

Evaluation of Spectral Retrieval Methods for Hyperspectral

Coherent Anti-Stokes Raman Scattering Microscopy

A Thesis Submitted to the Committee of Graduate Studies in

Partial Fulfillment of the Requirements of the Degree of

Master of Science

in the Faculty of Arts and Science

TRENT UNIVERSITY

Peterborough, Ontario, Canada

Materials Science M.Sc. Graduate Program

September 2023

Copyright © John Shafe-Purcell, 2023

ii

Abstract

Evaluation of Spectral Retrieval Methods for Hyperspectral Coherent Anti-

Stokes Raman Scattering Microscopy

John Shafe-Purcell

Coherent anti-Stokes Raman scattering (CARS) microscopy is a label-free chemical

imaging modality that uses CARS as a contrast mechanism to spatially resolve materials

based on their molecular vibrational spectra. Due to the presence of a non-resonant

background that obfuscates the chemical information contained in CARS spectra, CARS

images suffer from poor contrast and cannot be readily used for quantitative chemical

analysis. Over the past two decades, spectral retrieval methods have been developed to

obtain Raman-like spectra from CARS spectra. These methods promise to improve image

contrast and enable reliable quantitative analysis. In this work I systematically evaluate a

selection of the forefront spectral retrieval methods, including both analytical and machine

learning approaches, to determine how well they perform at the task of non-resonant

background removal. The more recent machine learning methods demonstrate remarkable

performance on spectra resembling the training dataset but are not as suitable as the

analytical methods in general. The analytical methods based on the discrete Hilbert

transform thus remain preferable due to their ease-of-use and general applicability.

Keywords: coherent anti-Stokes Raman scattering, spectral phase retrieval, non-resonant

background, chemical imaging, hyperspectral imaging, Kramers-Kronig analysis, machine

learning.

iii

Acknowledgments

I would like to thank…

▪ Dr. Aaron Slepkov for being my research supervisor and introducing me into the world

of nonlinear optics and chemical imaging.

▪ Joel Tabarangao, Jeremy Porquez, and Ryan Cole for their work developing the CARS

microscopy system at Trent University. Without their previous work, getting into

CARS microscopy would have been far more difficult. When I was first getting started,

Jeremy provided me with all the guidance I needed that was essential for my quick

integration into the lab.

▪ George Olaniyan for introducing me to the deep learning techniques for non-resonant

background removal, namely SpecNet and VECTOR. Learning about these methods,

and the lack of any clear guidance on which are best or how to use them, inspired my

desire to pursue a project comparing the currently available NRB removal methods.

This has since grown into the topic of this thesis.

▪ Trent University for granting me the Graduate Research Fellowship Award that helped

fund my graduate research.

iv

Table of Contents

Abstract ... ii

Acknowledgments.. iii

Table of Contents ... iv

List of Figures ... vii

List of Tables ... ix

List of Abbreviations .. x

1 Introduction ... 1

1.1 Nonlinear Optics .. 1

1.2 Coherent Anti-Stokes Raman Scattering.. 4

1.3 CARS Hypermicroscopy .. 6

1.4 Non-Resonant Background Removal ... 9

2 Methods... 10

2.1 Spectral Retrieval Methods .. 10

2.1.1 Kramers-Kronig Spectral Phase Retrieval .. 10

2.1.2 Learned Discrete Hilbert Transform ... 14

2.1.3 Convolutional Neural Network: SpecNet ... 15

2.1.4 Convolutional Autoencoder: VECTOR .. 16

2.2 CARS Simulation Methods .. 18

2.2.1 Resonant Spectral Line Shapes ... 18

v

2.2.2 Non-resonant Spectral Line Shapes .. 20

2.2.3 CARS, NRB, and Raman Simulations .. 22

2.2.4 Hyperspectral Image Simulations ... 23

2.3 Evaluation Methods.. 25

2.4 Model Training Methods .. 26

3 Results and Discussion ... 28

3.1 Model Training Results .. 28

3.2 Spectral Retrieval Comparison... 30

3.3 Hyperspectral Image Retrieval ... 32

3.4 Impact of Noise and NRB Levels .. 39

3.4.1 KK Method: Noise and NRB .. 46

3.4.2 LeDHT Method: Noise and NRB ... 47

3.4.3 SpecNet Model: Noise and NRB .. 47

3.4.4 VECTOR Models: Noise and NRB .. 48

3.5 Quantitative Analysis ... 49

3.5.1 KK Method: Quantitative Analysis .. 53

3.5.2 LeDHT Method: Quantitative Analysis .. 54

3.5.3 SpecNet Model: Quantitative Analysis ... 55

3.5.4 VECTOR Models: Quantitative Analysis ... 57

3.6 Experimental NRB Removal .. 58

vi

4 Concluding Remarks ... 63

Bibliography ... 65

Appendix A: KK Method Details ... 70

Appendix B: LeDHT Method Details ... 71

Appendix C: Artificial Neural Networks .. 72

Appendix D: SpecNet Model Details.. 73

D.1 SpecNet Model Summary .. 73

D.2 Modified SpecNet Code ... 74

D.3 SpecNet Copyright Notice ... 74

Appendix E: VECTOR Model Details ... 75

E.1 VECTOR Model Summaries .. 75

E.2 Customized VECTOR Code... 76

E.3 VECTOR Copyright Notice ... 80

Appendix F: Training Code .. 80

vii

List of Figures

Figure 1: Simplified Jablonski diagrams for various nonlinear optical effects. 3

Figure 2: Effect of the NRB on hyperspectral images. ... 8

Figure 3: Flow diagram for the KK method. .. 13

Figure 4: SpecNet schematic diagram. ... 15

Figure 5: VECTOR schematic diagram. ... 16

Figure 6: Resonant susceptibility example. .. 20

Figure 7: Non-resonant susceptibility examples. .. 21

Figure 8: Randomly generated CARS, NRB, and Raman spectra. 23

Figure 9: Training histories for three machine learning models. 29

Figure 10: Comparison of MAE for NRB removal methods. ... 30

Figure 11: Simulated hyperspectral image example. .. 33

Figure 12: Average and on-resonance SSIM for retrieved and ground-truth images. 34

Figure 13: Retrieved SSIM for each frame in hyperspectral images. 37

Figure 14: CARS test spectra with various noise and NRB parameters. 40

Figure 15: KK retrieval results for various noise and NRB parameters. 41

Figure 16: LeDHT retrieval results for various noise and NRB parameters. 42

Figure 17: SpecNet retrieval results for various noise and NRB parameters. 43

Figure 18: VECTOR-8 retrieval results for various noise and NRB parameters. 44

Figure 19: VECTOR-16 retrieval results for various noise and NRB parameters. 45

Figure 20: CARS spectra of simulated materials for quantitative analysis. 50

Figure 21: Ground-truth Raman-like spectra to be retrieved for quantitative analysis. ... 51

Figure 22: KK method quantitative analysis. ... 52

viii

Figure 23: LeDHT method quantitative analysis. ... 54

Figure 24: SpecNet quantitative analysis. ... 55

Figure 25: VECTOR-8 quantitative analysis. ... 56

Figure 26: VECTOR-16 quantitative analysis. ... 56

Figure 27: CARS spectrum of toluene. ... 58

Figure 28: Retrieved spectra for toluene after NRB removal. .. 59

Figure 29: Comparison of chemical contrast after retrieval. .. 62

ix

List of Tables

Table 1: Hyperspectral image retrieval times for each retrieval method. 38

Table 2: SpecNet Summary. ... 73

Table 3: VECTOR-8 Summary .. 75

Table 4: VECTOR-16 Summary. ... 76

x

List of Abbreviations

CAE Convolutional Autoencoder

A type of neural network architecture called an “autoencoder” which

utilizes convolutional layers in the encoder and transposed convolutional

layers in the decoder.

CARS Coherent Anti-Stokes Raman Scattering

A coherent Raman scattering process that occurs when pump/probe and

Stokes photons interact with a Raman-active material, producing higher-

frequency anti-Stokes photons when the energy difference between the

pump/probe and Stokes photons matches a vibrational resonance.

CNN Convolutional Neural Network

A neural network containing convolutional layers. These are layers that

learn convolution filters/kernels during training which are convolved

with the input data during forward propagation.

DFG Difference-frequency Generation

Second-order nonlinear optical effect whereby two photons interact and

produce a third photon with an energy (frequency) that is the difference

between the two interacting photons.

xi

DHT Discrete Hilbert Transform

An algorithm for computing the Hilbert transform of a discrete function,

where the Hilbert transform and its inverse are functionally equivalent to

the Kramers-Kronig relations.

DL Deep Learning

A machine learning approach that utilizes artificial neural networks and

mathematical optimization techniques for a machine to “learn” to perform

a task. The “deep” in deep learning refers to the considerable number of

layers in the neural network.

FWHM Full Width at Half-maximum

The full width of a peak at half of its amplitude.

FWM Four-wave mixing

Third-order nonlinear optical effect involving four photons.

KK Kramers-Kronig

Relating to the Kramers-Kronig spectral phase retrieval method for non-

resonant background removal. This method uses the Kramers-Kronig

relations to obtain an equation for the phase of the complex-valued third-

order susceptibility in order to retrieve a Raman-like spectra from CARS.

xii

LeDHT “Learned Discrete Hilbert Transform”

An approach for calculating the discrete Hilbert transform using a

transformation matrix obtained from machine learning techniques.

ML Machine Learning

Any process by which a machine gradually improves its performance at

a given task without being given an explicit algorithm for accomplishing

that task.

NRB Non-resonant Background

Vibrationally non-resonant four-wave mixing that produces an effective

background that distorts the CARS signal.

SFG Sum-frequency Generation

Second-order nonlinear optical effect whereby two photons interact and

produce a third photon with an energy (frequency) that is the sum of the

two interacting photons.

SHG Second Harmonic Generation

Special case of SFG where the two photons have equal energy.

xiii

SpecNet “Spectral Retrieval Convolutional Neural Network”

A convolutional neural network architecture designed for CARS non-

resonant background removal.

THG Third Harmonic Generation

Special case of FWM where three photons of equal energy interact to

produce a fourth photon with three times the energy of the incident

photons.

VECTOR “Very Deep Convolutional Autoencoder”

A convolutional autoencoder architecture designed for CARS non-

resonant background removal.

𝐜𝐦−𝟏 Wavenumber

Metric unit representing “spatial frequency”, commonly used in

spectroscopy to represent energy transitions. Given by:

1

𝜆
× 10–7

Where λ (in units of nanometers) is the wavelength corresponding to a

photon with the given energy.

1

1 Introduction

This section will introduce the reader to coherent anti-Stokes Raman scattering (CARS),

why it is a desirable contrast mechanism for label-free hyperspectral microscopy, and the

preeminent issue facing the widespread adoption of CARS microscopy, namely, the non-

resonant background (NRB). This will include a brief introduction to nonlinear optics, how

CARS and the NRB originate from nonlinear optics, and the NRB removal problem. The

overall goal of this thesis is to investigate the available NRB removal methods and

demonstrate through a comparative analysis the capabilities and shortcomings of each. This

thesis should provide the reader with the knowledge to make an informed decision about

which currently available NRB removal method to employ for their CARS application.

1.1 Nonlinear Optics

When an electric field interacts with dielectric materials, the induced polarization 𝑃 of the

material can be given by the Taylor expansion in terms of the incident electric field 𝐸 as:

 𝑃 = ϵ0(χ
(1)𝐸 + χ(2)𝐸2 + χ(3)𝐸3 +⋯) (1)

Here, the coefficients given by χ(𝑛) are the 𝑛-th order susceptibilities of the material and

ϵ0 = 8.854 F/m is the vacuum permittivity [1]. It is important to note that this induced

polarization refers to the dipole moments created by the separation of charge in the material

as a response to the incident electric field, not the polarization of the incident electric field

itself. Since light is composed of the synchronized oscillation of electric and magnetic

fields as described by Maxwell’s equations, when light interacts with a material it will

induce an oscillatory polarization within the material as a result. This time-varying

polarization will produce a new electromagnetic wave because of this interaction. This is

2

referred to as the scattered or produced light. When the electric field intensity is small, like

that generated by continuous-wave lasers and incoherent light sources, the first order χ(1)

term dominates. This produces linear optical effects where the induced polarization is

proportional to the incident electric field. Advances in ultrafast laser technologies has

allowed us to create pulses of light with extremely high peak powers. These lasers can

generate instantaneous electric field intensities large enough that higher order χ(2) and χ(3)

effects become significant, giving rise to the field of nonlinear optics [2].

Second-order nonlinear effects are those for which the χ(2) term dominates, and so the

polarization becomes 𝑃 = ϵ0χ
(2)𝐸1𝐸2. Here, 𝐸2 from Eq. (1) is replaced with two separate

electric fields, 𝐸1 and 𝐸2, because two independent electric fields can interact with the

material simultaneously. Second-order effects notably include sum- and difference-

frequency generation (SFG and DFG), for which a third photon is produced with an energy

that is the sum or difference between the energies of two incident photons, respectively.

Second harmonic generation (SHG) is a special case of SFG where two photons with equal

energies produce a third photon with double the energy of the incident photons.

Third-order effects are those for which the χ(3) term dominates, and so the polarization

becomes 𝑃 = ϵ0χ
(3)𝐸1𝐸2𝐸3. Here, 𝐸3 from Eq. (1) is replaced with three separate electric

fields, 𝐸1, 𝐸2, and 𝐸3, because three independent electric fields can interact with the

material simultaneously. Four-wave mixing (FWM) is the most relevant third-order optical

effect for this work. As the name suggests, it involves four electromagnetic waves, where

two or three incident waves produce two or one new waves, respectively. Third harmonic

generation (THG) is a special case of FWM where three incident photons with equal

energy produce a fourth photon with triple the energy of the three incident photons.

