annual cropping system. In contrast, they 

observed the lowest bacterial amoA gene abundances in the annual system compared to the 

perennial system, concluding that bacteria and archaeal nitrifying SMCs are differently 

regulated by the cropping system. Denitrifier nirK and nirS gene abundances were higher 

in disturbed soils, whereas nosZ gene abundances were highest in non-disturbed soils. On 

the other hand, Grave et al. (2018) conducted a study to investigate the impact of perennial 

and annual cropping systems on denitrifying communities in a corn-wheat double-crop 

rotation field in Brazil. They examined fields that were either tilled or untilled. They 

quantified bacterial 16S rRNA, amoA, nirS, and nosZ genes from both annual and perennial 

agricultural soils and observed no significant differences in the abundance of 16S rRNA, 

amoA, or nosZ genes between cropping systems. However, they did observe a greater 

abundance of the nirS gene in the perennial cropping system than the annual system. 

Overall, both studies highlight the complexity of the impacts of agricultural practices on 

SMCs and the potential for these practices to affect soil functioning and GHG emissions. 

In Italy, a long-term (23 year) field experiment was conducted to assess the 

potential impact of non-tilled and tilled fields planted with wheat and faba bean 

respectively on N2O emissions from agricultural soils. Researchers found that perennial 

soils had higher abundances of 16S rRNA, amoA, and nosZ genes compared to annual soils. 

The findings suggest that perennial cropping systems may enhance the abundance of total 

bacteria and NFGs in soil, which could in turn influence N2O emissions (Badagliacca et 

al., 2018). Previous research has also shown that soil disturbance by tillage can affect the 

size and activity of N-cycling microbial communities. The disturbance caused by tillage 

may promote the movement of SMCs in the soil or favor their tolerance of such 
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disturbance, potentially impacting the abundance and diversity of microbial communities 

(Tirol et al., 2018). These results indicate that differences between perennial and annual 

cropping systems may impact both the abundance and diversity of soil microbial 

communities, which could subsequently affect N2O emissions from agricultural soil (Smith 

et al., 2016).  

A study conducted by Thompson et al. (2016) investigated changes in the 

population size and community structure of nitrifiers and denitrifiers in annual (corn) and 

perennial grass (timothy, Phleum pratense L.) and legume (alfalfa) mixture cropping 

systems, as well as after tillage in a perennial cropping system. Authors found significantly 

higher nosZ and 16S rRNA gene abundances in perennial fields compared to annual fields, 

but no significant differences in the abundance of amoA, crenamoA, nirS, or nirK genes 

between the two systems were observed. Additionally, nosZ gene abundances were 

significantly decreased in the perennial cropping system after tillage, which was associated 

with a 10-fold increase in N2O emissions, while there were no significant changes in the 

abundance of 16S rRNA, amoA, crenamoA, nirS, or nirK genes. The study results revealed 

alterations in the compositions of amoA, creanamoA, nirK, and nosZ-bearing nitrifier and 

denitrifier communities after tillage practices. These observations show that different 

cropping systems might support specific N-cycling SMCs that exhibit resilience to 

disturbances.  

A study by Haney et al. (2002) examined the effect of glyphosate addition on soils 

from annual cash crop and perennial pasture grass cropping systems in a microcosm study. 

They found that SMC biomass C and N, as well as C and N mineralization rates, were 

significantly higher in annual cash crop systems compared to pasture grass systems. This 



 

 

23 

 

suggests that the microbial communities in annual cash crop systems may be more efficient 

in organic matter decomposition. In another microcosm study by Lancaster et al. (2010), 

the effect of repeated addition of glyphosate on SMC composition was observed. They 

reported that repeated application of glyphosate resulted in an increase in the incorporation 

of glyphosate into microbial biomass. In China, a 3-year experiment was conducted on an 

established 12-year field study to investigate the impact of tillage on in situ N2O emissions 

following the addition of N-containing fertilizer. The study comprised both perennial 

cropping systems with no tillage and annual cropping systems with tillage twice a year, 

which were fertilized with urea and planted to corn. The researchers used the static chamber 

method to measure in situ N2O emissions. Results indicated that the annual cropping 

systems had substantially higher N2O fluxes compared to the perennial cropping systems 

throughout the study period. Additionally, they noted that application of urea significantly 

increased the observed N2O fluxes (Wang et al., 2021).  

In the North of China, a two-year experimental study was conducted to investigate 

the emissions of N2O from a wheat-maize annual cropping system (Hu et al., 2013). The 

study encompassed six distinct treatments, including a control treatment with no 

amendments, a urea-only amendment (following recommended dosage), urea combined 

with straw, manure combined with urea and straw, urea combined with a nitrification 

inhibitor, and polymer-coated slow-releasing urea. Emissions of N2O were measured in the 

field using the static chamber method. The study revealed that direct N2O emissions 

resulting from the recommended application of urea accounted for 0.39% of the annual 

urea N input in the North China region. Notably, the combination of slow release urea with 

straw resulted in relatively higher N2O emissions compared to the other treatments. Hence, 
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understanding the ways in which agriculture contributes to N2O emissions, particularly 

intensified agricultural practices, is important for develop effective strategies to mitigate 

the impact on the environment and address climate change concerns.  

In China, a study was carried out to assess the impact of C and N amendment to the soil 

via plant residues and fertilizer on CO2 and N2O emissions (Huang et al., 2004). The 

researchers collected soil samples from a wheat-cultivated field and performed a 

microcosm study by amending plant residues and urea to obtain varying C:N ratios. The 

study was conducted for a period of 21 days, during which gas fluxes were measured 

regularly using a modified gas chromatography method. Their findings indicated that the 

application of soil amendments containing C and N with a C:N ratio of 8:1 resulted in the 

highest CO2 and N2O fluxes, whereas a ratio of 118:1 yielded the lowest fluxes. 

Furthermore, it was observed that the cumulative gas fluxes increased progressively over 

time. Therefore, it is important to understand the relationship between soil C and N 

availability to develop effective strategies for mitigating GHG emissions.  

Based on the studies presented, it appears that the abundances of N-cycling SMCs 

in agricultural soil are influenced by a variety of factors, including crop types, tillage 

practices, use of synthetic chemicals, and soil physicochemical properties. Different 

management practices can also affect the abundance of specific microbial gene targets such 

as 16S rRNA, amoA, nirS, nirK, and nosZ. Previous studies also suggest that perennial 

cropping systems may have the potential to increase total bacterial and NFG abundances 

in soil, while chemical burndown and soil disturbance used to transition from perennial to 

annual agricultural land use can significantly impact SMCs. These findings have 

implications for soil health, as changes in microbial community composition can affect 
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nutrient cycling and other ecosystem services provided by soil. However, there is a lack of 

field studies that have examined the combined impact of chemical burndown and tillage 

on soil health parameters and the abundance of NFGs (Panettieri et al., 2013). Therefore, 

further research is needed to better understand the interactions between management 

practices, microbial communities, and soil health.  
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Chapter 3: Impacts of agricultural land use change on soil health parameters and 

N-cycling soil microbial community size. 

  

ABSTRACT 

Nitrogen-cycling SMCs play a crucial role in nitrification and denitrification in soils, 

leading to the emission of N2O, a GHG that contributes to global warming. These SMCs 

have the potential to respond to changes in agricultural land use, including the conversion 

from perennial to annual cropping systems, where chemical burndown, tillage, and 

fertilization are often applied. In this study, soil health parameters and the abundance of N-

cycling SMCs were compared between a perennial and an annual cropping system, and the 

short-term impacts of agricultural LUC from a perennial to an annual cropping system on 

these communities were characterized. The study field site was in Stone Mills, Ontario, 

Canada, and was comprised of four fields. Two annual systems (AS) were regularly 

cultivated for ten years and planted to corn (Zea mays L.) in 2020. The remaining two 

perennial systems (PS) had not been cultivated for cash crop production in over 50 years; 

these fields were both orchard grass (Dactylis glomerata). One PS was left intact, while 

the remaining field was converted to an annual cropping (soybean, Glycine max L.) within 

the study period and classified as a ‘converted’ system (CS). Baseline soil sampling was 

done on May 14th, 2021, before planting (AS) or conversion of the perennial to an annual 

system (CS). The AS and CS fields were sprayed with glyphosate, shallowly tilled (5-8 cm 

in depth), and planted to soybean on May 25th, while one field remained as a PS and was 

not disturbed. Post-conversion sampling occurred on June 1st, 2021. Late-conversion 
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sampling occurred mid-growing season on July 21st, 2021. Results indicate PS soils 

supported higher nitrification (amoA, 6.0  0.3 log10 gene copies per g dry soil) and 

denitrification (nirS, nirK and nosZI, 7.8  0.05, 8.1  0.1 and 5.0  0.1 log10 gene copies 

per g dry soil, respectively) gene abundances and better soil health, as evidenced by 

significantly higher SOM % (13.0%), beta-glucosidase (BG, 26.8%), and N-

acetylglucosaminidase (NAGase, 33.3%) activities than AS soils. Furthermore, the 

conversion of a perennial to an annual system resulted in a significant decrease in SOM % 

(-45.5%), active carbon (-46.2%), BG activity (-21.9%), and NO3
- (-42.1%) levels, which 

paralleled a significant decrease in amoA, nirS, and nosZI gene copies, indicating a 

potential effect of agricultural LUC on the N2O/N2 balance. Overall, results suggest that 

agricultural LUC from perennial to annual cropping systems can have a significant impact 

on soil health parameters and N-cycling SMCs in the short-term, highlighting the 

importance of considering biotic factors when assessing the sustainability of agricultural 

LUC. 

 

Keywords: perennial, annual, denitrifier, nitrifier, intensification, greenhouse gas 
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3.1 Introduction 

Since the 1700s, there has been a substantial transition from natural land cover, such as 

forests, to agricultural land use, including croplands and pastures (Ramankutty and Foley, 

1999; Goldewijk and Ramankutty, 2004). This historical shift is expected to continue, 

resulting in notable environmental and ecological impacts including biodiversity decline 

(Reidsma et al., 2006), contributions to climate change (Dale, 1997) and the depletion of 

soil health (Tilahun et al., 2022). 

A common type of agricultural LUC is the shift from perennial to annual cropping 

systems. Perennial cropping systems grow crops for several years, with a mixture of grasses 

and forages intended to feed livestock (Siller et al., 2016; Stewart, 2018; Galindo et al., 

2022), while annual cropping systems grow crops for one season and are then replanted 

each year. While annual cropping systems may involve intensive soil management 

practices and the application of synthetic fertilizers and herbicides, they can also yield high-

value cash crops to meet market demand and ensure profitability (Malézieux, 2012). 

Several challenges arise concerning the sustainability of continued agricultural LUC efforts 

aimed at increasing food production achieved through chemical burndown (Kanissery et 

al., 2019; Peillex and Pelletier, 2020), and tillage (Ziadi et al., 2014; St.Luce et al., 2022). 

These challenges primarily arise from the potential effects on ecosystem attributes such as 

soil health parameters (Padbhushan et al., 2022) and SMCs (Schlautman et al., 2021), and 

on ecosystem processes like biogeochemical cycling. Therefore, it is important to assess 

soil health and SMC abundances to understand the impacts of agricultural LUC (Busari et 

al., 2015; Castellini et al., 2019). 
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The assessment of soil health is a crucial component in understanding and reducing 

environmental impacts and maintaining the long-term sustainability of agricultural systems 

(Kinyangi, 2007; Lorenz and Lal, 2016; Hatten and Liles, 2019; Yang et al., 2020). Nitrous 

oxide, a GHG, is 298 times more potent than CO2 (baseline at 1) (Kudeyarov, 2020) and is 

produced during both nitrification (Wrage et al., 2001) and denitrification (Butterbach-

Bahl and Dannenmann, 2011) processes that are mediated by SMCs (Isobe and Ohte, 2014; 

Zhang et al., 2022). Nitrification involves the oxidation of NH4
+ to NH2OH by the ammonia 

monooxygenase enzyme (Sahrawat, 2008; van Groenigen et al., 2015; Wendeborn, 2020) 

which is encoded by the amoA gene in AOB (Offre et al., 2009; Morimoto et al., 2011; Li 

et al., 2015; Nunes-Alves, 2016). Denitrification involves the reduction of NO3
- to N2. In 

denitrification, NO2
- is reduced into NO by nitrite reductase enzymes encoded by nirS and 

nirK genes (Cabello et al., 2009). Moreover, N2O is reduced to N2 in soil by nitrous oxide 

reductase enzymes encoded by nosZ genes (Henry et al., 2006; Orellana et al., 2014). 

Chemical burndown, fertilization, and tillage practices may affect the soil N-cycle, N-

cycling SMCs, and N2O emissions (Plaza-Bonilla et al., 2014; Bayer et al., 2015; Žurovec 

et al., 2017; Wang et al., 2019). According to Canada’s 2022 National Inventory Report, 

the agricultural sector in Canada accounts for 75% of annual N2O emissions. Therefore, 

investigating potential sources of N2O emissions is crucial in the development of mitigation 

strategies.  

While numerous studies have examined the differences in soil health and N-cycling 

SMCs between perennial and annual cropping systems (Devkota et al., 2013; Kraut-Cohen 

et al., 2020; Sokolowski et al., 2020; Ye et al., 2020), only a limited number of studies have 
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specifically focused on examining the transition from perennial to annual cropping 

systems.  

In this chapter, the short-term impacts of agricultural LUC from perennial to annual 

cropping systems were investigated. This study was designed (i) to compare soil health 

parameters and N-cycling SMC abundances between perennial and annual cropping 

systems, and (ii) to characterize the short-term (<3 months) impacts of agricultural LUC 

on soil health parameters and N-cycling SMC abundance. To assess the impact of perennial 

to annual LUC, the size of the total bacterial community (16S rRNA), the bacterial 

nitrifying community (amoA), and select bacterial denitrifying communities (nirS, nirK, 

and nosZI) were quantified using quantitative polymerase chain reactions (qPCR). I 

predicted that (i) the prolonged and regular application of chemical herbicides and 

fertilizers, and the use of tillage in annual cropping systems decrease soil C content and 

soil health, which impacts the gene abundances of nitrifiers (amoA) and denitrifiers (nirS, 

nirK and nosZI) which contribute to N2O production and consumption, and (ii)  agricultural 

LUC from a perennial to an annual cropping systems, through chemical burndown and 

tillage, decrease nitrifier (amoA) gene abundance, decrease soil C, and increase the 

denitrifier nirS+nirK/nosZI gene ratio that is associated with N2O emissions. This study’s 

findings can provide valuable insights into the impact of agricultural LUC on soil health 

parameters and the abundance of NFGs addressing a knowledge gap in understanding the 

effects of LUC on soil health and GHG emissions.  
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3.2 Materials and Methods 

3.2 1 Site description and soil sampling 

The study field site was in Stone Mills, Ontario (44° 44’ 65.17’’ N and 76° 83’58.65’’ W).  

This location falls within the Great Lakes Central Lowland physiographical region and 

resides within the mixedwood plains ecoregion. The prevailing climatic conditions within 

this region were characterized by a mean annual temperature of 7.8°C and a mean annual 

precipitation of 951.4 mm (Environment and Climate Change, Canada: Kingston Pumping 

Station, 1981-2010). The prevailing soil composition at the study site was taxonomically 

classified as the Otonabee series, falling within the Brunisolic Order. This soil order was 

further categorized as a constituent of the brown forest great soil group, and the degraded 

brown forest soil group and the family is Otonabee, as per the Canadian system of soil 

classification. The field site was comprised with four fields (Supplementary figure 3.1). 

