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Abstract 

Snowpack Estimation and Modelling Across Scales Using Field-Based and Remotely 

Sensed Data in a Forested Region of Central Ontario 

Andrew Donald John Beaton 

Understanding snowpack variability is important as it plays an imperative role in 

environmental, hydrologic, and atmospheric systems.  Research questions related to three 

linked areas were investigated in this thesis: 1) scaling issues in snow hydrology, 2) 

forest-snowpack relationships, and 3) methods of integrating snow water equivalent 

(SWE) into a hydrologic model for a large, forested drainage basin in central Ontario.  

The first study evaluated differences in SWE across process, measurement, and model 

scales.  Point scale snowpack measurements could be bias corrected using scaling factors 

derived from a limited number of transect measurements and appropriately stratified 

point scale measurements may be suitable for replacing transect scale mean SWE when 

transect data are not possible to collect.  Comparison of modelled products to 

measurements highlighted the importance of understanding the spatial representativeness 

of in-situ measurements and the processes those measurements represent when validating 

snow products or assimilating data into models. 

The second study investigated the efficacy of field-based, and remotely sensed 

datasets to describe forest structure and resolve forest-snowpack relationships.  Canopy 

cover was highly correlated with melt rate and timing at the site scale however, 

significant correlations were present in 2016 but not 2017, which was attributed to 

interannual differences in climate.  Peak SWE metrics did not correlate well with forest 

metrics.  This was likely due to mid-winter melt events throughout both study years, 
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where a mix of accumulation and melt processes confounded forest-snowpack 

relationships.   

The third study evaluated the accuracy of the Copernicus SWE product and 

assessed the impact of calibrating and assimilating SWE data on model performance.  

The bias corrected Copernicus product agreed with measured data and provided a good 

estimate of mean basin SWE.  Calibration of a hydrologic model to subbasin SWE 

substantially improved modelled SWE performance.  Modelled SWE skill was not 

improved by assimilating SWE into the calibrated model.  All models evaluated had 

similar streamflow performance, indicating streamflow in the study basin can be 

accurately estimated using a model with a poor representation of SWE.  The findings 

from this work improved knowledge and understanding of snow processes in the 

hydrologically significant Great Lakes-St Lawrence Forest region of central Ontario. 

Keywords 

scale, snow depth, snow water equivalent (SWE), remote sensing, forest structure, multi-

objective calibration, data assimilation, hydrologic model, Great Lakes-St. Lawrence 

Forest.    
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Chapter 1 General introduction 

1.1 Background 

Accurate representation of snow water equivalent (SWE) distribution through 

time in snow-dominated basins is critical for assessing hydrologic processes, numerical 

weather prediction and for evaluating the Earth’s water balance, ecosystem function and 

the potential impacts of a changing climate on water resources (Luce et al., 1998; 

Pomeroy et al., 2004; Barnett et al., 2005; Kinar and Pomeroy, 2015).  Understanding 

SWE distribution remains a significant scientific challenge and requires consideration of 

scaling issues and complex physical processes (Steppuhn and Dyck, 1974; Blöschl, 1999; 

Watson et al., 2006; Jost et al., 2007).  Extensive research has been conducted in this 

area, but important research gaps remain, particularly related to understanding variables 

and processes that control snow distribution across scales (Blöschl, 1999; Sturm, 2015; 

Dong, 2018).  Blöschl (1999) defines three conceptual scales: 1) the process scale which 

represents the true process, 2) the measurement scale, which is the scale of the collected 

data, and 3) the model scale, which is defined by the model dimensions and elements 

(e.g., model grid).  Observed SWE data are rarely available as measurement of SWE in 

the field is labor intensive and expensive.  Field-based measurement of SWE typically 

captures less than 1% of a basin’s snowpack and spatially distributed measurements are 

infrequent (Sturm, 2015).  Remotely sensed and modelled gridded SWE products provide 

estimates across larger extents and at higher frequencies than can feasibly be measured in 

the field but these data are often at resolutions too coarse to resolve important variations 

and processes and suffer from limitations that degrade product accuracy (Dong, 2018).  

In addition, validating products remains a significant challenge, attributed to differences 
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in scale between ground truth and model data (Mudryk et al., 2015).  Differences in 

snowpack estimates and the processes they represent across scales, the error introduced 

using fine scale measurements to represent coarser extents, assimilation of fine scale data 

into gridded datasets, and validation of coarse scale modeled snowpack using fine scale 

data remain unresolved and require further investigation (Peters-Lidard et al., 2017). 

Factors affecting the spatial variability of snowpack are hierarchically scale 

dependent (Blöschl, 1999; Clark et al., 2011).  In non-mountainous forested landscapes, 

topography and land cover are the physical characteristics that drive basin scale 

variability of SWE (Jiusto and Kaplan, 1972; Anderton et al., 2004; Clark et al., 2011).  

At the forest stand scale, vegetation structure plays the largest role along with slope and 

aspect (Metcalfe and Buttle, 1998; Jost et al., 2007; Varhola et al., 2010b).  At the site 

scale, vegetation, micro-topography, and ground surface features such as boulders, 

branches, and ponded water are the physical factors that affect snow depth and SWE 

variability (López-Moreno et al., 2011).  Field based forest structure data for evaluating 

forest-snowpack relationships are time consuming to measure and difficult to distribute 

over larger areas (Varhola et al., 2012; Moeser et al., 2014).  Spatially-distributed two-

dimensional (2D) forest metrics have been derived from remote sensing data and related 

to snowpack data (Metcalfe and Buttle, 1998; Essery et al., 2008).  More recently, three-

dimensional (3D) forest metrics have been derived from light detection and ranging 

(LiDAR) data and photogrammetric point clouds (PPCs).  Several studies have used 

LiDAR derived forest metrics to assess forest-snowpack relationships while use of PPC 

data for this purpose is limited (Morsdorf et al., 2006; Essery et al., 2008; Moeser et al., 

2015b; Zheng et al., 2018).  The Ontario government collects and disseminates LiDAR 
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and orthophoto-derived spectral and point cloud data across regions of the province.  

These data may be valuable for addressing unresolved questions related to factors and 

processes that control forest-snowpack relationships across scale and climate, warranting 

investigation (Varhola et al., 2010b; Land Information Ontario, 2022a, 2022b).  

Assessing flood risk, hydropower production, aquatic ecosystems, water supply and 

the impacts of climate change on water resources requires accurate estimates of 

streamflow (Barnett et al., 2005; Beaton and Bradford, 2013; Musselman et al., 2018).  

Hydrologic models are valuable tools for estimating SWE and streamflow and can 

facilitate planning, prediction and decision making (Luce et al., 1998; Jenicek et al., 

2016; Hammond et al., 2018).  SWE is typically a state variable within hydrologic 

models that can be improved by calibrating to snowpack data or assimilating snowpack 

data into the model.  Multi-objective calibration has been used to constrain hydrologic 

models with measured and remotely sensed snowpack data and discharge observations 

(Gao et al., 2017; Tuo et al., 2018; Nemri and Kinnard, 2020).  Many studies have 

investigated assimilation of snowpack data into hydrologic models to improve 

simulations for practical applications and to explore processes (e.g. Vuyovich and 

Jacobs, 2011; Bergeron et al., 2016; Dziubanski and Franz, 2016; Griessinger et al., 

2016; Huang et al., 2017a, 2017b; Leach et al., 2018; Zahmatkesh et al., 2019; 

Micheletty et al., 2021).  While previous research has focused on multi-objective 

calibration using SWE or SWE assimilation, the comparative effect of these two 

approaches on model performance remains unresolved.       
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1.2 Thesis objectives and structure 

Three inter-related objectives were addressed in Chapters 2 to 4.  The objective of 

Chapter 2 was to improve understanding of snow distribution across scale.  Chapter 3 

focused on the use of remotely sensed forest structure metrics to assess forest-snowpack 

relationships, and the objective of Chapter 4 was to evaluate the effects of incorporating 

SWE into a hydrologic model by multi-objective calibration and data assimilation. 

Chapter 2 objectives were met by assessing differences in the mean and 

variability of snowpack across measurement and model scales and exploring how these 

scales represent true processes and their statistical moments.  Two main questions were 

addressed: 

• What snow processes do measurements at different scales represent? 

• How do daily SWE and snow depth mean, and variability compare across scale? 

Variable effects of vegetation on SWE were observed and it was hypothesized that the 

simple comparison of canopy cover with mean SWE in Chapter 2 was not adequate for 

capturing the interactions between vegetation and snow cover.  This hypothesis was 

explored in Chapter 3 by comparing several forest and snowpack metrics.  Interannual 

differences in the effect of vegetation on snowpack metrics were found in Chapter 2 and 

explored in more depth in Chapter 3. 

 Chapter 2 provided insight and quantified the error associated with using fine 

scale measurements to represent SWE at coarser scales.  These findings informed the 

upscaling of point data for the validation of a remotely sensed SWE product in Chapter 4.  

The comparison of measurement and model scale values in Chapter 2 highlighted 

important considerations that informed the use of remotely sensed SWE in Chapter 4. 
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The objective of Chapter 3 was accomplished using Ontario orthophotos and 

LiDAR data sets to address the following questions: 

• How do forest metrics compare to peak SWE and snowmelt? 

• How and why do relationships between forest structure and snowpack vary 

inter-annually? 

The results of Chapter 3 helped inform model development in Chapter 4. 

The objectives of Chapter 4 were accomplished using a baseline hydrologic 

model calibrated to lake levels and basin outlet discharge developed by Han et al. (2021), 

a model calibrated to subbasin SWE, lake levels, and outlet discharge, and a model that 

assimilated remotely sensed SWE.  The following research question was addressed: 

• What are the relative effects of calibrating to subbasin SWE and assimilating 

remotely sensed SWE on the performance of modelled SWE and discharge? 

1.3 Contributions of research 

The study was conducted in the Great Lakes-St. Lawrence Forest (GLSF) region.  

The GLSF covers a broad swath of central Ontario and southern Quebec and plays an 

important role in regulating water inputs to the Great Lakes.  These lakes contain nearly 

20% of the earth’s freshwater, are a vital source of drinking water, food, energy, 

transportation, and recreation, and support a diverse ecosystem (Ontario Ministry of the 

Environment, 2016).  The GLSF’s hydrology is dominated by a response to seasonal 

snow cover and improved understanding of SWE and melt processes is therefore critical 

to enhance understanding of water inputs to the Great Lakes basin.   A unique dataset 

was collected in this environment for the specific purpose of addressing the research 

questions in this thesis.  Previous studies investigating scaling issues and forest-
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snowpack relationships have primarily been conducted in coniferous forests and alpine 

regions (Penn et al., 2012), creating a research gap in non-mountain mixed hardwood and 

coniferous forests.   

Previous efforts to assess snowpack across scale typically focused on differences 

over a single conceptual scale (e.g. measurement; Neumann et al., 2006) (model; 

Derksen et al., 2005b; Meromy et al., 2013), have used data with a limited repeat 

frequency, and have not discussed process scale in detail.  This research extends existing 

literature by considering all three conceptual model scales, assessing how scaling issues 

change over time (within and across winter seasons) and by explicitly focusing on snow 

processes. 

The comparison of field-based, 2D and 3D orthophoto- and LiDAR-derived metrics 

for the purposes of characterizing a snowpack builds on previous studies, which typically 

have focused on a single remotely sensed data set to derive the required forest metrics 

(Varhola et al., 2010a; Moeser et al., 2015b).  To the knowledge of the author, this was 

the first study to use Ontario imagery and LiDAR data to assess forest-snowpack 

relationships.  This thesis also evaluated both field and remotely sensed canopy and tree 

bole characteristics whereas most previous studies focused on a single category of 

metrics.   

To the author’s knowledge this is the first study to validate Copernicus SWE 

product at the basin scale, assimilate Copernicus SWE into a hydrologic model, and 

assimilate SWE using the Raven hydrologic modelling framework.  This research 

contributes to snow hydrology science by elucidating the accuracy and value of a readily 

available, spatially distributed SWE dataset for hydrologic modelling at the basin scale in 
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a mixed forest region and the relative impact of SWE calibration and SWE data 

assimilation on model performance.   
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Chapter 2 Investigating snowpack across scale in the Great Lakes-St. Lawrence 

Forest region of central Ontario, Canada 

 

A version of this chapter is published in the journal Hydrological Processes 

Beaton AD, Metcalfe RA, Buttle JM, Franklin SE. 2019. Investigating snowpack across 

scale in the northern Great Lakes–St. Lawrence Forest region of Central Ontario, 

Canada. Hydrological Processes 33 (26): 3310–3329 DOI: 10.1002/hyp.13558 

*A.D. Beaton is the primary author of this paper. He designed the study, analyzed the 

data, and wrote the primary manuscript with guidance, input, and suggestions from 

coauthors.  Dr. Jamie Luce collected and processed the aerial imagery. 

Abstract 

This study investigates scaling issues by evaluating snow processes and 

quantifying bias in snowpack properties across scale in a northern Great Lakes-St. 

Lawrence Forest.  Snow depth and density were measured along transects stratified by 

land cover over the 2015/16 and 2016/17 winters.  Daily snow depth was measured using 

three rulers and a time-lapse camera (TL) at each transect.  Semivariogram analysis of 

the transect data was conducted and no autocorrelation was found, indicating little spatial 

structure along the transects.  Pairwise differences in snow depth and snow water 

equivalent (SWE) between land covers were calculated and compared across scales.  

Differences in snowpack between TL measurements in forested land cover types 

corresponded to differences in canopy cover but this relationship was not evident at the 

transect scale, indicating a difference in observed process across scale.  TL and transect 

estimates had substantial bias but consistency in error was observed which indicates that 

scaling coefficients may be derived to improve point scale estimates.  TL and transect 

measurements were upscaled to estimate grid scale means.  Upscaled estimates were 
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compared and found to be consistent indicating that appropriately stratified point scale 

measurements can be used to approximate a grid scale mean when transect data are not 

available.  These findings are important in remote regions such as the study area where 

frequent transect data may be difficult to obtain.  TL, transect and upscaled means were 

compared to modelled depth and SWE.  Model comparisons to TL and transect data 

indicated that bias was dependent on land cover, measurement scale and seasonality.  

Modelled means compared well with upscaled estimates, but model SWE was 

underestimated during spring melt.  These findings highlight the importance of 

understanding the spatial representativeness of in-situ measurements and the processes 

those measurements represent when validating gridded snow products or assimilating 

data into models.   

2.1 Introduction 

Understanding snow water equivalent (SWE) distribution through time in snow-

dominated basins is essential for assessing hydrologic processes, numerical weather 

prediction, understanding water balance and ecosystem function and assessing the 

potential impacts of a changing climate (Luce et al., 1998; Pomeroy et al., 2004; Barnett 

et al., 2005; Kinar and Pomeroy, 2015).  Accurate estimates of distributed SWE remain a 

significant scientific challenge and require consideration of scaling issues, measurement 

uncertainty and complex physical processes (Steppuhn and Dyck, 1974; Blöschl, 1999; 

Watson et al., 2006; Jost et al., 2007).  Extensive research has been conducted in this 

area, but important research gaps remain, particularly related to understanding processes 

that control snow distribution across scales (Blöschl, 1999; Sturm, 2015; Dong, 2018).  

Peters-Lidard et al. (2017) assert that scaling issues are one of the major impediments to 
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advancing understanding of hydrologic processes.  They suggest scaling become the 

fourth paradigm (in addition to empiricism, theory, and computational simulation) in 

hydrologic research and a focal point for current, intensive investigation.    

Blöschl (1999) defines three conceptual scales.  The process scale represents the 

true process and has statistical moments that define the natural variability.  The 

measurement scale is the scale of the collected data and has statistical moments defined 

by the processes measured by the dimensions of the instrument and sample design.  The 

model scale is defined by the model dimensions and elements (e.g., model grid) which 

represent aggregated variability within model elements (e.g., sub grid variability) and 

spatial variability between elements.  The term scaling can be defined as a change across 

scales and can consist of aggregation (upscaling) from fine to coarser scales or 

disaggregation (downscaling) from coarse to finer scales (Blöschl, 1999).  Fundamental 

questions arise related to the representativeness of the statistical moments of the 

measurement and model scale represented by the data versus the true patterns and 

processes being investigated (Blöschl and Sivapalan, 1995; Blöschl, 2006).  Snow depth 

and SWE measured at one scale may not be representative of another scale due to the 

complex non-linear interactions of snowpack and factors that control snow distribution 

during accumulation and ablation (Blöschl and Sivapalan, 1995; Blöschl, 1999; Molotch 

and Bales, 2005; Meromy et al., 2013).   

The term scale can be defined as a characteristic dimension of space or time 

(Blöschl, 1999).  Temporal scales investigated in snow hydrology range from sub-daily 

to event based, seasonal, annual, decadal and centennial time-periods depending on the 

research questions being addressed (Sturm, 2015).  Spatial scale can be defined by the 
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scale triplet which includes the support (area covered by a single measurement), spacing 

(distance between individual measurements), and extent (distance or area between all 

measurements)(Blöschl and Sivapalan, 1995; Blöschl, 1999).  This traditional scale 

triplet has been extended to define characteristics of snowpack measurements including 

repeat frequency, accuracy, and work effort (Sturm, 2015).  Due to limitations in 

instrumentation and the work effort required to collect distributed snowpack data, point 

measurements with low support and extent at a high repeat frequency (e.g. sub-daily 

ultrasonic depth measurements) or distributed measurements at low repeat frequency 

(e.g. bi-monthly snow surveys) are often the only ground based data possible to collect 

(Neumann et al., 2006; Kinar and Pomeroy, 2015; Sturm, 2015).  Research has shown 

that a very small fraction of a basin’s snowpack,  ranging from 1% for small basins to a 

fraction of a percent for larger basins, can be measured feasibly using ground based 

methods (Sturm, 2015).  As a result, point and single transect measurements are routinely 

used operationally for assessing regional scale hazard risks (Provincial Flood Forecasting 

and Warning Committee, 2014) and wildlife vulnerability (Warren et al., 1998), and are 

assimilated into regional scale models of snowpack, often times without careful 

consideration of measurement representativeness of the surrounding area (Meromy et al., 

2013). 

Remote sensing and modelling can provide snowpack estimates across larger 

support, extent and repeat frequencies but these data are often at resolutions too coarse to 

resolve important variability and processes and suffer from limitations that degrade 

product accuracy (Dong, 2018).  In addition, validating products remains a significant 

challenge due to differences in scale between ground truth and model data (Mudryk et 



12 

 

 

al., 2015).     Single point climate stations and transect data that capture a small fraction 

of model grid extent are inadequate for validating modelled and remotely sensing snow 

datasets but are routinely used due to limitations in instrumentation and data availability 

(Hancock et al., 2013; Snauffer et al., 2016; Larue et al., 2017).   

The purpose of this paper is to evaluate differences in snowpack estimates and the 

process they represent across common measurement (point and transect) and model 

scales to provide insight into the error introduced by using fine scale measurements to 

represent coarser extents, assimilation of fine scale data into gridded datasets, and 

validation of coarse scale modeled snowpack using fine scale data.  This is accomplished 

by assessing differences in mean and variability of snowpack across measurement and 

model scales and exploring how these scales may represent true processes and their 

statistical moments in a Great Lakes-St. Lawrence Forest (GLSF) basin.  Two main 

questions are addressed: 

1. What snow processes do measurements at different scales represent; and  

2. How do estimates of snowpack mean and variability compare across scale? 

Previous effort to assess snowpack across scale have typically focused on differences 

over a single conceptual scale (e.g. measurement; Neumann et al., 2006) (model; 

Derksen et al., 2005b; Meromy et al., 2013), have used data with a limited repeat 

frequency, and have not discussed process scale in detail.  This study extends existing 

literature by considering all three conceptual scales, assessing how scaling issues change 

over time (within and across winter seasons) and by explicitly focusing on snow 

processes.  In addition, previous literature focused on northern boreal or montane 

environments, whereas this study is in the less studied GLSF.   This landscape exerts 
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critical control on water resources (e.g., flood risk and aquatic ecology) of numerous 

downstream communities. 

2.2 Methods 

2.2.1 Study area 

The study area is in central Ontario in the southwest corner of Algonquin 

Provincial Park and covers an area of ~ 13 km² (Figure 2.1).  It is within the GLSF 

region, characterized by deciduous, coniferous and mixed forests of uneven ages 

dominated by maple (Acer), oak (Quercus), birch, (Betula), pine (Pinus), cedar (Cedrus), 

hemlock (Tsuga) and spruce (Picea) genera (Cumming, 2009).  The study area is in the 

Canadian Shield physiographic region, which has a generally thin soil layer over 

Precambrian bedrock and a large number of waterbodies within the drainage networks 

(Singer and Cheng, 2002).  It is also situated on the Algonquin dome, one of the highest 

elevations in Ontario reaching 580 meters above sea level approximately 40 km northeast 

of the study area.  This typically results in lower temperatures and greater precipitation 

than the surrounding region.  Monthly average annual temperatures ranges from −19.2 °C 

in January to 18.8 °C in July and mean daily temperature for the year is 2°C 

(Environment and Climate Change Canada, 2019).  Annual total precipitation is ~ 1100 

mm and the region has an average of 90 frost-free days per year.  The study area is 

leeward of Georgian Bay, which influences the regional climate and results in lake-effect 

precipitation (Scott and Huff, 1996; Cumming, 2009). 
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Figure 2.1: Study area with sample locations and land cover. 

2.2.2 Snow data 

Snow depth and density measurements were stratified across land cover type and 

taken in relatively flat areas to restrict the primary factors influencing snow processes to 

snow-vegetation interaction (Table 2.1; Figure 2.1 and Figure 2.2).  Relatively 

homogeneous land cover classes were identified using the Ontario Land Cover 

Classification (OLCC), Forest Resource Inventory datasets and field scouting (Ontario 
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Ministry of Natural Resources and Forestry, 2007, 2014).  Snow measurements were 

taken in four land cover types including forested (coniferous, deciduous, and mixed 

woods) and open (wetland) areas (Figure 2.1).   

Table 2.1: Vegetative cover, elevation, and slope across land cover types. 