3

Coherent anti-Stokes Raman scattering (CARS) is a special case of FWM where three

photons of various energies produce a fourth photon with a higher energy when the energy

difference between any two of the incident photons corresponds to a molecular vibrational

resonance. Nonlinear optical processes are phase-sensitive and require proper phase

matching conditions to be met for efficient generation. CARS also requires that Raman

selection criteria be satisfied. Figure 1 below shows the schematic Jablonski diagrams for

the nonlinear optical processes discussed in this section.

Figure 1: Simplified Jablonski diagrams for various nonlinear optical effects. The diagrams

are given for: (a) Second-harmonic generation (SHG), (b) sum-frequency generation

(SFG), (c) difference-frequency generation (DFG), (d) third-harmonic generation (THG),

(e) non-resonant four-wave mixing (FWM), and (f) degenerate coherent anti-Stokes

Raman scattering (CARS). Virtual energy levels are represented by black dashed lines,

whereas the ground state and vibrational energy levels are represented by black solid lines.

 1

 1 +

 1

 1

 1

 1 +

4

1.2 Coherent Anti-Stokes Raman Scattering

CARS, as a special case of FWM, is a third-order nonlinear optical effect that involves the

interaction of three incident laser beams—the pump, probe, and Stokes beams—and

produces a fourth beam of higher energy, called the anti-Stokes beam. When the incident

beams interact with the scatterers in the excitation volume, they induce the formation of an

ensemble of oscillating Hertzian dipoles. These can be modelled classically as damped

harmonic oscillators driven by the coherent addition of the probe beam and the difference

frequency between the pump and Stokes beams. The anti-Stokes beam is then given by the

far-field radiation produced by these oscillators [3]–[6]. Since CARS is a χ(3) effect, the

electric field corresponding to the anti-Stokes emission can be written as:

 𝐸𝐶𝐴𝑅𝑆(ωp −ωS +ωpr) = χ(3)𝐸p(ωp)𝐸pr(ωpr)𝐸S(ωS) (2)

where 𝐸p, 𝐸pr, and 𝐸S are the electric fields and ωp, ωpr, and ωS are the frequencies of the

pump, probe, and Stokes beams, respectively. The emitted anti-Stokes beam has an electric

field 𝐸𝐶𝐴𝑅𝑆 with a frequency given by ω𝐴𝑆 = ωp −ωS +ωpr . In most practical cases, the

pump and probe beams come from the same source and thus have the same energy (i.e.

ωpr = ωp). This is called degenerate CARS. The previous equation can be rewritten for

degenerate CARS as:

 𝐸𝐶𝐴𝑅𝑆(ωp −ωS) = χ(3)𝐸𝑝
2(ωp)𝐸𝑆(ωS) (3)

Where the frequency of the anti-Stokes photon is now ωAS = ωp −ωS. The term CARS

will refer to this degenerate case for the remainder of this work. The CARS intensity is

then given by,

5

 𝐼𝐶𝐴𝑅𝑆 ∝ |χ(3)|
2
𝐼𝑝
2𝐼𝑆 (4)

This shows that the CARS intensity is proportional to the modulus squared of the total

third-order susceptibility, the squared pump beam intensity, and the Stokes beam intensity.

The third-order susceptibility, 𝜒(3), can be modelled as the sum of two components; one

that arises from the vibrational resonances of the material, χ𝑅
(3)

, and one that arises from

the non-resonant FWM, χ𝑁𝑅
(3)

, as follows:

 χ(3) = χ𝑅
(3) + χ𝑁𝑅

(3)
 (5)

Assuming that the pump and Stokes intensities are held constant, the two previous

equations can be combined to give the following proportionality:

 𝐼𝐶𝐴𝑅𝑆 ∝ |𝜒𝑅
(3) + 𝜒𝑁𝑅

(3)|
2

 (6)

Given that the non-resonant contribution χ𝑁𝑅
(3)

 is strictly real-valued, which is an empirically

valid assumption in most cases [7], the above can be expanded to give:

 𝐼𝐶𝐴𝑅𝑆 ∝ |χR
(3)|

2

+ (χNR
(3))

2

+ Re(χR
(3))χNR

(3)
 (7)

The non-resonant background (NRB) is caused by the two terms containing χNR
(3)

 . This

non-resonant contribution does not inform us about the molecular vibrational resonances

but does act to obfuscate the chemical information encoded by the resonant contribution.

Because of the cross-term, there is clearly no trivial way to decouple the resonant and non-

resonant contributions through subtraction or factorization, which makes it difficult to use

CARS for chemical analyses.

6

1.3 CARS Hypermicroscopy

Referring to Figure 1, panels (e) and (f) show the Jablonski diagrams for FWM and CARS,

respectively. The frequency difference between the pump and Stokes, referred to as the

Raman shift, is given by:

 ω = ωp −ω𝑆 (8)

You may recognise this as the beat frequency between the pump and Stokes beams that

drives the molecular vibration. By varying the difference between the frequencies of the

pump and Stokes beams, we can scan ω and collect a spectrum of the anti-Stokes emission

at ωAS = ωp −ωS as a function of ω. This allows us to collect a so-called CARS

spectrum. When ω corresponds to a molecular vibrational resonance, Ω, the oscillators are

driven more efficiently, and the resonant part of the anti-Stokes signal is enhanced.

However, as we scan through ω and record the anti-Stokes emission, we are simultaneously

recording a spectrum of the non-resonant FWM as well. These resonant and non-resonant

contributions to the susceptibility are the inspiration for Eq. (5).

Hyperspectral images contain both spatial and spectral data. Each hyperspectral image can

be thought of as a three-dimensional data cube constructed by taking a spectrum at each

pixel of an image. One dimension corresponds to the spectral axis and the other two

dimensions correspond to the spatial axes. When we apply hyperspectral imaging to

microscopy, we may call it hyperspectral microscopy or “hypermicroscopy”. CARS

hypermicroscopy allows us to resolve spatial and spectral features simultaneously by using

the CARS signal intensity as a contrast mechanism while imaging. A given frame in the

hyperspectral image “stack” will correspond to a particular molecular vibrational

resonance where brighter regions will correspond to a higher CARS intensity and darker

7

regions will correspond to a lower CARS intensity. This creates a sort of chemical contrast

allowing us to spatially map chemical species to specific image regions. However, the NRB

complicates the interpretation of these data.

Due to the presence of the NRB, the CARS signal is not strictly quadradic in analyte

concentration. Consequently, quantitative analysis cannot be performed on CARS spectra

as readily as it can with spontaneous Raman. Moreover, the dispersive effects

corresponding to the real part of the resonant susceptibility cause the tail ends of the

resonance peaks to extend far across the spectra. In hyperspectral imaging, this creates the

appearance of chemical contrast where there are no Raman peaks corresponding to

molecular vibrational resonances, as demonstrated in Figure 2 below.

Despite the NRB being a barrier to the adoption of CARS as a reliable method for chemical

analysis, CARS offers undeniable benefits over competing techniques. For example,

CARS offers a signal amplification up to 100 times greater than spontaneous Raman due

to the coherence of the CARS process, allowing for shorter acquisition times and faster

imaging speeds [8]. Also, the simplicity of CARS relative to other coherent Raman

techniques means that it is cheaper and easier to deploy in most cases. Consequently, the

development of techniques to effectively remove the NRB are necessary to unlock the full

potential of CARS and remove barriers to its widespread adoption.

8

Figure 2: Effect of the NRB on hyperspectral images. This figure demonstrates how the

NRB obfuscates the chemical information and creates chemical contrast where there are

no corresponding molecular vibrational resonances. To demonstrate this, two distinct

image regions have been chosen, one represented by the Yin and the other the Yang. The

Yin represents a chemical with a single resonance peak at 800 cm−1 and the Yang presents

a chemical with a single resonant peak at 1200 cm−1, each with a half-width of 10 cm−1. (a)

shows the frames taken from the hyperspectral Raman (top) and CARS (bottom) images at

800 cm−1 (left), 1000 cm−1 (middle), and 1200 cm−1 (right). (b) shows the Raman (top) and

CARS (bottom) spectra taken from the Yin and Yang regions. From (a) we can visually

see the spurious chemical contrast in the CARS images, while (b) shows how this arises

from the NRB. The horizontal axis of each plot in (b) represents zero intensity. This figure

was created using the hyperspectral image simulation method described in Section 2.2.4.

9

1.4 Non-Resonant Background Removal

NRB “removal” is not simply a process of subtracting an additive background like one

would do with the fluorescence background in spontaneous Raman spectroscopy. Instead,

NRB removal is a process that involves retrieving the complex phase of the third-order

susceptibility so that we may obtain the Raman spectral line shapes encoded in the

imaginary part. Complex values can be represented by an expression of the form,

 𝐴𝑒𝑖ϕ (9)

Where 𝐴 is the amplitude and ϕ is the phase of the value in the complex plane. From this,

we can express the complex valued third-order susceptibility as,

 χ(3)(ω) = |χ(3)(ω)|𝑒𝑖ϕ(ω) (10)

Where |χ(3)(ω)| is the amplitude and ϕ(ω) is the phase. As mentioned previously, the

measurable CARS signal intensity is given by 𝐼𝐶𝐴𝑅𝑆 ∝ |χ(3)|
2
. This means that the

amplitude of our susceptibility in the complex plane is proportional to the square root of

the measured CARS signal, 𝐴 ∝ √𝐼𝐶𝐴𝑅𝑆 . This makes completely solving for χ(3)(𝜔) from

measured CARS spectra simply a matter of finding the phase, ϕ(ω). If the phase is known,

the corresponding Raman spectrum is given by,

 𝐼𝑅𝑎𝑚𝑎𝑛(ω) = Im(χ(3)(ω)) = Im(|χ(3)(ω)|𝑒𝑖ϕ(ω)) (11)

Spectral phase retrieval is thus the principal issue regarding NRB removal in CARS

spectroscopy and hypermicroscopy. The rest of this work will evaluate several of these

spectral retrieval methods to determine how well each method removes the NRB and

whether the NRB problem has been essentially solved.

10

2 Methods

In this section I will outline the spectral retrieval methods assessed later in this work, the

methodologies for data simulation, and evaluation metrics used to compare the retrieval

methods.

2.1 Spectral Retrieval Methods

Several methods have been developed for retrieving the Raman-like spectral line shapes

from CARS spectra, effectively “removing” the NRB. These promise to improve the

analytical interpretability of CARS spectra by disentangling the underlying chemical

information from the NRB. This section will provide an overview of four post-processing

based NRB removal techniques. These were chosen to be included in this thesis because

they represent the current state-of-the-art in NRB removal within the CARS literature. The

overview for each method will include a brief description of the theory of operation, the

general implementation details, and the potential advantages/disadvantage of the method.

Each of these methods are freely available to use, modify, and publish under their

respective open-access licenses, so the reader is encouraged to investigate these methods

themselves for additional details.

2.1.1 Kramers-Kronig Spectral Phase Retrieval

The time-domain Kramers-Kronig (KK) method for spectral phase retrieval was developed

in 2009 by Liu et. al. [9] and has been used extensively for NRB removal since its

inception. Its creation was motivated by the fact that taking the natural logarithm of both

sides of Eq. (10) gives,

11

 ln (χ(3)(ω)) = ln|χ(3)(ω)| + 𝑖ϕ(ω) (12)

This equation clearly satisfies the general form of a complex valued function for which we

can apply the following Kramers-Kronig relation [10], [11],

 ϕ(ω) = −
𝑃

π
∫

ln|χ(3)(ω′)|

ω′ −ω
dω′

∞

−∞

 (13)

Where 𝑃 is the Cauchy principal value. The article describing the KK method derived the

relationship between the Kramers-Kronig relation and the Fourier transform, allowing it to

be implemented using the discrete Fourier transform with imposed causality conditions [9].

An equivalent but simplified approach has since been adopted that uses the discrete Hilbert

transform (DHT) as follows [12]:

 ϕ𝐶𝐴𝑅𝑆/𝑁𝑅𝐵(ω) = ℋ (
1

 ln

𝐼CARS(ω)

𝐼NRB(ω)
) (14)

Where ℋ is the DHT, 𝐼CARS is the known CARS signal, and 𝐼NRB is the known NRB signal.

The NRB in this case is used as an internal reference by which we normalize the CARS

signal to remove any system responses.

The KK method is an analytical technique that is simple and computationally efficient due

to the utilization of the fast Fourier transform, but suffers from two major limitations: the

underlying DHT returns significant errors for any finite discrete spectral domain because

the Hilbert transform is only well-defined for an infinite continuous domain, and an

accurate NRB profile (absent of resonant peaks) must be known. Improvements in the

accuracy of this method have been achieved through error correction measures [12]. These

can be summarized as follows:

12

1. Phase error correction via baseline detrending. The retrieved phase should have a

zero baseline, but often has a slowly varying baseline that arises due to

computational errors. The asymmetric least squares (ALS) baseline removal

algorithm [13] can be used find the baseline and subtract it form the retrieved phase.

This alone significantly enhances the accuracy of the KK method.

2. Scale error correction via unity centering of the real component of the retrieved

phase-corrected spectrum. The real component of the previously retrieved phase-

corrected spectrum should be unity centered, i.e. 〈𝐼CARS/𝐼NRB 𝑐𝑜𝑠𝜙CARS/NRB〉 = 1.

Any deviation of the mean trendline from 1 is due to scale errors that can be factored

out so that the spectrum becomes unity centered. A Savitzky-Golay filter [14] can

be used to find a mean trendline in the real component by which we divide the

complex retrieved spectrum in an elementwise manner to correct the scale error.