Two annual cropping systems (AS-1 and AS-2) were regularly cultivated for ten years and 

planted to corn (Zea mays L.) in 2020. In the year 2020, urea [CO(NH2)2] was applied to 

these annual cropping systems during the corn plantation. These annual cropping systems 

had a history of being planted with corn and received mono-ammonium phosphate fertilizer 

(MAP: 12-52-0 NPK ratio) from 2015-2019. The remaining two perennial cropping 

systems (PS) had not been cultivated for cash crop production in over 50 years and were 

both orchardgrass (Dactylis glomerata) systems. They were managed as non-grazed and 

non-pasture fields, undergoing an annual harvest. One perennial system was left intact, 

while the remaining perennial field was planted as an annual (soybean, Glycine max L.) 

system within the study period (in 2021) and classified as a “converted” agricultural system 

(CS).   
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Soil sampling was conducted on May 14th (pre-conversion), 2021, before planting (AS) 

or converting from perennial to annual systems (CS). After pre-conversion sampling, AS-

1, AS-2, and CS fields were treated with glyphosate, followed by superphosphate fertilizer 

(6-32-23 NPK ratio) at 225, 280, and 280 kg per ha, respectively. The two AS fields and 

the CS field were shallowly tilled (5 to 8 cm in depth) on May 25th, 2021, and planted to 

soybean, while the PS field remained as a perennial system without any disturbance. Soil 

sampling was conducted again on June 1st, 2021, in all fields after the conversion process 

(“post-conversion” sampling). Another round of soil sampling was conducted during the 

mid-growing season on July 21st, 2021 to monitor any changes in soil properties after the 

conversion process (“late conversion” sampling). At each sampling date, ten soil cores (0 

– 20 cm depth) per transect (pseudo replicates, n=4) were collected within each field. These 

transects were each 100 meters in length and spaced 100 meters apart. Soil cores were 

evenly spaced within each transect, and soil samples were composited along each of these 

transects (Thompson et al., 2016). Efforts were made to maintain consistent factors, 

including slope aspect. The treeline was not extensive and was located at the edge of the 

fields. Soils were stored at -20°C until analyses for soil health and extraction of soil DNA.  

3.2.2 Soil bulk density 

Three soil cores (0-5 cm depth, 2.5 cm diameter) per transect were collected and stored at 

4°C for bulk density (BD) analysis. Stones and gravel were removed from cores and the 

cores were weighed. The soil cores were dried in the oven at 105°C for 24 h and the dry 

weight was measured to calculate the BD (Equation 3.1) (Erbach, 1987). Volume 

corrections for stones and gravel were conducted using the displacement method, in which 
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the volume of water displaced by these materials was measured to determine their actual 

volume occupied in the soil. These corrected volumes were then utilized to calculate the 

BD of the soil. 

Equation 3.1: 

 

3.2.3 Soil water stable aggregates  

To determine the percentage of water stable aggregates (WSA), 4.0 g air-dried soil (<4 

mm) was placed on a wet sieving apparatus (Eijkeikamp, Forestry Suppliers Inc., USA) 

and moistened with deionized water. The tin under each sieve (0.25 mm) was filled with 

water and the soils were repeatedly mechanically submerged in the water for 3 mins as 

recommended by the manufacturer. New weighed tins were filled with a dispersion 

solution, (containing 2 g sodium hexametaphosphate/L for soils with pH > 7 or 2 g sodium 

hydroxide/L for soils with pH < 7) and were placed under the sieve and the remaining soils 

were repeatedly submerged until all the soil particles passed through the sieve. The tins 

which contained the dispersed soil were oven dried at 105°C for 8 h and weighed to 

calculate the percentage of WSA present in the soil according to Equation 3.2. 

Equation 3.2:  

 

Bulk density (gcm-3) =  

Weight of the dry soil (g) 

Total volume of the soil (cm3) 

Water stable fraction (%) 

=  

Stable soil weight (g) 

Total soil weight (g) 
X 100% 
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3.2.4 Soil pH and electrical conductivity 

For soil pH and electrical conductivity (EC), 10.0 g of air-dried (<2 mm) soil was 

suspended in 20.0 mL of deionized water. Before the instrument reading, the soil solution 

was stirred for 30 mins and left to stand for 1 h for pH measurements (Accumet AB150, 

Fisher Scientific, Ontario, Canada) or 4 h for EC measurements (Laqua, Horiba 

Instruments Inc., NJ, USA) before taking readings (Miller & Curtin, 1982; Hendershot et 

al., 2008). 

3.2.5 Soil organic matter content  

Soil organic matter was estimated following the loss on ignition method (Jensen et al., 

2018). For each transect, 5.00 g of oven-dried soil (<2 mm) was placed on a ceramic 

crucible and placed in the muffle furnace at 550°C for 4 h and re-weighed to estimate SOM.  

3.2.6 Soil extractable NO3
--N 

Soil exchangeable NO3
--N was determined for each of the soil samples by potassium 

chloride (KCl) extraction (Nelson, 1983). Field moist soil samples (10.0 g) were placed 

into a 125 mL conical flask and 100.0 mL of 2.0 M KCl was added into each flask. Flasks 

were stoppered and shaken for 1 h at 160 oscillations per min. The solutions were allowed 

to settle for 30 mins and filtered through Whatman No.42 filter paper (Whatman Plc, ME, 

USA).  Extractable NO3
--N was determined colorimetrically with a flow injection analyzer 

(Lachat Quickchem Flow Injection Analysis System, Hach Sales and Service LP, London, 

Ontario, Canada). In parallel, a triplicate standard curve was constructed by performing a 

serial dilution of 200 mg N/L potassium nitrate (KNO3) to a final concentration of 0.025, 

0,05, 0.10, 0.2, 0.50, 1.00, 2 and 10 mg N/L, as recommended by manufacturer. 
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Furthermore, a KCl reagent blank was run for every four samples. To assess extraction 

efficiency, a triplicated spike test was performed using a 10 mg N/L KNO3 solution, 

yielding a recovery percentage of 99.9%.  

3.2.7 Soil extractable NH4
+-N   

The determination of soil exchangeable NH4
+-N was carried out through the KCl extraction 

methodology, as outlined in section 3.2.6 (Nelson, 1983). Extractable NH4
+-N was 

determined colorimetrically with a Perkin Elmer Lambda 2 UV/VIS Spectrophotometer 

(Perkin Elmer, Woodbridge, Ontario, Canada) at a wavelength of 667 nm. In parallel, a 

triplicate standard curve was constructed by performing a serial dilution of 5 mM 

ammonium sulfate to a final concentration of 50, 100, 150, 200, and 300 M (Diatloff & 

Rengel, 2001).  

3.2.8 Active Carbon  

To measure the labile fraction of C, or “active carbon” (AC) of the soil, the permanganate 

oxidizable C method was conducted as described by Culman et al. (2012). For each 

transect, 2.5 g of soil was measured into 50.0 mL falcon tubes containing 18.0 mL of 

deionized water and 2.0 mL of 0.2 M potassium permanganate (KMnO4). The tube was 

placed on a horizontal shaker for 2 mins at a rate of 240 oscillations per min, then allowed 

to settle for 10 mins, and 0.5 mL of the supernatant was transferred to a 50.0 mL falcon 

tube with 49.5 mL deionized water. A volume of 200 µL was transferred into the wells of 

the 96-well microplate. In parallel, a standard curve was constructed and triplicated by 

performing a serial dilution of 0.2 M KMnO4 to final concentrations of 0.005, 0.01, 0.015, 

and 0.02 M. The absorbances of the samples and standards were measured with an Epoch 
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spectrophotometer (Biotek Instruments Inc., Winooski, VT) at 550 nm wavelength to 

determine soil AC.  

3.2.9 Soil microbial extracellular enzyme assays  

Microbial extracellular enzyme assays (EEAs) for BG and NAGase were performed by 

creating a soil slurry using 5.0 g of air-dried (<2 mm) soil and 7.5 mL of 50 mM acetate 

buffer solution. A volume of 150 L of this soil slurry was pipetted out to a centrifuge tube 

containing 150 L of 50 mM acetate buffer. Subsequently, 150 L of the substrate 

solutions (pNP--D-glucopyranoside for BG and pNP--N-acetylglucosaminide for 

NAGase) were added to the soil solutions, which were incubated at 37°C for 1 h for BG 

and 3 h for NAGase. At the end of the incubation period, 100 L of the supernatant from 

each soil sample for each enzyme was added to a 96-well microplate containing 10 L of 

1 M NaOH and 190 L of deionized water. In parallel, a standard curve was constructed 

by performing a serial dilution of 4-nitrophenol into 50 mM acetate buffer to final 

concentrations of 0.025, 0.05, 0.1, 0.25, 0.5, and 1 mM (Jackson et al., 2013; Acosta-

Martinez et al., 2018). The absorbances of the samples and standards were measured with 

an Epoch spectrophotometer (Biotek Instruments Inc., Winooski, VT, USA) at 410 nm 

wavelength.  

3.2.10 Soil DNA extraction 

Field moist soil (approximately 0.25 g) was used to extract DNA from soils. The DNA was 

extracted as described in the manufacturer’s protocol using the PowerSoil Pro kit (Qiagen, 

Toronto, Ontario, Canada) as a single replicate per transect to a final volume of 100 L. 

Soil DNA extracts were stored at -80°C until use in downstream applications. 
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3.2.11 Quantification of total and N-cycling functional genes 

Quantitative PCR assays were used to enumerate the size of the total bacterial community 

by targeting the 16S rRNA gene. The nitrifier community was quantified by targeting 

ammonium monooxygenase encoded by the amoA gene in bacterial communities, and 

communities of bacterial denitrifiers were quantified by targeting nitrite reductase (nirS 

and nirK) and nitrous oxide reductase (nosZI) genes, using primer pairs listed in Table 3.1. 

The gene targets were enumerated on a QuantStudio3 Real-Time PCR system 

(ThermoFisher Scientific, Markham, Ontario, Canada). The qPCR reaction mixture 

contained 10 µL of either SsoAdvancedTM Universal SYBR Green Supermix (Bio-Rad 

Laboratories, Inc.) for bacterial 16S rRNA, nirS, and nirK, or PowerUpTM SYBR Green 

Master mix (ThermoFisher Scientific (Mississauga) Inc.) for amoA and nosZI, 1 µL of 10 

µM of each forward and reverse primer (Table 3.1), 2 µL of DNA template, and nuclease-

free water to a final volume of 20 µL. No-template samples were used as a negative control 

with each qPCR assay. In parallel with triplicated unknown samples, triplicate standard 

curves were included on each qPCR plate, which were constructed by serially diluting 

gBlocks™ gene fragments (Integrated DNA Technologies, Inc.) containing the target 

genes (101-108 copies). The targeted bacterial 16S rRNA, amoA, nirS, nirK, and nosZI gene 

blocks were based on published gene sequences that originated from genomic DNA of 

Clostridium thermocellum spp., Nitrosomonas europaea spp., Alcaligenes faecalis spp., 

Pseudomonas aeruginosa spp., and Pseudomonas fluorescens spp. respectively 

(Thompson et al., 2016). The qPCR assays had efficiencies ranging from 90.0 - 102.1%, 

with an R2 ranging from 0.990 - 1.000, and slopes ranging from -3.344 to -3.594. SMC 

abundances were expressed in gene copy numbers per gram of dry soil. 
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Table 3.1: Primer pairs used in qPCR assays to enumerate target gene sequences. 

Gene Forward 

primer 

Reverse 

primer 

Primer 

Reference 

qPCR protocol qPCR protocol 

Reference 

Bacterial 

16S rRNA 

338f 518r Fierer et al., 

2005 

1 cycle: 98°C 2 min;  

40 cycles: 98°C 15 s, 55°C 15 s;  

Melt curve: 60-95°C 

Thompson et al. (2016) 

amoA 1F 2R Rotthauwe 

et al., 1997 

1 cycle: 50°C 2 min; 95°C 10 min;  

40 cycles: 95°C 15 s, 57°C 15 s; 72°C 1 min;  

Melt curve: 60-95°C 

Thompson et al. (2016) 

nirS Cd3af R3Cd Throback et 

al., 2004 

1 cycle: 98°C 2 min;  

40 cycles: 98°C 10 s, 57°C 10 s;  

Melt curve: 60-95°C 

Thompson et al. (2016) 
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nirK F1aCu R3Cu Hallin et al., 

1999 

1 cycle: 98°C 2 min;  

40 cycles: 98°C 10s, 56°C 10 s;  

Melt curve: 60-95°C 

Thompson et al. (2016) 

nosZI 1F 1R Henry et al., 

2006 

1 cycle: 50°C 2 min; 95°C 10 min;  

40 cycles: 95°C 15 s, 61.5°C 30 s; 72°C 30 s;  

Melt curve: 60-95°C 

Ligi et al. (2014) 
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3.2.12 Statistical analysis 

To determine whether the soil health parameters and N-cycling SMCs differed between perennial 

and annual cropping systems, analysis of variance (ANOVA) was performed using R Version 4.2.1 

(R Core Team 2023) (Integrated Development Environment for R. R Studio, PBC, Boston, MA). 

The Shapiro-Wilks test was used to test for the normality of data and confirmed the absence of 

outliers. Soil BD, SOM %, extractable NO3
--N, NH4

+-N, and AC, WSA %, pH, EC, BG, and 

NAGase data were normally distributed, whereas the probability distributions of gene abundance 

data sets were log-normal or highly skewed, and values were normalized to log10 gene copy number 

per gram of dry soil.  Fixed effects in each dataset were the cropping system (AS, PS), while the 

transects were considered random effects. Statistical significance was assessed using p values, 

where the rejection of the null hypothesis (H0) was determined at p < 0.05. To assess the short-

term impact of agricultural land conversion from PS to AS systems, ANOVA was conducted as 

above using a mixed model, where sampling time was considered a repeated measure. Tukey's 

honestly significant difference was used to compare individual treatment means in all pairwise 

comparisons. P-values were used to determine significant differences among and between means, 

with the rejection of the null hypothesis (H0) determined at p < 0.05. Pearson’s correlation analysis 

was conducted to assess the statistical associations between gene abundances and soil health 

parameters tested. Finally, to visually demonstrate the multiple relationships between soil health 

parameters, total bacterial gene abundance, and NFG abundances, a multivariate ANOVA 

(MANOVA) followed by a principal components analysis (PCA) was carried out in R Version 

4.2.1 (R Core Team 2023). In the PCA, a scree plot was examined for breaks, and PC components 

with eigenvalues ≥ 1 (PC1 and PC2) were retained in the 2-dimensional plot for visual analysis. 
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3.3 Results 

3.3.1 Soil health parameters and SMC abundances in perennial and annual cropping 

systems 

In this study, a comparative analysis was conducted between the PS and the AS soils. In the PS 

soil, pH (6.5 ± 0.02), SOM % (2.3 ± 0.2 %), BG activity (0.41 ± 0.04 mmol g-1 dry soil h-1), 

NAGase activity (0.18 ± 0.03 mmol g-1 dry soil h-1), and NO3
- levels (5.0 ± 2 g N g-1 dry soil) 

were significantly higher  compared to the pH (6.2 ± 0.09), SOM % (2.0 ± 0.1 %), BG activity 

(0.28 ± 0.03 mmol g-1 dry soil h-1), NAGase activity (0.13 ± 0.003 mmol g-1 dry soil h-1), and NO3
- 

levels (1.3 ± 1 g g-1 dry soil) in the AS soil (Table 3.2). However, in the PS soils, NH4
+ levels 

(5.4 ± 2 g N g-1 dry soil) were significantly lower compared to NH4
+ levels (8.5 ± 1 g N g-1 dry 

soil) in the AS. There were no significant differences in EC, AC, BD, and WSA % levels between 

PS and AS soils (p < 0.05) (Table 3.2). 

