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ABSTRACT

Automated Grading of UML Use Case Diagrams

Mohsen Hosseinibaghdadabadi

This thesis presents an approach for automated grading of UML Use Case diagrams.

Many software engineering courses require students to learn how to model the be-

havioural features of a problem domain or an object-oriented design in the form of a

use case diagram. Because assessing UML assignments is a time-consuming and labor-

intensive operation, there is a need for an automated grading strategy that may help

instructors by speeding up the grading process while also maintaining uniformity and

fairness in large classrooms.

The effectiveness of this automated grading approach was assessed by applying it to two

real-world assignments. We demonstrate how the result is similar to manual grading,

which was less than 7% on average; and when we applied some strategies, such as

configuring settings and using multiple solutions, the average differences were even lower.

Also, the grading methods and the tool are proposed and empirically validated.

Keywords: automated grading, use case diagram, model comparison
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Chapter 1

Introduction

1.1 Motivation

Engineers use models to explain the shapes or actions of any structure they wish
to build or develop. Typically, graphic symbols, relations, and explanations, will
be designed to visualize the model[1]. As use case diagram is kind of a behavior
diagram in the Unified Modeling Language[2], it is used to represent the dynamic
behavior of a system and understand how the system should work [3].

The growth of new technology requires considerable adjustments in the educa-
tional system [4]. The advancement of computer-based information technology
can facilitate learning, particularly in educational assessments or evaluating stu-
dent learning outcomes [5, 6]. Due to the growing number of computer science
students, one of the most important procedures in teaching and learning is as-
sessment [7, 8]. When assessing each assignment, evaluating the student use case
model might be challenging for the teacher [9]. A teacher must conduct an as-
sessment method while teaching use case diagrams in this scenario. Based on the
answer keys, a teacher will grade the use case diagrams created by students. This
use case diagram can be very long, including many use cases, and since each use
case contains a specification part comprising many texts, grading each assignment
will take considerable energy and time. Furthermore, courses with a large number
of participants cannot provide individual support in solving modelling tasks, as
there are often multiple correct solutions. The use case diagram created by stu-
dents may differ from the instructor’s solution due to using different words when
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naming actors and use cases, or paraphrasing the use case Main Success Scenario
steps. However, the student’s answer may differ from the instructor’s, but the
whole process can be very similar, which causes difficulties for the instructor when
grading a number of students’ solutions manually. Moreover, individual feedback
on the modelling solution is extremely crucial in this situation [9]. In addition
to the increasing workload, instructors struggle to fairly mark assignments and
tests, which is a difficult process, particularly, when matching texts and flattening
steps become important in the use case specification part. Furthermore, teachers
frequently alter their marking scheme after assessing multiple student papers. For
example, instructors may decide to redistribute scores if they see that students
struggled with a certain area of the model, indicating that the issue description
was possibly confusing. To compensate, the instructor may decide to modify the
grading weights for different parts of the model.

Besides, at a time when the internet has reached almost everywhere, automated
grading is critical for e-learning and Massive Open Online Courses (MOOCs) [10,
11]. These online courses offer a very accessible means for learners to develop
new and existing skills. Self-assessment methodologies have been integrated into
popular online learning systems such as Linkedin [12], Coursera [13], EDX [14], and
Skillshare [15]. Automated assessment can also be used to calibrate a learner’s past
knowledge [16], that is, to test the learner’s prior knowledge of the subject before
starting a new course. Furthermore, in the context of online courses, automated
grading may be employed to offer learners fast feedback [17].

Motivated by the reasons stated above, we propose an automated grading approach
for UML use case diagrams. We reused metamodels introduced by Bian. et al [18].
These grading metamodels were implemented in the TouchCORE tool [19], which
visually displays the marks on the classes and prints feedback to the student.

1.2 Problem Summary

This thesis is an attempt to address the issue highlighted in the introduction.
First, we want to see if automated grading is more effective for use case models
than manual grading. As a result, by reusing metamodels introduced by Bian et
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al. [18], we propose an automated grading approach for UML use case diagrams .
these grading metamodels were implemented in the TouchCORE tool [19], which
visually displays the marks and prints feedback to the student. We offer an algo-
rithm that uses syntactic, semantic, and structural matching techniques to create
mappings between model components in the instructor’s solutions and elements
in the student solutions. We also demonstrate how flattening steps improves the
grades of students and decreases instructor mistakes when grading a large use
case assignment. In addition, our algorithm can compare those flattened steps,
conceptually using some natural language processing techniques.

We ran this algorithm on real assignments for modeling a Gas Station for a class
of 14 undergraduate students, and Elfenroads use case models for 9 undergraduate
student groups. On average, our algorithm was able to automatically grade the
assignments within a 7% difference from the instructor’s grade.

1.3 Thesis Contributions

We offer an algorithm that uses syntactic, semantic, structural, and text matching
techniques to create mappings between model components in the instructor’s solu-
tions and elements in the student solutions. Each precisely matched element earns
the students a full mark. Partially right answers, such as a correct actor with in-
correct multiplicity, receive a partial mark and earn no marks if the component is
missed or completely incorrect. One significant advantage of our technique is that
it can easily update the students’ marks when the instructor changes the grading
scheme. Additionally, we propose a flattening steps approach, which orders all
steps in the instructor’s and student’s solution into a list, and since those steps
play an important role in the use case model, our algorithm can compare them
conceptually using some natural language processing techniques.

We evaluated our algorithm using modelling two real-world assignments; a Gas
Station and Elfenroads game. At this point, there are 14 individual submissions
for one case study and nine group submissions of seven students for another,
which means 63 students contributed to this assignment. Although our automated
grading results are close to manual grading and provide confident evidence, our
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sample size might not be large enough, and we need to examine more case studies
in the future.

1.4 Research Questions

The following research questions can be answered by comparing the outcomes
of automated grading with manual grading performed by instructors:

• RQ1: How different are manual and automated grading?

There should not be a large difference between an instructor’s grades and
automated grades. Using two case studies, we will demonstrate that the
average difference is less than 9% when using default settings.

• RQ2: Does the use of configuration settings improve the accuracy

of automated grading?

A configurable grading algorithm can generate results that are more similar
to the instructor’s manual grading scores. Overall, the difference in one case
study decreased from 9.59% to 6.69%, while the difference in another case
study is reduced from 8.27% to 7.61%.

• RQ3: Does automated grading help ensure fairness?

Inconsistencies are common with manual grading, and we investigated the
consistency aspect of fairness. Automated grading can detect discrepancies
in manual grading. We will explain how the instructor could make mistakes
when grading.

• RQ4: Does the accuracy of automated grading improve when mul-

tiple solutions are matched against?

There could be more than one correct solution for a use case diagram mod-
elling problem. So, the tool is capable of loading multiple correct solutions.
When all three available solutions were used in one case study, the average
differences decreased from 6.69% to 4.50%.

• RQ5: How do flattening steps helps automated grading to achieve

a better result?
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When there are multiple use cases in the diagram, they may be linked by a
relationship. The best idea when grading is to first flatten all steps in all use
cases based on their relationships. We proceed with this method from the
root use case to the leaf use cases in the diagram, and at the end, we have a
list of flattened steps. When manually grading large models, flattening can
be a difficult task. When grading without flattening is compared to grading
with flattening, it can be seen that the average mark is significantly improved
in both case studies.

• RQ6: Does using NLP improve the quality of the grading algo-

rithm?

The most challenging part of automated grading in use case models is match-
ing texts. The matching text algorithm is essential in the grading of use case
models. The algorithm is more effective when we combine it with some nat-
ural language processing methods. The thesis examines and shows how to
find the best threshold value that can be set in the algorithm when match-
ing texts. In addition, different parts of speech could have different levels
of importance. Hence, coefficient weights for two kinds of parts of speech
(nouns and verbs) are examined, and as a result, we should consider weights
for nouns and verbs 1.5 times more than other parts of speech.

1.5 Thesis Organization

This thesis is divided into seven chapters. In Chapter 2, we address related works
on automated grading. In Chapter 3, we then present examples that motivate
our matching strategies. Chapter 4 describes several methodologies for matching
words and texts and also discusses the algorithms that compare the student’s
model to the instructor’s model. The architecture, metamodels, and grading tools
that facilitate automated grading are demonstrated in Chapter 5. In this chapter,
we also review our configuration panel and elaborate on the configuration options
for automated grading. The case study arrangement is described in detail in
Chapter 6. We also evaluate our tool and answer research questions by comparing
results in this chapter. Chapter 7 concludes this thesis and discusses directions
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for future work.

The contributions of the thesis are organized into five parts:

Part 1: Motivation (Chapter 3)

We motivate our approach using a use case diagram modelling the "Elfen-
roads" game. All the strategies we need to match and grade each component
of the diagram are discussed in this part.

Part 2: Grading Algorithm (Chapter 4)

The thesis proposes and describes various matching techniques for grading
the UML use case diagram. Motivating model examples are used to demon-
strate the process. It also goes over the methodologies used in matching
words and texts, as well as demonstrating the algorithm for automated grad-
ing of UML use case diagrams.

Part 3: Grading Architecture and Tool Support (Chapter 5)

The architecture of the grading strategy and two metamodels are introduced
in the thesis to enable the automated grading algorithm. Furthermore, the
thesis describes the grading tool that implements the automated grading
algorithm.

Part 4: Case Study (Chapter 6)

The grading technique is used in the thesis for a case study of two modeling
tasks.

Part 5: Research Questions (Chapter 6)

In this section, six research questions mentioned in Section 1.4 will be inves-
tigated in detail.

6



Chapter 2

Related Work

2.1 Automated Grading Tools

Automated grading approaches has been explored for other modeling languages.
Alur et al. [20] proposed a method for automatically grading the standard computation-
theory problem, which asks students to construct a deterministic finite automaton
(DFA) from a description of its language. They focused on how to assign partial
grades for incorrect students’ answers using a hybrid of three techniques: syntac-
tic, semantic, and capturing mistakes. Batmaz and Hinde [21] presented a system
to assist human graders in evaluating conceptual database diagrams. It also helps
students model their diagrams easily. They focused on semi-automatic diagram
marking, aiming to reduce the number of sub-diagrams marked by the examiner.
Simanjuntak [22] presented preliminary research and a proposed framework for
an automated ER Diagram grading system. He presented two approaches: The
Tree Edit Distance algorithm to measure ER Diagram similarity, and a machine
learning technique to build a classifier that automatically grades ER Diagrams.
Thomas et al. [23] provided a method for computer-aided diagram understanding
and demonstrated how it may be effectively used for the automatic grading of stu-
dent attempts at drawing entity-relationship (ER) diagrams. They concentrated
on imprecise diagrams, in which the required characteristics are either malformed
or missing, or extraneous features are included.

There are approaches that propose the automated assessment of other kinds of
UML models. Bian et al. [18] presented an approach for automated grading of
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UML class diagrams. They proposed a metamodel that establishes mappings be-
tween the instructor’s solution and all the solutions for a class. Their approach
employs a grading algorithm that uses syntactic, semantic, and structural match-
ing to match a student’s solutions with the template solution. They also investi-
gated the effectiveness of an automated grading approach for UML class diagrams
when applied to two classroom settings across different universities and compared
the results of automated grading with manual grading. [24]. Striewe et al.
[25] describe a method for grading UML behavioural diagrams based on trace in-
formation. Tsintisfas [26] created a generic student diagram editor that can be
easily customised for the exercise. He also produced a Computer Based Assess-
ment (CBA) that automatically marks diagram-based models, e.g., process and
entity-relationship diagrams. Jayal and Shepperd [27] developed a label-matching
approach for UML diagrams that employs multiple levels of decomposition as
well as syntactical matching. Through text transformation processing, they em-
pirically investigated the diversity of labels used by students in the activity dia-
gram. Thomas et al. [28] presented the analysis and classification of errors in
imprecise sequence diagrams as well as the performance of an automated grading
system. The analysis informed the design of a syntax error-checking tool that
detects and reports on syntax errors and also repairs the majority of error types
using information gleaned from the error analysis. Tselonis et al. [29] proposed
a graph-matching-based diagram marking approach for structural diagrams, e.g.,
UML class diagrams and electronic circuits. Sousa and Paulo [30] proposed a
structural technique for graphs that develops mappings from an instructor’s solu-
tion to elements in a student’s solution in order to maximize a student’s grade.
The proposed algorithm is applicable to any type of document that can be parsed
into its graph-inspired data model. This data model is able to accommodate dia-
gram languages, such as UML or ER diagrams, for which this kind of assessment
is typically used.
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2.2 Automated Grading Tools for UML Use Case Dia-

grams

Limited work has been done in the area of automated evaluation of use case dia-
grams, or it is under process. Fauzan et al. [3] created a semantic use case diagram
for an automatic assessment method that performs WordNet [31] searches using
WuPalmer [32, 33]. They first translated the use case diagram’s features (actor,
use case, relationships) into XMI and matched the labels semantically using some
natural language processing methods. Vachharajani et al. [34] proposed an ar-
chitecture of automated assessment of use case diagrams. The essence of their
architecture is to assess a large number of students’ diagrammatic answers very
easily in a short period of time. Their tool can also give quantitative feedback
in terms of grades as well as qualitative feedback in terms of suggestions. Vach-
harajani et al. [35] also employed a hybrid technique for automatically assessing
use case diagrams, in which labels were processed simultaneously in the syntactic
and semantic matching phases. They considered a use case diagram as a mixed
graph, with nodes representing different actors or use cases and edges indicating
the various relationships among them. In another paper, Vachharajani et al. [36]
introduced and developed a tool named "Use Case Extractor" towards achieving
the research objective of automated evaluation of the Use Case diagram. Arifin
et al. [37] proposed a method for measuring the similarity of use case diagrams
using structural and semantic matching aspects. Their proposed method used the
process of modelling the use case diagram as a graph and the graph similarity
method to measure structural similarity, and WuPalmer [32] and Levenshtein [38]
to measure semantic similarity. Kumar et al. [39] introduced the Static UML
Model Generator from Analysis of Requirements (SUGAR) tool, which generates
both use case and class models while emphasizing natural language requirements.
SUGAR aims to bring together both the requirement analysis and design phases
by identifying use cases, actors, classes, attributes, and methods, as well as proper
class association. They discussed the tool that generates all static UML models
in Java in conjunction with Rational Rose.
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2.3 Conclusion

There are some significant differences between our method and the aforementioned
approaches. The majority of them focused their research on grading the diagram,
name (label), and relationship matching rather than the use case specification.
They used syntactic and semantic matching to compare names and rarely used
NLP methods for texts with more than one word. They also considered structural
matching but could not match a use case with the wrong name based on its
specification. We also couldn’t find a work that matched the text (step) or took
flattening steps into account.

