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ABSTRACT: 

BAYESIAN NETWORK MODEL OF MERCURY EXPOSURE TO AQUATIC 
ECOSYSTEMS OF THE MACKENZIE WATERSHED 

By Una Jermilova 

 
A significant portion (15-20%) of mercury (Hg) in the Arctic Ocean is believed to originate 

from Arctic rivers, such as the Mackenzie River watershed in the NWT. Recent (2005- 

2020) Hg monitoring data of freshwater and fish tissue and environmental model outputs 

were compiled and used to develop a Bayesian Network Relative Risk model (BN-RRM), a 

probabilistic model capable of analyzing causal relationships. The objectives of the model 

were to estimate the risk posed to fish health and the subsequent dietary Hg-exposure to 

humans; to compare the relative risks between regions of the watershed; and to identify the 

influential Hg sources. The output of the BN-RRMs differed significantly throughout the 

watershed, with atmospheric Hg deposition and soil erosion Hg release consistently flagged 

as important explanatory variables. Analysis of the endpoint uncertainties revealed gaps in 

knowledge and in Hg datasets, which should be the focus of study for future monitoring 

programs. 
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Chapter 1: Introduction 

1.1 Mercury in the Arctic 

Mercury is a pollutant of global concern because once released into the atmosphere it is 

deposited onto landscapes and waterbodies both near and far from point sources, such as Arctic 

regions (Li et al. 2017; Dastoor et al. 2014; UNEP, 2002). A seafood diet of high-trophic level 

species is the primary route of mercury (Hg) exposure to humans living in remote areas (Sheehan 

et al. 2014; AMAP, 2011; UNEP, 2002). The traditional diet of Arctic Indigenous people is 

essential for food security, cultural identity, nutrition, and health (Ratelle et al. 2019; Laird et al. 

2018; Halseth and the NCCAH 2015; Parlee and Maloney 2016). Fetal neurotoxicity is the most 

sensitive endpoint of Hg exposure and is the basis behind Hg regulatory thresholds (NRC, 2000; 

WHO, 1990; Coull, 2003). Concerned Indigenous groups in the Arctic have initiated numerous 

collaborative monitoring studies aimed at understanding the presence of Hg in their surrounding 

environment and wildlife (NCP, 2017; Houde et al. 2022). These studies have identified 

potential food safety issues and allowed communities greater control in making informed 

decisions regarding their diet (Houde et al. 2022). However, food consumption advisories are not 

an acceptable management strategy for communities struggling with food security (Laird et al. 

2018; Hoover, 2013). There is a need for international policies aiming to reduce the release of 

Hg from the source (UNEP, 2002).  

The Minamata Convention is a multilateral agreement to reduce the anthropogenic inputs 

of Hg into the environment; it was signed in 2013 by 128 countries that pledged to reduce Hg use 

across manufacturing, energy, and gold mining industries by 2030 (UNEP, 2021; UNEP, 2019). 

Nonetheless, global atmospheric Hg emissions increased by approximately 20% from 2010 to 

2015, driven by industrial growth in South America and Asia (Dastoor et al. 2022). Additionally, 
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recent experiments show that thawing permafrost soils (Schuster et al. 2018; Schaeffer et al. 

2020), biomass burning (Fraser et al. 2018; Dastoor et al. 2022), and Arctic rivers (Soerensen et 

al. 2016; Campeau et al. 2022), are important Hg sources to the Arctic Ocean, especially when 

considering climate change stressors (Chetelat et al. 2022; AMAP, 2011). Reducing the risk of 

exposure to vulnerable populations requires comprehensive and local management strategies that 

target these additional pathways. Ecological risk assessments which identify influential Hg 

accumulation pathways in freshwater and biota are essential to the development of a resilient risk 

reduction strategy.  

1.2 The ARCRISK project 

Rivers are the largest net sources of Hg to the Arctic Ocean, accounting for 

approximately 20% of the mass budget (Soerensen et al. 2016). This thesis supports the 

ARCRISK project, a circumpolar collaboration to develop Hg risk assessments for four Arctic 

River systems in Norway, Canada, and Russia (Gundersen et al. 2020). Together these 

assessments will present a comprehensive study of the pathways driving Hg accumulation in 

Arctic Rivers. The main objectives of the ARCRISK project are: (1) to identify Hg sources to 

land and water, (2) to evaluate the associated risk for the environment and human health, and (3) 

to develop an action plan to reduce environmental risk to the Arctic (Gundersen, 2020).The 

project employs the Bayesian Network - Relative Risk Model (BN-RRM) framework for the 

environmental risk assessments (Landis, 2020). The BN-RRM can be conceptualized as a causal 

web which can aid in deducing the strength of the interactions between pollutant sources and 

endpoints. They have been successfully developed to predict risk to endpoints (Harris et al. 