Although these corrections significantly improve the accuracy of the KK method, it is still

limited by the need for knowledge of the NRB spectrum. Typically, a surrogate NRB is

experimentally obtained by taking a CARS spectrum of a material with few Raman bands,

such as glass or water. However, even water and glass have Raman active bands that can

cause errors in the retrieval depending on which transition energies are being probed [15],

[16]. Another practical issue with the KK method is the potential for undefined behaviour

in Eq. (14) due to division-by-zero or negative logarithm inputs for 𝐼𝑁𝑅𝐵 ≤ 0 or 𝐼𝐶𝐴𝑅𝑆 < 0.

So, care must be taken to clean the CARS and NRB spectra prior to using the KK method

to analyze them. Figure 3 below shows a flow diagram summarizing the KK method

procedure.

13

Figure 3: Flow diagram for the KK method. This diagram shows the procedure for

implementing the KK method with phase and scale error corrections as described in Camp

et. al. [12]. This is intended to provide the reader with a brief high-level overview of the

KK method with error corrections without the derivation provided in the original source.

𝐼CARS,raw(𝜔) 𝐼NRB,raw(𝜔)

Data cleaning, noise reduction, and padding.

𝐼CARS(𝜔) 𝐼NRB(𝜔)

𝜙CARS/NRB(𝜔) = ℋ ൜
1

ln
𝐼CARS(𝜔)

𝐼NRB(𝜔)
ൠ

Phase Error Correction via ALS Baseline Detrending
𝜙CARS/NRB,pec(𝜔) = 𝜙CARS/NRB(𝜔) − 𝜙𝑒𝑟𝑟(𝜔)

𝐼retr,pec(𝜔) = ඨ
𝐼CARS(𝜔)

𝐼NRB(𝜔)
exp (𝑖𝜙CARS/NRB,pec(𝜔))

Scale Error Correction via Unity Centering

𝐼retr,pec,sec(𝜔) = 𝐼retr,pec(𝜔)/ൻRe൛𝐼retr,pec(𝜔)ൟൿ(𝜔)

𝐼retr(𝜔) = |𝜒(3)| Im൛𝐼retr,pec,sec(𝜔)ൟ

14

2.1.2 Learned Discrete Hilbert Transform

The Learned Discrete Hilbert Transform (LeDHT) method of spectral phase retrieval uses

the same approach as previously described for the KK method, however the DHT is

replaced with a “learned” transformation matrix that computes the Hilbert transform on

discrete data without the errors associated with the DHT, particularly the errors at the

endpoints of the spectral window [17]. This method was inspired by the fact that every

discrete linear transformation can be represented by a transformation matrix that can be

applied through matrix multiplication. Although DHT matrices are well known, they yield

identical results to the Fourier-based DHT used in the KK method, thus offering no

improvement in accuracy. The LeDHT method seeks solve this issue by using the ordinary

least squares (OLS) optimization method to solve for the matrix 𝐇 that minimizes the

residual sum-of-squares between the true and predicted Hilbert transforms according to the

following equation:

 𝐇 = argmin𝐇‖𝐺 − 𝐹𝐇‖2 (15)

Where 𝐹 is a matrix of training data and 𝐺 is a matrix of the known Hilbert transforms of

the corresponding data in 𝐹. 𝐹 and 𝐺 are both 𝑀 ×𝑁 matrices, where M is the number of

input spectra and N is the length of each spectrum [17]. Once the optimal matrix 𝐇 is found,

the LeDHT method can then be applied with matrix multiplication as,

 𝐺𝑒𝑥𝑝 = 𝐹𝑒𝑥𝑝𝐇 (16)

Where 𝐹𝑒𝑥𝑝 is the matrix of experimental input spectra and 𝐺𝑒𝑥𝑝 is the matrix retrieved

Hilbert transforms for the spectra in 𝐹𝑒𝑥𝑝. If the obtained matrix 𝐇 is optimal, the LeDHT

method promises more accurate phase retrieval than the KK method.

15

2.1.3 Convolutional Neural Network: SpecNet

In 2020, SpecNet was the first deep-learning-based solution to the NRB removal problem

[18]. The goal of SpecNet is to simplify NRB removal by training a convolutional neural

network (CNN) to retrieve the Raman-like spectral line shapes directly from the CARS

spectra without the need for a separate NRB measurement. Figure 4 shows a schematic

diagram of the CNN architecture that SpecNet is based on.

Figure 4: SpecNet schematic diagram. This figure shows a schematic diagram for the CNN-

based architecture that the SpecNet model employs to solve the NRB removal problem.

This figure is adapted from Valensise et. al. (2020). [18]

The SpecNet model maps the input CARS spectra to the target Raman spectra using a series

of convolutional (CL) layers followed by fully-connected (FC) layers. The CL layers serve

the purpose of learning progressively higher-order features of the input data by applying

filters that select for the features that are relevant to the final retrieval. The FC layers then

take the output of the CL layers and reconstruct the predicted Raman spectral line shapes

from them. The CL layers additionally contribute to making the model translationally

equivariant, meaning that the model learns each CARS feature in a way that preserves

locality [19]. This is necessary to consider for spectral retrieval because the model should

be able to retrieve a spectral feature in a way that preserves its location regardless of

whether it has been shifted within the spectrum. Refer to Appendix C for a general

16

overview of neural networks and to Appendix D for specific details related to the

implementation of the SpecNet model.

Due to the high generalizability of CNNs, the SpecNet model can be trained on simulated

CARS spectra and then applied to experimental CARS spectra. The accuracy of the model,

however, is contingent on how well the training data represents the real data. For this

reason, the training dataset should be carefully designed to reflect the expected

experimental spectra. Should the SpecNet model be trained properly, it promises to

simplify the NRB removal process by making the requirement of an NRB measurement

passe.

2.1.4 Convolutional Autoencoder: VECTOR

Following the creation of SpecNet in 2020, a search for more capable deep-learning models

for NRB removal was commenced. Since convolution autoencoders (CAEs) are a natural

successor to CNNs for this type of problem, a CAE-based approach called VECTOR was

developed in 2022 [20]. A schematic depiction of the CAE architecture that VECTOR is

based on can be found in Figure 5.

Figure 5: VECTOR schematic diagram. This figure shows a schematic diagram of the

convolutional autoencoder architecture that the VECTOR model is based on. The model

consists of an encoder and decoder pair joined by a latent space bottleneck. This figure is

adapted from Wang et. al. (2022). [20]

17

At a basic level, autoencoders are comprised of two subnetworks: an encoder and a

decoder. The encoder is trained to reduce the dimensionality of the input data into a so-

called “latent space” representation that is presumed to be a superior encoding for the data,

similarly to principal component analysis (PCA). However, the encoder is more flexible

than PCA given that it is a non-linear transformation, whereas PCA is an orthogonal linear

transformation. Using a latent space with finite number of nodes whose outputs are

encoded by 32- or 64-bit binary values, our latent space can only represent a definite

number of states. The goal of the encoder is to optimize the use of these states to maximally

encode the features of the input CARS spectra that are relevant to the retrieval. The decoder

then learns to reconstruct the target Raman-like line shapes from the encoder’s latent space

representations of the input CARS spectra.

Convolutional autoencoders (CAEs) are simply autoencoders that employ convolutional

layers in the encoder and transposed convolutional layers in the decoder. Hence, everything

that was said about the convolutional layers for SpecNet also applies to VECTOR. There

are two primary characteristics of CAEs that will be relevant to the later testing: noise

reduction and overfitting. CAEs tend to reject noise since it does not resemble features that

are relevant to the retrieval, e.g. the resonant CARS line shapes, so the encoder learns to

suppress it. CAEs also tend to overfit to the training dataset, performing poorly on any data

that deviates from it. This is due to the over-tuning the encoder-decoder networks to

features specific to the training data. Take note of these two characteristics as they will be

important later. An in-depth summary of each VECTOR model used throughout this work

can be found in Appendix E.

18

2.2 CARS Simulation Methods

Only by directly comparing the retrieved and ground-truth spectra can we find the true

capabilities of each method. Thus, the ground-truth Raman equivalencies must be known

for the CARS spectra used during the analyses. It is difficult to obtain a reliable

experimental surrogate for the ground-truth Raman spectrum corresponding to a given

CARS spectrum, and any experimental dataset would necessarily be limited to only the

materials available in the lab. These limitations are undesirable for the purposes of training

the machine learning models, as we want the training dataset to be accurate and expose the

models to a broad range of input data for the best generalization. Consequently, a training

dataset consisting of pairs of idealized synthetic CARS and ground-truth Raman spectra

are used for the training of the machine learning models, and a similarly constructed

synthetic dataset is used for testing the NRB removal methods. These simulations allow

for precise control over each aspect of the dataset. This ensures that a broad range of inputs

are included in the training/testing datasets and that the results can be easily replicated by

others. The following section outlines the procedure for generating the simulated data used

herein.

2.2.1 Resonant Spectral Line Shapes

The resonant contribution to the third-order susceptibility is a complex-valued function

that can be calculated explicitly for a given system using time-dependent perturbation

theory [21]. For simplicity, the general solution for a system of damped harmonic

oscillators, each having the form of a complex Lorentzian similar to that given by Lotem

et. al. [3], will be used to simulate the resonant susceptibility in this work. The resonant

19

contribution to the third-order susceptibility is then given by the sum of these complex

Lorentzian peaks as follows:

 χ𝑅
(3)(ω) =∑

𝐴𝑖
Ω𝑖 −ω − 𝑗Γ𝑖

𝑛

𝑖=1

 (17)

Where Ai ∝ σiCi is the amplitude proportional to the cross-section (σ𝑖) and concentration

of scatterers (𝐶𝑖), Ω𝑖 is the central frequency, and Γ𝑖 is the half-width of the 𝑖-th peak for a

spectrum with 𝑛 peaks. Figure 6 demonstrates an example of the real and imaginary parts

of Eq. (17).

The parameters in the equation above are stochastically generated for each spectrum in the

training and testing datasets according to the following conditions:

𝐴𝑖 = U(0.01,  1)

Ω𝑖 = U(00,  1900)

Γ𝑖 = U(,   0)

n = U(1,  15) ∈ ℤ

(18)

Where 𝑈(𝑎, 𝑏) indicates that the variable is being chosen at random according to a uniform

probability distribution between 𝑎 (min) and 𝑏 (max).

When calculating the Raman spectrum from χ𝑅
(3)

 above, we are inclined to adopt a

normalization scheme such that: 0 < Im(χ𝑅) ≤ 1. By doing this we also ensure that the

CARS spectrum is restricted to this range. Adopting such normalization schemes helps to

avoid covariate shifts in the data that can negatively impact the performance of machine

learning models [22].

20

Simulations of the spectra for real materials can be obtained by setting the peak amplitudes,

centers, and half-widths according to the known values established by previous studies of

those materials. These can be used for testing how well the methods work on idealized data

for given materials, and they can be used to augment the training dataset for stronger results

on experimental spectral retrieval of those materials.

Figure 6: Resonant susceptibility example. This figure demonstrates the real and imaginary

parts of the resonant susceptibility calculated with Eq. (17), with the imaginary part

corresponding to Raman spectral line shapes and the real part contributing to the dispersive

lines shapes in CARS spectra.

2.2.2 Non-resonant Spectral Line Shapes

The spectral profile of the NRB is system dependent and thus varies between measurements

taken from different systems. This makes it difficult to simulate an NRB profile that is

generally applicable to common experimental data. For consistency with previous

literature on NRB removal [17], [18], [20], we adopt a simple NRB profile consisting of

21

the product between two oppositely facing sigmoidal functions. This idealized dual-

sigmoid NRB can be described by the following equation:

 χ𝑁𝑅
(3)(𝜔) = σ(𝜔, 𝑥1, 𝑤1) σ(𝜔, 𝑥2, −𝑤2) (19)

Where σ is a sigmoid function given by,

 σ(𝑥, 𝑥0, 𝑤) =
1

1 + 𝑒−(𝑥−𝑥0)/𝑤
 (20)

Where 𝑥0 represents the center position and 𝑤 controls the effective width of the sigmoid.

The NRB parameters are then stochastically generated such that:

𝑤1, 𝑤2 = U(0.04 ω𝑚𝑎𝑥, 0.16 ω𝑚𝑎𝑥)

𝑥1 = 𝒩(0. ω𝑚𝑎𝑥, 0. ω𝑚𝑎𝑥)

𝑥2 = 𝒩(0.7 ω𝑚𝑎𝑥, 0. ω𝑚𝑎𝑥)

(21)

Where 𝒩(μ, σ) represents a normal distribution with a mean μ and a standard deviation σ.

Figure 7: Non-resonant susceptibility examples. This figure shows several examples of the

randomly generated non-resonant susceptibilities from the oppositely facing dual-sigmoid

function described by Eq. (19).

22

2.2.3 CARS, NRB, and Raman Simulations

The total third-order susceptibility is calculated according to the above as follows:

 χ(3)(𝜔) = α 
χ𝑅
(3)(𝜔)

𝑚𝑎𝑥 (|χ𝑅
(3)(𝜔)|)

+ β 
χ𝑁𝑅
(3)(𝜔)

𝑚𝑎𝑥 (|χ𝑁𝑅
(3)(𝜔)|)

 (22)

Where each term in this equation is normalized, then the first term is multiplied by a factor

α that controls the attenuation of the resonant component (i.e. the effective analyte

concentration), and the second term is multiplied by the factor β representing the intensity

of the non-resonant component. These factors are stochastically generated as follows,

 α, β = 𝑈(0.1, 1) (23)

The intensity of the CARS signal is then given by,

 𝐼CARS(𝜔) =
1

|χ(3)(𝜔)|

2
 (24)

The intensity of the NRB signal is given by,

 𝐼NRB(𝜔) =
1

|χ𝑁𝑅

(3)(𝜔)|
2

 (25)

And the ground-truth Raman equivalency for the above is given by,

 𝐼Raman(𝜔) = Im(χ𝑅
(3)(𝜔)) (26)

Where χ𝑅
(3)(𝜔) in Eq. (24)–(26) is given by Eq. (22). Lastly, all spectra were simulated

using 1000 data points from 0 cm−1 to 2000 cm−1 to cover the entire fingerprint region.