On the other hand, our approach uses syntactic and semantic matching as well as
NLP methods to match names and texts, e.g., use case multiplicity and steps. We
used Stanford CoreNLP to tokenize, lemmatize, recognize names of entities, find
parts of speech, and remove unimportant words before matching texts. We also
consider the order of steps and match orders in addition to texts. Using use case
specifications, we could figure out split use cases and determine which student
used the wrong name based on the steps of that use case. So, the use case is
correct, and the specification matches, but the student used the wrong name. The
method that distinguishes our approach from others’ works is flattening. When
flattening all use case steps, all steps in the model will be compared, and students
will receive points for any correct steps, regardless of whether they have used the
correct name for the use case. Furthermore, more than one correct solution can
be uploaded, and the student’s solution compares with all possible solutions. The
instructor is also able to assign points or redesign the marking scheme for each
component and feature in the model and can manage the deduction percentage
through the configuration settings. Finally, the tool provides the student and
instructor with detailed feedback, indicating where the student lost points.
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Chapter 3

Motivation

In this chapter, we will motivate our approach using a use case diagram mod-
elling the "Elfenroads" game. The method proposed here will be applied in our
automated grading system, which will be discussed in depth in Chapter 4.

Figure 3.1: Instructor Solution for Elfenroads Use Case Model

The instructor’s use case diagram solution, depicted in Fig. 3.1, contains 13 use
cases. Play Elfenroads, Login, Create New Game, Join Existing Game, and Load
Existing Game are all use cases that are linked to the "Player" as the primary actor
and the "Game Lobby Service" as the secondary actor. One student’s solution,
shown in Fig. 3.2, uses "Aoction" which is the wrong spelling form for "Auction".
This student also uses the word "Connect Game" as a name for the use case
"Join Game", and uses "Create Game" instead of "Create New Game". Although
the words that were used are not the same, we want our matching algorithm to
determine that "Connect Game" is a synonym for "Join Game", which is called
a semantic match. The use case "Aoction" should be matched with "Auction"
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Figure 3.2: Student Solution for Elfenroads Use Case Model

syntactically, even though there is a spelling mistake. Similarly, the use case
"Create Game" should be matched with "Create New Game".

In addition to names, each diagram includes some associations. It could be be-
tween use cases, e.g., include, which supports the reuse of functionality in a use-
case model, between actors, e.g., generalization, and also between actors and use
cases, e.g., primary actor. In Fig. 3.1, the instructor considered "Player" as a pri-
mary actor for five use cases, on the other hand, the student (Fig. 3.2) assumed
"Player" as a primary actor just for the "Play Elfenroads" use case. Furthermore,
the "Play Elfenroads" use case in the instructor’s solution (Fig. 3.1) contains six
include associations to other use cases, while in the student’s solution, although
there are six include associations, there is not any from the "Play Elfenroads"
to the "Choose Boot" use case (the student missed the "Choose Boot" use case).
Therefore, we need a strategy that recognise associations between each elements
in the diagram. Besides the diagram, each use case has a specification containing
all the details about that use case.

Fig. 3.3 shows the instructor’s specification for the "Join Existing Game" use case,
and Fig. 3.4 is the student’s solution for the "Connect Game" use case specifica-
tion. It is not difficult to compare levels, as there are just three kinds: User Goal,
Subfunction, and Summary. On the other hand, Intention and Multiplicity both
contain a sentence (text), and almost always, the texts that students write are dif-
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Figure 3.3: Instructor Solution for "Join Existing Game" Use Case Specification

ferent from the instructor’s, but they can convey the same meaning. So, matching
them syntactically and semantically is not enough, and we need to propose a Nat-
ural Language Processing (NLP) approach to match those sentences conceptually.
For example, the instructor’s solution multiplicity for the "Join Existing Game"
use case (Fig. 3.3) is "A player can only join one game as a time. Multiple play-

ers can join the same game or different games simultaneously.", but the student
wrote in the corresponding use case specification (Fig. 3.4) "Only one player can

connect to a game at a time, but multiple players can connect to the same or other

games simultaneously." as a multiplicity. While the sentences are not identical,
they share similar meanings and must be considered matched.

The most challenging aspect of comparing use case specifications is matching
steps. Each step is a sentence (text) defining the interactions between the sys-
tem and actors. In the Main Success Scenario, there are three kinds of steps: 1.
Communication step, which has to be specified in directions: Input or Output.
2. Context step, including three kinds of different types: Internal, External,
and Control Flow. 3. Use Case Reference step, which references another use
case to continue from. In Fig. 3.3, there are four Communication steps in the
Main Success Scenario, steps 1 and 3 in the "input" direction, which mean the
actor has a responsibility toward the system, and steps 2 and 4 in the "output"
direction, which show an interaction from the system to the actor. In addition to
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Figure 3.4: Student Solution for "Connect Game" Use Case Specification

matching steps’ texts, directions of steps, and types, the order of those steps is
also important, and writing steps in a different order than the instructor’ solution
is not acceptable to most of the instructors. in Fig. 3.3, the text of the first
step is "Player informs system which game s/he wishes to join." which is matched
with the first step in Fig. 3.4 "Player informs system that he wishes to connect

a game." Both directions are "input" and they are in the same order. So, we can
conclude that the first step in the student’s solution for the "Connect Game" use
case is completely matched with the first step in the corresponding use case in the
instructor’s solution.

The "Extensions" part describes what should happen when something goes wrong
or if something succeeds but in a different way. Each Extension can include three
parts: 1. Precondition, which refers to one step in the Main Success Scenario and
explains a different way of doing that step. 2. Alternate Flows, which are exactly
the same as Main Success Scenario steps, describe contracting the system with an
actor in a different condition explained in Precondition. 3. Conclusion Type,
which specifies what will happen after this Precondition and Alternate Flows,
could be Failure, Successful, or continuing from one step in the Main Success
Scenario. In Fig. 3.3, there is only one precondition, which refers to step 3 in

14



the Main Success Scenario, and one alternate output communication flow. The
conclusion type also explains that the use case ends in failure if this condition
happens. The corresponding Extension in the student’s solution in Fig. 3.4 refers
to step 5 in the Main Success Scenario. While the number of steps is different
(3 in the instructor’s solution and 5 in the student’s), we want our matching
strategy to identify if the reference steps are matched (in this scenario, step 3 in
the instructor’s solution and step 5 in the student’s solution). The alternate flows
and conclusion types also have to be compared if the preconditions are matched.

Figure 3.5: Instructor Solution for "Login" Use Case Specification

In practice, it is possible that the names of two use cases are not matched, neither
syntactically nor semantically, but some steps in their use case specification are
matched. In the Elfenroads example, there are no use cases in the instructor’s so-
lution (Fig. 3.1) that match the "Authentication" use case in the student’s solution
(Fig. 3.2). Fig. 3.5 demonstrates the instructor’s solution for the "Login" use case
specification, and Fig. 3.6 shows the student’s solution for the "Authentication"
use case specification. From the steps the student wrote, we can say some steps
like inputting the user name and password and confirming the identity are similar,
so these two use cases could be matched, but with the wrong name.

Additionally, it is possible that the number of use cases in the instructor’s solution
is different than the number of use cases in the student’s solution. In this situation,
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Figure 3.6: Student Solution for "Authentication" Use Case Specification

if we just match use cases one by one, in the end, there would be some use cases
for which there are no use cases to match with. One reason could be that the
student splits one use case into two or more or uses unnecessary use cases. In the
Elfenroads example, in the instructor’s solution (Fig. 3.1) there are 13 use cases,
while the student uses 15 use cases (Fig. 3.2). In such a case, therefore, there is a
need to flatten all steps in the Main Success Scenario and also in the Extensions
part. Flattening is based on use case reference steps that can be used under the
Main Success Scenario or Extensions. After flattening, each step in the flattened
instructor’s solution compares to each step in the flattened student’s solution one
by one and in order.

For example, Fig. 3.7 shows three sample use cases (A, B, and C) with some
communication steps. There is one "Include" association from use case A to B and
one from B to C. So, in use case A, there would be one use case reference step that
refers from A to B and one that refers from B to C in use case B. The flattened
Main Success Scenario steps of those use cases are as follows (same process for
flattening Extensions):

1=[input, User logs in to the system],

2=[input, User provides a Username and password],
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Figure 3.7: Example of Flattening Steps

3=[output, system sends User a verification code],

4=[input, User inputs the code he received],

5=[input, User clicks on the submit button],

6=[output, system shows a success message to the User],

7=[input, User logged in successfully]

Therefore, our matching strategy should be able to first flatten all steps in all use
cases in both instructor and student solutions, and then compare just flattened
steps.
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3.1 Conclusion

From all the examples above, we identified several matching techniques that should
be taken into account in our strategy. First, strict name matching is not sufficient
when comparing actors and use cases names. It is essential to combine syntac-
tic matching (eliminating spelling mistakes) and semantic matching (considering
synonyms and words with related meanings) for names in our strategy. Also, one
Natural Language Processing (NLP) method must be employed to match steps
and sentences. Stanford CoreNLP [40] which is one of the best NLP techniques,
can be used for this purpose. Second, structural matching strategies should be
incorporated, e.g., comparing the content of a use case, and finding similarities
based on the steps in the use case specification. Third, the order of the steps
is important and should be considered. Fourth, the strategy should handle Ex-
tensions steps properly by first checking the precondition’s reference step. Fifth,
when multiple use cases are associated with each other, we should first flatten all
steps of the associated use cases before matching them.
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Chapter 4

Grading Algorithm

In this chapter, we discuss the methodologies and algorithms we employed to
match instructor and student use case models. The overall algorithm is divided
into four principal categories: matching names, matching texts, matching use case
features, and flattening steps. In the following, all four categories are explained
in detail.

4.1 Matching name

Two alternative methodologies are employed to compare the names of actors and
use cases. In the first method, the Levenshtein distance [38] is used to perform
syntactic matching to quantify the similarity between the two names. The Lev-
enshtein distance computes the smallest number of single-character modifications
necessary to transform one word into another. When the Levenshtein distance
between two names is less than 40% of the longest name string length, they are
matched. The second strategy involves semantic matching. We employed three
WS4J (WordNet Similarity for Java) [31] algorithms that construct a similarity
metric between two words based on the WordNet database: Hirst and St-Onge
Measure (HSO) [41], Wu and Palmer (WUP) [32], and LIN [42]. The utilisation
of three measures in combination outperforms the use of a single measure. If the
calculated score is acceptable, the match is recorded [18].

• HSO: This measure compares two concepts based on the path distances be-
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Algorithm 1 Compare Actors
1: procedure COMPAREACTOR(InstructorModel, StudentModel)
2: instList← InstructorModel.getActor()
3: studList← StudentModel.getActor()
4: for all Actor Ai in instList, As in studList do
5: if syntacticMatch(As.name, Ai.name) or semanticMatch(As.name, Ai.name) then
6: return similarityRatio
7: find among the matches of Ai the As that obtains the highest similarityRatio
8: actorMatchMap(Ai, As)
9: for all Actor Ai in missActorList do

10: for all Actor As in studList do
11: if no match exists for As then
12: if no match exists for Ai then
13: missActorList.add(Ai)
14: if actorMatchMap.get(Ai).equals(actorMatchMap.get(As)) then
15: Ui← Ai.getUpperBound() and Us← As.getUpperBound()
16: Li← Ai.getLowerBound() and Ls← As.getLowerBound()
17: if (Ui == Us) then
18: return Actor upper bound is matched
19: if (Li == Ls) then
20: return Actor lower bound is matched
21: return actorMatchMap, missActorList

tween them in the WordNet database. It measures the similarity by the
number of directions changed, which should be needed to connect one con-
cept to another.