2017; Ayre, and Landis 2012), to compare management strategies (Johns et al. 2016; Herring et 

al. 2015; Ayre et al. 2014), and to evaluate complex multi-stressor systems (Bruen et al. 2022; 
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Peeters et al. 2022). The Canadian contributions to the ARCRISK project are the BN-RRMs for 

the Great Bear and Great Slave subbasins of the Mackenzie River watershed.  

A Bayesian risk framework was selected for four reasons. First, it can integrate 

observations from a variety of sources including environmental models, primary data, and expert 

opinion into a single framework (Kaikkonen et al. 2020; Uusitalo, 2007). This is essential for a 

project which is studying a sparsely sampled riverine system and is combining analytical data 

from multiple monitoring sources. Second, Bayesian Networks utilize conceptual diagrams, and 

this visual component facilitates straightforward communication with Indigenous rightsholders, 

stakeholders, and policy makers (Kaikkonen et al. 2020; Landis, 2020). Third, since Bayesian 

networks employ probability distributions to describe variables, this allows for the explicit 

determination of both intrinsic and model uncertainty (Kaikkonen et al. 2020). Finally, Bayesian 

Networks can aid with decisions on how to best manage the risk (Kaikkonen et al. 2020; 

McCann et al.2006). Once the influential variables affecting an endpoint are identified, 

management strategies can be inserted into the model. This is useful for directly comparing 

different management strategies, their predicted influence on the risk to endpoints, and the 

associated uncertainties of this benefit (Kaikkonen et al. 2020; McCann et al. 2006). 

1.3 The Mackenzie River Basin – The Canadian study site 

The Mackenzie River Basin (MRB) is the largest watershed in Canada and encompasses 

six smaller sub-basins: the Athabasca, Peace, Great Slave, Liard, Peel, and Great Bear (MRBB, 

2003). It also contains three of Canada’s Great Lakes (the Athabasca, Great Slave, and Great 

Bear Lakes) as well as three protected delta regions (the Slave River delta, Mackenzie River 

delta, and the Peace-Athabasca delta- a UNESCO World Heritage Site; MRBB, 2003). The 

official start of the Mackenzie River is at the outlet of Great Slave Lake, at the boundary of the 
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Great Bear and Great Slave subbasins. As warming temperatures expedite snow and glacial melt, 

freshwater flow to the Arctic Ocean by circumpolar rivers has increased by 7% (Emmerton et al. 

2013), releasing nutrients and Hg contaminants previously trapped in the frozen soil and ice 

(Campeau et al. 2022; Schaefer et al. 2020). The Mackenzie River discharges approximately 325 

km3 of freshwater into the Arctic Ocean annually, making up 10% of the annual freshwater 

contribution and transporting up to 2 tons of Hg (Rood et al. 2016; Leitch et al. 2007). The 

Mackenzie River drains an immense area of 1.8 million km2 (MRBB, 2003) and each subbasin is 

hydrologically connected to the Mackenzie River. 

The Great Bear subbasin is the largest of the six MRB subbasins, covering an area of 

approximately 400,000 square kilometers (MRBB, 2003). There are 15 communities in the basin, 

with populations ranging from 100 to 3300 individuals (Statistics Canada, 2017). Indigenous 

people comprise between 60- 95% of the community populations, with slightly lower ratios in 

administrative centers. To assess the spatial variation in Hg concentrations, I further divided the 

Great Bear subbasin into four study regions: north, west, east, south (Figure 1; Table 1). Oil and 

natural gas extraction facilities in the Ikhil (north) and Norman Wells (west) regions are the 

major anthropogenic Hg sources in the Great Bear subbasin (Supplemental Figure 12). Soil 

erosion and mass wasting events were also more common in these subbasins, due to the steep 

geography of the western mountain ranges, and the expansion of permafrost thaw slumps (Kokelj 

et al. 2015; Lantz and Kokelj, 2008). However, it is the discontinuous permafrost underlaying 

the southern study region that is thawing at unprecedented rates (Schaefer et al. 2020). This may 

be exacerbated by the higher frequency of wildfires, which also contribute to elevated 

atmospheric Hg deposition (Gaboriau et al. 2022; Scholten et al. 2021; Fraser et al. 2018). The 

southern region is also where the Great Slave Lake drains into the Mackenzie River, which may 
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be introducing Hg from the mining industries present on the lake shores (Thienpont et al. 2016; 

Cott et al. 2016; Supplemental Figure 13). Mercury monitoring data was sparce for the east 

region, potentially due to the low human population and the lack of known Hg sources; as such, 

the uncertainty in the model output for this region is greater than the other three.   

