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Abstract

Mathematical Biology: Analysis of Predator-Prey Systems in

Patchy Environment Influenced by the Fear Effect

Alexander Smit

This thesis is focused on studying the population dynamics of a predator-prey system in a

patchy environment, taking anti-predation responses into consideration.

Firstly, we conduct mathematical analysis on the equilibrium solutions of the system. Using

techniques from calculus we show that particular steady state solutions exist when the param-

eters of the system meet certain criteria. We then show that a further set of conditions leads to

the local stability of these solutions.

The second step is to extend the existing mathematical analysis by way of numerical simula-

tions. We use octave to confirm the previous results, as well as to show that more complicated

dynamics can exist, such as stable oscillations. We consider more complex and meaningful

functions for nonlinear dispersal between patches and nonlinear predation, and show that the

proposed model exhibits behaviours we expect to see in a population model.

Keywords: Predator-prey, population dynamics, anti-predation response, patch model, dis-

persal, asymptotic stability
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Chapter 1

Introduction

The goal of this thesis is to extend previous research in the population dynamics of predator-

prey patch models [20, 10, 11] to account for the fear effect [24, 19, 22, 28, 27]. The following

is a literature review, establishing the relevant research that has been done in this field so far.

1.1 Single Species Population Dynamics

People have been interested in studying populations for quite some time. The natural place to

begin is to start by considering a population in isolation. Clearly the real world is much more

complicated, but it’s good to start simple and understand the simple case before trying to match

the complexity of a real biological system. It also seems simpler to begin with (although may

be more complex to analyze in detail) a discrete time model.

Such a model can be thought of as an insect or fish population that have one breeding season

per year, and thus have clear cut generations. In such a model we would expect the population

in generation n+1 to increase from generation n by the amount of births that occurred, which we

would expect to be determined by how many adults there are to give birth, thus for a population

of size N we can say we might see an increase in the population by bN. We also expect there

to be some deaths between time n and n + 1, so the population should decrease by dN. This

gives us the Malthusian equation in discrete time [1, 18]: Nn+1 = (1 + b − d)Nn = λNn. This is

2



1.2. Predator-Prey Systems 3

simply a linear equation, and doesn’t match very well with reality.

The discrete case can be useful, but for this paper, we really would like to consider con-

tinuous time. In this case, instead of considering the number of births and deaths b and d

respectively between generations, we consider the birth rate and death rate over the next small

interval of time δt. In this case we get the equation N(t + δt) = N(t)+ bN(t)δt − dN(t)δt which,

when we consider δt → 0 simplifies to the Malthusian equation in continuous time [1, 18]:

dN
dt = (b − d)N. This is better, but still too simple. In either case of the Malthusian equation, if

b − d < 0 then the population goes extinct, which may be reasonable, but if b − d > 0 then the

population tends to infinity, which is clearly not realistic.

To account for this we assume that there is some limiting amount of resources in the species

environment, which we call the carrying capacity. Mathematically, this looks like dN
dt = (b −

d)N(1− N
K ) = bN−dN−aN2 where K (or a = b−d

K ) denotes the carrying capacity. For N < K the

new term (1− N
K ) is positive, so that the population still has room to grow, but if N > K then the

population size is too large and thus must decrease, as shown by this term being negative. This

function, called the logistic equation [1, 18], isn’t the only function that matches the s-shaped

empirical data as well as it does, but it is mathematically the simplest.

1.2 Predator-Prey Systems

We now have a pretty acceptable equation describing the population of a single species, but

there is a major element of real life that hasn’t been incorporated yet. In the real world, species

interact with each other and, more specifically, hunt each other. To model predation, we make a

few assumptions regarding the way a predator interacts with it’s prey. These assumptions are as

follows: the prey is limited only by the predator, the per capita rate at which predation occurs

(the functional response) is linear, predators do not interfere with each other, the predator goes

extinct in the absence of the prey, and every death of the prey contributes the same amount

of growth to the predator. This collection of assumptions give us the Lotka-Volterra model
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[1, 18, 14, 15, 25, 26].

du
dt
= αu − γuv

dv
dt
= eγuv − mv

(1.1)

This model does a decent job of describing the things that it was made to describe, but

this system is structurally unstable. That is, if we make some small change the behaviour we

see can change dramatically. This is the result of our previous assumptions not matching very

well with reality. However, we already discussed the ways that we would make a population

model more realistic in Section 1.1, so now we apply those principles to this model. These

modifications, in addition to assuming the functional response is a non-linear function of u,

gives us the Rosenzweig-MacArthur model [1, 18, 23].

du
dt
= bu − du − au2 − Φ(u)v

dv
dt
= eΦ(u)v − mv

(1.2)

Now things are starting to look quite good, but if it’s not linear, then what sort of function

should the functional response be? For this we have the Holling type II functional response [1,

18, 6, 7, 8], which often matches very well with empirical data. There are also, less commonly

seen, Holling types I, III, and IV functional response equations for other possibilities we see in

the real world.

The type II function is given by N = su(T − hN). The motivation for this equation is an as-

sumption that the number of prey caught is density dependent in addition to being proportional

to the amount of time spent searching. The predator will also need to spend time handling

the prey once caught, thus in our equation N is the number of prey caught per time period T ,

s is the effective search rate and h is the handling time. We want to include this function in

our model as the average number of prey caught N per time period T , so we rearrange to find

that Φ(u) = N
T =

su
1+shu . Using this function in the Rosenzweig-MacArthur model gives us the

following model.
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du
dt
= bu − du − au2 −

su
1 + shu

v

dv
dt
=

esu
1 + shu

v − mv
(1.3)

In this way we have an increasingly more realistic model, but there are still more elements

that we must consider.

1.3 The Fear Effect

All of the models that we have considered so far have made the assumption that the only way

that a predator can interact with and change the population of the prey is through the direct

effect of predation. However, it is becoming increasingly popular to consider the possibility of

an indirect interaction that the predator can impose on the prey.

The supposition is that if the prey sense predators nearby then the anti-predation response

has significant drawbacks that reduce their growth rate. The existence of this so called fear

effect was studied by Zanette et al. [28] on a population of song sparrows. In this study the

song sparrows were protected from all predation so that only the fear effect would influence

the population. Meanwhile, predator sounds were played for some groups, while only non-

predator sounds were played for the other groups. Zanette et al. found that the populations that

were subjected to predator sounds experienced a 40% reduction in offspring compared to the

control group.

There were notable ways in which it was observed how the fear effect reduces the popula-

tions growth rate in the case of song sparrows, of course these details will likely be different

in a different species, but we hypothesize that there is some manifestation of the fear effect in

many more species than just the song sparrows. These behaviours were that fewer eggs were

laid by the sparrows, fewer of those eggs proportionally hatched, and more hatched nestlings

died before reaching adulthood. Since we now have a study that confirms the existence of this

effect, mathematicians have begun incorporating it into their current models. The 2016 paper
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by Wang et al. [27] applies the fear effect to a predator-prey model following logistic growth.

du
dt
= f (k, v)ru − du − au2 − g(u)v

dv
dt
= cg(u)v − mv

(1.4)

It can be seen clearly that this is the Rosenzweig-MacArthur model except for the inclusion

of the function f (k, v) modifying the growth rate r of the prey. This is a function of the predator

population v; and k, which is the term representing the intensity of the fear effect. The form for

f proposed by Wang et al. is f (k, v) = 1
1+kv . In this way, when k = 0 the denominator is equal

to one, and the function representing the fear effect vanishes, but as long as k > 0 an increase

in either of the population size of the predator or the intensity of the fear effect (the value of

k) has the effect of scaling down the growth rate r of the prey. Other functions that have been

considered for are f (k, v) = e−kv, or f (k1, k2, v) = 1
1+k1v+k2v2 , but in this paper we focus on the

simpler function.

1.4 Metapopulations

There are some circumstances where the Rosenzweig-MacArthur model must be complicated

in a different way than the fear effect. In all of the models we have so far discussed, we have

implicitly assumed that the environment that the populations inhabit is spatially homogeneous.

That is, there is no notable difference between different patches of habitat, and the populations

can move freely and easily throughout the entirety of the patch.

However, there are some environments, such as archipelagos, where movement between

patches, while still possible, is not as fluid. In this case a species can migrate between patches,

and we can see extinction and recolonization happening among the patches, so that the species

survives by constantly migrating between patches (islands in the archipelago example). To

study this, it is generally easier to model the dynamics of colonized versus extinct patches,

rather than the population size of the species [1, 18, 13, 16].
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If we consider there to be K habitable patches, then we can assume that a proportion p(t) of

the patches are colonized at time t. Then the probability of a patch becoming extinct over some

short time interval δt is eδt, and so the average proportion of sites that cease to be colonized

over this time interval is ep(t)δt. Similarly, we can assume that the probability that a patch

that is uncolonized at time t becomes colonized over a short time interval δt is cp(t)δt. Only

uncolonized patches can become colonized, so the average number of patches that become

colonized in the interval δt is cp(t)(1 − p(t))δt. Thus, if we consider smaller and smaller time

intervals by taking the limit as δt → 0, we get the ODE

dp
dt
= cp(1 − p) − ep.

This model describes a single species inhabiting a patchy environment, but we are interested

in models that include a predator and a prey. In a 1950s study, Huffaker [9] showed that a

predator-prey system in a patchy environment can allow the persistence of the two species,

when in a spatially homogeneous environment the system quickly tended towards extinction.