• WUP: Given two concepts, WUP measures their similarity by the number
of common concepts from the root concepts to these two concepts.

• LIN: Lin is an improvement of the Resnik measure [43] and uses the infor-
mation content (IC) of two concepts to calculate their semantic similarity.
The IC of a term is calculated by measuring its frequency in a collection of
documents.

The combination of those algorithms returns a similarity ratio value. The actor’s
or use case’s name from the instructor solution is matched with the actor’s or use
case’s name in the student solution, which has the highest ratio.

Algorithms 1 and 2 illustrate the process of matching actors and use case names
in detail. The algorithm takes as input the instructor model, InstructorModel,
and the student model, StudentModel.

Semantic and syntactic methods are used to compare actors and use cases’ names
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Algorithm 2 Compare Use Cases
1: procedure COMPAREUSECASE(InstructorModel, StudentModel)
2: instList← InstructorModel.getUseCase()
3: studList← StudentModel.getUseCase()
4: for all UseCase Ui in instList, Us in studList do
5: if syntacticMatch(Us.name, Ui.name) or semanticMatch(Us.name, Ui.name) then
6: return similarityRatio
7: find among the matches of Ui the Us that obtains the highest similarityRatio
8: useCaseMatchMap(Ui, Us)
9: for all UseCase Ui in missUseCaseList do

10: for all UseCase Us in studList do
11: if no match exists for Us then
12: ListI← Ui.getCommunicationStep()
13: ListS← Us.getCommunicationStep()
14: for all CommunicationStep CSs in ListI, CSi in ListS do
15: if COMPARETEXT(CSi.name, CSs.name) then
16: counter++
17: if (counter/CSi.size) > 0.33) then
18: useCaseMatchMap(Ui, Us)
19: if no match exists for Ui then
20: missUseCaseList.add(Ui)
21: return useCaseMatchMap, missUseCaseList

(line 5). Since it is possible that one actor’s or use case’s name in the instructor’s
solution is matched with more than one actor’s or use case’s name in the student’s
solution, the algorithm matches the actors or use cases that have the highest
similarity ratio (line 7).

After finding matched actors in algorithm 1, if there are any actors Ai in the
instructor’s solution that could not be matched with actors As in the student’s
solution, those actors are stored as "Missed Actors" (lines 11 to 13). Furthermore,
the lower bound (L) and upper bound (U) for those Actors Ai that are matched
with As are compared (lines 15 to 20).

Since algorithm 2 matched use case names and stored missed or wrong use cases
in the missUseCaseList, the communication steps (CS) are checked for all Ui in
the missUseCaseList and Us that could not be matched in the studList(lines 12 to
16). If there is more than 33% (at least a third) similarity between the use cases’
communication steps (line 17), we can conclude that the student most likely named
the use case incorrectly. We examined different threshold values when comparing
use case names, considering their steps rather than the exact name, and we found
that the threshold of 33% was the best value. When we examined threshold values
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greater than 33%, the automated grading was lower, and when examined lower
than 33%, the automated grading was higher than manual grading in most cases.
Therefore, the Ui from the missUseCaseList is considered matched with the Us

and stored in the useCaseMatchMap (line 18). MissUseCaseList (line 20) stores
use cases that could not be matched, either in names or communication steps.

4.2 Matching Text

Based on our approach, each word in one text, e.g., multiplicity, in the instructor’s
solution must be compared to each word in the corresponding text in the student’s
solution to calculate the similarity between the two texts. Therefore, we used
Natural Language Processing (NLP) methods to split the text and find keywords,
as we did not need to match negligible words. While there are other outstanding
natural language analysis toolkits, Stanford CoreNLP [40] is one of the most widely
used. It simplifies and expedites text data analysis and can extract all kinds of
text properties, such as named-entity recognition or part of speech tagging. The
linguistic annotation of naturally occurring text may be viewed as a series of
changes to the original text, with each stage removing surface distinctions.

Figure 4.1: Matching Text Flowchart

Fig. 4.1 depicts how we employ text matching in our strategy. Tokenization is one
of the first phases of the natural language processing transition [44]. This involves
identifying tokens, or those basic units that do not need to be decomposed in
subsequent processing. The entity word is one kind of token for NLP, the most
basic one [45]. Generally, "Tokenization" is the process of breaking down a phrase,
sentence, paragraph, or entire text document into smaller parts, such as individual
words or phrases. Tokens are the names given to these smaller units. The tokens
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could be words, numbers, or punctuation marks. When comparing text, the most
important part is the words, followed by numbers. Therefore, first, we split the
entire text and find the part of speech of each word. "Part Of Speech" (POS)
[46] is a category to which a word is assigned in accordance with its syntactic
functions. For example, address in the verb form will not be compared to address

in the noun form. In the English language, there are eight essential parts of speech,
including nouns, pronouns, verbs, adjectives, adverbs, prepositions, conjunctions,
and interjections. Comparing nouns, verbs, adjectives, adverbs, and also numbers,
and eliminating other parts of speech called "Stopwords", e.g., prepositions, leads
to better results.

"Lemmatization" is an important data preparation step in many Natural Language
Processing (NLP) tasks [47]. It is a text normalization method that converts any
type of word to its basic root mode [48]. For instance, the suffixes of the words
studying, studies, and studied would change to get the normalized form study

standing for the infinitive: study. This technique helps us to lemmatize all words
in a part of speech and just compare the base format of each word. This is
beneficial because we can process syntactic and semantic matching easier, faster,
and with fewer mistakes.

"Named Entity Recognition" (NER) [49] is another natural language processing
technique that automatically detects and categorizes named entities in text. En-
tities can be people’s names, organizations’ names, locations, times, quantities,
monetary values, and percentages. We can use named entity recognition to ex-
tract key information to comprehend what a text is about. In our strategy, we
eliminated those words with inessential NERs when comparing texts, like person,
location, and date.

For a sample step, "The system presents the list of games that have less than the

maximum number of players" if we apply all of the methods mentioned in Fig.
4.1, the matching text algorithm (3) produces the results shown below.

Nouns: [system, list, game, number, player]

Verbs: [present, have]

Adjectives: [less, maximum]
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Algorithm 3 Compare Texts
1: procedure COMPARETEXT(instText, studText)
2: wordList← Tokenizer(instText or studText.splitBySpace())
3: if wordlist contains "and" or "then" then
4: return marge step
5: for all word W in wordList do
6: W.partOfSpeech
7: if W.stopwords = true then
8: W.remove
9: W.lemmatize

10: instMap← map<POS , listInstWords>
11: studMap← map<POS , listStudWords>
12: for all POS Pi in instMap, Ps in studMap do
13: for all Word Wi in wordList[Pi], Ws in wordList[Ps] do
14: if syntacticMatch(Ws, Wi) or semanticMatch(Ws, Wi) then
15: if Pi = Ps = (noun or verb) then
16: increase counter * 1.5
17: else
18: increase counter * 1
19: if counter / listWords [Pi].size > 0.55 then
20: return true

As a result, the algorithm simply compares nouns from the instructor’s solution
to nouns from the student’s solution, verbs to verbs, adjectives to adjectives, and
numbers to numbers, and finally, a threshold value is generated.

In algorithm 3, the tokenizer method is used to separate the entire text into a list
of words (line 2), and then the parts of speech of each word are determined using
Stanford CoreNLP (line 6), and those parts of speech that are not necessary to
compare (stopword), e.g., prepositions, are eliminated (lines 7 and 8). Finally, the
lemmatization procedure converts all words to their basic format (line 9). Lines
10 and 11 maps all words to their parts of speech, and then lines 12 to 14 compare
all words Wi in the instructor wordList syntactically and semantically to all words
Ws in the student wordListare with the same part of speech. Because nouns and
verbs are more significant than other parts of speech, for each matched verb and
noun, the counter increases 1.5 times more than for other parts of speech (lines 15
and 16). As mentioned in line 19, two texts are considered matched if more than
55% of all words are matched. In chapter 6, we will discuss how we determined 1.5
times more weight for nouns and verbs, and that 55% is the best value for setting
the matching. Recognizing the Merge steps is hardcoded in this algorithm. As
line 3 shows, if a step text contains "and" or "then" words, we can say the student
potentially merged two or more steps into one.
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Algorithm 4 Compare Use Case Features
1: procedure COMPAREFEATURE(useCaseMatchMap)
2: if useCaseMatchMap.get(Ui).equals(useCaseMatchMap .get(Us) then
3: instLevel← Ui.getUseCaseLevel()
4: studLevel← Us.getUseCaseLevel()
5: for all UseCaseLevel Li in instLevel, Ls in studLevel do
6: if Li = Ls then
7: return Use Case Level is Matched
8: instIntention← Ui.getUseCaseIntention()
9: studIntention← Us.getUseCaseIntention()

10: return COMPARETEXTS (instIntention, studIntention)
11: instMultiplicity← Ui.getUseCaseMultiplicity()
12: studMultiplicity← Us.getUseCaseMultiplicity()
13: return COMPARETEXTS (instMultiplicity, studMultiplicity)
14: instPrimaryActor← Ui.getPrimaryActor()
15: studPrimaryActor← Us.getPrimaryActor()
16: if syntacticMatch (instPrimaryActor, studPrimaryActor) or semanticMatch (instPri-

maryActor, studPrimaryActor) then
17: return Use Case Primary Actor is Matched
18: instSecondaryActor← Ui.getSecondaryActor()
19: studSecondaryActor← Us.getSecondaryActor()
20: for all actor Ai in instSecondaryActor, As in studSecondaryActor do
21: if syntacticMatch(Ai, As) or semanticMatch(Ai, As) then
22: return Use Case Secondary Actors are Matched
23: instInclusion← Ui.getInclusion()
24: studInclusion← Us.getInclusion()
25: for all use case Ui in instInclusion, Us in studInclusion do
26: if syntacticMatch(Ui, Us) or semanticMatch(Ui, Us) then
27: return Use Case Inclusions are Matched

4.3 Matching Use Case Feature

Algorithm 4 matches use case features: Level, Intention, Multiplicity, Inclusion,
Primary and Secondary Actors. For matched use cases, first, check the level (lines
3 to 7). Since there are just three kinds of levels, we simply check if they are
matched. Levels are matched if the level in Ui is identical to the level in Us.
Intention (lines 8 to 10) and multiplicity (lines 11 to 13) each contain only one
sentence (text). So, using algorithm 3, check if studIntention and studMultiplicity
are matched with instIntention and instMultiplicity respectively.

Each use case can be connected to just one primary actor, so the primary actor in
Ui compares syntactically and semantically with the primary actor in Us (lines 14
to 17). The strategy for secondary actors is the same as for primary actors. The
only difference is that there could be more than one secondary actor per use case
and all those actors are compared (lines 18 to 22).
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Algorithm 5 Compare Use Case Main Success Scenario
1: procedure COMPAREMAINSUCCESSS(useCaseMatchMap)
2: if useCaseMatchMap.get(Ui).equals(useCaseMatchMap .get(Us) then
3: instCommStepList← Ui.getCommunicationSteps()
4: studCommStepList← Us.getCommunicationSteps()
5: for all Step Si in instCommStepList, Ss in studCommStepList do
6: if (Si.direction=Ss.direction) then
7: if COMPARETEXT(Si, Ss)and (Si.order=Ss.order) then
8: point += Si.point
9: instContStepList← Ui.getContextSteps()

10: studContStepList← Us.getContextStep()
11: for all Step CSi in instContStepList, CSs in studContStepList do
12: if (CSi.type = CSs.type = Internal) or (CSi.type = CSs.type = External) then
13: if COMPARETEXT(CSi, CSs) then
14: point += CSi.point
15: if (CSi.type = CSs.type=ControlFlow) then
16: Tokenize(CFi , CFs)
17: instNumbers← Tokenize(CFi.Numbers)
18: studNumbers← Tokenize(CFs.Numbers)
19: for all flowNum FNi in instNumbers, FNs in studNumbers do
20: if all FNi=FNs and COMPARETEXT(CFi , CFs) then
21: point += CFi.point
22: instListUC← Ui.getUseCaseReference()
23: studListUC← Us.getUseCaseReference()
24: for all UseCaseReference Ri in instListUC, Rs in studListUC do
25: if syntacticMatch(Ri, Rs) or semanticMatch(Ri, Rs) then
26: point += Ri.point
27: return point

Each use case could be associated with one or more other use cases by include
association. As a result, all the included use case names in Ui and Us are compared
syntactically and semantically (lines 23 to 27).