Additionally, in the PS soil, gene abundances of the total bacterial community (16S rRNA, 

9.6  0.1 log10 gene copies g-1 dry soil), nitrifying community  (amoA, 6.0  0.3 log10 gene copies 

g-1 dry soil), and denitrifying communities (nirS,7.8  0.05 log10 gene copies g-1 dry soil, nirK, 8.1 

 0.1 log10 gene copies g-1 dry soil, and nosZI, 5.0  0.1 log10 gene copies g-1 dry soil) were 

significantly higher than the total bacterial community (16S rRNA 9.3  0.1 log10 gene copies g-1 

dry soil), nitrifying community  (amoA, 5.7  0.1 log10 gene copies g-1 dry soil), and denitrifying 

communities (nirS, 7.7  0.04 log10 gene copies g-1 dry soil, nirK, 7.9  0.1log10 gene copies g-1 

dry soil, and nosZI, 4.8  0.1 log10 gene copies g-1 dry soil) in the AS soil (Table 3.3). 
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Table 3.2: Comparisons of soil parameters among PS (perennial cropping systems) and AS (Annual cropping systems) at the pre-

conversion stage. Parameters are bulk density (BD, gcm-3), pH, electrical conductivity (EC, S cm-1), active carbon (AC, mg kg-1),  

water stable aggregates % (WSA %), soil organic matter content % (SOM %), nitrates (NO3
-, g NO3

—N  g-1 dry soil), and ammonium 

ions (NH4
+, g NH4

+-N  g-1 dry soil), and extracellular enzyme activities (EEA) of ꞵ-glucosidase (BG, mmol g-1 dry soil h-1), and N-

acetylglucosaminidase (NAGase, mmol g-1 dry soil h-1). The comparisons were done using one-way ANOVA and the data are means 

(n=4) ± SE (standard error); parameters indicated as NS are not significantly different (p < 0.05). 

Parameter 

BD  

(g cm-3) 

(NS) pH 

EC  

(S cm-1) 

(NS) 

AC  

(mg kg-1) 

(NS) 

WSA % 

 (%) 

(NS) 

SOM % 

(%) 

BG  

(mmol g-1 

dry soil h-1) 

NAGase 

(mmol g-1 dry 

soil h-1) 

NO3
- 

(g N g-1 

dry soil) 

NH4
+ 

(g N g-1 

dry soil) 

 

PS 0.92  0.04 6.5a  0.02 104  8 825  25 59  4 2.3a  0 .2 0.41a  0.03 0.15a  0.002 5.0a  2  5.4b  2 

AS 1.1  0.1 6.2b  0.09 93  14 818  30 59  7 2.0b  0.1 0.30b  0.02 0.10b  0.003 1.3b  1  8.5a  1 
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Table 3.3: Mean abundances (log10 copies per g dry soil) of total bacterial (16S rRNA), nitrifying (amoA), and denitrifying (nirS, nirK, 

and nosZI) genes and the ratio between nirS+nirK/nosZI, nir/16S rRNA and nosZI/16S rRNA genes in PS (perennial cropping systems) 

and AS (annual cropping systems) at the pre-conversion stage. The comparisons were done using one-way ANOVA and the data are 

means (n=4) ± SE; gene abundances and ratio indicated as NS are not significantly different (p < 0.05). 

Gene 16S rRNA amoA nirS nirK nosZI nirS+nirK/nosZI 

nirS+nirK/16S 

(NS)  nosZI/16S 

PS 9.6a  0.1 6.0a  0.3 7.8a  0.05 8.1a  0.1 5.0a  0.1 3.3a  0.1 1.7  0.01 

 

0.52a  0.01 

AS 9.3b  0.1 5.7b  0.1 7.7b  0.04 7.9b  0.1 4.8b  0.1 3.0b  0.1 1.7  0.02 

 

0.51b  0.01 
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Correlation and multivariate analyses were conducted to assess potential interactions between soil 

health parameters and SMC gene abundances and showed that total bacterial community size and 

NFG abundances were positively correlated with SOM (correlation coefficient of 0.50, p < 0.05). 

In addition, there were positive correlations between NO3
- levels and both nirS gene abundance 

(+0.78) and nirK gene abundance (+0.60). Pearson’s correlation analysis demonstrated 

correlations among parameters tested and abundances of total bacterial (16S rRNA), nitrifying 

(amoA), and denitrifying (nirS, nirK, and nosZI) genes (Figure 3.1) which prompted the creation 

of a PCA loading plot (Figure 3.2) to visualize the multivariate relationships among these 

parameters. The plot revealed that the first two principal components, PC1 and PC2, accounted for 

42.2% and 15.7% of the dataset variance, respectively (Figure 3.2). Notably, pH, EC, AC, SOM 

%, NAGase, NH4
+, NO3

-, BD, and gene abundances for the total bacterial community (16S rRNA), 

amoA, nirS, and nirK were identified as significant variables associated with PC1, while WSA %, 

BG and nosZI gene abundances loaded on PC2 (Figure 3.2). The MANOVA analysis 

(Supplementary table 3.2) yielded significant effects (Pillai index = 0.83) for various soil 

parameters, including pH, SOM %, EEA (BG and NAGase), NO3
-, and NH4

+ levels (p < 0.05). 

Additionally, the analysis revealed significant separation among the groups for total bacterial 

community abundance and abundances of NFGs including amoA, nirS, nirK, and nosZI.  
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Figure 3.1: Pearson correlation results between soil health parameters- soil pH, electrical 

conductivity (EC), soil organic matter (SOM), bulk density (BD), active carbon (AC), water stable 

aggregates (WSA), enzyme activities of ꞵ-glucosidase (BG), N-acetylglucosaminidase (NAGase), 

nitrate ions (Nitrate), ammonium ions (Ammonia), 16S rRNA abundance (“TotalBacteria”), 

nitrifying bacterial (amoA), denitrifying bacteria (nirS, nirK and nosZI) gene abundances in soils 

samples in the PS (perennial cropping system) and AS (annual cropping system) before land use 

change. 
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Figure 3.2: A principal component analysis (PCA) of soil parameters in the PS (perennial cropping 

system) and AS (annual cropping system) before land use change. Variables included were soil 

pH, electrical conductivity (EC), active carbon (AC), bulk density (BD), water stable aggregates 

(WSA), soil organic matter (SOM), nitrate ions (“Nitrate”), ammonium ions (“Ammonia”), and 

enzyme activities of ꞵ-glucosidase (BG), N-acetylglucosaminidase (NAGase), total bacterial (16S 

rRNA, “TotalBacteria”), nitrifying bacterial (amoA), denitrifying (nirS, nirK and nosZI) gene 

abundances. The first two principal components (PC1 and PC2) are shown. Blue triangles 

represent PS and red circles represent AS. Soil pH, EC, BD, SOM, ammonia, nitrate, NAGase and 

gene abundances for the total bacterial community (16S rRNA), amoA, nirS, and nirK were loaded 

onto PC1 while, BG and nosZI gene abundances loaded onto PC2. The two ellipses represent the 

two clusters: the blue ellipse illustrate the cluster of PS samples, and the red ellipse illustrates the 

cluster of AS samples.  

PC1 (42.2%) 

P
C

2
 (

1
5
.7

%
) 



 

 

47 

 

3.3.2 Short-term impacts of agricultural land use change on soil health parameters and soil 

N-cycling SMC abundances 

This study focused on the agricultural LUC within the CS field, specifically the transition from a 

perennial to an annual cropping system. The conversion from a perennial to an annual cropping 

system did not significantly impact WSA levels (%, p < 0.05) (Table 3.4). However, pH and NH4
+ 

levels showed a significant increase after conversion from perennial to annual cropping (CS field) 

(Table 3.4). In contrast, EC, AC, SOM %, and NO3
- levels decreased significantly following the 

LUC to an annual cropping system (Table 3.4). The activity of BG significantly decreased 

immediately after the conversion (post-conversion sampling), which was later restored by the late-

conversion sampling date in CS (Table 3.4). On the other hand, NAGase activity showed a 

significant decrease from pre-conversion to post-conversion sampling dates, followed by a 

significant increase at the late-conversion sampling date, with notably higher levels than that of 

the pre-conversion sampling. Bulk density significantly increased after the conversion, which was 

later restored during the late conversion (mid-growing season) (Table 3.4). 

In terms of bacterial community abundance, the total bacterial community (16S rRNA) size 

did not exhibit any significant changes after the conversion from a perennial to an annual cropping 

system (p < 0.05) (Table 3.5). However, nitrifier amoA gene abundances and denitrifier nirS gene 

abundances significantly decreased following agricultural LUC (Table 3.5). The nirK denitrifier 

community increased significantly in abundance after LUC but returned to pre-conversion levels 

later in the growing season, whereas nosZI gene abundances significantly decreased and then 

returned to higher levels later in the growing season (Table 3.5). 
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Table 3.4: Comparisons of soil parameters among the stages of conversion from perennial to annual cropping system in CS (converted 

agricultural system) soils at pre-conversion, post-conversion, and late-conversion stages. Parameters are bulk density (BD, g cm-3), pH, 

electrical conductivity (EC, S cm-1), active carbon (AC, mg kg-1),  water stable aggregates % (WSA %), soil organic matter % (SOM 

%), nitrates (NO3
-, g NO3

—N  g-1 dry soil), and ammonium ions (NH4
+, g NH4

+-N  g-1 dry soil), and extracellular enzyme activities 

(EEA) of ꞵ-glucosidase (BG, mmol g-1 dry soil h-1) and N-acetylglucosaminidase (NAGase, mmol g-1 dry soil h-1). The comparisons 

were done using repeated measures ANOVA and the data are means (n=4) ± SE; parameters indicated as NS are not significantly 

different (p < 0.05). 

 

Parameter 

BD  

(g cm-3) pH 

EC  

(S cm-1) 

AC  

(mg kg-1) 

WSA %  

(%) 

SOM % 

(%) 

BG  

(mmol g-1 

dry soil h-1) 

NAGase 

(mmol g-1 

dry soil h-1) 

NO3
- 

(g N g-1 

dry soil) 

NH4
+  

(g N g-1 dry 

soil) 

Pre-conversion 0.98b  0.1 6.5b  0.02 104a  7.7 847a  51 67a  6.4 2.2a  0.2 0.32a  0.03 0.11b  0.01 8.8a  2  4.9b  0.6 

Post-conversion 1.1a  0.0 6.5b  0.03 94ab  36 782a  43 65a  4.5 2.0a  0.3 0.25b  0.02 0.07c  0.01 7.0a  1  8.3a  0.1 

Late conversion 0.98b  0.0 6.7a  0.04 53b  3.8 456b  74 59a  2.3 1.2b  0.1 0.39a  0.05 0.15a  0.02 5.1b  1  6.2b  0.2 

Sampling stage * * * * NS * * * * * 

*statistical significance of F value at p<0.05   
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Table 3.5: Mean abundances (log10 copies per g dry soil) of total bacterial (16S rRNA), nitrifying (amoA), and denitrifying (nirS, nirK, 

and nosZI) genes and the ratio between nirS+nirK/nosZI, nirS+nirK/16S rRNA and nosZI/16S rRNA genes in CS (converted agricultural 

system) at the pre-conversion, post-conversion and late-conversion stages. The comparisons were done using repeated measures 

ANOVA and the data are means (n=4) ± SE; gene abundances and ratio indicated as NS are not significantly different (p < 0.05). 

Gene 16S rRNA amoA nirS nirK nosZI nirS+nirK/nosZI nirS+nirK/16S nosZI/16S 

Pre-conversion 9.2a  0.08 5.8a  0.3 7.6a  0.03 7.8b  0.09 4.7a  0.2 3.3a  0.1 1.7a  0.00 0.51a  0.02 

Post-conversion 9.3a  0.03 5.4ab  0.2 5.7c  0.1 8.3a  0.04 4.1b  0.1 2.8b  0.1 1.5b 0.02 0.44b  0.01 

Late-conversion 
9.4a  0.2 5.0b  0.3 5.9b  0.1 7.8b  0.2 4.5a  0.2 3.0b  0.1 1.5b  0.04 0.48a  0.02 

Sampling stage NS * * * * * * * 

*statistical significance of F value at p < 0.05 
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Correlation and multivariate analyses were conducted to assess potential interactions 

among soil health parameters and SMC gene abundances. According to Pearson’s 

correlation analysis (Figure 3.3), NH4
+ and amoA gene abundances were positively 

correlated (+0.59). Additionally, a weak positive correlation was observed between NO3
- 

levels, and nirK copy numbers (coefficient of +0.13), while a negative correlation was 

observed between NO3
- levels and nirS gene copies (coefficient of -0.59). Pearson’s 

correlation analysis demonstrated correlations among soil parameters tested and 

abundances of total bacterial (16S rRNA), nitrifying (amoA), and denitrifying (nirS, nirK, 

and nosZI) genes (Figure 3.3), which prompted the creation of a PCA loading plot (Figure 

3.4) to visualize the multivariate relationships among these parameters. The plot revealed 

that the first two principal components, PC1 and PC2, accounted for 40.9% and 19.3% of 

the dataset variance, respectively (Figure 3.4). Notably, pH, BG, NAGase, NH4
+, NO3

-, 

AC, SOM %, WSA %, EC, and gene abundances for the total bacterial community (total 

bacteria), and amoA abundances were identified as significant variables loading on PC1, 

while BD, and nirS, nirK, and nosZI gene abundances loaded on PC2 (Figure 3.4). The 

MANOVA analysis (Supplementary table 3.2) revealed a significant effect (Pillai index = 

1.9) across a range of soil parameters including pH, EC, SOM %, BD, AC, BG, NAGase, 

NH4
+, NO3

-, and NFG abundances including amoA, nirK, nirS, and nosZI (p < 0.05). These 

results indicate a significant separation among the groups, suggesting distinct differences 

in the overall pattern of variation across these soil parameters. 
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Figure 3.3: Pearson correlation results in soil health parameters after agricultural land 

conversion from perennial to annual cropping system with the aid of glyphosate burndown 

and tillage. Soil health parameters- soil pH, electrical conductivity (EC), soil organic matter 

(SOM), bulk density (BD), active carbon (AC), water stable aggregates (WSA), enzyme 

activities of ꞵ-glucosidase (BG), N-acetylglucosaminidase (NAGase), nitrate ions 

(“Nitrate”), ammonium ions (“Ammonia”), 16S rRNA abundance (“Total bacteria”), 

nitrifying (amoA), denitrifying (nirS, nirK and nosZI) gene abundances in soils samples 

after the in the land use change.    
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Figure 3.4: A principal component analysis (PCA) of soil parameters after agricultural 

land conversion from perennial to annual cropping system with the aid of glyphosate 

burndown and tillage. Variables included were soil pH, electrical conductivity (EC), active 

carbon (AC), bulk density (BD), water stable aggregates (WSA), soil organic matter 

(SOM), nitrate ions (“Nitrate”), ammonium ions (“Ammonia”), and enzyme activities of 

ꞵ-glucosidase (BG), N-acetylglucosaminidase (NAGase), total bacterial (16S rRNA, 

“Total bacteria”), nitrifying (amoA), denitrifying (nirS, nirK and nosZI) gene abundances. 

The first two principal components (PC1 and PC2) are shown. Blue squares represent pre-

conversion, green triangles represent post-conversion and red circles represent late-

conversion. Soil pH, BG, NAGase, NH4
+, NO3

-, AC, SOM%, WSA%, EC, and gene 

abundances for the total bacterial community (16S rRNA “Total Bacteria”), and amoA were 

loaded onto PC1 while BD, and gene abundances for nirS, nirK, and nosZI loaded onto 

PC2. The three ellipses represent the three clusters: the blue ellipse illustrate the cluster of 

pre-conversion samples, the green ellipse illustrates the cluster of post-conversion samples, 

and the red ellipse illustrates the cluster of late-conversion samples.  
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3.4 Discussion 

Agricultural LUC from perennial to annual cropping systems can have significant impacts 

on the physical, chemical, and biological attributes of the soil, as well as on the abundance 

of SMCs. In this study, I aimed to evaluate differences in soil health and gene abundances 

of N-cycling SMCs between annual and perennial cropping systems and sought to assess 

the effects of agricultural LUC from a perennial to an annual cropping system by analyzing 

soil health and N-cycling SMC abundances in a field pre- and post-conversion.  

This study yielded results with two notable observations: (i) more favorable soil 

health parameters were observed in PS vs. AS soils. Higher SOM levels in the PS provide 

an energy source for heterotrophic denitrifiers that play a crucial role in N2O emissions and 

consumption. Secondly, (ii) the conversion from a perennial to an annual cropping system 

via chemical burndown and soil disruption resulted in a decreased abundance of the amoA 

gene, which potentially led to reduced nitrification, resulting in lower levels of NO3
-. 

