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Abstract 

Oral Language and the Approximate Number System – A Preliminary Study 

Janice Shewen 

The approximate number system (ANS) involves the processing of rudimentary quantity and is 

thought to be an innate developmental building block for mathematics and its sister construct, the 

symbolic system. The conventional belief is that the ANS is language independent; however, this 

notion is questioned and explored in the current study, which represents a preliminary 

investigation into the concurrent and longitudinal relations between different aspects of oral 

language and the ANS in 4-year-old children and one year later when they were 5. A sample of 

26 children (13 boys;13 girls) with average intelligence completed standardized measures of oral 

language and verbal memory, and a computerized quantity discrimination task that required 

children to accurately discern between two visually presented quantities. Correlational analysis 

showed concurrent and longitudinal relations between different aspects of language and quantity 

discrimination. This suggests that different aspects of language predict quantity discrimination 

over a one-year period and challenge the current and accepted theory that the ANS is a language 

independent system. The findings also have implications for early childhood education – avenues 

to strengthen a child’s ANS via targeted oral language instruction, curricula, and subsequent 

provision of experiences. The findings also support early oral language screening to monitor or 

provide opportunities for improving quantity approximation skills. This early intervention could 

impact later symbolic processing and mathematic success.  

 

Keywords: Non-symbolic system, approximate number system, quantity discrimination, 

symbolic system, oral language, morphology, syntax, semantics, relational concepts. 
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Oral Language and the Approximate Number System 

Overview 

Quantitative knowledge consists of two foundational systems: 1) the symbolic system, 

which involves the Arabic number system (Purpura & Napoli, 2015), and 2) the non-symbolic 

system, which develops without formal teaching, precedes symbolic skills, and is commonly 

attributed to the Approximate Number System (ANS; Dehaene et al., 1998; Furman & 

Rubinsten, 2012). The ANS is believed to be language independent, innate (Feignenson et al., 

2004; Lindskog et al., 2013), and the foundational system of processing that underlies the ability 

to interpret, represent, and compare quantities (Halberda & Feigenson, 2008). The ANS is also 

thought to play a crucial role in enhancing mathematics learning performance in the symbolic 

system (Hyde et al., 2014) and to be a predictor of mathematics achievement in school (Hyde et 

al., 2014; Libertus et al., 2011). The current literature has established that improving language 

skills can also improve mathematics achievement (Grimm, 2008; Toll &Van Luit, 2014) and is a 

strong predictor of early mathematical success (LeFevre et al., 2010; Purpura et al., 2011). The 

conventional belief is that the ANS is a language independent system. However, since we know 

that the ANS develops over time, is a predictor of later mathematics achievement, and that early 

language skills have been shown to affect its sister construct – the symbolic mathematical 

system, we can reasonably postulate by extension that oral language may in fact influence the 

ANS. The goal of the current study is to conduct a preliminary examination of the longitudinal 

relation between oral language and the ANS in young children.   

Quantitative Knowledge 

Quantitative knowledge is what we commonly associate with the mental processing of 

quantity. Quantitative knowledge is conceptualized as being constructed of the cognitive 
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processes and abilities encompassed by two core systems – the symbolic system and the non-

symbolic system (Dehaene et al., 1998; Furman & Rubinsten, 2012; Purpura & Napoli, 2015). 

The symbolic system assigns symbols to specific amounts (e.g., Arabic numeral 10 to represent 

the quantity of 10 objects), math functions (e.g., “+” or “-” to indicate addition or subtraction, 

respectively), and mathematical sequences (e.g., the multiplication pattern 3, 6, 9, 12). The non-

symbolic system does not involve symbols for precise quantity discrimination, but is thought to 

depend on an innate ability to approximate amounts (Dehaene, 1992; Geary et al., 2015). 

Symbolic System 

The symbolic system includes mathematical abilities such as: verbal counting, 

enumeration (the use of a count list in a counting context), digit recognition, the understanding of 

cardinality (the total number of items in a set), and learning to associate number words with their 

corresponding Arabic numerals (Baroody, 2003; Chu et al., 2015; Clements, 2007; Clements & 

Sarama, 2004; Geary & vanMarle, 2016; Van Herwegen et al., 2018). Symbolic numerical 

magnitude is another element of the symbolic system that is the ability to understand, estimate, 

and compare sizes or fractions using Arabic numerals or number line estimation (Fazio et al., 

2014). For example, the ability to determine which of two Arabic numerals is larger: 5 or 8; 1/2 

or 1/3, and estimating the number position of 500 (midpoint) when given a horizontal number 

line ranging from 0 to 1000. 

 The symbolic system is comprised of three primary and overlapping language dependent 

phases: informal numeracy, numeral knowledge, and formal numeracy (Purpura & Napoli, 2015; 

Purpura et al., 2013). Informal numeracy consists of skills learned prior to schooling. This begins 

with comparing exact sets to distinguish quantities (e.g., two oranges are the same quantity as 

two apples), moves to the verbal number word sequence (e.g., one, two, three), and is followed 
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by connecting the verbal counting sequence to fixed sets (e.g., two apples and two oranges), 

connecting number words with quantities (e.g., the word “two” represents two items), and 

subitizing (i.e., the ability to visually recognize the number of items in a small set such as three 

without counting). Informal numeracy also includes the ability to manipulate quantities to form 

new quantities with learned knowledge (e.g., basic addition and subtraction through word 

problems; Baroody et al., 2013; Purpura & Napoli, 2015; Purpura & Lonigan, 2013). The 

numeral knowledge phase involves the mapping of skills and abilities learned in the informal 

numeracy phase onto the Arabic numeral system while connecting these numbers to their 

respective quantities. The third phase, formal numeracy, consists of mathematical concepts and 

skills learned through formal instruction, typically in school, and over time such as operations 

employed to solve problems using number equations (e.g., addition and subtraction problems 

such as 2 + 3 = ), place-value, and knowledge of the base-ten and decimal systems (Purpura & 

Napoli, 2015).   

Non-Symbolic System 

The non-symbolic system involves the cognitive processing of rudimentary quantity that 

predates the emergence of language (Agrillo et al., 2013; Dehaene, 1992; Halberda et al., 2008; 

Hyde et al., 2014). It is believed that these cognitive processes may also exist in non-humans and 

across species to some degree, serving an evolutionary function suggested to be imperative for 

survival (Geary et al., 2015). For example, an animal’s ability to differentiate a large cache of 

food from a small one would directly affect its foraging and energy efficiency and therefore its 

chances of survival. Proposed to be present from the very early years in life, the non-symbolic 

system eventually gives rise to the skills and abilities characteristic of the symbolic system’s 

informal numeracy stage and the subsequent development of numeracy (Dehaene, 1992; 
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Halberda et al., 2008; Starr et al., 2013). This non-symbolic preverbal and “intuitive” number 

sense is suggested to be a developmental building block for mathematics that may facilitate the 

acquisition of numerical symbols and later mathematic abilities (Hyde et al., 2014; Starkey & 

Cooper, 1980; Starr et al., 2013). There is general consensus that numeracy develops from early 

approximate quantity discrimination skills that are purported to be present in infancy – this is the 

ability to perceive, understand, and manipulate quantity (Dehaene, 1992; Leibovich et al., 2016). 

For example, infants as young as 6 months old are reported to be able to discriminate visual 

arrays and auditory sequences between large sets of elements on the basis of numerosity (e.g., 8 

vs. 16 dots or 8 vs. 16 sounds; Wood & Spelk, 2005).   

It is suggested that non-symbolic number representations are core knowledge, which 

operates on two common underlying cognitive mechanisms in infants and adults (Agrillo et al., 

2013; Wood & Spelk, 2005). The object tracking system is the first of these mechanisms, which 

is believed to represent and allow the tracking of individual elements thought to be utilized to 

enumerate precise small quantities (usually 3 to 4 items) that supports subitizing (Agrillo et. al., 

2013.) The other underlying mechanism for non-symbolic number representations is the 

operation characteristic of the ANS (Agrillo et. al., 2013) – the focus of the current study. 

Approximate Number System (ANS)  

The ANS is the intuitive and abstract cognitive processing that allows us to estimate and 

represent number when we are presented with visual or auditory stimuli (Feigenson et al., 2004; 

Odic & Starr, 2018; Wood & Spelke, 2005). When quantity information is presented visually, we 

instinctively extract and represent the approximate number of items in the scene – like scanning 

a gymnasium full of people for example, and being able to approximate the number of people or 

the ratio of males versus females in the room (Odic & Starr, 2018). The estimate we extract is 
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imprecise, yet it is highly efficient and used for multiple number tasks and for daily decision 

making, such as deciding how many bags might be needed to hold the groceries in our cart or 

what grocery line up would facilitate a quicker service (Bonny & Lourenco, 2013; Chen & Li, 

2014; Odic et al., 2016; Odic & Starr, 2018; Soto-Calvo, 2013). Approximate numerical skills 

are generally believed to depend on an internal mental number line or continuum that is 

automatically initiated when numerical information is presented (Dehaene & Cohen, 1991; 1995; 

Soto-Calvo, 2013). When the ANS is activated by the presence of numerical information, small 

numerical amounts are represented on the mental continuum and imprecision increases 

proportionally as the amount increases (Dehaene & Cohen, 1991, 1995; Hyde et al., 2014; Soto-

Calvo, 2014). ANS processing is also believed to be utilized to perform non-symbolic arithmetic 

operations (e.g., addition and subtraction) and supports other diverse computations such as 

numerical comparison and ordinal comparison (Gilmore et al.,2010; Hyde et al., 2014).   

