
  

Evaluation of Spectral Retrieval Methods for Hyperspectral 

Coherent Anti-Stokes Raman Scattering Microscopy 

A Thesis Submitted to the Committee of Graduate Studies in 

Partial Fulfillment of the Requirements of the Degree of  

Master of Science  

in the Faculty of Arts and Science 

TRENT UNIVERSITY 

Peterborough, Ontario, Canada 

Materials Science M.Sc. Graduate Program 

September 2023 

 

 

Copyright © John Shafe-Purcell, 2023 



ii 

 

Abstract 
 

Evaluation of Spectral Retrieval Methods for Hyperspectral Coherent Anti-

Stokes Raman Scattering Microscopy 

 

John Shafe-Purcell 

 

Coherent anti-Stokes Raman scattering (CARS) microscopy is a label-free chemical 

imaging modality that uses CARS as a contrast mechanism to spatially resolve materials 

based on their molecular vibrational spectra. Due to the presence of a non-resonant 

background that obfuscates the chemical information contained in CARS spectra, CARS 

images suffer from poor contrast and cannot be readily used for quantitative chemical 

analysis. Over the past two decades, spectral retrieval methods have been developed to 

obtain Raman-like spectra from CARS spectra. These methods promise to improve image 

contrast and enable reliable quantitative analysis. In this work I systematically evaluate a 

selection of the forefront spectral retrieval methods, including both analytical and machine 

learning approaches, to determine how well they perform at the task of non-resonant 

background removal. The more recent machine learning methods demonstrate remarkable 

performance on spectra resembling the training dataset but are not as suitable as the 

analytical methods in general. The analytical methods based on the discrete Hilbert 

transform thus remain preferable due to their ease-of-use and general applicability. 

 

Keywords: coherent anti-Stokes Raman scattering, spectral phase retrieval, non-resonant 

background, chemical imaging, hyperspectral imaging, Kramers-Kronig analysis, machine 

learning.  
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1 Introduction 

This section will introduce the reader to coherent anti-Stokes Raman scattering (CARS), 

why it is a desirable contrast mechanism for label-free hyperspectral microscopy, and the 

preeminent issue facing the widespread adoption of CARS microscopy, namely, the non-

resonant background (NRB). This will include a brief introduction to nonlinear optics, how 

CARS and the NRB originate from nonlinear optics, and the NRB removal problem. The 

overall goal of this thesis is to investigate the available NRB removal methods and 

demonstrate through a comparative analysis the capabilities and shortcomings of each. This 

thesis should provide the reader with the knowledge to make an informed decision about 

which currently available NRB removal method to employ for their CARS application. 

1.1 Nonlinear Optics 

When an electric field interacts with dielectric materials, the induced polarization 𝑃 of the 

material can be given by the Taylor expansion in terms of the incident electric field 𝐸 as: 

 𝑃 = ϵ0(χ
(1)𝐸 + χ(2)𝐸2 + χ(3)𝐸3 +⋯) (1) 

Here, the coefficients given by χ(𝑛) are the 𝑛-th order susceptibilities of the material and 

ϵ0 = 8.854 F/m is the vacuum permittivity [1]. It is important to note that this induced 

polarization refers to the dipole moments created by the separation of charge in the material 

as a response to the incident electric field, not the polarization of the incident electric field 

itself. Since light is composed of the synchronized oscillation of electric and magnetic 

fields as described by Maxwell’s equations, when light interacts with a material it will 

induce an oscillatory polarization within the material as a result. This time-varying 

polarization will produce a new electromagnetic wave because of this interaction. This is 
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referred to as the scattered or produced light. When the electric field intensity is small, like 

that generated by continuous-wave lasers and incoherent light sources, the first order χ(1) 

term dominates. This produces linear optical effects where the induced polarization is 

proportional to the incident electric field. Advances in ultrafast laser technologies has 

allowed us to create pulses of light with extremely high peak powers. These lasers can 

generate instantaneous electric field intensities large enough that higher order χ(2) and χ(3) 

effects become significant, giving rise to the field of nonlinear optics [2].  

Second-order nonlinear effects are those for which the χ(2) term dominates, and so the 

polarization becomes 𝑃 = ϵ0χ
(2)𝐸1𝐸2. Here, 𝐸2 from Eq. (1) is replaced with two separate 

electric fields, 𝐸1 and 𝐸2, because two independent electric fields can interact with the 

material simultaneously. Second-order effects notably include sum- and difference-

frequency generation (SFG and DFG), for which a third photon is produced with an energy 

that is the sum or difference between the energies of two incident photons, respectively. 

Second harmonic generation (SHG) is a special case of SFG where two photons with equal 

energies produce a third photon with double the energy of the incident photons. 

Third-order effects are those for which the χ(3) term dominates, and so the polarization 

becomes 𝑃 = ϵ0χ
(3)𝐸1𝐸2𝐸3. Here, 𝐸3 from Eq. (1) is replaced with three separate electric 

fields, 𝐸1, 𝐸2, and 𝐸3, because three independent electric fields can interact with the 

material simultaneously. Four-wave mixing (FWM) is the most relevant third-order optical 

effect for this work. As the name suggests, it involves four electromagnetic waves, where 

two or three incident waves produce two or one new waves, respectively. Third harmonic 

generation (THG) is a special case of FWM where three incident photons with equal 

energy produce a fourth photon with triple the energy of the three incident photons. 
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Coherent anti-Stokes Raman scattering (CARS) is a special case of FWM where three 

photons of various energies produce a fourth photon with a higher energy when the energy 

difference between any two of the incident photons corresponds to a molecular vibrational 

resonance. Nonlinear optical processes are phase-sensitive and require proper phase 

matching conditions to be met for efficient generation. CARS also requires that Raman 

selection criteria be satisfied. Figure 1 below shows the schematic Jablonski diagrams for 

the nonlinear optical processes discussed in this section. 

 

 

Figure 1: Simplified Jablonski diagrams for various nonlinear optical effects. The diagrams 

are given for: (a) Second-harmonic generation (SHG), (b) sum-frequency generation 

(SFG), (c) difference-frequency generation (DFG), (d) third-harmonic generation (THG), 

(e) non-resonant four-wave mixing (FWM), and (f) degenerate coherent anti-Stokes 

Raman scattering (CARS). Virtual energy levels are represented by black dashed lines, 

whereas the ground state and vibrational energy levels are represented by black solid lines. 
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1.2 Coherent Anti-Stokes Raman Scattering 

CARS, as a special case of FWM, is a third-order nonlinear optical effect that involves the 

interaction of three incident laser beams—the pump, probe, and Stokes beams—and 

produces a fourth beam of higher energy, called the anti-Stokes beam. When the incident 

beams interact with the scatterers in the excitation volume, they induce the formation of an 

ensemble of oscillating Hertzian dipoles. These can be modelled classically as damped 

harmonic oscillators driven by the coherent addition of the probe beam and the difference 

frequency between the pump and Stokes beams. The anti-Stokes beam is then given by the 

far-field radiation produced by these oscillators [3]–[6]. Since CARS is a χ(3) effect, the 

electric field corresponding to the anti-Stokes emission can be written as: 

 𝐸𝐶𝐴𝑅𝑆(ωp −ωS +ωpr) = χ(3)𝐸p(ωp)𝐸pr(ωpr)𝐸S(ωS) (2) 

where 𝐸p, 𝐸pr, and 𝐸S are the electric fields and ωp, ωpr, and ωS are the frequencies of the 

pump, probe, and Stokes beams, respectively. The emitted anti-Stokes beam has an electric 

field 𝐸𝐶𝐴𝑅𝑆 with a frequency given by ω𝐴𝑆 = ωp −ωS +ωpr . In most practical cases, the 

pump and probe beams come from the same source and thus have the same energy (i.e. 

ωpr = ωp). This is called degenerate CARS. The previous equation can be rewritten for 

degenerate CARS as: 

 𝐸𝐶𝐴𝑅𝑆( ωp −ωS) = χ(3)𝐸𝑝
2(ωp)𝐸𝑆(ωS) (3) 

Where the frequency of the anti-Stokes photon is now ωAS =  ωp −ωS. The term CARS 

will refer to this degenerate case for the remainder of this work. The CARS intensity is 

then given by, 
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 𝐼𝐶𝐴𝑅𝑆 ∝ |χ(3)|
2
𝐼𝑝
2𝐼𝑆 (4) 

This shows that the CARS intensity is proportional to the modulus squared of the total 

third-order susceptibility, the squared pump beam intensity, and the Stokes beam intensity. 

The third-order susceptibility, 𝜒(3), can be modelled as the sum of two components; one 

that arises from the vibrational resonances of the material, χ𝑅
(3)

, and one that arises from 

the non-resonant FWM, χ𝑁𝑅
(3)

, as follows:  

 χ(3) = χ𝑅
(3) + χ𝑁𝑅

(3)
 (5) 

Assuming that the pump and Stokes intensities are held constant, the two previous 

equations can be combined to give the following proportionality: 

 𝐼𝐶𝐴𝑅𝑆 ∝ |𝜒𝑅
(3) + 𝜒𝑁𝑅

(3)|
2

 (6) 

Given that the non-resonant contribution χ𝑁𝑅
(3)

 is strictly real-valued, which is an empirically 

valid assumption in most cases [7], the above can be expanded to give: 

 𝐼𝐶𝐴𝑅𝑆 ∝ |χR
(3)|

2

+ (χNR
(3))

2

+  Re(χR
(3))χNR

(3)
 (7) 

The non-resonant background (NRB) is caused by the two terms containing χNR
(3)

 . This 

non-resonant contribution does not inform us about the molecular vibrational resonances 

but does act to obfuscate the chemical information encoded by the resonant contribution. 

Because of the cross-term, there is clearly no trivial way to decouple the resonant and non-

resonant contributions through subtraction or factorization, which makes it difficult to use 

CARS for chemical analyses.   
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1.3 CARS Hypermicroscopy 

Referring to Figure 1, panels (e) and (f) show the Jablonski diagrams for FWM and CARS, 

respectively. The frequency difference between the pump and Stokes, referred to as the 

Raman shift, is given by: 

 ω = ωp −ω𝑆 (8) 

You may recognise this as the beat frequency between the pump and Stokes beams that 

drives the molecular vibration. By varying the difference between the frequencies of the 

pump and Stokes beams, we can scan ω and collect a spectrum of the anti-Stokes emission 

at ωAS =  ωp −ωS as a function of ω. This allows us to collect a so-called CARS 

spectrum. When ω corresponds to a molecular vibrational resonance, Ω, the oscillators are 

driven more efficiently, and the resonant part of the anti-Stokes signal is enhanced. 

However, as we scan through ω and record the anti-Stokes emission, we are simultaneously 

recording a spectrum of the non-resonant FWM as well. These resonant and non-resonant 

contributions to the susceptibility are the inspiration for Eq. (5).  

Hyperspectral images contain both spatial and spectral data. Each hyperspectral image can 

be thought of as a three-dimensional data cube constructed by taking a spectrum at each 

pixel of an image. One dimension corresponds to the spectral axis and the other two 

dimensions correspond to the spatial axes. When we apply hyperspectral imaging to 

microscopy, we may call it hyperspectral microscopy or “hypermicroscopy”. CARS 

hypermicroscopy allows us to resolve spatial and spectral features simultaneously by using 

the CARS signal intensity as a contrast mechanism while imaging. A given frame in the 

hyperspectral image “stack” will correspond to a particular molecular vibrational 

resonance where brighter regions will correspond to a higher CARS intensity and darker 
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regions will correspond to a lower CARS intensity. This creates a sort of chemical contrast 

allowing us to spatially map chemical species to specific image regions. However, the NRB 

complicates the interpretation of these data.  