Additionally, a decrease in soil C content (SOM % (-45.5%) and AC (-46.1%) was also 

observed following LUC. This reduction in soil C was associated with a decreased ratio of 

nirS+nirK/nosZI genes, and a decreased ratio of nosZI/16S rRNA. The findings of this 

study provide valuable insights into the potential benefits of perennial cropping systems in 

promoting soil health. Furthermore, these findings highlight the importance of 

incorporating soil management practices into agricultural systems. Such integration helps 

both soil conservation and N-cycling, contributing to reduced GHG emissions.  
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3.4.1 Soil health parameters and SMC abundance in perennial and annual cropping 

systems 

In this study, an assessment was conducted to compare soil health parameters and the 

abundance of N-cycling SMCs between perennial and annual cropping systems. The PS 

soils exhibited a significantly higher SOM content (2.3%) compared to the AS (2.0%) soils, 

aligning with findings from prior research (Hamza & Anderson, 2005; van Eerd et al., 

2014; Morrow et al., 2016). However, there were no notable differences observed in AC 

levels, representing microbially available C, between the two cropping systems. This result 

contrasts with the research by Thomas et al. (2019), who reported higher AC levels in 

perennial cropping systems compared to 21-year annual cropping systems in coastal British 

Columbia. The statistical difference in SOM % between these systems has important 

implications for soil health and microbial activity. The undisturbed PS soils can accumulate 

more SOM due to the buildup of surface residues. In contrast, the frequently disturbed AS 

soils exhibit lower SOM levels. Within the PS soils, orchardgrass contributes N-rich 

proteins that undergo rapid decomposition, while live roots release organic acids (Angers 

et al., 1995; Ruan et al., 2019), collectively enhancing SOM %. In contrast, the AS soils 

contain corn stover residues characterized by high cellulose and lignin content, rendering 

them more resistant to decomposition (Bolinder et al., 1999). 

The higher SOM content in the PS soils serves as a valuable nutrient source for 

both plants and microbes, providing a habitat and nutrient supply for diverse SMCs, 

including various bacterial and fungal species. The ample SOM in PS soils ensures energy 

supply for these SMCs, as evidenced by higher abundance of total bacterial communities 

(bacterial 16S rRNA) and heterotrophic denitrifier communities (nirS, nirK, and nosZI) 
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assessed via qPCR analysis. Furthermore, the PS soils exhibit significantly higher levels of 

BG and NAGase activities, indicating potentially greater microbial activity and enhanced 

nutrient acquisition in PS soils (Ekenler & Tabatabai, 2003; Chen et al., 2011). This higher 

microbial activity can lead to increased biomass production, resulting in higher necromass 

levels. These factors may have collectively contributed to the observed elevation in SOM 

% compared to the AS soils (Ruan et al., 2019; Liu et al., 2021). 

While significant statistical differences weren’t observed when comparing EC, 

WSA %, and BD between PS and AS soils, a notable difference in pH was detected, with 

the PS soils exhibiting a significantly higher pH. Despite the relatively small pH difference 

(0.3 units, equivalent to 0.5 mol dm-3 of hydrogen ion [H+] concentration), both values 

remained within the recommended range by Ontario Ministry of Agriculture, Food and 

Rural Affairs (OMAFRA). The pH and EC variations can exhibit considerable influence 

on soil health and the activities of N-cycling SMCs (Piotrowska-Długosz et al., 2022). 

These factors impact soil nutrient availability and ion concentrations, consequently 

affecting the composition and metabolic functions of SMCs, with potential impacts on 

nutrient cycling dynamics and overall soil health.   

Microbial extracellular enzymes play a crucial role in soil processes by driving 

nutrient cycling, including breaking down SOM, releasing minerals, and transforming N 

(Stege et al., 2010; Yang et al., 2012). These enzyme activities respond quickly to changes 

in soil management, like input of fertilizers or tilling, making them a valuable indicator of 

soil health changes. In the current study, BG which catalyzes the breakdown of complex 

carbohydrates such as cellulose and hemicellulose into simpler sugars such as glucose 

(Stege et al., 2010; Vazquez et al., 2019), and NAGase activity which catalyzes N-
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mineralization (Yang et al., 2012) which can be used by SMCs as an energy source 

(Gougoulias et al., 2014) showed higher levels (BG 26.8% and NAGase 33.3%) in the PS 

than AS soils. These observations aligned with Tyler, (2019) and Vazquez et al. (2019) 

who similarly reported significantly higher levels of EEAs in perennial cropping systems 

compared to annual cropping systems that underwent tillage. Microbial EEAs indicate the 

abundance and functioning of SMCs. The differences in EEAs between PS and AS could 

be related to differences in nutrient availability between the two systems. PS did not receive 

synthetic fertilizer inputs, which may have resulted in PS SMCs investing more energy in 

acquiring nutrients from existing organic sources. Conversely, AS which was regularly 

exposed to synthetic fertilizers, may have resulted in reduced microbial energy 

expenditures for nutrient acquisition. 

In this study, significantly higher levels of NH4
+ in the AS (36.5%) compared to 

the PS soils were observed, while the levels of NO3
- in the PS (74.0%) were significantly 

higher compared to the AS soils. This may be due to the higher amoA gene abundances in 

the PS (Hussain et al., 2019; Zhang et al., 2020). The significantly higher abundance of the 

amoA gene associated with nitrifying microorganisms in the PS soils indicates a greater 

potential for efficient conversion of NH4
+ to NO3

- compared to the AS soils resulting lower 

NH4
+ and higher NO3

- levels in the PS soils (Sahrawat, 2008). The higher NAGase activity 

observed in the PS soils which promotes N-mineralization and the release of NH4
+ (Das & 

Varma, 2010; Tabatabai et al., 2010), the higher amoA abundance may have contributed to 

the lower NH4
+ levels observed in the PS soils (Amoo & Babalola, 2017). The addition of 

NPK fertilizer to the AS soils stimulate plant growth (Mashamaite et al., 2022), and 

resulted in higher NH4
+ levels compared to the PS soils (Jin et al., 2022), which did not 
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receive any fertilizer application. The external addition of N through fertilizer, along with 

the natural processes of N-cycling may have contributed to the increased NH4
+ content in 

the AS soils.  

Conversely, the PS soils exhibited significantly higher levels of NO3
- compared to 

the AS soils. This difference can be attributed to lower amoA gene abundance and the 

regular tillage practices in the AS, which have a detrimental impact on soil structure 

(Castellini et al., 2019) and can potentially lead to leaching of NO3
- (Beaudoin et al., 2005). 

While NH4
+ levels exhibited a significantly higher values in the AS soils, the lower 

abundance of amoA, responsible for NH4
+ oxidation to NO3

- in the soil, may have 

contributed to the observed lower levels of NO3
- in the AS. Furthermore, it is important to 

consider that the AS field was mono cropped with corn in the previous year prior to sample 

collection. Corn is known for its efficient uptake and utilization of NO3
- (Hussain et al., 

2019; Zhang et al., 2020). Therefore, the enhanced NO3
- uptake by corn plants may have 

depleted the available NO3
- in the AS soils, contributing to the observed lower NO3

- levels. 

In contrast, the PS soils exhibit a significantly higher abundance of amoA genes, resulting 

in an higher capacity for NH4
+ oxidation to NO3

- and an associated higher levels of NO3
-. 

Additionally, PS soils having experienced no disturbance, maintained a better soil structure 

(Zhang et al., 2020), reducing the likelihood of NO3
- leaching and resulting in higher NO3

- 

levels.  

Denitrification, which involves the reduction of NO3
- to N2 (Hanrahan & Chan, 

2005; Cabello et al., 2009; Stein & Klotz, 2016) is an essential process for mitigating 

environmental NO3
- pollution (Skiba, 2008). In this study, the PS soil exhibited higher 

levels of NO3
- compared to the AS soil, which is necessary for initiating the denitrification 
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process (Braker et al., 2000; Butterbach-Bahl & Dannenmann, 2011). The higher 

abundance of nirS and nirK genes in the PS soil suggests a higher potential for 

denitrification to occur in the PS soils, whereas lower abundances of nirS and nirK in the 

AS soils suggested a lower potential for denitrification to occur (Wrage et al., 2001). 

Furthermore, the PS soil exhibited a significantly higher abundance of nosZI genes, which 

encode the enzyme responsible for reducing N2O to N2, suggesting a higher capacity for 

potential N2O reduction in the PS soils compared to the AS soils (Skiba, 2008).  

The significantly higher ratio of nirS+nirK/nosZI genes in the PS soil, compared to 

the AS soil, indicates a greater capacity for the reduction of NO3
- to N2O than N2O to N2, 

consequently leading to higher potential N2O emissions. However, the nosZI/16S rRNA 

gene ratio was significantly higher in the PS compared to AS soils, indicating that a larger 

proportion of the SMC has the capacity to reduce N2O to N2. In contrast, the AS soils 

exhibited a significantly lower nirS+nirK/nosZI and nosZI/16S rRNA ratio, suggesting a 

potentially lower capacity for N2O emissions and a potentially lower ability for a complete 

denitrification. In contrast, the PS soils may feature a potentially active internal N-cycle, 

ultimately resulting in reduced N2O. 

3.4.2 Short-term impacts of agricultural land use change on soil health parameters 

and soil N-cycling SMC abundance. 

This study results demonstrate the agricultural LUC from a perennial to an annual cropping 

system by way of shallow tillage of perennial biomass combined with glyphosate 

application, fertilization and replanting to soybean has an impact on soil health parameters 

and the abundance of N-cycling SMCs. Although there is a wealth of literature comparing 

perennial and annual cropping systems, research specifically examining the impacts of 
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transitioning from a perennial to an annual cropping system on SMCs is scarce (DuPont et 

al., 2010; Partoazar, 2011).  

Results indicate a significant decline in SOM content following the LUC in the CS 

soils, particularly during the late-conversion phase. Agricultural LUC that includes the 

application of glyphosate has been demonstrated to have a direct adverse effect on the 

abundance and composition of SMCs, as reported by Lancaster et al. (2010). However, 

when synthetic fertilizer is added, providing essential nutrients such as N, P, and K, the 

microbial population known as R-strategists benefits from these nutrient inputs (Ho et al., 

2017). These nutrients act as a stimulus, promoting microbial growth and activity, as 

microorganisms rely on nutrients for their metabolic processes. The increase in BG and 

NAGase enzyme levels following the LUC may further enhance microbial activity 

(Tabatabai et al., 2010; Uwituze et al., 2022). The likely increased activity of R-strategists 

and BG and NAGase activities in the CS soils may lead to accelerated rates of 

decomposition. This acceleration can result in a rapid breakdown of organic matter in the 

soil (Tabatabai et al., 2010). The greater availability of nutrients and energy sources further 

amplifies microbial activity, potentially leading to increased decomposition and 

mineralization of organic matter (Flavel & Murphy, 2006). Consequently, this process 

could contribute to the observed significant reduction in SOM % in the CS soils following 

the LUC. Additionally, AC may have been utilized by microbes due to higher microbial 

activity on the topsoil, leading to a decrease (-46.2%) in AC following the conversion. 

Decreased levels of AC can result in increased competition between the microbes, 

ultimately favoring the proliferation of heterotrophic nitrifier (amoA) and denitrifier (nirS, 

nirK and nosZI) communities which are best adapted to the new habitat conditions 
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(Hibbing et al., 2010). Therefore, the observed decrease in gene abundances after LUC 

may be explained by the competitive exclusion of less adapted microbes. 

The current study showed that the transition from a perennial to an annual soybean 

cropping system had a significant impact on soil NO3
-, NH4

+, pH, and EC. The decrease in 

NO3
- and increase in NH4

+ levels observed after the field conversion could be attributed to 

several factors. The application of NPK fertilizer to the CS field during LUC may have 

resulted in a significant increase (+41.0%) in NH4
+ levels compared to the pre-conversion 

phase (Jin et al., 2022; Mashamaite et al., 2022). However, the abundance of nitrifier genes 

(amoA) was significantly decreased following LUC. This reduction in nitrifier gene 

abundances suggests a potential decrease in nitrification capacity (Wrage et al., 2001). The 

combination of increased NH4
+ levels and decreased amoA gene abundance in the CS soils 

(Wrage et al., 2001; Hart et al., 2018; Feng et al., 2020), likely contributed to the substantial 

reduction (-42.1%) in NO3
- levels, indicating a reduced potential for nitrification to occur. 

The first sampling day after the LUC (post-conversion) revealed a noteworthy increase in 

BD (+12.2%). Increased soil BD following agricultural LUC can lead to compaction, 

which reduces the size of soil pores. Compacted soils typically have fewer and smaller 

pores, limiting the diffusion of O2 into the soil, which limits available O2 for the SMCs. 

Under O2-limiting conditions, anaerobic microbes, which drive denitrification processes, 

can become more active. This can increase the potential denitrification, a process that 

reduces NO3
- to N2 (Stein & Klotz, 2016). The abundance of denitrifiers bearing the nirS 

and nosZI genes decreased, while the nirK-bearing gene abundance increased in compacted 

soils. This suggests more nirK-bearing denitrifiers may contribute to N2O production after 

agricultural LUC. A decrease in soil BD following at the late-conversion phase indicates 
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an increase in soil pore spaces and O2 availability. This potentially facilitates heterotrophic 

nitrification processes which increases N2O emissions (Stein & Klotz, 2016). The findings 

of this study reveal that there were no significant differences in the WSA % following the 

LUC from a perennial to an annual cropping system. These results are consistent with 

previous microcosm studies that also reported no substantial changes in WSA % when 

glyphosate was applied to intensively managed soils (Panettieri et al., 2013). The presence 

of pre-incubation artifacts could have influenced this study, contributing to the absence of 

a difference in the WSA.  

The findings of this research indicate that the agricultural LUC resulted in a 

decrease in the activity of NAGase (-36.4%) and BG (-21.9%) enzymes. To my knowledge, 

this phenomenon has received limited attention in previous research (Panettieri et al., 

2013).  The addition of glyphosate and the reduction in SOM % (Stege et al., 2010) may 

have collectively contributed to the decline in the microbial community responsible for BG 

and NAGase production, resulting in decreased enzyme activities. Furthermore, the 

availability of N from added fertilizers may have provided microbes with a readily 

available N source, potentially reducing their need to produce NAGase (Kraft et al., 2011).   

There is a relative scarcity of research focused on examining the impacts of LUC on 

bacterial community abundance (Partoazar, 2011). The absence of significant difference in 

the abundance of the total bacterial community after the LUC suggests the presence of a 

diverse range of bacterial species with adaptability to varying conditions, including pH, EC 

and nutrient availability (Ho et al., 2017). These bacteria can access and utilize available 

resources, such as nutrients added through fertilizer, for their growth and reproduction. 

However, due to its universal nature, the quantification of bacterial community via qPCR 
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of 16S rRNA targets not only live microbes but also includes dead cells. Furthermore, the 

presence of multiple copies of the bacterial 16S rRNA gene per genome (1 to 13 copies) 

(Větrovský & Baldrian, 2013; Hassler et al., 2022) further complicates the estimation. 

Therefore, there is a potential risk of overestimating total bacterial community abundance, 

emphasizing the importance of interpreting the results cautiously.  

Following LUC, a notable decline (-13.8%) was observed in the abundance of the 

nitrifier amoA gene. The decrease in amoA gene abundance may be due to the application 

of glyphosate, which has demonstrated direct effects on SMCs (Lancaster et al., 2010). 