The second model was developed for a 50 km zone delineated around Great Slave Lake, 

rather than the entire Great Slave subbasin. Nearly half of the 46,000 individuals in the 

Northwest Territories reside in the capital city of Yellowknife, which is located on the Great 

Slave Lake shoreline (Statistics Canada, 2017). Great Slave Lake has supported the Northwest 

Territory’s largest commercial fishing industry and a long-lived history of gold mining 

exploration (Fisheries Act; Silke, 2009). Underlain by the mineral-rich soils of the Canadian 

Shield ecozone, the North and East Arms of Great Slave Lake contain deposits of precious 

metals which have supplied 35 small historic gold mines and three large gold-producing mines 

(Silke, 2009; Thienpont et al. 2016). Arsenic and Hg concentrations are elevated in the vicinity 

of the Con and Giant gold-producing mines, which have potentially released contaminants into 

Great Slave Lake through mine effluent and ore roasting emissions (Thienpont et al. 2016). In 

contrast, the southwestern shores of Great Slave Lake have little history of mining (Silke, 2009). 

This is because the Interior Plains ecozone is characterized by carbon-rich soils; since dissolved 

metals bind to organic carbon, erosion of these soils may be a source of biologically available Hg 

that is not present in east. The Great Slave Lake study area was divided into four regions: North 

Arm, East Arm, Middle Basin, and Outlet (Figure 1). The choice of these four study regions will 

allow for the potential identification of mining as a Hg source to Great Slave Lake and in turn, 

Great Slave Lake to the Great Bear subbasin.  
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1.4 Introduction to the study area and the Bayesian Network Models  

The model for the Great Bear subbasin was prioritized because it alone fully 

encompasses the Mackenzie River. A second model was prepared for Great Slave Lake as it is 

the largest riverine input (35% total flow; Environment Canada, 2013) into the Mackenzie River. 

Finally, the Great Bear and Great Slave subbasins were selected for the initial models because 

higher fish Hg concentrations have been observed in these regions compared to the other 

subbasins (Evans et al. 2005; Lockhart et al. 2005). Lockhart et al. (2005) found that more than 

90% of marine mammals and piscivorous fish in the MRB had Hg concentrations above 

Canada’s subsistence consumption limit (0.2 ppm), and between 20-50% had concentrations 

above the threshold for the commercial sale of fish (0.5 ppm) (Lockhart et al. 2005); bedrock 

type was the only abiotic explanatory variable considered. Advancements in environmental 

models and GIS technologies allow for the consideration of additional Hg sources which may 

explain the elevated Hg concentrations in aquatic biota.  

There is a long history of Hg monitoring studies conducted in the Mackenzie River Basin 

(MRB) and the Beaufort Sea (Morris et al. 2022; Houde et al. 2022; Rigét et al. 2011; Lockhart 

et al. 2005; Evans et al. 2005). This project compiled the publicly available Hg monitoring data 

of freshwater and fish tissue collected since the Lockhart et al. (2005) report. The Hg sources 

considered include model outputs of atmospheric deposition and permafrost thaw release; 

proximity to mines, oil and natural gas wells, wildfires, and permafrost-thaw slumps; and a 

proposed calculation of terrestrial Hg release by soil erosion. Soil erosion was calculated by 

combining 4 abiotic factors: soil texture, rainfall intensity, vegetation density, and terrestrial 

slope. Soil erosion has not been included in other Hg models that considered other habitat or 

geology variables (Moslemi-Aqdam et al. 2022; Lescord et al. 2015; Evans et al. 2005).  
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In summary, two BN-RRMs were prepared for a total of 8 study regions. The goal of 

these models was to provide a spatial assessment of how Hg data (2005 - 2020) in freshwater and 

fish varied along the Mackenzie River and to identify the influential sources driving Hg 

accumulation in each region. These models are the Canadian contribution to the ARCRISK 

project, which was initiated to resolve an important gap in our understanding of how major 

freshwater tributaries are contributing to Hg pollution in the Arctic (Gundersen et al. 2020). The 

impacts on fish health, human dietary Hg exposure, and the potential catch losses of commercial 

fisheries are the endpoint variables for which risk probabilities were estimated. Ultimately, these 

models can be used to develop and compare management strategies based on their predicted 

influence on the endpoints (Gundersen et al. 2020). 
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Chapter 2: Methods and Review of Data Sources 

2.1 Bayesian Network Models 

The Bayesian Network Relative Risk models have been successfully applied to 

ecological risk assessments, the process of studying and predicting the threat posed to humans or 

ecosystems by a stressor (Landis, 2020). Bayesian Networks are particularly useful when 

studying complex systems with numerous influence pathways, latent variables, and competing 

stakeholder interests (Marcot et al. 2006; Kaikkonen et al. 2020). The primary step to BN-RRM 

development is conceptualizing the causal pathways and explanatory nodes (variables) which 

relate to the research objectives (Landis, 2020). The purpose of this project was to identify the 

Hg sources impacting water and biota concentrations along sections of the Mackenzie River. 