Due to the presence of the NRB, the CARS signal is not strictly quadradic in analyte 

concentration. Consequently, quantitative analysis cannot be performed on CARS spectra 

as readily as it can with spontaneous Raman. Moreover, the dispersive effects 

corresponding to the real part of the resonant susceptibility cause the tail ends of the 

resonance peaks to extend far across the spectra. In hyperspectral imaging, this creates the 

appearance of chemical contrast where there are no Raman peaks corresponding to 

molecular vibrational resonances, as demonstrated in Figure 2 below. 

Despite the NRB being a barrier to the adoption of CARS as a reliable method for chemical 

analysis, CARS offers undeniable benefits over competing techniques. For example, 

CARS offers a signal amplification up to 100 times greater than spontaneous Raman due 

to the coherence of the CARS process, allowing for shorter acquisition times and faster 

imaging speeds [8]. Also, the simplicity of CARS relative to other coherent Raman 

techniques means that it is cheaper and easier to deploy in most cases. Consequently, the 

development of techniques to effectively remove the NRB are necessary to unlock the full 

potential of CARS and remove barriers to its widespread adoption.  
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Figure 2: Effect of the NRB on hyperspectral images. This figure demonstrates how the 

NRB obfuscates the chemical information and creates chemical contrast where there are 

no corresponding molecular vibrational resonances. To demonstrate this, two distinct 

image regions have been chosen, one represented by the Yin and the other the Yang. The 

Yin represents a chemical with a single resonance peak at 800 cm−1 and the Yang presents 

a chemical with a single resonant peak at 1200 cm−1, each with a half-width of 10 cm−1. (a) 

shows the frames taken from the hyperspectral Raman (top) and CARS (bottom) images at 

800 cm−1 (left), 1000 cm−1 (middle), and 1200 cm−1 (right). (b) shows the Raman (top) and 

CARS (bottom) spectra taken from the Yin and Yang regions. From (a) we can visually 

see the spurious chemical contrast in the CARS images, while (b) shows how this arises 

from the NRB. The horizontal axis of each plot in (b) represents zero intensity. This figure 

was created using the hyperspectral image simulation method described in Section 2.2.4. 
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1.4 Non-Resonant Background Removal 

NRB “removal” is not simply a process of subtracting an additive background like one 

would do with the fluorescence background in spontaneous Raman spectroscopy. Instead, 

NRB removal is a process that involves retrieving the complex phase of the third-order 

susceptibility so that we may obtain the Raman spectral line shapes encoded in the 

imaginary part. Complex values can be represented by an expression of the form, 

 𝐴𝑒𝑖ϕ (9) 

Where 𝐴 is the amplitude and ϕ is the phase of the value in the complex plane. From this, 

we can express the complex valued third-order susceptibility as, 

 χ(3)(ω) = |χ(3)(ω)|𝑒𝑖ϕ(ω) (10) 

Where |χ(3)(ω)| is the amplitude and ϕ(ω) is the phase. As mentioned previously, the 

measurable CARS signal intensity is given by 𝐼𝐶𝐴𝑅𝑆 ∝ |χ(3)|
2
. This means that the 

amplitude of our susceptibility in the complex plane is proportional to the square root of 

the measured CARS signal, 𝐴 ∝ √𝐼𝐶𝐴𝑅𝑆 . This makes completely solving for χ(3)(𝜔) from 

measured CARS spectra simply a matter of finding the phase, ϕ(ω). If the phase is known, 

the corresponding Raman spectrum is given by, 

 𝐼𝑅𝑎𝑚𝑎𝑛(ω) = Im(χ(3)(ω)) = Im(|χ(3)(ω)|𝑒𝑖ϕ(ω)) (11) 

Spectral phase retrieval is thus the principal issue regarding NRB removal in CARS 

spectroscopy and hypermicroscopy. The rest of this work will evaluate several of these 

spectral retrieval methods to determine how well each method removes the NRB and 

whether the NRB problem has been essentially solved.  
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2 Methods 

In this section I will outline the spectral retrieval methods assessed later in this work, the 

methodologies for data simulation, and evaluation metrics used to compare the retrieval 

methods.  

2.1 Spectral Retrieval Methods 

Several methods have been developed for retrieving the Raman-like spectral line shapes 

from CARS spectra, effectively “removing” the NRB. These promise to improve the 

analytical interpretability of CARS spectra by disentangling the underlying chemical 

information from the NRB. This section will provide an overview of four post-processing 

based NRB removal techniques. These were chosen to be included in this thesis because 

they represent the current state-of-the-art in NRB removal within the CARS literature. The 

overview for each method will include a brief description of the theory of operation, the 

general implementation details, and the potential advantages/disadvantage of the method. 

Each of these methods are freely available to use, modify, and publish under their 

respective open-access licenses, so the reader is encouraged to investigate these methods 

themselves for additional details.  

2.1.1 Kramers-Kronig Spectral Phase Retrieval 

The time-domain Kramers-Kronig (KK) method for spectral phase retrieval was developed 

in 2009 by Liu et. al. [9] and has been used extensively for NRB removal since its 

inception. Its creation was motivated by the fact that taking the natural logarithm of both 

sides of Eq. (10) gives, 
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 ln (χ(3)(ω)) = ln|χ(3)(ω)| + 𝑖ϕ(ω) (12) 

This equation clearly satisfies the general form of a complex valued function for which we 

can apply the following Kramers-Kronig relation [10], [11], 

 ϕ(ω) = −
𝑃

π
∫

ln|χ(3)(ω′)|

ω′ −ω
dω′

∞

−∞

 (13) 

Where 𝑃 is the Cauchy principal value. The article describing the KK method derived the 

relationship between the Kramers-Kronig relation and the Fourier transform, allowing it to 

be implemented using the discrete Fourier transform with imposed causality conditions [9]. 

An equivalent but simplified approach has since been adopted that uses the discrete Hilbert 

transform (DHT) as follows [12]: 

 ϕ𝐶𝐴𝑅𝑆/𝑁𝑅𝐵(ω) = ℋ (
1

 
 ln

𝐼CARS(ω)

𝐼NRB(ω)
) (14) 

Where ℋ is the DHT, 𝐼CARS is the known CARS signal, and 𝐼NRB is the known NRB signal. 

The NRB in this case is used as an internal reference by which we normalize the CARS 

signal to remove any system responses.  

The KK method is an analytical technique that is simple and computationally efficient due 

to the utilization of the fast Fourier transform, but suffers from two major limitations: the 

underlying DHT returns significant errors for any finite discrete spectral domain because 

the Hilbert transform is only well-defined for an infinite continuous domain, and an 

accurate NRB profile (absent of resonant peaks) must be known. Improvements in the 

accuracy of this method have been achieved through error correction measures [12]. These 

can be summarized as follows: 
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1. Phase error correction via baseline detrending. The retrieved phase should have a 

zero baseline, but often has a slowly varying baseline that arises due to 

computational errors. The asymmetric least squares (ALS) baseline removal 

algorithm [13] can be used find the baseline and subtract it form the retrieved phase. 

This alone significantly enhances the accuracy of the KK method. 

2. Scale error correction via unity centering of the real component of the retrieved 

phase-corrected spectrum. The real component of the previously retrieved phase-

corrected spectrum should be unity centered, i.e. 〈𝐼CARS/𝐼NRB 𝑐𝑜𝑠𝜙CARS/NRB〉 = 1. 

Any deviation of the mean trendline from 1 is due to scale errors that can be factored 

out so that the spectrum becomes unity centered. A Savitzky-Golay filter [14] can 

be used to find a mean trendline in the real component by which we divide the 

complex retrieved spectrum in an elementwise manner to correct the scale error.  

Although these corrections significantly improve the accuracy of the KK method, it is still 

limited by the need for knowledge of the NRB spectrum. Typically, a surrogate NRB is 

experimentally obtained by taking a CARS spectrum of a material with few Raman bands, 

such as glass or water. However, even water and glass have Raman active bands that can 

cause errors in the retrieval depending on which transition energies are being probed [15], 

[16]. Another practical issue with the KK method is the potential for undefined behaviour 

in Eq. (14) due to division-by-zero or negative logarithm inputs for 𝐼𝑁𝑅𝐵 ≤ 0 or 𝐼𝐶𝐴𝑅𝑆 < 0. 

So, care must be taken to clean the CARS and NRB spectra prior to using the KK method 

to analyze them. Figure 3 below shows a flow diagram summarizing the KK method 

procedure. 
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Figure 3: Flow diagram for the KK method. This diagram shows the procedure for 

implementing the KK method with phase and scale error corrections as described in Camp 

et. al. [12]. This is intended to provide the reader with a brief high-level overview of the 

KK method with error corrections without the derivation provided in the original source. 

 

  

𝐼CARS,raw(𝜔) 𝐼NRB,raw(𝜔) 

Data cleaning, noise reduction, and padding. 

𝐼CARS(𝜔) 𝐼NRB(𝜔) 

𝜙CARS/NRB(𝜔) = ℋ ൜
1

 
ln
𝐼CARS(𝜔)

𝐼NRB(𝜔)
ൠ 

Phase Error Correction via ALS Baseline Detrending 
𝜙CARS/NRB,pec(𝜔) = 𝜙CARS/NRB(𝜔) − 𝜙𝑒𝑟𝑟(𝜔) 

𝐼retr,pec(𝜔) = ඨ
𝐼CARS(𝜔)

𝐼NRB(𝜔)
exp (𝑖𝜙CARS/NRB,pec(𝜔)) 

Scale Error Correction via Unity Centering 

𝐼retr,pec,sec(𝜔) = 𝐼retr,pec(𝜔)/ൻRe൛𝐼retr,pec(𝜔)ൟൿ(𝜔) 

𝐼retr(𝜔) = |𝜒(3)| Im൛𝐼retr,pec,sec(𝜔)ൟ  
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2.1.2 Learned Discrete Hilbert Transform 

The Learned Discrete Hilbert Transform (LeDHT) method of spectral phase retrieval uses 

the same approach as previously described for the KK method, however the DHT is 

replaced with a “learned” transformation matrix that computes the Hilbert transform on 

discrete data without the errors associated with the DHT, particularly the errors at the 

endpoints of the spectral window [17]. This method was inspired by the fact that every 

discrete linear transformation can be represented by a transformation matrix that can be 

applied through matrix multiplication. Although DHT matrices are well known, they yield 

identical results to the Fourier-based DHT used in the KK method, thus offering no 

improvement in accuracy. The LeDHT method seeks solve this issue by using the ordinary 

least squares (OLS) optimization method to solve for the matrix 𝐇 that minimizes the 

residual sum-of-squares between the true and predicted Hilbert transforms according to the 

following equation: 

 𝐇 = argmin𝐇‖𝐺 − 𝐹𝐇‖2 (15) 

Where 𝐹 is a matrix of training data and 𝐺 is a matrix of the known Hilbert transforms of 

the corresponding data in 𝐹. 𝐹 and 𝐺 are both 𝑀 ×𝑁 matrices, where M is the number of 

input spectra and N is the length of each spectrum [17]. Once the optimal matrix 𝐇 is found, 

the LeDHT method can then be applied with matrix multiplication as, 

 𝐺𝑒𝑥𝑝 = 𝐹𝑒𝑥𝑝𝐇 (16) 

Where 𝐹𝑒𝑥𝑝 is the matrix of experimental input spectra and 𝐺𝑒𝑥𝑝 is the matrix retrieved 

Hilbert transforms for the spectra in 𝐹𝑒𝑥𝑝. If the obtained matrix 𝐇 is optimal, the LeDHT 

method promises more accurate phase retrieval than the KK method.  
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2.1.3 Convolutional Neural Network: SpecNet 

In 2020, SpecNet was the first deep-learning-based solution to the NRB removal problem 

[18]. The goal of SpecNet is to simplify NRB removal by training a convolutional neural 

network (CNN) to retrieve the Raman-like spectral line shapes directly from the CARS 

spectra without the need for a separate NRB measurement. Figure 4 shows a schematic 

diagram of the CNN architecture that SpecNet is based on. 

 

Figure 4: SpecNet schematic diagram. This figure shows a schematic diagram for the CNN-

based architecture that the SpecNet model employs to solve the NRB removal problem. 