Furthermore, significant changes in the abundance of nir genes following the LUC were 

observed. Specifically, there was a significant decrease in the nirS denitrifier abundance 

while the nirK denitrifier abundance significantly increased after LUC. The functions of 

nir genes are similar, however, they vary in sensitivity to management practices and differ 

in structure (Sun & Jiang, 2022), with nirS being more sensitive, whereas nirK being less 

sensitive to environmental changes (Azziz et al., 2017). The rhizosphere effect in 

agricultural soil (Hou et al., 2018) may have a greater impact on the abundance of nirS 

denitrifiers, suggesting that the transition from orchardgrass to soybean could contribute to 

a reduction in the nirS gene abundance. Conversely, the increase in nirK denitrifiers 

following LUC could be due to the availability of N sources in the soil. It is possible that 

nirK denitrifiers represent K-strategists, characterized by their higher survivability in the 

environment (Bohn et al., 2014). However, the increased nirK community may increase 

the capacity for potential N2O production. Additionally, a significant decrease in nosZI 

gene abundance was observed. A significant decrease in nosZI abundance may affect the 

reduction of N2O to N2 (Domeignoz-Horta et al., 2015). Furthermore, the significant 
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decrease in the nosZI/16S rRNA ratio suggests a potentially reduced capacity for N2O 

reduction to N2, thereby increasing the potential for N2O emissions following agricultural 

LUC. 

Finally, the abundance of nirK and nosZI genes in the late-conversion phase returned to 

levels similar to the pre-conversion phase following LUC. This phenomenon may be 

related to the ability of SMCs to adapt to the new environment over time (Chase et al., 

2021), and the ubiquitous nature of nir genes in SMCs (Jacoby et al., 2017). Although 

glyphosate can directly impact SMCs, its half-life is approximately 30 days, and thus its 

toxicity diminishes over time (Duke, 2020), allowing microbes to adapt to the new 

environmental conditions.  

 

3.5 Conclusion 

Firstly, in comparing PS and AS soils, the prediction was that the frequent use of chemical 

herbicides, fertilizers, and tillage in AS would reduce soil C content and overall soil health, 

consequently lowering the gene abundances of N-cycling SMCs responsible for N2O 

emissions. The PS exhibited significantly higher SOM content, serving as an energy source 

for heterotrophic microbial communities, as evidenced by markedly higher BG and 

NAGase activities. Moreover, lower NH4
+ levels and higher NO3

- levels in the PS 

suggested higher nitrification potential. Although the nirS+nirK/nosZI ratio was notably 

lower in the AS soils compared to the PS soils, the potential denitrifier community activity 

in the AS soils may be significantly higher, potentially resulting in higher N2O emissions. 

Conversely, the PS soils harbor greater SMC abundances, indicating a more robust internal 

N-cycle, which may lead to lower N2O production compared to the AS soils.  
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Secondly, the impact of agricultural LUC from perennial to annual cropping systems was 

investigated, with the prediction that this transition, involving chemical burndown and 

tillage, would decrease the abundance of nitrifier (amoA) genes while increasing the 

nirS+nirK/nosZI gene ratio associated with N2O emissions. The results indicated a 

reduction in the soil C pool, including SOM and AC, following LUC, with distinct 

responses among other soil health parameters. Furthermore, the results indicated an 

increase in NH4
+ levels and a decrease in NO3

- levels after LUC which is likely related to 

the decreased abundance of amoA, which plays a pivotal role in nitrification and results in 

the oxidation of NH4
+ to NO3

-. CS exhibited unique trends in BG and NAGase activities, 

which decreased and then increased after LUC, in contrast to the PS and AS soils collected 

on the same sampling dates. This difference suggested that the changes were not solely 

attributable to environmental factors. While the total bacterial community (16S rRNA) 

abundance remained stable, N-cycling SMCs responded differentially to LUC, with an 

increase in nirK and a decrease in nosZI abundances, indicating the potential for increased 

N2O emissions following agricultural LUC. To establish a direct link between the effects 

of LUC on the N-cycling SMCs and N2O to N2 reduction, future studies measuring N2O 

emissions, denitrifier activity (mRNA), and microbial community structure would provide 

insights into the microbial taxa present, their functional potential, and their interactions 

within the community.   
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Appendix: 

Supplementary table 3.1: Particle size distributions of sand (50 µm – 2 mm), silt (2 µm – 

50 µm), and clay (<2 µm) in PS (perennial cropping system), CS (converted system), and 

AS (annual cropping system) soils (n=4). 

 

 

 

 

 

Supplementary table 3.2: Results of a multivariate analysis of variance (MANOVA) 

comparing the perennial cropping system (PS) and annual cropping system (AS) in the 

prior to land use change (LUC) and the converted agricultural system (CS) subjected to 

land use change (post LUC).  

 

Df Pillai index F value Pr (>F) 

 
Prior to LUC 1 0.8 2.4 0.18 NS 

Post LUC 2 1.9 33.1 3.10E-14 *** 

NS indicates there is no significant difference (p < 0.05); ***statistical significance of F 

value at p < 0.001.

Field Soil particle size distribution 

PS Sandy Clay  

(46% Sand, 11% Silt, 43% Clay) 

CS Sandy Clay  

(54% Sand, 5% Silt, 41% Clay) 

AS Clay 

(44% Sand, 9% Silt, 47% Clay) 
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Supplementary table 3.3: Comparisons of soil parameters among the stages of LUC in PS (perennial cropping system) and AS (annual 

cropping system) at pre-conversion, post-conversion, and late-conversion stages. Parameters are bulk density (BD, gcm-3), pH, electrical 

conductivity (EC, S cm-1), active carbon (AC, mg kg-1),  water stable aggregates % (WSA %), soil organic matter % (SOM %), nitrates 

(NO3
-, g NO3

—N  g-1 dry soil), and ammonium ions (NH4
+, g NH4

+-N  g-1 dry soil), and extracellular enzyme activities (EEA) of ꞵ-

glucosidase (BG, mmol g-1 dry soil h-1) and N-acetylglucosaminidase (NAGase, mmol g-1 dry soil h-1). The comparisons were done 

using repeated measures ANOVA and the data are means (n=4) ± SE; parameters share the same letter are not significantly different (p 

<0. 05). 

 

 

Field Sampling stage 
BD  

(g cm-3) pH 

EC  

(S cm-1) 

AC  

(mg kg-1) 

WSA %  

(%) 

SOM % 

(%) 

BG  

(mmol g-1 dry 

soil h-1) 

NAGase 

(mmol g-1 dry 

soil h-1) 

NO3
- 

(g N g-1 

dry soil) 

NH4
+  

(g N g-1 

dry soil) 

PS 

Pre-conversion 1.1a   0.04 6.3b   0.08 64a   10 791a  36 62b  4 2.4a  0.3 0.26b  0.02 0.07c  0.02 1.3a  0.4 5.5a  0.3 

Post-

conversion 
0.9b   0.03 6.4a   0.06 47c   8 746b  20 86a  2 2.7b  0.4 0.28ab  0.03 0.13b  0.00 1.0a  0.4 4.9a  0.1 

Late-

conversion 
0.9b   0.3 6.4a   0.07 53b   9 750ab  41 62b  7 2.0a  0.3 0.37a  0.03 0.16a  0.01 1.0a  0.2 5.3a  0.2 

AS 

Pre-conversion 1.3a   0.04 6.5a   0.03 93a  14 863a  33 52b  11 1.9ab  0.1 0.39a  0.04 0.13a  0.02 2.1a  0.8 9.6a  0.4 

Post-

conversion 
1.0b   0.02 6.3b   0.02 39b   6 787a  48 76a  10 2.2a  0.2 0.40a  0.03 0.13a  0.01 3.0a  0.8 6.5a  0.4 

Late-

conversion 
1.1b   0.05 6.5a   0.04 73a   7 681b  36 63b  4 1.2b  0.1 0.41a  0.05 0.10b  0.01 4.0a  0.6 6.6a  0.5 
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Supplementary table 3.4: Mean abundances (log10 copies per g dry soil) of total bacterial (16S rRNA), nitrifying (amoA), and 

denitrifying (nirS, nirK, and nosZI) genes in PS (perennial cropping system) and AS (annual cropping system) at the pre-conversion, 

post-conversion and late-conversion stages. The comparisons were done using repeated measures ANOVA and the data are means (n=4) 

± SE; gene abundances share the same letter are not significantly different (p <0. 05). 

 

 Field Sampling stage  

Gene abundances (log10 copies g-1 dry soil) 

16S rRNA amoA nirS nirK nosZI 

PS Pre-conversion 9.7a  0.1 4.9b  0.1 7.8a  0.1 8.2b  0.1 5.0a  0.2 

 Post-conversion 9.9a  0.1 4.9b  0.2 6.1b  0.2 8.2b  0.1 4.8a  0.1 

  Late-conversion 9.7a  0.1 5.7a  0.2 5.7c  0.1 9.0a  0.1 4.8a  0.1 

AS Pre-conversion 9.3a  0.1 5.4a  0.6 7.9a  0.1 7.9b  0.2 5.2a  0.2 

 Post-conversion 9.3a  0.1 4.9a  0.4 6.1b  0.2 7.9ab  0.3 5.2a  0.4 

  Late-conversion 9.6a  0.4 5.1a  0.1 5.8b  0.1 8.7a  0.4 5.1a  0.2 
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Supplementary figure 3.1: Google Maps. (2023). [County Road 6, Enterprise, Ontario, Canada] 

[Satellite Map]. Retrieved July, 2023, from 

https://www.google.com/maps/place/4965+County+Rd+6,+Enterprise,+ON+K0K+1Z0  

The sampling site was situated in Stone Mills, Ontario, Canada, and compassed of four distinct 

fields: PS (perennial cropping systems), CS (converted system, previously a PS and underwent 

land-use change within the study period), AS1, and AS2 (annual cropping systems). The sampling 

was conducted along four transects, each spaced approximately 100 m apart from one another.  
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Chapter 4: Linking land use change with N2O and CO2 fluxes in the presence of C and N: 

An incubation study. 

 

ABSTRACT 

Agricultural LUC involving conventional agricultural practices, such as synthetic fertilizer 

application and tillage can have significant impacts on GHG emissions. In the current laboratory 

incubation study, I aimed to investigate the interaction between exogenous C and N availability 

and N2O and CO2 fluxes in soils collected from agricultural fields impacted by LUC. The soils 

used in the incubation study were obtained from a field site located in Stone Mills, Ontario, 

Canada, consisting of three fields. One annual cropping system (AS) was regularly cultivated and 

planted to cash crops. One of two perennial cropping systems (PS) was left intact, as a PS system, 

while the other was converted into an annual cropping system and planted to soybean (Glycine 

max L.) (CS) on May 25th, 2021, after chemical burndown and shallow tillage of perennial 

biomass. Soil sampling was conducted on October 30th, 2021, during plant maturation, and bulk 

soil was collected from each field. Soils were placed in mason jars and had either zero exogenous 

C or N added (control), or had glucose (G), urea (U), or both glucose and urea (G+U) applied (C:N 

= 24:1) to soils (n=3). The soils were destructively sampled over time to characterize short-term 

changes in biological soil health indicators (e.g., SOM, AC, extracellular enzyme activities and 

plant available N levels); a parallel set of jars were used to measure net N2O and CO2 fluxes over 

time. The PS soils emitted the lowest fluxes of net N2O and CO2, whereas AS soils produced the 

highest net fluxes under the given experimental conditions. The net rates of N-mineralization and 

nitrification were significantly higher in the AS soils. The addition of C and N had a significant 

impact on the fluxes of N2O and CO2 in the PS, CS, and AS soils. Measured soil N2O fluxes ranged 
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from 2.1  0.6 to 4.4  1.3 µg N kg-1 dry soil m-2 s-1 across all treatments evaluated, with the G+U 

treatment having the highest levels of N2O fluxes of all the treatments. Measured soil CO2 fluxes 

ranged from 587  176 to 1900  571 µg C kg-1 dry soil m-2 s-1 across all treatments evaluated, 

with the G+U treatment having the highest levels of CO2 fluxes despite soils being exposed to 

varying degrees of agricultural intensification. The AS soils exhibited the highest levels of N2O 

fluxes (4.4  1.3 µg N kg-1 dry soil m-2 s-1) and CO2 fluxes (1900  571 µg C kg-1 dry soil m-2 s-1), 

followed by CS (max N2O fluxes of 2.8  0.8 µg N kg-1 dry soil m-2 s-1 and max CO2 fluxes of 

1754  524 µg C kg-1 dry soil m-2 s-1) and PS (max N2O fluxes of 2.4  0.7 µg N kg-1 dry soil m-2 

s-1 and max CO2 fluxes 1221  362 µg C kg-1 dry soil m-2 s-1) soils. These results support the 

prediction that agricultural land use can have a significant impact on GHG fluxes, and application 

of exogenous C and N would influence the fluxes of N2O and CO2.  

 

Keywords: glucose, urea, annual cropping system, perennial cropping system, nitrification, 

nitrogen mineralization, soil organic matter  
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Introduction 

Land use encompasses the various ways in which humans utilize or manage land, including 

agriculture, urban development, and other activities (Ramankutty & Foley, 1999;Ritchie & Roser, 

2013; Winkler et al., 2021). Agricultural land use involves cultivating crops and performing other 

activities related to food production (Dolly et al., 2018), and it is a significant component of land 

use worldwide, covering roughly 40% of the global land area (USEPA, 2022). The conversion of 

perennial to annual cropping systems constitutes significant agricultural LUC that can be classified 

as an intensification strategy (FAO, 2018), and in Ontario often involves the use of chemical 

burndown and tillage techniques to prepare the soil for planting crops (Lambin et al., 2000; 

Malézieux, 2012; Bessou et al., 2013; Padbhushan et al., 2022).  

The use of these techniques can lead to soil degradation and loss of SOM, which can 

adversely affect soil health and SMCs (Murty et al., 2002; Bekele, 2019; Kanissery et al., 2019; 

Turley et al., 2020). In addition, the transition from perennial to annual cropping systems can also 

contribute to increased GHG emissions into the atmosphere (Burney et al., 2010; Okada et al., 

2019) which is a pressing environmental concern (Chen et al., 2019; Government of Canada, 2022; 

USEPA, 2022) due to global warming, and other manifestations of global climate change (IPCC, 

2013; IPCC, 2021). The primary GHGs include CO2, and N2O (Hale et al., 2008; Dale et al., 2011; 

Ito & Inatomi, 2018). Nitrous oxide has a notably higher global warming potential (298-310 times) 

compared to CO2 (baseline at 1) (Kudeyarov, 2020), and is the most important GHG contributing 

to ozone layer depletion in the stratosphere (Ravishankara et al., 2009; Ito & Inatomi, 2018). 

Furthermore, N2O emissions predominantly occur through the processes of nitrification (Sahrawat, 

2008; Nunes-Alves, 2016) and denitrification (Skiba, 2008), both of which are mediated by SMCs. 

Soil management practices, including tillage (Bayer et al., 2015), the use of herbicides (van 
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Bruggen et al., 2021), and the addition of synthetic fertilizers such as urea (Wang et al., 2019; 

Rubio et al., 2022), have been identified as notable sources of GHG emissions. These practices 

can influence the activity of SMCs, increasing N2O emission potential.  

Soil C availability plays a significant role in the emission of GHGs (O’Neill et al., 2020). 

The decomposition of SOM can release C and other nutrients that promote microbial activity, 

ultimately leading to increased N2O and CO2 production (Dijkstra et al., 2010). Additionally, the 

denitrification and heterotrophic nitrification processes require C as an energy source for microbial 

growth and activity. Agricultural practices such as tillage and crop residue management can have 

a significant impact on soil C and N availability and thereby, N2O and CO2 emissions (Balesdent 

et al., 2000). Furthermore, the use of synthetic fertilizers (Kudeyarov, 2020) and soil management 

practices such as tillage (Bayer et al., 2015), can alter the availability of C:N ratio within the soil. 

Such modifications can have significant implications for GHG emissions (Brust, 2019).  