Figure 8 demonstrates representative examples of the types of randomly generated spectra

that are obtained from the equations described above.

23

Figure 8: Randomly generated CARS, NRB, and Raman spectra. This figure shows 5

randomly generated spectra that are representative of the types of spectra that can be

obtained using the methods described in Eq. (17)–(26).

2.2.4 Hyperspectral Image Simulations

To test the retrieval capabilities of the methods on hyperspectral images, the ground-truth

hyperspectral Raman image must be known for comparison. We cannot obtain ground-

truth references experimentally, so to accomplish this we generated synthetic hyperspectral

images. To do this we can define the two-dimensional spatial distribution of each material

in the form of a normalized raster image where each pixel intensity corresponds to the

normalized material concentration at that location. Then the hyperspectral image is formed

24

by simulating the CARS and Raman spectra at each pixel according to the concentration

encoded in the pixel intensity. This is described in detail below.

Consider that we want to simulate a hyperspectral image of a sample region containing M

chemical species with various spatial distributions by generating a spectrum of length N

for each pixel in an X × Y raster scan. To accomplish this, use the following procedure.

1. Create M normalized grayscale raster images to be used as intensity maps

representing the effective spatial distributions of the M materials. These images can

be represented by matrices 𝐀𝑚 ∈ (0, 1)𝑋×𝑌 for each 𝑚 ∈ ⟦1,𝑀⟧.

2. Simulate the resonant susceptibility χ𝑅,𝑚(ω) ∈ ℂ𝑁 for each 𝑚 ∈ ⟦1,𝑀⟧, according

to Eq. (17). These will be used to obtain the ground-truth Raman line shapes for

each of the M chemical species.

3. Obtain the hyperspectral image containing the resonant susceptibility spectrum for

each pixel by creating a data cube 𝐑 ∈ ℂX×Y×N where 𝐑𝑥𝑦 = ∑ 𝐀𝑚,𝑥𝑦 𝜒𝑅,𝑚(𝜔)
𝑀
𝑚=1 .

Here we are multiplying by the coefficient representing the concentration of each

material and then taking the sum of the susceptibilities for each material to represent

the chemical mixing, for each pixel.

4. Simulate the non-resonant susceptibility χ𝑁𝑅(ω) ∈ ℝ𝑁 according to Eq. (19). This

will be used to obtain the NRB image 𝐍𝐑 ∈ ℝ𝑋×𝑌×𝑁 where 𝐍𝐑𝑥𝑦 = χ𝑁𝑅(ω).

5. Simulate the hyperspectral ground-truth Raman image, where 𝐈Raman = Im(𝐑).

6. Simulate the hyperspectral NRB image, where 𝐈𝑁𝑅𝐵 =
1

2
|𝐍𝐑|2.

7. Simulate the hyperspectral CARS image, where 𝐈𝐶𝐴𝑅𝑆 =
1

2
|𝐑 + 𝐍𝐑|2.

Note: the operations in steps 5-7 are applied elementwise.

25

2.3 Evaluation Methods

The mean absolute error (MAE), also referred to as the “𝐿1 norm”, between the retrieved

and ground-truth data is used to assess the accuracy of each method’s spectral retrieval

capabilities, where a lower MAE corresponds to a higher accuracy. The MAE is defined as

follows:

 MAE =
1

𝑁
∑|𝐼retr,𝑖 − 𝐼Raman,𝑖|

𝑁

𝑖=1

 (27)

Where 𝐼retr is the set of retrieved spectra, 𝐼Raman is the set of ground-truth spectra, and 𝑁

is the number of spectra over which the MAE is being calculated. Although a normalized

accuracy metric like percent difference may be more interpretable than the MAE because

it scales with the expected value, it is ill-behaved for values near zero. Since we expect to

encounter values near zero in between the peaks in our spectra and for spectra with low

intensities, the percentage difference should be avoided. Simply using the MAE is thus the

most straightforward approach. Although we will not be able to ascertain a normalized

percentage accuracy, we can still calculate the MAE for each method using the same data

to compare their accuracies.

To evaluate the NRB removal methods on the simulated hyperspectral images, the retrieval

methods were applied to the simulated hyperspectral CARS images to obtain the

“retrieved” hyperspectral Raman images. These were compared to the ground-truth Raman

images using the structural similarity index measure (SSIM), the preeminent metric in

image processing for quantifying the similarity between two images [23]. The SSIM is

defined as follows:

26

 SSIM(𝒙, 𝒚) =
(μ𝑥μ𝑦 + 𝑐1)(σ𝑥𝑦 + 𝑐2)

(μ𝑥2 + μ𝑦2 + 𝑐1)(σ𝑥2 + σ𝑦2 + 𝑐2)
 (28)

Where μ𝑥 and μ𝑦 are the pixel means and σ𝑥
2 and σ𝑦

2 are the pixel variances of images 𝒙

and 𝒚, respectively. σ𝑥𝑦 is the covariance of images 𝒙 and 𝒚. 𝑐1 = 0.0001 and 𝑐2 = 0.0009

are constants that ensure division stability when the denominator is near 0. SSIM exhibits

properties of boundedness (𝑆𝑆𝐼𝑀 ≤ 1), and unique maximum (𝑆𝑆𝐼𝑀(𝒙, 𝒚) = 1 if and

only if 𝒙 = 𝒚), which are essential when quantitatively comparing two images.

2.4 Model Training Methods

Machine learning models must undergo a “training” process to be useful at a given task.

This training process dictates how well the final model will perform, with the objective of

finding the optimal performance for the given architecture. The models begin inept since

they are initialized with random parameters, but the model parameters are gradually

optimized for accomplishing the task through training. This process is where the “learning”

originates in “machine learning”. SpecNet and both VECTOR models were trained using

an on-the-fly stochastically generated dataset of 25,600 spectra without additive noise for

each of the 10 training epochs, an epoch being one iterative step through the training data.

The default Adam optimizer [24] provided within the TensorFlow framework (version

2.13.0) was used during training with the mean squared error (MSE) as a loss function.

Appendix F contains the Python code I adopted for training each model using the

tf.keras.Model.fit method available in TensorFlow. This simplistic training regime was

chosen with the intention that it could be easily adopted by those not experienced in

machine learning to quickly train models on low-end hardware, such as a personal

computer, for their personalized needs. Better results may be achievable by experienced

27

machine learning practitioners who implement customized training procedures on high-

end purpose-built hardware. However, this simple training regime is sufficient to obtain

acceptable results for the sake of evaluating the methods.

Additive noise was omitted from the training dataset since it slows down learning

convergence and the convolutional layers in both architectures have internal noise

reduction properties. This occurs because the convolution kernels that are learned by the

convolutional layers during training filter the data at each layer according to the spectral

features relevant to the retrieval. Noise does not resemble these features and so it is

progressively filtered out by the convolutional layers. This will become apparent in Section

3.4 when we test the methods on noisy input data. Note that noise removal is not of

principal concern in this thesis but is simply a property of the models. There are many

dedicated noise removal techniques that are far more capable than the methods considered

in this thesis and that should be applied to input data prior to NRB removal.

28

3 Results and Discussion

This section presents the results obtained in evaluating the spectral retrieval capabilities of

the methods outlined in the previous section. These results include: the machine learning

training results, the overall spectral retrieval accuracy, the hyperspectral image retrieval

performance, adaptability to various noise and NRB conditions, and applicability to

quantitative analysis. A brief discussion is provided for each of the results to add context

and explain the significance.

3.1 Model Training Results

Figure 9 demonstrates the evolution of the mean absolute error (MAE) during training for

SpecNet, VECTOR-8, and VECTOR-16. Evidently, each of the models converge within

10 epochs with a training MAE of ~0.015 for SpecNet and ~0.008 for the VECTOR

models. The MAE is reduced to < 0.1 for each model within the first epoch, showing a

marked improvement over the randomly initialized models created prior to training.

Although SpecNet outperforms both VECTOR models during the first epoch due to its

relative simplicity, the other two models quickly overtake SpecNet, as their complexity

leads to greater generalization capabilities.

29

Figure 9: Training histories for three machine learning models. This figure shows the MAE

progression during training for SpecNet, VECTOR-8, and VECTOR-16. Each model was

trained with an on-the-fly stochastically generated dataset of 25,600 spectra for 10 epochs

with a batch size of 256. The Adam optimizer was used with a MSE loss function.

Although the authors of the SpecNet model did not explicitly show their training curves,

the results obtained later in this section are consistent with those presented in their article

[18]. This demonstrates that the SpecNet model is reproducible, and that similar

performance can be achieved under different training regimes. The authors of the VECTOR

model did show their training results, and our results presented here are consistent with

their findings to within the first 10 training epochs. However, the VECTOR authors trained

their model using 100 epochs with variable learning rates and an optimizer based on

traditional stochastic gradient descent. Although stochastic gradient descent converges

slower than the Adam optimizer, it often produces a slightly superior model [20].

Consequently, their training procedure would take an order of magnitude longer than that

used here and result in an MAE improvement of ~0.005 on average, which corresponds

30

to < 1% of the maximum peak amplitude. This will make a significant difference for

exceedingly small peaks in an artificially clean spectra, but will fall below the noise in

experimental data in most cases anyway. Thus, the much longer training time is unlikely

worth the miniscule enhancement in performance.

3.2 Spectral Retrieval Comparison

A dataset of 10,000 random spectra was generated to test the efficacy of the NRB removal

methods. Figure 10 presents the calculated MAE between the ground-truth Raman spectra

and the retrieved spectra for each of the methods when applied to the test dataset. The

methods can be ranked from worst to best performance as: KK, LeDHT, SpecNet,

VECTOR-8, and VECTOR-16. We can see that there is a gradual reduction in the MAE as

we move towards more complex models, with each of the deep-learning-based models

outperforming the DHT-based methods. This demonstrates that machine learning is a

powerful tool for NRB removal and has the generalization capabilities to be competitive

with the DHT-based methods.

Figure 10: Comparison of MAE for NRB removal methods. This figure shows the MAE

calculated between the ground-truth and retrieved spectra for each NRB removal method

after being applied to a test dataset of 10,000 stochastically generated spectra. A lower

MAE represents a better average accuracy.

31

The SpecNet and VECTOR models perform better than the DHT-based methods because

they are optimized for the given retrieval, whereas the DHT and error-corrections both use

computations that are prone to errors. There must then be a subset of spectra in the test

dataset for which the KK and LeDHT methods perform suboptimally, such as those with

flat NRB shapes. Assuming the machine learning models were trained on a dataset that

sufficiently sampled the space of CARS spectra, the machine learning models must have

been trained on the spectra for which the DHT-based methods perform poorly. The

SpecNet and VECTOR models consequently have an advantage in that they do not rely on

a predefined function to find the retrieved spectrum, and thus tend toward a more optimal

solution. This demonstrates the power of feedforward neural networks as universal

approximators [25], [26].

Although these MAE values can indicate how well the methods are retrieving the ground-

truth spectra in general, they do not provide an indication of the circumstances under which

each method performs best. As discussed in Section 2.3, the MAE also is not normalized

by the spectral intensities. It simply shows the average absolute difference between the

ground-truth and retrieved values. Consequently, it lacks the context that a percentage

accuracy does. The MAE varies by about a factor of 2 between the best and worst of the

methods, namely VECTOR-16 and KK, but without the context of how the MAE values

relate to the spectral intensities it is hard to assess how these values pertain the performance

in a meaningful sense. For example, this factor of 2 improvement in MAE equally applies

to going from a percent difference of 80% to 40% or a percent difference of 2% to 1%. The

latter of the two is clearly less significant in terms of the effect on the actual retrieval, as

32

anything below 10% may be considered sufficient. Further analyses will refine the testing

criteria to probe the performance of each method under more controlled conditions.

3.3 Hyperspectral Image Retrieval

The previous section tested how well the methods performed on spectral retrieval in

general. However, it is not obvious that this translates to the qualitative enhancement of

the hyperspectral CARS images. To test their hyperspectral retrieval capabilities, we apply

each method to simulated hyperspectral CARS images obtained as described in Section

2.2.4 and use the SSIM defined by Eq. (28) to see how well they retrieve the corresponding

ground-truth hyperspectral Raman images.

Figure 11 shows the simulated ground-truth Raman and CARS spectra that were used to

simulate the example hyperspectral image. The image chosen for the spatial intensity map

of the simulated material is a microscopic fluorescence image of a tubulin-based

microtubule network obtained from [27]. This image was chosen because it provides both

fine and course details and a significant amount of contrast over the extent of the image. In

particular, the image has a dark background that can be used to gauge how the chemical

contrast compares to the NRB. The image resolution was scaled to 256 pixels on each size

for a total of 65,536 square pixels, each representing a spectrum with 1000 points. In the

figure below we see that the Raman image perfectly preserves the contrast of the original

image (by definition), whereas the CARS image has decreased the contrast and effectively

erased certain features of the image because of the NRB.

33

Figure 11: Simulated hyperspectral image example. This figure shows the simulated

ground-truth Raman (top) and CARS (bottom) spectra used to simulate the material

spectrum in the hyperspectral images. The inset images show the on-resonance frames

indicated by the dashed blue line through the simulated Raman (top) and CARS (bottom)

spectra. The inset images are adapted from a fluorescence image of a tubulin-based

microtubule network retrieved from [27]. Note that the spectrum depicted in the figure does

not represent the actual spectrum of tubulin.