 Vegetative Cover (%) Elevation (m) Slope (degrees) 

  

Time-

lapse 
Transect†  Time-lapse  Transect†  Time-lapse  Transect†  

Coniferous 70 69, (31-97) 431 431, (431 - 433) 0.6 2.0, (0.6 - 5.2) 

Mixed  16 45, (8-96) 455 449, (446 - 455) 4.2 6.1, (4.1 - 9.4) 

Deciduous 12 6, (2-12) 476 477, (475 - 478) 1.8 1.2, (0.4, 2.3) 

Wetland 16 26, (0-55) 431 430, (429 - 430) 0.8 0.7, (0.3 - 1.2)  

†mean, (min-max)       
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Figure 2.2: Time-lapse camera, transect measurement locations, elevation contours and orthophotos showing vegetative cover for the 

(a) coniferous, (b) mixed forest (c) deciduous and (d) wetland land cover type.
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Measurements were taken at similar elevations and in relatively level areas to 

control for the effects of slope, aspect, and elevation along the transects.  Low sloping 

areas were identified using the 30 m resolution Provincial Digital Elevation Model 

(PDEM) combined with field scouting (Ontario Ministry of Natural Resources and 

Forestry, 2018). Difference in mean elevation between land cover types was less than 45 

m and the mean transect slopes were less than 6.1˚ (Table 2.1).  Snow depth and density 

measurements were taken along one 300 m linear transect in each land cover type.  A 

total of 31 depth measurements and seven density measurements were taken at each 

transect spaced approximately 10 m and 50 m apart, respectively (Figure 2.2).  Snow 

density was measured using an ESC-30 gravimetric sampler, averaged for the transect, 

and used to calculate SWE at all depth points for a given date (Dickinson and Whiteley, 

1972; Jost et al., 2007).  The relationship between measured and estimated (depth x mean 

density) SWE was significant at 99% for all surveys, justifying the use of this approach 

(Derksen et al., 2005a).  Surveying with a snow tube can introduce bias of up to 12% 

depending on snow conditions with more error observed during melt when liquid water is 

present (Farnes et al., 1982; Goodison et al., 1987).  Surveying on the wetland 

introduced uncertainty due to the indefinite boundary between ice and snow, and 

saturation from underlying water.  In addition, ice conditions during some surveys, were 

unsafe to access the wetland, preventing measurement of the entire transect.  In the 

2015/16 season, 10 surveys were conducted across each of the four land cover types from 

February 6th to April 22nd, 2016.  In the 2016/17 season, a total of eight snow surveys 

were conducted beginning December 16th, 2016 and finishing April 13th, 2017.     
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Daily snow depths were measured at one point along each transect using 

Cuddeback model C and Moultrie 880 time-lapse (TL) game cameras and three rulers 

spaced approximately 2 m apart (Figure 2.2 and Figure 2.3).  TL photos were used to 

provide automated higher temporal frequency measurements, estimate meter scale 

variability, and provide visual, qualitative information about snow processes (Figure 2.3).  

A series of hourly photos was taken each day and the earliest clear photo used to produce 

three daily snow depth time series at each land cover.  The TL cameras performed well 

with less than 1% of data having gaps due to equipment malfunction or climate 

conditions that prevented ruler visibility.  TL depth data were typically digitized within 

an error margin of ± 1 cm but during ablation additional uncertainty of up to ± 3 cm was 

introduced at some locations due to wells forming around the rulers.    Average density 

measurements from the snow transects for each date and site were linearly interpolated 

and then used to calculate daily SWE within each land cover type from the TL depths 

(Varhola et al., 2014).  Snow density is a conservative variable (McCreight and Small, 

2014) where simple estimates such as the climatological normal (Mizukami and Perica, 

2008) or linear approximations (Bormann et al., 2013) have been shown to accurately 

represent daily values.  While attempts were made to randomly locate the TL cameras 

and linear transects within each land cover, bias towards more open areas that were easier 

to sample may have been inadvertently introduced.    
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Figure 2.3: Hemispheric photo and example time-lapse photo at the coniferous site (a) 

and (b), the deciduous site (c) and (d) and the mixed site (e) and (f), respectively.  Photo 

showing the base of the coniferous ruler (g) and a time-lapse photo at the wetland site 

(h). 

2.2.3 Model data 

The Globsnow SWE and the Canadian Meteorological Centre (CMC) data were 

selected for this study as they are generated using a combination of modelling, remote 
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sensing and data assimilation and have similar spatial and temporal resolution (Takala et 

al., 2011 and Brown et al., 2003, respectively).  The CMC snow depth product uses 

optimal interpolation to assimilate Meteorological Service of Canada (MSC) synoptic 

snow depth observations and aviation reports with a background field of snow depth 

derived from the CMC Global Environmental Multiscale (GEM) forecast model 

(Brasnett, 1999).  The CMC depth product has an error 22% smaller than the 

climatological normal when tested over the Northern Hemisphere  (Brasnett, 1999).  The 

product is disseminated by the National Snow and Ice Data Centre (NSIDC) in polar 

stereographic projection at a 24x24 km resolution (Figure 2.4; (Ross and Brasnett, 2014).  

Measurements were made in the southeast corner of the CMC cell (Figure 2.4).  The 

CMC values within this cell were compared to surrounding cells and the pattern and 

values were similar with a mean absolute difference (MAD) of 1.2 cm across all three 

adjacent cells.     

Globsnow combines passive microwave derived SWE with a background field of 

SWE generated from kriged snow depth observations and estimated densities (Pulliainen 

and Hallikainen, 2001; Luojus et al., 2010; Takala et al., 2011).  SWE is derived from 

passive microwave signals as the spectral difference between horizontally polarized 

brightness temperatures of 16-18 GHz (sensitive to underlying surface) and 37 GHz 

(prone to volume scattering of snowpack) (Dietz et al., 2012).  Globsnow has a root 

mean square error less than 50 mm for SWE accumulations of less than 150 mm when 

tested at the regional scale within a similar environment to the study area (Larue et al., 

2017).  Globsnow is disseminated by the NSIDC in EASE grid projection at 25x25 km 

resolution (Takala et al., 2011; Figure 2.4). 
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Figure 2.4: Canadian Meteorological Centre (CMC) and Globsnow grid cells, 

Meteorological Service of Canada climate station, study locations, grid cell elevations (a) 

and land cover classifications (b). 

2.2.4 Measurement location and model grid attributes 

A Phantom 3 Professional unmanned aerial system equipped with a 12 Megapixel 

camera with a 94° field of view and a 3.61 mm focal length was used to generate aerial 

photos over each site (Figure 2.2).  Aerial photos were processed with Agisoft software 

to generate orthophotos.  The orthophotos were used as inputs to an iso cluster 

unsupervised classification, which was then reclassified to create a binary vegetation/bare 

ground map.  Fractional vegetation in an circular buffer with a 12 m radius surrounding 

each transect and TL measurement location was calculated (Table 2.1; Zheng et al., 
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2018; Ullah et al., 2019).  Hemispheric photos at each TL location were taken to provide 

a view of the canopy (Figure 2.3).  Locations of TL cameras and transect measurements 

were surveyed using a Trimble RTK and Nikon Total Station. Elevation and slope at the 

measurement locations and within model grid cells were derived from the PDEM (Table 

2.1, Table 2.2; Ontario Ministry of Natural Resources and Forestry, 2018).  Land cover 

percentages across the Globsnow and CMC model cells were calculated from the OLCC 

(Table 2.2; Ontario Ministry of Natural Resources and Forestry, 2014).   

Table 2.2: Model grid elevation, slope, and land cover type for analysed gris cells. 

 
Land cover (%) 

Elevation (m)† Slope (degrees)† 

  
Coniferous Mixed Deciduous 

Wetland/Open 

Water 

Globsnow 15 40 29 16 459, (391, 559) 5.4, (0 - 28.5) 

Canadian 
Meteorological 

Centre  

14 38 31 17 458, (398 - 564) 4.8, (3.7 - 26.3) 

†mean, (min-max)       

 

2.2.5 Analysis 

The temporal scales evaluated in this study include sub-seasonal (accumulation 

and ablation) and winter (November 1st to May 15th, 2015/16, and 2016/17).  The 

accumulation phase was defined as the period before peak depth or SWE and the ablation 

phase occurs after.  Climate conditions over the two-year study period were compared to 

historic daily winter mean air temperature, total precipitation, and maximum snow depth 

using MSC East Gate Algonquin Park (WMO ID 71581) data from 2005-2018 (Figure 

2.4).   

Two measurement scales were defined for the purposes of evaluating process 

differences and bias across scale.  The first is referred to as the TL scale and is defined by 

the mean and variability of three rulers captured by the TL photographs.  The second was 



23 

 

 

defined by the mean and variability of the measurements along the 300 m transects and is 

referred to as the transect scale (Figure 2.2; Table 2.3).  Two upscaled estimates of mean 

depth and SWE were calculated as a representation of aggregated grid scale mean and 

variability.  One estimate was calculated by aggregating the TL scale means weighted by 

land cover percentages (Table 2.2) within the 625 km² Globsnow cell and the second by 

aggregating transect scale means weighted by the same land cover fractions.  This 

method of aggregating snowpack estimates follows previous studies that demonstrated 

areal variations in snow cover are consistent with areal variations in landscape units 

driven by land cover (Steppuhn and Dyck, 1974; Adams, 1976) and has been used for 

estimating grid scale mean for comparison to model estimates (Derksen et al., 2005a, 

2005b).  More robust methods of estimating regional scale snowpack have been 

demonstrated (Elder et al., 1991) but require substantially increased work effort which 

limits frequency of sampling and the ability to evaluate temporal trends. Differences in 

land cover fractions between the CMC and Globsnow cells were negligible and produced 

upscaled estimates that were nearly identical.  Lake and wetland classes were aggregated 

for calculation of land cover weights.  The two model or grid scales evaluated in the 

study were the CMC snow depth and the Globsnow SWE products. 

Process scale is frequently defined by correlation length, which represents the 

average distance over which a variable is correlated (Blöschl, 1999).  Spatial 

autocorrelation is in part driven by the spatial structure of covariates that control physical 

processes and can be estimated by the range of an experimental variogram (Blöschl and 

Sivapalan, 1995).  Correlation length was calculated for each transect to provide insight 

into the physical processes that govern snow distribution at the transect scale.  
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Differences in snowpack between land cover type at the TL scale were evaluated 

by calculating pairwise MADs in depth and SWE using TL data.  Pairwise MADs in 

depth and SWE were calculated from transect mean values and statistically significant 

differences in means across land cover types for all survey dates were calculated using a 

Tukey Honest Significant Difference test with 95% confidence to understand the 

influence of vegetation on snowpack at the transect scale.  A Bonferroni correction was 

applied to account for multiple comparisons (Tukey, 1949).  Following methods outlined 

in previous studies (Blöschl, 1999; Molotch et al., 2005; Meromy et al., 2013), 

comparison of mean and variability across scales was made by calculating MAD, bias, 

mean bias (MB) and percent difference between scales.  Influence of land cover on 

modelled product validation was assessed by calculating change in pairwise differences 

in MAD across land cover.  Small pairwise differences suggest product validation is 

insensitive to the land cover class of the measurements.  Variability was assessed using 

range and relative standard error (RSE), which normalizes variance by sample size and 

mean.  Range is sensitive to extreme values that may skew the representation of 

variability but was chosen over more robust statistics such as standard deviation due to 

the small sample sizes at the TL scale.  
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Table 2.3: Scales of analysis investigated in this study. 

 
 Scale Support Spacing Extent n 

Measurement 

Scale 

 Time-lapse (TL) 12 cm* ~ 1m ~3m 
3 per land 
cover type 

 Transect 6 cm/30 cm²** 10 m/50 m*** 300 m 
31 per land 

cover type 

Upscaled 
Estimates 

Upscaled time-

lapse points 
6 cm/30 cm²** ~1m 625 km² 12 

Upscaled transects 6 cm/30 cm²** 10 m/50 m*** 625 km² 124  

Model Scale 

Canadian 

Meteorological 
Centre Grid 

24km 24km 576 km² 1 

Globsnow Grid 25km 25km 625 km² 1 

*(width of snow ruler) 

**(ESC 30 snow tube cutter diameter/ESC snow tube cutter area) 
***(transect depth measurement spacing/transect snow water equivalent measurement spacing) 

 

2.3 Results 

2.3.1 Study period 

 There was a late start to the 2015/16 winter shown by the temperature fluctuations 

above 0 °C until late December and the lack of snow compared to average conditions 

during this period (Figure 2.5).  Above normal winter mean air temperatures of −2.5°C 

and −2.9°C were observed in 2016 and 2017, respectively, compared to a 2005 to 2018 

period of record (POR) average of −3.7°C (Table 2.2).  Lowest daily minimum 

temperature for the POR (−31.2°C), however, was on February 14th during 2015/16 

(Table 2.4).  Above normal winter cumulative precipitation of 578 mm and 680 mm was 

observed in both seasons, respectively, compared to a POR average of 532 mm (Table 

2.4).  Cumulative precipitation was approximately normal in both seasons until early 

March when the amount increased above average (Figure 2.5).  Peak snow depth in both 

seasons (80 cm and 71 cm, respectively) was larger than the average of peak depths over 

the POR (63 cm; Table 2.4).  Peak depth in 2015/16 was the largest observed over the 
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13-year record (Figure 2.5).  Dates of peak depth over the 13-year POR range from 

February 1st (in 2009) to March 28th (in 2014), with a mean peak date of February 28th.  

Peak dates observed within this study (March 5th, 2016 and February 14th, 2017) 

represent a late and early peak date, respectively (Figure 2.5).  

 

Figure 2.5: East Gate Algonquin climate station (WMO ID 71581) air temperature, snow 

depth and precipitation for the two study winter periods as well as the station period of 

record (2005 – 2018). 
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Table 2.4: Winter summary statistics at Meteorological Services Canada East Gate 

Algonquin climate station (WMO ID 71581) calculated from daily data. 

 
Minimum 

Temperature 

(ᴼC) 

 

Mean 

Temperature 
(ᴼC) 

Maximum 

Temperature 

(ᴼC) 

Cumulative 

Precipitation 

(mm) 

Peak Snow 

Depth 

(cm) 

2015-2016 -31.2 -2.5 15.5 578 80 

2016-2017 -22.8 -2.9 15.3 680 71 

Period of Record 

(2005-2017) 
Average 

-27 -3.7 16.3 532 63 

2.3.2 Comparison of snow measurement and model data 

2.3.2.1 Effects of land cover on snowpack across measurement scales 

TL scale deciduous and mixed depth (except for 2015/16 mixed depth) and SWE 

values were consistently large while values in the coniferous land cover were 

consistently small until the last week of the season (Figure 2.6).  This difference between 

coniferous and other forest types was not evident based on the mean transect data and 

calculation of significant differences (Table 2.5; Figure 2.7).  Canopy cover (CC) percent 

at the coniferous TL land cover was substantially higher (70%) than the mixed and 

deciduous (16% and 12%, respectively; Table 2.1).  Mean transect CC was larger at the 

coniferous (69%) versus other forested land covers (45% and 6% for mixed and 

deciduous, respectively; Table 2.1).  

A difference in snowpack between the wetland and forested land covers was evident 

according to the transect data over both winters but not for the TL scale data during 

accumulation (Table 2.5; Figure 2.6 and Figure 2.7).  Wetland TL scale depth and SWE 

tracked the coniferous cover and was closer during accumulation than ablation (Figure 

2.6).  This contrasts with the transect mean data (Figure 2.7) where wetland values were 
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substantially smaller than forested land covers over both accumulation and ablation.  

Tukey tests indicated that most pairwise comparisons for wetland-forest depth and SWE 

were significant (Table 2.5).   

Calculated semi-variance was consistent across all lag distances (no correlation 

length) for all transects apart from the coniferous land cover with correlation lengths of 

approximately 50-70 m. 



29 

 

 

 

Figure 2.6: Daily snow depth, density, and snow water equivalent (SWE) within each land cover derived from daily time-

lapse depth measurements and interpolated transect density measurements (DEC = deciduous, CON = coniferous, MIX = 

mixed woods, WET = wetland). 
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Table 2.5: Pairwise differences in winter depth and snow water equivalent across land cover type at the time-

lapse (TL) and transect scale.  Pairwise differences assessed using mean absolute difference (MAD) and the 

percentage of transects that had statistical differences. 

 Coniferous-Deciduous Coniferous-Mixed Mixed-Deciduous Wetland-Deciduous Wetland-Mixed Wetland-Coniferous 

Depth 2015/16 2016/17 2015/16 2016/17 2015/16 2016/17 2015/16 2016/17 2015/16 2016/17 2015/16 2016/17 

 TL points MAD (cm) 14.6 14.8 4.4 15.2 10.8 2.8 17.9 21.8 7.3 21.7 7.2 8.8 

Transects MAD (cm) 9.5 4.8 8.7 4.1 4.3 2.0 31.7 33.5 29.0 32.0 31.7 32.4 
% of transects with 

Significantly Different 

Means 60% 25% 50% 0% 0% 0% 90% 88% 90% 88% 100% 88% 

 Coniferous-Deciduous Coniferous-Mixed Mixed-Deciduous Wetland-Deciduous Wetland-Mixed Wetland-Coniferous 

Snow Water Equivalent 2015/16 2016/17 2015/16 2016/17 2015/16 2016/17 2015/16 2016/17 2015/16 2016/17 2015/16 2016/17 

TL points MAD (mm) 39.4 38.4 31.7 34.7 16.9 15.6 52.0 59.9 41.7 54.9 23.5 22.6 

Transects MAD (mm) 19.9 19.1 11.2 11.1 10.8 9.4 78.1 86.0 77.1 76.6 76.6 74.9 

% of Surveys with 
Significantly Different 

Means 30% 63% 20% 0% 20% 10% 70% 88% 80% 75% 70% 75% 
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Figure 2.7: Mean snow density, depth, and snow water equivalent (SWE) across land cover types derived from transect 

measurements (DEC = deciduous, CON = coniferous, MIX = mixed woods, WET = wetland). 
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2.3.2.2 Bias across measurement scale  

Coniferous TL scale mean depth and SWE values were negatively biased relative to 

coniferous transect medians over both years (Figure 2.8). Mean deciduous TL scale depth 

and SWE were mostly neutral or slightly negatively biased relative to the deciduous 

transect median in 2015/16 but in 2016/17 were positively biased during accumulation 

and negatively biased during ablation.  The patterns of TL bias relative to the transect 

median in the mixed land cover were similar to the deciduous land cover.  Wetland TL 

values had mostly positive bias relative to the transect median (Figure 2.8).  The average 

percent difference between TL and transect scale means across all land cover types and 

both years was 42% for depth and 48% for SWE but was observed to be as large as 367% 

for depth and 936% for SWE during ablation. 

Most mean TL scale values fell within the range of transect measurements.  Mean TL 

scale values falling outside the lower and upper range were located at a cumulative 

frequency of 0 or 100, respectively (Figure 2.8).    Land cover types that showed more 

than two TL scale mean values outside the transect range included the wetland depth and 

SWE values in 2015/16 (five values) and the coniferous depth and SWE values from 

2016/17 (four values).  TL scale values largely fell outside of the transect range during 

ablation. 
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Figure 2.8: Frequency distribution of transect snow depth a) and snow water equivalent 

(SWE) measurements b).  Mean depth and SWE derived from embedded time-lapse (TL) 

points within each transect plotted for each survey date (DEC = deciduous, CON = 

coniferous, MIX = mixed forest, WET = wetland.  Shading of the lines represents the 
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snow survey date.  Darker lines indicate snow surveys were taken earlier in the snow 

year and lighter lines indicate snow surveys were taken later in the snow year. 

2.3.2.3 Bias across upscaled areal estimates and comparison of variability 

The upscaled estimate from aggregating TL means across land cover types 

closely followed the patterns of the depth and SWE estimate from upscaling transects, 

with a MAD of 2.4 cm depth/7.3 mm SWE and 0.6 cm depth/10.0 mm SWE across 

2015/16 and 2016/17, respectively (Figure 2.9).  Bias between upscaled estimates for 

both depth and SWE was typically smaller and positive during accumulation (MB of 2.7 

cm depth/5.8 mm SWE averaged over both years) and larger and negative during 

ablation (MB of -5.1 cm depth/-20.5 mm SWE). 

 

Figure 2.9: Difference between upscaled time-lapse (TL) points and upscaled transect 

measurements for snow depth (a) and snow water equivalent (SWE) (b). 

The range of values across scales for each land cover type is shown in Figure 2.10.  

Areal estimate values were the same for each land cover type and are presented to 

illustrate relative values and patterns.  The smallest range was seen between the TL 

points, but the ranges vary across land cover at this scale.  The largest TL points range 

was observed in the mixed land cover (Figure 2.10).  Transect ranges were smallest in 
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the deciduous and wetland land covers and were highest in the mixed and coniferous land 

covers (Figure 2.10).  Transect ranges were smaller across all forested transects during 

accumulation than during ablation (Figure 2.10).  Ranges in upscaled estimates 

mimicked the temporal trends of the TL points and transect ranges but were larger.  RSE 

was low and consistent across all land cover types and scales but increased significantly 

at the beginning of accumulation and late in ablation. 

 

Figure 2.10: Range of snow depth (a) and range of snow water equivalent (SWE) values 

(b) across the time-lapse (TL) point scale, transect scale, upscaled TL points scale and 

the upscaled transects scale (DEC = deciduous, CON = coniferous, MIX = mixed woods, 

WET = wetland. 
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2.3.2.4 Comparison of multiscale means to gridded products 

CMC grid cell land cover is predominantly mixed and deciduous with smaller 

amounts of coniferous and open water/wetland (Table 2.2; Figure 2.4).  The cell has a 

range of elevations from 391 m to 559 m with a mean of 459 m (Table 2.2; Figure 2.4).  

Mean slope within the cell is 5.4 ° but ranges from 0 to 28.5° (Table 2.2).  The sign of the 

CMC bias from TL scale measurements changed from accumulation to ablation in the 

coniferous land cover, was mostly negative at the mixed and deciduous land covers and 

mostly positive in the wetland (Figure 2.11a).  The largest average winter CMC bias 

from the TL scale was at the wetland land cover with a positive MAD averaged over both 

years of 12.9 cm.  CMC bias from transect measurements for forested land covers was 

consistently closer to measured depth during accumulation versus ablation, while bias 

remained consistently positive at the wetland land cover at this scale (Figure 2.11 a).   