In this study, Huffaker designed an environment of rubber balls and oranges and introduced

an herbivorous mite species and a predatory mite species. When fewer oranges were included,

and so the environment is more similar to spatially homogeneous, the herbivorous mites were

hunted to extinction, immediately followed by the predatory mites. However, if more oranges

were included, so that the environment is less spatially homogeneous, the species persisted.

To introduce a predator to our patch model, we first make some observations. If a predator

exists in a patch, with no prey, then the predator must either go extinct or migrate away from

that patch, so we can assume that there are no patches inhabited only by the predator. The

reverse is not true, a prey species can inhabit a patch with no predator species. Therefore

we have three possible states: extinct, inhabited only by prey, or inhabited by both prey and

predator. We denote these three states as 0, 1, and 2 respectively. Denote the colonization rate

of the prey species as c1, the colonization rate of the predator species as c2, the extinction rate

of a patch in state 1 as e1, the extinction rate of a patch in state 2 as e2, the proportion of sites
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in state 1 as p1, and the proportion of sites in state 2 as p2.

The only way for a patch that isn’t in state 1 to become state 1 is for it to originally be

extinct, and become colonized by a patch that has a prey species on it, (ie is in state 1 or 2).

Thus the increase in the number of patches in state 1 is given by c1(1 − p1 − p2)(p1 + p2). A

patch in state 1 can stop being in state 1 either by the prey going extinct so that it becomes

state 0, or by being colonized by a predator so that it becomes state 2. Thus the decrease in the

number of patches in state 1 is given by c2 p1 p2 + e1 p1. The only way for a patch to become

state 2 is for it to already be in state 1 and be colonized by a predator, and the only way for it to

stop being state 2 is for the species inhabiting it to go extinct. Thus the increase in the amount

of patches in state 2 is given by c2 p1 p2, and the decrease is given by e2 p2. This gives us the

patch model with predation.

dp1

dt
= c1(1 − p1 − p2)(p1 + p2) − c2 p1 p2 − e1 p1

dp2

dt
= c2 p1 p2 − e2 p2

(1.5)

These models are a convenient way to simplify the study of a patchy environment as op-

posed to working with a population model. Unfortunately, we are interested in studying the

consequences of the fear effect in such an environment, which necessitates a population model,

such as those in [12, 2, 3, 17]. In order to study a patchy environment while continuing to

model the population of the species, Li et al. [12] consider a species u in patch i to be distinct

from a species u in patch j. Therefore we define species u in patch i as ui.

In this paper, a two patch system is considered, and migration between the two patches

implies an additional two terms to each equation. Since we consider a species in patch 1 to

be distinct from a species in patch 2, then the immigration from patch 2 to patch 1 results

in a positive change in the population of the species in patch 1, whereas emigration from

patch 1 to patch 2 produces a decrease in the population of patch 1. The reverse is true for

patch 2. Therefore, Li et al. include the migration functions m(α, v1), and m(α, v2), where α

represents the preys vigilance level, and vi represents the population of the predator in patch i.
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These authors also consider the growth rate function (which includes the fear effect) and the

functional response function to be functions of α and vi. This leads them to this model.

du1

dt
= b1(α, v1)u1 − d1 − au2

1 − c(α, v1)u1v1 − m(α, v1)u1 + m(α, v2)u2

du2

dt
= b2(α, v2)u2 − d2 − au2

2 − c(α, v2)u2v2 + m(α, v1)u1 − m(α, v2)u2

(1.6)

In this way, they study the population dynamics of the prey species in a patchy environment,

while treating the predator population as a parameter, rather than a state variable as we see in

the previous models.



Chapter 2

Model Formulation

Our work is motivated by [12], where the authors studied a two-patch predator-prey model

with the fear effect. In [12], the authors proposed a model where a single prey species inhabits

two different patches and can move without obstacles between patches. The authors assume

that a single predator species lives on two different patches as well but consider a simplified

scenario where the predator population density stays as constant. The authors considered that

the anti-predator behaviors of the prey reduce the offspring reproduction success in the prey

and also reduce the prey dispersal between patches because for some species, the prey takes

refuge when perceiving predation risks and avoids movement between patches.

In our work, we relax the assumption that the predator population density in both patches

remains constant but consider that the predator population may change with time. This is

reasonable in particular because we model a specialist predator in our two-patch model. Here a

specialist predator is a predator whose diet focuses on certain prey species. As a consequence,

the abundance of the food resource will largely impact the predator population density.

Moreover, we study a different scenario compared to the work in [12]. We consider a

two-patch problem, where in particular one patch is a high-quality patch, where the living

conditions are optimal and favor the population growth for both the prey and the predator.

However, the other patch is a low-quality patch, where the living conditions are less-favorable

10
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and provide only limited support for population growth. Without predation, prey in general

would inhabit a high-quality patch as long as the resource on the patch is sufficient. However,

prey may move from the high-quality patch to the low-quality patch when prey perceive preda-

tion risks. For example, birds, such as song sparrows, may relocate to areas with denser shrubs

where there is less presence of the predator. More importantly, birds anti-predation measures

do not involve staying still and hiding from the predators. Instead, the birds flee and so the

anti-predator defense of the prey facilitates the movement of the prey between patches.

Based on the aforementioned considerations, we propose the following model

du1

dt
=

r1u1

1 + k1v1
− d1u1 − a1u1

2 −G1(u1)v1 −C12(k1, v1)u1 +C21(k2, v2)u2,

du2

dt
=

r2u2

1 + k2v2
− d2u2 − a2u2

2 −G2(u2)v2 +C12(k1, v1)u1 −C21(k2, v2)u2,

dv1

dt
= e1G1(u1)v1 − m1v1 − p12v1 + p21v2, (2.1)

dv2

dt
= e2G2(u2)v2 − m2v2 + p12v1 − p21v2.

In model (2.1), we consider two species: the prey species u and the predator species v. We

also consider two patches, indicated by subscripts 1 and 2, so that u1 represents the prey pop-

ulation density in patch 1, and u2 represents the prey population density in patch 2. Similarly,

in model (2.1), v1 represents the predator population density in patch 1 and v2 represents the

predator population density in patch 2.

The parameter ri represents the offspring production rate of the prey in patch i, di represents

the death rate by natural causes of the prey in patch i, ai represents the intraspecific competition

for the prey on each individual patch, ei represents the biomass conversion from the prey to the

predator in patch i, and mi represents the death rate by natural causes of the predator in patch i.

In model (2.1), the parameter ki represents the fear effect. Here, the formulation of the fear

effect term follows the same formulation in [27]. In [27], the formulation of the fear effect

term is based on the biological evidence that the prey perceives predation risks nearby and
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takes avoidance behaviors for their own survival. As a consequence, the reproduction success

of the prey is significantly reduced. More precisely, ki represents the level of anti-predator

defense of the prey. If ki is larger, the prey in patch i is more likely to take avoidance behaviors

when perceiving predation risks. The predation risks are then largely related to the population

density of the predator. If there are more predators in patch i, then the prey in the same patch

is more likely to perceive the presence of the predator nearby.

In model (2.1), Gi represents the functional response of the predator in patch i. Widely ac-

cepted functional responses including the Holling-type functional responses are prey-dependent

ones. For example, if we choose the linear/Holling type I functional response, then we have

Gi(ui) = giui,

where gi represents the successful attack of the prey by the predator in patch i [1, 18]. The

well-known Holling type II functional response reads

Gi(ui) =
giui

1 + gihiui
,

where gi represents the successful attacking rate of the predator on the prey in patch i and hi

represents the handling of the prey by the predator [6, 7]. In the analysis of Chapter 4, to have

mathematically tractable results, we choose the linear functional response Gi(ui) = giui. In

Chapter 5, we also explore other possible dynamics induced by the Holling type II functional

response by using numerical simulations.

Finally, in (2.1), Ci j represents the dispersal of the prey in patch i to patch j. In general,

the dispersal rate depends on how strong the anti-predator defense of the prey is on patch i

and also on the predator’s population density on patch i. For simplicity, for the analysis below,

we adopt the constant dispersal rate instead, i.e. C12(k1, v1) = c12 and C21(k2, v2) = c21. Here,

the dispersal rates of the prey between patches may be different. Similarly, pi j represents the

dispersal of the predator in patch i to patch j and are constants.



Chapter 3

Preliminary Analysis

Before we proceed with a more in-depth analysis, we prove that the proposed model (2.1) is

valid. To this end, we will show the positivity and the boundedness for the model.

3.1 Positivity

First let us consider u1. The rate of change in prey’s population density in patch 1 is given by

du1

dt
=

r1u1

1 + k1v1
− d1u1 − a1u1

2 −G1(u1)v1 −C12(k1, v1)u1 +C21(k2, v2)u2

We can then manipulate the equation as following

du1

u1
=

(
r1

1 + k1v1
− d1 − a1u1 −

G1(u1)v1

u1
−

C12u1

u1
+

C21u2

u1

)
dt,∫

du1

u1
=

∫ (
r1

1 + k1v1
− d1 − a1u1 −

G1(u1)v1

u1
−

C12u1

u1
+

C21u2

u1

)
dt,

ln |u1(t)| =
∫ (

r1

1 + k1v1
− d1 − a1u1 −

G1(u1)v1

u1
−

C12u1

u1
+

C21u2

u1

)
dt +C,

|u1(t)| = exp
(∫ (

r1

1 + k1v1
− d1 − a1u1 −

G1(u1)v1

u1
−

C12u1

u1
+

C21u2

u1

)
dt +C

)
,

13
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u1(t) = exp
∫ (

r1

1 + k1v1
− d1 − a1u1 −

G1(u1)v1

u1
−

C12u1

u1
+

C21u2

u1

)
dt ·

(
±eC

)
,

where C is an arbitrary constant.