This figure is adapted from Valensise et. al. (2020). [18] 

 

The SpecNet model maps the input CARS spectra to the target Raman spectra using a series 

of convolutional (CL) layers followed by fully-connected (FC) layers. The CL layers serve 

the purpose of learning progressively higher-order features of the input data by applying 

filters that select for the features that are relevant to the final retrieval. The FC layers then 

take the output of the CL layers and reconstruct the predicted Raman spectral line shapes 

from them. The CL layers additionally contribute to making the model translationally 

equivariant, meaning that the model learns each CARS feature in a way that preserves 

locality [19]. This is necessary to consider for spectral retrieval because the model should 

be able to retrieve a spectral feature in a way that preserves its location regardless of 

whether it has been shifted within the spectrum. Refer to Appendix C for a general 
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overview of neural networks and to Appendix D for specific details related to the 

implementation of the SpecNet model. 

Due to the high generalizability of CNNs, the SpecNet model can be trained on simulated 

CARS spectra and then applied to experimental CARS spectra. The accuracy of the model, 

however, is contingent on how well the training data represents the real data. For this 

reason, the training dataset should be carefully designed to reflect the expected 

experimental spectra. Should the SpecNet model be trained properly, it promises to 

simplify the NRB removal process by making the requirement of an NRB measurement 

passe.  

2.1.4 Convolutional Autoencoder: VECTOR 

Following the creation of SpecNet in 2020, a search for more capable deep-learning models 

for NRB removal was commenced. Since convolution autoencoders (CAEs) are a natural 

successor to CNNs for this type of problem, a CAE-based approach called VECTOR was 

developed in 2022 [20]. A schematic depiction of the CAE architecture that VECTOR is 

based on can be found in Figure 5.  

 

Figure 5: VECTOR schematic diagram. This figure shows a schematic diagram of the 

convolutional autoencoder architecture that the VECTOR model is based on. The model 

consists of an encoder and decoder pair joined by a latent space bottleneck. This figure is 

adapted from Wang et. al. (2022). [20] 
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At a basic level, autoencoders are comprised of two subnetworks: an encoder and a 

decoder. The encoder is trained to reduce the dimensionality of the input data into a so-

called “latent space” representation that is presumed to be a superior encoding for the data, 

similarly to principal component analysis (PCA). However, the encoder is more flexible 

than PCA given that it is a non-linear transformation, whereas PCA is an orthogonal linear 

transformation. Using a latent space with finite number of nodes whose outputs are 

encoded by 32- or 64-bit binary values, our latent space can only represent a definite 

number of states. The goal of the encoder is to optimize the use of these states to maximally 

encode the features of the input CARS spectra that are relevant to the retrieval. The decoder 

then learns to reconstruct the target Raman-like line shapes from the encoder’s latent space 

representations of the input CARS spectra.  

Convolutional autoencoders (CAEs) are simply autoencoders that employ convolutional 

layers in the encoder and transposed convolutional layers in the decoder. Hence, everything 

that was said about the convolutional layers for SpecNet also applies to VECTOR. There 

are two primary characteristics of CAEs that will be relevant to the later testing: noise 

reduction and overfitting. CAEs tend to reject noise since it does not resemble features that 

are relevant to the retrieval, e.g. the resonant CARS line shapes, so the encoder learns to 

suppress it. CAEs also tend to overfit to the training dataset, performing poorly on any data 

that deviates from it. This is due to the over-tuning the encoder-decoder networks to 

features specific to the training data. Take note of these two characteristics as they will be 

important later. An in-depth summary of each VECTOR model used throughout this work 

can be found in Appendix E. 
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2.2 CARS Simulation Methods 

Only by directly comparing the retrieved and ground-truth spectra can we find the true 

capabilities of each method. Thus, the ground-truth Raman equivalencies must be known 

for the CARS spectra used during the analyses. It is difficult to obtain a reliable 

experimental surrogate for the ground-truth Raman spectrum corresponding to a given 

CARS spectrum, and any experimental dataset would necessarily be limited to only the 

materials available in the lab. These limitations are undesirable for the purposes of training 

the machine learning models, as we want the training dataset to be accurate and expose the 

models to a broad range of input data for the best generalization. Consequently, a training 

dataset consisting of pairs of idealized synthetic CARS and ground-truth Raman spectra 

are used for the training of the machine learning models, and a similarly constructed 

synthetic dataset is used for testing the NRB removal methods. These simulations allow 

for precise control over each aspect of the dataset. This ensures that a broad range of inputs 

are included in the training/testing datasets and that the results can be easily replicated by 

others. The following section outlines the procedure for generating the simulated data used 

herein. 

2.2.1 Resonant Spectral Line Shapes 

The resonant contribution to the third-order susceptibility is a complex-valued function 

that can be calculated explicitly for a given system using time-dependent perturbation 

theory [21]. For simplicity, the general solution for a system of damped harmonic 

oscillators, each having the form of a complex Lorentzian similar to that given by Lotem 

et. al. [3], will be used to simulate the resonant susceptibility in this work. The resonant 
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contribution to the third-order susceptibility is then given by the sum of these complex 

Lorentzian peaks as follows: 

 χ𝑅
(3)(ω) =∑

𝐴𝑖
Ω𝑖 −ω − 𝑗Γ𝑖

𝑛

𝑖=1

 (17) 

Where Ai ∝ σiCi is the amplitude proportional to the cross-section (σ𝑖) and concentration 

of scatterers (𝐶𝑖), Ω𝑖 is the central frequency, and Γ𝑖 is the half-width of the 𝑖-th peak for a 

spectrum with 𝑛 peaks. Figure 6 demonstrates an example of the real and imaginary parts 

of Eq. (17). 

The parameters in the equation above are stochastically generated for each spectrum in the 

training and testing datasets according to the following conditions: 

 

𝐴𝑖 = U(0.01,  1) 

Ω𝑖 = U( 00,  1900) 

Γ𝑖 = U( ,   0) 

n = U(1,  15) ∈ ℤ 

(18) 

Where 𝑈(𝑎, 𝑏) indicates that the variable is being chosen at random according to a uniform 

probability distribution between 𝑎 (min) and 𝑏 (max).  

When calculating the Raman spectrum from χ𝑅
(3)

 above, we are inclined to adopt a 

normalization scheme such that: 0 < Im(χ𝑅) ≤ 1. By doing this we also ensure that the 

CARS spectrum is restricted to this range. Adopting such normalization schemes helps to 

avoid covariate shifts in the data that can negatively impact the performance of machine 

learning models [22].  
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Simulations of the spectra for real materials can be obtained by setting the peak amplitudes, 

centers, and half-widths according to the known values established by previous studies of 

those materials. These can be used for testing how well the methods work on idealized data 

for given materials, and they can be used to augment the training dataset for stronger results 

on experimental spectral retrieval of those materials.  

 

Figure 6: Resonant susceptibility example. This figure demonstrates the real and imaginary 

parts of the resonant susceptibility calculated with Eq. (17), with the imaginary part 

corresponding to Raman spectral line shapes and the real part contributing to the dispersive 

lines shapes in CARS spectra. 

 

2.2.2 Non-resonant Spectral Line Shapes 

The spectral profile of the NRB is system dependent and thus varies between measurements 

taken from different systems. This makes it difficult to simulate an NRB profile that is 

generally applicable to common experimental data. For consistency with previous 

literature on NRB removal [17], [18], [20], we adopt a simple NRB profile consisting of 
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the product between two oppositely facing sigmoidal functions. This idealized dual-

sigmoid NRB can be described by the following equation: 

 χ𝑁𝑅
(3)(𝜔) = σ(𝜔, 𝑥1, 𝑤1) σ(𝜔, 𝑥2, −𝑤2) (19) 

Where σ is a sigmoid function given by, 

 σ(𝑥, 𝑥0, 𝑤) =
1

1 + 𝑒−(𝑥−𝑥0)/𝑤
 (20) 

Where 𝑥0 represents the center position and 𝑤 controls the effective width of the sigmoid. 

The NRB parameters are then stochastically generated such that: 

 

𝑤1, 𝑤2 = U(0.04 ω𝑚𝑎𝑥, 0.16 ω𝑚𝑎𝑥) 

𝑥1 = 𝒩(0.  ω𝑚𝑎𝑥, 0.  ω𝑚𝑎𝑥) 

𝑥2 = 𝒩(0.7 ω𝑚𝑎𝑥, 0.  ω𝑚𝑎𝑥) 

(21) 

Where 𝒩(μ, σ) represents a normal distribution with a mean μ and a standard deviation σ. 

 

Figure 7: Non-resonant susceptibility examples. This figure shows several examples of the 

randomly generated non-resonant susceptibilities from the oppositely facing dual-sigmoid 

function described by Eq. (19). 
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2.2.3 CARS, NRB, and Raman Simulations 

The total third-order susceptibility is calculated according to the above as follows: 

 χ(3)(𝜔) = α 
χ𝑅
(3)(𝜔)

𝑚𝑎𝑥 (|χ𝑅
(3)(𝜔)|)

+ β 
χ𝑁𝑅
(3)(𝜔)

𝑚𝑎𝑥 (|χ𝑁𝑅
(3)(𝜔)|)

 (22) 

Where each term in this equation is normalized, then the first term is multiplied by a factor 

α that controls the attenuation of the resonant component (i.e. the effective analyte 

concentration), and the second term is multiplied by the factor β representing the intensity 

of the non-resonant component. These factors are stochastically generated as follows, 

 α, β = 𝑈(0.1, 1) (23) 

The intensity of the CARS signal is then given by, 

 𝐼CARS(𝜔) =
1

 
|χ(3)(𝜔)|

2
 (24) 

The intensity of the NRB signal is given by, 

 𝐼NRB(𝜔) =
1

 
|χ𝑁𝑅

(3)(𝜔)|
2

 (25) 

And the ground-truth Raman equivalency for the above is given by, 

 𝐼Raman(𝜔) = Im(χ𝑅
(3)(𝜔)) (26) 

Where χ𝑅
(3)(𝜔) in Eq. (24)–(26) is given by Eq. (22). Lastly, all spectra were simulated 

using 1000 data points from 0 cm−1 to 2000 cm−1 to cover the entire fingerprint region. 

Figure 8 demonstrates representative examples of the types of randomly generated spectra 

that are obtained from the equations described above. 
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Figure 8: Randomly generated CARS, NRB, and Raman spectra. This figure shows 5 

randomly generated spectra that are representative of the types of spectra that can be 

obtained using the methods described in Eq. (17)–(26). 

 

2.2.4 Hyperspectral Image Simulations 

To test the retrieval capabilities of the methods on hyperspectral images, the ground-truth 

hyperspectral Raman image must be known for comparison. We cannot obtain ground-

truth references experimentally, so to accomplish this we generated synthetic hyperspectral 

images. To do this we can define the two-dimensional spatial distribution of each material 

in the form of a normalized raster image where each pixel intensity corresponds to the 

normalized material concentration at that location. Then the hyperspectral image is formed 
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by simulating the CARS and Raman spectra at each pixel according to the concentration 

encoded in the pixel intensity. This is described in detail below. 

Consider that we want to simulate a hyperspectral image of a sample region containing M 

chemical species with various spatial distributions by generating a spectrum of length N 

for each pixel in an X × Y raster scan. To accomplish this, use the following procedure. 

1. Create M normalized grayscale raster images to be used as intensity maps 

representing the effective spatial distributions of the M materials. These images can 

be represented by matrices 𝐀𝑚 ∈ (0, 1)𝑋×𝑌 for each 𝑚 ∈ ⟦1,𝑀⟧.  

2. Simulate the resonant susceptibility χ𝑅,𝑚(ω) ∈ ℂ𝑁 for each 𝑚 ∈ ⟦1,𝑀⟧, according 

to Eq. (17). These will be used to obtain the ground-truth Raman line shapes for 

each of the M chemical species.  