This chapter outlines the results of a laboratory incubation study that examined the interaction 

between agricultural LUC and N2O and CO2 fluxes in the presence of exogenous C and N. I 

predicted that agricultural intensification involving the addition of C and N through external 

amendments, can increase microbial activity, ultimately resulting in elevated fluxes of N2O and 

CO2. To test this, soils (i.e., perennial cropping system [PS], annual cropping system [AS] and 

converted system [CS]) were amended with glucose as a C source and urea as a N source and a 

Gasmet Terra5000 Fourier transmission infra-red (FTIR) portable gas analyzer was used to 

measure N2O and CO2 emissions at different time intervals. Additionally, SOM %, microbial 

extracellular enzyme assays, particularly BG, and NAGase activities and soil AC were measured 

at the end of the incubation period. The results demonstrated that agricultural soils with higher 

inputs of exogenous C and N exhibited higher N2O and CO2 fluxes compared to soils with no 
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inputs. Moreover, the amendment of both C and N resulted in elevated GHG fluxes, with the 

highest fluxes observed in the combined C and N treatment, while the lowest fluxes were recorded 

in the soil with no amendments. Furthermore, the study results demonstrated that N2O fluxes were 

notably higher in the AS soils compared to both CS and PS, whereas CS and PS showed more 

similar trends. CO2 fluxes were notably higher in the AS soils, followed by CS and PS. While 

previous studies have investigated different amendments at the field level (Huang et al., 2002: 

Huang et al., 2004; Jha et al., 2020), there is a limited number of studies specifically examining 

the combined effects of simple sugars and N-fertilizer on GHG fluxes during LUC. 

 

4.2 Materials and Methods 

4.2.1 Site description and soil sampling 

The soils for the incubation study were collected from an operational farm located in Stone Mills, 

Ontario (44 44’ 65.17’’ N and 76 83’58.65’’).  This location falls within the Great Lakes Central 

Lowland physiographical region and resides within the mixedwood plains ecoregion. The 

prevailing climatic conditions within this region were characterized by a mean annual temperature 

of 7.8°C and a mean annual precipitation of 951.4 mm (Environment and Climate Change, Canada: 

Kingston Pumping Station, 1981-2010). The prevailing soil composition at the study site was 

taxonomically classified as the Otonabee series, falling within the Brunisolic Order. This soil order 

was further categorized as a constituent of the brown forest great soil group, and the degraded 

brown forest soil group and the family is Otonabee, as per the Canadian system of soil 

classification. The field site was comprised of three fields. One annual cropping system (AS) was 

regularly cultivated for cash crops for ten years and planted to corn (Zea mays L.) in 2020 and was 

fertilized with urea [CO(NH2)2]. The AS had a history of being planted with corn and received 
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mono ammonium phosphate fertilizer (MAP: 12-52-0 NPK ratio) from 2015-2019. The remaining 

two perennial cropping systems had not been cultivated for cash crop production in over 50 years. 

These fields were both orchardgrass (Dactylis glomerata) perennial systems. One perennial system 

was left intact (PS), while the remaining field was converted to annual cropping (soybean, Glycine 

max L.) and classified as a “converted system” (CS). On May 25th, 2021, glyphosate was applied 

to the AS and CS fields, while the PS field was left intact. The AS and CS fields were shallowly 

tilled to a depth of 5-8 cm, superphosphate fertilizer (6-32-23 NPK ratio) was then applied at a rate 

of 280 kg per ha and planted to soybeans (Glycine max L.). Soil sampling was conducted on 

October 30th, 2021, during the plant maturation stage in the AS and CS fields. Bulk soil samples 

were collected from a depth of 0–20 cm within each field and transported to Trent University for 

storage at -20C until further use.  

4.2.2 Experimental design 

In this laboratory incubation study, soils (<2 mm) were pre-incubated prior to the start of the 

experiment. Specifically, 200 g of soil was placed in 1 L mason jars and deionized water was added 

to adjust the water holding capacity (WHC) to 60% (Harding & Ross, 1964). These mason jars 

were then incubated at 22C (Li et al., 2018) for three days before any treatment was introduced. 

The incubation experiment involved four treatments, each of which was conducted in triplicate 

using four mason jars: (i) addition of glucose (G) (2.5 g C kg-1 dry soil), (ii) addition of urea (U) 

(0.11 g N kg-1 dry soil), (iii) addition of both glucose and urea (G+U), (iv) served as the control 

and involved no amendments. In the G+U treatment, a C:N ratio of 24:1 was maintained, and the 

added C and N sources were mixed homogenously with the soil. Soil WHC was also regularly 

monitored and maintained at 60%, and the soil was packed to mimic the standardized field bulk 

density (1.1 g cm-3). During the incubation period, the mason jars containing the soils were closed 
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with their caps and incubated at 22C, and 24 h intervals, the jar lids were removed to facilitate 

ventilation. In addition, a set of mason jars with similar treatments were maintained in parallel to 

monitor net N2O and CO2 fluxes regularly. At specific time intervals (0, 6, 12, 24, 48, 72, 96 and 

168 h), soils were destructively sampled for laboratory analysis, and GHG emissions were 

measured using a GT5000 Terra Portable FTIR gas analyzer (Gasmet Technologies Oy, 

Mestarinitie, Finland). A closed-loop system was used to measure GHG emissions, with a 

sampling time of 1 min, and continuous sampling was conducted for 5 mins and the net N2O and 

CO2 fluxes were calculated as recommended by the manufacturer (Equation 4.1). 

Equation 4.1:  

 

 

where, C1 is starting concentration of N2O / CO2 in ppm, C2 is final concentration of N2O / CO2 

in ppm, t1 is starting time of the analysis in s, t2 is finishing time of the analysis in s, v is volume 

of the vessel including cell, sample lines and headspace in m3, va is molar volume for the ideal 

gas at 273 K, T1 is air temperature in K, T2 is standard temperature in K and A is footprint area 

of the chamber in m2.  

4.2.3 Soil organic matter content  

Soil organic matter was estimated following the loss on ignition method (Jensen et al., 2018). For 

each transect, 5.00 g of oven-dried soil (<2 mm) was placed on a ceramic crucible and placed in 

the muffle furnace at 550°C for 4 h and re-weighed to estimate SOM.  

4.2.4 Soil extractable NO3
--N  

Soil exchangeable NO3
--N were determined for each of the soil samples by KCl extraction (Nelson, 

1983). Field moist soil samples (10.0 g) were placed into a 125 mL conical flask and 100.0 mL of 

Soil N2O / CO2 fluxes (µmol m-2 s-1) =  C2 – C1 

t2 – t1 

v 

va. T2 

T1 

1 

A 
x x 
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2.0 M KCl was added into each flask. Flasks were stoppered and shaken for 1 h at 160 oscillations 

per min. The solutions were allowed to settle for 30 mins and were filtered through Whatman 

No.42 filter paper (Whatman Plc, ME, USA).  Extractable NO3
--N was determined 

colorimetrically with a flow injection analyzer (Lachat Quickchem Flow Injection Analysis 

System, Hach Sales and Service LP, London, Ontario, Canada). In parallel, a triplicate standard 

curve was constructed by performing a serial dilution of 200 mg N/L KNO3 to a final concentration 

of 0.025, 0.05, 0.10, 0.20, 0.50, 1.00, 2 and 10 mg N/L, as recommended by manufacturer. 

Furthermore, a KCl reagent blank was run for every four samples. To assess extraction efficiency, 

a triplicated spike test was performed using a 10 mg N/L KNO3 solution, yielding a recovery 

percentage of 99.7%. The net nitrification (NN) was calculated (Equation 4.2) (Hart et al., 2018; 

Vazquez et al., 2019). 

Equation 4.2: 

 

4.2.5 Soil extractable NH4
+-N   

Following the methodology described in section 4.2.4, I employed KCl extractions to determine 

the levels of exchangeable NH4
+-N in the soil (Nelson, 1983). In parallel, a standard curve was 

constructed and triplicated by performing a serial dilution of 5 mM ammonium sulfate to a final 

concentration of 50, 100, 150, 200, and 300 M (Diatloff & Rengel, 2001). Extractable NH4
+-N 

was determined colorimetrically with a Perkin Elmer Lambda 2 UV/VIS Spectrophotometer 

(Perkin Elmer, Woodbridge, Ontario, Canada) at a wavelength of 667 nm. The net nitrogen 

mineralization (NNM) was calculated (Equation 4.3) (Hart et al., 2018; Vazquez et al., 2019).  

 

Net nitrification (NN) (g NO3
- -N g-1 d-1) =  

[NO3
- -N final] – [NO3

- -N initial] 

Days of incubation 
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Equation 4.3: 

 

 

4.2.6 Active Carbon  

To measure the AC the permanganate oxidizable C method was conducted as described by Culman 

et al. (2012). For each sample, 2.5 g of soil was measured into 50 mL falcon tubes containing 18.0 

mL of deionized water and 2.0 mL of 0.2 M KMnO4. The tube was placed on a horizontal shaker 

for 2 mins at a rate of 240 oscillations per min, then allowed to settle for 10 mins and 0.5 mL of 

the supernatant was transferred to a separate 50 mL falcon tube with 49.5 mL deionized water. A 

volume of 200 µL was transferred into the wells of the 96-well microplate. In parallel, a standard 

curve was constructed and triplicated by performing a serial dilution of 0.2 M KMnO4 to final 

concentrations of 0.005, 0.01, 0.015, and 0.02 M. The absorbances of the samples were measured 

with an Epoch spectrophotometer (Biotek Instruments Inc., Winooski, VT) at 550 nm wavelength 

to determine the AC.  

4.2.7 Soil microbial extracellular enzyme assays for -glucosidase enzyme and N-acetyl--

D-glucosaminidase enzyme 

Microbial EEAs for BG and NAGase were performed by creating a soil slurry using 5.0 g of air-

dried (<2 mm) soil and 7.5 mL of 50 mM acetate buffer solution. A volume of 150 L of this soil 

slurry was pipetted out to a centrifuge tube containing 150 L of 50 mM acetate buffer. 

Subsequently, 150 L of the substrate solutions (pNP--D-glucopyranoside for BG and pNP--N-

acetylglucosaminide for NAGase) were added and the soil solutions were incubated at 37°C for 1 

Net N-mineralization (NNM) 

(g N g-1 d-1)   

[NH4
+ -Nfinal + NO3

- -Nfinal] – [NH4
+ -Ninitial + NO3

- -Ninitial] 

Days of incubation 

= 
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h for BG and 3 h for NAGase. By the end of the incubation period, 100 L of the supernatant from 

each soil sample was added to a 96-well microplate containing 10 L of 1 M NaOH and 190 L 

of deionized water. In parallel, a standard curve was constructed by performing a serial dilution of 

4-nitrophenol into 50 mM acetate buffer to final concentrations of 0.025, 0.05, 0.1, 0.25, 0.5, and 

1 mM (Jackson et al., 2013; Acosta-Martinez et al., 2018). The absorbances of the samples were 

measured with an Epoch spectrophotometer (Biotek Instruments Inc., Winooski, VT) at 410 nm 

wavelength to determine the microbial extracellular enzyme activity.  

4.2.8 Statistical analysis 

The statistical analysis was conducted using R Studio 1.4 (R Studio: Integrated Development 

Environment for R, R Studio, PBC, Boston, MA). To compare soil N2O fluxes and CO2 fluxes, 

among different treatments, repeated measures ANOVA with a linear mixed model was used. To 

compare SOM %, NNM, NN, AC, BG, and NAGase among different treatments, one-way 

ANOVA with a generalized linear model was used. Tukey’s Honestly Significant Difference test 

(HSD) was employed to determine the mean separation between control and treated soils, with 

significance declared at p < 0.05. The Shapiro-Wilks test was used to test for the normality of data, 

confirming the absence of outliers. Significant differences among and between least-square means 

were identified using p-values, with Ho rejected at p < 0.05 unless otherwise stated.  

Pearson’s correlation analysis was conducted to assess the statistical associations between N2O 

fluxes, CO2 fluxes and soil health parameters tested. Finally, to visually demonstrate the multiple 

relationships of soil health parameters between treatments a MANOVA followed by a PCA 

analysis was carried out. In the PCA, a scree plot was examined for breaks, and PC components 
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with eigenvalues ≥ 1 (PC1 and PC2) were retained for the build-up of the 2-dimensional plot for 

visual analysis. 

4.3 Results: 

Measured soil N2O fluxes ranged from 2.1  0.6 to 4.4  1.3 µg N kg-1 dry soil m-2 s-1 across all 

treatments evaluated, with the G+U treatment having the highest levels of N2O fluxes of all the 

treatments. The AS soils exhibited the highest levels of N2O flux (4.4  1.3 µg N kg-1 dry soil m-2 

s-1), followed by CS (2.8  0.8 µg N kg-1 dry soil m-2 s-1) and PS (2.4  0.7 µg N kg-1 dry soil m-2 

s-1) soils, under the specific incubation conditions (Figure 4.1).  

Figure 4.1: Nitrous oxide fluxes (µg N kg-1 dry soil m-2 s-1) in differently intensified soils over the 

incubation period (hour). Soils used included soils from PS (perennial cropping system), CS 

(converted system), and AS (annual cropping system). Treatments included Control (unamended 

control), G (amendments only with glucose), U (amendments only with urea), and G+U 

(amendments of glucose and urea to obtain a C: N ratio of 24:1). 

 

Measured soil CO2 fluxes ranged from 587  176 to 1900  571 µg C kg-1 dry soil m-2 s-1 

across all treatments evaluated, with the G+U treatment having the highest levels of CO2 fluxes 
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regardless of the varying degrees of agricultural intensification. Furthermore, the AS soils 

exhibited the highest levels of CO2 fluxes (1900  571 µg C kg-1 dry soil m-2 s-1), followed by CS 

(1754  524 µg C kg-1 dry soil m-2 s-1) and PS (1221  362 µg C kg-1 dry soil m-2 s-1) soils, under 

the specific incubation conditions (Figure 4.2). 

Figure 4.2: Carbon dioxide fluxes (µg C kg-1 dry soil m-2 s-1) in differently intensified soils over 

the incubation period (hour). Soils used included soils from PS (perennial cropping system), CS 

(converted system), and AS (annual cropping system). Treatments included Control (unamended 

control), G (amendments only with glucose), U (amendments only with urea), and G+U 

(amendments of glucose and urea to obtain a C: N ratio of 24:1). 

 

There were no significant differences in SOM % between the different treatments in the 

PS and CS soils (Table 4.1). However, in the AS soil, the G+U treatment soils had significantly 

higher SOM % compared to the other treatments (Table 4.1). Furthermore, there was no significant 

difference in SOM % between the PS, CS, and AS soils. The PS soil had significantly higher AC 

levels compared to both the CS (+9.0%) and AS (+6.1%) treatments, and there were no significant 

differences observed among the different C/N treatments (Table 4.1). Additionally, there were no 
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significant differences in AC levels between AS and CS soils or within different C/N treatments 

in the AS and CS soils (Table 4.1).  

There were no significant differences found in BG levels between different C/N treatments 

in PS and CS soils (Table 4.1). However, in the AS soils, the G+U treatment exhibited significantly 

higher BG levels compared to the control (+32.7%), U (+26.5%) or G (+24.5%) treatments in the 

AS soils (Table 4.1). In terms of NAGase activity, no significant differences were found between 

the PS and AS soils, while the CS soils exhibited the lowest NAGase levels (Table 4.1). 

Additionally, in the PS soils, there were no significant differences observed in NNM within 

treatments, whereas, in the CS soils, the G+U treatment showed the highest rates of NNM 

compared to the other treatments (Table 4.1). In the AS soils, both the U and G+U treatments 

exhibited the highest rates of NNM compared to the other treatments (Table 4.1). Notably, the AS 

soils had significantly higher rates of NNM compared to the PS soils in the G+U treatment, which 

exhibited the lowest rates of NNM (Table 4.1). Furthermore, the G+U treatment exhibited the 

highest NN rates in the PS and CS soils (Table 4.1) 
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Table 4.1: Comparisons of soil parameters among PS (perennial cropping systems), CS (converted system), and AS (Annual cropping 

systems) at the pre-conversion phase. Parameters are soil organic matter % (SOM %), active carbon (AC), extracellular enzyme activities 

of ꞵ-glucosidase (BG, mmol g-1 dry soil h-1), N-acetylglucosaminidase (NAGase, mmol g-1 dry soil h-1), net N-mineralization (NNM, 

g N g-1 dry soil d-1) and net nitrification (NN, g N g-1 dry soil d-1). The reported values correspond to the measurements taken at the 

end of the study. The data are means (n=3) ± SE; parameters share the same letters are not significantly different (p < 0.05). 