Because C is an arbitrary constant, for notational convenience, we denote ±eC = β, where

β is an arbitrary constant. Next, we show that the constant β can be determined by the initial

population density. Followed by the analysis above, we have

u1(t) = β exp
∫ (

r1

1 + k1v1
− d1 − a1u1 −

G1(u1)v1

u1
−

C12u1

u1
+

C21u2

u1

)
dt (3.1)

Let u1(0) be the initial population density. For biologically reasonable assumptions, one must

have u1(0) ≥ 0. Fix t = 0 in (3.1) and we then obtain u1(0) = β. This altogether leads to

u1(t) = u1(0) exp
∫ (

r1

1 + k1v1
− d1 − a1u1 −

G1(u1)v1

u1
−

C12u1

u1
+

C21u2

u1

)
dt.

Because the exponential function is always positive and the initial population density u1(0) is

always non-negative, the population density u1(t) stays non-negative for all time. Moreover,

u1(t) = 0 only if the initial population density u1(0) = 0. Hence, the positivity of u1 holds.

The same approach can be used to prove the positivity for each of the state variables u2, v1,

v2. Because the proofs are similar, we omit the proofs here. Also, note that the proof of the

positivity is valid for general functional response Gi and general dispersal function Ci j.

3.2 Boundedness

Since we have already proven that each state variable is nonnegative for all time, then if we

show that the sum of all state variables is bounded above, it must follow that each state variable

is bounded above. Firstly, we define ē = max{e1, e2} and m̄ = min{m1,m2}. This allows us to
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define a new variable G = ē(u1 + u2) + v1 + v2.

Then we can take the derivative of the new variable G with respect to time, and we obtain

dG
dt
= ē(

du1

dt
+

du2

dt
) +

dv1

dt
+

dv2

dt

= ē
[

r1u1

1 + k1v1
− d1u1 − a1u1

2 −G1(u1)v1 −C12(k1, v1)u1 +C21(k2, v2)u2

+
r2u2

1 + k2v2
− d2u2 − a2u2

2 −G2(u2)v2 +C12(k1, v1)u1 −C21(k2, v2)u2

]
+ e1G1(u1)v1 − m1v1 − p12v1 + p21v2 + e2G2(u2)v2 − m2v2 + p12v1 − p21v2.

The dispersal terms for both the prey and the predator are cancelled out. Therefore, we obtain

dG
dt
= ē

[
r1u1

1 + k1v1
− d1u1 − a1u1

2 −G1(u1)v1

+
r2u2

1 + k2v2
− d2u2 − a2u2

2 −G2(u2)v2

]
+ e1G1(u1)v1 − m1v1 + e2G2(u2)v2 − m2v2.

Since ē = max{e1, e2}, we can substitute e1 and e2 with ē to get an upper bound of dG/dt where

dG
dt
≤ ē

[
r1u1

1 + k1v1
− d1u1 − a1u1

2 −G1(u1)v1

+
r2u2

1 + k2v2
− d2u2 − a2u2

2 −G2(u2)v2

]
+ ē [G1(u1)v1 +G2(u2)v2] − m1v1 − m2v2.

This allows us to cancel out the predation terms so that

dG
dt
≤ ē

[
r1u1

1 + k1v1
− d1u1 − a1u1

2 +
r2u2

1 + k2v2
− d2u2 − a2u2

2
]
− m1v1 − m2v2.

Because we have proved the positivity of the state variables v1, v2 and the parameters k1, k2
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are positive as well, each of the denominators in the preceding fractions are greater than or

equal to one. Therefore, since dG
dt is lesser than the current version, it must also be lesser

than the same equation in the absence of these denominators. Also, by replacing m1,m2 with

m̄ = min{m1,m2}, we obtain

dG
dt
≤ ē

[
r1u1 − d1u1 − a1u1

2 + r2u2 − d2u2 − a2u2
2
]
− m̄v1 − m̄v2.

The above inequality is equivalent to

dG
dt
≤ ē

[
(r1 + m̄)u1 − d1u1 − a1u2

1 + (r2 + m̄)u2 − d2u2 − a2u2
2

]
− m̄G(t)

Let

F1(u1) = (r1 + m̄)u1 − d1u1 − a1u2
1 and F2(u2) = (r2 + m̄)u2 − d2u2 − a2u2

2.

Each function Fi(ui) is a quadratic function of a single variable. Moreover, the leading coeffi-

cient of the quadratic function is negative, which leads to the parabola to be facing downward.

Each function Fi(ui) has two zeros ui = 0 and ui = (ri + m̄ − di)/ai. Therefore, we can find the

maximum of each function Fi(ui) where

F1(u1) ≤
(r1 + m̄ − d1)2

4a1
and F2(u2) ≤

(r2 + m̄ − d2)2

4a2
.

Let

η = ē
[
(r1 + m̄ − d1)2

4a1
+

(r2 + m̄ − d2)2

4a2

]
.

Then we obtain

dG
dt
≤ η − m̄G
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Let’s consider the extreme case where

dG
dt
= η − m̄G,

dG
η − m̄G

= dt,∫
dG
η − m̄G

=

∫
dt,

− ln |η − m̄G|
m̄

= t +C1,

ln |η − m̄G| = −m̄t − m̄C1,

where C1 is an arbitrary constant. Let −m̄C1 = C2, where C2 is also an arbitrary constant. This

gives

ln |η − m̄G| = −m̄t +C2,

|η − m̄G| = e−m̄t+C2 ,

|η − m̄G| = e−m̄t · eC2 ,

η − m̄G = (±eC2) · e−m̄t.

Now we let ±eC2 = C, where C is an arbitrary constant to obtain

η − m̄G = Ce−m̄t

G =
η −Ce−m̄t

m̄
(3.2)

G =
η

m̄
−

Ce−m̄t

m̄

It is easy to see that limt→∞
Ce−m̄t

m̄ = 0. It follows that lim supt→∞G(t) ≤ η

m̄ by the comparison

principle. Since G is the sum of all populations, up to a constant stretch factor, and G is clearly

bounded above by the comparison principle, together with the positivity of all state variables,

it must be true that each population is also bounded above.



Chapter 4

Equilibrium Analysis

In this chapter, we calculate the equilibrium solutions. Because we consider a specialist preda-

tor, i.e. the predator consumes the prey only and no other resources, there are only three

possible equilibrium solutions: 1) both the predator and the prey are extinct, 2) the predator is

extinct but the prey exists, 3) both the prey and the predator survive and coexist.

For this chapter, we will assume that the following functions Gi (biomass conversion from

the prey in patch i to the predator in the same patch), and Ci j (dispersal of the prey in patch i to

patch j) are linear functions in terms of the prey’s population densities for simplicity. We cal-

culate the extinction equilibrium and the conditions which lead to a predator-free equilibrium.

For the coexistence equilibrium solution, we refer to the numerical simulations in Chapter 5.

4.1 Nondimensionalization of the Model

To simplify the calculation and reduce the number of parameters, we begin the analysis by

non-dimensionalizing the model. We will adopt the following re-scalings

u1 = αū1, u2 = βū2, v1 = ηv̄1, v2 = θv̄2, t = τt̄,

where α, β, η, θ, τ are undetermined coefficients.

18
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We can then obtain the following results

dū1

t̄
=
τ

α
·

du1

dt

=
τ

α

(
r1u1

1 + k1v1
− d1u1 − a1u1

2 − g1u1v1 − c12u1 + c21u2

)
=
τ

α

(
r1αū1

1 + k1ηv̄1
− d1αū1 − a1α

2ū1
2 − g1αū1ηv̄1 − c12αū1 + c21βū2

)
=
τr1ū1

1 + ηk1v̄1
− τd1ū1 − ατa1ū1

2 − ητg1ū1v̄1 − τc12ū1 +
βτc21ū2

α
.

Similarly, direct calculations lead to

dū2

t̄
=
τ

β
·

du2

dt

=
τ

β

(
r2u2

1 + k2v2
− d2u2 − a2u2

2 − g2u2v2 + c12u1 − c21u2

)
=
τ

β

(
r2βū2

1 + k2θv̄2
− d2βū2 − a2β

2ū2
2 − g2βū2θv̄2 + c12αū1 − c21βū2

)
=
τr2ū2

1 + θk2v̄2
− τd2ū2 − βτa2ū2

2 − θτg2ū2v̄2 +
ατc12ū1

β
− τc21ū2,

dv̄1

dt̄
=
τ

η
·

dv1

dt

=
τ

η
(e1g1u1v1 − m1v1 − p12v1 + p21v2)

=
τ

η
(e1g1αū1ηv̄1 − m1ηv̄1 − p12ηv̄1 + p21θv̄2)

=ατe1g1ū1v̄1 − τm1v̄1 − τp12v̄1 +
θτp21v̄2

η
,

dv̄2

dt̄
=
τ

θ
·

dv2

dt

=
τ

θ
(e2g2u2v2 − m2v2 + p12v1 − p21v2)

=
τ

θ
(e2g2βū2θv̄2 − m2θv̄2 + p12ηv̄1 − p21θv̄2)

=βτe2g2ū2v̄2 − τm2v̄2 +
ητp12v̄1

θ
− τp21v̄2.
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In order to reduce the number of parameters, we choose

α =
r1

a1
, β =

r1

a2
, η =

1
k1
, θ =

1
k2
, τ =

1
r1
.