ANS Performance 

Two hallmark performance characteristics have consistently been observed when the 

ANS is in use: 1) As the number of objects presented in a visual scene increases, the numerical 

estimates we make become more variable and 2) When discriminating between two sets to 

discern which set is greater in quantity, the accuracy of this estimate is ratio dependent (Halberda 

& Feigenson, 2008; Odic & Starr, 2018). For example, it is harder to distinguish between 70 and 

80 items (7:8 ratio) than it would be for 70 and 35 items (2:1 ratio). Although the degree of 

preverbal infants’ numerical abilities and abstractness of their numerical representations are 

debated, studies (using habituation/dishabituation methodology) show that infants appear to 

discriminate approximate quantities between sets of items, but do so with less precision 

compared to older children and adults (Brannon, 2002; Dehaene et al., 2004; Halberda & 
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Feigenson, 2008; Xu & Spelke, 2000; Xu et al., 2005). For example, a 6 month-old infant who is 

presented with two streams of images, one showing 8 dots continuously and the other alternating 

between 8 and 16 dots, demonstrates quantity discrimination if they look longer at the alternating 

stream (interpreted as recognizing that a difference exists between the quantity of dots in the 

alternating images) controlling for non-numerical stimulus dimensions like cumulative surface 

area, dot size, and array density (Wang et al., 2018). Research shows that infants can 

discriminate 1:2 ratio arrays (e.g., 4 vs. 8; 8 vs. 16), but are not able to discriminate 2:3 ratios 

(e.g., 8 vs. 12; 16 vs. 24; Halberda & Feigenson, 2008; Libertus & Brannon, 2009). However, by 

9 months of age, ANS acuity (the ability to discern a difference between two quantities beyond 

an arbitrary level of accuracy) improves and infants have been found to differentiate 2:3 ratios in 

both visual and auditory domains (Halberda & Feigenson, 2008). In adulthood, the smallest 

numerical ratio consistently identifiable has been 7:8 (Halberda & Feigenson, 2008). There is 

general consensus that the ANS is refined or improved over the life span and full acuity does not 

occur until quite late in development (reaching adult levels during preteen years, but gradually 

increasing up until age 30), and after formal mathematics instruction has taken place (Chen & Li, 

2014; Halberda & Feigenson, 2008; Libertus et al., 2016).   

Measurement of ANS Performance  

ANS performance across the lifespan is typically tested in individuals by briefly flashing 

sets of dots (or sequential tones) so they cannot be counted. Individuals are asked to compare one 

set to a different set of dots, Arabic numbers, or a number word (e.g., five) presented 

simultaneously or concurrently (Dietrich et al, 2015; Odic & Starr, 2018). As the ratio between 

the quantity of two sets increases (e.g., from 3:4 to 1:2), the difference between the two sets is 

more apparent; this is known as Weber’s law. Weber’s law is useful for describing ANS 
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performance at the point at which the level of accuracy between ratios begins to change (i.e., 

threshold), and an individual’s ability to distinguish between two sets of quantities is identifiable 

(Bonny & Lourenco, 2013; Dehaene, 1997; Chen & Li, 2014; Odic & Starr, 2018). Reaction 

time and error rates on measures of the ANS decrease as the ratio of quantities increase (Bugden, 

DeWind, & Brannon, 2016). For example, a 1:6 ratio is more easily differentiated than a 1:3 ratio 

and a 1:3 ratio is even more easily differentiated than 3:4 or 2:3 ratios (Wang et al., 2018).  

It is useful then to be able to objectively measure an individual’s ability to consistently 

identify a difference between two quantities. The smallest consistently identifiable difference 

between two quantities represents an individual’s ANS acuity (Bonney & Lourenco, 2013; Chen 

& Li, 2014; Odic & Starr, 2018; Wang et al., 2018). A numerical measure of ANS acuity can be 

calculated by taking the difference between the two quantities being compared (e.g., 1:2 or 7:8) 

and dividing by the smaller number (e.g., 2 – 1 / 1 = 1.0 or 8 – 7 / 7 = .14). This is referred to as 

a Weber fraction (w; Chen & Li, 2014; Park & Starns, 2015; Grantham & Yost, 1982). A smaller 

Weber fraction (e.g., .14 vs. 1.0) means that finer differences between quantities can be 

consistently identified and that the individual has greater ANS acuity (Mazzocco et al., 2011; 

Park & Starns, 2015). Developmentally, the Weber fraction appears to decrease with age from 

1.0 in infancy to .14 in adulthood (Halberda & Feigenson, 2008). However, in studies where 

participants, typically young children, show widely varying performance even within one ratio, 

the Weber fraction cannot be applied. This is because young children do not often demonstrate a 

consistent minimum threshold of detection – or being consistently correct on all the trials within 

one ratio. Therefore, for young children, calculating accuracy (percent correct) to represent ANS 

acuity provides a better description of a child’s ability to differentiate between two quantities 

than Weber’s fraction (Geary & vanMarle, 2016; Honore & Noel, 2016; Inglis & Gilmore, 2014; 
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Wang et al., 2016).  

For example, to measure the minimum threshold of quantity identification for one 

individual in a series of increasingly small ratio differences (i.e., 1:4, 1:3, 1:2) where there are 

four items for each ratio on a test, a participant would have to perform accurately on 3 of the 4 

items representing a single ratio. The participant would also have to score at least 75% correct on 

all the preceding larger ratios in order to be able to assign the smallest ratio at 75% correct as the 

minimum threshold for detection. Using the above test example, if a participant scored 50% 

correct for the 1:2 ratio, 75% correct for the 1:3 ratio, and 75% for the 1:4 ratio, the 1:3 ratio 

would be considered the minimum threshold of quantity identification. However, if this 

participant scored 50% correct for the 1:4 ratio, a consistent minimum threshold for detection 

cannot be established, and therefore a Weber fraction could not be calculated.   

Some researchers found the Weber fraction to be less reliable than an overall accuracy 

measure of performance (Bonny & Lourenco, 2013; Geary & vanMarle, 2016; Inglis & Gilmore, 

2014). It is suggested that young children may experience fatigue, lack of attention, may lose 

motivation, or guess randomly while test taking which may make it less likely that consistent 

minimum threshold results are obtained (Honore & Noel, 2016). It is also possible that there is 

no finite minimum threshold of quantity identification for the ANS. In these studies, accuracy 

(percent correct) was calculated using a computerized quantity discrimination task with ratios 

ranging in difficulty that required the selection of the larger quantity over multiple trials. Being 

able to score and measure ANS performance reliably in children facilitates the use of this 

measurement to track ANS development and look for significant associations with mathematical 

performance. Research with the ANS generally focuses on whether ANS performance in 

children relates to their early mathematics development, symbolic mathematics performance, and 
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later mathematics achievement (beyond early childhood). This literature shows strong evidence 

supporting a correlation between the ANS and mathematics achievement (Bonny & Lourenco, 

2013; Geary & vanMarle, 2016; Honore & Noel, 2016; (Odic et al., 2015; Wang et al., 2016). 

ANS and Mathematics Achievement 

 There is evidence and several theories proposed in the literature regarding the importance 

of the ANS as the foundation for more sophisticated symbolic mathematics and later success in 

mathematics achievement. ANS acuity in early childhood has been found to be correlated with 

later performance in mathematics – both in cross sectional data and longitudinally (Bonny & 

Lourenco, 2013; Chen & Li, 2014; Fazio et al., 2014; Halberda & Feigenson, 2008; Libertus et 

al., 2011; Mazzocco et al., 2012; Wang et al., 2016). For example, a study investigating ANS 

acuity and achievement in formal mathematical tasks showed that accuracy of quantity 

discrimination in kindergarten was related to arithmetic achievement in first grade and math fact 

retrieval two years later (Desoete et.al., 2010). Libertus et al. (2011) also investigated the link 

between the ANS and math ability prior to formal mathematics instruction. They gave very 

young children (3 to 5 years old) a math task that did not require symbolic use or arithmetic 

calculations and found a positive association between the ANS and math ability, even when age 

and verbal skills were controlled for. Research with a gifted adolescent sample suggests that the 

relation between ANS acuity and mathematics performance exists even at a high level of 

mathematics achievement (Wang et al., 2017). Corroborating evidence supporting the 

importance of ANS acuity to learning in mathematics comes from studies that show ANS acuity 

differentiates children with dyscalculia (mathematical learning disability) from their peers with 

typical mathematics skills (Mazzocco et al., 2011; Price et al., 2007). 

 It has been proposed that the sharpening of ANS acuity may be due to both maturation 
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and experience (i.e., practice at quantity discrimination; Halberda & Feigenson, 2008). In 

support of this finding, research with children with math learning disabilities who were given 

eight hours (over five weeks) of quantity discrimination practice (designed to engage the ANS) 

showed improvement on both non-symbolic and symbolic numerical tasks (Halberda & 

Feigenson, 2008). Similarly, an investigation into whether approximate arithmetic training 

(approximating or comparing quantities) in the form of a computerized game positively impacted 

informal versus formal mathematics ability in preschool children showed rather unexpectedly 

that ANS acuity training significantly improved informal math performance in children with low 

math scores (Szkudlarek & Brannon, 2018). This finding supported the premise that approximate 

arithmetic training is especially effective for children with lower mathematics skills over those 

with a higher level of skill (Szkudlarek & Brannon, 2018).  

 Recent research exploring attempts at improving ANS acuity through educational training 

and numeracy instruction have reported positive results, which highlights the essential link 

between the ANS and later symbolic mathematics achievement, its importance to overall 

learning, and the potential to detect math learning problems and potentiate intervention 

opportunities (Chen & Li, 2014; Piazza et al., 2013). For example, studies training children in 

approximate arithmetic (dot collection comparisons) demonstrate that the training improved 

symbolic exact arithmetic performance (Honore & Noel, 2016; Odic & Starr, 2018). Further, 

Park and Brannon (2013) demonstrated that training the ANS with addition and subtraction of 

arrays of dots improved symbolic addition and subtraction, supporting the hypothesis that 

complex math skills are linked to the ANS. Similar results were found by Van Herwegen et al., 

(2017), which adds credence to the body of research suggesting that training the ANS can lead to 

improvements in symbolic math skills (Van Herwegen et. al., 2017). As a result, how the ANS 
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and the symbolic system support one another and the underlying mechanisms that facilitate the 

relation between the two in learning and performing mathematics has been the focus of much 

research in recent decades.  