 

Sample Treatment SOM % 

AC 

(mg kg-1) 

BG 

(mmol g-1 h-1) 

NAGase 

(mmol g-1 h-1) 

NNM 

(g N g-1 d-1) 

NN 

(g N g-1 d-1) 

PS 

Control 3.9ab  0.3 1292a  7 0.45abcd  0.06 0.19ab  0.04 2.5d  0.7 0.19d  0.1 

U 4.0ab  0.3 1279a  9 0.53a  0.05 0.20a  0.05 10bcd  2.3 0.29abcd  0.1 

G 4.0ab  0.3 1279a  9 0.53a  0.06 0.21a  0.05 5.6d  1.1 0.25bcd  0.1 

G+U 4.3a  0.4 1302a  10 0.54a  0.06 0.21a  0.06 11bcd  3.5 0.82a  0.2 

CS Control 3.4bcd  0.2 1118d  16 0.38bcd  0.02 0.10c  0.01 6.6cd  3.0 0.38cd  0.1 
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U 3.8abc  0.3 1157cd  21 0.43abcd  0.02 0.11bc  0.01 15abc  3.4 0.99ab  0.4 

G 3.4bcd  0.3 1175bcd  22 0.50abc  0.04 0.11bc  0.01 8.9bcd  2.2 0.85bc  0.3 

G+U 3.9ab  0.3 1185bcd  17 0.50ab  0.06 0.12bc  0.01 17ab  4.6 1.4a  0.4 

AS 

Control 3.1d  0.1 1203bcd  16 0.33d  0.02 0.15abc  0.02 5.3d  1.6 0.45abc  0.2 

U 3.4bcd  0.2 1211bcd  20 0.36cd  0.03 0.15abc  0.01 17ab  4.1 1.1ab  0.6 

G 3.2cd  0.2 1205bcd  32 0.37bcd  0.05 0.16abc  0.02 10bcd  2.3 0.86abcd  0.6 

G+U 3.9ab  0.3 1223b  9 0.49ab  0.06 0.17abc  0.02 22a  6.1 1.7a  0.7 
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Pearson’s correlation analysis demonstrated a number of correlations among parameters tested and 

CO2 and N2O fluxes (Figure 4.3). There was a positive correlation between N2O fluxes and both 

NNM and NN with correlation coefficients of +0.66 and +0.75. Moreover, a positive correlation 

was found between NNM and NN with a correlation coefficient of +0.93. Additionally, there were 

positive correlations between CO2 and N2O fluxes with a correlation coefficient of +0.73. A PCA 

(Figure 4.4) was conducted to visualize the correlations among soil health parameters (SOM %, 

AC, BG, NAGase, NNM, and NN) and CO2 and N2O fluxes in different treatments/soil types. The 

first two principal components, PC1 and PC2 accounted for 50.7% cumulative variance. Fluxes of 

N2O, CO2 and NNM, NN, SOM and BG loaded on to PC1, while AC and NAGase loaded on to 

PC2. The MANOVA analysis (Pillai index = 0.64, F = 19.1, p < 0.001) yielded significant 

multivariate effects for various soil parameters, including EEA (BG and NAGase), NN, and NNM 

(p < 0.05). Additionally, the analysis revealed significant separation among N2O and CO2 fluxes.
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Figure 4.3: Pearson arson correlation of N2O and CO2 fluxes and soil health parameters, namely 

active carbon (AC), soil organic matter (SOM), net N-mineralization (NNM), net nitrification 

(NN), and enzyme activities of ꞵ-glucosidase (BG), and N-acetylglucosaminidase (NAGase).  
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Figure 4.4: A principal component analysis (PCA) of N2O and CO2 fluxes and the soil health 

parameters tested in PS (perennial cropping system), CS (converted system), and AS (annual 

cropping system) soils that were treated with glucose (G), urea (U), Glucose, and N to obtain a C: 

N ratio of 24:1 and control treatment with no amendments. Variables included were soil N2O and 

CO2 fluxes, active carbon (AC), soil organic matter (SOM), net N-mineralization (NNM), net 

nitrification (NN), and enzyme activities of ꞵ-glucosidase (BG) and N-acetylglucosaminidase 

(NAGase). Fluxes of N2O and CO2 and NNM were loaded onto PC1 while SOM, AC, BG, 

NAGase and NN loaded onto PC2. The three ellipses represent the three clusters: the blue ellipse 

illustrate the cluster of PS, the green ellipse illustrates the cluster of CS, and the red ellipse 

illustrates the cluster of AS.  
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4.4 Discussion: 

Agricultural LUC from perennial to annual cropping systems can significantly impact the physical, 

chemical, and biological attributes of soil (Reidsma et al., 2006; Ruf et al., 2018; Ito & Hajima, 

2020; Padbhushan et al., 2022). In this laboratory incubation study, I investigated the interaction 

between LUC and N2O and CO2 fluxes in the presence of exogenous C and N. Results supported 

the initial prediction, showing that soils under intensive management practices leads to faster N-

mineralization in the presence of readily available C and N, resulting in increased net N2O and 

CO2 fluxes. The scientific community has conducted numerous studies investigating the impact of 

tillage and glyphosate addition on soil N-loss (Mkhabela et al., 2008; Panettieri et al., 2013; Bayer 

et al., 2015; Jha et al., 2020). However, research examining the impact of LUC on GHG emissions 

is limited (Panettieri et al., 2013; Okada et al., 2019). Therefore, the findings of this study 

contribute to filling this research gap and provide valuable insights to the existing literature 

focusing on the effects of LUC on N2O and CO2 fluxes. 

The net N2O (Figure 4.1) and CO2 (Figure 4.2) fluxes gradually increased before reaching 

a peak and subsequently decreased to reach a plateau within the study period. Soils that were under 

various degrees of intensification i.e., soils from PS, CS, and AS fields, were investigated in this 

study. The results of the study revealed significant differences in maximum N2O fluxes among the 

tested soil types, specifically, the AS soils exhibited notably higher maximum N2O fluxes 

compared to both PS (69.8% higher) and CS (64.2% higher) soils. Among the various C/N 

treatments, the G+U treatment within the AS soils displayed the highest N2O fluxes, surpassing 

all other treatments. In the AS soils, the second highest N2O fluxes were observed in the G 

treatment, followed by the U treatment, while the control treatment exhibited the lowest N2O 

fluxes. These outcomes suggest a clear influence of exogenous C and N inputs on N2O emissions 
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from AS soils. Availability of readily accessible C sources in the G treatment in soil provides the 

necessary fuel for denitrifiers, thereby promoting potential denitrification, and subsequently, this 

increased potential denitrification activity has the ability to contribute to N2O fluxes in the soil. As 

mineralization and urea degradation increase the available NH4
+ levels (Bengtsson et al., 2003; 

Hart et al., 2018), they can support potential nitrification (Nunes-Alves, 2016; Sahrawat, 2008). 

The fluxes of N2O also showed a positive correlation with NN, indicating that increased 

nitrification activities may contribute to elevated N2O fluxes. The end product of nitrification 

serves as a substrate for denitrification, which produces N2O as a by-product, contributing to the 

observed increase in N2O fluxes (Skiba, 2008). Additionally, N2O fluxes can be directly related to 

nitrification, where it is produced as a by-product, as well as co-denitrification, which occurs when 

O2 levels are limited (Nunes-Alves, 2016). Additionally, the N2O fluxes observed in different soils 

suggest differences in the microbial community composition or differences in the microbial 

activity responsible for N2O fluxes in the AS soils compared to the PS and CS soils. Interestingly, 

PS and CS exhibited similar trends in N2O fluxes (Figure 4.1), suggesting a potential legacy effect 

of the PS soils on the N2O fluxes observed in the CS soils.  

Additionally, similar trends were observed in CO2 fluxes, with the G+U treatment in the 

AS soils exhibited the highest fluxes. These fluxes were higher than those observed in the CS and 

PS soils by 13.4% and 42.1%, respectively.  Furthermore, across all soil types, the CO2 fluxes 

were notably higher in the G+U treatment, followed by the G and U treatments, while the control 

treatment displayed the lowest CO2 fluxes. This pattern suggests that the addition of exogenous C 

and N sources significantly affected CO2 fluxes in all three soil types. The present study’s findings 

are consistent with previous research at controlled environmental conditions (Flessa & Beese, 

1995; Huang et al., 2004) that utilized soil amendments of C and N to investigate their potential 
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impact on GHG emissions, particularly CO2 and N2O. The significantly higher GHG fluxes in the 

G+U treatment could be attributed to the presence of an optimal diet for microbes with a C:N ratio 

of 24:1, providing sufficient energy sources for microbial utilization (Bengtsson et al., 2003; Brust, 

2019; Melis et al., 2023). The hydrolysis of urea in the U treatment, facilitated by the urease 

enzyme, likely contributed to CO2 fluxes (Qin & Cabral, 2002). The C:N ratio is a useful predictor 

of GHG fluxes, as noted in a previous study by Huang et al., (2002), which found that seasonal 

N2O and CO2 fluxes from wheat-cultivated soil negatively correlated with soil C:N ratio in an 

outdoor pot experiment with 18 paddy soils. 

The AS showed the highest CO2 fluxes, which were 7.6% higher than CS and 35.7% higher 

than PS soils. In the AS, annual inputs of root exudates, plant residues, fertilizers and the exposure 

and oxidation of SOM resulting from tillage practices have the potential to enhance the availability 

of resources for soil microbes. This increased availability of C sources may have created favorable 

conditions for copiotrophic bacteria. Copiotrophic bacteria, characterized by their capacity for 

rapid growth in nutrient-rich environments, can experience enhanced proliferation and increase 

microbial biomass, leading to higher respiratory rates in response to the availability of abundant C 

sources (Koch, 2001; Wolińska et al., 2015; Wang et al., 2021). The energetic demands associated 

with their rapid growth and maintenance processes may have contributed to a higher proportion of 

C being respired rather than being converted into biomass in the AS (Sinsabaugh et al., 2013). 

Therefore, a greater amount of C may have released as CO2 during respiration, potentially reducing 

the overall C use efficiency (CUE). However, it is noteworthy that the CO2 fluxes observed in the 

CS soils were higher than those in the PS soils, which may be due to the effects of LUC and 

fertilizer application in the CS soils, which promote the growth of R-strategists and stimulate their 

respiration (Ho et al., 2017).  
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The results of the incubation study indicated no significant difference in SOM % between 

the PS and CS soils. However, significant differences in SOM % were observed between cropping 

systems in Chapter 3. Jha et al. (2020) conducted a study comparing the effects of residue 

management and synthetic fertilizer addition on soil C and N dynamics in perennial and annual 

cropping systems. They found that perennial cropping systems exhibited an 18-30% increase in 

SOM content compared to annual cropping systems. This suggests that effective residue 

management can contribute to significant improvements in SOM levels in perennial cropping 

systems (Jha et al., 2020). Additionally, there were no significant differences in the levels of AC 

within the same soil across the various C/N treatments. Under incubation conditions, the PS soils 

exhibited the highest AC levels compared to the AS and CS soils, showing 6.1% and 9.0% higher, 

respectively. This finding is consistent to Plaza-Bonilla et al. (2014), who observed variations in 

AC levels in perennial and annual cropping systems, reporting that perennial cropping systems 

had significantly higher levels of AC compared to that of annual cropping systems. This difference 

in statistical significance between the field study and the incubation study may have arisen due to 

variations in microbial activity in the pre-incubation period and at the time of sampling. The field 

study involved sampling in May, while the incubation study collected samples in October. These 

differences in timing introduced seasonal variations, potential incubation artifacts and microbial 

respiration within pre-incubation period may have contributed to the observed variations in results. 

In the PS soils, the control, U, and G treatments displayed significantly higher SOM % compared 

to the corresponding treatments in the AS soils, with 20.5%, 15.0%, and 20.0% higher SOM 

respectively. This difference could be attributed to stimulated microbial activity, likely resulting 

from the greater root mass of orchardgrass, which exceeds that of soybean in the AS soils (Aoyama 
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& Kuroyanagi, 1996). This higher microbial activity likely played a pivotal role in enhancing 

mineralization and the decomposition of organic matter.  

The impact of agricultural LUC on microbial extracellular enzyme activities, specifically 

BG and NAGase, is a research area that has received limited attention (Deng & Tabatabai, 1996; 

Uwituze et al., 2022). Βeta-glucosidase is an enzyme that plays a vital role in the breakdown of 

complex carbohydrates in soil, facilitating the conversion of cellulose and hemicellulose into 

glucose (Stege et al., 2010), whereas NAGase is an enzyme involved in the breakdown of chitin, 

a complex polysaccharide (Peters et al., 1999)  which can be used as energy sources by 

microorganisms. A significant increase in BG activity in the AS soils that were amended with G+U 

compared to the control soil was observed, whereas, NAGase activity were found to be similar 

between the AS and the PS soils, while CS soils exhibited significantly lower NAGase activity 

compared to AS and PS. Observed higher BG activity in AS G+U treatment could be due to the 

amendment of an optimal diet with a C:N ratio of 24:1 that provides a better substrate of simple 

sugars for the SMCs (Bengtsson et al., 2003; Brust, 2019). In the AS G+U treatment, despite the 

availability of easily accessible C and N sources, certain soil microbes may exhibit preferences for 

specific C and N substrates (Zhalnina et al., 2018). This preference for specific substrates may 

have contributed to the observed increase in BG enzyme activity within the microbial communities 

of the system. Another possible explanation is the adaptation of microbes to the specific 

environmental conditions of the AS soils, particularly related to the change in vegetation. In the 

past, the AS soils were planted with corn, which contained higher levels of lignin and cellulose, 

components that are more resistant to decomposition. However, the shift in vegetation to soybean, 

which has more easily decomposable plant residues with a lower C:N ratio compared to corn, may 

have influenced microbial activity. Microbes in the AS soils may have efficiently utilized the 
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readily available C and N inputs provided through glucose and urea in the beginning, resulting in 

a decreased requirement for breaking down complex organic matter. Consequently, the increased 

availability of easily decomposable organic matter in soybean residues could have stimulated the 

activity of BG enzymes (Ekenler & Tabatabai, 2003). This higher enzyme activity suggests 

enhanced decomposition and utilization of C compounds by the microbial community. The lower 

NAGase activity observed in the CS may be attributed to the adverse effects of glyphosate on 

microbial abundance and activity (Wardle & Parkinson, 1990; Lancaster et al., 2010), leading to a 

reduction in the activity of chitin-degrading microbes. During the process of LUC, the application 

of NPK fertilizer in the CS soils, which had not previously been exposed to synthetic fertilizers, 

introduces a nutrient-rich N source for the microbial community (Koch, 2001; Kremer & Means, 

2009). The availability of abundant N resources through fertilizer application may satisfy the N 

requirements of the microbes in the CS soils, thereby reducing the need to break down complex 

organic matter to obtain N sources.  

Nitrogen mineralization is a vital process in soil ecosystems, involving the conversion of 

organic N into inorganic forms (Bengtsson et al., 2003; Hart et al., 2018). In this study, the 

application of a G+U treatment to the AS soils resulted in the highest NNM. Net N mineralization 

serves as a quantitative measure, reflecting the difference between potential N mineralization and 

immobilization rates occurring in the soil (Hart et al., 2018; Vazquez et al., 2019). Through the 

application of exogenous N as to the AS soils, there is a notable increase in the concentration of N 

(Ayoola & Makinde, 2009). Subsequently, this enriched N undergoes mineralization, leading to 

the conversion of organic N compounds into NH4
+ ions within the soil. Moreover, in the presence 

of exogenous C/N amendments, the degradation of urea can occur, resulting in the release of NH4
+ 

into the soil (Qin & Cabral, 2002). Higher plant-available N in the soil can increase the risk of N-
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leaching from the soil in the form of NO3
- (Huang et al., 2004). Li et al. (2018) conducted a study 

to investigate the effect of N availability and its interaction with soil organic C mineralization. The 

study comprised an incubation experiment wherein soils were collected from two distinct cropping 

systems: an annual cropping system characterized by a wheat-tomato rotation, and a perennial 

grass cropping system. Various soil amendments were applied during the experiment, including 

mineral N, ryegrass residue, ryegrass residue combined with mineral N, water-extracted ryegrass 

residues, extracted residues combined with mineral N, and a control soil with no amendments. 