Moreover, we redefine the parameters where

d̄1 =
d1

r1
, ḡ1 =

g1

k1r1
, c̄12 =

c12

r1
, c̄21 =

a1c21

a2r1
, r̄ =

r2

r1
,

d̄2 =
d2

r1
, ḡ2 =

g2

k2r1
, ε =

a2

a1
, ē1 =

e1g1

a1
, m̄1 =

m1

r1
,

p̄12 =
p12

r1
, p̄21 =

k1 p21

k2r1
, ē2 =

e2g2

a2
, m̄2 =

m2

r1
, µ =

k2

k1
.

Making these substitutions and dropping the bars for notional convenience gives us our

nondimensional model

du1

dt
=

u1

1 + v1
− d1u1 − u1

2 − g1u1v1 − c12u1 + c21u2,

du2

dt
=

ru2

1 + v2
− d2u2 − u2

2 − g2u2v2 + εc12u1 − εc21u2,

dv1

dt
=e1u1v1 − m1v1 − p12v1 + p21v2, (4.1)

dv2

dt
=e2u2v2 − m2v2 + µp12v1 − µp21v2.

4.2 Equilibrium Solutions

Now that we have derived the non-dimensionalized model (4.1), next we determine what the

equilibrium solutions of the system are. This is done by letting du1/dt = du2/dt = dv1/dt =

dv2/dt = 0, and solving for the state variables. Clearly, one such equilibrium solution is the

trivial equilibrium E0(u∗1, u
∗
2, v
∗
1, v
∗
2) = (0, 0, 0, 0).

We analyze the existence of a semi-trivial equilibrium E1(u∗1, u
∗
2, 0, 0). We begin by consid-

ering the simpler case of a subsystem of (4.1)
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du1

dt
= u1 − d1u1 − (u1)2 − c12u1 + c21u2,

du2

dt
= ru2 − d2u2 − (u2)2 + εc12u1 − εc21u2. (4.2)

We take (du1/dt) = (du2/dt) = 0 in (4.2) and rearrange to find that

f1(u1) B
(u1)2 − (1 − d1 − c12)u1

c21
= u2

In a similar way, we can rearrange (du2)/(dt) = 0 to view it as −(u2)2 + (r − d2 − εc21)u2 +

εc12u1 = 0. This is a quadratic in u2, and so we solve for u2 using the quadratic formula to get

the functions

f21(u1) B
1
2

[(r − d2 − εc21) +
√

(r − d2 − εc21)2 + 4εc12u1] = u2,

f22(u1) B
1
2

[(r − d2 − εc21) −
√

(r − d2 − εc21)2 + 4εc12u1] = u2.

Since we know that the function u2 = f1(u1) is derived from du1/dt = 0; and the functions

u2 = f21(u1), and u2 = f22(u1) are derived from du2/dt = 0; then it must be that the intersection

points of f1 with either f21 or f22 is a steady state solution to the system (4.2). Furthermore,

we only are interested in positive solutions, so any intersections that happen outside of the first

quadrant are biologically unrealistic.

Note now that f1 is a concave up quadratic intersecting the origin. Thus in the first quadrant,

our region of interest, f1 is eventually an increasing function. In both f21 and f22 we find

the only state variable in the term
√

(r − d2 − εc21)2 + 4εc12u1, where it is multiplied only by

positive parameters. In f21 the radical is positive, so in the first quadrant this is an increasing

function. Conversely, in f22 the radical is negative, and so it is a decreasing function. Moreover,

we can clearly see that f22(0) = 0, and therefore f22 < 0 for all u1 ≥ 0. Therefore it is impossible
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for there to be an intersection between f1 and f22 in the first quadrant.

This means that we only need to analyze intersections between f1 and f21. A possible

intersection between these functions is shown in Figure 4.1. In order to find the intersection of

f1 and f21 it is equivalent to consider the existence of the positive roots of

F(u1) B f21(u1) − f1(u1).

We also note that clearly

d f1

du1
=

2u1 − (1 − d1 − c12)
c21

,

d f21

du1
=

εc12√
(r − d2 − εc21)2 + 4εc12u1

.
(4.3)

In each of these equations there are only two terms that may change sign from positive to

negative: (1−d1−c12) and (r−d2−εc21). So we break this problem into cases based on whether

these terms are positive, negative, or zero.
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Figure 4.1: Illustration of existence of predator-free equilibrium.

Case I: (1 − d1 − c12) ≥ 0 and (r − d2 − εc21) > 0.

In this case it can be seen that (d f1)/(du1) < 0 for u1 < (1 − d1 − c12)/2. Since we also have

that f1(0) = 0, we therefore know that f1(u1) < 0 for 0 < u1 < (1 − d1 − c12)/2. Thus the range
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in which it is possible to find an intersection in the first quadrant is for u1 ≥ (1 − d1 − c12)/2.

Since finding an intersection between these two functions is equivalent to finding a zero of

the function F(u1), we now consider this function for u1 ≥ (1 − d1 − c12)/2. Firstly, we find that

F(0) = (r−d2−εc21) > 0. We also find that F′(0) = (εc12)(r − d2 − εc21)+ (1 − d1 − c12)/c21 >

0. So as we enter the first quadrant of the (u1, t) plane, this function is above zero in the (u1, u2)

plane, and is increasing. We already established that there is no solution prior to the point u1 =

(1 − d1 − c12)/2. Note that F′((1 − d1 − c12)/2) = εc12/(
√

(r − d2 − εc21)2 + 2εc12(1 − d1 − c12)) >

0, so at this point F is still increasing. However, consider the limits

lim
u1→∞

d f21

du1
= lim

u1→∞

εc12√
(r − d2 − εc21)2 + 4εc12u1

= lim
u1→∞

1
√

u1
= 0,

and

lim
u1→∞

−
d f1

du1
= lim

u∗1→∞
−u1 = −∞.

Therefore we can see that F′(∞) < 0, that is, F(u1) is eventually decreasing for all time.

This is confirmed by noting that:

F′′(u1) = −2ϵ2c2
12[(r − d2 − ϵc21)2 + 4ϵc12u1]−

3
2 − 2/c21 < 0

This implies that the function is concave down for all possible values of u1, and therefore

there is a point ū1 such that F′(u1) > 0 for u1 < ū1 and F′(u1) < 0 for u1 > ū1. All of this

suggests that there is a unique point, u∗1 > ū1 > (1 − d1 − c12)/2 such that F(u∗1) = 0. One

such possible root of the function F(u1) = 0 is shown in Figure 4.2. Thus in this case the

predator-free subsystem admits a unique equilibrium (u∗1, f1(u∗1)).

Case II: (1 − d1 − c12) < 0 and (r − d2 − εc21) > 0.

Just as in case I, we have that
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Figure 4.2: Illustration of function F.

F(0) = (r − d2 − εc21) > 0,

F′(0) =
εc12

r − d2 − εc21
+

1 − d1 − c12

c21
,

F′′(u1) < 0.

In this case, however, we aren’t guaranteed that F′(0) > 0. In the scenario that we do have

F′(0) > 0, then the same reasoning as in case I applies. Then there must be some unique

u∗1 > ū1 such that F(u∗1) = 0. If, instead, we have that F′(0) ≤ 0, the conclusion still remains,

since F(0) is greater than zero and F′′(u1) < 0 guarantees that F′(u1) remains negative from

this point forward. This indicates that the function F will cross the u1 axis exactly once. As

before, we denote the positive root of F(u1) = 0 as u∗1. Thus, in this case, the predator-free

subsystem admits a unique equilibrium (u∗1, f1(u∗1)).

Case III: (1 − d1 − c12) ≥ 0 and (r − d2 − ϵc21) ≤ 0.

By similar discussions to those in Case I, we conclude that the predator-free subsystem

admits a unique equilibrium (u∗1, f1(u∗1)) in this case.
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Case IV: (1 − d1 − c12) < 0 and (r − d2 − εc21) < 0.

In this case, since the term (r−d2−εc21) < 0, the function F′(u1) takes on a slightly different

form. Here we have

F(0) = 0,

F′(0) = −
εc12

r − d2 − εc21
+

1 − d1 − c12

c21
,

F′′(u1) < 0.

The negative sign in front of the term εc12/(r − d2 − εc21) together with the assumption r −

d2−εc21 < 0 leads to εc12/(r−d2−εc21) > 0. This comes from simplifying εc12/(
√

(r − d2 − εc21)2),

where the result must be the positive root, since this is a result of f21. The negative root was

ruled out when we considered f22 previously. The term (1 − d1 − c12)/c21 must always be neg-

ative by assumption, and so we have that F′(0) > 0 if and only if

∣∣∣∣∣ εc12

r − d2 − εc21

∣∣∣∣∣ > ∣∣∣∣∣1 − d1 − c12

c21

∣∣∣∣∣ . (4.4)

The consequence of this is that F(u1) > F(0) = 0 for 0 < u1 ≪ 1. Then, by the same

reasoning as in Case I, there exists a unique u∗1 > 0 such that F(u∗1) = 0, which is shown on the

left in Figure 4.3.

Alternatively, it is possible that

∣∣∣∣∣ εc12

r − d2 − εc21

∣∣∣∣∣ < ∣∣∣∣∣1 − d1 − c12

c21

∣∣∣∣∣ . (4.5)

In this case F′(0) < 0, and so F(u1) < F(0) = 0 for u1 > 0. We therefore conclude that

in this case there is no positive equilibrium for the subsystem (4.2), as shown on the right in
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Figure 4.3: Illustration of intersection of function f1 with function f21.

Figure 4.3.