ANS and the Symbolic System 

The ANS functions support the ability to enumerate quantities in an imprecise way and 

helps with approximate addition and subtraction, whereas symbolic system skills help us to 

represent exact symbolic numbers (e.g., “20” or “twenty”; Bugden et al., 2016; Gilmore et al., 

2010; Hyde et al., 2014). How the initial preverbal representations of quantity form the basis 

from which children’s first number words (informal symbolic knowledge) develop is debated, 

however, it is generally agreed that before the age of 4 (prior to adopting Cardinality) children 

map symbols and words onto their ANS and preexisting sense of number and quantity (Bonny & 

Lourenco, 2014; Bugden et. al., 2016; Odic et al., 2015). At this point in development, the 

relation between the ANS and the symbolic system may be described as directional where the 

ANS (approximation, quantity discrimination, understanding of magnitude) exists first and then 

the symbolic system superimposes symbols with learning and experience (Odic et. al., 2015). 

After 4 years of age (after adopting Cardinality), children gradually gain greater knowledge of 

numeric symbols, words, and arithmetic skills and operations and the relation between the two 

systems becomes bidirectional and the symbolic system enhances ANS acuity (Bugden et. al., 

2016). In this view, we learn formal mathematics from the layering of previously acquired 

symbolic number notations and knowledge of quantitative concepts and operations which were 

initially built upon non-symbolic representations of numerosity in the ANS (Bonny & Lourenco 

2014; Dehaene, 1992; Odic & Starr, 2018; Wong et al., 2016). For example, a child with the 

ability to identify quantities more precisely via the ANS may find it easier to learn and 
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comprehend number words, which in turn, may facilitate early arithmetic learning (Odic & Starr, 

2018). The ANS may continue to influence math cognition later in life with respect to relating 

magnitudes (e.g., 1, 2, 3, 4) to their ordinal representations (e.g., first, second, third, fourth; Odic 

& Starr, 2018).   

When the ANS is utilized during a symbolic number task (e.g., addition) it is 

hypothesized that for some functions like estimating, remembering, and comparing, coordination 

between the ANS and other cognitive systems (e.g., language; Odic & Starr, 2018) is required. 

For example, visual or auditory stimuli (e.g., a tone) are represented and can be estimated either 

concurrently or from quantities that are stored in memory. These representations and estimations 

are with language using number words (e.g., five), held in short-term and long-term memory, 

divided into subgroups (e.g., colour, size), and used arithmetically (e.g., added and compared, 

smaller vs. larger; Odic & Starr, 2018). Understanding where ANS functions might occur 

anatomically within the brain relative to other cognitive functions can help us appreciate the 

interconnectedness between the ANS and other cognitive functions. Moreover, realizing what 

regions of the brain become activated simultaneously or exclusively when performing a 

mathematical task leads us to ask if the ANS is truly separate from the influence of language, as 

the current body of research suggests.  

ANS and the Brain 

Research in neuroimaging suggests that the ANS activates the parietal cortex and the 

intraparietal sulcus regions of the brain (regions integral for processing numerical magnitudes 

and calculations) when processing different ratios during quantity discrimination (Bonny & 

Lourenco, 2013; Dehaene, 2009; Izard et al., 2008). Although the intraparietal sulcus brain 

region is the major region of the brain associated with mathematical processing, there is also 
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evidence that it is linked to language processing. The left side may act as an attentional 

modulator of neural networks that specialize in processing order or language representations 

(e.g., phonological, orthographic, and semantic processing) and the right may be involved in 

grammatical processing (e.g., quantifiers, determiner – noun phrases; Carreiras et al., 20109; 

Majerus et al., 2006). While the ANS appears to activate similar brain regions across 

development, there are shifts in the amount of neural activity for the brain regions activated by 

ANS involvement over time (Bonny & Lourenco, 2013; Bugden et. al., 2016).   

In infants, the right side of the intraparietal sulcus is involved in the processing of non-

symbolic magnitudes, but the parietal and prefrontal cortices (associated with executive function, 

attention and memory) exhibit high neural activity as well (Bonny & Lourenco, 2013; Bugden et. 

al., 2016; Miller et al., 2002). One study investigated ANS neural activity in the infant brain by 

changing the ratios of objects presented to an infant (i.e., images of sets of objects were 

presented with occasional changes in number or type of object) and showed that at three months, 

there was greater activation of the parietal and prefrontal cortices for both smaller quantities 

(e.g., 2 versus 3) and larger quantities (4 versus 8; 4 versus 12; Izard et al., 2008). These findings 

support that a system exists in infancy for representing both small and large numbers that occurs 

in specific brain regions that are engaged when developing number sense and learning (Izard, et 

al., 2008). The prefrontal cortical involvement at this early stage of development also implies 

that executive function (composed of three core functions – inhibitory control, working memory, 

and cognitive flexibility; Diamond, 201) supports the learning and representation of quantity. 

The literature shows that executive function also has an association with language and that the 

relation is complementary and recursive (Diamond, 2014; Muller et al., 2009).  

In childhood, there is a shift in activation from the parietal cortex to greater involvement 
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of the intraparietal sulcus, with continued activation in the prefrontal cortex (Ansari & Dhital, 

2006; Bonny & Lourenco, 2013). The parietal and intraparietal sulcus brain regions are believed 

to be the locations for the processing of spatial manipulations, arithmetic (e.g., quantity 

calculations), and integrating sensory information (e.g., visual, somatosensory, auditory; 

Blakemore & Firth, 2005). The involvement of the prefrontal cortex reflects the use of greater 

working memory and attentional resources required for learning (semantic associations, 

symbolic numerals, solving problems; Bugden, et al., 2016). Thus, ANS activity in the brain is 

dynamic throughout development and shifts into other regions of the brain that provide other 

functions (symbolic math processing, executive function, and language) that support ANS 

processing, directly or indirectly. One study suggests that as symbolic numbers are learned 

(during numeral knowledge and formal numeracy phases of development) they activate the 

intraparietal sulcus more preferably in the left hemisphere (Bugden et al., 2016). It has been 

proposed that this increased activity may be the result of less reliance on attention and working 

memory resources as children make the transition from more controlled and effortful processing 

to more automatic processing of quantity (Ansari & Dhital, 2006; Rivera et al., 2005). Thus with 

age, there may be maturation of prefrontal cortical functions (e.g., attention, working memory) 

that support mental arithmetic skills in children (Rivera, et al., 2005). We may further deduce 

that language, evidenced by its complementary and recursive relation with executive function 

(Diamond, 2014; Muller, et al., 2009), may be particularly influential during the early years of 

non-symbolic (and symbolic) math development.     

These developmental shifts in brain region activation suggest that there is some 

specialization of the intraparietal sulcus when processing non-symbolic numerical information 

(Ansari & Dhital, 2006; Bonny & Lourenco, 2013). Holloway and Ansari (2010), investigated 



   15 

the brain regions that support symbolic and non-symbolic numerical representations in children 

and adults to assess age related differences and found that a larger network of visual and parietal 

regions showed activation in adults, with an increased activation to both symbolic quantities 

(e.g., using Arabic numbers) and non-symbolic quantities (e.g., arrays of squares) in the right 

inferior parietal lobe near the intraparietal sulcus compared to children (Holloway & Ansari, 

2010). This research corroborates the evidence of developmental shifting in brain activity 

according to region during the processing of mathematics over time showing greater and more 

focused activation in the intraparietal sulcus region. Movement of neural activity from one 

region to another in the brain over time during mathematical processing highlights the dynamic 

nature of cognitive networking, and the shared space and activity in the intraparietal sulcus for 

both mathematical systems suggests that they may be influential to one another. 

 Physiological evidence of shared anatomy and the dynamics between cognitive processes 

supports the relation between non-symbolic (e.g., quantity processing) and symbolic system 

functions that are intimately intertwined with language (Bugden, et al., 2016). Studies using 

functional magnetic resonance imaging (fMRI) looking at the intraparietal sulcus show that the 

bilateral intraparietal sulcus is a key neural substrate of both quantity and symbolic processing, 

with some areas within the intraparietal sulcus more biased toward number comparison (Ansari 

& Dhital, 2006; Bugden, et al., 2016; Holloway & Ansari, 2010). The research suggests that non-

symbolic and symbolic quantities activate overlapping parietal regions (e.g., right and left) 

within and around the intraparietal sulcus (Bugden, et al., 2016). The neurophysiology of the 

intraparietal sulcus and functioning of non-symbolic and symbolic processing provides indirect 

evidence for the current thinking in the literature which proposes that the advancement of the 

mathematical mind is made possible due to the intertwined functions of both the left and right 
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(non-symbolic and symbolic functions) intraparietal regions that have developed to characterize 

non-symbolic quantity (Bugden, et al., 2016). This evidence also supports the proposal that 

language may also influence the non-symbolic system given the high degree of association 

between language and the development of the symbolic system.   

The areas of the brain utilized during ANS processing and its interplay with the rest of 

the brain over the course of development are important factors when considering possible 

influences on ANS ability over time. Studies investigating lesions of the parietal region have 

identified several associated pathologies including but not limited to:  aphasia (the inability to 

comprehend or formulate language), dyscalculia, dyslexia, and agrapheasthesia (the inability to 

feel numbers or letters drawn on a hand with eyes shut; Culham & Valyear, 2006; Simon et al., 

2002; Molko et. al., 2003; Steinman et al., 2010). These pathologies that effect both language 

and math abilities while involving a common brain region (parietal lobe) illustrate the complex 

and interconnected nature of human language and math cognition. While the current body of 

literature suggests that the ANS and non-symbolic system operates independently of language, 

studies in neurophysiology and brain lesions provoke reason to challenge this idea. Specifically, 

what influence does oral language have on the ANS and could it potentially be exploited to 

enhance mathematical learning? Examining the enmeshed relation between language and the 

symbolic mathematical system and the unfolding of skills during development provides support 

to postulate a language and ANS connection. 

Language and Symbolic Mathematics 

 The current base of evidence in the literature regarding the relation between language and 

symbolic mathematics is expansive and continues to mount. It is now generally accepted that 

most aspects of symbolic mathematics have significant language components and that language 
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skills directly and uniquely link to early numeracy skills, and mathematics performance and 

achievement (McClung & Arya, 2018; LeFevre, 2010; Purpura et al., 2016, 2017; Purpura & 

Napoli, 2015; Zhang et al., 2017). Improving language skills improves mathematics achievement 

(Grimm, 2008; Pupura, et al., 2016; Toll &Van Luit, 2014) and deficits in language skills 

required for reading and writing often lead to delays in numeracy development (Jordan et al, 

2002; Purpura & Napoli, 2015). To fully appreciate the relation between language and the 

symbolic mathematical system, it is important to understand:  1) the components of language and 

2) the literature examining language and symbolic mathematics. 