Globsnow grid cell land cover, slope and elevation are similar to the CMC 

attributes (Table 2.2).  Globsnow bias in forested land covers from both the TL and 

transect measurements was mostly neutral or slightly negative during accumulation and 

negative during ablation.  Bias magnitude was smaller during accumulation than ablation 

from both TL and transect measurements over both years (Figure 2.11b).  Globsnow had 

mostly positive bias relative to the wetland TL and transect measurements (Figure 2.11 

b).   

Differences in pairwise mean winter MAD between scales indicated that bias was 

substantially larger when comparing products to TL points versus transect measurements 
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(Table 2.6 and Table 2.7).  Maximum pairwise difference across forested land covers at 

the TL points scale was 14.7 cm depth/39.9 mm SWE (Table 2.6 and Figure 2.7).  

Forested pairwise differences at the transect scale were less than 2.7 cm depth/11.1 mm 

SWE.  Pairwise differences between wetland-forest were as large as 37.0 cm depth/96.8 

mm SWE (Table 2.6 and Figure 2.7). 

 

Figure 2.11: Canadian Meteorological Centre (CMC) snow depth (a) and Globsnow 

snow water equivalent (SWE) (b) bias from time-lapse (TL) scale and transect scale 

across land cover types (DEC = deciduous, CON = coniferous, MIX = mixed woods, 

WET = wetland).  

All subsequent summary statistics presented in this section are an average over 

both study years.  CMC depths were similar to upscaled estimates over the course of both 

years with a MAD of 4.4 cm and 7.9 cm for upscaled TL and transect measurements, 

respectively (Figure 2.12 a).  There was smaller TL scale bias from CMC depth during 

accumulation (MB of −2.5 cm) than ablation (MB of −5.1 cm; Figure 2.12 a).  There 
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were similar trends at the transect scale with MBs of −0.1 cm and −10.1 cm for 

accumulation and ablation, respectively.  Globsnow bias from upscaled TL estimates 

during accumulation (MAD 11.9 mm, MB 1.8 mm) was smaller than ablation (MAD 

28.9 mm, MB −25.1 mm; Figure 2.12 b).  A similar pattern in bias was observed from 

upscaled transect estimates with MAD of 24.9 mm and MB of −0.9 mm during 

accumulation, and MAD of 62.1 mm and MB of −62.1 mm during ablation (Figure 2.12 

b).  

 

Figure 2.12: Canadian Meteorological Centre (CMC) snow depth a) and Globsnow snow 

water equivalent (SWE) (b) bias from upscaled time-lapse (TL) points scale and the 

upscaled transects scale.
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Table 2.6: Pairwise differences in error across land cover between measured mean snow depth (at the time-lapse (TL) and 

transect scale) and modelled Canadian Meteorological Centre depth. 

 
Coniferous-Deciduous  Coniferous-Mixed  Mixed-Deciduous  Wetland-Deciduous  Wetland-Mixed  Wetland-Coniferous  

2015/16 2016/17 2015/16 2016/17 2015/16 2016/17 2015/16 2016/17 2015/16 2016/17 2015/16 2016/17 

Difference 

in error at 
TL point 

scale (cm) 

14.7 14.6 11.6 14.6 3.2 0.0 19.2 24.2 16.0 24.3 4.4 9.7 

Difference 
in error at 

transect 

scale (cm) 

0.6 1.1 2.1 0.4 2.7 1.5 33.9 37.0 31.2 35.4 33.3 35.9 

 

Table 2.7: Pairwise differences in error across land cover between measured mean snow water equivalent (at the time-lapse 

(TL) and transect scale) and modelled Globsnow snow water equivalent. 

 
Coniferous-Deciduous  Coniferous-Mixed  Mixed-Deciduous  Wetland-Deciduous  Wetland-Mixed  Wetland-Coniferous  

2015/16 2016/17 2015/16 2016/17 2015/16 2016/17 2015/16 2016/17 2015/16 2016/17 2015/16 2016/17 

Difference 

in error at 

TL point 
scale (mm) 

38.9 39.9 30.6 33.1 8.2 6.8 53.9 69.9 45.7 63.0 15.1 29.9 

Difference 

in error at 
transect 

scale (mm) 

1.5 11.1 0.5 1.7 1.0 9.4 81.7 96.8 80.6 87.4 80.2 85.8 
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2.4 Discussion 

2.4.1 Theoretical process representation of estimates across scale 

Factors affecting the spatial variability of snowpack are hierarchically scale 

dependent (Blöschl, 1999; Clark et al., 2011).  In non-mountainous forested landscapes, 

topography and land cover are the physical characteristics that drive basin scale 

variability of SWE (Jiusto and Kaplan, 1972; Anderton et al., 2004; Clark et al., 2011).  

At the forest stand scale, vegetation structure plays the largest role along with slope and 

aspect (Metcalfe and Buttle, 1998; Jost et al., 2007; Varhola et al., 2010b).  At the point 

scale, vegetation, micro-topography, and ground surface features such as boulders, 

branches, tree boles and ponded water are the physical factors that affect snow depth and 

SWE variability (López-Moreno et al., 2011).  Climate variability interacts with the 

physical factors described above to influence snow distribution across all scales (Rice 

and Bales, 2010; Sturm, 2015; Peters-Lidard et al., 2017). 

The single point measurements made by the rulers and snow corer captured 

processes that occurred at the scale of the support (area covered by the single 

measurement).  Given that measurements within this study were stratified across land 

cover type and situated within areas of relatively homogeneous topography (Table 2.1; 

Figure 2.2), it is assumed that the physical factors affecting snow processes operating at 

the scale of the measurement support were primarily limited to vegetation, with micro-

topography and ground surface features also playing a role.  At the TL scale, mean and 

variability represent the integrated effect of stated support scale processes across the 

three ruler measurements. 
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The transect scale integrates processes observed at the support scale over a length 

defined by the extent (300 m) and may capture additional variability depending on the 

length and extent of the physical processes operating across the transect.  Few 

observations (large spacing) over a long distance (large extent) may not capture fine scale 

processes along a transect but may capture spatial structure resulting from larger scale 

variability and processes.  Conversely, measurements taken at a high spatial frequency 

(small spacing) across a shorter distance (small extent) may represent fine scale 

processes, but will not capture coarser scale variability and correlation lengths (Blöschl, 

1999).  The lack of correlation length identified by a semi-variogram range of 0 m along 

most of the transects within this study indicates that the sample design did not capture 

spatial structure (e.g., a change in slope or elevation along the transect) at a spacing 

greater than 10 m along the 300 m extent.  The lack of correlation length also indicates 

that the transect measurements did not capture the spatial structure that would be 

introduced by fine scale effects such as the spatial autocorrelation introduced by 

individual tree crowns.  Given the lack of observed correlation lengths, the statistical 

moments at the transect scale represent the integrated effect of support scale processes 

across the transect.   

Upscaled mean and variability calculated by aggregating site and stand scale 

measurements represent the integrated effect of support scale processes across all sites 

and land cover types and all transects and land cover types, respectively, and may 

introduce additional variability due to differences in physiography between sites.  

Variability introduced by factors other than land cover (e.g., slope, aspect, elevation, and 

spatial variability in climate) that influence snowpack across the upscaled area was not 
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accounted for in these aggregates, resulting in potential deviation from the true statistical 

moments and processes within the grid element.  The modelled products, in theory, 

integrate many processes that control variability across scales through modelling (CMC) 

or through remote sensing (Globsnow).  This variability is integrated into a single value 

with a support defined by the grid element size. 

2.4.2 Effects of land cover on snowpack across scales 

According to the TL data, the greatest depth and SWE accumulation was in 

forested land cover types with less CC (deciduous and mixed).  The smallest snowpack 

was in the coniferous land cover (larger CC) until the final week of ablation when the 

snowpack in the more open sites decreased below sites with denser canopy.  This is 

consistent with literature where less snow is observed under denser canopies because of 

canopy interception and sublimation during accumulation, while snowpack remains 

under forests with larger canopy density during ablation due to reduced melt rates 

(Essery et al., 2003; Ellis et al., 2013).  Within dense forest canopies, reduced melt rates 

are typically seen due to reduced solar radiation from canopy shading, combined with 

reduced wind and sensible heat flux from forest sheltering  (Hedstrom and Pomeroy, 

1998; Pomeroy et al., 1998; Ellis et al., 2013).  While not observed in this study, 

previous research has shown that under conditions of high air temperature, high snow 

albedo and low wind speed, longwave radiation from dense vegetation can produce faster 

melt than a sparser vegetation emitting less longwave radiation (Yamazaki and Kondo, 

1992; Metcalfe and Buttle, 1998)    

Observed differences in snowpack between coniferous and other forested sites were 

less evident from the transect data where some differences were detected in 2015/16 but 
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most forest-forest comparisons for depth and SWE were insignificant.  Variability in 

significant differences over time at the transect scale highlight the temporal variability of 

forest-snow interactions and the need for sub-seasonal sampling in order to obtain an 

accurate depiction of process at this scale.  A larger mean CC was observed in the 

coniferous transects versus mixed and deciduous; however, the coniferous CC had a 

large range, including CC values that were smaller than some observed in the mixed 

transect (Table 2.1; Figure 2.2)  The similarity in mean snowpack across all forested 

transects may reflect the complex and non-linear accumulated effect of CC on snow 

processes across transect measurements (Varhola et al., 2010b) and/or the inability of CC 

to represent forest cover and capture snow-vegetation interactions adequately at this scale 

(Varhola et al., 2010a).  In depth investigation of forest metrics that control snow process 

in this study area are out of scope of this paper.   

Wetland transects had consistently smaller snow depth and SWE than forested sites 

during both accumulation and ablation.  During accumulation on the wetland, field 

observations and assessment of TL photos suggest the snowpack was incorporated into 

the ice due to freeze-thaw cycles and periodic flooding from ice cracking which led to a 

reduction of measurable snowpack.  During ablation, snowpack rapidly decreased at the 

wetland versus forested sites, likely due to a lack of solar shading, melting of underlying 

ice and energy advection from exposed vegetation and open water.  These observations 

are consistent with literature on snow processes over ice cover (Gray and Male, 1981).  

The TL data, however, suggest that the wetland data were closer to the coniferous stand 

during accumulation, but not ablation.  Based on field observations and qualitative 

analysis of TL photos, the difference between the transect and TL wetland snowpack 
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may be due to differences in vegetation cover which affected snow retention across the 

wetland.  The TL measurements were located in a vegetated area while several transect 

measurements were devoid of vegetation (Table 2.1; Figure 2.2).   

2.4.3 Bias across measurement scale  

Consistency in the difference between TL and transect scale values was observed 

when viewed within land cover type, year and during the accumulation and ablation 

phases (Figure 2.8).  This implies that daily TL scale mean values could be bias corrected 

using a limited number of appropriately stratified transects to get a better representation 

of transect scale mean.  Neumann et al. (2006) compared point scale depth and SWE 

measurements to transects over three years in a boreal forest during snow accumulation 

and found consistent bias that could be adjusted using scaling equations based on linear 

regression of means across scales.  The findings of this study are consistent with 

Neumann et al. (2006) but also highlight that point to transect bias can vary between 

accumulation and ablation.  These finding are of particular importance for this remote 

study region where obtaining frequent manual observations is a challenge.     

While there was consistency of bias through time and across land cover type, some 

interannual differences in bias were observed (e.g., mixed, and deciduous in 2015/16 

versus. 2016/17).  Sturm and Wagner (2010) discuss fixed controls on snow processes 

(e.g., vegetation) that are relatively static versus dynamic controls (e.g., temperature, 

precipitation, etc.) that change more rapidly.  They suggest that patterns in snow 

distribution through time are more consistent when fixed controls dominate (Sturm and 

Wagner, 2010).  A deeper understanding of the factors that affect snow processes at a 

given location (e.g. forest structure) could help inform the temporal consistency (such as 
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interannual variability) of differences across scales and improve estimates of scaling 

coefficients (Varhola et al., 2010a, 2014). 

There were substantial differences between TL and transect depth and SWE with 

greater bias typically during ablation (Figure 2.8).  Previous studies have also found that 

fine scale measurements are not necessarily representative of the surrounding area 

(Molotch et al., 2005; Neumann et al., 2006; Rice and Bales, 2010; López-Moreno et al., 

2011; Meromy et al., 2013).  Meromy et al. (2013) developed a binary regression tree 

model for estimating depth and SWE in a montane environment for 1, 4 and 16 km² 

grids.  Approximately half of their sites had a percent bias greater than 10% during both 

accumulation and ablation and most point measurements deviated by more than 10% 

from the median spatially distributed value.  These findings are comparable to the results 

of this study where the average percent bias across all land covers was ~ 40% for both 

depth and SWE.  Using a similar method to Meromy et al. (2013), Molotch and Bales, 

(2005) also found point data were not representative of coarser scale SWE with observed 

differences as large as 200%.  In our study, percent differences as large as 936% for 

SWE were observed, the result of conducting snow surveys during late melt when 

snowpack was low and relative differences were highly inflated.  Magnitude of bias has 

been found to be greater during ablation across all scales, attributed to the introduction of 

additional variability due to melt processes (Molotch and Bales, 2005; Rice and Bales, 

2010; Meromy et al., 2013).  Meromy et al. (2013) also found less bias across scales in 

sites that had smaller SWE variability and more uniform distributions.  A smaller bias 

was observed across the deciduous transects that had smaller variability within this study.  
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These observations highlight the importance of understanding the impact of seasonality 

and data distributions on potential bias in snowpack across measurement scales. 

Differences between TL and transect snowpack did not correspond to differences 

between TL and mean transect vegetative fraction.  A wide range of vegetative fraction 

values were present across most transects.  Investigation of snow-vegetation processes 

beyond the scope of this paper is required to decipher physiographic controls and the 

appropriate metrics to represent these processes (Varhola et al., 2010b).       

2.4.4 Bias across upscaled areal estimates and comparison of variability 

Depth and SWE calculated by upscaling TL measurements were consistent with 

upscaled transects, although bias was greater during ablation.  These results suggest that 

it may be appropriate to upscale point measurements instead of transects in remote basins 

(such as this study region) when resources are not available to obtain transect 

measurements.  Rice and Bales (2010) used a binary regression tree model to distribute 

depth across a 1km² grid and then compared the model to 10-point measurements 

distributed across an embedded 0.4 ha area.  They found that a single point measurement 

was not representative of the survey data but four or more point measurements 

substantially improved accuracy and estimated the mean within ±  25% (Rice and Bales, 

2010).  Other research has also found that approximately four measurements can 

substantially improve accuracy of estimating grid scale mean, with more than four 

measurements showing only marginal improvements in accuracy (Lundquist and Lott, 

2010).   

An understanding of range and how it differs over measurement scales is important 

as it can be used to understand and parameterize sub grid variability within models (Cline 



47 

 

 

et al., 1998; Blöschl, 1999).  At the TL scale, the range in the mixed forest was 

substantially larger than for other land cover types.  This might be attributed to the large 

degree of variability in forest floor structure at this site where downed trees and boulders 

were present  (Figure 2.3; López-Moreno et al., 2013).  Within the transects, the largest 

ranges were seen in the coniferous and mixed forests.  Stands with denser forest cover 

have been found to demonstrate larger variability in snowpack at the forest stand scale 

(Pomeroy et al., 1998).  However, other studies have found little correlation between 

forest cover (defined by Leaf Area Index) and snowpack variability defined by the 

coefficient of variation and standard deviation (Pomeroy et al., 2002). 

Relatively small range was observed in the wetland transects, with larger range 

during accumulation when snowpack was present versus the ablation phase when little to 

no snowpack existed.  The range of depth and SWE increased during the season and was 

larger during ablation than accumulation at all forested transects with the increases being 

more pronounced in the mixed and coniferous land covers.  Larger differences in mean 

values and larger spatial variability exist as the season progresses and during ablation due 

to redistribution and the introduction of melt processes (Rice and Bales, 2010).   

  Range increased across scale and throughout the season with the smallest values at 

the TL scale (n = 3) and the largest within upscaled transects (n = 120).  A consistently 

small RSE over most of the winter indicates that patterns in range were dependent on 

sample size and magnitude of depth/SWE.  Substantial increases in RSE at the beginning 

and end of the winter were due to patchy snowpack with high spatial variability. 
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2.4.5 Comparison of multiscale means to gridded products 

 Bias between snow products and measurements will result from error in the 

model estimate and measurement data.  Deviation of validation data from the true grid 

mean may contribute to bias from products, which may lead to misrepresentation of 

product accuracy.  Comparisons of CMC depth and Globsnow SWE to in situ 

measurements indicated that the bias varied over land cover, measurement scale and 

time.  Transect measurements in forested land cover types had similar bias for both depth 

and SWE (averaged over the winter) indicating that (for this grid cell) bias was 

independent of forested land cover type. Differences between accumulation and ablation 

were observed, indicating that forest cover type introduced bias at sub-seasonal 

timescales.  This highlights the importance of validating products over both accumulation 

and ablation phases.  There were large differences between forest-wetland bias at both 

scales due to the grid cell being predominantly forest covered.  This highlights the 

importance of collecting validation data that are representative of grid cell physiography 

and heterogeneity.  Large differences in TL scale bias across all land cover were 

introduced.  TL scale measurements do not capture heterogeneity of the surrounding area 

and have a larger chance of differing from the grid mean.  Spatial representativeness of 

in-situ measurements (during accumulation and ablation) and the processes those 

measurements represent should be considered when validating gridded snow products 

(Molotch and Bales, 2005; Neumann et al., 2006; Meromy et al., 2013; Mudryk et al., 

2015).   

Despite the wide range in physiographic characteristics within the grid cells 

compared to the measurement locations, modelled depth averaged over either 
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accumulation, ablation or the winter season was within 10 cm of upscaled estimates.  

Modelled SWE was within 30 mm when averaged over accumulation or the winter 

season but Globsnow underestimated SWE by over 60 mm during ablation.  These 

results indicate that a simple stratified sample within a grid cell can produce results 

comparable to model grid values, but that larger deviations may exist during ablation.  

The Globsnow estimate may integrate snowmelt variability into the grid cell mean value 

better than the aggregated measurements.  For example, upscaled estimates do not 

account for variability due to slope and aspect, which could substantially increase melt 

rate, resulting in smaller SWE recorded by Globsnow during ablation (Anderson et al., 

1959; Murray and Buttle, 2003; Varhola et al., 2010a).  Alternatively, the Globsnow 

estimate may have been less than the true mean during melt.  This is consistent with 

previous literature that has found that product estimates that assimilate point depths (such 

as Globsnow) typically underestimate depth and SWE, due to assimilation of point 

measurements in exposed areas (such as airports) that ablate more rapidly than the 

heterogeneous landscape (including forest cover) that the grid cell represents (Neumann 

et al., 2006; Grünewald et al., 2015; Brown et al., 2018).  Passive microwave SWE 

estimates have known error when liquid water is present in the snow pack (Dietz et al., 

2012).  As a result, Globsnow heavily relies on assimilated snow depths during melt 

(Luojus et al., 2010).  Meromy et al. (2013) compared the National Operational 

Hydrologic Remote Sensing Centre gridded snow model to observed data across multiple 

scales and found that, in some cases, measurements were less accurate than the modelled 

values.  They suggest either scaling assimilated measurements or omitting assimilation 

from the snow model under certain circumstances (Meromy et al., 2013).  This analysis 
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highlights important considerations when validating and applying modelled and remotely 

sensed snow products and assimilating data collected across different scales into these 

products.   

2.5 Conclusion 

Scaling issues in snow hydrology persist due to limitations in instrumentation and 

the inherent gap between sampled and true pattern and process across scales.  The 

purpose of this study was to improve understanding of scaling issues in snow hydrology 

by assessing the difference in representation of snow processes and estimates of mean 

and variability across scales.  Observed differences in snowpack between forested land 

cover types at the TL scale were attributed to differences in CC across the sites.  

Differences in forest snowpack across the transect scale were less evident while 

differences in mean transect CC were observed.  This was attributed to the non-linear 

aggregation of complex snow processes across the transect and/or limitations in the study 

methodology.  Semivariogram analysis indicated that no spatial structure was evident 

along the length of the transects.  Differences in snowpack at the TL scale versus the 

transects within land cover types were observed but did not correspond with differences 

in TL and mean transect vegetative cover. This indicated that mean vegetative cover is 

not an effective metric for representing aggregate snow-vegetation processes over a 

transect and that more detailed analysis beyond the scope of this paper is required. 

This study confirmed previous findings that point scale mean is not representative 

of the surrounding area, but bias can be consistent within homogeneous landscape units 

and time-periods.  This study suggested that point scale mean snowpack from a Great 

Lakes-St. Lawrence environment could be bias corrected by scaling factors derived from 
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a limited number of transect measurements and also highlighted the influence of 

seasonality on bias.  Consistency between upscaled estimates of depth and SWE using 

TL measurements and transect measurements suggested that four appropriately stratified 

point scale measurements may be a suitable replacement for transect scale mean when it 

is not possible to collect transect data.  Differences in variability across scale was 

assessed and attributed to differences in microtopography, vegetative cover and sample 

size. 

Comparison of modelled products (CMC depth and Globsnow SWE) to in-situ 

data indicated that bias depends on land cover type and measurement scale, and that the 

difference across land cover can vary by accumulation, ablation and across winters.  

These findings highlighted the importance of understanding the scale and processes that 

ground truth measurements and model estimates represent.  Product snowpack compared 

well to both upscaled estimates with the exception of the Globsnow SWE during 

ablation.  This may have been due to the better integration of the factors that affect SWE 

variability by the Globsnow product, or more likely was the result of assimilating data 

that were not representative of the grid scale mean due to the limitations of Globsnow 

during melt.   