34

Figure 12: Average and on-resonance SSIM for retrieved and ground-truth images. The

SSIM for the hyperspectral CARS image is included for comparison. The average SSIM

values are calculated by taking the arithmetic mean of the SSIM between each

corresponding image in the hyperspectral stack. The on-resonance SSIM is calculated just

for one frame corresponding resonance peak from the spectrum in Figure 11.

Figure 12 above shows the average and on-resonance SSIM calculations between the

retrieved and ground-truth hyperspectral images for each NRB removal method. The SSIM

for the raw CARS image is also included in the evaluation. The CARS images have an

SSIM of 0.07 on average and an SSIM of 0.48 on resonance. These are exceptionally low

SSIM values that indicate that CARS images poorly represent the true chemical

information and thus exemplify the need for spectral retrieval for reliable chemical analysis

when implementing CARS microscopy.

We can see that all retrieval methods provide an improvement over the original CARS

images, as indicated by the larger SSIM values. Peculiarly, the on-resonance SSIM for each

retrieval method is 1, meaning that the retrieved images perfectly match the ground-truth

images. The average SSIM is lower than 1 in all cases. This means that the retrieval

methods perform better than average at or near the resonance peaks. This is particularly

pronounced for the KK method, which has a much lower average SSIM than the other

35

methods, but still retrieves the on-resonance image perfectly. To explore this, the SSIM is

plotted for each frame of the retrieved hyperspectral images (see Figure 13).

In Figure 13, we see a localized SSIM enhancement around the resonance peaks for the

KK and LeDHT methods. This verifies that these methods perform better at or near the

peak locations. Also, the KK and LeDHT methods were applied without padding or error-

correction to elucidate their relative performance without external influence. The KK

method thus performs very poorly at the endpoints of the data, as indicated by the SSIM

dropping to zero at the ends of the plots. We can see that the LeDHT method successfully

achieves its intended goal of fixing the endpoint errors associated with the KK method by

increasing the SSIM at the endpoints [17].

SpecNet and the VECTOR models do not demonstrate the same localized performance

enhancement near the resonance peaks as the KK and LeDHT methods do. Instead,

SpecNet has random drops in performance that tend to be located towards the central region

of the spectrum, which decreases the average performance. It is tempting to attribute this

behaviour to the dropout layer, which randomly “drops out” certain nodes by setting their

values to zero. However, this cannot be explained by the dropout layer in SpecNet (refer

to Appendix D for SpecNet details) because the dropout layer is only applied during

training according to the TensorFlow documentation [28]. Tracking down the source of

this behaviour is thus nontrivial. Conversely, the VECTOR models perform well in the

central region of the spectrum but have a decrease in performance towards the edges of the

spectrum, reminiscent of the DHT-based methods. The performance improves when the

depth of the model in increased, as evidenced by the increase in average SSIM from

VECTOR-8 to VECTOR-16.

36

To summarize, the KK method does not appear to be the optimal solution under any

circumstances. LeDHT and VECTOR-8 share the same average SSIM and have a similar

SSIM spectrum, but LeDHT is preferable since the VECTOR-8 model produces an

undesirable frame-to-frame variation that LeDHT does not. SpecNet and VECTOR-16

share an SSIM that is larger than the other models, making them preferable to the others.

Although SpecNet has the same average SSIM as VECTOR-16, we see that the minimum

SSIM of former is much lower than that of the latter, indicating that the worst-case retrieval

for SpecNet is much worse than the worst-case retrieval for VECTOR-16. Since SpecNet

exhibits less stability due to random dropouts in its SSIM, the VECTOR-16 model is the

preferable for hyperspectral image retrieval according to these tests.

37

Figure 13: Retrieved SSIM for each frame in hyperspectral images. This figure shows the

SSIM calculated for each frame in the pair of ground-truth and retrieved hyperspectral

images. Blue dashed lines represent the resonance peaks in Figure 11. Note: the KK and

LeDHT method were calculated without padding the input or error-correction calculations.

38

Table 1: Hyperspectral image retrieval times for each retrieval method.

Method Retrieval Time (seconds)

KK 8

LeDHT 10

SpecNet 15

VECTOR-8 31

VECTOR-16 319

Previously, only the retrieval accuracy has been considered in the comparison between the

spectral retrieval methods. However, the required compute time, versatility, and user-

friendliness are also important to consider during the cost-benefit analysis. Table 1 shows

the retrieval time required for the hyperspectral image from Figure 11. This is important

for high-throughput and on-the-fly retrieval applications. Although the KK method is less

accurate on average than every other method, it is the fastest method, taking 8 seconds per

hyperspectral image or 0.1 milliseconds per pixel. Despite the VECTOR-16 model being

the most accurate on average, it is significantly slower than the others, taking 319 seconds

per hyperspectral image or 4.9 milliseconds per pixel. Moreover, the KK method can be

used for spectra of any length, whereas LeDHT, SpecNet, and the VECTOR models all

have fixed input sizes and need to be modified and retrained for each additional input

spectrum length. This reduces the versatility and user-friendliness of the machine learning

methods and increases the pre-use cost of implementing the machine learning methods. For

this reason, the KK method is the most practical method despite its lower accuracy.

The times in Table 1 were achieved using a PC with 16 GB of RAM, an AMD Ryzen 5

3600 CPU, and an NVIDIA GeForce GTX 1660 Super GPU.

39

3.4 Impact of Noise and NRB Levels

To assess the robustness of each spectral retrieval method for experimental analysis, it is

important to consider how each of the methods would perform when applied to input

spectra with various signal-to-noise and signal-to-background ratios. For that purpose, this

section will evaluate the spectral retrieval capabilities of each method when applied to input

spectra with various noise levels and χ𝑅/χ𝑁𝑅 ratios. For the following comparisons, a

spectrum with a single peak located at the center is used for the retrievals. Gaussian noise

is added to the CARS and NRB spectra with a mean of zero and a standard deviation,

referred to as the “noise level”, that determines the amount of noise. Gaussian noise is

chosen for simplicity and because it is commonly encountered in experimental data. No

noise reduction techniques are applied to the input spectra to assess the true capabilities of

each.

Figure 14 shows a plot of the input CARS spectrum for each combination of the following

noise and NRB parameters: the rows represent the χ𝑅/χ𝑁𝑅 ratios that are varied between

100 to 0.01 by powers of 10 from top to bottom, and the columns represent the noise levels

that are varied between 0.001 and 0.1 by powers of 10 from left to right. The top row

represents CARS spectra for which the NRB has negligible effect on the peak shape. Each

row moving down then increases the NRB in proportion to the resonant signal, making

retrieval more necessary for Raman-like peak extraction. The bottom row represents

spectra for which the resonance peak is significantly obscured by the NRB. Each column

from left to right has an increasing noise level, representing a decreasing signal-to-noise

ratio. This becomes significant for the CARS spectra in the bottom-right panel and the two

adjacent panels for which the noise level is well above or near the peak intensity. Retrieval

40

is consequently expected to fail in these cases for each method without substantial noise

reduction since the information about the resonance peak is completely buried.

Figure 14: CARS test spectra with various noise and NRB parameters. The spectra are

designed such that there is a broad symmetric NRB with a single centrally located

resonance peak. The χ𝑅/χ𝑁𝑅 ratio is varied between 0.01 to 100 by powers of 10. The

spectra were then normalized prior to adding Gaussian noise with a mean of zero and a

standard deviation of 0.001, 0.01, and 0.1. Note: in the bottom-right spectrum and its two

adjacent spectra, the peaks are of the same order as the noise level. It is thus not expected

to retrieve these peaks without noise reduction techniques.

The following figures demonstrate the results of applying each spectral retrieval method to

the spectra in Figure 14.

41

Figure 15: KK retrieval results for various noise and NRB parameters. This figure shows

the retrieved spectra from applying the KK method to the CARS test spectra in Figure 14.

Spectra retrieved from the The MAE normalized by the resonant peak intensity is shown

in the top-left corner of each plot. Each dashed black line represents the ground-truth

Raman-like spectrum to be retrieved.

42

Figure 16: LeDHT retrieval results for various noise and NRB parameters. This figure

shows the retrieved spectra from applying the LeDHT method to the CARS test spectra in

Figure 14. The MAE normalized by the resonant peak intensity is shown in the top-left

corner of each plot. Each dashed black line represents the ground-truth Raman-like

spectrum to be retrieved.

43

Figure 17: SpecNet retrieval results for various noise and NRB parameters. This figure

shows the retrieved spectra from applying the SpecNet model to the CARS test spectra in

Figure 14. The MAE normalized by the resonant peak intensity is shown in the top-left

corner of each plot. Each dashed black line represents the ground-truth Raman-like

spectrum to be retrieved.

44

Figure 18: VECTOR-8 retrieval results for various noise and NRB parameters. This figure

shows the retrieved spectra from applying the VECTOR-8 model to the CARS test spectra

in Figure 14. The MAE normalized by the resonant peak intensity is shown in the top-left

corner of each plot. Each dashed black line represents the ground-truth Raman-like

spectrum to be retrieved.

45

Figure 19: VECTOR-16 retrieval results for various noise and NRB parameters. This figure

shows the retrieved spectra from applying the VECTOR-16 model to the CARS test spectra

in Figure 14. The MAE normalized by the resonant peak intensity is shown in the top-left

corner of each plot. Each dashed black line represents the ground-truth Raman-like

spectrum to be retrieved.

46

3.4.1 KK Method: Noise and NRB

Since the discrete Hilbert transform (DHT) is a variance-preserving transformation, i.e. the

variance of the DHT of a signal is the same as the variance of the signal itself [17], we

expect noise to have a significant impact on the KK method. Typically, noise reduction

techniques such as smoothing filters or singular value decomposition (SVD) are applied to

the input spectra prior to using the KK method [29]. However, for this test we want to see

the effect of the noise on the retrieval capabilities, so we do not perform any noise

reduction.

Figure 15 shows the results of the KK method when applied to the spectra in Figure 14.

We can see that the noise in the retrieved spectra increases along a given row from left to

right, relating to the increasing noise level of the input spectra. This is consistent with our

expectations given that the DHT preserves variance. Interestingly, the KK method also

performs poorly when χ𝑅/χ𝑁𝑅 = 100 since the noise is amplified near the peak, degrading

the reliability of the spectral retrieval near the resonance. This noise amplification is a

consequence of dividing the CARS spectrum by a small NRB when the spectra are

normalized to the unit interval, which effectively amplifies the noise. This may be

alleviated by adopting a different standardized range for representing the data where a

“small” NRB is still greater than 1. Thus, the CARS intensities are exceptionally large.

In summary, the KK method never performs well on data with a noise level of 0.1, and

only performs well on data with a noise level of 0.01 if the signal-to-background ratio

satisfies 0.1 < χ𝑅/χ𝑁𝑅 < 1. The KK method is viable for data with a noise level of 0.001

as long as χ𝑅/χ𝑁𝑅 ≤ 10.

47

3.4.2 LeDHT Method: Noise and NRB

Figure 16 shows the spectra retrieved from the LeDHT method when applied to the input

spectra in Figure 14. As expected, the LeDHT method yields comparable results to that of

the KK method. This is expected since the LeDHT method is identical to the KK method

apart from the DHT calculation. Much of the discussion in the previous subsection about

the KK method is applicable here as well, namely, the LeDHT method never performs well

on data with a noise level of 0.1, and only performs well on data with a noise level of 0.01

if the signal-to-background ratio satisfies 0.1 < χ𝑅/χ𝑁𝑅 < 1. The LeDHT method is also

viable for data with a noise level of 0.001 as long as χ𝑅/χ𝑁𝑅 ≤ 10.

3.4.3 SpecNet Model: Noise and NRB

Figure 17 shows the spectra retrieved from the SpecNet model when applied to the input

spectra in Figure 14. It is immediately noticeable that the SpecNet model does not have the

same issue with the high signal-to-background (χ𝑅/χ𝑁𝑅 = 100) spectra that the KK and

LeDHT methods did. This is predominantly because the SpecNet model does not normalize

the CARS signal by the NRB and was sufficiently trained to retrieve spectra with small

NRBs. The SpecNet model does display the anomalous signal dropouts seen in the previous

section, which points to a persistent error in the model architecture. Despite this, the

SpecNet model does an exceptional job of retrieving the Raman-like peaks, so detecting

the errors and interpolating between them may be an effective strategy to alleviate the issue.

We can see that that the SpecNet model also retrieves a spectrum with noise that increases

from left to right. However, the SpecNet model does a much better job at suppressing the

noise that the DHT-based methods owing to its convolutional layers. The SpecNet model

most notably fails for spectra where χ𝑅/χ𝑁𝑅 = 0.01, representing an exceedingly small

48

resonance peak compared to the NRB. This is indicated by the failure of SpecNet retrieve

the bottom-left peak. The SpecNet model also fails for the three peaks along the bottom-

right corner with low signal-to-noise ratios, as expected. The SpecNet model does perform

well in every other circumstance.

3.4.4 VECTOR Models: Noise and NRB

Figure 18 and Figure 19 shows the spectra retrieved form the VECTOR-8 and VECTOR-

16 models, respectively, when they were each applied to the input spectra in Figure 14.

Similarly to the SpecNet model, both VECTOR models solve the problem that the KK and

LeDHT methods had with the χ𝑅/χ𝑁𝑅 = 100 spectra. Both VECTOR models also suppress

the noise, however, VECTOR-16 does so better than VECTOR-8. The VECTOR-8 model

demonstrates a sort of oscillatory artifact localized near the peak for noise levels of 0.001

and 0.01 when χ𝑅/χ𝑁𝑅 = 0.1, whereas VECTOR-16 does not. This type of behaviour is

undesirable for spectral retrieval and thus gives VECTOR-16 the edge, as it performs well

for all spectra except the three in the bottom right corner, as expected.