Components of Language 

Language is a dynamic system of communication involving: phonology (sound system), 

morphology (internal structure of words and how they are formed), semantics (word meaning 

and properties), syntax (rules for combining sentences), and pragmatics (verbal and non-verbal 

social rules; Im-Bolter & Cohen, 2007). All components of language are acquired simultaneously 

over development and used interactively via expressive (production) and receptive 

(comprehension) channels (Genishi, 1988; Im-Bolter & Cohen, 2007).  

Phonology includes the production and understanding of speech sounds (or phonemes) in 

accordance to the rules of a particular language (Hedge & Maul, 2006; Mann & Ditunno, 1990).  

Phonological abilities include phonological awareness (awareness of the sound structure of 

language) and phonological processing, which requires the retrieval and manipulation of 

individual phonemes of speech (e.g., /i/, /a/), our verbal short term memory for coding 

information that is heard into temporary storage, and the efficient retrieval of that phonological 

information in our long term memory (Kalaiah, 2015; Kuzmina et al., 2017). Morphology is our 

understanding of the internal structure of words (Aronoff & Fudeman, 2010; Hedge & Maul, 
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2006). A morpheme can be a word that cannot be broken down (free morpheme or root word) 

like jump or it can be a small unit of meaningful language that combine with other morphemes, 

such as those that indicate verb tense (e.g., jump, jumped, jumping), word endings (e.g., ed, -ing, 

-s, -es), and affixes (e.g., re-, -ation) which alters the meaning of a root word (Aronoff & 

Fudeman, 2011; Hedge & Maul, 2006; Im-Bolter & Cohen, 2007). Semantics encompasses the 

features, meanings, and properties of concepts (e.g., vocabulary, understanding concepts 

associated with and among words) that one learns gradually overtime (Hansson et al., 2015; 

Honig, 2007). This includes global knowledge of objects (e.g., stars, energy), events (e.g., super 

nova) and the relations among them (e.g., furniture, fruit). The aspect of language represented by 

rules that govern word combinations and sentence structures is called syntax (Hedge & Maul, 

2006; Honig, 2007). Syntactic rules are unique to each language and determine what order words 

can appear in a sentence (Hedge & Maul, 2006; Honig, 2007). For example, in the English 

language, a complete sentence must contain a subject and a predicate (i.e., noun and verb; Hedge 

& Maul, 2006). Knowledge of syntactic rules develops rapidly and by the age of 6 or 7, children 

make very few errors in the production of acceptable basic sentences (Honig, 2007).   

The body of literature on the relation between language and mathematics focuses mainly 

on a few components of language, such as phonology, semantics, and syntax or discusses 

language as a general construct. The research on mathematics tends to focus on specific skills 

(e.g., subsidization, enumeration) in a particular strand of mathematics (e.g., geometry, 

numeracy) over different stages in development or at a specific age point, or looks at 

mathematics as a general construct. Understanding the components of language in relation to 

mathematics facilitates our ability to appreciate how language may integrate, directly or 

indirectly, with the mathematical domain.     
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Language and Symbolic Mathematics 

Phonological awareness, semantics, and syntax, are the components of language studied 

and connected to mathematics. One theory suggests phonological awareness directly facilitates 

the differentiation and manipulation of individual words in a number sequence when young 

children learn number words (e.g., one, two, three) and then indirectly influences mathematics in 

the later years via its relation to visual-spatial working memory and early mathematics skills 

(e.g., 5 is composed of 2 and 3 more; difference between 5 and 3 is 2; Krajewski et al., 2009). 

Phonological awareness predicts sequential counting in the informal numeracy phase of learning 

mathematics (prior to school entrance) and growth in calculation skills (Soto-Calvo et al., 2015). 

It has been suggested that phonological awareness influences the rate at which children acquire 

their first few number words much like it does for vocabulary acquisition (Soto-Calvo et al., 

2015). Phonological sensitivity may support formal calculations via strategies, like growth in 

counting speed, which then influences the use of effective counting strategies (Soto-Calvo et al., 

2015). Research also shows associations between phonemic awareness and numerical abilities 

such as magnitude processing on a number transcoding task (e.g., converting six to 6) in children 

in grades 2 to 4 (Lopes-Siva et al., 2014). Phonemic awareness was found to mediate the 

influence of verbal working memory that is required for number transcoding (Lopes-Siva et al., 

2014).  This finding suggests an important pathway between the verbal input of numbers (e.g., 

eleven, eighty-one) and the Arabic output (e.g.,11, 81; Lopes-Siva et al., 2014).   

Phonological processing is also suggested to be influential in the development of 

mathematical computation skills due to the speech sound processes utilized when a child solves a 

computation problem (Hecht et al., 2001). For example, when solving a problem like “6 x 4”, the 

terms (6, 4) and operator (multiplication) are converted into a speech-based code and then the 
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phonological information is processed through either retrieving an answer code found in long-

term memory or using a counting-based strategy in which the phonological name codes of 

numbers are used (Hecht et al., 2001). Hecht et al. (2001) investigated the relation between 

phonological processing and individual differences in mathematical computation skills and 

possible associations between three types of phonological processing abilities (phonological 

memory, rate of access to phonological name codes from long-term memory, and phonological 

awareness) and individual differences in reading and mathematical computation skills in children 

92.5 to 134.8 months in age. Hecht et al. found evidence to support the assertion that there is a 

relation between individual differences in all three types of phonological processing abilities 

(which have been shown to influence growth in reading) and math computational skills. Some of 

these relations change over time and a bidirectional relation between general computation skills 

and simple arithmetic problem solving speed exists (Hecht et al., 2001).   

Recently Purpura and colleagues (Purpura et al., 2011; Purpura & Napoli, 2015) 

examined both phonology (phonological processing) and semantics (vocabulary focus) with 

early numeracy. Results from studies applying this framework showed that each language 

component was related to, and predictive of, numeracy knowledge. The contribution of 

phonology and semantics to mathematical development in young children shows both are related 

to number naming, are a strong predictor of a child’s number line knowledge (1 to 1000), and 

account uniquely for the variability in different mathematical outcomes (e.g., numeration, 

calculation, geometry, measurement, magnitude comparison) depending on the task (LeFevre et 

al., 2010). This is a significant finding substantiating the hypothesis that language acts as 

pathway for learning symbolic mathematics (LeFevre et al., 2010). Semantics was uniquely 

predictive of later numeracy performance when nonverbal abilities and initial numeracy 
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performance were taken into account (Purpura et al., 2011; Purpura & Napoli, 2015). They also 

found that oral language and numeral knowledge was fully mediated by informal numeracy 

knowledge. This supports the important role of oral language to early numeracy and for later 

performance in numeracy as well. It makes sense that semantic language plays an integral role in 

the learning and application of mathematics because there are a plethora of terms, vocabulary, 

functions, and content specific to the understanding and communication of math concepts and 

operations. This is often referred to as “math language” in the literature and involves both 

quantitative and spatial words and meaning crucial for mathematical development (Purpura et al., 

2016; Purpura & Lonigan, 2015; Purpura & Reid, 2016; Toll & Van Luit, 2014).   

Research on semantics and the development of mathematical knowledge and skills is 

extensive. Semantic language used in early mathematics can be quantitative (e.g., less than, more 

than, fewer, many), and spatial (e.g., beside, under, over, above). Semantic language has been 

identified in the literature as being a strong predictor and important to the development of math 

knowledge (i.e., early calculation skills and early numeracy skills; Purpura et al., 2016; Purpura 

& Lonigan, 2015; Purpura & Reid, 2015; Toll & Van Luit, 2014). Quantitative and spatial 

vocabulary is believed to facilitate a child’s ability to make and describe comparisons between 

numbers or groups, and promote the ability to understand and talk about the relations between 

objects (Purpura et al., 2016, 2017). For example, the term less can indicate a decrease in 

quantity (“I want less”) or it can be used to make comparisons (“8 is less than 10”), which serves 

to improve a child’s understanding of quantity (Peng & Lin, 2019; Purpura et al., 2016). Spatial 

language such as before and after assists with connecting sequences (“8 comes before 10”; Peng 

& Lin, 2019; Purpura et al., 2016). Access to a variety of quantitative and spatial language terms 

is believed to support the comprehension of math content that enables conceptualization and 
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application (Purpura et al., 2016). One study showed that an 8-week intervention focused on 

quantitative and spatial mathematical language resulted in positive effects on general 

mathematical skills (Purpura et al., 2016).  

The integral role of quantitative and spatial vocabulary for math performance has also 

been found, outside the alphabetic language system, in Chinese speaking children (Peng & Lin, 

2019). Peng and Lin (2019) investigated whether the effects of quantitative and spatial 

vocabulary varied with the types of mathematical strand related vocabulary (e.g., longer vs. 

shorter; adjacent vs. above, add vs. subtract) or with different skills (e.g., calculation, word 

problems) as well as whether vocabulary mediated the relation between cognitive skills (i.e., 

working memory, non-verbal reasoning, processing speed) and mathematical performance. They 

found that mathematical vocabulary made unique contributions to performance on word 

problems, especially with respect to measurement and geometry, and numerical operations. 

Research shows that language predicts math performance irrespective of one’s first language. 

McClung and Arya (2018) compared the Chinese language system to English numerical 

language on mathematics learning in children in grade 4 who had varying levels of reading and 

mathematics ability. They found that language significantly predicted mathematical performance 

even after math ability was accounted for, highlighting that not only did language have a positive 

influence, but that language was particularly important for children in the study who experienced 

mathematical difficulties compared to those that did not.  

Similarly, a recent study investigated the role of early language abilities in the 

development of math skills in a large sample of young Chinese children (Zhang et al., 2017). 