This study has improved understanding of the influence of scale on snow process 

and pattern.  Rapidly improving technology that permits the deployment of inexpensive 

field-based measurement equipment and the rapidly evolving field of remote sensing will 

further our ability to explore these important research questions.  This will in turn 

improve scientific inquiry that requires accurate estimates of distributed SWE including 



52 

 

 

assessment of water balance components in cold regions, ecosystem function and natural 

hazard risk (Sturm, 2015; Peters-Lidard et al., 2017; Dong, 2018).  
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Abstract 

The efficacy of field-based, photogrammetric point cloud, orthophoto and light 

detection and ranging datasets to describe forest structure and resolve forest-snowpack 

relationships in a mixed forest region was evaluated over two years at the point and 

transect scales.  Hemispheric photo-derived canopy metrics correlated well with remotely 

sensed metrics, but tree bole metrics were not effectively derived from remotely sensed 

data.  Significant differences in melt rate and snow free date were found across forest 

type at the transect scale.  Field and remotely sensed estimates of canopy cover were 

highly correlated with melt rate and snow free date at the point scale which aligns with 

previous literature and understanding of snowmelt processes.  However, significant 

correlations were only present during the 2016 study year, which was attributed to 

canopy controlled solar radiation-driven melt in 2016 versus more spatially uniform 

turbulent flux-driven melt in 2017.  Peak snow water equivalent metrics were not 

correlated well with canopy or tree height metrics, contrary to previous research.  This 

was likely due to mid-winter melt events throughout both study years where a mix of 

accumulation and melt processes confounded forest-snowpack relationships.  This study 

demonstrated that widely available remotely sensed data with a broad coverage can be 

used to: i) describe forest-snowpack relationships in mixed hardwood, coniferous forests 

and ii) elucidate the variability of forest-snowpack relationships under different climate 

conditions in this environment. 
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3.1 Introduction 

Accurate representation of snow distribution is critical for understanding cold 

region hydrology (Barnett et al., 2005).  Forest structure controls snow accumulation and 

melt primarily through snow interception (Pomeroy et al., 2002) and its influence on the 

energy balance (Gelfan et al., 2004).  Several previous studies focused on relationships 

between forest structure and snow accumulation metrics.  Musselman et al. (2008) found 

that peak SWE was 47% less under a forest canopy compared to an adjacent open area.  

López-Moreno and Latron (2008) related individual point snow survey measurements to 

hemispheric photo-derived sky view factor and observed a strong relationship between 

SWE and canopy density with sky view factor explaining nearly 90% of the variance in 

peak SWE.  Mean forest metrics from pine stand plots ranging from 100 to 800 m2 were 

compared to plot mean snow survey data and strong relationships between LiDAR-

derived metrics (forest cover and tree height) and peak SWE, and field-derived DBH and 

peak SWE were found (Varhola et al., 2010a).  Zheng et al. (2018) compared point snow 

depth sensor data to LiDAR-derived forest metrics calculated in circular areas ranging 

from 12 m2 to 5000 m2 surrounding the depth measurements.  Canopy cover, LiDAR-

derived tree heights and tree-height standard deviations controlled snow accumulation 

across eight locations (Zheng et al., 2018).   

Several studies have investigated the effect of forests on snow ablation.  A meta-

analysis of 33 snow studies primarily conducted in coniferous forests showed snowmelt 

rate decreases with increasing forest cover due to attenuated solar radiation from canopy 

shading, and decreased wind and sensible heat flux from forest sheltering (Varhola et al., 

2010b).  Talbot et al. (2006) compared mean forest to snowpack metrics in 30 m by 30 m 
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plots and found tree height and light interception by the canopy had a significant impact 

on melt rate in a balsam fir forest in Quebec.  Sky view factor, tree diameter at breast 

height (DBH) and basal area controlled SWE during melt based on the comparison of 

mean field-based forest metrics and snow surveys in 30 m x 30 m plots in a mixed forest 

in New Hampshire (Penn et al., 2012).  Metcalfe and Buttle, (1998) compared field-

based gap fraction to snow wire-derived snowmelt at each measurement location and 

found melt in a boreal forest was primarily controlled by differences in canopy density 

represented as gap fractions.  LiDAR-derived tree height standard deviation partially 

explained maximum snow ablation rate across 11 coniferous stands in British Columbia 

(Varhola et al., 2010a).  Varhola et al. (2010a) correlated forest metrics with snow 

ablation rates using different time periods and found the final ablation period (calculated 

as the difference between the last two consecutive surveys) had the strongest 

relationships.  In contrast, Murray and Buttle, (2003) compared field-based gap fraction 

to snow wire-derived melt and found canopy density was not a good predictor of melt 

rate in deciduous forests in central Ontario.   

Yamazaki and Kondo (1992) also observed that in general, snowmelt decreased 

with increasing forest cover, but observed that under conditions of high air temperature 

and snow albedo and weak wind the longwave radiation from a dense canopy produced 

faster melt than a sparser canopy with less longwave radiation.  Sicart et al. (2003) 

confirmed that, in certain areas, increasing canopy density can show increased melt rates 

due to the increase in longwave radiation from the canopy.   

Micro-scale vegetation properties such as directional distance from tree boles 

influence snow accumulation and melt at finer scales.  Musselman et al. (2008) found 
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peak SWE occurred 21 days later on north versus south sides of trees.  Faria et al. (2000) 

found that snow covered areas adjacent to tree wells with exposed leaf litter had higher 

melt rates due to advection from the exposed surface.  Murray and Buttle, (2003) 

hypothesized inter-site differences in snowmelt in a deciduous stand were due to 

microtopography and proximity to tree trunks.    

Field-based forest structure data for evaluating forest-snowpack relationships are 

time consuming to measure and difficult to distribute over larger areas (Varhola et al., 

2012; Moeser et al., 2014).  Spatially-distributed two-dimensional (2D) forest metrics 

have been derived from remotely sensed data and related to snowpack metrics (Metcalfe 

and Buttle, 1998; Essery et al., 2008).  More recently, three-dimensional (3D) forest 

metrics have been derived from light detection and ranging (LiDAR) data and 

photogrammetric point clouds (PPCs) (Pitt et al., 2014; St-Onge et al., 2015; White et 

al., 2015; Stone et al., 2016; Ullah et al., 2019).  These are considered the most useful 

form of remotely sensed data for describing forest characteristics and are an 

improvement over 2D forest metrics (Smith et al., 2009; Dash et al., 2016; Pearse et al., 

2018).  Forest structure metrics derived from PPC approach the accuracy of airborne 

LiDAR-derived forest structure metrics (Baltsavias, 1999; Haala et al., 2010; St-Onge et 

al., 2015).  Several studies have used LiDAR derived forest metrics to assess forest-

snowpack relationships while use of PPC data for this purpose is limited (Morsdorf et al., 

2006; Essery et al., 2008; Moeser et al., 2015b; Zheng et al., 2018). 

The Ontario Imagery Program was established in 2011 with the purpose of 

collecting very high resolution, standardized data across southern and parts of central and 

northern Ontario on a predictable five-year repeat cycle.  Orthophotos, PPCs and 
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derivative elevation products are generated and distributed by Land Information Ontario 

from the imagery acquisitions (Land Information Ontario, 2022a).  The Ontario Airborne 

topographic LiDAR program has collected and disseminated LiDAR data across southern 

Ontario and parts of central and northern Ontario with plans to expand the acquisitions 

and continually update products (Land Information Ontario, 2022b).   

The objective of this research was to evaluate the efficacy of the Ontario imagery 

and LiDAR data sets for describing forest-snowpack relationships and to improve our 

understanding of forest influences on snowpack characteristics in the Great Lakes-St. 

Lawrence Forest (GLSF) region by addressing the following questions: 

• How do forest metrics compare to peak snow water equivalent (SWE) and snowmelt 

rate magnitude and timing at the point and transect scales? 

• How and why do relationships between forest structure and snowpack vary inter-

annually? 

This comparison of field-based, 2D and 3D orthophoto- and LiDAR-derived metrics 

for the purposes of characterizing snowpack builds on previous studies, which typically 

have focused on a single remotely sensed data set to derive the required forest metrics 

(Varhola et al., 2010a; Moeser et al., 2015b).  The present study also evaluated both field 

and remotely sensed canopy and tree bole characteristics whereas most previous studies 

focused on a single category of metrics.  Previous studies have often been conducted in 

predominantly coniferous forests and alpine regions and evaluate forest-snowpack 

relationships at a single scale (Penn et al., 2012), while this research was conducted in a 

non-mountain mixed hardwood and coniferous forest in the GLSF and evaluates 

relationships at different scales.  The GLSF covers a broad swath of central Ontario and 
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southern Quebec and plays an important role in regulating water inputs to the Great 

Lakes, which contain nearly 20% of the earth’s freshwater, are a vital source of drinking 

water, food, energy, transportation, and recreation, and support a diverse ecosystem 

(Ontario Ministry of the Environment, 2016).  The GLSF’s hydrology is dominated by a 

response to seasonal snow cover and improved understanding of SWE and melt 

processes is therefore critical to improve understanding of water inputs to the Great 

Lakes basin.  Beaton et al. (2019) demonstrated that significant differences in snowpack 

across land cover in the GLSF were temporally variable and recommended more in-depth 

investigation of forest structure-snowpack relationships in this environment.     

3.2 Materials and methods 

3.2.1 Study area 

The study area is in central Ontario, Canada in the GLSF, covers an area of ~13 

km2 (Figure 3.1) and is characterized by deciduous, coniferous, and mixed forests of 

uneven ages dominated by maple (Acer), oak (Quercus), birch (Betula), pine (Pinus), 

cedar (Cedrus), hemlock (Tsuga), balsam fir (Abies balsamea) and spruce (Picea) genera 

(Cumming, 2009).  It is in the Canadian Shield physiographic region, which has a 

generally thin soil layer and glacial tills over Precambrian bedrock and many waterbodies 

and wetlands within the drainage networks (Singer and Cheng 2002).  The study area is 

situated on the Algonquin dome topographic feature at an elevation of around 500 m 

above sea level (Cumming, 2009).  This is one of the highest regions in Ontario and 

results in lower temperatures relative to the surrounding area.  Monthly average 

temperatures range from −19.2 °C in January to 18.8 °C in July, and annual mean daily 

temperature for the year is 2 °C (Environment and Climate Change Canada, 2019).  The 
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region has an average of 90 frost-free days per year.  The study area is leeward of 

Georgian Bay, which influences the regional climate and results in lake-effect 

precipitation (Scott and Huff, 1996; Cumming, 2009).  Higher elevations and lake-effect 

precipitation result in greater precipitation compared to the surrounding region, totaling 

1,185 mm annually with 345 mm falling as snow.  Mean March snow depth from 1981 to 

2010 was 61 cm (Government of Canada, 2022).   

 

Figure 3.1:Location of study area within the context of Ontario (a) and Canada (b). 

3.2.2 Data 

3.2.2.1 Field data 

SWE was measured along linear transects using an ESC-30 gravimetric sampler 

in relatively flat areas to focus on the structural factors influencing forest-snow 

interaction (Goodison et al., 1987).  Seven measurements spaced 50 m apart were taken 

in each of the three forest cover types, for a total of 21 measurements on each survey 
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date.  Snow surveys were conducted over two winter seasons within coniferous, 

deciduous, and mixed wood forest types (Figure 3.2).  Surveys were done February to 

April to capture peak SWE with 10 surveys in 2016 and 4 in 2017 snow seasons.  

Snowmelt was calculated from transects sampled in mid to late April.  Snow 

measurements aggregated within each forest cover type are referred to as transect scale 

and represent a forest stand.  Individual measurements at each of the snow core locations 

are referred to as point scale snowpack.  Measurement sites were surveyed using a Nikon 

DTM-322 total station (Nikon, 2010).  Locations were tied to Ontario geodetic 

benchmarks using a Trimble real-time-kinetic (RTK) Global Positioning System (GPS) 

(Land Information Ontario, 2020).  Daily snow depth near the start of each of the three 

SWE transects was estimated from time-lapse cameras with snow rulers (Beaton et al., 

2019) and was used to assess snow accumulation and melt between surveys. 

 

Figure 3.2: Snow survey locations and land cover types. 

Upward facing hemispheric photos (HPs) of canopy were taken at each SWE 

measurement location (Figure 3.3) with a Nikon D7000 camera and a Sigma 4.5mm F2.8 

EX DC HSM circular fisheye lens on a leveled tripod.  HPs were taken during consistent 
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overcast conditions throughout late morning and early afternoon to minimize sun impacts 

including flares, shadows, and overexposure (Rich, 1990).  Use of HPs for measuring 

field-based canopy characteristics and relating them to snowpack metrics is a well-

established method (Morsdorf et al., 2006; Musselman et al., 2012; Zheng et al., 2018).  

Distance to the closest tree bole and DBH of the closest tree in each cardinal direction 

were taken at each measurement location. 

 

Figure 3.3: Hemispheric photos (left), LiDAR-derived canopy height model with 30 m 

buffer (middle) and South-Central Ontario Orthophoto (SCOOP) Photogrammetric Point 

Cloud (PPC) within a 30 m buffer (right) of the sample location at a predominantly 

coniferous stand (a, b, c) and a mixed wood stand (d, e, f).  Dots at the centroid of canopy 

height model and PPC represent measurement locations. 
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3.2.2.2 Remotely sensed data 

The South-Central Ontario Orthophoto Project (SCOOP) classified laser (LAS) and 

orthophoto data were used to quantify canopy cover.  SCOOP data were acquired by an 

imagery contractor using an ADS80 Leica digital camera mounted on an airplane in 

spring of 2013 during leaf-off conditions.  These data have a 20 cm resolution and 

geometric accuracy of 50 cm at 90% confidence (Figure 3.4).  Red (604-664 nm), green 

(533-587 nm), blue (420-492 nm) and near infrared (833-920 nm) spectral bands were 

captured (Leica Geosystems, 2011).  The Ontario Provincial Mapping Unit produced a 

50 cm resolution point cloud from the orthophotos (Provincial Mapping Unit, 2020).  

The Algonquin Park LiDAR data were used to characterize canopy heights and detect 

trees.  These data were acquired by an imagery contractor using a Leica SPL 100 

mounted on an airplane during the summer of 2019 during leaf-on conditions with a 50% 

overlap to capture a minimum of 25 points/m2 (I. Sinclair, personal communication, 

2020).  
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Figure 3.4: Orthophoto (left) and LiDAR-derived canopy height models (right) in a 

predominantly deciduous (a,b), coniferous (c,d) and mixed wood (e, f) stand. 

3.2.2.3 Climate data 

Inter-annual differences in climate and their effect on the forest structure-

snowpack relationships were assessed.  Temperature, precipitation, wind speed and 

relative humidity were measured at the Environment Canada Algonquin Park East Gate 

climate station (WMO ID 71581), 26 km east of the study area.  Climate data were 

summarized for seven-day melt periods in 2016 and 2017 and were used to qualitatively 

evaluate interannual differences in energy flux.  The melt period was from April 16th to 

April 22nd in 2016 and from April 7th to April 13th in 2017.  Precipitation phase is 
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controlled by the energy balance of the falling hydrometeor which is dependent on 

several atmospheric variables (Harder and Pomeroy, 2013).  Energy balance methods for 

determining precipitation phase are data intensive and temperature-based methods have 

been shown to provide reasonable estimates (Braun, 1991).  Precipitation was partitioned 

into rain or snow using the two-parameter linear method (Equation 3.1). 

 

𝛼𝑠 = 0.5 +  
𝑇𝑡𝑟𝑎𝑛𝑠 −  𝑇𝑎𝑣𝑒

∆𝑇
 

3.1 

where 𝑇𝑎𝑣𝑒 is the average daily temperature, 𝑇𝑡𝑟𝑎𝑛𝑠 is the rain/snow transition 

temperature, and ∆𝑇 is the range in air temperature along which the partitioning is 

applied to incoming precipitation.  Parameters from a hydrologic model of the Petawawa 

basin located 50 km northeast of the study area were used.  The model was calibrated to 

subbasin snow water equivalent and basin outlet discharge resulting in a 𝑇𝑡𝑟𝑎𝑛𝑠 and ∆𝑇 of 

-4.5 °C and 2.7 °C, respectively. 

The Modern-Era Retrospective Analysis, version 2 (MERRA-2) hourly 

shortwave irradiance is a National Aeronautics and Space Administration (NASA) 

generated atmospheric re-analysis product and was used to evaluate interannual 

differences in solar radiation reaching the canopy (Gelaro et al., 2017).  The product 

accounts for differences in radiation due to cloud cover.  MERRA-2 radiation data have 

been successfully used in energy balance based snow modelling and were shown to be a 

good estimate of shortwave radiation (Massmann, 2019). 
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3.2.2.4 Snowpack and forest metrics 

A list of all metrics and their definitions is provided in (Table 3.1).  Snowmelt 

rate (SMR) was calculated during the final stages of spring snowmelt as the difference in 

SWE between the last two sample dates where snow was observed (i.e. not snow free), 

divided by the number of days between measurements following equation 3.2 (Varhola et 

al., 2010a): 

SMR =  
SWE𝑖 −  SWE𝑓

P
  

3.2 

where SWEi and SWEf are initial and final SWE, and P is the number of intervening 

days.  A snowfall event was detected in the time-lapse camera derived snow depth data at 

the beginning of the melt period in 2017.  The event accumulation (5 cm in the 

coniferous stand, 10 cm in the deciduous and mixed stands) was added to the survey 

SWE.  A snow density of 0.1 g/cm3 was assumed following standard practice, given 

typical ranges of fresh snowfall density of 0.07 g/cm3 to 0.15 g/cm3 (Dingman, 2015).  

Analysis was conducted with and without the event compensation and the impacts were 

negligible.  Where the snow free date (SFdoy) was not recorded by the survey, SWE was 

extrapolated to an assumed snow free date based on the calculated melt rate.   

Metrics describing canopy structure (height and cover) and tree bole 

characteristics (distance to bole and bole diameter) were calculated within a 30 m circular 

trap around each sample point.  Trap size is the area around the sample location where a 

metric is assumed to affect snowpack (Lovell et al., 2003; Morsdorf et al., 2006).  Within 

the context of HPs the trap size is the assumed distance the camera can “see” and is 

derived from literature or determined through calibration (Lovell et al., 2003).  Influence 
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of trap size is dependent on heterogeneity of the forest structure surrounding the 

measurement location (Morsdorf et al., 2006).  Correlations between forest and 

snowpack metrics for trap sizes from 5 to 60 m were calculated and a circular trap with a 

30 m radius (consistent with values found in the literature e.g. Moeser et al., 2014) was 

found to be optimal, although relationships were generally insensitive to changes in trap 

size.   

Table 3.1 Data source, abbreviation and description of calculated snow and forest 

metrics. 

 

Gap fraction (GF) is the ratio of sky to vegetation pixels across concentric circles 

from a specified angle of view from the zenith toward the horizon (Varhola and Coops, 

2013).  HPs were processed using R Hemiphot to calculate gap fraction at each site 

across zenith angles from 0 to 90° (R Development Core Team, 2011; ter Steege, 2018).  

Data Source Abbreviation Description [unit] 

Snow Measurement SWEpeak Maximum SWE within each year [mm] 

PEAKdoy Maximum SWE day of year for each year  

SMR Snowmelt rate [mm day-1] 

  SFdoy Snow free day of year  

Forest Measurements GF55 

Hemispheric photo derived gap fraction at a 

55-degree zenith angle  [sky pixels/total 

pixels] 

  DTBfield Distance to closest tree bole [m] 

  DBHmax 

Maximum diameter at breast height within 5 m 

of site [m] 

Photogrammetric Point Cloud PGRNDPPC 

Percentage of points that reach the ground 

[ground returns/total returns] 

LiDAR Point Cloud zmaxLiDAR Maximum point cloud heights [m] 

  zmeanLiDAR Mean of point cloud heights [m] 

  zsdLiDAR Standard deviation of point cloud heights [m] 

  DTBLiDAR Distance to closest tree bole [m] 

Orthophoto NDVI Normalized Difference Vegetation Index 

[dimensionless] 
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Moeser et al. (2014) compared the strength of the relationship between HP and LiDAR-

derived canopy closure across zenith angles from 30° to 90° and found them to be 

insensitive to zenith angle, especially at lower trap sizes.  López-Moreno and Latron, 

(2008) found zenith angles between 35° and 55° were relevant to maximum SWE with 

55° showing the strongest correlation.  Zenith angles from 0° to 90° were tested by 

correlating HP GF to PGRNDSCOOP (the ratio of PPC ground returns to total returns) and 

HP GF to snow metrics.  The optimal zenith angle was 55°; therefore, GFs were 

calculated from cumulative field of view up to a zenith angle of 55° (GF55). 

PGRNDPPC was calculated from the leaf-off SCOOP PPC as the ratio of 

photogrammetric points that reach the ground, similar to the forest cover (fCover) metric 

used to describe canopy-snowpack relationships in several previous studies (Morsdorf et 

al., 2006; Solberg et al., 2009; Solberg, 2010; Moeser et al., 2014).  The Cartesian 

method was used as it yielded consistent and accurate results in previous studies when 

compared to coordinate transformation (Morsdorf et al., 2006; Essery et al., 2008; 

Solberg et al., 2009).  For each measurement location, the range of PPC heights was 

divided into 10 equal intervals and the percentage of points reaching each interval was 

calculated to evaluate the relationship between snowpack and forest vertical structure 

(Woods et al., 2008).  There were no improvements in correlations between PPC height 

deciles and snowpack metrics compared to PGRNDPPC, so they were not included in the 

analysis.  Tree heights were calculated from the leaf-on LiDAR point cloud by 

subtracting the height of points classified as vegetation from LiDAR derived bare earth 

(Varhola et al., 2010a).  Non-ground points were filtered and the maximum, mean, and 

standard deviation of tree heights were calculated within each circular trap.  Both 
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SCOOP PPC and LiDAR-derived point clouds were processed using the R lidR package 

(Rousse and Auty, 2020).  PPC-derived tree heights were evaluated but the leaf-off point 

cloud was unable to resolve deciduous tree heights, so these metrics were omitted from 

further analysis. 

The Normalized Difference Vegetation Index (NDVI; equation 3.3) proposed by 

Rouse et al. (1973) has been used to describe forest structure for snow hydrology 

applications (Azar et al., 2008; Essery et al., 2008; Varhola and Coops, 2013).  NDVI 

derived from orthophotography approximates values calculated from satellite data 

(Erlandsson et al., 2019).  The Normalized Difference Vegetation Index (NDVI; equation 

3.3) was calculated from the SCOOP imagery:   

 NDVI =  
NIR − Red

NIR + Red
  

3.3 

where NIR and Red represent reflectance in the near infrared and red bands respectively.  

Additional spectral metrics included in Varhola and Coops (2013), such as Enhanced 

Vegetation Index and Green-Red Vegetation Index, were also tested but were statistically 

redundant and thus were not included in the analysis. 