49

3.5 Quantitative Analysis

In experimental scenarios, we expect to encounter analyte concentrations that span several

orders of magnitude. Since the resonant susceptibility scales linearly with analyte

concentration, we can represent chemical concentrations of 100%, 10%, 1%, and 0.1% in

our spectra by multiplying our resonant susceptibility by the factors 1.0, 0.1, 0.01, and

0.001, respectively. Since the NRB is in principle agnostic to the chemical concentration,

we simulate the same generic NRB for all cases. A pure chemical sample represents an

effective concentration of 100%, but even then the NRB is often substantial due to the

relatively strong non-resonant four-wave mixing . So, we assume χ𝑅/χ𝑁𝑅 ≈ 1 for each of

the pure samples. For this test we will consider 5 simulated materials, each having a unique

spectrum representing a different level of complexity, as shown in Figure 20. For the

following quantitative analyses, 10 concentrations are considered for each material. Each

concentration is given by a factor 10𝑥, where 𝑥 is a set of 10 equally spaced values in the

range [− , 0]. Figure 21 shows the ground-truth Raman spectra for the materials at each

concentration. The NRB removal methods are thus expected to retrieve each of these

spectra during the analyses.

50

Figure 20: CARS spectra of simulated materials for quantitative analysis. The materials

increase in complexity, with material 1 being the simplest and material 5 being the most

complex. The complexity is qualified by the number and spacing of the peaks; with few

distinct peaks being more simple and many convoluted peaks being more complex.

51

Figure 21: Ground-truth Raman-like spectra to be retrieved for quantitative analysis. This

figure demonstrates the large variation in the ground-truth Raman intensities for the

concentrations considered for quantitative analysis. The zoomed inset shows the lowest

concentrations for the leftmost peak of material 2, which are not easily seen in the unscaled

plots.

There are two ways in which one can determine concentration from Raman spectra for

quantitative analysis: peak height or peak area. Using the peak height technique, the

concentration is determined by locating a representative peak and determining its

maximum intensity. Using the peak area technique, the concentration is determined by

locating a representative peak and integrating over the extent of the peak to find its area.

The peak area technique is more difficult to implement because it requires a reliable method

52

for estimating the extent of the peaks. For spectra with many convoluted peaks, this

requires deconvoluting the spectra using a curve fitting optimization algorithm to find the

individual peaks. These algorithms typically require special care for each spectrum to

retrieve accurate results, and are thus difficult to implement in an automated fashion. For

simplicity, the concentrations in the following analyses were found using the peak height

technique by basing the concentration on the height of the largest peak. This requires only

a peak-finding algorithm, which is reliable and proves to be highly accurate.

Figure 22: KK method quantitative analysis. This figure shows the concentration retrieved

from the KK method (predicted concentration) versus the ground-truth concentration (true

concentration) defined by the Raman spectra corresponding to the input CARS and NRB

spectra. The black dashed line shows the perfect correlation.

53

3.5.1 KK Method: Quantitative Analysis

Figure 22 shows the results of the quantitative analysis using the KK method. We can see

that the retrieved concentration is perfectly correlated to the ground-truth concentration for

each material. However, the retrieved concentrations for materials 4 and 5 consistently

underestimate the concentration. A likely explanation for this consistent error is that during

phase error correction step the ASL baseline detrending algorithm uses a suboptimal

smoothness parameter, resulting in the retrieved baseline fitting too closely to the peak,

which subsequently removes a portion of the peak in the phase spectrum. This error then

propagates through the retrieval. It is thus important to ensure that the optimal parameters

are found when implementing the ALS baseline detrending algorithm for baseline removal.

Overall, the KK method demonstrates that it can be used to retrieve a consistent

concentration over a broad range of concentrations as evidenced by the linear correlation

between the predicted and true concentrations. This means that a concentration calibration

curve can be created to account for the error mentioned above for each given material for

consistent and comparable quantitative analysis.

54

Figure 23: LeDHT method quantitative analysis. This figure shows the concentration

retrieved from the LeDHT method (predicted concentration) versus the ground-truth

concentration (true concentration) defined by the Raman spectra corresponding to the input

CARS and NRB spectra. The black dashed line shows the perfect correlation.

3.5.2 LeDHT Method: Quantitative Analysis

Figure 23 shows the results for the quantitative analysis performed with the LeDHT

method. The retrieved concentrations correlate to the true concentrations well. However,

material 1 seems to show a consistent error that is much greater than material 4 or 5 in this

case. This is a reflection of how the retrieved phase is calculated differently for the LeDHT

method than the KK method, and so the consequent phase error correction and retrieval

will yield slightly different results. Overall, this method demonstrates that it can predict

the concentration with a high degree of consistency over a broad range of concentrations

similarly to the KK method.

55

Figure 24: SpecNet quantitative analysis. This figure shows the predicted concentration

retrieved from the SpecNet model versus the true concentration defined by the Raman

spectra corresponding to the input CARS spectra. The black dashed line shows the perfect

correlation.

3.5.3 SpecNet Model: Quantitative Analysis

Figure 24 shows the results of applying the SpecNet model to quantitative analysis. It is

shown that the SpecNet model does not produce a strong linear correlation for a substantial

portion of the testing range towards lower concentrations. Although there is a positive

linear correlation for each material for concentrations from 0.1 to 1.0, the SpecNet model

does not retrieve the correct concentrations below 0.1. Instead, the SpecNet model breaks

down and retrieves a constant predicted concentration of ~0.07 for all concentrations below

0.1. This indicates that SpecNet is not a reliable method for quantitative analysis in general,

and the concentration range should be carefully considered when using this model.

56

Figure 25: VECTOR-8 quantitative analysis. This figure shows the concentration retrieved

from the VECTOR-8 model (predicted concentration) versus the ground-truth

concentration (true concentration) defined by the Raman spectra corresponding to the input

CARS spectra. The black dashed line shows the perfect correlation.

Figure 26: VECTOR-16 quantitative analysis. This figure shows the concentration

retrieved from the VECTOR-16 model (predicted concentration) versus the ground-truth

concentration (true concentration) defined by the Raman spectra corresponding to the input

CARS spectra. The black dashed line shows the perfect correlation.

57

3.5.4 VECTOR Models: Quantitative Analysis

Figure 25 and Figure 26 shows the results for VECTOR-8 and VECTOR-16, respectively,

when each were applied to the CARS spectra for quantitative analysis. Both models attain

a linear correlation between the predicted and true concentrations for concentrations

between 0.1 and 1.0. However, below 0.1 the predicted concentrations diverge from what

is expected and settle on a constant value between 0.02 and 0.03. This indicates that the

VECTOR models are slightly more generalized than the SpecNet model, but also limited

by the restricted training dataset. The VECTOR models are thus not a reliable method for

consistent comparable quantitative analysis unless trained on a highly tuned training

dataset.

The deficient performance of SpecNet and the VECTOR models for low concentrations

elucidates one of the major disadvantages of the machine learning approaches: they

perform well only on data similar to their training data. The result of this is that the training

data must be carefully designed to emulate every possible set of input data. Otherwise, the

trained model will fail to work as intended for input data with parameters omitted from the

training dataset. The training data used in this work considered effective concentrations

down to 0.1. So, the models are expected to fail when the true concentration falls below

that value. This can also be seen in Section 3.4 for each of the machine learning models,

where they consistently fail to retrieve spectra for χ𝑅/χ𝑁𝑅 = 0.01, as that puts the effective

concentration well below the minimum training concentration. This may be alleviated by

retraining the models on an augmented training dataset to include lower χ𝑅/χ𝑁𝑅 ratios, at

the expense of longer training times.

58

3.6 Experimental NRB Removal

The analyses of the NRB removal methods up to this point has been done using simulated

data. This is fine for testing how the methods work in principle. However, the utility of the

methods in practice can only be assessed by how they perform on experimental data. For

this reason, it is necessary to extend the previous analyses to include experimental data.

The CARS data used in a recent paper by Vernuccio et. al. [30] has been made available

under Creative Commons Attribution 4.0 [31]. This acts as a free and openly accessible

dataset which can be used for the experimental analysis.

Figure 27 shows a CARS spectrum of toluene included in the dataset [31]. This is a good

reference spectrum for a comparison between the retrieval capabilities of each method

since toluene has well-defined Raman peaks which we can compare to the retrieved spectra

[32].

Figure 27: CARS spectrum of toluene. This figure shows the CARS spectrum of toluene

with an inset image showing its skeletal structure. The data used here came from an open-

access CARS dataset available under the Creative Commons Attribution courtesy of

Vernuccio et. al. [31]. The NRB corresponding to the CARS spectrum was not provided

with the open-access dataset, so we applied a Savitzky-Golay filter to the CARS spectrum

to obtain an approximate NRB and Gaussian noise was added to simulate experimental

noise.

59

Figure 28: Retrieved spectra for toluene after NRB removal. This figure shows the spectra

retrieved using the NRB removal methods on the CARS spectrum shown in Figure 27. The

dashed black lines correspond to the known Raman resonances of toluene at wavenumbers

of 521, 623, 786, 1004, 1030, 1208, 1379, 1604, 2736, 2870, 2920, 2983, and 3056 cm−1,

obtained from previous Raman studies [32]. The methods show a mixed ability to retrieve

the peaks.

60

Figure 28 shows the retrieved spectra after applying each NRB removal method to the

CARS spectrum of toluene in Figure 27. Each method demonstrates that it can remove the

NRB, however they vary in their abilities to properly retrieve the Raman peaks. We can

see that each method properly retrieves the primary CH peaks at 2920 cm−1 and 3056 cm−1,

as well as the fingerprint peaks at 1004 cm−1, 1208 cm−1, and 1604 cm−1. However, the

methods are more varied in their ability to pick up the less pronounced peaks. The KK,

LeDHT, and VECTOR-8 methods all show a comparable ability to retrieve less

pronounced peak. The SpecNet and VECTOR-16 models, however, both missed several of

the peaks that the other methods properly retrieved. This may be evidence of training

deficits, overfitting, or a lack of generalizability of the models. However, the machine

learning models did suppress the noise from the experimental data very well, which may

mean that more training on an augmented training dataset could improve performance.

Furthermore, VECTOR-16 retrieving a very smooth spectrum that is missing several of the

peaks and the KK method retrieving a noisy spectrum that successfully retrieves those

peaks indicates that a model that preserves the variance of the input data is less likely to

erroneously dispose of relevant features of the data. This comes at the cost of noisier output

data but will not smooth out real features. In this sense, the analytical KK and LeDHT

methods are preferable to the machine learning models. It should be left to the end user

to decide if a retrieved feature is a meaningful representation of a Raman peak or simply

an artefact of noise or computational error, rather than delegating that decision to a machine

learning model.

It is peculiar that VECTOR-8 demonstrates superior performance over VECTOR-16 when

applied to the same experimental data. This indicates that there is a relationship between

61

model complexity and training resources in which a simpler model can reach superior

performance when trained on less data. Hence, end users of machine learning models for

NRB removal need to implement a model selection process that considers the performance

of each model on their actual data prior to settling with a given model for the final analysis.

The dataset provided by Vernuccio et. al. also included hyperspectral CARS images of a

liver sample which we can use to compare the contrast enhancement that each method

affords after retrieval. This contrast enhancement is important for image processing

procedures like segmentation, where regions of the image are separated into distinct

chemical species. To compare the contrast enhancements from each method, we apply the

retrieval methods on the hyperspectral CARS image to obtain the “retrieved” hyperspectral

images, then compare the subjective contrast for on- and off-resonance frames. The off-

resonance frames are taken from the so-called “silent” region (1800 cm−1 to 2800 cm−1)

where there are expected to be no vibrational resonances, and thus, no chemical contrast.

The on-resonance frames are taken from the CH region (2800 cm−1 to 3100 cm−1) where

every organic molecule has broad resonance peaks in the Raman spectrum, and thus, there

should be high chemical contrast between the background and chemical. The SSIM cannot

be used in this case because the ground-truth image is not known for comparison.

Figure 29 (below) shows a comparison between the on- and off-resonance frames of the

original hyperspectral CARS image and the retrieved images for each NRB removal

method. We can see that each spectral retrieval method increases the on-resonance contrast

while decreasing the off-resonance contrast. There are slight variations in the images that

were retrieved by each, but since there are no ground-truth images to compare to, it is

62

difficult to tell which most accurately represents the true distribution of the material being

imaged. Instead of comparing to a ground-truth image, we can assess the retrieved images

based on their on their root mean square (RMS) contrast, which is essentially the standard

deviation of pixel intensities. For the on-resonance frames, we can rank the retrieved

images from best to worst as: VECTOR-8, KK, VECTOR-16, SpecNet, LeDHT.

Figure 29: Comparison of chemical contrast after retrieval. This figure shows the chemical

contrast of frames taken on-resonance (2860 cm−1) and off-resonance (2000 cm−1) from

CARS and each NRB retrieval method. The off-resonance frame is chosen at 2000 cm−1

since that is in the so-called “silent” region where we do not expect any Raman peaks,

whereas the on-resonance peak is taken at 2860 cm−1 corresponding to the CH region in

which all organic materials have broad Raman peaks. The RMS contrast is labelled below

each image. The data used here came from an open-access CARS dataset available under

the Creative Commons Attribution courtesy of Vernuccio et. al. [31].

63

4 Concluding Remarks

The overarching goal of this thesis was to assess the efficacy of several spectral retrieval

methods for CARS hypermicroscopy to identify which method is the best, and determine

whether the NRB removal problem has been essentially solved. The spectral retrieval

methods of interest were identified as the KK [9], [12] and LeDHT [17] methods, as well

as the SpecNet [18] and VECTOR [20] models. These methods include both analytical and

deep learning approaches to NRB removal. The methods were reproduced and trained (if

applicable) independently, supporting the veracity and reproducibility of each of the

methods as described in their respective articles. The NRB removal methods were then

subjected to a systematic evaluation of the general spectral retrieval accuracy,

hyperspectral image retrieval capabilities, robustness under various noise and NRB

conditions, and whether the methods can be used for quantitative analysis. It was found

that no single method performed better than the others in every test. For example,

VECTOR-16 has the best overall spectral retrieval performance, however, when applied to

experimental data it fails to retrieve peaks that the KK method successfully retrieves,

despite the KK method having the worst general spectral retrieval performance.