These children were assessed for both informal math (skills learned prior to entering school) and 

formal math skills (learned through instruction), language abilities, and nonverbal intelligence. 
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Zhang et al. (2017) found that language abilities predicted formal math skill development, both 

directly and indirectly – findings that support the existing models of mathematic developmental 

pathways and precursors. Further, their research established that better vocabulary during the 

informal math phase influenced and supported better math performance - findings which are 

echoed in the English language as well (Peng & Lin, 2019; Purpura et al., 2016; Zhang et al., 

2017). Collectively, the outcomes of this body of research hints to universal associations 

between semantics and mathematics that transcend the language (e.g., Chinese vs. English), 

lending credibility to the strength of the association between these two domains. This may 

present an avenue to explore how semantic language learning may be a valuable element to 

emphasize for children experiencing difficulties in mathematics. 

There appears to be only one study examining syntax and mathematics. Carrerias et al. 

(2010) used fMRI to examine grammatical processing and associated brain activity in Spanish-

speaking participants. They found that grammatical processing of phrases with gender and 

number agreement, and gender violations activated quantity processing areas of the brain (i.e., 

right intraparietal sulcus; left inferior frontal area). The findings of this research support the 

premise that language processing is complex and not restricted to the typical cortical areas 

associated with language (i.e., Broca or Wernicke). It also provides evidence that the brain 

regions associated with the processing of quantity or non-symbolic information (i.e., right 

intraparietal vs left intraparietal function) is associated with syntactic linguistic tasks (Carrerias 

et al., 2010). A common thread of each of the studies reviewed above is the underlying link and 

importance of oral language to all phases of symbolic mathematics. The opportunity to potentiate 

math learning via oral language can be started as early as infancy – long before the child 

develops other skills such as reading and writing. The value of investigating the association 
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between oral language and the ANS cannot be discounted given how integral language is to the 

symbolic mathematical system. 

Language and The Approximate Number System 

 In the current literature, the ANS is proposed to be independent of language (Dehaene et 

al., 1998; Nys et al., 2013). The premise for this model stems from phylogenetic (evolutionary) 

and ontogenetic (developmental) perspectives which suggest that ANS processing is innate, 

evident in infants, and predates verbal language and any formal teaching (Odic & Starr, 2018; 

Starr et al., 2013; Xu & Arriaga, 2007). This may explain why, to our knowledge, only five 

studies have investigated the relation between the ANS and language and only one of the five has 

examined this relation longitudinally. The five studies focused on literacy and symbolic and non-

symbolic numerical processing (Zebian & Ansari, 2011), language impairment (Nys et al., 

2013), restricted number vocabularies in indigenous groups (Butterworth et al., 2008; Pica et al., 

2004), and vocabulary and mathematical language (amongst other variables) as predictors of the 

ANS (Purpura & Sims, 2018). These studies appear to support the proposal that the ANS is not 

associated with language, but this research is not without flaws.  

Zebian and Ansari (2011) compared two groups with different literacy abilities (literate, n 

= 11 and minimally literate, n =11) in order to examine whether literacy skills (reading 

comprehension, writing skills, and grammatical knowledge) were associated with symbolic and 

non-symbolic representations of magnitude in male adults. They found that the two groups did 

not differ with respect to accuracy on the tasks but that the numerical distance effect (as 

measured by steepness of slope) differed between the literate and minimally literal groups for the 

symbolic but not the non-symbolic magnitude comparison task. Zebian and Ansari contend that 

their findings indicate that literacy and education impact the symbolic and non-symbolic 
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processing system in different ways. There are several problems with this study, however. The 

difference between the two groups is represented by a subtle difference in the magnitude of the 

distance effect and not a categorical difference between the two groups. Additional problems 

include a small sample size, male participants only, and lack of consideration of IQ. 

Furthermore, although word reading can be considered a language-based skill, it does not 

represent oral language competence, which was not measured. As a result, this study does not 

provide any convincing support for the argument that the non-symbolic system operates 

independently of language.   

 Nys et al. (2013) examined language and exact and approximate number skills in 28 

children aged 7 – 14 years with specific language impairment (i.e., poor oral language skills with 

average intellectual ability and no neurological or hearing impairments), separated into a 

younger (7-10 years; n = 15) and older (11- 14 years; n =13) group. Control groups of children 

matched for chronological age and vocabulary age were also included. Children were given 

symbolic and non-symbolic tasks (counting, written and mental exact arithmetic, number 

comparison, approximate arithmetic, approximate comparison). In both age groups, children with 

specific language impairment showed worse performance than control children on the exact 

symbolic arithmetic task, but not on the approximate number tasks (after accounting for 

differences in cognitive abilities). Nys et al. concluded that approximate number skills were 

preserved in children with specific language impairment and that language was not important for 

approximate number skills. However, there are several problems with this conclusion. Language 

is associated with the cognitive abilities that were measured in this study (e.g., executive 

function) and it is possible that the authors removed some of the variance associated with 

language in their analyses. Although the authors examined whether language was associated with 
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approximate number skills in the groups with specific language impairment, they did not 

examine relations between language and approximate numbers skills in the control group. In 

addition, although vocabulary and morphosyntax was assessed, a more fine-tuned examination of 

language skills is required (e.g., relational vs. nonrelational vocabulary; syntax) to determine 

whether language is truly not required for approximate number skill. Finally, based on an age 

effect of better performance for older children and lack of difference in performance between the 

older control and impaired groups, Nys et al. proposed that experience and development may 

enhance approximate number skills during childhood. Since this is a cross-sectional and not 

longitudinal study, this interpretation is flawed. Using cross-sectional research to make 

conclusions regarding development in atypical groups is problematic. There are other reasons 

older children with specific language impairment could perform at age expected levels on tasks 

assessing approximate arithmetic (e.g., language interventions that have a positive collateral 

impact) that need to be examined with longitudinal methods.  

 Butterworth et al. (2008) and Pica et al. (2004) examined language and exact and 

approximate concepts of number processing in adult and child indigenous groups (Amazonian 

and Australian, respectively) whose language includes limited words for exact quantities (e.g., 

“one or two” opposed to one, two, or three). The researchers questioned whether the concept of 

exact numbers can exist without the words to represent them, and hypothesized that without 

exact number words, only approximation could take place (e.g., few or many). Butterworth et al. 

compared exact and approximate concepts of number in English (n = 13) and Indigenous 

(Warlpiri n = 20; Anindilyakwa n = 12) speaking children aged 4 – 7 years. Children were given 

four enumeration tasks to examine numerosity understanding (memory for number counters up 

to 9, cross-modal matching of discrete sounds and counters up to 7, nonverbal exact addition up 
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to 8/sharing task up to 10). Age rather than language accounted for differences in performance 

(i.e., there were no performance differences between the different language groups). Butterworth 

et al. concluded that the numerical competence is not dependent on numerical vocabulary but 

rather, conceptual development is needed before counting words are acquired. Although we do 

not disagree with the author’s conclusion that conceptual development is important for acquiring 

number concepts, the findings do not necessarily support the premise that the ANS is a separate 

system. Although counting vocabulary is important for enumeration, it is possible that the 

children used other language skills for numerosity. More extensive language skill examination is 

required to assess any effect on ANS performance.  

Pica et al. (2004) examined numerical cognition in speakers of an Indigenous language 

(Munduruku) with number words for one to five only. Pica et al. proposed that exact mathematic 

calculations beyond five would be affected. They controlled for educational instruction and 

exposure to other languages/cultures and contrasted performance on approximate and exact 

arithmetic tasks between four groups of Munduruku speakers with a control group of native 

French speakers (n = 10). Participants (whose average age was 50) were given four tasks 

(magnitude comparison, approximate addition and comparison, nonverbal and verbal exact 

subtraction tasks). Pica et al. reported clear differences on the exact calculation task, but uneven 

performance on the approximate calculation tasks and surmised that there must be a distinction 

between a nonverbal system of number approximation. On average, the Munduruku speakers 

performed slightly worse than the control group on the magnitude comparison but comparably 

on the approximate addition and comparison tasks. They concluded that a lexicon of number 

words was needed for exact number and calculation and that their data supports the premise that 

the ANS is an innate ability, independent of language. However, this view is highly problematic 
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because they did not actually assess language skills (other than the observation of the use of 

number words when presented with 1 to 15 dots) to rule it out as a contributor to number 

approximation and language was not absent in the indigenous speaking participants. What 

Munduruku speakers appear to lack is a formal counting routine and number vocabulary, which 

are skills arguably learned through exposure, instruction, modeling, and practice. As with the 

other research highlighted in this section, the study design limits generalizability and the 

reliability is questionable.  

Purpura and Sims (2018) examined 113 preschool aged children (3 to 5 years) at two 

time points (fall and spring) within one academic year in order to investigate the stability and 

predictors of the ANS as a step to better understanding the ANS relation to early mathematics 

performance. Purpura and Sims were interested in examining whether general cognitive factors 

(working memory, executive functions) and specific math related skills (ANS, counting skills, 

calculation fluency, and mathematical language) known to contribute to mathematical skills may 

be related to ANS performance. They hypothesized that general cognitive factors and specific 

math skills would account for significant variance in predicting ANS performance by the end of 

preschool (i.e., in a fall vs spring comparison). A large battery of measures were given, but the 

language measures included an expressive vocabulary test and a mathematical language test 

(developed by the author) that consisted of 16 comparative and spatial language words. Results 

showed that ANS performance in the fall (beginning of preschool) was the strongest predictor of 

spring ANS performance (end of preschool), but that cardinality and response inhibition were 

also predictors. These findings contradict previous claims that the ANS is a foundational and 

causal building block for numerical skills and Purpura and Sims suggest that ANS precision may 

be influenced and shaped by other cognitive functions, as well as school experience. A weakness 
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of this research, however, is that Purpura and Sims did not control for reliance on conceptual 

cues (i.e., size of stimuli, which can impact judgement of quantity or numerosity) and call into 

question whether ANS processing was actually measured. In addition, the participants ranged in 

aged from 3 to 5 years resulting in a large difference in math skills (e.g., counting to 10 vs. 

knowing simple addition, understanding math language such as “big” and “small”, and 

sequencing such as first and second). This makes it difficult to isolate the association between 

general cognitive abilities and specific math abilities to the ANS at a specific age and point of 

development. Additionally, the assessment of language is narrow and focused on vocabulary 

only.  