Case V: (1 − d1 − c12) < 0 and (r − d2 − εc21) = 0.

In this case f21(u1) =
√
εc12u1, and so we have

F(0) = 0,

F′(u1) =
εc12

2
√
εc12u1

+
(1 − d1 − c12) − 2u1

c21
,

F′′(u1) < 0.

Since we are assuming that (1 − d1 − c12) < 0, it is clear that F′(u1) > 0 if and only if

εc12

2
√
εc12u1

> −
(1 − d1 − c12) − 2u1

c21

=⇒ εc12c21 > −[(1 − d1 − c12) − 2u1] · 2
√
εc12u1

=⇒ εc12c21 > 4u1
√
εc12u1 − 2(1 − d1 − c12)

√
εc12u1

Now both terms on the left-hand side and right-hand side are positive. However, the term

on the left is a constant, but each term on the right contains the variable u1. Nevertheless, we

can see that for small enough u1, we must have that the left-hand side is greater than the right-
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hand side, which leads to F′(u1) > 0. Again, by similar discussions as in Case I, there must be

a unique u∗1 > 0 such that F(u∗1) = 0. And so, in this case the predator-free subsystem admits a

unique equilibrium (u∗1, f1(u∗1)).

Since the four dimensional system (4.1) is equivalent to the subsystem (4.2) when v1 = v2 =

0, it must be that the semi-trivial equilibrium E(u∗1, u
∗
2, 0, 0) exists exactly when (4.2) admits

the equilibrium E(u∗1, u
∗
2). Therefore we have the following lemma.

Lemma 4.2.1 The predator-free subsystem (4.2) admits a unique equilibrium (u∗1, u
∗
2) and the

system (4.1) admits a unique equilibrium (u∗1, u
∗
2, 0, 0) if the conditions stated in one of cases

I-III or V are satisfied; or if (4.4) holds in case IV. The subsystem does not have a positive

equilibrium if (4.5) holds in case IV.

4.3 Stability of Equilibrium Solutions

Now we would like to perform analysis to determine when these equilibrium solutions are

stable and when they are unstable, given that they exist. We start by considering the subsystem,

before going on to analyze the trivial equilibrium of the entire system, and finally the semi-

trivial equilibrium of the entire system.

4.3.1 Stability of the Subsystem Steady States

From the analysis for the existence of the predator-free equilibrium, we see that when the

predator population density is at extinction, the full model (4.1) simplifies to the 2-dimensional

system (4.2). The existence of a predator-free equilibrium of the full model (4.1) is equivalent

to the existence of a positive equilibrium for the subsystem (4.2).

We analyze the subsystem (4.2) first and then extend the analysis to the full model (4.1) in

later sections. To do this we first find the Jacobian matrix evaluated at the trivial equilibrium

(0, 0)
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J0 =


1 − d1 − c12 c21

ϵ c12 r − ϵ c21 − d2

 .
According to the Routh-Hurwitz criteria for second-order systems [4, 5], (4.1) has a stable

trivial equilibrium if and only if Tr(J0) < 0 and Det(J0) > 0. Thus, (0, 0) is asymptotically

stable if

1 − d1 − c12 + r − ϵ c21 − d2 < 0,

(1 − d1 − c12)(r − ϵ c21 − d2) − ϵc12c21 > 0.
(4.6)

Conversely, the equilibrium is unstable if either

1 − d1 − c12 + r − ϵ c21 − d2 > 0, (4.7)

or

(1 − d1 − c12)(r − ϵ c21 − d2) − ϵc12c21 < 0. (4.8)

We consider the consequences of the instability of the trivial equilibrium in terms of the

conditions outlined in Lemma 4.2.1. Let us first consider that (4.7) holds. The possibilities for

this to be true are if both terms (1 − d2 − c12) and (r − d2 − εc21) are positive, which places us

within Case I; or if (1 − d1 − c12) is positive, (r − d2 − εc21) is less than or equal to zero, and

|1 − d1 − c12| > |r − d2 − εc21| which places us in Case III; or if (1 − d1 − c12) is less than or

equal to zero, (r − d2 − εc21) is positive, and |1 − d1 − c12| < |r − d2 − εc21| which places us

in either Case I or Case II. Therefore if this stability condition fails, then we must be within

the boundaries of either Case I, Case II, or Case III, and so by 4.2.1 there is a unique positive

equilibrium.

Now we consider when (4.8) holds. Each of the parameters ε, c12, and c21 are positive.

Therefore this equation holds if either of the terms (1 − d1 − c12) or (r − d2 − εc21) are equal

to 0, which will place us in either of Case I, Case III, or Case V. It can also be that (4.8) holds
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if (1 − d1 − c12) is positive and (r − d2 − εc21) is negative, which places us in Case III; or if

(1 − d1 − c12) is negative and (r − d2 − εc21) is positive, which places us in Case II. Finally we

can meet this condition if these terms share a sign and |(1−d1−c12)∗ (r−d2−εc21)| < |εc12c21|.

This places us in either Case I or in Case IV. In the instance that we are in Case IV we are

further in the scenario that equation (4.4) holds. Therefore, in order for the assumption (4.8)

to be true, it must also be the case that there is a unique positive equilibrium by Lemma 4.2.1.

We therefore propose the following lemma.

Lemma 4.3.1 Assume that (0, 0) is unstable. Then (4.2) has a unique positive equilibrium

(u∗1, u
∗
2), which is asymptotically stable.

Proof The existence of the positive equilibrium (u∗1, u
∗
2) has already been shown, it remains to

be shown that it is asymptotically stable. We consider the Jacobian matrix of (4.2) at (u∗1, u
∗
2):

J1 =


1 − d1 − c12 − 2 u∗1 c21

ϵ c12 r − ϵ c21 − d2 − 2 u∗2

 .
In order to prove asymptotic stability, we check the Routh-Hurwitz criteria for second order

systems. If the following conditions are satisfied, the positive equilibrium (u∗1, u
∗
2) is locally

asymptotically stable

Tr(J1) = (1 − d1 − c12 − 2 u∗1) + (r − ϵ c21 − d2 − 2 u∗2) < 0,

Det(J1) = (1 − d1 − c12 − 2 u∗1)(r − ϵ c21 − d2 − 2 u∗2) − ϵc12c21 > 0.
(4.9)

We first consider Tr(J1)

(1 − d1 − c12 − 2 u∗1) + (r − ϵ c21 − d2 − 2 u∗2)

=

(
u∗1 − d1u∗1 − c12u∗1 − (u∗1)2

u∗1
− u∗1

)
+

(
ru∗2 − d2u∗2 − εc21u∗2 − (u∗2)2

u∗2
− u∗2

)
.

Using the facts that
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u∗1 − d1u∗1 − (u∗1)2 − c12u∗1 + c21u∗2 = 0,

ru∗2 − d2u∗2 − (u∗2)2 + ϵc12u∗1 − ϵc21u∗2 = 0

we can conclude that

Tr(J1) =
(
−

c21u∗2
u∗1
− u∗1

)
+

(
−
εc12u∗1

u∗2
− u∗2

)
< 0. (4.10)

Upon consideration of the determinant, we again refer back to the original system (4.2).

The determinant is given by (1−d1− c12−2 u∗1)(r− ϵ c21−d2−2 u∗2)− ϵc12c21, and by definition

of the Jacobian each of the terms found here are derived by the partial derivative of the original

system. We take advantage of this fact, note that

(1 − d1 − c12 − 2 u∗1) = −c21
d f1

du1

∣∣∣∣
(u∗1,u

∗
2)
, (4.11)

and

(r − ϵ c21 − d2 − 2 u∗2) = −ϵc12

/ (d f21

du1

∣∣∣∣
(u∗1,u

∗
2)

)
, (4.12)

which follow from f1 and f21 respectively. It is also clear from (4.3) that

d f21

du1

∣∣∣∣
(u∗1,u

∗
2)
> 0.

Substitution of (4.11) and (4.12) into (4.9) gives
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Det(J1) = (1 − d1 − c12 − 2 u∗1)(r − ϵ c21 − d2 − 2 u∗2) − ϵc12c21

=

(
−c21

d f1

du1

∣∣∣∣
(u∗1,u

∗
2)

) (
−ϵc12

/ [d f21

du1

∣∣∣∣
(u∗1,u

∗
2)

])
− εc12c21

= εc12c21

(
d f1

du1

∣∣∣∣
(u∗1,u

∗
2)

/ [d f21

du1

∣∣∣∣
(u∗1,u

∗
2)

])
− εc12c21

= εc12c21

[(
d f1

du1

∣∣∣∣
(u∗1,u

∗
2)

/ [d f21

du1

∣∣∣∣
(u∗1,u

∗
2)

])
− 1

]
.

Thus, it must be that

Det(J1) > 0

⇔

(
d f1

du1

∣∣∣∣
(u∗1,u

∗
2)

/ [d f21

du1

∣∣∣∣
(u∗1,u

∗
2)

])
− 1 > 0

⇔

(
d f1

du1

∣∣∣∣
(u∗1,u

∗
2)

/ [d f21

du1

∣∣∣∣
(u∗1,u

∗
2)

])
> 1

⇔
d f1

du1

∣∣∣∣
(u∗1,u

∗
2)
>

d f21

du1

∣∣∣∣
(u∗1,u

∗
2)
.

This is, of course, exactly the scenario in which F′(u1) < 0. In each of the cases referred

to in Lemma 4.2.1, the positive equilibrium (u∗1, u
∗
2) exists only within the range of F′(u1) < 0,

and therefore it is proven that Det(J1) > 0.