3. Obtain the hyperspectral image containing the resonant susceptibility spectrum for 

each pixel by creating a data cube 𝐑 ∈ ℂX×Y×N where 𝐑𝑥𝑦 = ∑ 𝐀𝑚,𝑥𝑦 𝜒𝑅,𝑚(𝜔)
𝑀
𝑚=1 . 

Here we are multiplying by the coefficient representing the concentration of each 

material and then taking the sum of the susceptibilities for each material to represent 

the chemical mixing, for each pixel. 

4. Simulate the non-resonant susceptibility χ𝑁𝑅(ω) ∈ ℝ𝑁 according to Eq. (19). This 

will be used to obtain the NRB image 𝐍𝐑 ∈ ℝ𝑋×𝑌×𝑁 where 𝐍𝐑𝑥𝑦 = χ𝑁𝑅(ω). 

5. Simulate the hyperspectral ground-truth Raman image, where 𝐈Raman = Im(𝐑). 

6. Simulate the hyperspectral NRB image, where 𝐈𝑁𝑅𝐵 =
1

2
|𝐍𝐑|2. 

7. Simulate the hyperspectral CARS image, where 𝐈𝐶𝐴𝑅𝑆 =
1

2
|𝐑 + 𝐍𝐑|2. 

Note: the operations in steps 5-7 are applied elementwise. 
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2.3 Evaluation Methods 

The mean absolute error (MAE), also referred to as the “𝐿1 norm”, between the retrieved 

and ground-truth data is used to assess the accuracy of each method’s spectral retrieval 

capabilities, where a lower MAE corresponds to a higher accuracy. The MAE is defined as 

follows: 

 MAE =
1

𝑁
∑|𝐼retr,𝑖 − 𝐼Raman,𝑖|

𝑁

𝑖=1

 (27) 

Where 𝐼retr is the set of retrieved spectra, 𝐼Raman is the set of ground-truth spectra, and 𝑁 

is the number of spectra over which the MAE is being calculated. Although a normalized 

accuracy metric like percent difference may be more interpretable than the MAE because 

it scales with the expected value, it is ill-behaved for values near zero. Since we expect to 

encounter values near zero in between the peaks in our spectra and for spectra with low 

intensities, the percentage difference should be avoided. Simply using the MAE is thus the 

most straightforward approach. Although we will not be able to ascertain a normalized 

percentage accuracy, we can still calculate the MAE for each method using the same data 

to compare their accuracies. 

To evaluate the NRB removal methods on the simulated hyperspectral images, the retrieval 

methods were applied to the simulated hyperspectral CARS images to obtain the 

“retrieved” hyperspectral Raman images. These were compared to the ground-truth Raman 

images using the structural similarity index measure (SSIM), the preeminent metric in 

image processing for quantifying the similarity between two images [23]. The SSIM is 

defined as follows: 
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 SSIM(𝒙, 𝒚) =
( μ𝑥μ𝑦 + 𝑐1)( σ𝑥𝑦 + 𝑐2)

(μ𝑥2 + μ𝑦2 + 𝑐1)(σ𝑥2 + σ𝑦2 + 𝑐2)
 (28) 

Where μ𝑥 and μ𝑦 are the pixel means and σ𝑥
2 and σ𝑦

2  are the pixel variances of images 𝒙 

and 𝒚, respectively. σ𝑥𝑦 is the covariance of images 𝒙 and 𝒚. 𝑐1 = 0.0001 and 𝑐2 = 0.0009 

are constants that ensure division stability when the denominator is near 0. SSIM exhibits 

properties of boundedness (𝑆𝑆𝐼𝑀 ≤ 1), and unique maximum (𝑆𝑆𝐼𝑀(𝒙, 𝒚) = 1 if and 

only if 𝒙 = 𝒚), which are essential when quantitatively comparing two images. 

2.4 Model Training Methods 

Machine learning models must undergo a “training” process to be useful at a given task. 

This training process dictates how well the final model will perform, with the objective of 

finding the optimal performance for the given architecture. The models begin inept since 

they are initialized with random parameters, but the model parameters are gradually 

optimized for accomplishing the task through training. This process is where the “learning” 

originates in “machine learning”. SpecNet and both VECTOR models were trained using 

an on-the-fly stochastically generated dataset of 25,600 spectra without additive noise for 

each of the 10 training epochs, an epoch being one iterative step through the training data. 

The default Adam optimizer [24] provided within the TensorFlow framework (version 

2.13.0) was used during training with the mean squared error (MSE) as a loss function. 

Appendix F contains the Python code I adopted for training each model using the 

tf.keras.Model.fit method available in TensorFlow. This simplistic training regime was 

chosen with the intention that it could be easily adopted by those not experienced in 

machine learning to quickly train models on low-end hardware, such as a personal 

computer, for their personalized needs. Better results may be achievable by experienced 
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machine learning practitioners who implement customized training procedures on high-

end purpose-built hardware. However, this simple training regime is sufficient to obtain 

acceptable results for the sake of evaluating the methods. 

Additive noise was omitted from the training dataset since it slows down learning 

convergence and the convolutional layers in both architectures have internal noise 

reduction properties. This occurs because the convolution kernels that are learned by the 

convolutional layers during training filter the data at each layer according to the spectral 

features relevant to the retrieval. Noise does not resemble these features and so it is 

progressively filtered out by the convolutional layers. This will become apparent in Section 

3.4 when we test the methods on noisy input data. Note that noise removal is not of 

principal concern in this thesis but is simply a property of the models. There are many 

dedicated noise removal techniques that are far more capable than the methods considered 

in this thesis and that should be applied to input data prior to NRB removal.  
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3 Results and Discussion 

This section presents the results obtained in evaluating the spectral retrieval capabilities of 

the methods outlined in the previous section. These results include: the machine learning 

training results, the overall spectral retrieval accuracy, the hyperspectral image retrieval 

performance, adaptability to various noise and NRB conditions, and applicability to 

quantitative analysis. A brief discussion is provided for each of the results to add context 

and explain the significance. 

3.1 Model Training Results 

Figure 9 demonstrates the evolution of the mean absolute error (MAE) during training for 

SpecNet, VECTOR-8, and VECTOR-16. Evidently, each of the models converge within 

10 epochs with a training MAE of ~0.015 for SpecNet and ~0.008 for the VECTOR 

models. The MAE is reduced to < 0.1 for each model within the first epoch, showing a 

marked improvement over the randomly initialized models created prior to training. 

Although SpecNet outperforms both VECTOR models during the first epoch due to its 

relative simplicity, the other two models quickly overtake SpecNet, as their complexity 

leads to greater generalization capabilities. 
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Figure 9: Training histories for three machine learning models. This figure shows the MAE 

progression during training for SpecNet, VECTOR-8, and VECTOR-16. Each model was 

trained with an on-the-fly stochastically generated dataset of 25,600 spectra for 10 epochs 

with a batch size of 256. The Adam optimizer was used with a MSE loss function. 

 

Although the authors of the SpecNet model did not explicitly show their training curves, 

the results obtained later in this section are consistent with those presented in their article 

[18]. This demonstrates that the SpecNet model is reproducible, and that similar 

performance can be achieved under different training regimes. The authors of the VECTOR 

model did show their training results, and our results presented here are consistent with 

their findings to within the first 10 training epochs. However, the VECTOR authors trained 

their model using 100 epochs with variable learning rates and an optimizer based on 

traditional stochastic gradient descent. Although stochastic gradient descent converges 

slower than the Adam optimizer, it often produces a slightly superior model [20]. 

Consequently, their training procedure would take an order of magnitude longer than that 

used here and result in an MAE improvement of ~0.005 on average, which corresponds 



30 

 

 

to < 1% of the maximum peak amplitude. This will make a significant difference for 

exceedingly small peaks in an artificially clean spectra, but will fall below the noise in 

experimental data in most cases anyway. Thus, the much longer training time is unlikely 

worth the miniscule enhancement in performance. 

3.2 Spectral Retrieval Comparison 

A dataset of 10,000 random spectra was generated to test the efficacy of the NRB removal 

methods. Figure 10 presents the calculated MAE between the ground-truth Raman spectra 

and the retrieved spectra for each of the methods when applied to the test dataset. The 

methods can be ranked from worst to best performance as: KK, LeDHT, SpecNet, 

VECTOR-8, and VECTOR-16. We can see that there is a gradual reduction in the MAE as 

we move towards more complex models, with each of the deep-learning-based models 

outperforming the DHT-based methods. This demonstrates that machine learning is a 

powerful tool for NRB removal and has the generalization capabilities to be competitive 

with the DHT-based methods. 

 

 

Figure 10: Comparison of MAE for NRB removal methods. This figure shows the MAE 

calculated between the ground-truth and retrieved spectra for each NRB removal method 

after being applied to a test dataset of 10,000 stochastically generated spectra. A lower 

MAE represents a better average accuracy.  
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The SpecNet and VECTOR models perform better than the DHT-based methods because 

they are optimized for the given retrieval, whereas the DHT and error-corrections both use 

computations that are prone to errors. There must then be a subset of spectra in the test 

dataset for which the KK and LeDHT methods perform suboptimally, such as those with 

flat NRB shapes. Assuming the machine learning models were trained on a dataset that 

sufficiently sampled the space of CARS spectra, the machine learning models must have 

been trained on the spectra for which the DHT-based methods perform poorly. The 

SpecNet and VECTOR models consequently have an advantage in that they do not rely on 

a predefined function to find the retrieved spectrum, and thus tend toward a more optimal 

solution. This demonstrates the power of feedforward neural networks as universal 

approximators [25], [26].  

Although these MAE values can indicate how well the methods are retrieving the ground-

truth spectra in general, they do not provide an indication of the circumstances under which 

each method performs best. As discussed in Section 2.3, the MAE also is not normalized 

by the spectral intensities. It simply shows the average absolute difference between the 

ground-truth and retrieved values. Consequently, it lacks the context that a percentage 

accuracy does. The MAE varies by about a factor of 2 between the best and worst of the 

methods, namely VECTOR-16 and KK, but without the context of how the MAE values 

relate to the spectral intensities it is hard to assess how these values pertain the performance 

in a meaningful sense. For example, this factor of 2 improvement in MAE equally applies 

to going from a percent difference of 80% to 40% or a percent difference of 2% to 1%. The 

latter of the two is clearly less significant in terms of the effect on the actual retrieval, as 
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anything below 10% may be considered sufficient. Further analyses will refine the testing 

criteria to probe the performance of each method under more controlled conditions. 

3.3 Hyperspectral Image Retrieval 

The previous section tested how well the methods performed on spectral retrieval in 

general. However, it is not obvious that this translates to the qualitative enhancement of 

the hyperspectral CARS images. To test their hyperspectral retrieval capabilities, we apply 

each method to simulated hyperspectral CARS images obtained as described in Section 

2.2.4 and use the SSIM defined by Eq. (28) to see how well they retrieve the corresponding 

ground-truth hyperspectral Raman images.  

Figure 11 shows the simulated ground-truth Raman and CARS spectra that were used to 

simulate the example hyperspectral image. The image chosen for the spatial intensity map 

of the simulated material is a microscopic fluorescence image of a tubulin-based 

microtubule network obtained from [27]. This image was chosen because it provides both 

fine and course details and a significant amount of contrast over the extent of the image. In 

particular, the image has a dark background that can be used to gauge how the chemical 

contrast compares to the NRB. The image resolution was scaled to 256 pixels on each size 

for a total of 65,536 square pixels, each representing a spectrum with 1000 points. In the 

figure below we see that the Raman image perfectly preserves the contrast of the original 

image (by definition), whereas the CARS image has decreased the contrast and effectively 

erased certain features of the image because of the NRB.  
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Figure 11: Simulated hyperspectral image example. This figure shows the simulated 

ground-truth Raman (top) and CARS (bottom) spectra used to simulate the material 

spectrum in the hyperspectral images. The inset images show the on-resonance frames 

indicated by the dashed blue line through the simulated Raman (top) and CARS (bottom) 

spectra. The inset images are adapted from a fluorescence image of a tubulin-based 

microtubule network retrieved from [27]. Note that the spectrum depicted in the figure does 

not represent the actual spectrum of tubulin. 
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Figure 12: Average and on-resonance SSIM for retrieved and ground-truth images. The 

SSIM for the hyperspectral CARS image is included for comparison. The average SSIM 

values are calculated by taking the arithmetic mean of the SSIM between each 

corresponding image in the hyperspectral stack. The on-resonance SSIM is calculated just 

for one frame corresponding resonance peak from the spectrum in Figure 11.  