What is absent in any discussion of the literature reviewed above is that when contrasting 

groups on the basis of number lexicon knowledge, we must acknowledge that from birth, all 

humans are exposed to oral and pragmatic language. To assume language is not influential, 

directly or indirectly, on the non-symbolic system because a child or adult demonstrates an 

apparent lack of a honed lexicon for numbers is flawed. In summary, there is little empirical data 

that has specifically focused on the potential contribution of language on the ANS and the 

differing methodologies in the existing research does not allow direct comparisons of the 

findings in these studies. To our knowledge, there are no studies that have specifically looked at 

different aspects of language and the ANS in children, using a longitudinal approach. This is 

needed to determine if associations exist between language and the ANS over time and to 

characterize what they might be. 

The Current Study 

The literature reviewed above shows language is a strong predictor of early mathematical 

success (LeFevre et al., 2010; Purpura et al., 2011) and associated with the symbolic system 
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(Hyde et al., 2014; Libertus et al., 2011). Research on the ANS and the brain activity of 

developing young children show shared functions between symbolic math processing and 

language that also support ANS processing, directly or indirectly. Taken together, this suggests 

that early oral language skills may support later ANS processing, which holds potential for early 

education/pedagogy in areas of both language and math as a method for improving math 

understanding and performance. For example, oral language assessments in the preschool or 

kindergarten years could identify children who might benefit from early intervention and 

targeted support in math language learning. The current study provides a preliminary exploration 

of whether different oral language components (phonology, morphology, syntax, semantics, 

relational concepts, and verbal memory) relate to ANS processing concurrently and over time. 

Based on the review above, it is reasonable to expect both concurrent and predictive relations 

between oral language and ANS processing in 4-year-old children and one year later when they 

are 5 years of age. 

Method 

Participants 

 The participants of this current study are comprised of 26 children - a subsample of 

children enrolled in a longitudinal study investigating the relations among language, numeracy, 

and executive function. Recruitment took place at Peterborough and Toronto area daycares. 

Parents of all children turning 3-years-old were provided with information about the study and an 

opportunity to provide written consent for their children to take part. Parental consent was 

obtained from all participants. For the current study, data from 4.0 and 5.0 years was used. Only 

children who had estimated IQ within the average range (80 to 120) and quantity discrimination 

data for both time points were included.  
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Procedure 

 At 4.0 years children completed measures of intelligence, oral language, verbal memory, 

and quantity discrimination. Children also completed other measures not relevant for the current 

study. At 5.0 years children completed measures of oral language, verbal memory, and quantity 

discrimination as well as other measures not relevant for this study. Test sessions took place at 

the child’s respective daycare, school, or family dwelling setting. Children engaged in three to 

five individualized testing sessions depending on child attention and engagement, with breaks as 

needed. Child verbal assent was obtained prior to each test session.   

Measures 

Intelligence 

 Four subtests: Information, Similarities, Block Design, Matrix Reasoning from the 

Wechsler Preschool and Primary Scale of Intelligence – Fourth Edition (Wechsler, 2012) were 

used to estimate IQ and control for cognitive abilities. The Information subtest measures the 

capacity to acquire, retain, and retrieve general factual knowledge. The Similarities subtest 

assesses the child’s ability to describe how two objects or concepts are similar. The Block Design 

subtest measures the capacity to analyze and synthesize abstract visual patterns and the Matrix 

Reasoning subtest requires the child to select one of four possible stimuli that fit into a sequence 

or pattern. The standardized scaled scores from the four subtests were used to calculate an 

overall standardized scaled score used to estimate IQ.  

Oral Language 

The phonological, morphological, syntactic, and semantic aspects of oral language were 

measured. Selected items from the Early Reading Skills (ERS) subtest of the Wechsler Individual 

Achievement Test – Third Edition (Wechsler, 2010) was used to assess phonology when children 
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were 4 years and 5 years. Thirteen items were chosen because they measured oral phonology 

(e.g., rhyming; listening for similar beginning and ending word sounds) that require pointing 

responses. Score is total items correct out of 13, which was converted to a proportion. 

The Clinical Evaluation of Language Fundamentals – Preschool: Second Edition (Wiig, 

et al., 2004), a standardized measure of oral language, was used to assess morphology, syntax, 

and semantics when children were 4 years and 5 years. Morphology was measured with the 

Word Structure subtest, which assesses comprehension of word structure rules (e.g., inflectional, 

derivational, or comparative and superlative suffixes; referential pronouns). Syntax was 

measured with the Sentence Structure subtest, which evaluates the ability to comprehend spoken 

sentences of increasing length and complexity. Semantics was measured with the Word Classes, 

Expressive Vocabulary, and Basic Concepts subtests. Word Classes requires the ability to group 

words that are in a similar category and Expressive Vocabulary requires the ability to provide 

labels of people, objects, and actions. The Basic Concepts subtest evaluates knowledge of 

concepts of dimension/size, direction/location/position, number/quantity, and equality. Each 

subtest provides a standard scaled score.  

Each language standard scaled score was converted to a z-score. A mean composite score 

was created for semantic language using the z-scores for the three subtests that measured 

semantics listed above.  

The Test of Relational Concepts (Edmonston & Litchfield Thane, 1999), a standardized 

measure, was used to assess the area of semantics specific to relational concepts that include: 

temporal (first/last), quantitative (more/less), dimensional (big/little), and spatial (front/back) 

terms. This test provides a standard scaled score. The standard scaled score was converted to a z-

score.   
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Verbal Memory  

Verbal memory was assessed with the Recalling Sentences and Concepts & Following 

Directions subtests from the Clinical Evaluation of Language Fundamentals– Preschool: Second 

Edition. The Recalling Sentences subtest requires the child to repeat sentences of increasing 

length and the Concepts & Following Directions subtest measures the ability to execute oral 

directions of increasing length and complexity. Standard scaled scores are provided for these two 

subtests, which were converted into z-scores. A mean composite verbal memory score was 

created using the z-scores of the two subtests. 

Approximate Number System (ANS) 

 The ANS was measured with the quantity discrimination task, using EPrime software, 

and based on descriptions in Halberda and Feigenson (2008) and Libertus et al. (2011, 2013). 

The quantity discrimination task is considered the most reliable measure of ANS acuity with less 

demand on working memory (Dietrich et al., 2015). The quantity discrimination task used in the 

current study was delivered on a notebook computer with an external 14-inch touchscreen. 

Participants sat approximately 40 cm from the screen. Our task was unique in design compared 

to other studies in that it included a greater breath of quantities divided into two versions: a small 

quantity version that includes 5 to 16 objects that resemble chocolate chip cookies and a large 

quantity version that includes 30 to 70 cookies. Each version included 36 items. In both versions, 

two arrays of cookies are presented simultaneously on the left and right side of the computer 

screen in different ratios (e.g., 1:2) for comparison. Arrays were designed with sets of five or 

greater to prevent subitizing. Each array appears within a line frame of yellow (left side) and 

blue (right side) to correspond to a static image of a small character (Big Bird in yellow or 

Grover in blue) placed on the lower outer margin of each frame (see Figure 1 for an example). 
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Children were asked, “Who has more cookies?” and to indicate Big Bird or Grover by touching 

the screen. 

 

Figure 1  

Trial from the Large Quantity Version of the Quantity Discrimination Task with Ratio of 1:2 

 

Note: This trial from the large quantity version displays a ratio of 1:2 (60 cookies: 30 cookies). 

The correct answer to the question, “Who has more?” is Big Bird.   

 

The difficulty of a quantity discrimination task depends on the ratio between the two 

array quantities – the closer the ratio the more difficult it is to discriminate between the sets. For 

example, the larger quantity in a ratio of 1:2 objects is easier than a ratio of 5:6 objects (Halberda 

& Feigenson, 2008). The following nine ratios, in order of least difficult to most difficult, were 

used for both versions: 1:2, 3:5, 2:3, 5:7, 3:4, 4:5, 5:6, 6:7, and 7:8. Four items for each of the 

nine ratios were displayed for a total of 36 trials. In the small quantity version, for example, a 1:2 

ratio could include 5:10, 10:5, 6:12, 12:6, 7:14 or 14:7 items. In the large quantity version, a 1:2 
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ratio could include 30:60, 60:30, 35:70 or 70:35 items (see Appendix) for items included in each 

ratio for the small and large quantity versions). The four items that were presented for each ratio 

was randomly chosen by the program. For example, four items for the 1:2 ratio could be 14:7, 

5:10, 5:10, and 5:10, or 10:5, 12:6, 7:14, and 6:12. Randomization could result in repeated or 

reversed items (e.g., 60:30; 30:60). 

 In order to control reliance on perceptual cues for quantity discrimination judgement, the 

area taken up by the cookies was controlled for in each version (small and large quantity) with 

half the trials being area correlated and the other half being area anticorrelated. In the area 

correlated trials, the total area taken up by the cookies was equal on both sides regardless of the 

ratio of the array. For example, a 1:2 array includes twice the number of cookies on the right side 

(e.g., 8) compared to the left side (e.g., 4), yet the total area covered by the cookies was equal on 

both sides. In the area anticorrelated trials), the area covered by the cookies was reversed so that 

the side with fewer cookies would cover more area, in an amount equal to the inverse of the ratio 

being represented. For example, a 1:2 array could display 4 cookies on the left side and 8 cookies 

on the right side, but the 4 cookies occupied twice the total area of the 8 cookies. In addition, to 

prevent children from relying on the cookie size as a cue for quantity, the size of each cookie in 

each array across all trials varied +/- 35% of the average cookie size displayed in a particular 

array. This resulted in each array consisting of cookies of different sizes (larger or smaller) by a 

maximum of 35% relative to the average cookie size displayed in the particular array. 

Each version of the task began with eight practice trials that included arrays with a 1:2 

ratio. Children were told that they had a short time to decide who had more cookies before the 

cookies disappear. Children moved on to the test trials only if they understood the task 

instructions. Practice trials were repeated as required. Each practice or test trial began with a 
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centered fixation point lasting 1000 ms followed by an array for 1200 ms to prevent counting. 