Distance to the closest tree bole in each cardinal direction was measured in the 

field (DTBfield).  Trees with smaller boles (< 20 cm DBH) were not measured.  An area 

with several boles smaller than 20 cm DBH will not be captured by the DTBfield metric 

but would influence snow accumulation and melt.  Measurement locations in this study 

were generally not characterized by small dense trees, justifying use of the 20 cm DBH 

threshold.  Directional DTB did not produce interpretable results so minimum DTB at 

each site was used as a metric for distance from tree boles.  Point cloud data can be used 
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to detect individual trees (Zhen et al., 2016) and have been used to calculate DTB for 

evaluating forest-snowpack relationships (Zheng et al., 2018).  The highest point of each 

crown is typically located near the tree’s center and was used as a proxy for tree bole 

location (Lu et al., 2014).  In stands affected by wind damage, treetops may be displaced 

several meters off of the tree trunk (Lu et al., 2014; Zhen et al., 2016).  The study area 

forests were relatively unaffected by strong wind damage, so the approximation was 

considered valid.  The lidR R package was used to detect treetops (Rousse and Auty, 

2020) using a local maxima filter algorithm as per Popescu and Wynne, (2004).  The 

detected treetops were used to estimate the distance to the nearest tree bole from the 

LiDAR data (DTBLiDAR). 

DBH of trees in each cardinal direction within 10 m of the snow sample locations 

were measured.  These directional data did not produce meaningful results in this study 

and consequently the DBH data were summarized as the maximum value at each 

measurement location. 

Statistical differences in mean transect forest metrics were calculated to evaluate 

characteristics driving differences in mean transect snowpack metrics across forest 

stands.  Differences in mean transect snowpack metrics were calculated to evaluate forest 

effects on snowpack as this scale.  Correlation between forest metrics at each 

measurement point was calculated to validate remotely sensed metrics with field 

estimates and to highlight colinear variables.  Forest metrics and snowpack variables 

were correlated at each measurement point to evaluate forest-snowpack relationships at 

this scale.  The Shapiro Wilks test (Shapiro and Wilk, 1965) was used to determine if 

distributions were normal and the Levene’s test (Levene, 1960) was used to assess 
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homogeneity of variance.   Tukey Honest Significant Difference (Tukey, 1949) tests 

were used for determining pairwise differences for parametric data and Dunn’s test 

(Dunn, 1964) was used for non-parametric data.  Pearson’s correlation coefficient (r) was 

calculated to evaluate relationships between forest metrics and snowpack variables at the 

point scale (Table 3.1).  An r  0.65 was considered a moderate to strong correlation, ≥ 

0.45 r < 0.65 a weak to moderate correlation and < 0.45 was considered uncorrelated.  

Correlations were considered significant where p < 0.05.  A Bonferroni correction was 

applied given the large number of comparisons. 

3.3 Results 

3.3.1 Interannual climate differences 

Figure 3.5 shows temperature and precipitation over both winter seasons for the 

purpose of qualitatively identifying climate conditions that may influence peak SWE 

metrics.  Peak SWE date ranged from March 6th to April 17th with a mean of March 22nd 

in 2016 and ranged from January 19th to April 3rd with a mean of March 6th in 2017 

(Figure 3.5).  Daily maximum temperatures rose above 0 °C several times throughout the 

2016 and 2017 winter seasons.  Positive temperatures coincided with precipitation prior 

to peak SWE occurrences likely resulting in rain on snow and potential melt events 

(Figure 3.5).   
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Figure 3.5: Daily precipitation (bar), daily minimum and maximum air temperature 

range (grey ribbon), mean peak date (dashed vertical line), minimum and maximum peak 

dates (solid vertical line) for 2016 (a) and 2017 (b). 

Figure 3.6 shows climate variables for the seven-day melt period analyzed to 

qualitatively relate the climate conditions to the snow energy balance.  Mean solar 

irradiance for the analyzed period was larger in 2016 (240 W/m2) than 2017 (194 W/m2) 

(Figure 3.6).  More days in 2017 had attenuated solar irradiance compared to 2016.  

Diurnal temperature fluctuations were more distinct and nocturnal sub-zero temperatures 

were more frequent during melt in 2016 than 2017 (Figure 3.6).  Wind speeds were 

variable in both years, but mean values were slightly higher in 2017 than 2016.  Mean 

relative humidity was larger in 2017 than 2016 and there were two rain events in 2017 

where relative humidity remained around 75% for several days.  There was little rain in 

2016 (2.9 mm) but a substantial amount in 2017 (66.5 mm).  There was negligible 

snowfall in both years (Figure 3.6).   
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Figure 3.6: Climate data for 2016 (left) and 2017 (right).  Hourly shortwave irradiance 

(a, b), hourly air temperature (c, d), hourly wind speed (e, f), hourly relative humidity (g, 

h) and daily precipitation (i, j).  All precipitation during this period was partitioned into 

rain.  Dotted horizontal lines are melt-period means.  
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3.3.2 Forest metrics 

GF55 ranged from 14% open to 80% open and mean transect values were much 

smaller in the coniferous stand than the deciduous stand (statistically significant) with a 

greater range of values in the mixed wood stand (Figure 3.7).  PGRNDPPC followed a 

similar pattern to GF55 but with less variability in the mixed forest.  Mean transect 

coniferous versus deciduous PGRNDPPC differences and deciduous versus mixed forest 

PGRNDPPC differences were significant.  Mean transect NDVI was much smaller in the 

deciduous stand than coniferous and mixed stands and these differences were statistically 

significant.  zmeanLiDAR ranged from 6 m to 18 m with smaller mean and maximum tree 

heights in the coniferous stand than mixed and deciduous stands.  All mean transect 

pairwise differences for zmeanLiDAR were statistically significant.  Forest stands had 

similar variability in tree heights (zsdLiDAR).  DTBfield ranged from 0.5 m to 3.8 m and was 

smaller in the coniferous stand than deciduous and mixed stands while DTBLiDAR was 

similar across forest stands and larger than DTBfield.  DBHmax ranged from 5 cm to 65 cm 

and was smaller in the coniferous stand than the deciduous and mixed stands. Mean 

transect differences across forest stands for DTBfield,, DTBLiDAR and DBHmax were not 

significant. 
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Figure 3.7: Forest metrics within the coniferous (CON), deciduous (DEC) and mixed 

wood forest (MIX).  GF55 is the hemispheric photo derived gap fraction at a 55 degree 

zenith angle; PGRNDPPC is the percentage of photogrammetric cloud points that reach the 

ground; NDVI is the Normalized Difference Vegetation Index; zmaxLiDAR zmeanLiDAR, 

and zsdLiDAR are the maximum, mean and standard deviation of LiDAR point cloud 

heights;  DTBfield and DTBLiDAR are the distance to closest tree bole derived from field-

based measurements and LiDAR, respectively; DBHmax is the field-based maximum 

diameter at breast height within 5 m of the measurement location.  The boxes represent 

the 25th and 75th percentiles of the distributions, the horizontal lines in the boxes 

represent the median and the dots represent outliers. 
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At the point scale, there were moderate to strong significant correlations between 

canopy cover metrics (GF55, NDVI, PGRNDPPC).  Strong significant correlations 

between zmeanLiDAR and NDVI, and zmeanLiDAR and PGRNDPPC were found.  There was 

insignificant moderate correlation between zmeanLiDAR and GF55.  DTBfield and DTBLiDAR 

were uncorrelated (Table 3.2). 

Table 3.2: Correlation matrix of forest structure metrics.  GF55 is the hemispheric photo 

derived gap fraction at a 55 degree zenith angle; PGRNDPPC is the percentage of 

photogrammetric cloud points that reach the ground; NDVI is the Normalized Difference 

Vegetation Index; zmaxLiDAR zmeanLiDAR, and zsdLiDAR are the maximum, mean and 

standard deviation of LiDAR point cloud heights;  DTBfield and DTBLiDAR are the distance 

to closest tree bole derived from field-based measurement and LiDAR, respectively; 

DBHmax is the field-based maximum diameter at breast height within 5 m of the 

measurement location.   

  DBHmax DTBfield PGRNDPPC zmaxLiDAR zmeanLiDAR zsdLiDAR GF55 NDVI DTBLiDAR 

DBHmax 1                 

DTBfield 0.74 1               

PGRNDPPC 0.21 0.2 1             

zmaxLiDAR 0.14 0.09 -0.11 1           

zmeanLiDAR 0.48 0.29 0.72 0.23 1         

zsdLiDAR 0.07 0.12 -0.04 -0.22 -0.02 1       

GF55 0.2 0.31 0.77 0.05 0.52 0.03 1     

NDVI -0.14 -0.14 -0.98 0.17 -0.68 0.01 -0.78 1   

DTBLiDAR -0.11 0.16 0.08 0.03 0.27 0.01 -0.08 -0.04 1 

bold if r  ≥ 0.65; highlighted if p < 0.0014             
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3.3.3 Snowpack versus forest metrics 

Mean SWEpeak averaged across all forest cover types was larger in 2017 than 2016.  

Coniferous SWEpeak was generally larger than for deciduous and mixed stands in 2016 

(transect mean differences not significant) but not 2017 (Figure 3.8).  Peakdoy mostly 

occurred in March but ranged from January to mid-April and was later in 2016 than 

2017.  Peakdoy was generally later in the coniferous versus the deciduous and mixed 

forests, but the differences in transect means were not statistically significant (Figure 

3.8).   

SMR in 2016 was substantially larger than 2017.  In 2016, the coniferous stand had 

a smaller mean transect SMR (statistically significant) compared to the deciduous stand 

and smaller, but not significant mean transect SMR compared to the mixed forest.  Mean 

transect SMR in the coniferous stand was smaller than that for the deciduous stand in 

2017 (not significant) and the SMR in the mixed forest was highly variable (Figure 3.8).  

SFdoy ranged from late April to early May and on average was slightly later in 2016 than 

2017.  Mean transect SFdoy in the coniferous stand was later than for the deciduous stand 

in 2016 (statistically significant).  Mean transect SFdoy in the coniferous stand was later 

than the mixed forest in the 2016 and 2017 but the differences where not statistically 

significant (Figure 3.8).   
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Figure 3.8: Range of snowpack metrics within the coniferous (CON), deciduous (DEC) 

and mixed wood forest (MIX) in 2016 and 2017 snow seasons.  SWEpeak and  PEAKdoy 

are the maximum SWE magnitude and timing, respectively; SMR is the snowmelt rate 

and SFdoy  is the snow free day of year.  The boxes represent the 25th and 75th percentiles 

of the distributions, the horizontal lines in the boxes represent the median and the dots 

represent outliers.  The asterisk represents the annual mean summarized across all forest 

types. 
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At the point scale, zmeanLiDAR had a significant, negative correlation with SFdoy 

2016.  SWEpeak and PEAKdoy were generally uncorrelated with forest metrics (Table 3.3; 

Figure 3.9).  A significant correlation between PEAKdoy and DTBfield in 2016 indicated 

that SWE measurements closer to tree boles had a later peak SWE in that year.  Weak to 

moderate but statistically insignificant negative correlations between DBHmax and 

SWEpeak in both years and PEAKdoy in 2016 suggests a weak relationship between 

measurement locations with larger DBH and a smaller and later peak SWE (Table 3.3; 

Figure 3.9).  Moderate to strong significant relationships between SMR, SFdoy and forest 

structure metrics (PGRNDPPC, GF55, NDVI) were observed in 2016 but not 2017 

indicating sites with open canopies had larger melt rates and earlier snow free dates 

(Table 3.3; Figure 3.9).   
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Table 3.3: Correlation coefficients for relationships between snowpack and forest 

structure metrics.  GF55 is the hemispheric photo derived gap fraction at a 55 degree 

zenith angle; PGRNDPPC is the percentage of photogrammetric cloud points that reach the 

ground; NDVI is the Normalized Difference Vegetation Index; zmaxLiDAR zmeanLiDAR, 

and zsdLiDAR are the maximum, mean and standard deviation of LiDAR point cloud 

heights;  DTBfield and DTBLiDAR are the distance to closest tree bole derived from field-

based measurements and LiDAR, respectively; DBHmax is the field-based maximum 

diameter at breast height within 5 m of the measurement location; SWEpeak and  PEAKdoy 

are the maximum SWE magnitude and timing, respectively; SMR is the snowmelt rate 

and SFdoy  is the snow free day of year.     

  SMR SFdoy SWEpeak PEAKdoy 

  2016 2017 2016 2017 2016 2017 2016 2017 

DBHmax 0.18 -0.21 -0.53 -0.06 -0.54 -0.44 -0.55 -0.06 

DTBfield 0.18 -0.1 -0.42 -0.01 -0.3 -0.24 -0.69 0.09 

PGRNDPPC 0.65 0.1 -0.57 0.15 -0.09 0.05 -0.29 0.03 

zmaxLiDAR 0.25 0.07 -0.19 -0.03 -0.09 0.26 -0.16 0.21 

zmeanLiDAR 0.58 0.06 -0.69 -0.1 -0.4 -0.07 -0.41 -0.03 

zsdLiDAR -0.01 -0.06 0.11 0.2 0.05 -0.23 -0.26 -0.17 

GF55 0.69 0.35 -0.65 -0.05 -0.28 0.08 -0.46 -0.23 

NDVI -0.66 -0.13 0.58 -0.1 0.07 0.02 0.22 0.11 

DTBLiDAR 0 -0.12 0.01 0.02 0.19 -0.1 -0.07 0.19 

bold if r >=  ±0.65; highlighted if p < 0.000694       
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Figure 3.9: Scatterplots and statistically significant linear relationships (lines) between 

snowpack and forest structure metrics for different forest types in 2016.  SWEpeak and  

PEAKdoy are the maximum SWE magnitude and timing, respectively; SMR is the 

snowmelt rate; DTBfield is the distance to the closest tree bole derived from field-based 

measurements; DBHmax is the field-based maximum diameter at breast height within 5 m 

of the measurement location; NDVI is the Normalized Difference Vegetation Index;  

GF55 is the hemispheric photo derived gap fraction at a 55-degree zenith angle.  
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3.4 Discussion 

3.4.1 Field-based verification of remotely sensed forest metrics 

Remotely sensed canopy cover metrics agreed with field-based measurements 

providing confidence in the PPC- and orthophoto-derived estimates.  The strong 

correlations found in this study (GF55 versus PGRNDPPC = 0.77, GF55 versus NDVI = -

0.78) are comparable to those from the literature.  Morsdorf et al. (2006) and Moeser et 

al. (2014) compared HP estimates of canopy cover to LiDAR-derived estimates 

calculated as the ratio of canopy to total returns (similar to PGRNDPPC metric) and both 

found a correlation coefficient of 0.85.  Contrasts between field and remotely sensed 

canopy estimates were attributed to differences in viewing geometry.  Downward looking 

LiDAR and PPCs are biased towards detecting elements in the upper canopy. 

Conversely, the upward looking HPs will be biased towards detecting understory and tree 

stems (Morsdorf et al., 2006; Varhola et al., 2012).  Contrary to the findings of Smith et 

al. (2009) relationships between field-derived and remotely sensed canopy closure were 

not improved using 3D (PGRNDPPC) versus 2D data (NDVI).  This may be due to 

differences in study area forest structure and methods between the present study and that 

work (Smith et al., 2009).    

Lack of correlation between field and remote sensing derived DTB estimates 

indicates that point cloud tree delineation could not be used to derive an accurate 

representation of this metric within these sites.  Generally, tree detection is more 

successful in softwood forests of homogeneous age and spacing (Zhen et al., 2016), 

attributes not characteristic of this study area.  Integration of spectral data with point 
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cloud data may improve the accuracy of tree detection and should be considered in future 

studies (Breidenbach et al., 2010; Heinzel and Koch, 2012).   

3.4.2 Correlation of snowpack and forest metrics 

 Significant differences in transect scale snowmelt rate and timing across forest 

types indicate that forests are an important driver of snow process at this scale.  

Differences in canopy cover metrics across forest stands were found to drive this 

difference given their statistically significant difference across forest types.  Hydrologic 

models developed in this region should consider forest cover in their discretization to 

obtain an accurate representation of melt.  Forest cover discretization may be less 

important for applications focused on modelling peak SWE as significant differences 

across forest type were not found. 

Significant relationships between SMR, SFdoy and canopy closure metrics (GF55, 

PGRNDPPC and NDVI) at the point scale are consistent with previous observations of 

smaller melt rates in areas with denser canopies and more canopy shading (Metcalfe and 

Buttle, 1995, 1998; Davis et al., 1997; Varhola et al., 2014).  The significant, negative 

relationship between tree height and snow free date is counter-intuitive and was 

attributed to the clustering of smaller trees in the closed canopy coniferous stand and 

larger trees in the open deciduous stands as opposed to effects of the tree height.   

Differential forest effects on SMR and SFdoy were observed between 2016 and 

2017.  Inter-annual differences in canopy-snowmelt relationships may be due to contrasts 

in climate conditions and resulting energy flux to the snowpack which includes net solar 

radiation, net longwave radiation, turbulent fluxes (latent and sensible heat), ground heat, 

and energy delivered to the snowpack by rainfall.  Net radiation is generally the most 
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important component of the energy balance in forests followed by turbulent heat flux, 

though the relative importance of these drivers can be highly variable (Kuusisto, 1986).  

Turbulent fluxes are a function of wind speed, air temperature and relative humidity.  

Warm, humid conditions result in the transfer of latent heat to the snowpack, increasing 

with larger wind speeds (known as condensation melt).  These conditions are less 

influenced by slope, aspect, and forest cover than radiation-driven melt (Dingman, 2015). 

Larger shortwave irradiance in 2016 possibly promoted more radiation-driven melt, 

while more rain and higher humidity, in 2017 may have increased condensation melt.  

Inter-annual difference in the relationship between SMR, SFdoy and canopy structure may 

reflect greater canopy control on melt variability during radiation-driven melt in 2016 

compared with smaller canopy influences on the larger turbulent flux contributions to 

melt in 2017.  Nocturnal energy losses may have been greater during melt in 2016 due to 

the higher frequency of night-time sub-zero temperatures.  Such losses are regulated by 

forests through reduction of wind speed and associated turbulent fluxes and longwave 

radiation fluxes from the canopy to the snowpack (Dingman 2015).  These differences in 

nocturnal energy losses in 2016 relative to 2017 may have increased variations in SMR 

across sites and improved the forest-SMR relationship compared to 2017 with less 

frequent sub-zero temperatures.  Metcalfe and Buttle (1998) found the form of the 

relationship between GF and melt varied inter-annually depending on meteorological 

conditions primarily due to canopy influences on penetration of solar radiation, turbulent 

fluxes, and nocturnal energy losses from the snowpack.  Musselman et al. (2012) found 

that the relationship between canopy metrics and SMR was heavily dependent on 

contrasts in seasonal meteorology between years (e.g., differences in the degree of cloud 
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cover), which supports our interpretations.  The magnitude of SMR was substantially 

larger in 2016 than 2017.  The effect of forest structure on SMR may be more 

pronounced at higher melt rate magnitudes. 

The poor relationship between canopy and peak SWE metrics found here is not 

consistent with some previous studies.  López-Moreno and Latron (2008) found an r of 

0.94 between HP-derived GF and SWE max at a 55° zenith angle, while Varhola et al., 

(2010a) found correlations between peak SWE and field and LiDAR-derived forest 

structure metrics including LiDAR-derived mean height.  Previous findings of strong 

peak SWE, canopy cover relationships were obtained in environments with a more 

consistent accumulation period and fewer melt events prior to peak SWE. For example, 

López-Moreno and Latron (2008) conducted their study in an environment where annual 

SWE can reach 600 mm, over three times the typical SWE of the current study area.  

Open areas accumulate more snow due to less canopy interception, but also ablate snow 

more rapidly due to less canopy shading, reduced attenuation of winds and increased 

advection.  As a result, the relationship between peak SWE and canopy during winters 

with more intermittent melt may be confounded, such as occurred here.  Snow event air 

temperature, the intensity, frequency and duration of snow events and redistribution by 

wind can also complicate the relationship between canopy structure, interception, snow 

accumulation and peak SWE.  Winters with many large snowfall events exceeding 

canopy interception capacities may result in poor relationships between forests and snow 

accumulation (Boon, 2007), which may have also contributed to the lack of correlation. 

The observation that close, larger diameter trees were associated with smaller and 

later peak SWE is consistent with both previous literature and our understanding of the 
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relevant physical processes.  Tree boles may influence solar shading resulting in reduced 

melt, and later peak SWE.  Snow redistribution and longwave radiation to the snowpack 

may be influenced by tree boles, affecting peak SWE.  Musselman et al. (2008) found 

snow depth peak was strongly influenced by the presence of tree boles and that depth 

increased non-linearly outward from the boles.  Varhola et al. (2010a) found that DBH 

was inversely related to peak SWE.   

Moderate to strong and significant correlations between field (GF55) and remotely 

sensed metrics (PGRNDPPC and NDVI) of forest structure indicate that SCOOP PPC data 

or digital orthophotography can be used to derive an adequate representation of canopy 

openness in this environment.  Correlations between PPC- and orthophoto-derived 

canopy metrics and snowpack were comparable within this study.  PPC data are more 

complex and computationally intensive to process compared to orthophotography and 

may not provide an advantage over using less complex orthophoto-derived spectral 

metrics for the applications examined here.   However, spectral methods of deriving 

canopy closure are sensitive to subcanopy herbaceous evergreen vegetation (Smith et al., 

2009).  In study environments where this is present, 3D datasets may be superior at 

resolving canopy closure.  This distinction between ground cover and canopy may have 

important implications for snow processes warranting the use of 3D forest structure 

metrics for describing forest-snowpack relationships in this type of environment. 

3.4.3 Limitations 

Forest gaps and distance to canopy edge correlate well with snowpack 

characteristics (Broxton et al., 2015; Moeser et al., 2015a; Huerta et al., 2019; Mazzotti 

et al., 2019) but were not included within this study.  This analysis focused on forest 
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structure factors and does not account for the contributions of slope and aspect to SWE 

and melt variability.  While these factors were controlled for in the study design, they 

may still influence melt.  Changes in forest structure between the time of the snow 

measurements (2016 and 2017) and the data acquisition (2013 SCOOP, 2019 LiDAR) 

may have impacted the accuracy of relationships presented here, although the differences 

between field and remotely sensed data acquisition timing are within the range of similar 

studies (Morsdorf et al., 2006; Moeser et al., 2014, 2015b).  The strength of relationships 

between forest structure and snowpack characteristics has been found to vary based on 

the number of sample locations as lower sample sizes may not capture the range of 

variability of forest structure and snow metrics.  This study was conducted over a limited 

number of study years and study locations, so conclusions may not be broadly applicable.  