 

Figure 12 above shows the average and on-resonance SSIM calculations between the 

retrieved and ground-truth hyperspectral images for each NRB removal method. The SSIM 

for the raw CARS image is also included in the evaluation. The CARS images have an 

SSIM of 0.07 on average and an SSIM of 0.48 on resonance. These are exceptionally low 

SSIM values that indicate that CARS images poorly represent the true chemical 

information and thus exemplify the need for spectral retrieval for reliable chemical analysis 

when implementing CARS microscopy. 

We can see that all retrieval methods provide an improvement over the original CARS 

images, as indicated by the larger SSIM values. Peculiarly, the on-resonance SSIM for each 

retrieval method is 1, meaning that the retrieved images perfectly match the ground-truth 

images. The average SSIM is lower than 1 in all cases. This means that the retrieval 

methods perform better than average at or near the resonance peaks. This is particularly 

pronounced for the KK method, which has a much lower average SSIM than the other 
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methods, but still retrieves the on-resonance image perfectly. To explore this, the SSIM is 

plotted for each frame of the retrieved hyperspectral images (see Figure 13). 

In Figure 13, we see a localized SSIM enhancement around the resonance peaks for the 

KK and LeDHT methods. This verifies that these methods perform better at or near the 

peak locations. Also, the KK and LeDHT methods were applied without padding or error-

correction to elucidate their relative performance without external influence. The KK 

method thus performs very poorly at the endpoints of the data, as indicated by the SSIM 

dropping to zero at the ends of the plots. We can see that the LeDHT method successfully 

achieves its intended goal of fixing the endpoint errors associated with the KK method by 

increasing the SSIM at the endpoints [17]. 

SpecNet and the VECTOR models do not demonstrate the same localized performance 

enhancement near the resonance peaks as the KK and LeDHT methods do. Instead, 

SpecNet has random drops in performance that tend to be located towards the central region 

of the spectrum, which decreases the average performance. It is tempting to attribute this 

behaviour to the dropout layer, which randomly “drops out” certain nodes by setting their 

values to zero. However, this cannot be explained by the dropout layer in SpecNet (refer 

to Appendix D for SpecNet details) because the dropout layer is only applied during 

training according to the TensorFlow documentation [28]. Tracking down the source of 

this behaviour is thus nontrivial. Conversely, the VECTOR models perform well in the 

central region of the spectrum but have a decrease in performance towards the edges of the 

spectrum, reminiscent of the DHT-based methods. The performance improves when the 

depth of the model in increased, as evidenced by the increase in average SSIM from 

VECTOR-8 to VECTOR-16.  
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To summarize, the KK method does not appear to be the optimal solution under any 

circumstances. LeDHT and VECTOR-8 share the same average SSIM and have a similar 

SSIM spectrum, but LeDHT is preferable since the VECTOR-8 model produces an 

undesirable frame-to-frame variation that LeDHT does not. SpecNet and VECTOR-16 

share an SSIM that is larger than the other models, making them preferable to the others. 

Although SpecNet has the same average SSIM as VECTOR-16, we see that the minimum 

SSIM of former is much lower than that of the latter, indicating that the worst-case retrieval 

for SpecNet is much worse than the worst-case retrieval for VECTOR-16. Since SpecNet 

exhibits less stability due to random dropouts in its SSIM, the VECTOR-16 model is the 

preferable for hyperspectral image retrieval according to these tests.  
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Figure 13: Retrieved SSIM for each frame in hyperspectral images. This figure shows the 

SSIM calculated for each frame in the pair of ground-truth and retrieved hyperspectral 

images. Blue dashed lines represent the resonance peaks in Figure 11. Note: the KK and 

LeDHT method were calculated without padding the input or error-correction calculations.  
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Table 1: Hyperspectral image retrieval times for each retrieval method. 

Method Retrieval Time (seconds) 

KK 8 

LeDHT 10 

SpecNet 15 

VECTOR-8 31 

VECTOR-16 319 

 

Previously, only the retrieval accuracy has been considered in the comparison between the 

spectral retrieval methods. However, the required compute time, versatility, and user-

friendliness are also important to consider during the cost-benefit analysis. Table 1 shows 

the retrieval time required for the hyperspectral image from Figure 11. This is important 

for high-throughput and on-the-fly retrieval applications. Although the KK method is less 

accurate on average than every other method, it is the fastest method, taking 8 seconds per 

hyperspectral image or 0.1 milliseconds per pixel. Despite the VECTOR-16 model being 

the most accurate on average, it is significantly slower than the others, taking 319 seconds 

per hyperspectral image or 4.9 milliseconds per pixel. Moreover, the KK method can be 

used for spectra of any length, whereas LeDHT, SpecNet, and the VECTOR models all 

have fixed input sizes and need to be modified and retrained for each additional input 

spectrum length. This reduces the versatility and user-friendliness of the machine learning 

methods and increases the pre-use cost of implementing the machine learning methods. For 

this reason, the KK method is the most practical method despite its lower accuracy. 

The times in Table 1 were achieved using a PC with 16 GB of RAM, an AMD Ryzen 5 

3600 CPU, and an NVIDIA GeForce GTX 1660 Super GPU.  



39 

 

 

3.4 Impact of Noise and NRB Levels 

To assess the robustness of each spectral retrieval method for experimental analysis, it is 

important to consider how each of the methods would perform when applied to input 

spectra with various signal-to-noise and signal-to-background ratios. For that purpose, this 

section will evaluate the spectral retrieval capabilities of each method when applied to input 

spectra with various noise levels and χ𝑅/χ𝑁𝑅 ratios. For the following comparisons, a 

spectrum with a single peak located at the center is used for the retrievals. Gaussian noise 

is added to the CARS and NRB spectra with a mean of zero and a standard deviation, 

referred to as the “noise level”, that determines the amount of noise. Gaussian noise is 

chosen for simplicity and because it is commonly encountered in experimental data. No 

noise reduction techniques are applied to the input spectra to assess the true capabilities of 

each. 

Figure 14 shows a plot of the input CARS spectrum for each combination of the following 

noise and NRB parameters: the rows represent the χ𝑅/χ𝑁𝑅 ratios that are varied between 

100 to 0.01 by powers of 10 from top to bottom, and the columns represent the noise levels 

that are varied between 0.001 and 0.1 by powers of 10 from left to right. The top row 

represents CARS spectra for which the NRB has negligible effect on the peak shape. Each 

row moving down then increases the NRB in proportion to the resonant signal, making 

retrieval more necessary for Raman-like peak extraction. The bottom row represents 

spectra for which the resonance peak is significantly obscured by the NRB. Each column 

from left to right has an increasing noise level, representing a decreasing signal-to-noise 

ratio. This becomes significant for the CARS spectra in the bottom-right panel and the two 

adjacent panels for which the noise level is well above or near the peak intensity. Retrieval 
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is consequently expected to fail in these cases for each method without substantial noise 

reduction since the information about the resonance peak is completely buried. 

 

 

Figure 14: CARS test spectra with various noise and NRB parameters. The spectra are 

designed such that there is a broad symmetric NRB with a single centrally located 

resonance peak. The χ𝑅/χ𝑁𝑅 ratio is varied between 0.01 to 100 by powers of 10. The 

spectra were then normalized prior to adding Gaussian noise with a mean of zero and a 

standard deviation of 0.001, 0.01, and 0.1. Note: in the bottom-right spectrum and its two 

adjacent spectra, the peaks are of the same order as the noise level. It is thus not expected 

to retrieve these peaks without noise reduction techniques. 

 

The following figures demonstrate the results of applying each spectral retrieval method to 

the spectra in Figure 14.   
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Figure 15: KK retrieval results for various noise and NRB parameters. This figure shows 

the retrieved spectra from applying the KK method to the CARS test spectra in Figure 14. 

Spectra retrieved from the  The MAE normalized by the resonant peak intensity is shown 

in the top-left corner of each plot. Each dashed black line represents the ground-truth 

Raman-like spectrum to be retrieved. 
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Figure 16: LeDHT retrieval results for various noise and NRB parameters. This figure 

shows the retrieved spectra from applying the LeDHT method to the CARS test spectra in 

Figure 14. The MAE normalized by the resonant peak intensity is shown in the top-left 

corner of each plot. Each dashed black line represents the ground-truth Raman-like 

spectrum to be retrieved. 
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Figure 17: SpecNet retrieval results for various noise and NRB parameters. This figure 

shows the retrieved spectra from applying the SpecNet model to the CARS test spectra in 

Figure 14. The MAE normalized by the resonant peak intensity is shown in the top-left 

corner of each plot. Each dashed black line represents the ground-truth Raman-like 

spectrum to be retrieved.  
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Figure 18: VECTOR-8 retrieval results for various noise and NRB parameters. This figure 

shows the retrieved spectra from applying the VECTOR-8 model to the CARS test spectra 

in Figure 14. The MAE normalized by the resonant peak intensity is shown in the top-left 

corner of each plot. Each dashed black line represents the ground-truth Raman-like 

spectrum to be retrieved.  
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Figure 19: VECTOR-16 retrieval results for various noise and NRB parameters. This figure 

shows the retrieved spectra from applying the VECTOR-16 model to the CARS test spectra 

in Figure 14. The MAE normalized by the resonant peak intensity is shown in the top-left 

corner of each plot. Each dashed black line represents the ground-truth Raman-like 

spectrum to be retrieved.  
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3.4.1 KK Method: Noise and NRB 

Since the discrete Hilbert transform (DHT) is a variance-preserving transformation, i.e. the 

variance of the DHT of a signal is the same as the variance of the signal itself [17], we 

expect noise to have a significant impact on the KK method. Typically, noise reduction 

techniques such as smoothing filters or singular value decomposition (SVD) are applied to 

the input spectra prior to using the KK method [29]. However, for this test we want to see 

the effect of the noise on the retrieval capabilities, so we do not perform any noise 

reduction.  

Figure 15 shows the results of the KK method when applied to the spectra in Figure 14. 

We can see that the noise in the retrieved spectra increases along a given row from left to 

right, relating to the increasing noise level of the input spectra. This is consistent with our 

expectations given that the DHT preserves variance. Interestingly, the KK method also 

performs poorly when χ𝑅/χ𝑁𝑅 = 100 since the noise is amplified near the peak, degrading 

the reliability of the spectral retrieval near the resonance. This noise amplification is a 

consequence of dividing the CARS spectrum by a small NRB when the spectra are 

normalized to the unit interval, which effectively amplifies the noise. This may be 

alleviated by adopting a different standardized range for representing the data where a 

“small” NRB is still greater than 1. Thus, the CARS intensities are exceptionally large. 

In summary, the KK method never performs well on data with a noise level of 0.1, and 

only performs well on data with a noise level of 0.01 if the signal-to-background ratio 

satisfies 0.1 < χ𝑅/χ𝑁𝑅 < 1. The KK method is viable for data with a noise level of 0.001 

as long as χ𝑅/χ𝑁𝑅 ≤ 10. 
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3.4.2 LeDHT Method: Noise and NRB 

Figure 16 shows the spectra retrieved from the LeDHT method when applied to the input 

spectra in Figure 14. As expected, the LeDHT method yields comparable results to that of 

the KK method. This is expected since the LeDHT method is identical to the KK method 

apart from the DHT calculation. Much of the discussion in the previous subsection about 

the KK method is applicable here as well, namely, the LeDHT method never performs well 

on data with a noise level of 0.1, and only performs well on data with a noise level of 0.01 

if the signal-to-background ratio satisfies 0.1 < χ𝑅/χ𝑁𝑅 < 1. The LeDHT method is also 

viable for data with a noise level of 0.001 as long as χ𝑅/χ𝑁𝑅 ≤ 10. 