Following a literature search, the causal diagram was constructed with a unidirectional flow of 

information between the categories of Source, Stressor, Habitat, Effect, and Impact (Landis, 

2020). Purposeful causal diagrams are developed in collaboration with scientists (mercury, fish 

biology, climate change experts) and stakeholders (industry, NGOs, local communities). The 

endpoints and model structure presented in this thesis were selected by scientists only and did 

not include industry or community stakeholders. Stakeholder involvement must be the primary 

focus before there is an attempt to implement these model results into a risk management 

strategy. 

Several variables of the initial model (Figure 2) will not meet the data requirements for 

inclusion in the final model (Figure 3). Variables which can be included must be observable, 

measurable, or predictable; all other variables are removed and become part of the uncertainty of 

the model output (Pollino and Hart, 2008). Figure 3 shows the final model structure for the Great 

Slave North Arm study region. Note that several water chemistry variables have been removed, 
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due to: i) lack of scientific understanding of key processes; ii) no clear correlation observed in 

data between variables; iii) lack of spatially variable primary data on key variables. The initial 

model (Figure 2) included proxy variables for Hg, such as dissolved organic carbon (DOC) and 

total suspended solids (TSS), as well as four forms of mercury: total (THg), particulate (PHg), 

dissolved (DHg), and methylmercury (MeHg). The simplified model considered only THg 

because the dominant water monitoring dataset (Communities of the Northwest Territories, 

2023) lacked monitoring data for the PHg and MeHg forms, and much (99%) of the DHg 

monitoring data was below the detection limit (10 ng/L).  

Two significant (p < 0.05) relationships (Supplemental Figure 22) were observed in the 

freshwater monitoring data from lakes and rivers in the study area (Communities of the 

Northwest Territories, 2023) between DOC and DHg (r2 = 0.079, p= 3.1e-9) and TSS and THg 

(r2= 0.522, p= 1.4e-7). These significant relationships have been observed in other datasets 

(Lavoie et al. 2019; Bravo et al. 2018) and DOC and TSS have been key predictors of Hg in 

riverine systems (Campeau et al. 2022). The bulk mercury flux from the Mackenzie River is as 

PHg associated with other particulate matter which can be measured as TSS or as turbidity; 

likewise, DHg is associated with dissolved matter, principally DOC (Carrie et al. 2012; Leitch et 

al. 2007; Emmerton et al. 2013). DOC is also believed to play an important regulatory role in the 

formation of methylmercury, both promoting and inhibiting mercury methylation (French et al. 

2014). A causal model for mercury would therefore have the links: DOC -> DHg -> THg and 

TSS -> PHg -> THg; however, the simplified model without the DHg and PHg forms would 

need to have a direct link from DOC or TSS to THg, which does not accurately represent the 

causal relationships. The DOC and TSS proxy variables were ultimately removed in the 

simplified model to describe the causal relationships more accurately, as well as to limit the 
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number of assumptions made and their contribution to the model uncertainty. Deficient 

understanding of the variables controlling bacterial mercury-methylation processes and the lack 

of primary MeHg data resulted in the removal of a key causal link between freshwater THg and 

fish tissue Hg. A recent publication (Moslemi- Aqdam et al. 2022) suggests that Hg 

concentrations in fish can be reasonably predicted if there is available data on freshwater MeHg, 

invertebrate MeHg, and sediment THg.  

BN models are probabilistic and require the variables to be discretized such that nodes 

are described by their probability distributions across several categorical states (ie. Low/ 

Medium/ High) that signify their quality and effects on an endpoint (Marcot et al. 2006). The 

boundary values for these states should represent meaningful information whenever possible, 

such as regulatory thresholds or toxicological values (Supplemental Table 4). To populate the 

nodes, publicly available data was compiled from Hg monitoring programs, environmental 

model outputs, and GIS datasets (Supplemental Tables 1 - 3). Populated nodes display the 

probability distribution for the variable, while nodes that lack data and remain unpopulated will 

appear to have equal probability of all states (Kaikkonen et al. 2020). The state of these “parent” 

nodes is used to predict the outcome of the “child” node, a variable that the parent nodes have a 

perceived effect on, through the formation of conditional probability tables (CPTs) (Marcot et al. 

2006). Case file learning, equations, linear regression models, peg-the-corners methods, and 

expert elicitation are commonly employed to populate CPTs (Marcot et al. 2006). The number of 

parent nodes and categorical states should be limited even when large environmental monitoring 

datasets are available, as these complex models will rarely have sufficient combinations of states 

and parent variables necessary to identify interesting dependencies (Uusitalo, 2007). In 

developing this model, the number of parent nodes linked to the “Freshwater THg” (4 parent 
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nodes in GBS model) and “Fish tissue Hg” (5 parent nodes in GBS model) effect nodes were 

limited to considering only the most-likely Hg sources. However, this is still more complex than 

is recommended for a BN model; Marcot et al. (2006) recommends that no more than 3 parent 

nodes are applied to a given variable, particularly for variables that are dependent on expert 

elicitation in informing the CPTs. Reducing model complexity to improve accuracy is another 

reason why the TSS and DOC water quality variables were not included in the simplified BN 

model.  