Empty yellow (Big Bird) and blue (Grover) frames were then displayed until a response was 

recorded, at which point the next item appeared. Children could respond when the arrays were 

displayed or after they disappeared. Correct and incorrect responses were indicated by different 

audible tones. Both scores for correct and incorrect responses, as well as response time, were 

recorded by the computer.  Proportion of correct responses were used for analyses in keeping 

with the procedure design of Halberda and Feigenson (2008).  

As mentioned above, ANS acuity is represented by an individual’s ability to consistently 

identify the smallest difference between two quantities (Bonney & Lourenco, 2013; Chen & Li, 

2014; Halberda & Feigenson, 2008; Odic & Starr, 2018; Wang et al., 2018). A widely used 

numerical measure of this acuity is the Weber fraction (w; Chen & Li, 2014; Grantham & Yost, 

1982; Halberda & Feigenson , 2008; Park & Starns, 2015), which is calculated by identifying the 

difference between the two closest ratios (e.g., 4:5 vs 5:6) among the range being compared (i.e., 

1:2 to 7:8) where a noticeable difference in correctness better than guessing (50%) is achieved by 

the participant (e.g., 75% on 4:5 ratios vs 50% on 5:6 ratios). However, as noted in the literature, 

overall accuracy (percentage correct; Geary & VanMarle, 2016; Honore & Noel, 2016; Wang et 

al., 2016) is a more viable and reliable measure of ANS acuity in young children. Proportional 

scores of total accuracy were calculated after being presented with four sets of the nine ratios (36 

trials) for each version of the task (i.e., small quantity, large quantity)  

Results 

Data Screening 

 Missing value analysis was conducted across all measures. Two cases of missing data in 

phonology were found for one child at age 4 and another at age 5. This was considered 
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problematic due to the small sample size and the consequential influence missing data had on the 

mean and standard deviation. Imputation using the expectation maximization technique was used 

to replace the missing values (Dong & Peng, 2013)   

The means, standard deviations, range, and skewness values for oral language, verbal 

memory, and quantity discrimination data were considered at both time points and all were as 

expected and within the acceptable norms. However, due to the small sample size, an analysis of 

normality using a Shapiro-Wilk test for each variable was performed. The Shapiro-Wilk test 

showed that all language distributions were not significantly departed from normal. Univariate 

outliers were present for the following: At age 4, there was one outlier for morphology and two 

outliers for syntax, as well as six outliers for the quantity discrimination task small quantity 

version and one for the large quantity version. At age 5, there were three outliers for morphology 

and one outlier for the quantity discrimination task large quantity version. All cases were 

retained. Paired sample t-tests were conducted to examine group differences and non-parametric 

analyses were conducted for correlations due to the outliers. 

Descriptive Statistics  

 There were 26 participants, 13 boys and 13 girls. Means, standard deviations, and results 

of paired sample t-tests for age, oral language, verbal memory, and quantity discrimination 

between the two time points (4 and 5 years of age) are reported in Table 1.  

 Paired sample t-tests indicated significant improvement in performance between 4 and 5 

years in phonology and relational concepts. There were no significant differences between age 4 

and 5 years on morphology, syntax, semantics, verbal memory, or quantity discrimination on the 

small quantity version. However, children showed significantly improved performance between 

4 and 5 years on quantity discrimination for the large quantity version. 
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Table 1. 

Descriptive Characteristics and Differences for Age, Estimated IQ, Language, Verbal Memory, 

and Quantity Discrimination at Age 4 and Age 5 (n = 26) 

 Age 4 Age 5 t    p         d                

 M SD M SD   

Age (months) 

Estimated IQ 

48.50 

99.58 

.65 

12.24 

  60.19 

 

    .75 

  

  -56.81 

    

  .001    1.05  

       

Language   
  Phonology 

  Morphology 

  Syntax 

  Semantics 

  Relational Concepts 

Verbal Memory                      

         

       .25 

      -.01 

       .10 

       .20 

       .03 

       .04   

      

    .15 

    .82 

    .79 

    .58 

    .71 

    .85 

                  

      .49 

   -.17 

      .10 

     -.08 

      .51 

     -.12 

 

     .20 

     .69 

     .85 

     .67 

     .65 

     .73 

         

     -6.72 

         .91 

         .00 

       1.70  

      -3.38 

       1.03 

        

  .001       .19 

  .37        .86 

1.00        .88 

  .10        .83 

  .002      .71 

  .31        .79 

Quantity Discrimination 

 Small Quantity Version 

 Large Quantity Version 

 

     .55 

     .54          

 

    .12 

    .12 

   

    .59 

    .61 

   

     .12           

     .14          

   

     -1.21  

     -2.24                        

                   

  .24        .16 

  .03        .15 

 

Note: Estimated IQ = Standardized scaled score; Phonology = mean proportion score; 

Morphology, Syntax, Semantics, Relational Concepts, and Verbal Memory scores = z-scores; 

Quantity Discrimination scores = mean proportion score. 

 

Correlational Analysis 

The Spearman test was used for correlational analyses due to the extreme outliers in some 

of the variables. See Table 2 for correlations. 

Language Skills 

At age 4, morphology and relational concepts, syntax and relational concepts, and 

semantics and relational concepts were significantly positively associated. The association 

between morphology and relational concepts was not present a year later at age 5. However, at 

age 5, phonology and syntax, phonology and relational concepts, syntax and semantics, syntax 

and relational concepts, as well as semantics and relational concepts, were significantly 

positively associated. 
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Table 2. 

Non-Parametric Correlations Between Language, Verbal Memory, and Quantity Discrimination 

at Age 4 (top diagonal) and Age 5 (lower diagonal; n = 26) 

 

 

Variable 1    2    3   4   5    6    7   8 

1. Phonology 

2. Morphology 

 - 

.38 

.14 

  - 

.36 

.22 

.31 

.31 

.31 

.43* 

.41* 

.35 

.13 

.45* 

.09 

.34 

3. Syntax   .40* .36   - .16 .43* .54** .09 .29 

4. Semantics .10 .14 .48*   - .55** .29 .55** .14 

5. Relational Concepts  .44* .20 .52** .52**   - .57** .40* .44* 

6. Verbal Memory .22 .69** .45* .28 .32   - .05 .37 

7. Small Quantity Set .23 .31 .11 .24 .28 .24   - .37 

8. Large Quantity Set .22 .30 .44* .59** .72** .34 .33   - 

______________________________________________________________________________ 
 

**p < .01(2-tailed) 

*p < .05 (2-tailed) 

 

   

Language and Verbal Memory 

 At age 4, verbal memory showed significant positive associations with phonology, 

syntax, and relational concepts. A year later, a significant positive association remained between 

verbal memory and syntax. In addition, verbal memory was significantly positively associated 

with morphology.   

Quantity Discrimination 

 Interestingly and unexpectedly, the small quantity and large quantity versions were not 

significantly associated at either time point. Recall that the same ratios were presented in each 

version; the only difference between the two versions was the number of dots in each one (small 

= 5 to 16; large = 30 to 70). This result suggests the two tasks are conceptually different in the 

current sample. See appendix B for quantity discrimination average percent correct per ratio by 

task version, and age. 

Language, Verbal Memory, and Quantity Discrimination  

At age 4, morphology, semantics, and relational concepts were significantly positively 
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associated with the small quantity version and relational concepts was significantly associated 

with the large quantity version. At age 5, language was not correlated with the small quantity 

version; however, semantics, relational concepts, and syntax predicted accuracy on the large 

quantity version.  

Relations between Oral Language at Age 4 and Quantity Discrimination at Age 5 

 It was expected that oral language at 4 years would be correlated with ANS processing 

(as measured by the quantity discrimination task) at 5 years of age. See Table 3 for correlations. 

At age 4, oral language and verbal memory were not significantly associated with the small 

quantity version of the quantity discrimination task at age 5. However, morphology, syntax, and 

relational concepts as well as verbal memory at 4 years of age were significantly positively 

associated with the large quantity version of the quantity discrimination task at 5 years. 

 

Table 3. 

Non-Parametric Correlations between Language at Age 4 and Quantity Discrimination at Age 5 

(n = 26) 

____________________________________________________ 
 

              Quantity Discrimination at 5 years 
 

              Small Quantity     Large Quantity  

Language at 4 years      Version                 Version 

_____________________________________________________ 

 

1.Phonology .06            .27 

2. Morphology .10  .43* 

3. Syntax .15 .49* 

4. Semantics .28           .32 

5. Relational Concepts .35   .53** 

6. Verbal Memory .39   .66** 

_____________________________________________________ 

**p < .01 (2-tailed) 

*p < .05 (2-tailed) 
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Discussion 

The current study is a preliminary investigation of the concurrent and longitudinal 

relations between different aspects of oral language and the ANS (quantity discrimination) in 4-

year-old children and one year later when they turn 5. As hypothesized, we find that aspects of 

oral language are associated concurrently with quantity discrimination at age 4 and age 5. In 

addition, aspects of oral language at age 4 predict quantity discrimination (large quantity version) 

one year later.  

Concurrent Relations between Language and ANS Performance  

At age 4, morphology and semantics are correlated with ANS performance (small 

quantity version). Also at age 4, relational concepts predict ANS performance (small and large 

quantity version). At age 5, syntax, semantics, and relational concepts are positively associated 

with ANS performance (large quantity version). These findings contradict the idea that the ANS 

is a language independent system (Feignenson et al., 2004; Lindskog et al., 2013) and suggest a 

dynamic relation between components of oral language and ANS performance.  

Notable differences in the language components associated with quantity discrimination 

is the use of morphology at age 4, which is absent a year later, and syntax which comes into play 

at age 5. Conceptually this might be explained by the difference in the conceptual complexity 

between morphology (word structure level) and syntax (sentence level). Recall that morphology 

involves how words may be inflected to express grammatical categories such as number, tense, 

and aspect. For example, we come to understand that the suffix “er” on “big” changes the 

meaning to indicate a larger quantity. Similarly, the suffix “er” on “small” changes the meaning 

to a less than small quantity, giving a more refined sense of quantity discrimination. 