3.4.3 SpecNet Model: Noise and NRB 

Figure 17 shows the spectra retrieved from the SpecNet model when applied to the input 

spectra in Figure 14. It is immediately noticeable that the SpecNet model does not have the 

same issue with the high signal-to-background (χ𝑅/χ𝑁𝑅 = 100) spectra that the KK and 

LeDHT methods did. This is predominantly because the SpecNet model does not normalize 

the CARS signal by the NRB and was sufficiently trained to retrieve spectra with small 

NRBs. The SpecNet model does display the anomalous signal dropouts seen in the previous 

section, which points to a persistent error in the model architecture. Despite this, the 

SpecNet model does an exceptional job of retrieving the Raman-like peaks, so detecting 

the errors and interpolating between them may be an effective strategy to alleviate the issue. 

We can see that that the SpecNet model also retrieves a spectrum with noise that increases 

from left to right. However, the SpecNet model does a much better job at suppressing the 

noise that the DHT-based methods owing to its convolutional layers. The SpecNet model 

most notably fails for spectra where χ𝑅/χ𝑁𝑅 = 0.01, representing an exceedingly small 
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resonance peak compared to the NRB. This is indicated by the failure of SpecNet retrieve 

the bottom-left peak. The SpecNet model also fails for the three peaks along the bottom-

right corner with low signal-to-noise ratios, as expected. The SpecNet model does perform 

well in every other circumstance. 

3.4.4 VECTOR Models: Noise and NRB 

Figure 18 and Figure 19 shows the spectra retrieved form the VECTOR-8 and VECTOR-

16 models, respectively, when they were each applied to the input spectra in Figure 14. 

Similarly to the SpecNet model, both VECTOR models solve the problem that the KK and 

LeDHT methods had with the χ𝑅/χ𝑁𝑅 = 100 spectra. Both VECTOR models also suppress 

the noise, however, VECTOR-16 does so better than VECTOR-8. The VECTOR-8 model 

demonstrates a sort of oscillatory artifact localized near the peak for noise levels of 0.001 

and 0.01 when χ𝑅/χ𝑁𝑅 = 0.1, whereas VECTOR-16 does not. This type of behaviour is 

undesirable for spectral retrieval and thus gives VECTOR-16 the edge, as it performs well 

for all spectra except the three in the bottom right corner, as expected.  
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3.5 Quantitative Analysis 

In experimental scenarios, we expect to encounter analyte concentrations that span several 

orders of magnitude. Since the resonant susceptibility scales linearly with analyte 

concentration, we can represent chemical concentrations of 100%, 10%, 1%, and 0.1% in 

our spectra by multiplying our resonant susceptibility by the factors 1.0, 0.1, 0.01, and 

0.001, respectively. Since the NRB is in principle agnostic to the chemical concentration, 

we simulate the same generic NRB for all cases. A pure chemical sample represents an 

effective concentration of 100%, but even then the NRB is often substantial due to the 

relatively strong non-resonant four-wave mixing . So, we assume χ𝑅/χ𝑁𝑅 ≈ 1 for each of 

the pure samples. For this test we will consider 5 simulated materials, each having a unique 

spectrum representing a different level of complexity, as shown in Figure 20. For the 

following quantitative analyses, 10 concentrations are considered for each material. Each 

concentration is given by a factor 10𝑥, where 𝑥 is a set of 10 equally spaced values in the 

range [− , 0]. Figure 21 shows the ground-truth Raman spectra for the materials at each 

concentration. The NRB removal methods are thus expected to retrieve each of these 

spectra during the analyses.  
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Figure 20: CARS spectra of simulated materials for quantitative analysis. The materials 

increase in complexity, with material 1 being the simplest and material 5 being the most 

complex. The complexity is qualified by the number and spacing of the peaks; with few 

distinct peaks being more simple and many convoluted peaks being more complex.  
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Figure 21: Ground-truth Raman-like spectra to be retrieved for quantitative analysis. This 

figure demonstrates the large variation in the ground-truth Raman intensities for the 

concentrations considered for quantitative analysis. The zoomed inset shows the lowest 

concentrations for the leftmost peak of material 2, which are not easily seen in the unscaled 

plots. 

 

There are two ways in which one can determine concentration from Raman spectra for 

quantitative analysis: peak height or peak area. Using the peak height technique, the 

concentration is determined by locating a representative peak and determining its 

maximum intensity. Using the peak area technique, the concentration is determined by 

locating a representative peak and integrating over the extent of the peak to find its area. 

The peak area technique is more difficult to implement because it requires a reliable method 
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for estimating the extent of the peaks. For spectra with many convoluted peaks, this 

requires deconvoluting the spectra using a curve fitting optimization algorithm to find the 

individual peaks. These algorithms typically require special care for each spectrum to 

retrieve accurate results, and are thus difficult to implement in an automated fashion. For 

simplicity, the concentrations in the following analyses were found using the peak height 

technique by basing the concentration on the height of the largest peak. This requires only 

a peak-finding algorithm, which is reliable and proves to be highly accurate.  

 

 

Figure 22: KK method quantitative analysis. This figure shows the concentration retrieved 

from the KK method (predicted concentration) versus the ground-truth concentration (true 

concentration) defined by the Raman spectra corresponding to the input CARS and NRB 

spectra. The black dashed line shows the perfect correlation.  
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3.5.1 KK Method: Quantitative Analysis 

Figure 22 shows the results of the quantitative analysis using the KK method. We can see 

that the retrieved concentration is perfectly correlated to the ground-truth concentration for 

each material. However, the retrieved concentrations for materials 4 and 5 consistently 

underestimate the concentration. A likely explanation for this consistent error is that during 

phase error correction step the ASL baseline detrending algorithm uses a suboptimal 

smoothness parameter, resulting in the retrieved baseline fitting too closely to the peak, 

which subsequently removes a portion of the peak in the phase spectrum. This error then 

propagates through the retrieval. It is thus important to ensure that the optimal parameters 

are found when implementing the ALS baseline detrending algorithm for baseline removal. 

Overall, the KK method demonstrates that it can be used to retrieve a consistent 

concentration over a broad range of concentrations as evidenced by the linear correlation 

between the predicted and true concentrations. This means that a concentration calibration 

curve can be created to account for the error mentioned above for each given material for 

consistent and comparable quantitative analysis.  
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Figure 23: LeDHT method quantitative analysis. This figure shows the concentration 

retrieved from the LeDHT method (predicted concentration) versus the ground-truth 

concentration (true concentration) defined by the Raman spectra corresponding to the input 

CARS and NRB spectra. The black dashed line shows the perfect correlation.  

 

3.5.2 LeDHT Method: Quantitative Analysis 

Figure 23 shows the results for the quantitative analysis performed with the LeDHT 

method. The retrieved concentrations correlate to the true concentrations well. However, 

material 1 seems to show a consistent error that is much greater than material 4 or 5 in this 

case. This is a reflection of how the retrieved phase is calculated differently for the LeDHT 

method than the KK method, and so the consequent phase error correction and retrieval 

will yield slightly different results. Overall, this method demonstrates that it can predict 

the concentration with a high degree of consistency over a broad range of concentrations 

similarly to the KK method.  
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Figure 24: SpecNet quantitative analysis. This figure shows the predicted concentration 

retrieved from the SpecNet model versus the true concentration defined by the Raman 

spectra corresponding to the input CARS spectra. The black dashed line shows the perfect 

correlation.  

 

3.5.3 SpecNet Model: Quantitative Analysis 

Figure 24 shows the results of applying the SpecNet model to quantitative analysis. It is 

shown that the SpecNet model does not produce a strong linear correlation for a substantial 

portion of the testing range towards lower concentrations. Although there is a positive 

linear correlation for each material for concentrations from 0.1 to 1.0, the SpecNet model 

does not retrieve the correct concentrations below 0.1. Instead, the SpecNet model breaks 

down and retrieves a constant predicted concentration of ~0.07 for all concentrations below 

0.1. This indicates that SpecNet is not a reliable method for quantitative analysis in general, 

and the concentration range should be carefully considered when using this model. 
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Figure 25: VECTOR-8 quantitative analysis. This figure shows the concentration retrieved 

from the VECTOR-8 model (predicted concentration) versus the ground-truth 

concentration (true concentration) defined by the Raman spectra corresponding to the input 

CARS spectra. The black dashed line shows the perfect correlation.  

 

 

Figure 26: VECTOR-16 quantitative analysis. This figure shows the concentration 

retrieved from the VECTOR-16 model (predicted concentration) versus the ground-truth 

concentration (true concentration) defined by the Raman spectra corresponding to the input 

CARS spectra. The black dashed line shows the perfect correlation.  
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3.5.4 VECTOR Models: Quantitative Analysis 

Figure 25 and Figure 26 shows the results for VECTOR-8 and VECTOR-16, respectively, 

when each were applied to the CARS spectra for quantitative analysis. Both models attain 

a linear correlation between the predicted and true concentrations for concentrations 

between 0.1 and 1.0. However, below 0.1 the predicted concentrations diverge from what 

is expected and settle on a constant value between 0.02 and 0.03. This indicates that the 

VECTOR models are slightly more generalized than the SpecNet model, but also limited 

by the restricted training dataset. The VECTOR models are thus not a reliable method for 

consistent comparable quantitative analysis unless trained on a highly tuned training 

dataset. 

The deficient performance of SpecNet and the VECTOR models for low concentrations 

elucidates one of the major disadvantages of the machine learning approaches: they 

perform well only on data similar to their training data. The result of this is that the training 

data must be carefully designed to emulate every possible set of input data. Otherwise, the 

trained model will fail to work as intended for input data with parameters omitted from the 

training dataset. The training data used in this work considered effective concentrations 

down to 0.1. So, the models are expected to fail when the true concentration falls below 

that value. This can also be seen in Section 3.4 for each of the machine learning models, 

where they consistently fail to retrieve spectra for χ𝑅/χ𝑁𝑅 = 0.01, as that puts the effective 

concentration well below the minimum training concentration. This may be alleviated by 

retraining the models on an augmented training dataset to include lower χ𝑅/χ𝑁𝑅 ratios, at 

the expense of longer training times.  
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3.6 Experimental NRB Removal 

The analyses of the NRB removal methods up to this point has been done using simulated 

data. This is fine for testing how the methods work in principle. However, the utility of the 

methods in practice can only be assessed by how they perform on experimental data. For 

this reason, it is necessary to extend the previous analyses to include experimental data. 

The CARS data used in a recent paper by Vernuccio et. al. [30] has been made available 

under Creative Commons Attribution 4.0 [31]. This acts as a free and openly accessible 

dataset which can be used for the experimental analysis.  

Figure 27 shows a CARS spectrum of toluene included in the dataset [31]. This is a good 

reference spectrum for a comparison between the retrieval capabilities of each method 

since toluene has well-defined Raman peaks which we can compare to the retrieved spectra 

[32].  