Case file learning, equations, linear regression models, expert elicitation, and peg-the-

corner methods (where well-defined combination of parent node states are the first to be 

populated) are commonly employed to populate CPTs (Marcot et al. 2006). Case-file learning 

was the primary method used to develop the causal relationships between mercury sources and 

effects on freshwater and fish in this project. As is standard practice (Chen and Pollino, 2012), 

the mercury monitoring dataset was split in two, half to be used for setting the prior probability 

distributions, and the other half for elucidating the cause-and-effect relationships. To confirm 

that the order of data upload had no effect on the model output, a second model was prepared by 

switching the prior-probability and case-learning datasets.  

Uncertainty in system processes is explicitly defined in the CPTs and visually 

communicated by the width of the node’s probability distributions (Kaikkonnen et al. 2020). For 

example, the wide and flat distribution of the “Fish Tissue Hg” nodes can be attributed to the 

high spatial variation in the data and the reliance on machine learning algorithms such as 

Netica’s Count-Learning model (Norsys, 2009). One method of reducing model uncertainty is to 

expand the dataset, ideally through strategic sample collection at locations with different 

combinations of stressors. Once the model is parameterized, the influential explanatory variables 
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can be identified with an entropy-based sensitivity analysis, where entropy represents the 

expected uncertainty of a variable (Pollino and Hart 2008; Norsys, 2009). The sensitivity 

analysis quantifies the mutual information, which is the information available about a variable 

based on a finding at another linked variable (Norsys, 2009). The product of the Netica 

sensitivity analysis is a list of nodes ranked on the strength of their correlation to the dependent 

variable. Management nodes are then inserted into the BN-RRM to target these influential 

variables, and the optimal management strategy can be selected with consideration to uncertainty 

(Pollino and Hart 2008; Kaikonnen et al. 2020).  

The strength of Bayesian Network models over other statistical models is that they allow 

for counterfactual analysis- the exploration of realities which have not occurred. They thus allow 

for questions such as “If there were low levels of atmospheric deposition over this area, how 

would this impact the distribution of the downstream nodes? What would be the expected effect 

on fish tissue concentrations?”. Since it is difficult to perform a controlled experiment on the 

effect of atmospheric Hg deposition on fish Hg concentrations, developing these relationships 

using Netica’s Count Learning algorithms can help predict and compare the impact of various 

management strategies, such as the Minamata treaty (Norsys, 2009). The ability to perform 

counterfactual analysis makes BN uniquely qualified to examine various management scenarios 

and predict how further stress will impact the downstream variables (Pearl and Mackenzie, 

2018). 
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2.2 BN-RRM Category- Sources 

Variables that represent potential Hg sources were characterized as point or non-point 

sources. The Hg sources which were considered in this model are: i) proximity to oil and natural 

gas extraction and exploration facilities; ii) proximity to historic and recent mining; iii) 

proximity to permafrost thaw slumps; iv) terrestrial to aquatic Hg transfer by rainfall-induced 

soil erosion; v) atmospheric deposition (GEM-MACH-Hg model); vi) permafrost thaw release 

into aquatic ecosystems (SiBCASA-Hg model). The impact of forest fires on mercury was 

included as part of the atmospheric Hg deposition environmental models and in the estimation of 

rainfall-induced soil erosion. The next chapter will describe these sources, their discretization, 

and how their presence varies between the study areas. 

2.2.1 Fossil fuel developments: 

Fossil fuels (coal, oil, natural gas) contain trace amounts of metals, including mercury 

(Hollebone and Yang, 2007). There are several pathways for Hg release from fossil fuel 

exploration and processing. Mercury is volatilized during oil refinement, and this gaseous Hg 

can contaminate processing equipment, poison chemical catalysts, and even be a health hazard to 

maintenance workers (UNEP, 2022). Fossil fuel exploration and well-drilling can erode soils, 

resulting in mass nutrient and carbon runoff into freshwater following rainfall events. Organic 

carbon (OC) forms stable complexes with inorganic Hg, thereby increasing the freshwater THg 

input (Littlefair et al. 2017; St. Pierre et al. 2018). Natural gas exploration may use a 

combination of drilling and acid fracturing, which uses acid water to dissolve carbonate salts and 

produces Hg enriched wastewater (UNEP, 2022). Leaching from improperly stored waste may 

also contaminate soils and groundwater. In the NWT there are concerns about the industrial 

waste frozen in mud sumps, which are hollow pits in permafrost regions (Kokelj and GeoNorth 
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Ltd., 2002). The mobilization of this previously frozen waste is a major potential source of Hg in 

permafrost regions experiencing climate warming.  

The location of the 257 fossil fuel exploration and production areas in the NWT were 

obtained from the GNWT servers (GNWT Centre for Geomatics: Oil and Gas Resources, 2022). 