□

4.3.2 Stability of the Trivial Equilibrium

First of all, we linearize the nonlinear system 4.1 about the equilibrium by calculating the

Jacobian matrix. We denote the Jacobian matrix by
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J =



J11 c21 J13 0

εc12 J22 0 J24

e1v1 0 J33 p21

0 e2v2 µp12 J44


,

where:

J11 =
1

1 + v1
− d1 − 2u1 − g1v1 − c12, J13 = −

u1

(1 + v1)2 − g1u1,

J22 =
r

1 + v2
− d2 − 2u2 − g2v2 − εc21, J24 = −

ru2

(1 + v2)2 − g2u2,

J33 = e1u1 − m1 − p12, J44 = e2u2 − m2 − p21µ.

Since the trivial equilibrium E0(0, 0, 0, 0) has all compartments 0, by substituting E0 into

the Jacobian matrix, we get

J0 =



1 − d1 − c12 c21 0 0

εc12 r − d2 − εc21 0 0

0 0 −m1 − p12 p21

0 0 µp12 −m2 − µp21


.

To determine the stability we would like to find the eigenvalues of this matrix by calculating

the determinant of λI − J0 and solving the characteristic equation. To find the determinant we

conduct determinant expansion by minors in the matrix λI − J0. Direct calculations show that
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det(λI − J0) = (λ − 1 + d1 + c12) ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
λ − r + d2 + εc21 0 0

0 λ + m1 + p12 −p21

0 −µp12 λ + m2 + µp21

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+ c21 ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
−εc12 0 0

0 λ + m1 + p12 −p21

0 −µp12 λ + m2 + µp21

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (λ − 1 + d1 + c12) · (λ − r + d2 + εc21) ·

∣∣∣∣∣∣∣∣∣
λ + m1 + p12 −p21

−µp12 λ + m2 + µp21

∣∣∣∣∣∣∣∣∣
+ c21 · (−εc12) ·

∣∣∣∣∣∣∣∣∣
λ + m1 + p12 −p21

−µp12 λ + m2 + µp21

∣∣∣∣∣∣∣∣∣
=

[
λ2 + (m1 + p12 + m2 + p21µ) λ + (m1 + p12)(m2 + µp21) − µp12 p21

]
[
λ2 + (−1 + d1 + c12 − r + d2 + εc21)λ + (1 − d1 − c12)(r − d2 − εc21) − εc12c21

]
.

By det(λI − J0) = 0, this gives us the two quadratic equations

λ2 + (−1 + d1 + c12 − r + d2 + εc21)λ + (1 − d1 − c12)(r − d2 − εc21) − εc12c21 = 0,

and

λ2 + (m1 + m2 + p12 + µp21)λ + (m1m2 + µm1 p21 + m2 p21) = 0.

Since the eigenvalues are determined by the two quadratic equations respectively, we can

apply the Routh-Hurwitz criteria for quadratic equations instead. The Routh-Hurwitz criteria

show that the solutions for the quadratic λ2 + a1λ + a2 = 0 have negative real parts if and only

if a1 > 0, and a2 > 0. We want to apply this criteria to both quadratics, which gives us the

conditions
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−1 + d1 + c12 − r + d2 + εc21 > 0,

(1 − d1 − c12)(r − d2 − εc21) − εc12c21 > 0,
(4.13)

and
m1 + m2 + p12 + µp21 > 0,

m1m2 + µm1 p21 + m2 p21 > 0.
(4.14)

All of these parameters are greater than or equal to zero, so clearly conditions (4.14) are

always true. This leaves us only with the conditions (4.13).

Thus we have the following lemma.

Lemma 4.3.2 The trivial equilibrium solution (u1, u2, v1, v2) = (0, 0, 0, 0) to the non-dimensionalized

system (4.1) is locally asymptotically stable if and only if

−1 + d1 + c12 − r + d2 + εc21 > 0,

(1 − d1 − c12)(r − d2 − εc21) − εc12c21 > 0

are satisfied.

4.3.3 Stability of Semi-Trivial Equilibrium

Just as in the case of the trivial equilibrium, we analyze the local stability of the predator-

free equilibrium via the linearization of system (4.1) about the steady state. We substitute the

predator-free equilibrium E1(u∗1, u
∗
2, 0, 0) into the matrix J to get the relevant Jacobian matrix

J1
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J1 =



1 − d1 − 2u∗1 − c12 c21 −u∗1 − g1u∗1 0

εc12 r − d2 − 2u∗2 − εc21 0 −ru∗2 − g2u∗2

0 0 e1u∗1 − m1 − p12 p21

0 0 µp12 e2u∗2 − m2 − µp21


.

As in the trivial case, we determine the stability by finding the eigenvalues. To that end we

consider det(λI − J1) = 0.

det(λI − J1)

= (λ − 1 + d1 + 2u∗1 + c12) ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
λ − r + d2 + 2u∗2 + εc21 0 ru∗2 + g2u∗2

0 λ − e1u∗1 + m1 + p12 −p21

0 −µp12 λ − e2u∗2 + m2 + µp21

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
− (−c21) ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
−c21 u∗1 + g1u∗1 0

0 λ − e1u∗1 + m1 + p12 −p21

0 −µp12 λ − e2u∗2 + m2 + µp21

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (λ − 1 + d1 + 2u∗1 + c12) · (λ − r + d2 + 2u∗2 + εc21) ·

∣∣∣∣∣∣∣∣∣
λ − e1u∗1 + m1 + p12 −p21

−µp12 λ − e2u∗2 + m2 + µp21

∣∣∣∣∣∣∣∣∣
+ εc12 · (−c21) ·

∣∣∣∣∣∣∣∣∣
λ − e1u∗1 + m1 + p12 −p21

−µp12 λ − e2u∗2 + m2 + µp21

∣∣∣∣∣∣∣∣∣
=

[
λ2 +

(
−e1u∗1 + m1 + p12 − e2u∗2 + m2 + p21µ

)
λ + (−e1u∗1 + m1 + p12)(−e2u∗2 + m2 + µp21) − µp12 p21

]
[
λ2 + (−1 + d1 + 2u∗1 + c12 − r + d2 + 2u∗2 + εc21)λ + (1 − d1 − 2u∗1 − c12)(r − d2 − 2u∗2 − εc21) − εc12c21

]
.

This gives us the two quadratic equations:

λ2+(−1+d1+2u∗1+c12−r+d2+2u∗2+εc21)λ+(1−d1−2u∗1−c12)(r−d2−2u∗2−εc21)−εc12c21 = 0,
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and

λ2+
(
−e1u∗1 + m1 + p12 − e2u∗2 + m2 + p21µ

)
λ+(−e1u∗1+m1+p12)(−e2u∗2+m2+µp21)−µp12 p21 = 0.

Just as before, we can apply the Routh-Hurwitz criteria to each quadratic to determine a set

of conditions for stability. The conditions we get are

c12 + εc21 + d1 + d2 + 2u∗1 + 2u∗2 − r − 1 > 0,

(1 − d1 − 2u∗1 − c12)(r − d2 − 2u∗2 − εc21) − εc12c21 > 0

m1 + m2 + p12 + µp21 − e1u∗1 − e2u∗2 > 0,

(−e1u∗1 + m1 + p12)(−e2u∗2 + m2 + µp21) − µp12 p21 > 0.

(4.15)

Therefore we can conclude the following Lemma.

Lemma 4.3.3 The semi-trivial equilibrium solution E(u∗1, u
∗
2, 0, 0) of the system (4.1) is stable

if and only if the conditions (4.15) are met.
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Numerical Simulations

5.1 Verifying Analyses

In this chapter we use numerical simulations to confirm the previous mathematical analysis.

We also use numerical simulations to make estimations of the behaviour in more complicated

circumstances for which the mathematical analysis is beyond the scope of this thesis (ie non-

linear functional response and/or nonlinear migration functions). To begin with, we consider

the trivial equilibrium. We would like to select parameter values that will, according to our

previous analysis, give us a stable trivial equilibrium. Intuitively, we know that if the prey,

goes extinct then the predator will follow. We also have that for many of the parameters x,

0 < x < 1. Therefore, we try setting each parameter to an approximate average value of 0.5 but

increase the death rates of the prey d1 and d2 to 0.9. Then we can apply Lemma 4.3.2 to check

if this choice for the set of parameters gives a stable equilibrium.

Recall that this theorem is written in terms of the non-dimensionalized model but we have

chosen values for the parameters from the original model. Converting the parameters relevant

to this theorem gives

i) c12 = c21 = r = ε = 1,

ii) d1 = d2 = 1.8.

37
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Figure 5.1: Stable Trivial Equilibrium

Then

1 − d1 − c12 + r − d2 − εc21

=1 − 1.8 − 1 + 1 − 1.8 − 1

= − 3.6 < 0,

(5.1)

and

(1 − d1 − c12)(r − d2 − εc21) − εc12c21

=(1 − 1.8 − 1)(1 − 1.8 − 1) − 1

=2.24 > 0.

(5.2)

Clearly both of these statements are true, and so the conditions of Lemma 4.3.2 are met.

Therefore we should expect all trajectories to tend to zero. This is exactly what we see happen

in the numerical simulation as shown in Figure 5.1.