 

Figure 27: CARS spectrum of toluene. This figure shows the CARS spectrum of toluene 

with an inset image showing its skeletal structure. The data used here came from an open-

access CARS dataset available under the Creative Commons Attribution courtesy of 

Vernuccio et. al. [31]. The NRB corresponding to the CARS spectrum was not provided 

with the open-access dataset, so we applied a Savitzky-Golay filter to the CARS spectrum 

to obtain an approximate NRB and Gaussian noise was added to simulate experimental 

noise. 
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Figure 28: Retrieved spectra for toluene after NRB removal. This figure shows the spectra 

retrieved using the NRB removal methods on the CARS spectrum shown in Figure 27. The 

dashed black lines correspond to the known Raman resonances of toluene at wavenumbers 

of 521, 623, 786, 1004, 1030, 1208, 1379, 1604, 2736, 2870, 2920, 2983, and 3056 cm−1, 

obtained from previous Raman studies [32]. The methods show a mixed ability to retrieve 

the peaks. 
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Figure 28 shows the retrieved spectra after applying each NRB removal method to the 

CARS spectrum of toluene in Figure 27. Each method demonstrates that it can remove the 

NRB, however they vary in their abilities to properly retrieve the Raman peaks. We can 

see that each method properly retrieves the primary CH peaks at 2920 cm−1 and 3056 cm−1, 

as well as the fingerprint peaks at 1004 cm−1, 1208 cm−1, and 1604 cm−1. However, the 

methods are more varied in their ability to pick up the less pronounced peaks. The KK, 

LeDHT, and VECTOR-8 methods all show a comparable ability to retrieve less 

pronounced peak. The SpecNet and VECTOR-16 models, however, both missed several of 

the peaks that the other methods properly retrieved. This may be evidence of training 

deficits, overfitting, or a lack of generalizability of the models. However, the machine 

learning models did suppress the noise from the experimental data very well, which may 

mean that more training on an augmented training dataset could improve performance. 

Furthermore, VECTOR-16 retrieving a very smooth spectrum that is missing several of the 

peaks and the KK method retrieving a noisy spectrum that successfully retrieves those 

peaks indicates that a model that preserves the variance of the input data is less likely to 

erroneously dispose of relevant features of the data. This comes at the cost of noisier output 

data but will not smooth out real features. In this sense, the analytical KK and LeDHT 

methods are preferable to the machine learning models. It should be left to the end user 

to decide if a retrieved feature is a meaningful representation of a Raman peak or simply 

an artefact of noise or computational error, rather than delegating that decision to a machine 

learning model. 

It is peculiar that VECTOR-8 demonstrates superior performance over VECTOR-16 when 

applied to the same experimental data. This indicates that there is a relationship between 
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model complexity and training resources in which a simpler model can reach superior 

performance when trained on less data. Hence, end users of machine learning models for 

NRB removal need to implement a model selection process that considers the performance 

of each model on their actual data prior to settling with a given model for the final analysis.  

 

The dataset provided by Vernuccio et. al. also included hyperspectral CARS images of a 

liver sample which we can use to compare the contrast enhancement that each method 

affords after retrieval. This contrast enhancement is important for image processing 

procedures like segmentation, where regions of the image are separated into distinct 

chemical species. To compare the contrast enhancements from each method, we apply the 

retrieval methods on the hyperspectral CARS image to obtain the “retrieved” hyperspectral 

images, then compare the subjective contrast for on- and off-resonance frames. The off-

resonance frames are taken from the so-called “silent” region (1800 cm−1 to 2800 cm−1) 

where there are expected to be no vibrational resonances, and thus, no chemical contrast. 

The on-resonance frames are taken from the CH region (2800 cm−1 to 3100 cm−1) where 

every organic molecule has broad resonance peaks in the Raman spectrum, and thus, there 

should be high chemical contrast between the background and chemical. The SSIM cannot 

be used in this case because the ground-truth image is not known for comparison.  

Figure 29 (below) shows a comparison between the on- and off-resonance frames of the 

original hyperspectral CARS image and the retrieved images for each NRB removal 

method. We can see that each spectral retrieval method increases the on-resonance contrast 

while decreasing the off-resonance contrast. There are slight variations in the images that 

were retrieved by each, but since there are no ground-truth images to compare to, it is 
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difficult to tell which most accurately represents the true distribution of the material being 

imaged. Instead of comparing to a ground-truth image, we can assess the retrieved images 

based on their on their root mean square (RMS) contrast, which is essentially the standard 

deviation of pixel intensities. For the on-resonance frames, we can rank the retrieved 

images from best to worst as: VECTOR-8, KK, VECTOR-16, SpecNet, LeDHT.  

 

Figure 29: Comparison of chemical contrast after retrieval. This figure shows the chemical 

contrast of frames taken on-resonance (2860 cm−1) and off-resonance (2000 cm−1) from 

CARS and each NRB retrieval method. The off-resonance frame is chosen at 2000 cm−1 

since that is in the so-called “silent” region where we do not expect any Raman peaks, 

whereas the on-resonance peak is taken at 2860 cm−1 corresponding to the CH region in 

which all organic materials have broad Raman peaks. The RMS contrast is labelled below 

each image. The data used here came from an open-access CARS dataset available under 

the Creative Commons Attribution courtesy of Vernuccio et. al. [31]. 
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4 Concluding Remarks 

The overarching goal of this thesis was to assess the efficacy of several spectral retrieval 

methods for CARS hypermicroscopy to identify which method is the best, and determine 

whether the NRB removal problem has been essentially solved. The spectral retrieval 

methods of interest were identified as the KK [9], [12] and LeDHT [17] methods, as well 

as the SpecNet [18] and VECTOR [20] models. These methods include both analytical and 

deep learning approaches to NRB removal. The methods were reproduced and trained (if 

applicable) independently, supporting the veracity and reproducibility of each of the 

methods as described in their respective articles. The NRB removal methods were then 

subjected to a systematic evaluation of the general spectral retrieval accuracy, 

hyperspectral image retrieval capabilities, robustness under various noise and NRB 

conditions, and whether the methods can be used for quantitative analysis. It was found 

that no single method performed better than the others in every test. For example, 

VECTOR-16 has the best overall spectral retrieval performance, however, when applied to 

experimental data it fails to retrieve peaks that the KK method successfully retrieves, 

despite the KK method having the worst general spectral retrieval performance. 

Nonetheless, the built-in noise reduction capabilities of the SpecNet and VECTOR models 

allow them to retrieve more accurately on noisy data than the DHT-based methods. The 

main conclusion from these tests is thus: results will vary. A method selection process is 

recommended prior to deciding on a given method for any application in order to obtain 

the best results. As for the ultimate question, has the NRB problem been essentially solved? 

Yes. Although minor improvements from better error-correction techniques or superior 
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machine learning models may be achieved in the future, the performance of each of the 

current methods is sufficient.  
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Appendix A: KK Method Details 

A complete implementation of the KK method is available in the CRIkit2 software 

developed by Charles Camp Jr. (https://github.com/CCampJr/CRIkit2). Below are several 

simplified code snippets which are intended to help the reader understand how the KK 

method can be implemented in a small Python program.  

import numpy as np 

from scipy.signal import hilbert 

 

def kk(cars, nrb): 

    ''' Original implementation of KK phase retrieval method. ''' 

    F1 = np.log(np.sqrt(2*cars)) 

    F2 = np.log(np.sqrt(2*nrb)) 

    f1 = ifft(F1)[:len(F1)//2] # t > 0 

    f2 = ifft(F2)[len(F2)//2:] # t < 0 

    eta = np.concatenate([f2, f1]) 

    return -2*np.imag(fft(fftshift(eta)) - F1/2) 

 

def dht(cars, nrb): 

    ''' DHT-based implementation of KK phase retrieval method. ''' 

    return hilbert(0.5*np.log(cars/nrb)).imag  

Each of the above functions return the phase given the CARS and NRB input spectra. This 

phase must then be corrected with the following baseline detrending algorithm. Note that 

the CARS and NRB spectra should be cleaned of any spurious values, noise reduced, and 

padded so that the DHT errors can be minimized speed up phase error correction. 

The following code can be used to obtain the baseline of the phase spectrum, representing 

the phase error. This baseline can then be subtracted from the phase spectrum to retrieve 

the error-corrected phase spectrum. The code is based on the asymmetric least squares 

(ALS) smoothing algorithm proposed by Eilers and Boelens in 2005 [13].  

https://github.com/CCampJr/CRIkit2
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import numpy as np 

from scipy import sparse 

from numpy.linalg import norm 

from scipy.sparse.linalg import spsolve 
 

def baseline_als(y, lam=1E3, p=1E-6, niter=10): 

    L = len(y) 

    D = sparse.diags([1,-2,1],[0,-1,-2], shape=(L,L-2)) 

    D = lam * D.dot(D.transpose()) 

    w = np.ones(L) 

    W = sparse.spdiags(w, 0, L, L) 

    for i in range(niter): 

        W.setdiag(w) 

        Z = W + D 

        z = spsolve(Z, w*y) 

        w = p * (y > z) + (1-p) * (y < z) 

    return z  

A more recent method called asymmetrically reweighted penalized least squares (arPLS) 

smoothing appears to have better performance and may be used in the future [33]. 

 

Appendix B: LeDHT Method Details 

A complete implementation of the LeDHT method is available through the Hilbert toolkit 

software developed by Charles Camp Jr. (https://github.com/usnistgov/Hilbert). In this 

method, the optimal transformation matrix 𝐇 described in E q. (15) can be found by 

training on a dataset of pairs of Gaussian/Dawson or Lorentzian/dispersive line shapes. The 

matrix 𝐇 used throughout this work was obtained from training on pairs of 

Gaussian/Dawsons line shapes even though the spectra were simulated with 

Lorentzian/dispersive line shapes. This is not significant since the transformation matrix 

trained on one is applicable to the other. As shown in the supplementary information of the 

https://github.com/usnistgov/Hilbert
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LeDHT paper, the Gaussian/Dawson-trained LeDHT matrix performs just as well on the 

Lorentzian/dispersive line shapes.  

Appendix C:  Artificial Neural Networks 

At a basic level, artificial neural networks are nonlinear mathematical models that define 

mappings between inputs �⃑� and outputs �⃑�. Each network is constructed by combining 

elementary units, referred to as nodes or neurons, in parallel into layers which are then 

combined layer-to-layer in series to support a feedforward computation where the output 

of each layer is the input to the next. The first layer is referred to as the input layer whose 

neurons take as their input the elements of the input vector, the last layer is referred to as 

the output layer whose neurons output the elements of the output vector, and the in-between 

layers are referred to as hidden layers. Each node/neuron in the hidden layers take as their 

inputs a weighted average of the outputs of each node/neuron in the previous layer, then 

apply a nonlinear activation function. Common activation functions include the rectified 

linear unit (ReLu), sigmoid, and tanh functions. Artificial neural networks “learn” through 

a process called backpropagation that optimizes the weights and biases used to calculate 

the weighted average in each neuron by minimizing an objective cost/loss function using 

an optimization algorithm referred as an optimizer. Optimizers typically utilize the concept 

of stochastic gradient descent and facilitate the backpropagation of errors. The mean 

squared error (MSE) or mean absolute error (MAE) between the target and predicted 

outputs are typically used as loss functions to be minimized, although any function can be 

used.  The universal approximation theorem states that feedforward neural network are 

universal approximators [25], [26], [34], which has profound implications regarding the 

applicability of neural networks. 
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Appendix D: SpecNet Model Details 

D.1 SpecNet Model Summary 

The following is the SpecNet model summary. This deviates slightly from the original 

implementation in that the input and output have a length of 1000 instead of 640.  

Table 2: SpecNet Summary.