3.5 Conclusion 

Relationships between forest structure and snowpack characteristics were examined 

over two winters in the Great Lakes-St. Lawrence Forest Region of Ontario using field 

and remotely sensed estimates of the tree canopy and boles.  Comparisons between field 

and remotely sensed forest structure and peak SWE, peak SWE timing, snowmelt rate 

and snow free date were made.  Orthophotography-derived 2D spectral metrics and 

photogrammetric point cloud 3D metrics correlated well with field estimates of canopy 

density derived from hemispheric photos while tree bole metrics were not successfully 

derived from LiDAR data.  Significant differences in transect scale snowmelt rate and 

timing across forest types in 2016 indicate that forests can be a significant driver of snow 

process at this scale.  The differences in melt across forest type suggest semi-distributed 

hydrologic models in this region should consider inclusion of forest cover in model 
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discretization to obtain an accurate representation of melt.  Moderate to strong significant 

correlations were found at the point scale between snowmelt rate, snow free date and 

canopy density metrics derived from both field and remotely sensed data.  Inter-annual 

differences in the snowmelt-forest structure relationship were attributed to contrasts in 

seasonal weather between years where canopy controlled solar radiation likely dominated 

melt in 2016 versus more spatially uniform turbulent flux-driven melt in 2017.  Canopy 

metrics were not correlated with peak SWE and peak SWE timing, whereas tree bole 

characteristics were.  This is contrary to several previous studies that found stronger 

correlations between peak SWE and canopy structure and may be explained by a more 

consistent accumulation period and less mid-winter melt in those studies.  Three-

dimensional forest structure data derived from photogrammetric point clouds, and 

LiDAR data and simple orthophoto-derived spectral metrics were highly colinear.  This 

was attributed to the characteristics of this study area and may not be generally 

applicable.   

This study confirmed that widely available remotely sensed data with a broad 

coverage and frequent acquisition can be used to describe forest-snowpack relationships 

in Great Lakes-St. Lawrence Forest Region mixed wood, hardwood, and coniferous 

stands.  The successful application of Ontario Imagery Program spectral and point cloud 

data should encourage future uses of these data to explore forest-snowpack relationships 

in other regions or investigate the impacts of forest change on snowpack as the imagery 

are acquired every five years.  Future research should evaluate the implications of 

climate variability on forest-snowpack relationships at more study locations and across a 

greater range of forest structure and climate conditions.   
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Abstract 

Accuracy of the Copernicus snow water equivalent (SWE) product and the 

impact of SWE calibration and assimilation on modelled SWE and streamflow was 

evaluated in this study.  Daily snowpack measurements were made at 12 locations from 

2016 to 2019 across a 4104 km² mixed-forest basin in the Great Lakes region of central 

Ontario, Canada.  Daily SWE from these sites was used to calibrate a baseline model 

previously calibrated to lake levels and basin outflow discharge.  Daily basin average 

SWE was calculated from the measured data and compared to bias corrected Copernicus 

SWE.  Bias corrected Copernicus SWE was then assimilated into the model calibrated to 

subbasin SWE. 

The bias corrected Copernicus product agreed well with measured data and 

provided a good estimate of mean basin SWE.  This study demonstrates that the product 

shows promise for hydrology applications including flood forecasting and water 

management within the study region. 

Calibration to subbasin SWE substantially improved the basin scale SWE 

estimate, demonstrating the value of including SWE in a multi-objective calibration 

formulation.  Assimilating Copernicus SWE did not improve SWE performance 

compared to the model calibrated with subbasin SWE, indicating that assimilation of 

Copernicus SWE may provide little advantage over a well calibrated model.  However, 

when subbasin SWE is not available for model calibration, Copernicus assimilation will 

likely result in better performance of modelled SWE. 

All models had similar streamflow performance.  This demonstrates that basin 

outlet streamflow can be accurately estimated using a model with a poor representation 
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of distributed SWE.  This may be sufficient for applications where estimating flow is the 

primary water management objective.  However, in applications where understanding the 

physical processes of snow accumulation, melt and streamflow generation are important, 

such as assessing the impact of climate change on water resources, accurate 

representations of SWE are required and can be improved via multi-objective calibration 

or data assimilation, as demonstrated in this study.   
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4.1 Introduction 

Knowledge of the temporal and spatial variability of snow water equivalent (SWE) is 

important for understanding the Earth’s water and energy balance, ecosystem function, 

and hydrologic processes (Barnett et al., 2005; Riggs and Hall, 2011; Kinar and 

Pomeroy, 2015).  Assessing flood risk, hydropower potential, aquatic ecosystems, water 

supply and the impacts of climate change on water resources requires accurate estimates 

of streamflow (Barnett et al., 2005; Beaton and Bradford, 2013; Musselman et al., 2018).  

Hydrologic models are valuable tools for estimating SWE and streamflow and can 

facilitate planning, prediction and decision making (Luce et al., 1998; Jenicek et al., 

2016; Hammond et al., 2018).   

SWE is typically a state variable within hydrologic models that can be improved by 

calibrating to observed snowpack measurements.  Commonly applied optimization 

algorithms for automatic calibration of hydrologic models include Simulated Annealing, 

Genetic Algorithms, Shuffled Complex Evolution, Particle Swarm Optimization and 

Dynamically Dimensioned Search algorithms (DDS) (Kirkpatrick et al., 1983; Duan et 

al., 1993; Kennedy and Eberhart, 1995; Tolson and Shoemaker, 2007; Katoch et al., 

2021).  DSS is a simple and efficient optimization method that searches for an acceptable 

solution using one tuning parameter and a user defined number of function evaluations.  

DDS has been shown to perform well relative to other optimization algorithms when 

applied to hydrologic models (Tolson and Shoemaker, 2007; Arsenault et al., 2014; Yen 

et al., 2015).  Multi-objective calibration is carried out when a model is fit to two or more 

variables, and when formulated as a multi-objective optimization problem, the resulting 

solution is a set of non-dominated, Pareto-optimal solutions where one objective function 
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value cannot be improved without degrading another.  The Pareto Archived Dynamically 

Dimensioned Search (PA-DDS) algorithm is a multi-objective version of DDS and has 

been successfully applied within many hydrologic modelling studies (e.g. Asadzadeh and 

Tolson, 2012, 2013; Yang et al., 2017; He et al., 2020). 

Multi-objective model calibration has been used to constrain hydrologic models with 

remotely sensed snow covered area (SCA) and discharge observations (e.g. Parajka et al., 

2007; Parajka and Blöschl, 2008; Finger et al., 2011, 2015; Franz and Karsten, 2013; 

Duethmann et al., 2014; Bennett et al., 2019; Riboust et al., 2019).  Bennett et al. (2019) 

calibrated a SNOW-17 model to MODIS SCA in five basins and found improved snow 

depletion timing but only moderate improvement in streamflow skill.  They found basins 

with fewer streamflow observations had larger increases in simulated streamflow 

performance.  Finger et al. (2015) tested calibration of the HBV-light model using glacier 

mass balance, SCA and streamflow and found that calibration only to streamflow 

resulted in implausible melt rates.  They also suggested that calibration to internal state 

variables may be more important than complexity of process representation and spatial 

discretization for developing realistic models.   

Fewer studies have incorporated SWE into multi-objective calibration (Gao et al., 

2017; Tuo et al., 2018; Nemri and Kinnard, 2020).  Nemri and Kinnard, (2020) evaluated 

four calibration strategies using a combination of streamflow and SWE in 12 subbasins 

across southern Quebec, Canada.  Multi-objective calibration to SWE and streamflow 

improved modelled SWE without significantly degrading simulated streamflow.  They 

found differences in performance across subbasins related to spatial representativeness of 

point snow measurements, where calibrating to observations in forests did not effectively 
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define snow parameters in agricultural landscapes.  Tuo et al. (2018) tested single and 

multi-objective calibration to snow observations and discharge using the Soil and Water 

Assessment Tool in the Italian Alps.  A more accurate set of model parameters was 

identified using multi-objective calibration resulting in better model performance across 

elevation bands, SWE magnitudes and over both calibration and validation periods.   

Another method of improving SWE performance in hydrologic models is 

assimilation of measured or modelled and remotely sensed SWE products.  Widely used 

data assimilation methods include direct insertion, Kalman and particle filtering 

(Andreadis and Lettenmaier, 2006; Vuyovich and Jacobs, 2011; Fletcher et al., 2012; 

Magnusson et al., 2014, 2017; Smyth et al., 2020).  With direct insertion model states are 

replaced with observed values (Liston et al., 1999; Fletcher et al., 2012).  This method is 

limited as it ignores observation and model uncertainties and can lead to extreme 

corrections in the output (Magnusson et al., 2017).  Filter methods explicitly address 

model and observation uncertainty by perturbing model forcings and/or parameters and 

generating a probability density of the system state variables.  The ensemble of 

simulations have unique parameter sets for each assimilated value corrected towards 

observed data providing potential advantages over standard single-set calibration (Smyth 

et al., 2019).  Particle filtering is more flexible as it does not require a parametric form 

like the Kalman filter (Moradkhani, 2008; Van Leeuwen, 2009) and was found to predict 

SWE better than ensemble Kalman filtering (Leisenring and Moradkhani, 2011) .  An 

ensemble of model simulations (particles) is generated for each time-step.  These are then 

filtered based on a probabilistic deviation from the observed state variable value and 

propagated forward to the next time-step (Moradkhani et al., 2005).   
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Many studies have investigated assimilation of SCA into hydrologic models to 

improve simulations for practical applications and to explore processes (e.g. Clark et al., 

2006; Udnæs et al., 2007; Roy et al., 2010; Yatheendradas et al., 2012; Liu et al., 2013; 

Thirel, Salamon, Burek, 2015; Stigter et al., 2017).  Assimilation of SCA is limited when 

SWE is a variable of interest and can be restricted to late season melt when bare ground 

is exposed.  Accuracy of SCA assimilation is also limited by the lag time between 

snowmelt and SCA depletion (Clark et al., 2006).  Several studies have assimilated SWE 

observations, SWE products or a combination of both into hydrologic models (e.g. 

Vuyovich and Jacobs, 2011; Bergeron et al., 2016; Dziubanski and Franz, 2016; 

Griessinger et al., 2016; Huang et al., 2017a, 2017b; Leach et al., 2018; Zahmatkesh et 

al., 2019; Micheletty et al., 2021).  Assimilation of snowpack data generally improves 

simulated SWE and SCA but has variable effects on modelled discharge, which has been 

found to be the result of several factors.  Variable effects of snowpack data assimilation 

on streamflow was found to be dependent on the magnitude of SWE, where locations and 

years with larger SWE resulted in increases in modelled streamflow skill (Udnæs et al., 

2007; Dziubanski and Franz, 2016; Griessinger et al., 2016).  Griessinger et al. (2016) 

assessed assimilation of snow measurements into the HBV-light hydrologic model in 20 

catchments in Switzerland and found that simulated runoff was improved at higher 

elevations, especially in years with large snow accumulations.   Dziubanski and Franz, 

(2016) assimilated bias corrected AMSR-E SWE in a coupled SNOW17-Sacramento Soil 

Moisture Accounting (SACSMA) model using an Ensemble Kalman Filter and found 

streamflow skill increased in basins with higher discharge magnitudes and melt runoff.  

Previous research has found that the accuracy of assimilated data impacts modelled 
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streamflow skill where larger error in assimilated SWE resulted in degraded streamflow 

simulations (Dressler et al., 2006; Yatheendradas et al., 2012; Liu et al., 2013; Thirel et 

al., 2013; Dziubanski and Franz, 2016; Micheletty et al., 2021). Yatheendradas et al. 

(2012) used direct insertion to assimilate MODIS SCA and found streamflow skill 

decreased in densely forested areas where SCA is poorly represented by the optical 

remotely sensed data.   Dressler et al. (2006) assimilated blended observed and remote-

sensed SWE into the precipitation-runoff modelling system (PRMS) using direct 

replacement in two study basins.  They found streamflow skill decreased in one basin 

and attributed this to larger assimilated SWE error in the poorer performing basin.  

Quality of the original (open loop) model including calibration methods, model forcings, 

and streamflow data has been found to effect assimilation performance (Huang et al., 

2017b; Micheletty et al., 2021).  Data assimilation methods (Thirel et al., 2015) and 

parameterization of the assimilation algorithm may also affect SWE and streamflow skill 

(Huang et al., 2017a; Micheletty et al., 2021). 

Observed SWE data are rarely available as SWE is labor intensive and expensive to 

measure in the field.  Field-based measurement of SWE typically captures less than 1% 

of a basin’s snowpack and spatially distributed measurements are infrequent (Sturm, 

2015).  Remotely sensed and modelled gridded SWE products provide estimates across 

larger extents and at higher frequencies than can feasibly be measured. Several modelled 

(e.g. GLDAS, ERA-Interim/Land, and MERRA), remotely sensed (e.g. NASA AMSR-E, 

JAXA AMSR-2) and data assimilated (e.g. Copernicus, ESA Globsnow, SNODAS and 

CMC Analysis) daily gridded SWE datasets generated by government and academia are 

available at various spatial and temporal resolutions (Brown et al., 2003; Rodell et al., 
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2004; Kelly, 2009; Rienecker et al., 2011; Takala et al., 2011; Balsamo et al., 2015; 

Luojus et al., 2017).  Copernicus is a daily 5 km resolution SWE product that has data 

from 2006 up to near real time.  It is distributed by the European Commission for use by 

government, research institutions and the hydropower industry for runoff modelling and 

flood forecasting, planning for hydropower generation, agriculture, forestry, water supply 

and climate change modelling (Luojus et al., 2017; European Commission Joint 

Research Centre, 2022).   

While previous research has focused on multi-objective calibration using SWE or 

SWE assimilation, the comparative effect of these two approaches on model performance 

remains unresolved.  The objectives of this study are to: 1) estimate daily, basin average 

SWE from distributed subbasin measurements of snow depth and density; 2) compare 

measured basin average SWE to the Copernicus SWE product; 3) calibrate and validate a 

baseline hydrologic model developed by Han et al. (2021) using subbasin SWE 

measurements; 4) assimilate Copernicus SWE into the model using a particle filter; and 

5) evaluate and compare the performance of the following three models to ascertain the 

effect of calibrating to subbasin SWE and assimilating Copernicus SWE on model 

performance using: 

i) A baseline model calibrated to lake levels and basin outlet discharge 

ii) Model (i) calibrated to subbasin SWE 

iii) Copernicus SWE assimilated into model (ii) using a particle filter. 

To the author’s knowledge this is the first study to validate Copernicus SWE at 

the basin scale, assimilate Copernicus SWE into a hydrologic model, and assimilate SWE 

using the Raven hydrologic modelling framework.  This study contributes to snow 
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hydrology science by elucidating the accuracy and value of a readily available, spatially 

distributed SWE dataset for hydrologic modelling at the basin scale in a mixed forest 

region and the relative impact of SWE calibration and SWE data assimilation on model 

performance.  In addition, this study contributes to our knowledge of the effects of 

climate change on water availability and hazard risk in nival basins. Change to snow 

processes is one of the earliest and most significant impacts of a changing climate on 

basin hydrology, and building hydrologic models that more accurately represent snow, 

snow processes, and the movement of meltwater will allow us to better understand the 

hydrologic consequences of these potential changes.  This study was conducted in a basin 

situated in the Great Lakes drainage area, which contain nearly 20% of the earth’s 

freshwater.  Great Lakes hydrology is dominated by a response to seasonal snow cover.  

Understanding SWE and streamflow processes in this geography will help protect this 

vital source of drinking water, food, energy, transportation, recreation, and its diverse 

ecosystem (Ontario Ministry of the Environment, 2016). 

4.2 Methods 

4.2.1 Study area 

The Petawawa basin, situated in central Ontario, has a drainage area of 4104 km², 

and a mean elevation of 356.11 masl.  The basin is topographically defined by the 

Precambrian Upland (the Algonquin dome) in the west and the Ottawa Lowlands in the 

east (Cumming, 2009).  Elevations on the Algonquin dome reach up to 560 masl, 

whereas elevations in the Ottawa Lowlands range from 180-300 masl (Cumming, 2009; 

Figure 4.1).  The elevation difference and lake effect from Georgian Bay have a 

combined influence on basin climate, producing lower temperatures and higher 
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precipitation on the dome.  The frost free period varies from 90 days in the uplands to 

130 days in the lowlands and annual total precipitation ranges from over 1100 mm in the 

west of the basin to less than 750 mm in the east (Cumming, 2009).  The cooler, wetter 

uplands are predominantly covered by tolerant hardwoods and hemlock with white and 

red pine, poplar and white birch in the warmer, drier lowlands (Cumming, 2009).  The 

basin is almost entirely situated within Algonquin Provincial Park and is largely 

inaccessible during the winter.  A Water Survey of Canada water level and streamflow 

gauge (Petawawa River Near Petawawa (02KB001)) is located at the basin outlet (Figure 

4.1).   
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Figure 4.1: Study area map with snow depth, snow density and streamflow measurement 

locations, locations where model forcings (temperature and precipitation) are measured, 

elevations, and the hydrographic network. 

4.2.2 SWE estimation from measurements 

A stratified sampling approach was used to measure SWE based on the 

assumptions that SWE is controlled by 1) a west to east precipitation gradient resulting 

from lake effect snow from the Georgian Bay and Lake Huron (Suriano and Leathers, 

2017); 2) the Algonquin dome effect on temperature and precipitation (Cumming, 2009); 

and 3) land cover control on snow interception and energy balance during accumulation 

and ablation (Adams, 1976).   

Field measurements were made over four winters during the 2016 to 2019 water 

years.  Snow measurements were made in three regions created by dividing the basin into 
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three zones of equal area (west, central, and east) and stratified using criteria one and two 

above.  Within each region, daily snow depth was measured in four land cover types 

(wetland, coniferous, deciduous, and mixed woods forest; Figure 4.1).  Sites were located 

using the Algonquin Forest Resource Inventory and Ontario Land Cover Compilation 

(Ontario Ministry of Natural Resources and Forestry, 2007, 2014).  Site suitability was 

verified in the field prior to establishing each sample location.  Snow depths were 

measured using an array of time-lapse cameras and rulers secured into the ground as 

shown in Figure 4.2.  Three rulers were spaced approximately 1 m to 2 m apart in front 

of each time-lapse camera to capture fine scale variability.  This is a cost-effective 

method of automatically measuring daily, spatially distributed snow depths in a remote 

basin such as the Petawawa (Kim et al., 2007; Parajka et al., 2012; Hedrick and 

Marshall, 2014; Fortin et al., 2015; Lundberg et al., 2016).   

 

 

Figure 4.2: Example of trail camera and rulers for measuring snow depth at the 

deciduous site in the east region. 
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Snow depth at each site was calculated from the mean of the three rulers.  Due to access 

restrictions, snow density was measured at a location adjacent to the basin along 

Highway 60 (HWY60) across the four land cover types (Figure 4.1).  Snow density was 

linearly interpolated between 10, 8, 5 and 7 measurement dates in the 2016, 2017, 2018 

and 2019 water years, respectively, to create a daily snow density time series for each 

land cover type.  Linearly interpolated daily snow density from the HYW60 sites and 

daily snow depths were used to calculate daily SWE within each of the four land covers 

within each of the three regions in the basin (Equation 4.1). 

𝑆𝑊𝐸𝑙 =  Ө𝑙𝑑𝑟𝑢
̅̅ ̅̅̅ ∗ 10 

4.1 

where 𝑆𝑊𝐸𝑙 (mm) is the SWE for land cover l, Ө𝑙 (g/cm3) is the HWY60 snow density 

for land cover l, and 𝑑𝑟𝑢
̅̅ ̅̅̅ (cm) is the mean snow depth at ruler set ru.  Yao et al. (2018) 

demonstrated the applicability of the regression-based method of McCreight and Small 

(2014) for estimating snow density from depth in a similar study environment. Linear 

interpolation of snow density produced more accurate estimates of SWE than the 

McCreight and Small method based on tests using daily SWE and depth calibration data 

for the study period at a station 85 km soutwest of the center of the basin and data from 

within the basin but outside the study period.  Land cover weighted mean SWE was 

calculated for each region (Equation 4.2). 

 

𝑆𝑊𝐸𝑅 =  ∑ 𝑤𝑙𝑆𝑊𝐸𝑙

𝑁=4

𝑙=1

  

4.2 
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where 𝑆𝑊𝐸𝑅 (mm) is the SWE in each region R, 𝑤𝑙 is the weight for each land cover 

type l, 𝑆𝑊𝐸𝑙 (mm) is the SWE at each land cover type l and N is the number of land 

cover types in each region.  Daily mean basin SWE was calculated as the average of the 

regional SWE values. 

𝑆𝑊𝐸𝑏 =  𝑆𝑊𝐸𝑅
̅̅ ̅̅ ̅̅ ̅̅  

4.3 

where 𝑆𝑊𝐸𝑏 (mm) is mean basin SWE, and  𝑆𝑊𝐸𝑅 (mm) is the SWE for each region R.  

Snow cores using an ESC-30 gravimetric sampler were taken at each site in February or 

March of 2016, 2017 and 2019 to verify the trail camera SWE estimates (Goodison et al., 

1987).   

 

 

Figure 4.3: Land cover fraction for each basin region. 

4.2.3 Copernicus SWE   

Copernicus applies the emission model inversion methodology developed by 

Pulliainen (2006) and refined by Takala et al. (2011).  The algorithm assimilates a 
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background field of kriged snow depth observations into the 25 km resolution passive 

microwave depth estimate from the Special Sensor Microwave Imager/Sounder (SSMIS).  

A constant snow density of 0.24 g/cm3 is used to calculate SWE (Luojus et al., 2017).  