These sites can be grouped into four regions: Ikhil, Norman Wells, Fort Liard, and Cameron 

Hills (INAC, 2009; GNWT, 2015; CIRNAC, 2022). Oil and gas production has steadily declined 

during the 2005-2021 period (Figure 12). Following the closure of the Cameron Hills production 

facilities in 2015, Norman Well’s has been the sole location of oil production (CIRNAC, 2021). 

Many sites in the NWTs are under a Significant Discovery Licene. This grants the company 

exclusive rights over the well-drilling, petroleum exploration and testing, and allows for the 

development of the area for production (Harrison, 2016). There are few areas with an active 

Production Licence- two in the Ikhil region (owned by MG Energy and AltoGas Ltd.), six in Fort 

Liard (owned by Paramount Resources Ltd. And Canadian Natural Resources Ltd.), and fifteen 

in the Cameron Hills region (owned by Strategic Oil & Gas Ltd.).  

A study by Kelly et al. (2010) collected freshwater and snow samples at numerous (> 30) 

sites along a 200km transect of the Athabasca River, both upstream and downstream of major oil 

sands developments in the Athabasca subbasins of the MRB. The results showed that surface 

waterbodies located near the Athabasca Oil sands had significantly higher Hg concentrations at 

distances <50 km from the bitumen upgrading facilities (THg concentrations of 1.5 – 5.4 ng/L at 

sites near disturbances, and 0.7 – 1.8 ng/L at distant sites). However, none of the measured 

concentrations exceeded the CCME guidelines for the protection of aquatic life (CCME, 2007). 

Additionally, Wasiuta et al. (2019) used an Inverse Distance Weighting model which predicted 

higher atmospheric deposition rates of THg and MeHg to watersheds in a 50-km radius from Oil 
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Sands smelters, but again this study did not measure any freshwater THg concentrations which 

exceeded regulatory guidelines (CCME, 2007). Kirk et al. (2014) sampled snowpack at 89 sites 

and a maximum of 200 km from major roaster stacks in the Athabasca Oil Sands and confirmed 

the findings from Kelly et al. (2010) that atmospheric mercury deposition from local source 

decreases at distances > 50km. However, the authors note that maximum deposition was 

observed at sites within 20 km from the roaster stacks. Finally, Cooke et al. (2017) measured 

sediment cores from lakes at varying distances of 10- 108 km from the Athabasca Oil Sands 

developments. While THg concentrations did not vary significantly with distance from the 

smelters, the Cooke et al. (2017) study did characterize lakes as being near-field (< 20 km), mid-

field (20 km – 50 km) or far-field ( > 50 km), further supporting the use of 50 km as an 

appropriate value with which to discretize the fossil fuel developments source node. Freshwater 

or fish sampling locations that were within 50 km of an active Oil and Gas licence were 

classified as being near this point source. Note that in the dataset there were only two fish 

sampling sites, both located in the GBS North study region, near an active oil or gas claim; lake 

trout were the only fish harvested at these locations. Comparison of the mercury concentrations 

(Figure 1) with the location of oil/ natural gas facilities (Supplemental Figure 12) showed that 

freshwater THg concentrations were not elevated above the regulatory guidelines for the 

protection of aquatic life (26 ng/L) in the vicinity of the fossil fuel developments.  

2.2.2 Mining developments 

There are four operational mines (3 diamond mines, 1 tungsten mine) in the NWT, as 

well as 81 decommissioned mines, 48 of which were gold mines (MRBB 2003; Silke, 2009). 

Historic gold mining practices utilized Hg to extract and concentrate gold ore (Yoshimura et al. 

2021). Many of the historic mines in the study area were small-scale producers or exploratory 
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expeditions which were decommissioned or abandoned prior to the 1980s (Silke, 2009). 

However, four of these gold mines had processed over 1 million tons of ore each during their 

period of operation. These are the Colomac, Con, Discovery, and Giant mines; all are in the 

Great Slave North sub-subbasin (Figure 13). There is also the Eldorado uranium mine which was 

in production from 1931-1981 and was located on the east shores of Great Bear Lake (Silke, 

2009).  

Of the four mines that are currently in operation, none require Hg for the industrial 

process, and no Hg has been reported in the mining effluent (EMAB Diavik Project, 2020). A 

literature review shows that concentrations of total suspended solids, arsenic, mercury, and 

sulfide concentrations were elevated in lake sediments at Pocket Lake, located 1km from the 

Giant mine (Thienpont et al. 2016). Furthermore, Houben et al. (2016) showed that freshwater 

arsenic concentrations exhibited a significant negative relationship with distance from a mine 

roaster stack; concentrations drastically decreased from >100 µg/L to 2 µg/L at distances greater 

than 17 km from Giant Mine in Yellowknife NWT, one of the most heavily polluted mining 

areas in Canada. Freshwater THg concentrations did not show the same trend of decreasing 

concentrations with increased distance from mining activities. Additionally, with THg 

concentrations ranging from 0.5 – 2.4 ng/L, none of the freshwater samples exceeded CCME 