Algorithm 5 demonstrates how to match the use case’s Main Success Scenario.
The Main Success Scenario contains 3 kinds of steps: communication, context,
and use case reference. Communication includes input and output directions, and
context comprises internal, external, and control flow types. When trying to match
communication and context steps, the algorithm first checks if the directions and
types of those steps are matched (lines 6, 12, and 15), then matches the steps.
As a result, if two steps with the same direction or type are matched using the
matching text algorithm (algorithm 3) and if the step in the Us is in the same
order as in the Ui (line 7), we can conclude that those steps are matched. If the
context is of the "Control Flow" type (line 15), the step numbers and the number
of repetitions of those steps are significant to compare. We find those numbers
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Algorithm 6 Compare Use Case Extension
1: procedure COMPAREEXTENSION(useCaseMatchMap)
2: if useCaseMatchMap.get(Ui).equals(useCaseMatchMap .get(Us) then
3: instListPreCondition← Ui.getPreCondition()
4: studListPreCondition← Us.getPreCondition()
5: for all preCondition Pi in instListPreCondition,
6: Ps in studListPreCondition do
7: if COMPARETEXT(Pi, Ps) and COMPARETEXT (Pi.getReferenceStep,

Ps.getReferenceStep) then
8: COMPAREMAINSUCCESSS(Pi.AlternateFlow, Ps.AlternateFlow)
9: instConclusionType← Ui.getConclusionType()

10: studConclusionType← Us.getConclusionType()
11: if instConclusionType = studConclusionType = Failure or instConclusionType

= studConclusionType = Success then
12: point += instConclusionType.point
13: if instConclusionType = studConclusionType = step then
14: if COMPARETEXT(instConclusionType.getReferenceStep(), studConclusion-

Type.getReferenceStep()) then
15: point += instConclusionType.point
16: return point

using the Tokenizer method (line 16). Line 20 checks if all numbers in the control
flow step in the instructor’s solution (FNi) are matched with the numbers in the
control flow step in the student’s solution (FNs), and also checks if the text of the
control flow step in CFi is matched with CFs. For the use case reference step, the
use case referenced in the Ui is syntactically and semantically compared to the use
case referenced in the Us (lines 24 and 25).

Algorithm 6 illustrates the matching of use case Extensions. Each Extension
includes a precondition, which refers to a step in the Main Success Scenario. The
precondition could have one or more alternative flows. Those alternative flows
could be communication, context, and use case reference steps (exactly the same
as in the Main Success Scenario). The last part of an Extension specifies in which
condition the use case ends: fail, success, or continue from another step in the
Main Success Scenario. Therefore, to compare Extensions, first, the precondition
must be matched.

To match the precondition, we must determine whether the reference step in Ui is
the same as the reference step in Us. If the reference steps and the text of those
preconditions are matched (line 7), the algorithm continues to check alternative
flows (line 8). Matching alternate flows is done using algorithm 5, so we refer to
that algorithm to match all steps. If both conclusion types in Pi and Ps are Fail
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or Success (line 11), the algorithm returns true, which means the conclusion type
is correct. If the conclusion type in Pi references one step in the Main Success
Scenario (line 13) of the use case Ui, Ps also has to be referenced to the same step
in the Main Success Scenario in the use case Us (line 14), otherwise, the conclusion
type is incorrect.

4.4 Flattening Step

Most use case diagrams contain more than one use case, and those use cases can
be connected using include associations. In this case, the Main Success Scenario
would also include the use case reference step(s). As there is not just one solution
for a particular issue, one student may choose a name for a use case that is
not matched with the instructor’s use case name (like "Login" in Fig. 3.1 and
"Authentication" in Fig. 3.2), or a student may split one use case into two or more
use cases (in Fig. 3.2, the student split the "Distribute Resources" use case into
"Round Setup" and "Town Interaction" use cases), but it would not be a completely
wrong answer. Therefore, if we check steps only in matched use cases, there could
be some steps in unmatched use cases that could be the correct answer, and as
a result, some points for those steps will be unfairly deducted from the student’s
mark. To avoid these problems, the algorithm first flattens all the steps in the
Main Success Scenario and the Extensions part of the use case specification in all
use cases. After flattening, there will be one ordered list of steps for the instructor
and one for the student’s solution, and the algorithm will simply compare these
two flattened lists from the instructor to the student’s solution.

We show how to flatten steps in algorithm 7. For this purpose, first, we need
to determine the root use case. A root use case is not included in other use
cases, but other use cases, directly or indirectly, are included in the root use case.
Line 4 checks all use cases UC and stores all that included other use cases in the
inclusionList (line 5). As a result, there would be just one use case that does
not exist in inclusionList which means it is not included by the other use cases,
and that would be the root use case (line 7). The algorithm checks the Main
Success Scenario step Mi for root use case UCI (line 8). If it is an instance of a
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Algorithm 7 Flattening Steps
1: procedure FLATSTEP(InstructorModel)
2: instList← InstructorModel.getUseCase()
3: for all UseCase UC in instList do
4: if UC.getInclusion = true then
5: inclusionList.add(UC.getIncludedUseCase)
6: for all UseCase UCI in instList do
7: if UCI does not exist in inclusionList then
8: instStepList← UCI.getMainSuccessScenario()
9: for all mainSuccessScenario Miin instStepList do

10: if Mi instanceof CommunicationStep then
11: stepFlat.put(communicationStep.stepText, Direction)
12: else if Mi instanceof ContextStep then
13: stepFlat.put(communicationStep.stepText, Type)
14: else if Mi instanceof UseCaseReferenceStep then
15: useCase U = UseCaseReferenceStep
16: instStepList← U.getMainSuccessScenario()
17: Continue at line 9
18: if step s is the last step in use case U then
19: Go to the previous use case
20: Continue at line 10
21: return stepFlat

communication step (line 10), step text and direction are added to the step flat
(line 11). If Mi is an instance of a context step (12), the step text and type are
added to the stepFlat (line 13). Finally, if Mi is an instance of a use case reference
step (line 14), the Main Success Scenario for referenced use case U is acquired (line
16), and the algorithm gets back and continues from line 9 for use case U, and all
the Main Success Scenario steps in use case U are added to the stepFlat. If the
Main Success Scenario in one use case, i.e., the last use case, does not contain the
use case reference step, and all steps of that use case are added to the stepFlat,
the algorithm goes back to the last checked use case and continues from the step
after the reference step (line 20). This process continues until the algorithm goes
back to the root use case and all steps are added to the stepFlat.

Algorithm 8 flattens use case Extensions. The root use case is determined in the
same way as in algorithm 7 (line 3). If the extension step Ei of the root use case
UCI is an instance of precondition, the precondition step text and the referenced
step text are added to the extensionFlat (lines 7 and 8). three conditions exist
if Ei is an instance of conclusion type: failure, success, and step. For "failure"
and "success", the exact type will be added to the extensionFlat (lines 10 and 11),
but if the conclusion type refers to one step from the Main Success Scenario to
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Algorithm 8 Flattening Extensions
1: procedure FLATEXTENSION(InstructorModel)
2: instList← InstructorModel.getUseCase()
3: "Find root use case UCI in instList"
4: instExtList← UCI.getExtension()
5: instMainList← UCI.getMainSuccess()
6: for all extensionStep Ei in instExtList do
7: if Ei instanceof PreCondition then
8: extensionFlat.put(Ei.referenceStep + Ei.stepText)
9: else if Ei instanceof ConclusionType then

10: if Ei = Failure then extensionFlat.put("Failure”)
11: else if Ei = Success then extensionFlat.put("Success”)
12: else if Ei = Step then extensionFlat.put(Referenced step)
13: else if Ei instanceof AlternateFlow then
14: for all AlternateFlow AF in Ei do
15: if AF instanceof CommunicationStep then
16: extensionFlat.put(commStep.stepText, Direction)
17: else if AF instanceof ContextStep then
18: extensionFlat.put(ContextStep.stepText, Type)
19: else if AF instanceof UseCaseReferenceStep then
20: useCase U = UseCaseRefStep
21: instList← U.getExtension()
22: Continue at line 4
23: for all mainSuccess MF in instMainList do
24: if Mi instanceof useCaseReferenceStep then
25: UseCase U = Mi.getUseCaseRef
26: Continue at line 4
27: if step s is the last step in use case U then
28: Go to the previous use case
29: Continue at line 7
30: return extensionFlat

continue, that step will be added to the extensionFlat (line 12).

If Ei is an alternate flow AF and AF is an instance of a communication step (line
15), the step text and direction are added to the extensionFlat (line 16). If AF
is an instance of a context step (line 17), the step text and type are added to
the extensionFlat (line 18). On the other hand, if AF is an instance of a use
case reference step (line 19), the algorithm continues from line 4 for the use case
that is referenced here (line 22). In addition to the Extensions, the Main Success
Scenario must be reviewed to determine if any use case reference steps exist (lines
23 and 24). If there is any referenced use case U, the algorithm continues for the
use case U from line 4 (line 26), and all extensions for those use cases are added to
extensionFlat. In the end, after adding the last extension step in the last use case
to the extensionFlat, the algorithm gets back to the previous use case and finds
extensions after the use case reference step (lines 27 to 29). This process continues
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Algorithm 9 Compare Flatted Steps
1: procedure COMPAREFLATTEDSTEP(InstStepFlat, StudStepFlat)
2: for all Step Si in InstStepFlat Ss in StudStepFlat do
3: if Si.direction = Ss.direction then
4: if COMPARETEXT(Si, Ss) and Si.order = Ss.order then
5: point += Si.point
6: Si.remove
7: Ss.remove
8: return point

Algorithm 10 Compare Flatted Extension
1: procedure COMPAREFLATTEDEXTENSION(instExtFlat, studExtFlat)
2: for all Step Si in instExtFlat, Ss in studExtFlat do
3: if Si and Ss instance of PreCondition then
4: if COMPARETEXT(Si.getRefStep(),Ss.getRefStep()) then
5: if COMPARETEXT(Si, Ss) and (Si.order=Ss.order) then
6: point += Si.point
7: else if Si and Ss instance of ConclusionType then
8: if Si.ConclusionType = Ss.ConclusionType = success
9: and Si.order = Ss.order then

10: point += Si.point
11: else if Si.ConclusionType = Ss.ConclusionType = Failure
12: and Si.order = Ss.order then
13: point += Si.point
14: else if Si.ConclusionType = Ss.ConclusionType = Step and
15: COMPARETEXT(Si.referenceStep, Ss.referenceStep) and
16: Si.order = Ss.order then
17: point += Si.point
18: else if Si and Ss instance of AlternateFlow and
19: Si.direction = Ss.direction then
20: if COMPARETEXT(Si, Ss) and Si.order = Ss.order then
21: point += Si.point
22: Si.remove
23: Ss.remove
24: return point

until all extensions are reviewed and added to the extensionFlat in order.

After executing algorithm 7 for both the student and instructor’s solutions, there
would be a list of Main Success Scenario steps in InstStepFlat and StudStepFlat.
Algorithm 9 matches all flatted steps Si in InstStepFlat to flatted steps Ss in
StudStepFlat. We just need to compare the pairs of step texts that have the same
directions (line 3). If the texts are matched and the steps are in the same order
(line 4), we consider the steps to be matched. Finally, the matched steps are
removed from the InstStepFlat and StudStepFlat to avoid being reviewed more
than once (lines 6 and 7).
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Now, when instExtFlat and studExtFlat exist after the implementation of algo-
rithm 8, we can compare those flattened Extensions using algorithm 10. If the
steps Si and Ss are instances of precondition (line 3), using the matching text
algorithm (line 4) checks if the referenced step’s text of Si and Ss are matched.
If matched, check if the texts and orders of Si and Ss are also matched (line 5).
If Si and Ss are instances of the same conclusion type for the same precondition,
and both types are success (line 8) or failure (line 11), or if they refer to the same
step in the Main Success Scenario to continue from (line 14), we can say those
conclusion types are matched. If Si and Ss are instances of alternate flow (line
18), we check whether the directions are matched. If directions are the same (line
19) and texts of steps Si and Ss are matched using algorithm 3 (line 20), and they
are in the same order, we can conclude that Si and Ss are matched. Finally, those
matched steps will be eliminated from instExtFlat and studExtFlat in order to
avoid getting assessed again (lines 22 and 23).

4.5 Conclusion

When comparing use case diagram models, we consider different kinds of vari-
ations. This chapter outlines the grading algorithm, which is divided into four
parts. When comparing use cases, we considered structural matching, like rec-
ognizing split use cases, or the correct use case for which the student has given
the wrong name. We demonstrated how matching names using syntactic and se-
mantic matching, as well as using NLP when comparing texts, plays an important
role. We also offered to flatten the Main Success Scenario and Extensions steps
in instructor and student solutions before matching them. This process causes
students to lose fewer marks if they split one use case.
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Chapter 5

Grading Architecture and Tool

Support

In this chapter, we discuss how to redesign the architecture of the class diagram
grading tool so that it can be used for developing grading tools for other modeling
languages, e.g., use case diagrams.

The metamodels and grading tools that support the automated grading approach
are also discussed in this chapter. The TouchCORE tool [19] incorporates the
grading method and metamodels. We cover the automatic grading process in our
tool and several essential features in further depth by presenting the graphical user
interface (GUI) of the TouchCORE tool. Then we go through the configuration
panel, which allows users to customize different grading procedures for different
instructors.

5.1 Automated Grading Architecture

This part goes through the grading tool that we used to assist with the auto-
mated grading technique. We extended a tool called TouchCORE [50] to employ
the previously proposed grading metamodels and implement the matching method.
TouchCORE, is a multi-touch enabled software design modelling tool aimed at de-
veloping scalable and reusable software design models following the concern driven
software development paradigm [19]. TouchCORE is built on the Eclipse Modeling
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Framework (EMF)[51] and the Multi-Touch Library for Java (MT4J)[52].