Conceptually, word structure may scaffold the understanding of quantities in relation to one 
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another. This helps to explain why relational concepts, a specific aspect of morphological 

knowledge that focuses on the relation between two items, is also correlated to quantity 

discrimination at age 4.   

 Recall that syntax, refers to language structure rules at a higher level - phrases, clauses, or 

sentences. Active discrimination of a larger quantity of items may require different processes 

because of its greater magnitude, which may not allow perceptual strategies (e.g., larger area) or 

basic strategies such as counting. Thus, the child may rely on other problem-solving skills to 

make a judgement. Syntax may be useful conceptually because the challenge of comparing, 

interpreting, and estimating two large quantities side by side is spatially and conceptually similar 

to comparing and interpreting adjacent words at a sentence level. Interpreting meaning through 

syntax may be advantageous to discerning larger quantities in this way.  

 Consistent at both age 4 and 5 is the association of quantity discrimination with semantics 

and relational concepts. Both aspects of language increase a child’s understanding of concrete 

and abstract concepts, with relational concepts being specific to quantitative and spatial 

language. Semantics provides an appreciation of different shades of meaning in words and 

phrases. For example, the ability to distinguish a transit bus from a school bus means being able 

to differentiate between these two large multi-passenger vehicles. This practice of discerning 

differences between concepts is a similar cognitive exercise as the quantity discrimination task. 

Understanding relational concepts provides focused knowledge regarding the ordering of 

quantities and prompts the utilization of any prior mathematical knowledge or practice (i.e., 

more/less; estimation) and apply it (Purpura et al., 2016). It is plausible that the ability to 

accurately detect differences in quantity is aided by general semantic understanding as well as a 

more specific understanding of relational concepts such as more and less than.  
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Of interest is the changing association between language and ANS performance with 

quantity of stimuli. Recall that the small and the large quantity versions have a different number 

of dots within each ratio. The small quantity version ranged between 5 to 16 dots and the large 

quantity version ranged between 30 to 70 dots. These findings suggest that different components 

of oral language provide conceptual knowledge (or tools) that children can draw upon to assist in 

discerning quantity, depending on the magnitude of the task (small quantity vs. large quantity). 

Moreover, neuropsychological research examining language and the ANS has shown that 

syntactic and semantic language task prime and activate the same brain areas utilized for quantity 

discrimination (right intraparietal sulcus; Carreiras et al., 2009). This suggests that quantity 

discrimination relies on multiple language resources. 

Relations between Language at Age 4 and ANS Performance at Age 5 

At age 4, morphology, syntax, relational concepts, and verbal memory predict ANS 

performance on only the large quantity version at age 5. This is in contrast to the findings 

regarding concurrent relations between language and ANS performance in the current study. In 

particular, verbal memory predicts ANS performance one year later. Verbal memory involves the 

practice of recalling words, verbal items, and/or language-based memory that in some 

circumstances should help when holding in mind two items for comparison. Experience using 

language like “more than” or “greater than” may verbally scaffold comparison of two different 

items of large quantity. In a quantity discrimination task with a large number of items, verbal 

memory may help to scaffold comparison of large quantities versus small quantities (which may 

not require verbal memory). These results provide additional evidence for the role of oral 

language in the development of quantity discrimination and also suggest that the components of 

language relied upon for the operation of the ANS is different for small quantities compared to 
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large quantities performance. To our knowledge, no other study has included the wide range of 

quantities for comparison that we have across the two versions.  

As previously discussed, to our knowledge, only five studies have focused on some 

aspect of language and ANS performance, and only three of these studies were with children (3 

to 5 years; 4 to 7 years; 7 to 14 years). The current study is the first to compare oral language 

with ANS performance in very young children longitudinally over more than one year of 

development. Our findings indicate that the ANS may not be language independent and that oral 

language may play a role in ANS performance.  

Practical Implications 

Although our findings must be replicated, they have important recommendations for 

education and adapting curricula in the early years of childhood. There is considerable research 

that has established that improving language skills can also improve mathematics achievement 

and that language is a strong predictor of early mathematical success. Now, we have new insight 

into the potential relation between language and the ANS – the sister construct of symbolic math 

and the foundation for later math cognition. This potential relation suggests an earlier time frame 

within child development for building up the ANS through oral language. Early childhood 

educators could develop purposeful and targeted oral language instruction that has the collateral 

effect of improving the ANS.  This instruction could have a dynamic focus on different 

components of language and verbal memory and be modified for age as suggested by the current 

study. For example, since we find morphology, semantics, verbal memory, and relational 

concepts are important at age 4, curricula, resources, and instruction could focus on integrating 

development in these areas. At age 5, the language focus broadens to includes syntax and 

curricula design could reflect this accordingly.  
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Our findings also suggest that oral language should be screened and monitored in young 

children in a comprehensive mathematics development program that uses oral language as a 

starting place for early intervention. As previously discussed, the ANS is thought to be the 

foundation for more sophisticated symbolic mathematics and its acuity in early childhood is 

correlated with later performance in mathematics (Bonny & Lourenco, 2013; Chen & Li, 2014; 

Fazi et al., 2014; Halberda & Feignenson, 2008; Libertus et al., 2011; Mazzocco et al., 2012; 

Wang et al., 2016). Moreover, since improving ANS acuity through educational training has 

positive effects on the ANS and symbolic mathematics performance (Honore & Noel, 2016; 

Odic & Starr, 2018; Park & Brannon, 2013), it follows that early years education (preschool, 

kindergarten, grade one) could effectively target oral language instruction and screening to 

support the ANS and overall mathematics development.   

Study Limitations and Directions for Future Research 

 As with any longitudinal study, we experienced participant attrition one year later as 

children turned 5 years of age. Further the COVID pandemic interrupted data collection. As a 

result, the current study has a small sample size that impacts generalizability and power. Another 

possible consequence of our small sample was the occurrence of extreme outliers that limited our 

ability to carry out parametric measures. Consequently, our study may be considered a positive 

first step in understanding the contribution of oral language to the ANS (believed to be language 

independent) that requires further research with a larger sample. Additional work examining 

different components of oral language would provide important information regarding the 

contribution of language as cognitive demands for quantity discrimination. Our study focused on 

two time points of development, one year apart; however, further inquiry regarding oral language 

and the ANS is required over a greater span of development to explore the relationship over 
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time. The measurement of ANS performance via quantity discrimination in young children 

proved a further challenge. The quantity discrimination task (Halberda & Feigenson, 2008; 

Libertus et al., 2011, 2013) is considered the most reliable measure of ANS acuity with few 

demands on working memory (Dietrich et al., 2015). However, we were unable to identify a 

single consistent threshold where participants could discern the larger quantity in either the small 

or large quantity version of the task. This made it impossible to calculate a Weber fraction 

measurement of participant performance. Despite literature purporting Weber fraction 

calculation to be the most common measure of acuity, due to the more variable responses that the 

children in the current study generated, it was impossible to calculate. Instead, we used overall 

accuracy (percentage correct) as per Geary and vanMarle (2016); a score supported in the 

literature as the most viable and reliable for children. It is possible then that there is no finite 

minimum threshold of ratio detection for the ANS in children and that this threshold is variable. 

Moreover, the quantity discrimination task used in our study – designed with two different 

versions where children compare ratios using small quantities and large quantities, suggest 

different oral language resources may be drawn upon for approximation with different quantities. 

This is an area worth greater investigation in future research. 

Conclusions 

 The current study is a preliminary investigation into concurrent and longitudinal relations 

between different aspects of oral language and the ANS in 4-year-old children and one year later 

when they were 5. Contrary to the current theory that suggests the ANS works independently of 

language, we find a dynamic set of predictive relations between oral language and the ANS. 

Correlational analysis show that these relations change over time and differ depending the 

magnitude of the quantity comparison (small versus large quantity task versions) and the specific 
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oral language resources needed as conceptual tools to make this comparison. Collectively, our 

research findings provide preliminary evidence for the role of oral language in the development 

of quantity discrimination. Our findings also have positive implications for early childhood 

education and suggest opportunities for early years intervention and improvement of quantity 

approximation skills. Future research is warranted in order to fully explore and refine what is 

known about language and the ANS.  
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Appendix A 

Quantity Discrimination Task Ratio Descriptions 

Small Quantity Discrimination Task Version for the Quantity Range 5 to 16 

Ratio        Possible Number of Dots on the Left Side and Right Side of the Screen 

1:2 5:10 6:12 7:14 8:16 

3:5 6:10 9:15   

2:3 6:9 8:12 10:15  

5:7 5:7 10:14   

3:4 6:8 9:12 12:16  

4:5 8:10 12:15   

5:6 5:6 10:12   

6:7 6:7 12:14   

7:8 7:8 14:16   

 

Large Quantity Discrimination Task Version for the Quantity Range 30 to 70 

Ratio       Possible Number of Dots on the Left Side or Right Side of the Screen 

1:2 30:60 31:62 32:64 33:66 34:68 35:70     

3:5 30:50 33:55 36:60 39:65 42:70      

2:3 30:45 32:48 34:51 36:54 38:57 40:60 42:63 44:66 46:69  

5:7 30:42 35:49 40:56 45:63 50:70      

3.4 30:40 33:44 36:48 39:52 42:56 45:60 48:64 51:68   

4:5 32:40 36:45 40:50 44:55 48:60 52:65 56:70    

5:6 30:36 35:42 40:48 45:54 50:60 55:66     

6:7 30:35 36:42 48:56 54:63 60:70      

7:8 35:40 42:56 49:56 56:64       
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Appendix B 

Quantity Discrimination Average Proportion Percentage per Ratio by Task Version, and 

Age 

 

Ratio 1:2 3:5 2:3 5:7 3:4 4:5 5:6 6:7 7:8 

Age 4 

Small Version 
53.85 70.19 50.00 52.88 53.85 64.42 53.85 55.77 52.88 

Age 5 

Small Version 
65.38 61.54 58.65 51.92 60.58 56.73 56.73 65.38 54.81 

 

Age 4 

Large Version 
64.42 61.54 53.85 52.88 50.96 53.85 57.69 48.08 53.85 

Age 5 

Large Version 
72.12 71.15 72.12 66.35 59.62 61.54 56.73 59.62 52.88 

 