(2003) inorganic mercury guidelines for the protection of aquatic life. However, the study did 

find elevated MeHg:THg ratios, which can be an indication of inorganic mercury methylation 

rates, with an average of 22.4 % (Houben et al. 2016, Table S3) at lakes within 15 km (% 

MeHg:THg range from 9.4% - 67%) to the Giant Mine roasters, which is drastically higher than 

the natural background % MeHg:THg ratios of ~1% (Schaefer, 2020; Houben et al. 2016). Mean 

methylation ratios % MeHg:THg in lakes from 15 – 25km of the roaster stacks were ~ 8.5%, 
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ranging from 1.3 % - 31 %. While the Houben et al. (2016) study did not find significant trends 

between freshwater THg concentrations and distance to the mines, these trends were apparent for 

arsenic and MeHg formation.   

Mining locations were grouped into two types: historic mining and active mining claims. 

Historic mines range from small exploratory and producing mines (many of which were closed 

prior to 1950) to the four advanced-production gold mines (Silke, 2009). Active mines are those 

for which active mining claims or mineral leases are present (GNWT Centre for Geomatics. 

Mineral Claims Mineral Tenure Data, 2022). There are also two states to each of the mine 

proximity source nodes: Below 15 km and above 15 km. Mercury concentrations from sample 

sites (<15 km) near mining sources were compared to the Hg measurements within the same 

study region which are not near mining sources (> 15 km). Netica Count-Learning algorithms 

(Norsys, 2009) was used to predict the effect of mine proximity on Hg concentrations in 

freshwater and fish of the Great Slave Lake region.  

2.2.3 Permafrost thaw slumps 

 Permafrost is a layer of soil that remains frozen year-round. Permafrost extends through 

much of the study area, although the permafrost continuity varies significantly (Bouchard et al. 

2016; Palmer et al. 2008; MRBB, 2003). In the southern portions of the basin, permafrost is 

either absent or is found in discontinuous and sporadic patches (Palmer et al. 2008). In the north, 

the permafrost is thicker and classified as continuous, although there are signs that permafrost 

thaw is occurring in these regions (Chételat et al. 2022; Lantz et al. 2008; St. Pierre et al. 2018). 

The loss of the ice-rich layer, which is stabilized against soil erosion, results in the subsistence of 

soil and the formation of thermokarst, a wetland landscape characterized by irregular hollows 

(St. Pierre et al. 2018). Retrogressive thaw slumps are a type of rapid erosion event caused by 
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slope failures around the edges of thermokarst lakes. Retrogressive thaw slumps can be initiated 

when permafrost is exposed, increasing its susceptibility to erosion (Lantz et al. 2008; Burn and 

Leqkowicz,1990). Additional stressors of thaw slumping include soil erosion, flooding, 

wildfires, construction, or mining (Burn and Leqkowicz, 1990). Retrogressive thaw slumps are 

common in Canada’s northwest regions, particularly in deltas and at the confluence of rivers 

(Burn and Leqkowicz, 1990). The wasting of these thaw slumps creates an influx of sediment 

and carbon-rich soil into aquatic ecosystems, impairing the water quality (Kokelj et al. 2021). 

 A recent study has mapped the location of permafrost thaw slumps in the Great Bear 

subbasin study area, with a focus on the Peel Plateau and Mackenzie Delta in the northern study 

regions (Kokelj et al. 2021). This map does not include the “Great Bear South” study region, 

which is characterized by a lack of permafrost soil (Palmer et al. 2008). The Gwich’in 

Indigenous community located near the confluence of the Peel and Mackenzie Rivers have 

reported concerns over riverbank erosion and heavy sediment loads in freshwater (Parlee and 

Maloney 2016; Littlefair et al. 2017). Increased sediment loads correspond to increased inputs of 

ubiquitous metals which are associated with organic carbon, such as mercury (St. Pierre et al. 

2018). A recent study in the Peel Plateau recorded some of the highest THg and MeHg 

concentrations (range of 1.9 – 1270 ng/L and 0.16 – 7.6 ng/L respectively) in unfiltered 

freshwater samples from a minimally impacted freshwater study sites. Freshwater THg 

concentrations were elevated downstream of retrogressive thaw slumps (mean THg of 448 ± 87 

ng/L) compared to upstream concentrations of 5.56 ± 1.13 ng/L (St. Pierre et al. 2018). 

Thermokarst landscapes such as the Mackenzie Delta have been identified as hot spots for 

mercury methylation (Jonsson et al. 2022; St. Pierre et al. 2018) as it is hypothesized that the 
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continuous nutrient and carbon input from sediment influx and the subsequent anoxic conditions 

create an ideal environment for mercury-methylating bacteria (Jonsson et al. 2022).  