Nonetheless, the built-in noise reduction capabilities of the SpecNet and VECTOR models

allow them to retrieve more accurately on noisy data than the DHT-based methods. The

main conclusion from these tests is thus: results will vary. A method selection process is

recommended prior to deciding on a given method for any application in order to obtain

the best results. As for the ultimate question, has the NRB problem been essentially solved?

Yes. Although minor improvements from better error-correction techniques or superior

64

machine learning models may be achieved in the future, the performance of each of the

current methods is sufficient.

65

Bibliography

[1] E. Hecht, Optics, 5th ed. Pearson, 2016.

[2] R. W. Boyd, Nonlinear Optics, 4th ed. Academic Press, 2020.

[3] H. Lotem, R. T. Lynch, and N. Bloembergen, “Interference between Raman

resonances in four-wave difference mixing,” Phys Rev A (Coll Park), vol. 14, no.

5, pp. 1748–1755, Nov. 1976, doi: 10.1103/PhysRevA.14.1748.

[4] J.-X. Cheng, A. Volkmer, and X. S. Xie, “Theoretical and experimental

characterization of coherent anti-Stokes Raman scattering microscopy,” Journal of

the Optical Society of America B, vol. 19, no. 6, p. 1363, Jun. 2002, doi:

10.1364/JOSAB.19.001363.

[5] J.-X. Cheng, “Coherent Anti-Stokes Raman Scattering Microscopy,” Appl

Spectrosc, vol. 61, no. 9, pp. 197A-208A, Sep. 2007, doi:

10.1366/000370207781746044.

[6] J.-X. Cheng and X. S. Xie, “Coherent Anti-Stokes Raman Scattering

Microscopy: Instrumentation, Theory, and Applications,” J Phys Chem B, vol.

108, no. 3, pp. 827–840, Jan. 2004, doi: 10.1021/jp035693v.

[7] H. Pascher, “Stimulated Light Scattering in Solids,” in Encyclopedia of Materials:

Science and Technology, 2001. doi: 10.1016/b0-08-043152-6/01592-8.

[8] G. I. Petrov, R. Arora, V. V. Yakovlev, X. Wang, A. V. Sokolov, and M. O.

Scully, “Comparison of coherent and spontaneous Raman microspectroscopies for

66

noninvasive detection of single bacterial endospores,” Proc Natl Acad Sci U S A,

vol. 104, no. 19, 2007, doi: 10.1073/pnas.0702107104.

[9] Y. Liu, Y. J. Lee, and M. T. Cicerone, “Broadband CARS spectral phase retrieval

using a time-domain Kramers–Kronig transform,” Opt Lett, vol. 34, no. 9, p. 1363,

May 2009, doi: 10.1364/OL.34.001363.

[10] H. Kramers, “La diffusion de la lumière par les atomes,” in Atti del Congresso

internazionale dei Fisici, Como: Transactions of Volta Centenary Congress, Sep.

1927, pp. 545–557.

[11] R. de L. Kronig, “On the Theory of Dispersion of X-Rays,” J Opt Soc Am, vol. 12,

no. 6, 1926, doi: 10.1364/josa.12.000547.

[12] C. H. Camp, Y. J. Lee, and M. T. Cicerone, “Quantitative, comparable coherent

anti-Stokes Raman scattering (CARS) spectroscopy: correcting errors in phase

retrieval,” Journal of Raman Spectroscopy, vol. 47, no. 4, pp. 408–415, Apr. 2016,

doi: 10.1002/jrs.4824.

[13] P. H. C. Eilers and H. F. M. Boelens, “Baseline Correction with Asymmetric Least

Squares Smoothing,” Life Sci, 2005.

[14] Abraham. Savitzky and M. J. E. Golay, “Smoothing and Differentiation of Data by

Simplified Least Squares Procedures.,” Anal Chem, vol. 36, no. 8, pp. 1627–1639,

Jul. 1964, doi: 10.1021/ac60214a047.

[15] M. H. Manghnani, A. Hushur, T. Sekine, J. Wu, J. F. Stebbins, and Q. Williams,

“Raman, Brillouin, and nuclear magnetic resonance spectroscopic studies on

67

shocked borosilicate glass,” J Appl Phys, vol. 109, no. 11, Jun. 2011, doi:

10.1063/1.3592346.

[16] G. R. Medders and F. Paesani, “Infrared and Raman Spectroscopy of Liquid Water

through ‘First-Principles’ Many-Body Molecular Dynamics,” J Chem Theory

Comput, vol. 11, no. 3, pp. 1145–1154, Mar. 2015, doi: 10.1021/ct501131j.

[17] C. H. Camp, “Raman signal extraction from CARS spectra using a learned-matrix

representation of the discrete Hilbert transform,” Opt Express, vol. 30, no. 15, p.

26057, Jul. 2022, doi: 10.1364/OE.460543.

[18] C. M. Valensise, A. Giuseppi, F. Vernuccio, A. De la Cadena, G. Cerullo, and D.

Polli, “Removing non-resonant background from CARS spectra via deep

learning,” APL Photonics, vol. 5, no. 6, p. 061305, Jun. 2020, doi:

10.1063/5.0007821.

[19] T. S. Cohen, M. Geiger, and M. Weiler, “A general theory of equivariant CNNs on

homogeneous spaces,” in Advances in Neural Information Processing Systems,

2019.

[20] Z. Wang, K. O’ Dwyer, R. Muddiman, T. Ward, C. H. Camp, and B. M. Hennelly,

“VECTOR: Very deep convolutional autoencoders for non‐resonant background

removal in broadband coherent anti‐Stokes Raman scattering,” Journal of Raman

Spectroscopy, vol. 53, no. 6, pp. 1081–1093, Jun. 2022, doi: 10.1002/jrs.6335.

[21] G. L. Eesley, “Coherent raman spectroscopy,” J Quant Spectrosc Radiat Transf,

vol. 22, no. 6, pp. 507–576, Dec. 1979, doi: 10.1016/0022-4073(79)90045-1.

68

[22] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Network

Training by Reducing Internal Covariate Shift,” Feb. 2015.

[23] Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multiscale structural similarity for

image quality assessment,” in The Thrity-Seventh Asilomar Conference on Signals,

Systems & Computers, 2003, IEEE, pp. 1398–1402. doi:

10.1109/ACSSC.2003.1292216.

[24] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimization,” in 3rd

International Conference on Learning Representations, ICLR 2015 - Conference

Track Proceedings, 2015.

[25] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are

universal approximators,” Neural Networks, vol. 2, no. 5, 1989, doi:

10.1016/0893-6080(89)90020-8.

[26] B. C. Csaji, “Approximation with Artificial Neural Networks,” 2001.

[27] P. Colarusso and C. Brideau, “Photons to Pixels: Illuminating Bit Depth,” Bliq

Photonics, Aug. 03, 2022. https://bliqphotonics.com/what-is-bit-depth-in-

microscopy/ (accessed Jul. 26, 2023).

[28] “TensorFlow v2.13.0 API Documentation: Dropout Layer.”

https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dropout (accessed

Aug. 11, 2023).

69

[29] C. H. Camp Jr et al., “High-speed coherent Raman fingerprint imaging of

biological tissues,” Nat Photonics, vol. 8, no. 8, pp. 627–634, Aug. 2014, doi:

10.1038/nphoton.2014.145.

[30] F. Vernuccio et al., “Full-Spectrum CARS Microscopy of Cells and Tissues with

Ultrashort White-Light Continuum Pulses,” J Phys Chem B, vol. 127, no. 21, pp.

4733–4745, Jun. 2023, doi: 10.1021/acs.jpcb.3c01443.

[31] F. Vernuccio et al., “Supplementary material - Full-spectrum CARS Microscopy

Of Cells And Tissues With Ultrashort White-light Continuum Pulses,” Zenodo,

Apr. 20, 2023.

[32] J. K. Wilmshurst and H. J. Bernstein, “THE INFRARED AND RAMAN

SPECTRA OF TOLUENE, TOLUENE-α- d 3 , m -XYLENE, AND m -XYLENE-

αα′- d 6,” Can J Chem, vol. 35, no. 8, pp. 911–925, Aug. 1957, doi: 10.1139/v57-

123.

[33] S.-J. Baek, A. Park, Y.-J. Ahn, and J. Choo, “Baseline correction using

asymmetrically reweighted penalized least squares smoothing,” Analyst, vol. 140,

no. 1, pp. 250–257, 2015, doi: 10.1039/C4AN01061B.

[34] V. Maiorov and A. Pinkus, “Lower bounds for approximation by MLP neural

networks,” Neurocomputing, vol. 25, no. 1–3, pp. 81–91, Apr. 1999, doi:

10.1016/S0925-2312(98)00111-8.

70

Appendix A: KK Method Details

A complete implementation of the KK method is available in the CRIkit2 software

developed by Charles Camp Jr. (https://github.com/CCampJr/CRIkit2). Below are several

simplified code snippets which are intended to help the reader understand how the KK

method can be implemented in a small Python program.

import numpy as np

from scipy.signal import hilbert

def kk(cars, nrb):

 ''' Original implementation of KK phase retrieval method. '''

 F1 = np.log(np.sqrt(2*cars))

 F2 = np.log(np.sqrt(2*nrb))

 f1 = ifft(F1)[:len(F1)//2] # t > 0

 f2 = ifft(F2)[len(F2)//2:] # t < 0

 eta = np.concatenate([f2, f1])

 return -2*np.imag(fft(fftshift(eta)) - F1/2)

def dht(cars, nrb):

 ''' DHT-based implementation of KK phase retrieval method. '''

 return hilbert(0.5*np.log(cars/nrb)).imag

Each of the above functions return the phase given the CARS and NRB input spectra. This

phase must then be corrected with the following baseline detrending algorithm. Note that

the CARS and NRB spectra should be cleaned of any spurious values, noise reduced, and

padded so that the DHT errors can be minimized speed up phase error correction.

The following code can be used to obtain the baseline of the phase spectrum, representing

the phase error. This baseline can then be subtracted from the phase spectrum to retrieve

the error-corrected phase spectrum. The code is based on the asymmetric least squares

(ALS) smoothing algorithm proposed by Eilers and Boelens in 2005 [13].

https://github.com/CCampJr/CRIkit2

71

import numpy as np

from scipy import sparse

from numpy.linalg import norm

from scipy.sparse.linalg import spsolve

def baseline_als(y, lam=1E3, p=1E-6, niter=10):

 L = len(y)

 D = sparse.diags([1,-2,1],[0,-1,-2], shape=(L,L-2))

 D = lam * D.dot(D.transpose())

 w = np.ones(L)

 W = sparse.spdiags(w, 0, L, L)

 for i in range(niter):

 W.setdiag(w)

 Z = W + D

 z = spsolve(Z, w*y)

 w = p * (y > z) + (1-p) * (y < z)

 return z

A more recent method called asymmetrically reweighted penalized least squares (arPLS)

smoothing appears to have better performance and may be used in the future [33].

Appendix B: LeDHT Method Details

A complete implementation of the LeDHT method is available through the Hilbert toolkit

software developed by Charles Camp Jr. (https://github.com/usnistgov/Hilbert). In this

method, the optimal transformation matrix 𝐇 described in E q. (15) can be found by

training on a dataset of pairs of Gaussian/Dawson or Lorentzian/dispersive line shapes. The

matrix 𝐇 used throughout this work was obtained from training on pairs of

Gaussian/Dawsons line shapes even though the spectra were simulated with

Lorentzian/dispersive line shapes. This is not significant since the transformation matrix

trained on one is applicable to the other. As shown in the supplementary information of the

https://github.com/usnistgov/Hilbert

72

LeDHT paper, the Gaussian/Dawson-trained LeDHT matrix performs just as well on the

Lorentzian/dispersive line shapes.

Appendix C: Artificial Neural Networks

At a basic level, artificial neural networks are nonlinear mathematical models that define

mappings between inputs �⃑� and outputs �⃑�. Each network is constructed by combining

elementary units, referred to as nodes or neurons, in parallel into layers which are then

combined layer-to-layer in series to support a feedforward computation where the output

of each layer is the input to the next. The first layer is referred to as the input layer whose

neurons take as their input the elements of the input vector, the last layer is referred to as

the output layer whose neurons output the elements of the output vector, and the in-between

layers are referred to as hidden layers. Each node/neuron in the hidden layers take as their

inputs a weighted average of the outputs of each node/neuron in the previous layer, then

apply a nonlinear activation function. Common activation functions include the rectified

linear unit (ReLu), sigmoid, and tanh functions. Artificial neural networks “learn” through

a process called backpropagation that optimizes the weights and biases used to calculate

the weighted average in each neuron by minimizing an objective cost/loss function using

an optimization algorithm referred as an optimizer. Optimizers typically utilize the concept

of stochastic gradient descent and facilitate the backpropagation of errors. The mean

squared error (MSE) or mean absolute error (MAE) between the target and predicted

outputs are typically used as loss functions to be minimized, although any function can be

used. The universal approximation theorem states that feedforward neural network are

universal approximators [25], [26], [34], which has profound implications regarding the

applicability of neural networks.

73

Appendix D: SpecNet Model Details

D.1 SpecNet Model Summary

The following is the SpecNet model summary. This deviates slightly from the original

implementation in that the input and output have a length of 1000 instead of 640.