Figure 5.1: TouchCORE Architecture for Automated Grading of Use Case Models

Fig. 5.1 shows TouchCORE grading architecture. In the first step, the instructor
and students generate their diagrams using the tool. Then, the instructor is able
to assign points to each feature in the diagram, e.g., use case, actor, and their as-
sociations, and all use case specifications, e.g., steps. The instructor is also able to
modify deduction percentages for each feature through the configuration settings
panel. After setting these configurations, the tool compares the instructor’s model
and the students’ model by matching structure, name, and text. In the end, the
tool generates a result and provides feedback to the students and instructor.

We proposed some generic packages for those methods that could be reused in
other modelling languages. For example, matching names and text and some
structural matching from the evaluation part can be reused in the activity diagram.
The configuration setting panel, which is also used in the automated grading of
all modelling languages, can be modified and reused easily in our approach.
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5.2 Grading Metamodels

This chapter goes over the metamodels that have been created by Bian et al. [18,
24] to work for the automatic grading of Class Diagrams. This grading meta-
model can be applied to any modelling language with a metamodel expressed in
ECore. They defined separate metamodels rather than augmenting the class di-
agram metamodel to support the definition of grades and matchings for model
elements [24]. This was less invasive, as it left the class diagram metamodel un-
changed, and hence all existing modelling tools could continue to work. So, we
reused their metamodels that were used to store a model’s grade as well as map-
pings between the student’s model elements and the instructor’s model elements
to aid in the automatic grading of use case diagrams.

Figure 5.2: Grade Metamodel

Fig. 5.2 displays the grade metamodel. This metamodel augments any model
expressed in ECORE with grades. The GradeModel maps Grade, which contains
a key attribute (EObject), to ObjectGrade including a point attribute. In this way,
points can be assigned to any modelling element in a language that is modelled
using a metaclass. ObjectGrade maps StructuralFeature which contains a key at-
tribute (EStructuralFeature) to FeatureGrades which contain a point attribute. So,
points could also be assigned to any structural features in order to award points
for the properties of modelling elements.

For example, the instructor may want to consider 2 points for the Player actor
in Fig. 3.1 and an additional point if the multiplicity of the actor is 2..6. In
this case, one would create an ObjectGrade and insert it into the GradeMap using
as a key Actor, and assign the points value 2. Additionally, one would create
a FeatureGrades, and insert it into the GradeStructuralFeatureMap using a key
ActorMultiplicity of Player actor.

The classroom metamodel is illustrated in Fig. 5.3. The ClassRoomModel maps
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Figure 5.3: Classroom Metamodel

ModelObject which contains a key attribute (EObject) to StudentSolutionList con-
taining the SolutionList attribute. This is used to store the mappings identified
after running the automatic grading algorithm. The classroom metamodel asso-
ciates each model element in the instructor solution (EObject key) to a list of
possible matched model elements in the student solution (Elist SolutionList) by
the matching algorithm. The instructor is also able to update the grades of the
students in case he or she decides to modify the point weights in his or her solution.

5.3 Grading Tool Support

In this chapter, we discuss the graphical user interface of the grading tool that we
modified to support the automated grading of the use case diagram. So, we reused
the grading metamodel described in the previous section and extend a tool called
TouchCORE [19]. We also describe how to assign points, configure deduction, and
grade a use case model using the tool in detail.

The main graphical user interface (GUI) of the TouchCORE is seen in Fig. 5.4.
By clicking (tapping) on the New Concern (the button likes +) button, a user
can choose a folder to create a model. The user may also load existing models
created earlier from a file browser by choosing the Load Concern button. The
Create Homework button directs the user to a view in which instructor and student
models can be uploaded and prepared for grading. By choosing the Load Homwork

button, a previously saved Homework can be browsed and opened.

Fig. 5.5 shows one new Homework created by a user. By clicking on the Import

Student button, the instructor can upload one student’s model, or by clicking on
the Import All Students button, he or she can import all students’ models at once.
The instructor is able to create a solution by clicking on the Create Teacher Solu-
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Figure 5.4: TouchCore Main Graphical User Interface

Figure 5.5: TouchCore New Homework View
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tion or upload a previously created solution by choosing Import Teacher Solution

button.

Figure 5.6: Student Models in TouchCORE File Browser

Fig. 5.6 depicts various student models after choosing the Import Student button.
There is one folder per student, and the instructor can open students’ models from
this view easily. The same browsing file appears by clicking on the Import Teacher

Solution. The user can upload all available student solutions, and as there could
be more than one solution for a particular problem, the user can also upload all
possible solutions under Teacher Solution.

After choosing a folder and clicking on the file that contains the model for both
instructor and student solutions, those models upload to the Homework as shown
in Fig. 5.7. In this case, one instructor solution and two student solutions are
uploaded. The user can press and hold on to each model to see a new menu. By
selecting Remove, the selected model is removed, and by selecting View Model a
use case similar to that shown in Fig. 5.8 appears. This figure shows one student’s
use case model for the Gas Station assignment.

Fig. 5.9 depicts the Gas Station solution designed by the instructor. It can be
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Figure 5.7: Instructor and Student Models Displayed in Homework

Figure 5.8: Sample Student Model Displayed in TouchCore
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Figure 5.9: Instructor Solution Model Displayed in TouchCore

opened by clicking on the Import Teacher Solution or create it by choosing the
Create Teacher Solution button. The instructor can assign points to each element
from this view. One technique for assigning points to model elements is shown in
this figure. The user can enter the marking mode by clicking the Mark button.
In the marking mode, the user can press and hold on any model element, such as
the actor "Pump" in Fig. 5.9, for a few seconds to correctly assign the grade to
the model element. The grade is presented in a circle next to the model element,
with a dotted line connecting the model element to the grade. The instructor
can also drag the grade in the tool to move it around. Each grade has a default
value of zero, but the instructor can modify the grade value by double-clicking
the grade to open the keyboard and changing the grade from zero to, for example,
one. After assigning points, the user can tap on the Mark button again, and the
button’s colour will change to black, indicating that the user has turned off the
mark mode.

There is also another technique that is faster and easier to assign points to all
model elements. By selecting the Configuration button in the instructor’s view
(Fig. 5.9), a panel (Fig. 5.10) appears in which the use case diagram and use case
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Figure 5.10: Configuration Panel to Set Initial Points

Figure 5.11: Assigned and Modification Points in the Diagram
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specification initial points can be modified. In this way, the instructor can assign
points to any model element in the use case diagram and specification. When
the instructor assigns points to all model elements, he or she can select the Set

button, and those points will be applied to all features in the instructor’s model.
Fig. 5.11 demonstrates the assigned points to the diagram. All points in circles
can also be modified by double-clicking on the points. For example, the instructor
decided to modify Driver actor’s points from 1 to 2.

Figure 5.12: Use Case Model Modification

If the user presses and holds on each element in the diagram, some new options are
displayed, as shown in Fig. 5.12. There are three options for actors, Delete button
deletes the actor and all its associations with other elements in the diagram. By
clicking on the Delete association, the user can choose one association from all
connected associations to that actor and delete it. The Close menu button closes
this menu. There is one more option for use cases (Go to detail button), which
directs the user to the selected use case specification.

Fig. 5.13 shows the Fill Up use case specification. It includes Name, Level,
Intention, Multiplicity, and Primary and Secondary actors of the selected use
case. The most important parts of the use case specification are steps in the
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Figure 5.13: Steps’ Points Modification in Use Case Specification

Figure 5.14: Show Total Marks in Homework
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Main Success Scenario and Extensions. After assigning step points through the
configuration panel shown in Fig. 5.10, all steps will be assigned the same points.
These points are shown at the end of each step in the use case specification (Fig
5.13). The instructor can modify any points assigned to steps in the use case
specification panel. As can be seen, the instructor decided to assign 2 and 1 points
for some steps, and no points for others based on their importance. Finally, the
instructor can click on the Save button to save all assigned points for all steps,
and using Back to Concern button, go back to the Homework view (Fig. 5.14).
When coming back to the Homework, the user can see the total assigned marks by
double-clicking on the instructor’s model under Teacher Solutions. In this case,
the Total Marks is 30.

Figure 5.15: Configuration Settings Panel

By pressing the Configuration button from the Homework (Fig. 5.14), the user can
access the configuration setting panel (Fig. 5.15) and set the deduction percent-
age for each incorrect element in the student solution. The configuration settings
panel’s contents will be discussed later in this chapter. After modifying the config-
uration options, the user may save this configuration by pressing the Set button.
If more than one correct solution is uploaded by the instructor, the user can set
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different configuration settings for other solutions by clicking the Load Another

Template Model button.

Figure 5.16: Graded Student Models

After setting the configurations, now the user can grade all uploaded student
models by clicking on the Grade All button (the button likes A+) and a few
seconds later, the grade for each student model shows behind the Earned Points

as it is displayed in 5.16. It can be seen that both students are graded, and their
total marks are displayed. Again, by pressing and holding on to one student model
and selecting the View Model option, that student model can be opened. But this
time, the grade received by the student for each element in the diagram can be
seen in addition to the model.

Fig. 5.17 displays the grading result for one student. The student’s original model
is shown in Fig. 5.8. When the student makes any mistakes, the grade for the
model element will be highlighted in yellow. So, for this example, the student
received full points for all actors but missed some points for the use case. Based
on the instructor model (Fig. 5.9), the student also lost points for two missed
actors (Cancel Button and Holster). There are also two new buttons labelled
Compare Teacher Solution in this view (green buttons). They present instructor
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Figure 5.17: Student Model Grading Result

and student models side by side, whether horizontally (upper button) or vertically
(lower button).

Fig. 5.18 shows the teacher’s solution on the right side and the student’s solution
on the left side, horizontally, so the user can compare them easily.

The tool also generates feedback for students. It contains the points each student
earned for each component in the model. table. 5.1 shows example feedback for
one student solution. It shows the student received marks for 6 actors and missed
2 actors. The student also lost points for one input and two output communication
steps as well as one Extension.

Finally, our tool implementation allows the instructor to change the grading
scheme through the instructor’s solution model, such as the model in Fig. 5.9
and Fig. 5.10. Since we keep a map of the students using the metamodels that
were discussed earlier, it is easy to update the grades of the students based on the
new grading scheme.
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Figure 5.18: Compare Models Horizontally

5.4 Configuration Settings in Automated Grading

As we mentioned in the previous section, the grading tool could be configured
using the configuration setting panel shown in Fig. 5.15. instructors can modify
the algorithm using this panel based on their grading strategies. The configuration
settings panel is divided into five sections: Diagram Unnecessary, Specification
Unnecessary, Diagram Deductions, Specification Deductions, and Alternatives.

5.4.1 Unnecessary

Students frequently include extraneous components in their models. These el-
ements may not cause the model to be wrong, but they may add unnecessary
features. In a use case model, for example, some students may attempt to opti-
mize their results by including everything they can think of in their model in order
to enhance the likelihood of not omitting what the instructor is looking for. To
address this scenario, the instructor may choose to deduct points for the presence
of unnecessary elements in the model.

The Unnecessary list in the configuration settings allows instructors to specify
how much they want to deduct if students have an unnecessary use case, actor,
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Table 5.1: Feedback for One Student Model for Gas Station Case Study

Final Grade: 24.5/30

Pump: 1.0|(out of 1.0) Actor Matched with Pump!

actor lower bound matched!

actor upper bound matched!

Credit card: 1.0|(out of 1.0) Actor Matched with Credit card reader!

actor lower bound matched!

actor upper bound matched!

Fuel Gun: 1.0|(out of 1.0) Actor Matched with Fuel Gun! |

actor lower bound matched!

actor upper bound matched!

Driver: 2.0|(out of 2.0) Actor Matched with Driver!

actor lower bound matched!

actor upper bound matched!

Credit Card Company: 1.0|(out of 1.0) Actor Matched with credit card company!

actor lower bound matched!

actor upper bound matched!

Display: 1.0|(out of 1.0) Actor Matched with Display!

actor lower bound matched!

actor upper bound matched!

Actor ’Cancel Button’ is missed!

Actor ’Holster’ is missed!

Fill Up: 17.5.0|(out of 21.0) Use Case Matched with Fill Up!

5 input communication steps matched out of 6!

8 output communication steps matched out of 10!

1 extension matched out of 2!

generalization, include, primary actor, and secondary actor in the diagram, and
level, intention, multiplicity, step, and post condition in the use case specification
panel.

5.4.2 Deductions

The second group of configuration settings is Deductions, which lists deduction
strategies. The algorithms initially hard-coded the default deduction approach for
almost all types of mistakes to 50%. However, we allow instructors to specify the
deduction for each kind of mistake.

There are 15 kinds of mistakes currently handled by the tool in the diagram:
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• Misplaced Element

A student might forget to add one use case or actor to the diagram.

• Wrong Actor Name/ Wrong Use Case Name

A student might use a different actor or use case name than the one chosen
by the instructor. If the name is different, the percentage will be deducted
by the tool.