The 25 km SWE estimate is resampled to 5 km using the 5 km ESA Globsnow Visible 

Infrared Imaging Radiometer (VIIRS) product and NOAA Ice Mapping System (IMS) 

optical remote sensing to identify snow free areas.   

Daily Copernicus SWE was downloaded from the Finnish Meteorological 

Institute in NetCDF format and averaged over the Petawawa basin area to produce a 

daily SWE time series using R statistical computing software (R Development Core 

Team, 2011).  Mean error between basin average trail camera and Copernicus SWE was 

calculated from March 15th to June 1st and values from 2016 and 2017 were used to bias 

correct the raw product for known issues during melt (Beaton et al., 2019).  Mean bias 

subtraction was used as it has been shown to produce reasonable results for correcting 

snow products (Dziubanski and Franz, 2016; King et al., 2020) 

4.2.4 Hydrologic model 

 Han et al. (2021) developed a hydrologic model for the Petawawa basin using the 

Raven Hydrologic Modelling Framework (Craig et al., 2020) and extensively calibrated 

it to a network of natural lake levels and discharge at the basin outlet.  This model was 

discretized into 521 subbasins characterized by channel properties and connectivity to 

adjacent subbasins, and 890 hydrologic response units (HRUs) discretized by unique 

combinations of land use, vegetation, terrain and soils classes using the BasinMaker GIS 

toolbox (Han et al., 2022).  The Han et al. (2021) model HRUs were divided into forest, 

open and lake land covers.  For the current study, the model was modified to include five 
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land classes - lake, wetland, coniferous, deciduous, and mixed woods – resulting in 2733 

HRUs (but the same original 521 subbasins).  This is henceforth referred to as the 

baseline (BL) model. This model uses daily precipitation, minimum and maximum air 

temperature forcings from four meteorological stations (Figure 4.1).  

Model processes and parameters are described below, and calibrated parameters are 

summarized in Table 4.1.  Precipitation is partitioned into rain or snow using the two-

parameter linear method from the HBV model.  A parameter establishes the rain/snow 

transition temperature, and another sets the range in air temperature along which the 

partitioning is applied to incoming precipitation.  Snow accumulates into the SNOW 

storage compartment unless it is intercepted by the canopy which is a linear function of 

leaf area index (LAI) and stem area index and is limited by the maximum interception 

capacity.  Snow is sublimated from the canopy at a rate determined by the potential 

evapotranspiration (PET) and the forest cover.  Potential melt is calculated using the 

HBV corrected degree day approach which is driven by air temperature and day angle 

with corrections made for forest cover, slope, and aspect.  Melted snow moves to the 

SNOW_LIQ compartment.  Liquid snow can move back to the SNOW compartment 

based on air temperature and a refreeze factor parameter or to the PONDED_WATER 

storage compartment based on the maximum liquid snow water content parameter 

(Raven : User’s and Developer’s Manual v3.6).   

PET is calculated with the Penman Monteith method that is driven by atmospheric 

variables including net radiation and vapor pressure gradient (both estimated from 

forcings) and the vegetative variables leaf conductance and LAI  (Raven : User’s and 

Developer’s Manual v3.6; Dingman, 2015).  There are three soil layers: forest floor (top), 
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ablation till (middle) and basal till (bottom).  The Green-Ampt method is used to 

calculate infiltration from PONDED_WATER into the soil layers and water percolates to 

the second and third soil layer using the GAWSER linear method where percolation is 

dependent on a maximum percolation rate parameter, soil field capacity and water 

content.  Soil evaporation from the forest floor is driven by PET and is linearly 

proportional to soil saturation.  Baseflow is generated from all soil layers using the 

threshold base power law method where the rate is non-linearly proportional to soil water 

storage and commences once the soil layer exceeds a threshold saturation (Raven : User’s 

and Developer’s Manual v3.6).  Capillary rise can occur from basal till to the ablation till 

and is linearly proportional to the ablation till saturation and is constrained by a 

maximum interflow rate parameter. 

Hydrologic routing to the subbasin channels is calculated using a triangular unit 

hydrograph based on time to peak and time of concentration estimated from subbasin 

properties.  In channel, lake and reservoir routing is based on an iterative level-pool 

approach, with lake outlets modelled as having a broad crested weir and is parametrized 

by channel characteristics.  Lake crest widths (i.e., broad crested weir width) were either 

calibrated directly for monitored lakes or calculated using the following equation for all 

other simulated, but unmonitored, lakes. 

𝑤𝑖 =  𝛼 ∗ (𝐷𝐴𝑖)
𝑛 

4.4 

where 𝑤𝑖 is the crest width of lake i, 𝐷𝐴𝑖 is the drainage area of lake i in km2, and 𝛼 and 

n are coefficient parameters  (Han et al., 2021).
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Table 4.1: Calibrated model parameters, ranges, and optimal values for the baseline model calibrated to lake levels and flow 

(BL) and the BL model calibrated to subbasin SWE (BLS).  Darker shading of the “Percent difference BL-BLS (%)” column 

indicates larger percent differences. 

process parameter description minimum maximum 
BL 

value 

BLS 

value 

Percent difference BL-

BLS (%) 
units 

snow-rain partitioning 

RAINSNOW_DELTA 

range of values over 

which linear transition is 
applied 0 6 1.42 2.74 64 °C 

RAINSNOW_TEMP 

rain-snow transition 

temperature -4.5 2 -1.98 -4.50 78 °C 

snowmelt and refreeze 

MLT_F snowmelt factor 1 9 6.62 3.00 75 mm/d/°C 

HBV_MLT_A_C 

aspect snowmelt 

correction 0.1 1 0.91 0.12 152 none 

Rfrez_F 
liquid water refreeze 
factor 0 4 0.12 0.00 200 mm/d/°C 

MELT_FOR_CORR_WET 

wetland melt correction 

factor  0.8 1 1.00 1.00 0 none 

MELT_FOR_CORR_DEC 

deciduous forest melt 

correction factor  0.7 1 0.72 0.76 6 none 

MELT_FOR_CORR_MIX 

mixed forest melt 

correction factor 0.6 1 0.97 0.75 26 none 

MELT_FOR_CORR_CON 

coniferous forest melt 

correction factor 0.5 1 0.51 0.75 39 none 

vegetation 

SRL_WET 
wetland leaf area index 
correction factor 0.1 0.3 0.14 0.29 66 none 

SRL_DEC 

deciduous forest leaf 

area index correction 
factor 0.1 0.5 0.11 0.23 70 none 

SRL_MIX 

mixed forest leaf area 

index correction factor 0.3 0.8 0.80 0.80 0 none 

SRL_CON 
coniferous forest leaf 
area index correction 0.8 1 0.91 1.00 10 none 

snow interception 
SNOW_ICEPT_FACT_WET 

wetland snow 

interception correction 
factor 0.1 0.3 0.26 0.30 15 none 

SNOW_ICEPT_FACT_DEC 

deciduous snow 

interception correction 

factor 0.1 0.3 0.30 0.25 17 none 
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SNOW_ICEPT_FACT_MIX 

mixed forest snow 
interception correction 

factor 0.1 0.5 0.10 0.38 114 none 

SNOW_ICEPT_FACT_CON 

coniferous snow 

interception correction 
factor 0.2 0.6 0.40 0.47 16 none 

MAX_SNOW_CAPACITY 
maximum canopy snow 
storage 3 30 3.44 27.10 155 mm 

soil 

D_FF 

vertical depth of forest 

floor layer 0.1 0.5 0.17 0.30 58 m 

D_AT 

vertical depth of ablation 

till layer 0.1 2 1.36 1.08 23 m 

WFPS wetting front PSI 0.9 27 11.20 10.90 3 mm 

HYD_COND_FF hydraulic conductivity 10 1000 717 342 71 mm/d 

FC_FF 
field capacity of the 
forest floor 0.1 0.7 0.25 0.14 60 none 

FC_AT 
field capacity of the 
ablation till 0.1 0.7 0.18 0.12 34 none 

FC_BT 

field capacity of the 

basal till 0.5 0.99 0.51 0.56 8 none 

MABASEFLOW_RATE_FF 

maximum baseflow rate 

at the forest floor 10 1000 643 31 182 mm/d 

MABASEFLOW_RATE_AT 

maximum baseflow rate 

at the ablation till 10 1000 295 974 107 mm/d 

MABASEFLOW_RATE_BT 
maximum baseflow rate 
at the basal till 10 1000 206 162 24 mm/d 

BASEFLOW_N_FF 

baseflow parameter n for 

the forest floor 0.1 4 2.81 0.14 181 none 

BASEFLOW_N_AT 

baseflow parameter n for 

the ablation till 0.1 4 3.92 3.28 18 none 

BASEFLOW_N_BN 

baseflow parameter n for 

the basal till 0.1 4 4.38 5.08 15 none 

MAPERC_RATE_FF 

maximum percolation 

rate at the forest floor 10 1000 24 347 174 mm/d 

MAPERC_RATE_AT 

maximum percolation 

rate at the ablation till 10 1000 97.07 10.00 163 mm/d 

MACAP_RISE_RATE maximum capillary rise 10 1000 218 988 128 mm/d 

potential evaporation LAKE_PE_CORR 

lake potential 

evaporation correction 

factor 0.5 1.5 1.40 1.21 14 none 

PE_CORR 

potential evaporation 

correction factor 0.5 1.5 1.12 0.96 15 none 
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routing 

N_MULTI 
Manning's n correction 
factor 0.54 3.28 2.28 0.67 109 none 

W_A0 

alpha coefficient 

parameter for crest width 
equation* 0.1 0.8 0.52 0.24 73 none 

W_N0 

n coefficient parameter 

for crest width equation* 0.1 0.8 0.11 0.31 93 none 

W_CEDAR 

crest width at Cedar 

Lake outlet 0.1 100 46.64 48.30 3 m 

W_BIG_TROUT 

crest width at Big Trout 

Lake outlet 0.1 100 17.82 19.10 7 m 

W_GRAND 

crest width at Grand 

Lake outlet 0.1 100 16.22 21.50 28 m 

W_LAVIELLE 
crest width at Lavielle 
Lake outlet 0.1 100 16.76 16.50 2 m 

W_MISTY 
crest width at Misty 
Lake outlet 0.1 100 7.07 6.23 13 m 

W_ANIMOOSH 

crest width at Animoosh 

Lake outlet 0.1 100 6.42 4.54 34 m 

W_TRAVERSE 

crest width at Traverse 

Lake outlet 0.1 100 27.70 26.00 6 m 

W_BURNTROOT 

crest width at Burntroot 

Lake outlet 0.1 100 19.07 20.00 5 m 

W_LA_MUIR 

crest width at La Muir 

Lake outlet 0.1 100 3.75 5.07 30 m 

W_NARROWBAG 
crest width at 
Narrowbag Lake outlet 0.1 100 8.47 10.90 25 m 

W_LITTLE_CAUCHON 
crest width at Little 
Cauchon Lake outlet 0.1 100 10.51 10.60 1 m 

W_HOGAN 

crest width at Hogan 

Lake outlet 0.1 100 10.12 10.10 0 m 

W_NORTHDEPOT 

crest width at North 

Depot Lake outlet 0.1 100 14.13 12.30 14 m 

W_RADIANT 

crest width at Radiant 

Lake outlet 0.1 100 21.20 24.10 13 m 

W_LOONTAIL 
crest width at Loontail 
outlet 0.1 100 2.03 1.15 55 m 

* See equation 4.4                 
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The BL model was automatically calibrated using DDS (Tolson and Shoemaker, 

2007).  The DDS objective function was an aggregate of Kling Gupta Efficiency (KGE) 

values using lake levels and discharge at the basin outlet (Han et al., 2021).  KGE is an 

aggregate of linear correlation, bias and variance and is commonly applied in hydrologic 

modeling (Equation 4.5 ; Gupta et al., 2009):   

𝐾𝐺𝐸 = 1 −  √(1 − 𝑟)2 + (
𝜎𝑠𝑖𝑚

𝜎𝑜𝑏𝑠
− 1)

2

+ (
𝜇𝑠𝑖𝑚

𝜇𝑜𝑏𝑠
− 1)

2

 

4.5 

where r is the linear correlation between observed and simulated values, 𝜎𝑠𝑖𝑚 and 𝜎𝑜𝑏𝑠 

are the standard deviations of the observations and simulations, respectively, and 𝜇𝑠𝑖𝑚 

and 𝜇𝑜𝑏𝑠 are the observation and simulation means, respectively.  The KGE for discharge 

was calculated using equation 4.5 with daily observed values at the Water Survey of 

Canada Petawawa River Near Petawawa (02KB001) gauge.  Lakes were incorporated 

into the objective function using a relative deviation KGE (Equation 4.6; Han et al., 

2021): 

𝐾𝐺𝐸𝐷 = 1 −  √(1 − 𝑟(𝑁(𝑠𝑖𝑚𝑙), 𝑁(𝑜𝑏𝑠𝑙)))2 + (
𝜎𝑁(𝑠𝑖𝑚𝑙)

𝜎𝑁(𝑜𝑏𝑠𝑙)
− 1)

2

 

4.6 

where r is the linear correlation between normalized observed 𝑁(𝑜𝑏𝑠𝑙) and normalized 

simulated 𝑁(𝑠𝑖𝑚𝑙) lake water levels, and 𝜎𝑁(𝑠𝑖𝑚𝑙) and 𝜎𝑁(𝑜𝑏𝑠𝑙) are the standard 

deviations of normalized lake level observations and simulations, respectively.  The 

overall objective function for DDS calibration of the BL model (OFQ+LAKE) was the sum 
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of the discharge KGE and the unweighted averaged KGED of 15 lake level gauges 

within the basin (Equation 4.7; Han et al., 2021): 

𝑂𝐹𝑄+𝐿𝐴𝐾𝐸 =  𝐾𝐺𝐸𝑄 +  𝐾𝐺𝐸𝐿𝐴𝐾𝐸
15̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

4.7 

𝑂𝐹𝑄+𝐿𝐴𝐾𝐸 has a maximum value of 2.0 with 𝐾𝐺𝐸𝑄 and  𝐾𝐺𝐸𝐿𝐴𝐾𝐸
15̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   both having 

maximum values of 1.0.   

A second model, henceforth referred to as the baseline SWE (BLS) model, was the 

BL model with additional calibration to SWE at each of the 12 snow measurement 

locations.  The BLS model was automatically calibrated using PA-DDS (Asadzadeh and 

Tolson, 2013).  Two objective functions were defined for calibrating the model to lake 

level, discharge and subbasin SWE.  The objective function from the BL calibration 

(𝑂𝐹𝑄+𝐿𝐴𝐾𝐸) was used in addition to a second objective function for SWE that was a 

landscape-weighted average of KGE values across the wetland, coniferous, deciduous, 

and mixed forest trail camera measurement locations: 

 

𝑂𝐹𝑆𝑊𝐸 = ( ∑ 𝑤𝑠 ∗ 𝐾𝐺𝐸𝑠)

𝑁=12

𝑠=1

 

4.8 

where 𝑤𝑠 is the basin landscape area of site s and, 𝐾𝐺𝐸𝑠 is the KGE at site s.  The 

maximum value of  𝑂𝐹𝑆𝑊𝐸 was 1.0.   

The output of PA-DDS is a set of calibration solutions that describes the tradeoff 

between the two objective functions (i.e., non-dominated solutions). Model parameters 

from a non-dominated solution that balanced the two objectives were selected as the 
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deterministic calibrated model.  BL DDS and BLS PA-DDS were run with 5000 

iterations using the Ostrich model calibration software (Shawn Matott, 2017).  Models 

were calibrated in 2016, 2017 and validated in 2018, 2019.  Calibration was run multiple 

times to verify consistency in the selected solutions.   

4.2.5 Data assimilation 

A particle filter was run from November 1st, 2015, to July 1st, 2019, using BLS and 

propagating 100 particles per day.  Filter results typically stabilize when propagating 100 

or more particles (Magnusson et al., 2017).  A warm-up period from January 1st, 2014, 

was run to initialize state variables prior to data assimilation.  Simulations were varied to 

reflect model uncertainty by perturbing forcings at each meteorological station, and by 

perturbing selected snow related parameters.  Following Smyth et al. (2020) forcings 

were perturbed by adding random noise from a uniform distribution bound by ±50% of 

the forcing value.  A qualitative sensitivity analysis was conducted by running the model 

with a limited number of particles and over select time periods to determine snow related 

parameters to perturb within the particle filter.  Each particle’s parameter value was 

randomly selected from a uniform distribution within a range of plausible values.  

Parameter ranges from the Raven Hydrologic Modelling Framework manual (Raven : 

User’s and Developer’s Manual v3.6) were used, with some modifications based on 

manual calibration (Table 4.1).  For each simulation day, a distribution of 100 potential 

SWE and flow estimates was generated by running the BLS model with perturbed 

forcings and parameter values.  Particles were then filtered based on assigned weights 

following Smyth et al. (2020) with initial particle weights set to 1/number of particles = 

0.01.  Weights were multiplied by the previous time-step’s weights to decrease the 
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likelihood of selecting particles that diverge from the observed values over several 

consecutive days (Smyth et al. 2020): 

𝑤𝑘
𝑖 =  𝑤𝑘−1

𝑖  𝑝(𝑧𝑘|𝑥𝑘
𝑖 ) 

4.9 

where 𝑤𝑘
𝑖  is the weight of particle i at time-step k, 𝑧𝑘 is the observed SWE at time-step k, 

𝑥𝑘
𝑖 is the modelled SWE for particle i, at time-step k  and 𝑝(𝑧𝑘|𝑥𝑘

𝑖 ) is the probability of 

observing 𝑧𝑘 given 𝑥𝑘
𝑖 .  Weights were assigned to each particle based on a normally 

distributed likelihood function.  The likelihood function assigns lower weights to 

modelled values that have larger differences from the observed value (Equation 4.10; 

modified from Smyth et al. 2020):  

𝑝(𝑧𝑘|𝑥𝑘
𝑖 ) =  

1

√2𝜋 ∗ 𝑆𝐷
𝑒

[−
1
2

(
𝑧𝑘−𝑥𝑘

𝑖

𝑆𝐷
)

2

]
  

4.10 

where SD is the standard deviation of the likelihood function distribution.  The SD 

parameter was set to 5% of SWE with a minimum value of 5 mm.  The weights were 

normalized to sum to 1, then particles were filtered using stochastic universal sampling 

(Kitagawa, 1996).  A cumulative distribution function was created from the particle 

weights and a random number between 1 and 1/number of particles (0.01) was generated.  

The particle associated with the location that the random value lands on the cumulative 

distribution function was selected, another random number within the stated range was 

generated, added to the previous random number and the particle associated with this 

value of the distribution was selected.  This process continued for the selection of 100 

particles.  This method generally selects particles with higher weights but introduces 
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stochastic variability into the selection.  Selected particle model states were used for the 

next time-steps model runs.  The particle filter was coded within the R statistical 

computing software with the Raven executable called within R.  Perturbations to forcings 

and parameters were made by modified Raven input files within R before each model run 

(R Development Core Team, 2011).  The particle filter model is referred to as PF 

throughout the paper. 

4.2.6 Evaluation metrics 

Snow core SWE was compared to trail camera SWE using Pearson’s r, mean absolute 

error (MAE) and percent bias (PBIAS) to evaluate the accuracy of the SWE estimate 

from the trail camera depths and interpolated snow density.  Daily trail camera SWE was 

compared to raw and bias corrected Copernicus SWE to evaluate product accuracy using 

KGE and bias. 

KGE and the difference in KGE between models was calculated to evaluate the 

performance of the three models during model calibration (2016, 2017) and validation 

(2018, 2019).  SWE simulations were compared to the trail camera estimate and flow 

simulations were compared to observed basin outlet discharge.  Model and Copernicus 

SWE performance was assessed using the following criteria applied to KGE; poor 

performance (-∞ to 0.48), medium performance (0.48 to 0.65), good performance (0.65 

to 0.83), excellent performance (0.83 to 1.0) (Mai et al., 2022).  SWE statistics were 

calculated during the snow season (November 1st to May 1st) and flow statistics were 

calculated from April 1st to July 1st to evaluate the rising limb, peak, and recession of the 

melt hydrograph.  The difference between BL and BLS KGE was calculated to evaluate 
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the effect of the SWE calibration on model performance.  The PF-BL and PF-BLS KGE 

differences were compared to evaluate the benefit of assimilating Copernicus SWE.   

4.3 Results 

4.3.1 Evaluation of measured and Copernicus SWE 

The trail cameras were reliable for the majority of days with only 8.2% of the data 

missing due to camera malfunction or poor ruler visibility.  Trail camera SWE compared 

well with snow core SWE with Pearson’s r of 0.80 and a land cover weighted MAE of 

24.9 mm.  The trail camera SWE estimate was larger than snow core SWE with a land 

cover weighted percent bias of 12.5 % (Figure 4.4).  All land cover types had similar 

correlations between snow core and trail camera SWE. 

 

Figure 4.4: Snow core SWE versus trail camera SWE. 

Basin average raw (not biased corrected) Copernicus KGE ranged from good (three 

of the four study years) to excellent with a mean annual bias of -6.4 mm and a mean bias 

during accumulation and ablation of 4.9 mm and -33.8 mm (Table 4.2) when compared 

with the trail camera-derived basin average.  Mean bias during model calibration years 
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(2016, 2017) was -26.8 mm.  Copernicus SWE was bias corrected by adding 26.8 mm 

during ablation (March 15 to June) for each year, when snow was present.  Bias 

corrected KGE performance was excellent for all years except 2018.  Correction reduced 

annual bias to 0.8 mm, accumulation bias was not affected, and mean ablation bias was 

reduced to -7.6 mm (Table 4.2; Figure 4.5). 

Table 4.2: Goodness of fit statistics for SWE estimates from the trail camera versus the 

raw and bias corrected Copernicus SWE.  KGE values are coloured by performance 

classification where good = green (0.65 to 0.83) and excellent = blue (0.83 to 1.0).  