Table 2: SpecNet Summary.

Layer Output Shape Number of Parameters

Input Layer (1000, 1) 0

Batch Normalization (1000, 1) 4

ReLu Activation (1000, 1) 0

1D Convolution Layer 1 (969, 128) 4,224

1D Convolution Layer 2 (954, 64) 131,136

1D Convolution Layer 3 (947, 16) 8,208

1D Convolution Layer 4 (940, 16) 2,064

1D Convolution Layer 5 (933, 16) 2,064

Dense Layer 1 (933, 32) 544

Dense Layer 2 (933, 16) 528

Flatten (14928) 0

Dropout Layer (0.25) (14928) 0

Dense Layer 3 (1000) 14,929,000

Output Layer (1000, 1) 0

Note: the batch size is implicitly prepended to the output shape of each layer.

74

D.2 Modified SpecNet Code

inputs = tf.keras.Input(shape=(1000,), name='Input')

x = tf.keras.layers.Reshape((1000,1), name='Reshape')(inputs)

x = tf.keras.layers.BatchNormalization()(x)

x = tf.keras.layers.ReLU()(x)

x = tf.keras.layers.Conv1D(128, activation = 'relu', kernel_size = (32))(x)

x = tf.keras.layers.Conv1D(64, activation = 'relu', kernel_size = (16))(x)

x = tf.keras.layers.Conv1D(16, activation = 'relu', kernel_size = (8))(x)

x = tf.keras.layers.Conv1D(16, activation = 'relu', kernel_size = (8))(x)

x = tf.keras.layers.Conv1D(16, activation = 'relu', kernel_size = (8))(x)

x = tf.keras.layers.Dense(32, activation = 'relu',

kernel_regularizer=tf.keras.regularizers.l1_l2(l1 = 0, l2=0.1))(x)

x = tf.keras.layers.Dense(16, activation = 'relu',

kernel_regularizer=tf.keras.regularizers.l1_l2(l1 = 0, l2=0.1))(x)

x = tf.keras.layers.Flatten()(x)

x = tf.keras.layers.Dropout(.25)(x)

outputs = tf.keras.layers.Dense(1000, activation='relu')(x)

model = tf.keras.Model(inputs=inputs, outputs=outputs, name='SpecNet')

D.3 SpecNet Copyright Notice

SpecNet is provided with the following open source MIT License which allows anyone to

use, modify, and publish substantial portions of the code so long as the copyright notice is

included.

MIT License

Copyright © 2020 Valensicv

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

75

Appendix E: VECTOR Model Details

E.1 VECTOR Model Summaries

The following two tables demonstrate the summaries for the VECTOR-8 and VECTOR-

16 models. The “Operation” column refers to the convolution that is applied to the that

layer, where 𝐾 is the kernel size, 𝐶𝑖𝑛 is the number of input channels, 𝐶𝑜𝑢𝑡 is the number

of output channels, and 𝑆 is the stride length.

 Table 3: VECTOR-8 Summary

Stage
Operation

(𝑲, 𝑪𝒊𝒏, 𝑪𝒐𝒖𝒕, 𝑺)
Output Shape

Number of

Parameters

Input — (1000, 1) 0

Encoder

Layer 1 (8, 1, 64, 1) (993, 64) 832

Layer 2 (8, 64, 128, 2) (493, 128) 66,176

Layer 3 (8, 128, 256, 2) (243, 256) 263,424

Layer 4 (8, 256, 512, 2) (118, 512) 1,051,136

Latent Space — (118, 512) 0

Decoder

Layer 5 (8, 512, 256, 2) (243, 256) 1,049,856

Layer 6 (8, 256, 128, 2) (493, 128) 262,784

Layer 7 (8, 128, 64, 2) (993, 64) 65,856

Layer 8 (8, 64, 1, 1) (1000, 1) 513

Output — (1000,1) 0

Note: the batch size is implicitly prepended to the output shape of each layer.

76

Table 4: VECTOR-16 Summary.

Stage
Operation

(𝑲, 𝑪𝒊𝒏, 𝑪𝒐𝒖𝒕, 𝑺)
Output Shape

Number of

Parameters

Input — (1000,1) 0

Encoder

Layer 1 (8, 1, 64, 1) (993, 64) 832

Layer 2 (8, 64, 128, 2) (493, 128) 66176

Layer 3 (8, 128, 256, 2) (243, 256) 263424

Layer 4 (8, 256, 512, 2) (118, 512) 1051136

Layer 5 (8, 512, 1024, 2) (56, 1024) 4199424

Layer 6 (8, 1024, 2048, 2) (25, 2048) 16787456

Layer 7 (8, 2048, 2048, 1) (18, 2048) 33564672

Layer 8 (8, 2048, 2048, 1) (11, 2048) 33564672

Latent Space — (11, 2048) 0

Decoder

Layer 9 (8, 2048, 2048, 1) (18, 2048) 33564672

Layer 10 (8, 2048, 2048, 1) (25, 2048) 33564672

Layer 11 (8, 2048, 1024, 2) (56, 1024) 16782336

Layer 12 (8, 1024, 512, 2) (118, 512) 4196864

Layer 13 (8, 512, 256, 2) (243, 256) 1049856

Layer 14 (8, 256, 128, 2) (493, 128) 262784

Layer 15 (8, 128, 64, 2) (993, 64) 65856

Layer 16 (8, 64, 1, 1) (1000, 1) 513

Output — (1000, 1) 0

Note: the batch size is implicitly prepended to the output shape of each layer.

E.2 Customized VECTOR Code

The original VECTOR models were implemented using PyTorch, a machine learning

framework for Python. In this work the code is repurposed for use with the TensorFlow

framework. This does not fundamentally change the operation of the models since both

77

frameworks operate using the same underlying technology. To use the code below, a

working version of TensorFlow must be installed.

The following is the code defining the encoder and decoder.

class EncoderLayer(tf.keras.layers.Layer):

 def __init__(self, kernel_size, input_channels, output_channels, stride,

 name=None):

 super().__init__(name=name)

 self.conv = tf.keras.layers.Conv1D(

 filters=output_channels,

 kernel_size=kernel_size,

 strides=stride

)

 self.relu = tf.keras.layers.ReLU()

 self.norm = tf.keras.layers.BatchNormalization()

 def call(self, x):

 x = self.conv(x)

 x = self.relu(x)

 x = self.norm(x)

 return x

class DecoderLayer(tf.keras.layers.Layer):

 def __init__(self, kernel_size, input_channels, output_channels, stride,

 output_padding=1, name=None):

 super().__init__(name=name)

 self.conv = tf.keras.layers.Conv1DTranspose(

 filters=output_channels,

 kernel_size=kernel_size,

 strides=stride,

 output_padding=output_padding # Add output padding to decoder

)

 self.norm = tf.keras.layers.BatchNormalization()

 self.relu = tf.keras.layers.ReLU()

 def call(self, x):

 x = self.conv(x)

 x = self.norm(x)

 x = self.relu(x)

 return x

78

VECTOR-8 Code

skip_connections = False

layer1 = EncoderLayer(8, 1, 64, 1, name="Layer_1")

layer2 = EncoderLayer(8, 64, 128, 2, name="Layer_2")

layer3 = EncoderLayer(8, 128, 256, 2, name="Layer_3")

layer4 = EncoderLayer(8, 256, 512, 2, name="Layer_4")

layer5 = DecoderLayer(8, 512, 256, 2, name="Layer_5")

layer6 = DecoderLayer(8, 256, 128, 2, name="Layer_6")

layer7 = DecoderLayer(8, 128, 64, 2, name="Layer_7")

layer8 = tf.keras.layers.Conv1DTranspose(filters=1, kernel_size=8, strides=1,

 activation='sigmoid', name="Layer_8")

add = tf.keras.layers.Add()

inputs = tf.keras.Input(shape=(1000,), name='Input')

reshaped_inputs = tf.keras.layers.Reshape((1000,1,), name='Reshape')(inputs)

e1 = layer1(reshaped_inputs)

e2 = layer2(e1)

e3 = layer3(e2)

e4 = layer4(e3)

Latent space

d1 = layer5(e4)

d2 = layer6(add([d1,e3]) if skip_connections else d1)

d3 = layer7(add([d2,e2]) if skip_connections else d2)

d4 = layer8(add([d3,e1]) if skip_connections else d3)

outputs = tf.keras.layers.Flatten(name="Output")(d4)

model = tf.keras.Model(inputs=inputs, outputs=outputs, name='VECTOR-8')

79

VECTOR-16 Code

skip_connections = False

layer1 = EncoderLayer(8, 1, 64, 1, name="Layer_1")

layer2 = EncoderLayer(8, 64, 128, 2, name="Layer_2")

layer3 = EncoderLayer(8, 128, 256, 2, name="Layer_3")

layer4 = EncoderLayer(8, 256, 512, 2, name="Layer_4")

layer5 = EncoderLayer(8, 512, 1024, 2, name="Layer_5")

layer6 = EncoderLayer(8, 1024, 2048, 2, name="Layer_6")

layer7 = EncoderLayer(8, 2048, 2048, 1, name="Layer_7")

layer8 = EncoderLayer(8, 2048, 2048, 1, name="Layer_8")

layer9 = DecoderLayer(8, 2048, 2048, 1, name="Layer_9", output_padding=0)

layer10 = DecoderLayer(8, 2048, 2048, 1, name="Layer_10", output_padding=0)

layer11 = DecoderLayer(8, 2048, 1024, 2, name="Layer_11", output_padding=0)

layer12 = DecoderLayer(8, 1024, 512, 2, name="Layer_12", output_padding=0)

layer13 = DecoderLayer(8, 512, 256, 2, name="Layer_13")

layer14 = DecoderLayer(8, 256, 128, 2, name="Layer_14")

layer15 = DecoderLayer(8, 128, 64, 2, name="Layer_15")

layer16 = tf.keras.layers.Conv1DTranspose(filters=1, kernel_size=8, strides=1,

 activation='sigmoid', name="Layer_16")

add = tf.keras.layers.Add()

inputs = tf.keras.Input(shape=(1000,), name='Input')

reshaped_inputs = tf.keras.layers.Reshape((1000,1,), name='Reshape')(inputs)

e1 = layer1(reshaped_inputs)

e2 = layer2(e1)

e3 = layer3(e2)

e4 = layer4(e3)

e5 = layer5(e4)

e6 = layer6(e5)

e7 = layer7(e6)

e8 = layer8(e7)

Latent space

d1 = layer9(e8)

d2 = layer10(add([d1,e7]) if skip_connections else d1)

d3 = layer11(add([d2,e6]) if skip_connections else d2)

d4 = layer12(add([d3,e5]) if skip_connections else d3)

d5 = layer13(add([d4,e4]) if skip_connections else d4)

d6 = layer14(add([d5,e3]) if skip_connections else d5)

d7 = layer15(add([d6,e2]) if skip_connections else d6)

d8 = layer16(add([d7,e1]) if skip_connections else d7)

outputs = tf.keras.layers.Flatten(name="Output")(d8)

model = tf.keras.Model(inputs=inputs, outputs=outputs, name='VECTOR-16')

80

E.3 VECTOR Copyright Notice

VECTOR is provided with the following open source MIT License which allows anyone

to use, modify, and publish substantial portions of the code so long as the copyright notice

is included.

MIT License

Copyright © 2021 zhengwei

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

Appendix F: Training Code

The following code was used to train each of the models.

model.compile(loss='mse', optimizer='Adam', metrics=['mean_absolute_error'])

train_size = 25600

batch_size = 256

epochs = 10

train_sequencer = DataSequencer(batch_size, train_size)

model_history = model.fit(

 x=train_sequencer,

 batch_size=batch_size,

 epochs=epochs,

 verbose=2

)

	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Nonlinear Optics
	1.2 Coherent Anti-Stokes Raman Scattering
	1.3 CARS Hypermicroscopy
	1.4 Non-Resonant Background Removal

	2 Methods
	2.1 Spectral Retrieval Methods
	2.1.1 Kramers-Kronig Spectral Phase Retrieval
	2.1.2 Learned Discrete Hilbert Transform
	2.1.3 Convolutional Neural Network: SpecNet
	2.1.4 Convolutional Autoencoder: VECTOR

	2.2 CARS Simulation Methods
	2.2.1 Resonant Spectral Line Shapes
	2.2.2 Non-resonant Spectral Line Shapes
	2.2.3 CARS, NRB, and Raman Simulations
	2.2.4 Hyperspectral Image Simulations

	2.3 Evaluation Methods
	2.4 Model Training Methods

	3 Results and Discussion
	3.1 Model Training Results
	3.2 Spectral Retrieval Comparison
	3.3 Hyperspectral Image Retrieval
	3.4 Impact of Noise and NRB Levels
	3.4.1 KK Method: Noise and NRB
	3.4.2 LeDHT Method: Noise and NRB
	3.4.3 SpecNet Model: Noise and NRB
	3.4.4 VECTOR Models: Noise and NRB

	3.5 Quantitative Analysis
	3.5.1 KK Method: Quantitative Analysis
	3.5.2 LeDHT Method: Quantitative Analysis
	3.5.3 SpecNet Model: Quantitative Analysis
	3.5.4 VECTOR Models: Quantitative Analysis

	3.6 Experimental NRB Removal

	4 Concluding Remarks
	Bibliography
	Appendix A: KK Method Details
	Appendix B: LeDHT Method Details
	Appendix C: Artificial Neural Networks
	Appendix D: SpecNet Model Details
	D.1 SpecNet Model Summary
	D.2 Modified SpecNet Code
	D.3 SpecNet Copyright Notice

	Appendix E: VECTOR Model Details
	E.1 VECTOR Model Summaries
	E.2 Customized VECTOR Code
	E.3 VECTOR Copyright Notice

	Appendix F: Training Code