• Wrong Actor Multiplicity

A student may use an incorrect multiplicity for the correct actor.

• Wrong Association

A student may miss an association like Include, or use a Secondary Actor

instead of a Primary Actor. So, the percentage deduction is applied for
these kinds of mistakes.

• Wrong Use Case Level

The student can select Level from three available options. One student might
choose an incorrect Level, which is different than the instructor’s solution,
for a particular use case.

• Wrong Use Case Intention / Multiplicity

A student might use a different text for the intention or multiplicity of the
use case than the one chosen by the instructor.

• Wrong Use Case Step

The deduction is applied if the algorithm cannot find a matching communi-
cation step between the instructor’s solution and the student’s solution. The
student may have used a totally different text as a communication step or
not written that step at all.

• Wrong Use Case Reference

A student may refer to an incorrect use case in the Main Success Scenario
or in the alternative flows in the Extensions section.
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• Wrong Use Case Context

If the algorithm is unable to identify a context step in the student’s solution
that matches the instructor’s solution, the deduction is applied. The student
might not have added a context step at all or may have chosen a completely
different text.

• Wrong Use Case PostCondition

The percentage points are deducted when the Postcondition text in the stu-
dent solution is not matched with the corresponding Postcondition text in
the instructor solution.

• Wrong Use Case Extensions

A use case Extension includes the precondition and conclusion types. A
student may refer to a different communication step from the instructor’s
solution in the precondition or select the incorrect conclusion type.

• Merge Steps

Merge steps occur when a student merges two (or more) steps into one step.
The algorithm does not deduct points for merged steps by default, but the
user can change the deduction percentage if a student merges steps.

• Wrong Step Order

The order of steps is important, and the algorithm can find where the student
wrote a correct step but in a different order compared to the instructor’s so-
lution. So, the user can determine the deduction percentage for any incorrect
order of steps.

5.4.3 Alternatives

There is just one alternative option in the configuration settings panel: Split Use

Case. This option lets instructors decide if the student is allowed to split one
use case into two or more use cases. When a student writes some steps from one
use case in the instructor’s solution into one use case, and some other steps into
another use case in his or her solution, this is referred to as a split use case. For
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example, use case A in the instructor’s solution contains steps a, b, c, d, and e.
The student used two use cases, A and B, in his or her model and wrote steps
a and b in use case A and steps c and d in use case B. So, we can say that this
student split use case A into two use cases, A and B.

5.5 Conclusion

In this chapter, we explained the architecture of the TouchCORE tool when uti-
lizing it for automated grading of use case diagrams. Then two metamodels to
assist with automated grading were investigated. The grade metamodel stores
grades for model elements as well as grades for the structural features of the
element. The mappings between student model elements and instructor model
elements are stored in the classroom metamodel. We also demonstrated our tool’s
graphical user interface and thoroughly explained all options. We also showed
how the instructor is allowed to simply upload models, adjust the grading scheme,
and automatically grade all students. We also presented a configuration settings
panel that enables instructors to alter different grading criteria. The instructor
can decide how many points students lose when they make mistakes by modifying
the deduction percentage. Finally, we demonstrated feedback information to the
students by displaying the TouchCORE tool’s GUI.
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Chapter 6

Case Study

In this chapter, we apply our approach to two real-world assignments. The first
assignment is about a Gas Station problem that has only one use case. The second
assignment, called Elfenroads, has 13 use cases. In the Gas Station assignment,
the main focus of the instructor was on evaluating the use case specification, while
Elfenroads aimed to evaluate both the diagram and the use case specification.

Following the explanation of both case studies, we compare the automated grading
and manual grading for two case studies and answer the first Research Question.
Then, to address the second Research Question, we modify the automated grading
algorithm to match the instructors’ grading practises and re-grade all student
models using the configuration options. The findings demonstrate that utilizing
the configuration settings brings the automated grading closer to the instructor’s
manual grading. We also analyze each component of the grading tool and present
instances of how the automated grading supplied works effectively for use case
diagrams. We show that automated grading may increase efficiency and assure
fairness in the grading process by addressing Research Questions 3. We also discuss
the impact of uploading multiple solutions on the automated grading of use case
models in Research Question 4. In Research Question 5, we demonstrate how
we improved the matching steps procedure by first flattening the steps and then
comparing them. In the last Research Question, we examine the quality of the
automated grading using NLP methods.

These assignments were given a year before we developed our tool. Therefore, the
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students and the instructors did not use the tool that is used in these case studies.
In addition, they did not make the assumption that the assignments would be
automatically graded by a tool.

Students were given assignment handouts detailing the assignment question and
requirements. The Gas Station Use Case Model was given to students in Fall
2016 during an exam, and they had around 30 minutes to do it. These students
are either last year undergraduate students or graduate students. Elfenroads was
the course project in the last academic year, i.e., Fall 2021–Winter 2022. These
students are typically undergraduate students in their last year of study. The
Elfenroads Use Case Model was part of a group assignment for which the students
did not have any time pressure.

6.1 Gas Station

The first assignment (Case Study 1) was performed in the context of a beginner
software design and modelling course. The problem was described as follows:

A gas station is to be set up for fully automated operation. Payment is done by
credit card only. The interaction with the pump is as follows:

"Drivers insert their credit card into a reader connected to the pump,

the card is verified by communication with a credit card company com-

puter, and a credit limit is granted (sufficiently high to fill up any car).

If the validation succeeds, the fuel gun is unlocked, and the driver may

then take fuel. When fuel delivery is complete and the fuel-dispensing

gun is returned to its holster, the driver’s credit card account is deb-

ited with the cost of the fuel taken. After debiting, the credit card is

returned. If the card is invalid, it is returned by the pump, and the

fuel gun remains locked in the holster. The driver can also cancel his

interaction with the pump, but not after he started filling his tank with

actual fuel.

Elaborate on the FillUp use case, which describes all the interaction

steps between the system and the environment that occur when a driver
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uses the pump to fill up his tank.

You are asked to write the FillUp use case at a low-level of abstraction,

clearly stating which hardware devices the software is interacting with.

You might have to "discover" additional actors or hardware devices that

are not mentioned in the description to actually ensure that the Driver

gets fuel in his tank."

Fourteen students submitted their assignments, and we used their submitted so-
lutions to run our experiment. Fig. 5.11 shows the instructor’s solution diagram.

In this model, there is one use case (Fill Up) and 7 secondary actors (Display,
Holster, Pump, Cancel Button, Fuel Gun, Credit Card Company, and Credit
Card Reader), and one primary actor (Driver).

Figure 6.1: Instructor Grading Scheme for Gas Station Use Case Model

The grading scheme shown in Fig. 6.1 is filled by looking at the instructor’s
scheme, which can be modified through the configuration setting panel in the
tool. As Fig. 6.1 shows, the instructor’s focus is on primary and secondary actors,
use case multiplicity, and steps. After clicking on the set button, all marks will be
assigned to each element in the diagram and in the use case specification, which
can be modified later on.
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Figure 6.2: Instructor’s Use Case Specification for Gas Station Case Study
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Fig. 6.2 shows the grading scheme for the "Fill Up" use case specification. After
assigning points through the grading scheme by the instructor, step points are
specified in the use case specification at the end of each step, which can be modified
by the instructor. For instance, if the instructor sets the "Use Case Step" point in
Fig. 6.1 equal to 1, all individual steps in the use case specification shown in Fig.
6.2 will be set to points = 1. The instructor then changed some step points from
1 to 2 or zero, which is highlighted in Fig. 6.2.

Based on the grading schemes in the configuration panel and the step points
assigned in the use case specification, the maximum grade that one student can
achieve is 30.

6.2 Elfenroads

The second experiment (Case Study 2) was performed on advanced undergraduate
students that are enrolled in a software engineering project course. In McGill
University’s Software Engineering Project class for 2021-2022, students are tasked
with designing and implementing a networked version of Elfenroads [53]:

"Elfenroads [54] is a board game designed by Alan R. Moon and pub-

lished by Rio Grande Games. The Elfenroads box set provides a version

of the original base game, Elfenland, as well as the expansion, Elfen-

gold. The basic objective of Elfenland is to traverse the board using

the set of predefined roads to visit as many towns as possible within

the allotted turns. Roads can be made traversable through the use of

transportation markers played by any of the players, and on a player’s

moving phase, they can traverse any adjacent marked road using travel

cards in their hand. Elfengold adds the concept of gold to the game.

Gold is awarded when visiting a town for the first time or by drawing a

gold transportation card, and it can be used to purchase transportation

markers in an auction at the start of each round. Elfengold also intro-

duces new spells, which can be used to obstruct a marked road, circum-

vent obstacles currently placed on a road, exchange any two previously

played transportation markers, or immediately transport a player to a
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particular town."

The game must be playable by multiple players over the Internet and must support
the selection of either the base Elfenland rules or the expanded Elfengold rules
when creating a game. Players should be allowed to create their own game lobby,
which can then be joined by other players before beginning to play the selected
game. To aid in implementation, all students have access to a generic game lobby
service [55]. This lobby service provides functionality for user authentication and
game session management, including the creation and joining of a session, starting
and ending a session, and saving and loading sessions. Student implementations of
Elfenroads are expected to make use of the lobby service to handle these aspects
of the implementation [53].

Since that was a large assignment, the instructor asked students to do it in different
groups. The assignment was provided by nine groups, and we used their solutions
to execute our experiment. Fig. 3.1 represents the instructor’s use case diagram
solution.

In this use case model, there are two actors (Player as a primary and Game Lobby
Service as a secondary) and 13 use cases that are connected to each other using
«include» relationship.

Fig. 6.3 depicts the grading scheme for the Elfenroads use case model.

The instructor decided to assign 1 and 0.6 points for each actor and use case,
respectively. Each primary actor association is considered 0.5 points, and since
there are 5 primary actor associations, the total points for that would be 2.5, and
secondary actors contain 1 mark (5 use cases include Game Lobby Service as a
secondary actor, and each contains 0.2 points). The initial step’s point considered
1 point which the instructor modified in each use case specification based on their
importance. For instance, Fig. 6.4 shows the "Login" use case specification panel
and points the instructor assigned to each step.

According to these schemes, the highest possible grade is 100.
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Figure 6.3: Instructor Grading Scheme for Elfenroads Case Study

Figure 6.4: Steps’ Points in “Login” Use Case Specification Panel
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6.3 RQ1: How different are manual and automated grad-

ing?

Table 6.1: Grades for Gas Station Use Case Model

No. Instructor Algorithm Reason for Difference

1 18 18

2 23 23

3 20 20

4 24 25 Main Success Scenario (I:16, A:17)

5 22 21 Main Success Scenario (I:15, A:14)

6 21 20 Main Success Scenario (I:14, A:13)

7 29 27 Main Success Scenario (I:17, A:15)

8 30 27 Main Success Scenario (I:18, A:16), Extensions (I:6, A:5)

9 26 23 Main Success Scenario (I:16, A:15), Extensions (I:6, A:4)

10 24 21 Main Success Scenario (I:12, A:11), Extensions (I:6, A:4)

11 30 25 Main Success Scenario (I:18, A:13)

12 28 23 Main Success Scenario (I:15, A:10)

13 21 17 Main Success Scenario (I:15, A:14), Extensions (I:4, A:1)

14 19 14 Main Success Scenario (I:13, A:10), Extensions (I:4, A:2)

In this section, we examined the efficiency of the automated grading algorithm
in these case studies by comparing the total score of each student acquired by
the automated grading algorithm with the score given manually by the instructor.
Table 6.1 lists the grades that each student received from the gas station case
study. It shows the instructor’s grading, our tool’s grading, and the reason for
the difference between the two gradings. For example, in the automated grading,
student 10 received 1 point in the Main Success Scenario and 2 points in the
Extensions part less than the instructor’s grading scheme. The classroom average
based on the instructor’s grading was 23.92, compared to the 21.71 automatically
achieved by our tool. The average difference between the instructor’s grade and
our tool’s grade was 2.21, i.e., our tool was able to automatically grade the students
with less than 10% difference from manual grading.
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The reason for the difference between automated and manual grading for some
students, for example, students 11 and 14, is that those students used very short
sentences as use case steps in the use case specifications, and the matching text
algorithm (algorithm 3) could not match most words from the instructor’s solution
to the student’s solution. For example, student 14 wrote "Fuel Gun locks" as one
step, whereas the corresponding instructor’s step is "Holster informs system that

Fuel Gun is returned and locked".