  
Annual KGE Annual Bias (mm) 

Accumulation  

Bias (mm) 

Ablation  

Bias (mm) 

  raw corrected raw corrected raw corrected raw corrected 

2016 0.79 0.93 -11.5 -3.6 -1.1 -1.1 -30.5 -8.1 

2017 0.85 0.94 -6.4 0.1 -0.7 -0.7 -23.1 2.5 

2018 0.67 0.73 2.9 9.5 12.2 12.2 -20.5 4.2 

2019 0.77 0.88 -10.3 -2.6 9.2 9.2 -61.0 -29.2 

mean 0.77 0.87 -6.4 0.8 4.9 4.9 -33.8 -7.6 

 

 

Figure 4.5: Scatterplot of basin average SWE estimate from trail camera versus bias 

corrected Copernicus SWE during accumulation (November to March) and ablation 

(March 15 to June). 
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4.3.2 Subbasin scale calibration and validation 

BL DDS calibration yielded an 𝑂𝐹𝑄+𝐿𝐴𝐾𝐸 equal to 1.86.  This BL calibration yielded 

an 𝑂𝐹𝑆𝑊𝐸 equal to -0.24 (Figure 4.6).  A non-dominated solution of the PA-DDS was 

selected with an 𝑂𝐹𝑄+𝐿𝐴𝐾𝐸 of 1.83 and an 𝑂𝐹𝑆𝑊𝐸 of 0.70 (Figure 4.6).  The range of 

𝑂𝐹𝑆𝑊𝐸  was low (Figure 4.6) but there was variability in the dominated solutions and 

repeated runs of PA-DDS also produced small 𝑂𝐹𝑆𝑊𝐸  ranges. 

 

Figure 4.6: Baseline model calibrated to lake levels and flow (BL) DDS calibration 

solution and the BL model calibrated to subbasin SWE (BLS) PA-DDS calibration non-

dominated and selected solutions.  Non-dominated solutions are a set of solutions in the 

objective space that cannot be improved without degrading at least one of the other 

objectives.  The maximum objective function value was 1.0 for BLS PA-DDS and 2.0 for 

the BL DDS objective function. 
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There were differences in most snow related parameters between BL and BLS.  The 

melt factor in BL was more than twice that of BLS:, 6.62 mm/d/°C and 3.0 mm/d/°C, 

respectively.  Model correction factors scale parameters by the factor’s value.  Melt 

correction factor by land cover ranged from 0.51 (coniferous) to 1.0 for the wetland in 

the BL and were consistent across forest type but larger in the wetland in BLS.  LAI and 

snow interception correction factors were generally larger for coniferous HRUs and 

progressively smaller for mixed, deciduous and wetland HRUs, respectively.  The 

maximum canopy snow storage was an order of magnitude higher in BLS versus BL.  

Both BL and BLS rain-snow partitioning temperatures were negative with the BLS 

threshold value of -4.5 ℃ (Table 4.1).   

Hydraulic conductivity and baseflow rate in the upper soil zone parameters were 

substantially larger in BL than BLS.  PET correction factors on both lake and land were 

larger for BL than BLS.  Manning’s n correction factor was larger for BL and crest width 

coefficient correction factors resulted in smaller crest widths for BLS, depending on the 

subbasin drainage area (Table 4.1).   

BL substantially overestimated SWE (Figure 4.7) and had poor SWE performance 

across all sites during both calibration and validation except for the eastern region 

validation period (Table 4.3).  BLS SWE KGE was larger than that of the BL model at 

each of the 12 sites.  BLS generally followed trail camera estimated SWE time series and 

aligned with snow survey mean values except for the forested sites in the west in 2019 

(Figure 4.7).  BLS SWE KGE values were in the upper range of medium performance or 

higher for most sites during calibration and validation.  BLS SWE model performance 
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was similar during calibration and validation.  There were no overall observed trends in 

model performance across land cover type or region (Table 4.3).   

 

Figure 4.7: SWE time series for a baseline model calibrated to lake levels and flow (BL), 

the BL model calibrated to subbasin SWE (BLS), estimated SWE using trail cameras and 

snow survey mean SWE for each study site during calibration (2016, 2017) and 

validation (2018, 2019). 
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Table 4.3: SWE KGE values for the baseline model calibrated to lake levels and flow 

(BL), the BL model calibrated to subbasin SWE (BLS) for the calibration period (2016, 

2017) and the validation period (2018, 2019) across land cover type and region.  Values 

are coloured by performance classification where poor = light red (-∞ to 0.48), medium = 

yellow (0.48 to 0.65), good = green (0.65 to 0.83) and excellent = blue (0.83 to 1.0). 

  west  central east 

  calibration validation calibration validation calibration validation 

  BL BLS BL BLS BL BLS BL BLS BL BLS BL BLS 

coniferous 0.10 0.84 0.24 0.46 -1.42 0.40 -0.70 0.85 -0.70 0.80 0.31 0.78 

deciduous 0.16 0.83 0.11 0.59 -0.31 0.81 -0.41 0.78 0.24 0.57 0.66 0.64 

mixed  -0.45 0.57 -0.05 0.64 -0.09 0.85 0.29 0.64 -0.07 0.53 0.63 0.62 

wetland -0.60 0.37 -0.95 0.62 -0.02 0.77 -0.68 0.81 0.24 0.37 0.68 0.59 

 

4.3.3 Basin scale model evaluation  

BL simulated daily basin average SWE poorly for all years (Table 4.4), substantially 

overestimating SWE at the basin scale (Figure 4.8; Figure 4.9).  Basin mean BLS and PF 

SWE performance was good to excellent during calibration and validation (Table 4.4).  

Performance of all models was good to excellent for flow.   

 

 

 

 

 

 

 

 



121 

 

 

Table 4.4: Goodness of fit statistics comparing basin average trail camera SWE and 

basin outlet observed flow to a baseline model calibrated to lake levels and flow (BL), 

the BL model calibrated to subbasin SWE (BLS) and a particle filter model assimilating 

Copernicus SWE (PF) into BLS.  Values are coloured by performance classification 

where poor = light red (-∞ to 0.48), medium = yellow (0.48 to 0.65), good = green (0.65 

to 0.83) and excellent = blue (0.83 to 1.0).  

    SWE KGE Flow KGE 

    BL BLS PF BL BLS PF 

calibration 

2016 0.37 0.85 0.88 0.86 0.79 0.80 

2017 -0.53 0.86 0.68 0.77 0.81 0.82 

2016-2017 -0.29 0.86 0.77 0.81 0.85 0.88 

validation 

2018 -0.79 0.77 0.67 0.74 0.67 0.67 

2019 -0.24 0.83 0.85 0.74 0.83 0.68 

2018-2019 -0.34 0.89 0.83 0.74 0.77 0.68 

 2016-2019 -0.28 0.89 0.83 0.79 0.82 0.78 
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Figure 4.8: Calibration period time series data for a baseline model calibrated to lake 

levels and flow (BL), the BL model calibrated to subbasin SWE (BLS), a particle filter 

model assimilating Copernicus SWE (PF) into BLS, measured SWE using trail cameras 

and observed flow for 2016 water year (a, b) and 2017 water year (c, d). 
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Figure 4.9: Validation period time series data for a baseline model calibrated to lake 

levels and flow (BL), the BL model calibrated to subbasin SWE (BLS), a particle filter 

model assimilating Copernicus SWE (PF) into BLS, measured SWE using trail cameras 

and observed flow for 2018 water year (a, b) and 2019 water year (c, d). 
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Calibrating to subbasin SWE substantially improved SWE simulation.  Mean BLS 

SWE KGE over the four years was 1.13 larger than BL (Figure 4.10).  The PF modelled 

SWE substantially better than BL.  PF SWE KGE was 1.07 greater than BL averaged 

over the study period.  The PF and BLS SWE KGE were very similar with an average 

difference over the study period of -0.06.  All flow KGE differentials across all study 

years were near 0.  BL modelled flow slightly better than BLS and PF with a larger mean 

KGE over the study period of 0.06 and 0.16, respectively (Figure 4.10).  The BLS and PF 

underestimated spring flow peaks in all years except 2016 (Figure 4.8, Figure 4.9) 

 

 

Figure 4.10: Calibration (2016-2017), validation (2017-2018) and study period (2016-

2019) KGE differential between the baseline model calibrated to lake levels and flow 

(BL), the BL model calibrated to subbasin SWE (BLS) and a particle filter model 

assimilating Copernicus SWE (PF) into BLS for modelled SWE (a) and flow (b). 

4.4 Discussion 

4.4.1 Evaluation of Copernicus SWE 

Bias corrected Copernicus SWE is suitable for assimilation into hydrologic models in 

this landscape given the large KGE and low bias when compared with measured data 
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(trail camera SWE).  Interannual differences between Copernicus and the trail camera 

SWE were likely due to interannual differences in climatic variables driving melt 

between the basin and stations assimilated into the Copernicus product.  Passive 

microwave derived SWE is sensitive to differences in snow structure which may vary 

with climate and also result in interannual differences in error (Dong, 2018).  The 

assimilation of snow depths into Copernicus and the simple method of converting depth 

to SWE using a constant density may lead to product error where processes such as 

decreases in density from fresh snowfall, or increases in density from snow compaction, 

ripening, and rain on snow may be misrepresented (Dingman, 2015).  For example, 

anomalous climate variability with several melt, refreeze and rain on snow events in 

2018 led to abnormal patterns in snow accumulation and ablation likely leading to a 

poorer relationship with observed values during this year. 

Both Copernicus (via snow depth assimilation) and the trail camera SWE rely heavily 

on snow depth for their estimates which may result in a strong agreement between the 

values but a misrepresentation of SWE due the factors mentioned above.  While limited 

in number, agreement of trail camera derived SWE with site specific snow surveys 

provides some confidence in the estimated SWE and the Copernicus product.  

Comparison of Copernicus SWE to other SWE measurements and/or products to further 

investigate the limitations discussed above is recommended. 

4.4.2 Subbasin scale calibration and validation 

The BLS modelled subbasin SWE well during calibration and validation, indicating a 

robust model structure and parameter set.  Consistency of KGE across site and region 

during validation indicated little spatial bias in the models.  Auto-calibrated vegetation-
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related snow model parameters were consistent with our understanding of physical 

process with larger LAI and snow interception and smaller melt rates in coniferous forest 

versus mixed and deciduous stands. An exception was the BLS melt correction factors 

that had small variability (Varhola et al., 2010; Table 4.1).  SWE was substantially 

overestimated in BL.  The significantly larger BLS maximum canopy snow storage and 

lower precipitation partitioning thresholds likely contributed to decreased SWE in BLS. 

The BLS precipitation partitioning threshold value was lower than that typically 

found in the literature (Jennings et al., 2018).  This was possibly due to the model 

partitioning precipitation based on daily average temperature values, which may not have 

accurately represented the actual temperature during a precipitation event (Harder and 

Pomeroy, 2013).  Partitioning based on surface air temperature is a simplification of the 

more complex processes controlling precipitation phase transitions including vertical air 

mass boundaries, falling snow grain size and earth surface properties (Harder and 

Pomeroy, 2013; Feiccabrino et al., 2015).  Large bodies of open water are known to 

affect precipitation partitioning thresholds (Feiccabrino et al., 2015) and maintain 

temperatures around 0 ℃ where precipitation phase is difficult to resolve (Mekis et al., 

2020).  The influence of Georgian Bay on the partitioning thresholds in the western 

versus the unaffected eastern basin may create spatial variability in thresholds.  Temporal 

variability in the threshold may result from the open versus frozen state of the lake 

throughout the winter.  This was not accounted for in the model, which used static values 

for partitioning parameters (Raven : User’s and Developer’s Manual v3.6). 

Larger variability of the land cover-based melt correction factor in BL compared to 

BLS may have resulted in higher spatial variability of melt patterns in BL.  Subbasin 
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evaluation of the processes governing storage and routing of melt and streamflow is 

beyond the scope of this paper but is recommended for future research.   

4.4.3 Basin scale model evaluation 

At the basin scale, BLS modelled SWE better than BL, indicating that calibrating a 

model to subbasin SWE may improve the accuracy of simulated basin scale SWE.  This 

finding is consistent with Mai et al. (2022), who found a model calibrated to streamflow 

only cannot adequately resolve the parameters required to estimate snow accumulation 

and ablation accurately in forested environments of the Great Lakes Basin. It also agrees 

with several previous multi-objective calibration study results (Parajka and Blöschl, 

2008; Franz and Karsten, 2013; Bennett et al., 2019; Nemri and Kinnard, 2020). 

PF modelled SWE better than BL.  Copernicus was assimilated into BLS so the 

increased performance may be due to subbasin SWE calibration.  However, Copernicus 

SWE was a better estimate than BL SWE, so assimilating Copernicus would likely 

improve SWE performance when observed SWE data are not available for model 

calibration.  Further research assimilating Copernicus into BL would be required to 

confirm this finding. 

BLS and PF simulated SWE with comparable skill, demonstrating that a well 

calibrated model may be sufficient and assimilating Copernicus SWE may be 

unnecessary.  However, model forcings, structure and parameterization do not capture 

the complexity of scaling, weather patterns and physical processes driving snow 

accumulation and melt (Beven, 2012).  The snow depth and density measurements were 

point scale estimates with potential human, scaling and methodological error in 

converting depth and density to SWE (Blöschl, 1999).  While not captured in the 
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performance assessment of this study, in theory the PF balances model and observation 

error and may be a more representative estimate of the true mean basin SWE (Blöschl, 

1999; Moradkhani et al., 2005).   

Despite improved SWE skill in the BLS and PF compared to BL, all models had 

similar flow simulation performance.  This finding is consistent with several previous 

multi-objective calibration and data assimilation studies (Dressler et al., 2006; Parajka 

and Blöschl, 2008; Franz and Karsten, 2013; Dziubanski and Franz, 2016).  Good BL 

streamflow performance without an accurate representation of SWE was possibly 

because the model was calibrated to a network of lakes and the basin outlet discharge that 

spatially integrated hydrologically significant processes including upstream melt 

dynamics.  The effect of SWE calibration or assimilation on modelled flow performance 

will be dependent on the quality of the original model and its calibration.  In this study, 

the original model (BL) was a very well-constructed, extensively calibrated model.  SWE 

calibration and data assimilation may improve flow simulations if a poorer original 

model with fewer calibration data were used.  Previous studies assimilating SWE into 

hydrologic models have led researchers to conclude that recalibration of their original 

models was required (Dziubanski and Franz, 2016).   

Larger SWE in BL versus BLS but similar streamflow simulations indicates a 

difference in snow ablation and delivery of water to the basin outlet between the two 

models.  A full assessment of water budgets and flow generation parameter sensitivities, 

beyond the scope of this paper, is required to investigate the differences in the delivery of 

the excess SWE to the basin outlet.  However, a preliminary assessment of the parameter 

differences between BL and BLS suggests that BL melted snow at twice the rate of BLS, 
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thus adding more simulated input to the catchment.  Based on the parameter differences, 

BL infiltrated water from the surface and discharged baseflow at a higher rate, and then 

conveyed this water through channels and reservoirs at a slower rate than BLS.  Both 

lake and land surface evaporation corrections led to higher water loss to the atmosphere 

in BL compared to BLS.  Therefore, excess water in the BL model was likely held in 

storage and lost to the atmosphere from the soil and lakes.  Improvement of both SWE 

and flow-related process representation and parameterization should be explored as they 

will be important for assessing the impact of a changing climate on snow, water 

availability, and water related hazards.   

4.5 Conclusion 

The bias corrected Copernicus product provided a good estimate of mean basin 

SWE in the Petawawa River basin and shows promise for supporting water management 

decisions.  Potential limitations in the product related to the conversion of assimilated 

snow depths to SWE were highlighted and should be further explored.  Snow related 

hydrologic model parameters (except for precipitation partitioning thresholds) were 

generally consistent with current understanding of physical process.  Precipitation 

partitioning was identified as a challenge within other modelling studies in the Great 

Lakes Region and warrants additional research (Mai et al., 2022).   

Calibration to subbasin SWE substantially improved the basin scale SWE 

estimate.  Copernicus SWE was a much better estimate than the baseline model, so 

assimilation would likely improve SWE skill when subbasin SWE are not available for 

calibration.  Assimilating Copernicus SWE did not improve SWE performance compared 

to the model calibrated with subbasin SWE, demonstrating that assimilation of 
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Copernicus SWE may provide little advantage over a well calibrated model.  However, 

the particle filter balances model and measurement error.  While not reflected in the 

model performance statistics, PF may be a better representation of the true mean basin 

SWE.   

All models had similar streamflow performance.  This demonstrates that streamflow can 

be accurately estimated using a model with a poor representation of SWE.  This may be 

sufficient for applications where estimating flow is the primary objective.  However, 

applications where understanding the physical processes of snow accumulation, melt and 

streamflow generation are important, such as assessing the impact of climate change on 

water resources, require accurate representations of SWE.  In this case, calibration to 

subbasin SWE and assimilation of Copernicus SWE can substantially improve modelled 

SWE, as shown in this study.  Exploration of flow process representation and 

parameterization to determine why improving SWE accuracy in the model did not 

improve performance of simulated flow is recommended for future research.   
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Chapter 5 Summary, conclusions, and future work 

This thesis investigated three primary objectives.  Snowpack scaling issues were 

addressed in Chapter 2, forest-snowpack relationships in Chapter 3 and methods of 

integrating SWE into a hydrologic model in Chapter 4.  Scaling issues in snow hydrology 

persist due to limitations in instrumentation and the inherent gap between sampled and 

true patterns and processes across scales.  Chapter 2 assessed the difference in 

representation of snow processes and estimates of SWE and snow depth mean and 

variability of across scales.  A relationship between snowpack metrics and forest cover 

was observed at the point scale but not the transect scale, which was attributed to the 

non-linear aggregation of complex snow processes across the transect and/or limitations 

in the study methodology.  In general, the study found mean vegetative cover was not an 

effective metric for representing aggregate snow-vegetation processes and further 

research was suggested, which was addressed in Chapter 3.  Point scale mean SWE and 

snow depth was found to be unrepresentative of the surrounding area, but bias was 

consistent within landscape units and time-periods suggesting that snowpack metrics 

within this environment could be bias corrected by scaling factors derived from a limited 

number of transect measurements.  Consistency between upscaled estimates of snowpack 

properties suggested that a limited number of appropriately stratified point scale 

measurements may be a suitable replacement for transect scale mean values when it is 

not possible to collect transect data.  Comparison of modelled products to field-based 

data highlighted the importance of understanding the scale and processes that ground 

truth measurements and model estimates represent.  The modelled snow products were 



132 

 

 

reasonable estimates of SWE but bias correction during ablation is required in this 

environment. 

In Chapter 3 relationships between forest-snowpack relationships were examined 

over two winters using field and remotely sensed estimates of tree canopy density, 

distance to tree boles and diameter at breast height.  Orthophotography-derived 2D 

spectral metrics and photogrammetric point cloud 3D metrics correlated well with field 

estimates of canopy density derived from hemispheric photos while tree bole metrics 

were not successfully derived from LiDAR data.  Significant differences in stand scale 

snowmelt rate and timing across forest types indicated that forests can be a significant 

driver of snow processes at this scale and suggests semi-distributed hydrologic models in 

this region should consider inclusion of forest cover in model discretization.  

Relationships between snowmelt rate, melt timing and canopy density metrics derived 

from both field and remotely sensed data were found at the point scale.  Inter-annual 

differences in the snowmelt-forest structure relationship were attributed to contrasts in 

seasonal weather between years where canopy controlled solar radiation likely dominated 

melt in 2016 versus more spatially uniform turbulent flux-driven melt in 2017.  Peak 

SWE and peak SWE timing were not correlated with canopy metrics.  This is contrary to 

several previous studies that found stronger correlations between peak SWE and canopy 

structure and may be explained by a more consistent accumulation period and less mid-

winter melt in those studies.  Three-dimensional forest structure data derived from 

photogrammetric point cloud, and LiDAR data and simple orthophoto-derived spectral 

metrics were highly colinear.  This was attributed to the characteristics of this study site 

and may not be applicable in other environments with different forest structure.  The 
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findings in Chapter 3 indicates that the Ontario imagery program data sets can be used to 

describe forest-snowpack relationships and elucidate interannual variability in snow 

process in mixed wood, hardwood, and coniferous stands in the Great Lakes-St. 

Lawrence Forest region.   

In Chapter 4, the Copernicus SWE product was found to provide a good estimate 

of mean basin SWE in the Petawawa River basin, which demonstrates promise for 

supporting water management decisions.  Calibration of a hydrologic model to subbasin 

SWE substantially improved modelled basin scale SWE performance.  However, 

assimilation of Copernicus data may provide little advantage over a well calibrated 

model.  Assimilation of Copernicus SWE would likely improve modelled SWE skill 

when subbasin SWE values are not available for calibration, although this was not 

explicitly tested.    All models evaluated in Chapter 4 had similar streamflow 

performance.  This demonstrates that streamflow can be accurately estimated using a 

model with a poor representation of SWE, which may be sufficient for applications 

where estimating flow is the primary objective.  However, applications where 

understanding the physical processes of snow accumulation, melt and streamflow 

generation are important require accurate representations of SWE.  In this case, 

calibration to subbasin SWE and assimilation of Copernicus SWE can substantially 

improve modelled SWE.   

This thesis has improved understanding of the influence of scale on snow 

processes and patterns, demonstrated that Ontario imagery can be used to describe forest-

snowpack relationships in the Great Lakes-St. Lawrence Forest region and found that it 

may be unnecessary to assimilate SWE into a well-calibrated hydrologic model.  Rapidly 
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improving technology that permits the deployment of inexpensive field-based 

measurement equipment and the quickly evolving field of remote sensing will further our 

ability to explore important scaling and forest-snowpack relationship research questions.  

The successful application of Ontario Imagery Program spectral and point cloud data 

demonstrated here should encourage future uses of these regularly acquired data to 

explore forest-snowpack relationships in other regions or investigate the impacts of forest 

change on snowpack metrics.  Future research should evaluate the implications of 

climate variability on forest-snowpack relationships at more study sites and across a 

greater range of forest structure and climate conditions than were evaluated in this thesis.  

Exploration of flow process misrepresentation and model parameterization resulting in 

accurate flow simulation in models with poor SWE skill is recommended for future 

research.  Testing the effects of calibration and data assimilation on subbasin scale model 

performance is also needed.  Exploration of these suggested research areas will lead to 

better estimates of distributed SWE and streamflow at the subbasin and basin scale 

resulting in improved understanding of water balance components, ecosystem function, 

impacts of climate change and natural hazard risk in cold regions. (Sturm, 2015; Peters-

Lidard et al., 2017; Dong, 2018). 
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