Layer Output Shape Number of Parameters 

Input Layer (1000, 1) 0 

Batch Normalization (1000, 1) 4 

ReLu Activation (1000, 1) 0 

1D Convolution Layer 1 (969, 128) 4,224 

1D Convolution Layer 2 (954, 64) 131,136 

1D Convolution Layer 3 (947, 16) 8,208 

1D Convolution Layer 4 (940, 16) 2,064 

1D Convolution Layer 5 (933, 16) 2,064 

Dense Layer 1 (933, 32) 544 

Dense Layer 2 (933, 16) 528 

Flatten (14928) 0 

Dropout Layer (0.25) (14928) 0 

Dense Layer 3 (1000) 14,929,000 

Output Layer (1000, 1) 0 

Note: the batch size is implicitly prepended to the output shape of each layer. 
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D.2 Modified SpecNet Code 

inputs = tf.keras.Input(shape=(1000,), name='Input') 

x = tf.keras.layers.Reshape((1000,1), name='Reshape')(inputs) 

x = tf.keras.layers.BatchNormalization()(x) 

x = tf.keras.layers.ReLU()(x) 

x = tf.keras.layers.Conv1D(128, activation = 'relu', kernel_size = (32))(x) 

x = tf.keras.layers.Conv1D( 64, activation = 'relu', kernel_size = (16))(x) 

x = tf.keras.layers.Conv1D( 16, activation = 'relu', kernel_size = (8))(x) 

x = tf.keras.layers.Conv1D( 16, activation = 'relu', kernel_size = (8))(x) 

x = tf.keras.layers.Conv1D( 16, activation = 'relu', kernel_size = (8))(x) 

x = tf.keras.layers.Dense(32, activation = 'relu',  

kernel_regularizer=tf.keras.regularizers.l1_l2(l1 = 0, l2=0.1))(x) 

x = tf.keras.layers.Dense(16, activation = 'relu',  

kernel_regularizer=tf.keras.regularizers.l1_l2(l1 = 0, l2=0.1))(x) 

x = tf.keras.layers.Flatten()(x) 

x = tf.keras.layers.Dropout(.25)(x) 

outputs = tf.keras.layers.Dense(1000, activation='relu')(x) 

model = tf.keras.Model(inputs=inputs, outputs=outputs, name='SpecNet')  

 

D.3 SpecNet Copyright Notice 

SpecNet is provided with the following open source MIT License which allows anyone to 

use, modify, and publish substantial portions of the code so long as the copyright notice is 

included. 

MIT License 

Copyright © 2020 Valensicv 

Permission is hereby granted, free of charge, to any person obtaining a copy of this 
software and associated documentation files (the "Software"), to deal in the Software 
without restriction, including without limitation the rights to use, copy, modify, merge, 
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons 
to whom the Software is furnished to do so, subject to the following conditions: 

The above copyright notice and this permission notice shall be included in all copies or 
substantial portions of the Software. 
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Appendix E: VECTOR Model Details 

E.1 VECTOR Model Summaries 

The following two tables demonstrate the summaries for the VECTOR-8 and VECTOR-

16 models. The “Operation” column refers to the convolution that is applied to the that 

layer, where 𝐾 is the kernel size, 𝐶𝑖𝑛 is the number of input channels, 𝐶𝑜𝑢𝑡 is the number 

of output channels, and 𝑆 is the stride length. 

 

 Table 3: VECTOR-8 Summary 

Stage  
Operation 

(𝑲, 𝑪𝒊𝒏, 𝑪𝒐𝒖𝒕, 𝑺) 
Output Shape 

Number of 

Parameters 

Input  — (1000, 1) 0 

Encoder 

Layer 1 (8, 1, 64, 1) (993, 64) 832 

Layer 2 (8, 64, 128, 2) (493, 128) 66,176 

Layer 3 (8, 128, 256, 2) (243, 256) 263,424 

Layer 4 (8, 256, 512, 2) (118, 512) 1,051,136 

Latent Space  — (118, 512) 0 

Decoder 

Layer 5 (8, 512, 256, 2) (243, 256) 1,049,856 

Layer 6 (8, 256, 128, 2) (493, 128) 262,784 

Layer 7 (8, 128, 64, 2) (993, 64) 65,856 

Layer 8 (8, 64, 1, 1) (1000, 1) 513 

Output  — (1000,1) 0 

Note: the batch size is implicitly prepended to the output shape of each layer. 
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Table 4: VECTOR-16 Summary. 

Stage  
Operation 

(𝑲, 𝑪𝒊𝒏, 𝑪𝒐𝒖𝒕, 𝑺) 
Output Shape 

Number of 

Parameters 

Input  — (1000,1) 0 

Encoder 

Layer 1 (8, 1, 64, 1) (993, 64) 832 

Layer 2 (8, 64, 128, 2) (493, 128) 66176 

Layer 3 (8, 128, 256, 2) (243, 256) 263424 

Layer 4 (8, 256, 512, 2) (118, 512) 1051136 

Layer 5 (8, 512, 1024, 2) (56, 1024) 4199424 

Layer 6 (8, 1024, 2048, 2) (25, 2048) 16787456 

Layer 7 (8, 2048, 2048, 1) (18, 2048) 33564672 

Layer 8 (8, 2048, 2048, 1) (11, 2048) 33564672 

Latent Space  — (11, 2048) 0 

Decoder 

Layer 9 (8, 2048, 2048, 1) (18, 2048) 33564672 

Layer 10 (8, 2048, 2048, 1) (25, 2048) 33564672 

Layer 11 (8, 2048, 1024, 2) (56, 1024) 16782336 

Layer 12 (8, 1024, 512, 2) (118, 512) 4196864 

Layer 13 (8, 512, 256, 2) (243, 256) 1049856 

Layer 14 (8, 256, 128, 2) (493, 128) 262784 

Layer 15 (8, 128, 64, 2) (993, 64) 65856 

Layer 16 (8, 64, 1, 1) (1000, 1) 513 

Output  — (1000, 1) 0 

Note: the batch size is implicitly prepended to the output shape of each layer. 

 

E.2 Customized VECTOR Code 

The original VECTOR models were implemented using PyTorch, a machine learning 

framework for Python. In this work the code is repurposed for use with the TensorFlow 

framework. This does not fundamentally change the operation of the models since both 
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frameworks operate using the same underlying technology. To use the code below, a 

working version of TensorFlow must be installed. 

The following is the code defining the encoder and decoder.  

class EncoderLayer(tf.keras.layers.Layer): 

    def __init__(self, kernel_size, input_channels, output_channels, stride,  

                 name=None): 

        super().__init__(name=name) 

        self.conv = tf.keras.layers.Conv1D( 

            filters=output_channels, 

            kernel_size=kernel_size, 

            strides=stride 

        ) 

        self.relu = tf.keras.layers.ReLU() 

        self.norm = tf.keras.layers.BatchNormalization() 

         

    def call(self, x): 

        x = self.conv(x) 

        x = self.relu(x) 

        x = self.norm(x) 

        return x 

 

class DecoderLayer(tf.keras.layers.Layer): 

    def __init__(self, kernel_size, input_channels, output_channels, stride,  

                 output_padding=1, name=None): 

        super().__init__(name=name) 

        self.conv = tf.keras.layers.Conv1DTranspose( 

            filters=output_channels, 

            kernel_size=kernel_size, 

            strides=stride, 

            output_padding=output_padding # Add output padding to decoder 

        ) 

        self.norm = tf.keras.layers.BatchNormalization() 

        self.relu = tf.keras.layers.ReLU() 

         

    def call(self, x): 

        x = self.conv(x) 

        x = self.norm(x) 

        x = self.relu(x) 

        return x  
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VECTOR-8 Code 

skip_connections = False 

layer1 = EncoderLayer(8,   1,  64, 1, name="Layer_1") 

layer2 = EncoderLayer(8,  64, 128, 2, name="Layer_2") 

layer3 = EncoderLayer(8, 128, 256, 2, name="Layer_3") 

layer4 = EncoderLayer(8, 256, 512, 2, name="Layer_4") 

layer5 = DecoderLayer(8, 512, 256, 2, name="Layer_5") 

layer6 = DecoderLayer(8, 256, 128, 2, name="Layer_6") 

layer7 = DecoderLayer(8, 128,  64, 2, name="Layer_7") 

layer8 = tf.keras.layers.Conv1DTranspose(filters=1, kernel_size=8, strides=1,  

                activation='sigmoid', name="Layer_8") 

add = tf.keras.layers.Add() 

 

inputs = tf.keras.Input(shape=(1000,), name='Input') 

reshaped_inputs = tf.keras.layers.Reshape((1000,1,), name='Reshape')(inputs) 

e1 = layer1(reshaped_inputs) 

e2 = layer2(e1) 

e3 = layer3(e2) 

e4 = layer4(e3) 

# Latent space 

d1 = layer5(e4) 

d2 = layer6(add([d1,e3]) if skip_connections else d1) 

d3 = layer7(add([d2,e2]) if skip_connections else d2) 

d4 = layer8(add([d3,e1]) if skip_connections else d3) 

outputs = tf.keras.layers.Flatten(name="Output")(d4) 

model = tf.keras.Model(inputs=inputs, outputs=outputs, name='VECTOR-8')  
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VECTOR-16 Code 

skip_connections = False 

layer1  = EncoderLayer(8,    1,   64, 1, name="Layer_1") 

layer2  = EncoderLayer(8,   64,  128, 2, name="Layer_2") 

layer3  = EncoderLayer(8,  128,  256, 2, name="Layer_3") 

layer4  = EncoderLayer(8,  256,  512, 2, name="Layer_4") 

layer5  = EncoderLayer(8,  512, 1024, 2, name="Layer_5") 

layer6  = EncoderLayer(8, 1024, 2048, 2, name="Layer_6") 

layer7  = EncoderLayer(8, 2048, 2048, 1, name="Layer_7") 

layer8  = EncoderLayer(8, 2048, 2048, 1, name="Layer_8") 

layer9  = DecoderLayer(8, 2048, 2048, 1, name="Layer_9",  output_padding=0) 

layer10 = DecoderLayer(8, 2048, 2048, 1, name="Layer_10", output_padding=0) 

layer11 = DecoderLayer(8, 2048, 1024, 2, name="Layer_11", output_padding=0) 

layer12 = DecoderLayer(8, 1024,  512, 2, name="Layer_12", output_padding=0) 

layer13 = DecoderLayer(8,  512,  256, 2, name="Layer_13") 

layer14 = DecoderLayer(8,  256,  128, 2, name="Layer_14") 

layer15 = DecoderLayer(8,  128,   64, 2, name="Layer_15") 

layer16 = tf.keras.layers.Conv1DTranspose(filters=1, kernel_size=8, strides=1,  

                   activation='sigmoid', name="Layer_16") 

add = tf.keras.layers.Add() 

 

inputs = tf.keras.Input(shape=(1000,), name='Input') 

reshaped_inputs = tf.keras.layers.Reshape((1000,1,), name='Reshape')(inputs) 

e1 = layer1(reshaped_inputs) 

e2 = layer2(e1) 

e3 = layer3(e2) 

e4 = layer4(e3) 

e5 = layer5(e4) 

e6 = layer6(e5) 

e7 = layer7(e6) 

e8 = layer8(e7) 

# Latent space 

d1 = layer9(e8) 

d2 = layer10(add([d1,e7]) if skip_connections else d1) 

d3 = layer11(add([d2,e6]) if skip_connections else d2) 

d4 = layer12(add([d3,e5]) if skip_connections else d3) 

d5 = layer13(add([d4,e4]) if skip_connections else d4) 

d6 = layer14(add([d5,e3]) if skip_connections else d5) 

d7 = layer15(add([d6,e2]) if skip_connections else d6) 

d8 = layer16(add([d7,e1]) if skip_connections else d7) 

outputs = tf.keras.layers.Flatten(name="Output")(d8) 

model = tf.keras.Model(inputs=inputs, outputs=outputs, name='VECTOR-16')  
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E.3 VECTOR Copyright Notice 

VECTOR is provided with the following open source MIT License which allows anyone 

to use, modify, and publish substantial portions of the code so long as the copyright notice 

is included. 

MIT License 

Copyright © 2021 zhengwei 

Permission is hereby granted, free of charge, to any person obtaining a copy of this 
software and associated documentation files (the "Software"), to deal in the Software 
without restriction, including without limitation the rights to use, copy, modify, merge, 
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons 
to whom the Software is furnished to do so, subject to the following conditions: 

The above copyright notice and this permission notice shall be included in all copies or 
substantial portions of the Software. 

 

 

Appendix F: Training Code 

The following code was used to train each of the models.  

model.compile(loss='mse', optimizer='Adam', metrics=['mean_absolute_error']) 

 

train_size = 25600 

batch_size = 256 

epochs = 10 

 

train_sequencer = DataSequencer(batch_size, train_size) 

 

model_history = model.fit( 

    x=train_sequencer, 

    batch_size=batch_size, 

    epochs=epochs, 

    verbose=2 

)  
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