For the case of the semi-trivial equilibrium, we are able to apply the Lemmas 4.2.1 and

4.3.3. We must choose parameters that meet the conditions of the former to ensure that such

an equilibrium exists, and conditions which meet the latter in order for it to be stable. Through

some trial and error we choose the parameter values a2 = 0.8, d2 = 0.25, and c12 = 0.75; while

we keep each other parameter at the average value of 0.5. We use these values to calculate the

value of the relevant non-dimensional counterparts.
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i) d1 = m1 = m2 = p12 = p21 = r = µ = 1

ii) c12 =
3
2

iii) d2 = e1 =
1
2

iv) ε = c21 =
8
5

v) e2 =
5
16

Using these values we start by applying Lemma 4.2.1 to show that we expect the semi-

trivial equilibrium to exist.

1 − d1 − c12 = 1 − 1 −
3
2
= −

3
2
< 0

r − d2 − εc21 = 1 −
1
2
−

(
8
5

) (
8
5

)
= −

103
50
< 0

According to this calculation these parameter values place us within Case IV of Lemma

4.2.1, and so we have one more calculation to determine if the equilibrium should exist.

∣∣∣∣∣ εc12

r − d2 − εc21

∣∣∣∣∣ = ∣∣∣∣∣ (1.6)(1.5)
1 − 0.5 − (1.6)(1.6)

∣∣∣∣∣
=

∣∣∣∣∣ 2.4
−2.06

∣∣∣∣∣
≈ 1.165 > 0.9375

=

∣∣∣∣∣−1.5
1.6

∣∣∣∣∣
=

∣∣∣∣∣1 − d1 − c12

c21

∣∣∣∣∣
Therefore it is the case that (4.4) holds in Case IV of Lemma 4.2.1, and so the semi-trivial

equilibrium should exist.
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Now we can use the chosen parameter values in the system 4.2 to determine the equilibrium

values (u∗1, u
∗
2).


0 = u1

∗ − d1u1
∗ − (u1

∗)2 − c12u1
∗ + c21u2

∗

0 = ru2
∗ − d2u2

∗ − (u2
∗)2 + εc12u1

∗ − εc21u2
∗

=⇒


0 = u∗1 − (1)u∗1 − (u∗1)2 −

(
3
2

)
u∗1 +

(
8
5

)
u∗2

0 = (1)u∗2 −
(

1
2

)
u∗2 − (u∗2)2 +

(
8
5

) (
3
2

)
u∗1 −

(
8
5

) (
8
5

)
u∗2

=⇒


0 = 8

5u∗2 − (u∗1)2 − 3
2u∗1

0 = 12
5 u∗1 − (u∗2)2 − 103

50 u∗2

=⇒


5
8 (u∗1)2 + 15

16u∗1 = u∗2

0 = 12
5 u∗1 − (u∗2)2 − 103

50 u∗2

Now we substitute the value of u∗2 from the first equation into the second equation and solve

for the roots of the quartic that arises.

12
5

u∗1 −
(
5
8

(u∗1)2 +
15
16

u∗1

)2

−
103
50

(
5
8

(u∗1)2 +
15
16

u∗1

)
= 0

=⇒
12
5

u∗1 −
(
25
64

(u∗1)4 +
75
64

(u∗1)3 +
225
256

(u∗1)2
)
−

103
80

(u∗1)2 +
309
160

u∗1 = 0

=⇒ −
25
64

(u∗1)4 −
75
64

(u∗1)3 −
2773
1280

(u∗1)2 +
693
160

u∗1 = 0

Using sage math to solve for the roots of the resulting function yields two imaginary solu-

tions, the trivial equilibrium, and u∗1 ≈ 1.1017. We now return this value into the expression we

found previously for u∗2.
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u∗2 =
5
8

(u∗1)2 +
15
16

u∗1

≈ 0.625(1.1017)2 + (0.9375)(1.1017)

≈ 1.7914

Now we have all the values necessary to apply Lemma 4.3.3 and determine stability. We

have

c12 + εc21 + d1 + d2 + 2u∗1 + 2u∗2 − r − 1

=1.5 + (1.6)(1.6) + 1 + 0.5 + 2(1.1017) + 2(1.7914) − 1 − 1

=9.3462 > 0,

and

(1 − d1 − 2u∗1 − c12)(r − d2 − 2u∗2 − εc21) − εc12c21

=(1 − 1 − 2(1.1017) − 1.5)(1 − 0.5 − 2(1.7914) − (1.6)(1.6)) − (1.6)(1.5)(1.6)

=(−3.7034)(−5.6428) − 3.84

≈17.0575 > 0,

and
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Figure 5.2: Stable Semi-Trivial Equilibrium

m1 + m2 + p12 + µp21 − e1u∗1 − e2u∗2

=1 + 1 + 1 + (1)(1) − (0.5)(1.1017) − (0.3125)(1.7914)

≈2.8893 > 0,

and finally

(−e1u∗1 + m1 + p12)(−e2u∗2 + m2 + µp21) − µp12 p21

=(−(0.5)(1.1017) + 1 + 1)(−(0.3125)(1.7914) + 1 + (1)(1)) − (1)(1)(1)

=(1.44915)(1.4401875) − 1

≈1.087 > 0.

All of the conditions for Lemma 4.3.3 are met, and therefore we expect that the equilibrium

not only exists, but is stable. This is exactly what we see in the numerical simulations shown

in Figure 5.2.

It is interesting to note that numerical simulations suggest that if we keep all else the same

but let c21 = 0, then the same set of parameters that give us a stable semi-trivial equilibrium
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Figure 5.3: Prey Survives in Only Patch 2

where the prey survives in both patches will give us a stable semi-trivial equilibrium where only

the prey in patch two survives. This makes intuitive sense, as there is no boost to the population

through immigration, so a decline to extinction should be expected. This is confirmed in the

simulation shown in Figure 5.3. We clearly could also choose a set of parameters that give us

the prey surviving only in patch one, as the equations are symmetric.

5.2 Extending the Mathematical Analysis

The global stability analysis of the system is beyond the scope of this thesis, and no mathe-

matical proof for the uniform persistence of the species in this system is given. That is, proof,

that there is a globally asymptotically stable equilibrium E(u∗1, u
∗
2, v
∗
1, v
∗
2) of the system (4.1).

However, we can see in Figure 5.4 that we expect at least some stable positive equilibrium

solution to exist. The parameters chosen to produce this result were

i) k1 = k2 = 1

ii) r2 = 0.8

iii) r1 = b2 = 0.6

iv) a1 = 0.5

v) c12 = b1 = 0.4

vi) a2 = g1 = g2 = c21 = p21 = 0.3

vii) d2 = m1 = p12 = 0.2

viii) d1 = m2 = 0.1.
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Figure 5.4: Stable Positive Equilibrium

All of the analysis covered in this paper assumes linear function in place of the functional

response as well as the migration functions. However, a linear functional response is not the

most likely. The most common is a Holling Type II functional response, so we include numer-

ical simulations to cover this subject. As can be seen in Figure 5.5, we expect that a stable

positive equilibrium is possible under these circumstances as well. In comparing Figures 5.4

and 5.5, the attraction of the equilibrium point seems stronger in the case of Holling Type II

functional response. Where in the case of a linear functional response the prey populations

initially overshoot their equilibrium values and then settle, the trajectories instead tend sharply

towards the equilibrium and snap into place in the case of the Holling Type II functional re-

sponse. This is of course, possibly an artifact of the particular choices of parameter values

in each case, and it may be possible that a different choice would tend more sharply towards

the equilibrium in the linear case; or less sharply in the Holling Type II case. The parameters

chosen to produce Figure 5.5 are as follows, where G(ui) = (qiui)/(1 + hiui).

i) k1 = 1.5

ii) r2 = 0.8

iii) k2 = 0.7

iv) r1 = b2 = 0.6

v) a1 = 0.5

vi) c12 = b1 = 0.4

vii) a2 = h1 = h2 = q1 = q2 = c21 = p21 = 0.3

viii) d2 = m1 = p12 = 0.2

ix) d1 = m2 = 0.1



5.2. Extending theMathematical Analysis 45

Figure 5.5: Stable Positive Equilibrium with Type II Functional Response

The original model 2.1 proposed in Chapter 2 includes the migration functions C12(k1, v1)

and C21(k2, v2). We also assumed that these functions were linear for the sake of simplicity

in the mathematical analysis, but now we use numerical simulations to consider otherwise,

similarly to the functional response. Study of the fear effect is still relatively new, so unlike the

functional response, there is no preferred migration function to turn to. Therefore we propose

the function Ci j(ki, vi) = (ci jkivi)/(1 + oikivi), for i, j ∈ {1, 2}.

The assumption in this formulation is that the prey is migrating between patches based on

the perceived danger, which will directly relate to how strong the fear effect is, included here

as the term ki; and will also directly relate to how many predators there are within the patch,

hence the inclusion of the state variable vi. The constant term ci j is included to scale the effect

that these factors have on the migration of the prey and the parameter oi determines how low

or high the level of migration is able to be. This takes the same form as the Holling Type II

functional response, for the same reasons. Just as we can’t expect the level of predation to be

boundless, and so must use a function that tapers off at some upper bound; we cannot expect

the level of migration to be boundless, so we choose the same sort of function.

Numerical simulations suggest that this form of the migration terms has little effect on

the qualitative behaviour of the system, but can have significant effects on the quantitative

behaviour. We can be see in Figure 5.6 that the general shapes of the trajectories are similar

to those as in 5.4, but the points at which the populations reach equilibrium are different. We
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Figure 5.6: Stable Positive Equilibrium with Nonlinear Migration

Figure 5.7: Type II Functional Response and Nonlinear Migration
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Figure 5.8: Migration Preventing Extinction

use the same choice of parameters as we did to achieve a positive equilibrium in the case of

linear migration and linear functional response with respect to the prey’s population, and this

quantitative change is managed entirely by varying parameters within the functions Ci j.