Table 6.2: Grades for Elfenroads Use Case Model

No. Instructor Algorithm Reason for Difference

1 82 82.5 Diagram(I:15, A:14), Specification(I:67, A:68.5)

2 76.5 75.5 Diagram(I:12.5, A:11.5)

3 58 60 Diagram(I:10.5, A:8), Specification(I:47.5, A:52)

4 72 68 Diagram(I:10.5, A:11), Specification(I:61.5, A:57)

5 74 69.5 Diagram(I:13, A:12.5 ), Specification(I:61, A: 57)

6 84.5 90 Diagram(I:15, A:14), Specification(I:69.5, A:76)

7 78 84 Specification(I:66.5, A:72.5)

8 85.5 78 Diagram(I:14.5, A:14), Specification(I:71, A:64)

9 56.5 76 Diagram(I:10.5, A:11.5), Specification(I:46, A:64.5)

Table 6.2 shows the grades assigned to each student group for the Elfenroad case
study. It displays the instructor’s grading, the grading of our tool, and the reason
for the disparity between the two grades. For example, for group 4, the instructor’s
grade for the diagram is 10.5 and the specification grade is 61.5, whereas the
automated grade is 11 and 57, respectively. The classroom average based on
the instructor’s grade was 74.11, but our tool automatically reached 72.83. The
average difference between the instructor’s grade and our tool’s grade was 1.28,
indicating that our tool could automatically evaluate the students within 8.27%
of the instructor’s manual grading score.

One reason for the difference in manual and automated grading in Group 9 is
that students forgot to add the "Game Lobby Service" actor, but mentioned and
interacted with it in use cases, which the instructor may have missed and deducted
points for. In other words, if the instructor was able to first flatten all steps
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manually, the group would get a better mark.
Finding 1. Based on the default configuration settings, the automated grading is
close to the manual grading, with an average difference of 9.59% in the Gas Station
case study and 8.27% in the Elfenroads case study. The difference between the
automated and manual grading was large in some cases because the algorithm
could not match a long sentence with a few words. It is also due to the inability
to manually flatten steps correctly by the instructor.

6.4 RQ2: Does the use of configuration settings improve

the accuracy of automated grading?

To answer this question, we consulted the instructor to configure the algorithm
to match their grading strategies and then applied the customized algorithm to
regrade all student models.

For the first case study (Gas Station), because this exercise was specifically de-
signed to test students’ knowledge about the use case specification, the instructor
suggested that the deduction for the wrong multiplicity should be set to 100%. In
addition, the wrong use case communication and context steps, and also Exten-
sions were set to 100%. The instructor also did not allow students to merge steps
by setting the “Merge Step” option to 100%. Students must also write steps in
the same order as the instructor’s solution, for example, first “Fuel Gun informs

the system that Driver wishes to stop fueling” followed by “system requests Pump

to stop dispensing fuel” (Fig. 6.2). The opposite order is not acceptable and 100%
of that step’s point deducts. Because there are eight actors, and as a result, eight
primary and secondary associations from the use case "Fill Up" to those actors,
the instructor suggests setting the deduction for wrong associations to 70% as it
is probable that students will use the different names for some of those actors.
In this case, since the instructor set the secondary actor points to 3 (Fig. 6.1),
and there are 7 secondary actors, the point for each of them is 3/7 = 0.42. For
example, if one student writes 5 out of 7 secondary actors correctly and writes 2
of them with the wrong name (or missed them), he or she will get 2.35 ((5 * 0.42)
+ (2 * 0.42 * 0.30)) out of 3 points.
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Figure 6.5: Configuration Settings for Gas Station Case Study

The configuration settings on which the instructor set all of these deduction per-
centages are shown in Fig. 6.5.

Fig. 6.6 depicts the distinction between the instructor’s manual and automated
grading for case study 1. The difference for the default settings is shown in blue,
while the difference after modifying the configuration settings is shown in orange.
It can be seen how the customized settings slightly outperform the default. The
number of correctly graded models increased from 3 to 5 as a result of the config-
uration settings. With this configuration, 10 students received marks within 10%
difference from manual grading, and no model differed by more than 18%. The
manual grade average was 23.92 out of a possible 30 points, while the customized
settings grade average was 22.42 and the default setting grade average was 21.71.
As a result, the configuration dropped the average point difference from 2.21 to
1.50 (or from 9.59% to 6.69%).

In the second case study, the instructor considered a 50% deduction if the student
chose the wrong name for actors or use cases, (like "Authentication" instead of
"Login") as well as the wrong associations (include, secondary and primary ac-
tors). Students also receive no points for wrong actor multiplicity, for example,
1..* instead of 2..6 for the actor "Player" (Fig. 3.1). The instructor did not set
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Figure 6.6: Default vs. Customized Configuration Settings for Gas Station Case Study

any deduction for use case level, intention, and multiplicity, but, set 100% for
communication, context, and reference steps, as well as for the wrong Extensions
part. If students merge two or more steps into one, 50% of those steps’ points are
deducted. For example, if the student merges step 1, which has 1 point, with step
2, which has 2 points, the student will get 1.5 out of 3 possible points for these 2
steps.

Fig. 6.7 shows the configuration settings on which the instructor set all these
deduction percentages.

Fig. 6.8 shows the difference between the default settings and those acquired after
customizing deduction percentages by the instructor. The blue line depicts the
default configuration settings, whereas the orange line displays the scores after
customizing the configuration settings according to the instructor’s preferences.
There are no models with exactly the same score as the instructor, but 4 models’
automated grading marks were quite close to the instructor’s grading. There are
now eight models with grades that differ by less than 7%, and only one automated
grade that differs by more than 7% from manual grading. For the whole class of 9
groups, the average difference between the manual and automated grading using
the adjusted configuration was 7.61%, while the default configuration was 8.27%.

63



Figure 6.7: Configuration Settings for Elfenroads Case Study

Finding 2. When the instructor customized the configuration settings, the scores
that are automatically achieved by the tool are closer to the instructor’s manual
grading. The average difference between manual and automated grading improved
from 9.59 to 6.69 and from 8.27 to 7.61 in the Gas Station and Elfenroads case
studies, respectively. We can generalise this finding to all possible cases because
grading with instructor criteria is always more precise than grading with the de-
fault values, which are hard-coded in the tool.

6.5 RQ3: Does automated grading help ensure fairness?

When instructors evaluate students, they consider fairness and consistency [56,
57, 58]. Furthermore, the majority of student comments about grading concern
fairness [59, 60]. Since use case assignments can often have more than one correct
solution, guaranteeing fairness can be difficult for instructors, especially when
grading a large number of students.

When we re-examined the Gas Station case study for some of the student models
where the grade difference between the manual and automated grades was high, we
then discovered that the instructor was not fair to some students. Fig. 6.2 shows
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Figure 6.8: Default vs. Customized Configuration Settings for Elfenroads Case Study

the instructor’s Main Success Scenario and Extensions for the "Fill Up" use case.
Step 10, which is "System requests Pump to stop dispensing fuel." contains one
point, and student 5 wrote "System instructs Fuel Gun to stop dispenses fuel." as
step 11 (Fig. 6.9). While the student mentioned the step, the instructor probably
missed adding this one point to the student’s grade.

Fig. 6.10 displays the Main Success Scenario and Extensions for student 6. How-
ever, step 5 which is "Driver release Fuel Gun handle." is not mentioned in the
instructor’s solution (Fig. 6.2), which means it should not receive any points, but
the instructor awarded 1 point by mistake for this step. In addition, the first
Extension (2a) in the student’s solution is matched with the first Extension in the
instructor’s solution and received points correctly, but the other two Extensions
(2b and 3a) are different from the instructor’s second Extension (3a) and should
not receive any points, but the instructor added 1 point.

Fig. 6.11 shows the part of student number 12’s Main Success Scenario. Step 7
is matched with step 9 in the instructor’s solution (Fig. 6.2), which contains just
one point, but the student received 2 points for this step.

Fig. 6.12 depicts student 13’s Main Success Scenario. However, step 6 in this
student’s solution is matched with step 6 in the instructor’s solution, but this step
is considered no point, and the instructor added one point to the student’s grade
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Figure 6.9: Part of Student 5 Main Success Scenario for "Fill Up" Use Case

because of this step. Furthermore, step 12 in the instructor’s solution was not
mentioned in the student’s solution, which includes 2 points, but the instructor
added these 2 points to the student’s grade.

In the Elfenroads case study, there are plenty of mistakes when grading manually.
For example, group 4 used "Draw Cards" use case in their diagram. They men-
tioned that the player is allowed to choose gold cards or travel cards from a deck.
These steps contain 3 points, but the instructor did not consider any points for
those steps.

Fig. 6.13 proves that group 4 used the required steps but did not earn points for
them. This group also received 8 points out of 15 for interacting with the "Game
Lobby Service" with the system, even though they did not use any "Game Lobby
Service" actor in their diagram and just mentioned "Lobby Service" in the "Play
Elfenroads" use case. So, they should receive 4 out of 15.

There is a large difference between manual and automated grading in Group 9.
They interacted "Lobby" in "Quit Game" use case, but did not earn any points for
that.

This group’s interactions with Lobby are depicted in Fig. 6.14.

Finally, as it is shown in Fig. 6.15, This group also prompted "Player" for which
transportation counter they must have, but did not earn 2 points for the mentioned
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Figure 6.10: Student 6 Main Success Scenario and Extension for "Fill Up" Use Case

Figure 6.11: Student 12 Main Success Scenario and Extension for "Fill Up" Use Case

step.
Finding 3. In these two case studies, we just showed a few mistakes that the
instructor made when grading manually. Because use cases often contain many
texts and it is not easy to compare them conceptually with the solution, and also
because flattening steps manually is a problematic process, the grader probably
makes some mistakes when grading. As a result, all those grades that are deter-
mined automatically by the tool are fairer and more consistent because all students
are graded according to the same grading scheme. The number of mistakes made
by the instructor was not that high to change the average manual grading marks
significantly, so we are still trying to achieve a result that is close to the manual
grading.
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Figure 6.12: Student 13 Main Success Scenario for "Fill Up" Use Case

6.6 RQ4: Does the accuracy of automated grading im-

prove when multiple solutions are matched against?

In many cases, in use case models, it is possible that there is more than one
solution for a particular problem. Hence, the tool is capable of loading more
than one instructor’s model. The algorithm compares the student’s model to
each instructor’s model that is currently loaded and the highest mark is used to
determine the student’s final grade. In the Gas Station case study, the average for
manual grading was 23.92. When grading automatically with just one solution,
i.e., the solution shown in Fig. 5.9, the average grade for automated grading
using the customized algorithm was 22.42. When using an additional solution
model (e.g., using different texts as multiplicity and steps), the average increased
to 22.89. We identified 9 out of 14 students who obtained higher grades with this
additional case. When we used all three available solution models, the average
became even closer to that of manual grading: 23.82. We obtained 12 out of 14
models with grades closer to the manual grade when using all three solutions.

Fig. 6.16 shows the percentage difference between automated and manual grading.
The blue line depicts this difference when using one solution, the orange line
when using two solutions, and the grey line when using all three solutions. The
percentage difference diminished when we used two solutions, and it decreased even
more when we used three solutions. When grading with one solution, four students
receive marks exactly the same as in the manual grading, and nine students have
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Figure 6.13: Group 4 Main Success Scenario and Extension for "Draw Cards" Use Case

a grade difference that is less than 10%. The exact same marks increased from 4
to 5 with two solutions, and 11 models received marks that differed by less than
10% from the manual grading. When considering three solutions, the exact marks
increased to six, and just two models had a grade difference of more than 10%.
Finally, the average grade difference dropped from 6.69% for one solution to 4.50%
when using three solutions.
Finding 4. Running the automated grading algorithm several times and selecting
the highest grade as the final grade brings the average automated grading scores
closer to the manual grade in cases where multiple solutions are available. In one
case study, the average difference improved from 6.69% for one solution to 4.50%
when using three solutions.
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Figure 6.14: Group 9 Main Success Scenario and Extension for "Quit Game" Use Case

Figure 6.15: Group 9 Main Success Scenario for "Move the Elf Boots" Use Case

6.7 RQ5: How do flattening steps helps automated grad-

ing to achieve a better result?

When there are multiple use cases in the diagram, they may be linked by a rela-
tionship, such as include. An "include" relationship denotes the inclusion of a use
case as a sub-process (the inclusion use case) of another use case (the base use
case) [61]. So, we can combine all the steps from the base use case with the steps
in the inclusion use case based on the use case reference steps. We proceed with
this method from the root use case to the leaf use cases in the diagram, and at
the end, we have a list of flattened steps. When manually grading large models,
flattening can be a difficult task.
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Figure 6.16: Multiple Solutions for Gas Station Case Study

Fig. 3.1 shows the instructor’s use case diagram solution for the Elfenroads case
study. It contains 13 use cases, and all use cases are connected to each other
using include relationships. Fig. 6.17 demonstrates one group submission for this
assignment which includes 17 use cases. As a result, if we simply match the use
cases by name and compare the specifications of each matched use case, we can
match 13 use cases in the best-case scenario. In the end, there would be 4 use
cases in the student’s solution that are not matched. Finally, their steps are not
considered when grading, but they can include some correct steps. In addition,
it is possible that one student writes the correct steps in an irrelevant use case
instead of the right one or splits one use case into two use cases. In these cases,
however, we cannot match use cases by name, but the student should receive some
points for the correct steps in unmatched use cases. To deal with this issue, we
just compare flattened steps. So, after flattening all steps in the Main Success
Scenario and Extensions in both the student’s and instructor’s solution, we just
compare them one by one and in order.