Results revealed that NNM was significantly higher in the control treatment, as well as in 

treatments involving C amendments and combinations of C and N, as compared to the N-only 

amendment treatment. These results were similar across both cropping systems. However, Li et al. 

(2018) used different C:N ratios (10:1) and incubation conditions than in current study, which 

showed higher NNM in the G+U amendment treatment compared to other treatments. 

Although potential NN in AS soils were not significantly different among the various 

treatments, a significantly higher NN was observed in CS and PS soils treated with G+U compared 

to controlled treatment with no amendments. Nitrifiers are commonly classified as autotrophs; 

however, it is important to note the existence of heterotrophic nitrifiers capable of conducting 

nitrification using external energy sources, such as organic C (Martikainen, 2022). The presence 

of heterotrophic nitrifiers in the system may have played a role in the observed increase in NN in 

the G+U treatment. Additionally, the availability of plant residues and root exudates further 

influences the availability of C for heterotrophic nitrifiers (Lian et al., 2019) which may have 

contributed to the higher NN in the PS soils. Furthermore, the study revealed a significant 

correlation between NN and NNM, highlighting the strong influence of NH4
+ derived from N-
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mineralization or from urea degradation on the process of nitrification. The higher NH4
+ levels 

observed in the PS soils likely promoted nitrification.  

The results of the PCA analysis and Pearson’s correlation analysis indicate a strong relationship 

between N-transformation processes and N2O fluxes, particularly between N2O fluxes and NNM 

and NN. Nitrogen mineralization and nitrification are influenced by various environmental factors, 

including moisture and O2 levels (Skiba, 2008; Nunes-Alves, 2016; Hart et al., 2018). In this study, 

the soil samples were found to be moderately moist, and the adjusted WHC, which refers to the 

ability of soil to retain water against gravity, was set at 60% (Brischke & Wegener, 2019). Previous 

researchers (Ghezzehei et al., 2019; Stres et al., 2008)  have demonstrated that microbial activity 

in soil is typically highest when the WHC is close to or at field capacity, which generally occurs 

at around 60% in most soils. When soil moisture is too low, microbial activity can be hindered by 

a lack of water, which can lead to dehydration stress and decreased metabolic rates (Manzoni et 

al., 2012). Conversely, when soil moisture is too high, microbial activity can be constrained by 

insufficient O2, resulting in anaerobic conditions that encourage the growth of anaerobic 

microorganisms, thereby facilitating denitrification and the production of GHGs like N2O and CH4 

(Stres et al., 2008; Brischke & Wegener, 2019; Ghezzehei et al., 2019). The moderate moisture 

and aerobic headspace in the jars used in this study are favorable conditions for nitrification 

(Nunes-Alves, 2016; Sahrawat, 2008). The availability of resources with a suitable C:N ratio of 

24:1, along with favorable WHC and moderate temperatures (22°C) (Li et al., 2018; Nottingham 

et al., 2019), may have contributed to the higher NNM and NN levels observed in the G+U 

treatment compared to the control. Considering the combined results, it can be inferred that both 

denitrification and nitrification processes likely contributed to the observed N2O fluxes.  
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4.5 Conclusion 

The objective of this study was to investigate the interaction between LUC and soil N2O and CO2 

fluxes when exposed to readily available sources of C and N. The study's findings indicated that 

AS soils exhibited the highest N2O fluxes in comparison to both PS and CS soils. These outcomes 

suggest that AS soils may harbor a distinct microbial community with a different functional profile 

or microbial composition contributing to N2O fluxes. The similarity in N2O flux trends between 

PS and CS soils implies that CS soils might retain a historical legacy from their PS counterparts 

regarding N2O emissions. CO2 fluxes displayed largely similar patterns across all three soil types, 

with the highest CO2 fluxes observed when both C and N were added. This shows the role of 

exogenous C and N amendments in supporting microbial communities, thereby driving CO2 and 

N2O fluxes. This study underscores the potential influence of LUC and the application of available 

C and N on N and C losses from soil, manifesting as N2O and CO2 fluxes, which are significant 

environmental pollutants. 

To gain a more comprehensive understanding of these phenomena, future investigations could 

incorporate molecular biological assays such as qPCR for microbial quantification, mRNA 

analysis to assess the activity of microbes involved in CO2 and N2O fluxes, and sequencing 

techniques to elucidate the composition of microbial communities participating in these processes. 

Such approaches would enable a more detailed exploration of the underlying mechanisms driving 

GHG fluxes from soils under agricultural LUC.  
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Appendix: 

Supplementary figure 4.1: Cumulative mean fluxes of N2O (µg N kg-1 dry soil m-2 s-1) over the incubation period (hour) in differently 

intensified soils. Soils used included soils from PS (perennial cropping system), CS (converted system), and AS (annual cropping 

system). Treatments included Control (unamended control), G (amendments only with glucose), U (amendments only with urea), and 

G+U (amendments of glucose and urea to obtain a C: N ratio of 24:1). 
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Supplementary figure 4.2: Cumulative mean fluxes of CO2 (µg C kg-1 dry soil m-2 s-1) over the incubation period (hour) in differently 

intensified soils. Soils used included soils from PS (perennial cropping system), CS (converted system), and AS (annual cropping 

system). Treatments included Control (unamended control), G (amendments only with glucose), U (amendments only with urea), and 

G+U (amendments of glucose and urea to obtain a C: N ratio of 24:1).
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Chapter 5: General Discussion and Conclusions 

The trend of agricultural LUC is projected to continue, and this will lead to significant 

environmental and ecological consequences (Lawler et al., 2014). One example of agricultural 

LUC is the shift from perennial to annual cropping systems (Lambin et al., 2000). This LUC 

typically involves intensified agricultural practices, including chemical burndown of the previous 

vegetation and soil disturbance (Blickensdörfer et al., 2022; Gerke, 2022). In addition, agricultural 

practices aid in LUC, including fertilizer application, tillage, and other management practices can 

contribute to N-losses as N2O emissions, which can have significant environmental impacts (Ellis 

et al., 1996; Rivett et al., 2008; Wang et al., 2019). In addition, these practices can also result in 

soil health depletion (Benalcazar et al., 2022; Morrow et al., 2016) and impact the abundance of 

SMCs (Tyler, 2019; Singh et al., 2021; Wang et al., 2021).  

Several studies have investigated the effects of either tillage or glyphosate application on 

soil health parameters and SMC abundances (Mkhabela et al., 2008; Kremer & Means, 2009; 

Mathew et al., 2012; Martínez et al., 2013; Singh et al., 2020). However, studies examined the 

impact of LUC on soil health and N-cycling SMCs is rather limited (DuPont et al., 2010). 

Therefore, the primary objective of this thesis was to investigate the short-term effects of 

agricultural LUC on soil health parameters and the abundance of N-cycling SMCs during the 

conversion from a perennial to an annual cropping system. The study aimed to provide insights 

into the short-term impacts of LUC on soil health and the dynamics of nitrifying and denitrifying 

microbial communities, which play a crucial role in potential N losses, particularly in the form of 

N2O. Additionally, the research explored the relationship between C and N availability and their 

potential influence on N2O and CO2 fluxes on agricultural LUC. 
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In Chapter 3, the impacts of agricultural LUC on soil health parameters and N-cycling 

SMC abundance were assessed using soil samples collected from a field site located in Ontario. 

The soil health parameters and N-cycling SMC abundance of PS soils, which had not been 

intensified or cultivated with cash crops for over 50 years, were compared with those of AS soils, 

which had been regularly used for cash crop production for around 10 years. The results showed 

significantly higher SOM % and BG activity in the PS compared to the AS. The higher BG enzyme 

activity in the PS, known for catalyzing C degradation (Stege et al., 2010), suggests that SOM 

serves as a C source for microbial communities, in addition to the contributions of orchardgrass 

residue inputs. The PS soils exhibited significantly higher NAGase activity, indicating a higher 

potential for N mineralization due to low available N for SMCs and thereby leading to increased 

availability of NH4
+ (Chen et al., 2011). The NH4

+ concentrations were found to be significantly 

lower in the PS soils. The PS soils showed significantly higher abundance of the amoA gene, 

suggesting a potentially more active nitrifier community capable of effectively oxidizing NH4
+ to 

NO3
- (Nunes-Alves, 2016). This indicates that the nitrifier SMCs in the PS soils are potentially 

using NH4
+ and depleting its levels. This observation is supported by the higher levels of NO3

- 

detected in the PS soils compared to the AS soils. The presence of a well-structured and 

undisturbed soil in the PS likely contributed to reduced leaching of NO3
- (Hussain et al., 2019). 

Furthermore, the PS soils demonstrated a significantly higher denitrification capacity, as evidenced 

by the significantly higher nirS+nirK/nosZI gene ratio, which suggest a greater potential for 

complete denitrification to occur (Skiba, 2008). However, the higher levels of NO3
- indicate 

potentially lower activity of nir denitrifiers, resulting in potentially slower NO3
- reduction. The 

gene ratio of nosZI/16S rRNA (Skiba, 2008), was significantly higher in the PS soils. The higher 

nosZI/16S rRNA ratio in the PS soils suggests a greater potential for N2O reduction to N2, implying 
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a potentially lower N2O emissions. Overall, these results indicate that the PS soils possess more 

robust internal N-cycling than AS soils.  

In the AS soils, NAGase activity was found to be significantly lower compared to the PS 

soils. This indicates that the addition of NH4
+ through synthetic fertilizer application in the AS 

soils may provide a readily available N source (Liu et al., 2018), resulting in a reduced need for 

microbes to degrade external chitin-like compounds (Chen et al., 2011) to fulfill their N 

requirements. The AS soils exhibited significantly higher levels of NH4
+, while the abundance of 

the amoA gene was significantly lower compared to the PS soils. The NO3
- levels in the AS soils 

were significantly lower than those in the PS soils, likely due to NO3
-  uptake by annual crops and  

regular tillage which disrupts soil particles (Perez-Brandán et al., 2012), indicating that N-loss 

from AS in the form of NO3
- leaching is also a possibility (Hussain et al., 2019; Wang et al., 2019). 

Lower amoA gene abundance and NO3
- levels suggest that although there is an ample amount of 

NH4
+ present in the AS soils, the potential activity of the nitrifier bacterial community may be 

lower, leading to a less effective nitrification process. Furthermore, the AS soils displayed 

significantly lower nirS+nirK/nosZI gene ratios, along with lower NO3
- levels, indicating a 

potentially lower capacity for denitrification. However, the significantly lower gene ratio of the 

nosZI/16S rRNA in the AS soils suggests a lower potential for the reduction of N2O to N2 compared 

to the PS soils. Collectively, the significantly lower nirS+nirK /nosZI ratio and the lower relative 

abundance of nosZI gene in the AS soils supports these observations, indicating a lower potential 

for complete denitrification and a higher likelihood of N2O emissions from the AS soils.  

Further in Chapter 3, the short-term impacts of agricultural LUC from a perennial to an 

annual cropping system was studied. The changes in soil health parameters and N-cycling SMC 

abundances in an agricultural field that underwent LUC were studied. The results of the study 
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demonstrated that the LUC had a significant impact on SOM and AC levels. The change in 

vegetation from orchardgrass to soybean could be a potential factor contributing to the observed 

effects on SOM contents. The application of synthetic fertilizers may have stimulated the growth 

and activity of R-strategists, which are known for their rapid decomposition of organic matter. 

Additionally, the activity of BG and NAGase enzymes showed an increase following LUC. These 

enzymes are associated with the breakdown of organic compounds, suggesting enhanced organic 

matter degradation in the CS soils. This increased microbial activity may have contributed to a 

significant reduction in the SOM and AC levels observed in the CS soils after LUC. The addition 

of fertilizer following LUC had a significant impact on the NH4
+ levels in the CS soils, increasing 

their concentrations. In contrast, the levels of NO3
- showed a significant reduction after LUC. This 

reduction can be due to soil disruption, which can lead to NO3
- leaching (Hussain et al., 2019) and 

increased access of NO3
- to SMCs. The decreased levels of NO3

- observed, along with the reduced 

abundance of the amoA gene, suggest a potential decline in nitrifier activity following LUC. 

Additionally, there was a noteworthy decrease in nirS gene abundance, which is known to be more 

responsive to changes in soil environments compared to the nirK community (Sun & Jiang, 2022). 

Interestingly, nirK gene abundance showed a significant increase after the conversion, suggesting 

the presence of K-strategist that were able to survive and persist with the remaining SOM. The 

reduced levels of NO3
-, coupled with the increased abundance of the nirK gene, indicate a 

potentially higher activity of nirK denitrifiers, resulting in NO3
- reduction to N2O. Additionally, 

the nosZI/16S rRNA gene ratio showed a significant decrease, following the LUC. These findings 

collectively suggest that the potential for reducing NO3
- to N2O may be increased, while the 

potential for reducing N2O to N2 is decreased. Therefore, the potential capacity for N2O emissions 

following LUC may be increased.  
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The laboratory incubation study conducted in Chapter 4 was aimed to investigate the 

relationship between LUC and N2O and CO2 fluxes in the presence of readily available C and N. 

The study involved amending soil samples from differently intensified agricultural soils with 

glucose as a C source and urea as an N source and measuring N2O and CO2 fluxes. The AS soils 

demonstrated significantly higher N2O fluxes in comparison to the PS and CS soils, with the G+U 

treatment exhibiting the highest fluxes among all treatments. This observation suggests a direct 

influence of the presence of both C and N on N2O fluxes from the AS soils. It is possible that the 

AS soils bear a distinct N cycling microbial community than PS soils. Furthermore, the similarity 

in N2O flux trends between the CS and PS soils suggests a historical influence of PS on the N2O 

flux dynamics in CS soils. The CO2 flux trends were similar across all three soil types, with AS 

exhibiting the highest fluxes, followed by CS and PS. The addition of exogenous C and N sources 

resulted in the highest CO2 fluxes in all three soils. These findings suggest the significant influence 

of C and N on CO2 flux dynamics in soil systems. 

The study revealed that the addition of readily available C and N sources resulted in 

increased net N-mineralization (NNM) in both the CS and AS soils. Moreover, the addition of 

exogenous C and N increased net nitrification (NN) in the PS and CS soils, indicating the influence 

of LUC on nitrification and available NH4
+ utilization when supplied with external C and N 

sources. Increased rates of mineralization and nitrification can lead to higher levels of NH4
+ and 

NO3
- availability in the soil. In the AS soils, although NNM was significantly higher with the 

addition of exogenous C and N, the lower abundance and potentially lower activity of the amoA 

community (Chapter 3) resulted in no significant increase in NN. In contrast, in the PS soils, while 

there was no significant increase in NNM, NN was significantly higher, potentially due to the 

higher abundance of amoA genes (Chapter 3) which may have resulted in potentially higher 
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nitrification activity. Notably, the correlation analysis demonstrated a strong positive correlation 

between NN and N2O fluxes. This finding suggests that, in addition to denitrification, there could 

be a significant contribution of nitrification to the observed N2O fluxes. 

This study highlights the impacts of agricultural LUC from a perennial cropping system to 

an annual cropping system on soil health parameters and the abundance of N-cycling SMCs. The 

research also sheds light on the potential impact of C and N-containing fertilizers on this 

conversion process, and how C and N availability may contribute to GHG fluxes, particularly N2O 

and CO2. The findings presented here have the potential to pave the way for extensive studies that 

delve deeper into the relationship between agricultural LUC, SMCs, and N-losses. 
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