These extra parameters which have the capacity to adjust the quantitative behaviour of the

system gives an added flexibility to the system. A consequence of this flexibility is that a set

of parameters which would lead to the extinction of a some or all of the species in a simpler

system may not necessarily lead to extinction depending on the parameter values chosen in the

migration function. This is something which we expect to see, based on Huffakers experiments

with mites [1], and this is shown in Figure 5.8. On the left-hand side we see a set of parameters

applied to the system 2.1, which lead to the extinction of the predator. On the right-hand side

we use those same parameters but use a nonlinear migration, and variation in the parameters oi

lead to the survival of all species.

We see a similar situation when we consider the system with a Holling Type II functional

response as well as a nonlinear migration term. We use the same choice of parameters as

in the case of Holling Type II functional with linear migration in order to achieve the stable

positive equilibrium in the simulations shown in Figure 5.7. Just as we saw in comparing

Figure 5.4 with Figure 5.6, we can see that the migration term has little impact qualitatively

in this circumstance as well when we compare Figure 5.5 with Figure 5.7, but again does

influence the quantitative behaviour. Importantly, the model continues to exhibit the stable
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Figure 5.9: Oscillatory Holling Type II Functional Response

Figure 5.10: Oscillatory Behaviour With all Linear Functions
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Figure 5.11: Oscillatory Nonlinear Migration

positive equilibrium when the simplifying assumptions we made in Chapter 4 are stripped

away, and so when the model is made to be more biologically realistic it is still mathematically

reasonable.

The simulations we have seen so far have confirmed our theorems and have also shown

that a stable positive equilibrium is possible within this model; however we do not see an

oscillatory pattern in those simulations which we would expect in a predator-prey system.

Further simulations show that a different parameter choice does yield the expected oscillatory

behaviours. We see oscillatory behaviour and a positive equilibrium with the Holling Type II

functional response in Figure 5.9. The parameters chosen are the same as we used for Figure

5.5, with the exception of a1 = 0.05, and a2 = 0.03. The graph on the left-hand side shows

a close up of the trajectories near time t = 0, while the graph on the right-hand side shows

the asymptotic behaviour of this system, in that the oscillations do not damp out completely.

Instead the system settles to a stable periodic equilibrium.

Using simulations we also see that this transient oscillatory behaviour is possible in any of

the cases we considered previously. Figure 5.10 shows the oscillatory behaviour in the case

where all functions in the model are linear with respect to the prey’s population density, as we

analyzed in Chapter 4. Again we see a close up on the left-hand side, while the right-hand side

shows that in the long run these oscillations completely damp out and the trajectories reach a

constant equilibrium value.
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Figure 5.12: Oscillatory Behaviour With all Nonlinear Functions

Similarly, Figure 5.11 shows oscillatory behaviour when only the migration term is per-

mitted to have a more complicated function, and Figure 5.12 shows that in the case where all

the functions are permitted to be more complex we still see oscillatory behaviour. In all of

these cases, the same parameters are used as in the simulations that didn’t exhibit oscillatory

behaviour, with the same exception; that a1 = 0.05 and a2 = 0.03. We see in the Figures that

these different cases lead to the oscillations dampening out entirely in the long run, and the

oscillations remaining for all time respectively.

Just as in the non-oscillatory case, we see again that the migration term has little effect on

the overall behaviour of the system, but does impact the quantitative behaviour. We also see

that using a Holling Type II functional response rather than a functional response that is linear

with regards to the prey’s population density, the population peaks are substantially greater,

and it takes much longer for the system to settle towards the equilibrium value.
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Conclusion and Discussions

In this paper we extended current spatially non-homogeneous population dynamics models in

order to account for the recently discovered fear effect. To that end we proposed the model

(2.1). We expect that this model should be a plausible suggestion as it follows from previous

research done by Li et al. [12] and Wang et al. [27]. The mathematical analysis in Chapter 3

and Chapter 4, as well as the numerical simulations done in Chapter 5 show that this hypothesis

was correct, and the behaviour exhibited by this model matches what we would expect in these

circumstances. That is; extinction of all species, persistence of the prey combined with extinc-

tion of the predator, and uniform persistence are all possible and stable within the constraints

of this model. Additionally, we see the out of sync oscillatory behaviour that is typical of a

predator-prey system.

Firstly, it is important to prove that this model is a valid proposition. Therefore we spent

Chapter 3 using typical techniques from calculus to prove that the model meets the necessary

conditions of being positive and bounded. Having shown that the model exhibits these impor-

tant properties, we moved forward with equilibrium analysis in Chapter 4. The model (2.1) has

a large amount of parameters, which is likely to overcomplicate our analysis. Thus in section

4.1 we reduce the number of parameters by nondimensionalizing the model, resulting in the

simpler model (4.1).

51
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It was our goal to determine the conditions necessary for the existence of a trivial equilib-

rium, and semi-trivial equilibrium, as well as a positive equilibrium. We successfully deter-

mined these conditions for the trivial equilibrium as well as the semi-trivial equilibrium, the

latter of which is summarized in Lemma 4.2.1. For this 4-dimensional model, showing the

conditions in which the positive equilibrium exists was beyond the scope of this thesis.

Having determined when the simpler equilibria exist, it was important to determine what

further conditions lead to these steady state solutions being stable. Despite being a fourth

order system, the simpler nature of these equilibria allowed us to make use of the Routh-

Hurwitz criteria for second order systems to solve this problem. This is because the fourth

order system simplifies, in these cases, to a pair of disjoint second order systems. These results

are summarized in Lemma 4.3.2 and Lemma 4.3.3.

To extend the existing mathematical analysis we conducted numerical simulations in Chap-

ter 5. Firstly, in section 5.1, we used simulations to test the conditions that we determined in

Chapter 4. Using values we determined through use of the Lemmas 4.2.1, 4.3.2, and 4.15, we

produced the graphs shown in Figures 5.1, and 5.2.

Afterwards we extend the analysis in section 5.2 by using simulations to determine whether

a stable positive equilibrium may exist or not. We see that it does, and this simulation is shown

in Figure 5.4. Additionally, when we relax the simplifying assumptions made in Chapter 4 to

make the math more manageable, simulations suggest that the system will still exhibit a stable

positive equilibrium solution. This is shown in Figures 5.5, 5.6, and 5.7.

These results were found using a set of parameter values that resulted in a relatively small

carrying capacity, and do not exhibit the expected oscillatory behaviour. The lack of oscilla-

tions makes observing the equilibrium more clear, but we run several more simulations to show

that oscillatory behaviour is also possible. To achieve this we adjust the parameter values to

increase the carrying capacity, and this gives us the Figures 5.9, 5.10, 5.11, and 5.12. In the

cases where we used a Holling Type II functional response, we see that after a long transient

behavior, the solutions of the system eventually converge to an oscillation of consistent ampli-
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tude and continues to oscillate for all time. In the simulations which instead used a functional

response which is linear with regard to the prey’s population density, the transient behaviour is

that the oscillations entirely damp out and in the long term, the trajectories settle on a single

equilibrium value, where they remain for all time.

In both the oscillatory and non-oscillatory simulations, it appears that the migration func-

tion has very little impact on the qualitative behaviour of the system, but impacts the quan-

titative behaviour, and adds important flexibility to the system. We see in Figure 5.8, as an

example, that choosing the same set of parameters that leads to some species going extinct in a

simpler system, a nonlinear migration leads to the possibility of those species persisting under

the same set of parameters. This, of course, is the same thing that Huffaker noted in [9] and is

the motivation for the patchiness of our model.

The form of the functional response, on the other hand, affects the qualitative behaviour the

system much more significantly. In the non-oscillatory simulations, choosing a Holling Type

II functional response increases the equilibrium population levels of the prey, and reduces the

equilibrium population levels of the predator. Additionally, the trajectories become much more

strongly attracted to this equilibrium value. In the case of the oscillatory simulations, the

population peaks are larger for every species, but the rate of the oscillations is less. Where

in the case of a functional response that is linear with regards to the prey population density,

we see 4 oscillations between time t = 0 and t = 100, in the nonlinear case we see only 3

oscillations over the same time interval.

There is certainly more work to be done on this model than what has been done in this

thesis. Obviously it would be important to use mathematical analysis to prove the uniform

persistence of the species, and under which conditions this would be expected; such as Li et

al. did in Theorem 4.2 of [12], and Wang et al. did in Theorem 4.4 of [27]. Since our model

is essentially a combination of these it seems reasonable to expect a similar theorem could be

found, especially in combination with the data from the numerical simulations. Additionally

it remains to be seen what the conditions are for the existence and stability of the semi-trivial
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equilibrium in the case of non-linear functions where linearity was assumed in Chapter 4. One

may assume a number of different forms for the functions Gi, and Ci j, as well as considering

a different possible form for the function describing the fear effect than the one considered by

Wang et al. in their analysis in chapter 4 of [27]. We could consider the other possible functions

mentioned in chapter 1 of this thesis, as Wang et al. did in Chapter 5.

It is also interesting to note that according to Theorem 4.5 of [27], there is a limit cycle

under certain conditions of the simpler model, and consequently, a Hopf Bifurcation. Due to

the similarity of the models it would be interesting to determine if that remains true in our

patchy version of this model.

Finally, we may also take inspiration from Li et al. and extend their evolution analysis

of section 4.2 in [12]. However, this looks to be quite an undertaking as it would turn our

4-dimensional model into a 6-dimensional model. Nevertheless, numerical simulations on the

subject may be very interesting.
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