The blue line in Fig. 6.18 plots the instructor’s grades. The orange line shows the
automated algorithm when flattening was considered, and the grey line depicts
automated grading without flattening. It is obvious that students’ marks without
flattening are always less than the instructor’s marks because steps in those un-
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Figure 6.17: One Student Group Use Case Diagram for Elfenroads Case Study

matched use cases are not compared. Group 7, which has the highest difference
from the instructor’s mark (without flattening), uses 27 use cases in their diagram
compared to 13 in the instructor’s diagram (Fig. 3.1), but the difference is very
small when considering flattening. There is also a larger difference between man-
ual grading (blue line) and automated grading when considering flattening (orange
line) for group 8. The reason is that the instructor may have missed some correct
steps since he could not flat all steps manually. As a result, the manual grading
average was 74.11, and when we graded without flattening, the average was 65.33,
but when we considered flattening for steps in all use cases in the Elfenroads case
study, the average was closer to the manual grading average: 75.94.
Finding 5. Flattening tries to match all possible use case steps in the student’s
solution to the instructor’s solution and therefore improves the final marks. In one
case study, the average difference decreased from 14.48 when we did not consider
flattening steps to 7.61 when we considered flattening steps.

6.8 RQ6: Does using NLP improve the quality of the grad-

ing algorithm?

The most challenging part of automated grading in use case models is matching
texts. Steps play an important role in use case models, and as we investigated in
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Figure 6.18: Auto-grading with Flattening vs. Without Flattening

the Elfenroads case study, the instructor considered 85% of the whole grade for
the use case specification part and only 15% for the diagram. We discussed the
matching text algorithm, which incorporated natural language processing meth-
ods, in chapter 4 (algorithm 3). In this question, we want to show how this
algorithm improves the efficiency of automated grading of use case models using
NLP methods.

As there is a group of words in each text (e.g., step), it is not possible to match
them syntactically and semantically like use cases and actor names. Hence, we
need an algorithm to check the entire text conceptually because all students use
their own words when writing a sentence.

At first, we provided an algorithm that split the entire text into a list of words
without any natural language processing methods. It compared each word in
the text from the instructor’s solution with each word in the corresponding text
in the student’s solution syntactically and semantically and returned a threshold
value based on similarities. We considered whether the threshold was greater
than a certain amount of value (for example, greater than 50%), so those texts
are matched. However, the output was good but not admissible.

When using NLP, we realized that students get higher grades in general, and the
average marks improved from 72.83 to 75.94 in the Elfenroads case study, while
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the manual grading average was 74.11. In the Gas Station case study, the average
marks increased from 20.42 to 22.42, while the manual grading average was 23.92.
The average difference also decreased, from 14.48% to 8.27% in the Elfenroads case
study and from 15.75% to 9.59% in the Gas Station case study when considering
default configuration settings.

Figure 6.19: Matching Texts Algorithm With vs. Without NLP in Elfenroads

The blue line in Fig. 6.19 and 6.20 represents the instructor’s total marks for
the Elfenroads and Gas Station case studies, respectively. while the orange line
represents the total marks without the use of natural language processing methods.
Although the outcome is acceptable for some groups, we decided to improve the
algorithm in order to give closer marks to the instructor. Therefore, we decided
to use the Stanford CoreNLP when matching texts in a more conceptual way. As
we discussed in chapter 4, we first split the entire text into a list of words and
then found parts of speech for each word. We removed some of the parts of speech
afterward, e.g., prepositions, and transferred all words to their base forms using
the lemmatization method. Finally, we compare the same parts of speech from the
instructor to the student’s solutions in terms of syntactic and semantic similarities.
Eventually, a threshold value is returned based on the similarities between each
group of words, and if the threshold value is greater than 0.55, we can say those
texts are matched. The grey line in Fig. 6.19 and Fig. 6.20 shows the total marks
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Figure 6.20: Matching Texts Algorithm With vs. Without NLP in Gas Station

when using natural language processing methods. It is clear that the student’s
marks are closer to the manual grading. The reason for some large differences
between grades with and without natural language processing, e.g., group 6 in
Fig. 6.19 and student 12 in Fig. 6.20, is that they sometimes used long sentences
as steps that the algorithm without NLP could not match them. Also, students
used many prepositions in some texts, and as a result, the threshold value was
low, and matching them failed. The students rarely received higher marks when
using the algorithm without NLP, e.g., groups 2 and 9 in Fig. 6.19 and students
8 and 14 in Fig. 6.20. The reason is that some sentences were matched based on
some unimportant parts of speech, i.e., stopwords.

To find the exact threshold, we examined different values when grading both case
studies. We found that 0.55 gave the best result on average. Table. 6.3 shows the
different marks for each group when setting the threshold (T) equal to 0.45, 0.50,
0.55, and 0.65. For most cases, the grades in column 4, where T = 0.55, are closer
to the manual grading.

Fig. 6.21 also plots the differences between the four alternative thresholds. The
dark blue box represents the instructor’s grading, and when we set a lower thresh-
old (orange box), the total marks got higher, and as the threshold went up, the
grades got lower (light blue box).
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Table 6.3: Different Grades for Different Threshold Values

Manual Grading (T = 0.45) (T = 0.50) (T = 0.55) (T = 0.65)

56.5 80 78 76 68

58 69 61 60 49

72 76 73 68 61

74 77 69 66 56

76.5 83.5 79.5 75.5 70.5

78 90 86 84 71

82 87.5 84.5 82.5 70.5

84.5 96 92 90 82

85.5 91 84 78 73

In summary, the average of total marks when we considered the threshold equal
to 0.45 was 83.3, for 0.50 it was 78.55, for 0.55 it was 75.94, and for 0.65 it was
66.77. Since the average instructor’s total mark is 74.11, we can conclude that the
threshold of 0.55 (yellow box) is the best value when matching texts.

As it is mentioned in chapter 4, we consider different weights when comparing
parts of speech (algorithm 3). Most parts of speech that are used in the English
language are nouns, verbs, adverbs, and adjectives, respectively [62]. The most
important parts of speech when comparing steps are verbs, followed by nouns.
Therefore, it is more important that the student use the same nouns and verbs or
their synonyms as the instructor’s solution. Hence, we examined multiple weights
for nouns and verbs, and the best result we achieved was when we set verbs and
nouns to be 1.5 times heavier than other parts of speech. For instance, in the Gas
Station case study, when we set the threshold to 1, the average grade was 20.14,
considering the threshold of 2, the average was 21.06, and with the threshold of
1.5, the average was 22.42, while the average of manual grading was 23.92. Also,
for the Elfenroads case study, the average grade was 71.83, 75.94, and 77.94 for
threshold equals 1, 1.5, and 2, respectively, while the average manual grading was
74.11.

Fig. 6.22 depicts the different students’ marks in the Gas Station case study, while
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Figure 6.21: Different Matching Texts Threshold Values

Fig. 6.23 depicts the different marks in the Elfenroads case study, taking into
account three different coefficient weights when comparing nouns and verbs in the
matching text algorithm. The blue bar demonstrates the manual grading, while
the orange, grey, and yellow bars show automated grading marks with coefficients
equal to 1, 1.5, and 2, respectively. In most cases, the grey bar is closer to the
instructor’s mark compared to the other two bars.
Finding 6. However, the algorithm worked fine without NLP for some groups,
but Stanford CoreNLP improved the quality of the grading algorithm. When con-
sidering NLP, in the Elfenroads case study, the average marks improved from 71.83
to 75.94, while the manual grading average was 74.11 (from 14.48% to 7.61%). In
the Gas Station case study, the average marks increased from 20.42 to 21.71, while
the manual grading average was 23.92 (from 15.75% to 6.69%).

6.9 Conclusion

This chapter describes the case studies to assess the efficacy of the automated
grading algorithm presented in Chapter 4. The grading method is applied to two
case studies. In case study 1, there are 14 student models, and there are 9 groups
of student models in case study 2.

When comparing the automated grading algorithm result to the instructor’s man-
ual grading result, the average difference for case study 1 was less than 10%,
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Figure 6.22: Different Weights for Nouns and Verbs in the Gas Station Case Study

whereas the average difference for case study 2 was around 7.5%. We applied some
methods to achieve a closer result to manual grading by answering six research
questions that discuss the effectiveness of configuration settings, using multiple
solutions, flattening steps, and using NLP methods to improve the accuracy of
automated grading. They also indicate how automated grading helps ensure fair-
ness for students. Finally, our algorithm was able to automatically grade the first
case study by 6.69% and case study 2 by 7.61% difference compared to manual
grading.
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Figure 6.23: Different Weights for Nouns and Verbs in the Elfenroads Case Study

79



Chapter 7

Conclusion and Future Work

7.1 Conclusion

Many computer science courses require students to do assignments or answer test
questions involving use case diagrams. Manual grading of these diagrams is com-
monly done by instructors by comparing each student’s solution to the template
solution that they provided for the assignment. This might be a challenging task,
especially when there are many use cases with complicated relationships and steps
or if there are a high number of student papers to grade. Furthermore, in use case
diagrams, a specific problem may have several design solutions, and it is sometimes
impossible to flatten all use case steps manually for all students’ solutions.

This thesis presents an automated grading method for use case diagrams. It
is going to be very useful for instructors by assisting in the assessment of their
students. They can grade the use case models in all aspects, i.e., structural, name,
and text matching. In order to automate grading, we reused two metamodels that
were presented for the automated grading of class diagrams. One metamodel
establishes mappings between an instructor’s solution and student solutions, and
the other assigns and stores grades to model elements. The presented methods
and algorithms will help us achieve our goal of automatically grading use case
diagrams and providing students with instant feedback on both quantitative and
qualitative measures.

We evaluated the effectiveness of our automated approach for grading use case
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diagrams in practice. Particularly, we compare manual grading against automated
grading in two case studies. We developed a configuration settings panel with 28
configurable options that allow the grading tool to be customized to a specific
instructor’s grading style. We discovered that customizing the algorithm to an
instructor’s grading approach brings automated grading scores closer to manual
grading scores. After customizing the grading configuration settings to match
the instructor’s style in a case study with 14 students, the average difference
between the manual grading and our tool’s grading was less than 7%. In another
case study which involves 9 student groups from an advanced modeling course
the average difference was less than 8%. Automated grading has been found
to be more consistent and capable of ensuring fairness in the grading process
when compared to manual grading. We also presented how automated grading
improves when multiple solutions match against. In one case study the average
differences dropped from 6.69% when using one solution to 4.5% when using all
three available solutions. Finally, We offered flattening steps before matching
them in our algorithm. In addition to flattening, we combined our algorithms
with Stanford CoreNLP methods to make the automated grading more effective.
In one case study, the average differences when using NLP was 7.61% while it was
more than 14% without using any NLP methods.

7.2 Threat to Validity

There are some threats to validity in our tool when grading use case models
automatically. The first threat is related to biases in grading the assignments.
We relieved this threat by examining two case studies that had been manually
graded by the instructors. So, instructors had not made any assumptions that
their graded assignments would be graded automatically by the tool, and they did
not know the result of the tool before grading manually.

The number of samples examined is the second threat. We evaluated our work
using two real-world assignments. The quality and accuracy of the study are
impacted by small sample sizes, and the majority of statisticians suggested that
a sample size of 100 is necessary to obtain any form of significant results [63, 64].
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At this point, there were 14 individual submissions for one case study and nine
group submissions of seven students, which means altogether 77 students and 21
different models contributed to these two assignments. Although our automated
grading results are close to manual grading, but our sample size might not be large
enough, and we need to examine more case studies in the future to evaluate our
work more confidently. In addition, although we cannot generalise our result based
on this limited sample size, we repeated research questions 2, 3, and 4, which were
also answered in the automated grading of the UML Class Diagram [24] and we
can conclude that the finding generalises to more than one modelling language.

The third threat is multiple aspects of fairness. We just investigated the consis-
tency of the instructors when grading assignments manually. We need to consider
other aspects of fairness, such as the situation when the instructor’s solution is not
good enough to compare with the students’ solutions. In this case, some students
can have a more precise and correct answer than the instructor.

The number of instructors’ grading styles is the fourth threat. In our case studies,
we just examined our algorithm using one instructor’s style in each case. We need
to consider different instructor grading styles for each assignment.

Finally, our current text matching algorithm cannot match very short sentences
with long sentences using Stanford CoreNLP. There were some examples of stu-
dents’ solutions in which they used very short sentences as steps, so, we cannot
guarantee that this algorithm always works fine.

7.3 Future Work

As it is mentioned, in some case studies, students wrote just a few words as a
step instead of a complete sentence. In such cases, the matching text algorithm is
not able to match those steps if they have the same meaning. To deal with this
issue, we can either examine some other NLP methods or modify the presented
algorithms to be able to do this kind of matching. Since those students who write
short sentences often just mention keywords, we can also find all keywords in
the teacher’s solution (rather than comparing all parts of speech) and then just
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compare keywords.

We plan to extend our approach to include grading additional UML models, such
as sequence and activity diagrams. When presenting more UML models in our
tools, we should develop generic packages that can be reused for other modelling
languages. In this way, presenting the automated grading of the next modelling
language would be easier and take less time.

In addition, we want our algorithm to be able to provide more detailed feedback,
such as in exactly which step the student lost points. Finally, it may provide data
such as the average for the entire class and the accuracy rate of each element.
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