 The recent retrogressive thaw slump mapping project (Kokelj et al. 2021) also developed 

the slope thermokarst inventory (STKI) of waterbodies impacted directly or downstream of 

active slumps. This dataset was used to select the waterbodies for which Hg is a potential 

stressor (Figure 12). Sampled lakes within 10 km of a waterbody included in the STKI dataset 

(Kokelj et al. 2021) were classified as being “Near” this point source; however, this distance was 

arbitrarily selected and is likely overestimating the distance at which permafrost thaw slumps are 

expected to affect waterbodies. Note that for the fish monitoring dataset, only three of the 

sampling sites were near a permafrost thaw slump, and all were within the GBS North study 

region.  

2.2.4 Proximity to Great Slave Lake (GSL) outlet 

While mining developments are not included in the Great Bear BN-RRM, historic and 

active mining on Great Slave Lake may have elevated Hg concentrations relative to surrounding 

waters. Great Slave Lake is a major tributary of the Mackenzie River and may be a relatively 

large Hg source. To determine if freshwater and fish Hg concentrations near the GSL outlet are 

elevated relative to further downstream the Mackenzie River, a 50 km buffer was delineated 

around the outlet of Great Slave Lake (Supplemental Figure 13, coordinates: 61.362638, -

117.832952). Sampling sites that fell within this buffer zone were categorized as “Near” the GSL 

Outlet. Fish mercury concentrations near the GSL outlet were elevated (> 0.5 ug/g ww, Figure 

1), but this trend does not hold for the freshwater lake and river monitoring data (Figure 1).  
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2.2.5 Permafrost Thaw and Hg release 

Mercury in the Arctic originates from lower latitudes, from industrial sources which 

release gaseous elemental mercury (GEM) (Fraser et al. 2018). GEM is relatively unreactive and 

can persist in the atmosphere for upwards of a year, allowing sufficient time for transport to the 

Arctic via atmospheric transport (Dastoor et al. 2015). The direct deposition of GEM, also 

known as dry-deposition, is the dominant source of Hg to terrestrial vegetation, soil organic 

matter, and snowpack (Obrist et al. 2017). Soil carbon dating suggests that these Hg deposition 

processes have been occurring over millennia, resulting in the accumulation of large Hg reserves 

in Arctic soils (Schuster et al. 2018). In permafrost-dominated zones the cold temperatures 

impede the microbial decay process and significantly slow the release of Hg, making permafrost 

a sink for terrestrial Hg (Campeau et al. 2022). However, as global temperatures increase and 

unprecedented rates of permafrost thaw are being observed, there is concern that permafrost soils 

could become a major source of Hg in the Arctic (Schaefer et al. 2020; Schuster et al. 2018). A 

global permafrost model predicted that permafrost soils store more Hg than the combined 

amount found in oceans, the atmosphere, and other soils (Schuster et al. 2018).  

Permafrost thaw can result in the weathering of soil and subsequent ground-subsidence, 

which poses a major risk to Arctic infrastructure such as human communities and industrial 

developments. Global maps of geohazard risk for infrastructure development in permafrost-

dominant regions are publicly available (Hjort et al. 2018). Additionally, permafrost thaw can 

increase stream flow and is believed to already have altered near-surface hydrological 

connections in key tributaries of the Mackenzie River (Connon et al. 2014). The increased 

hydrological connection has been linked to the conversion of forest ecosystems to wetlands 

(Connon et al. 2014). Because wetlands are hypothesized to be hot-spots of Hg methylation (Xu 
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et al. 2021), their expansion may result in higher seasonal concentrations of bioavailable 

mercury. 

Schaefer et al. (2020) recently used the terrestrial biogeochemistry model SiBCASA to 

estimate the Hg released by thawing permafrost in the Yukon River Basin, which is adjacent to 

the Mackenzie River Basin. This study also produced global maps of two permafrost-thaw driven 

Hg evasion pathways: atmospheric evasion, and leaching into groundwater to be exported by 

rivers. For the second pathway, the model assumes that all Hg to be exported to rivers is 

immediately transported to the river mouth. The model makes several other key assumptions that 

should be highlighted. First, based on a large dataset of ~11,000 soil samples across North 

America, it assumes that Arctic soils have a mercury-to-carbon ratio of 1.6 +/- 0.9 g Hg/ kg C, 

thereby assuming a linear relationship between the organic carbon and the mercury found in 

Arctic soils. Second, the model assumes that 1.5% of the Hg mobilized during permafrost thaw is 

exported to the aquatic ecosystem as dissolved mercury (DHg), and that 1% of this DHg will be 

methylated to MeHg. However, observational field studies suggests that the percentage of total 

mercury that is MeHg (%MeHg : THg) can be elevated in lakes impacted by soil erosion, such as 

the lakes near permafrost thaw slumps or mining sites (St. Pierre et al. 2018; Houben et al. 

2016). Finally, it does not consider how warming temperatures impact riverine discharge and 

local hydrology. The numerous model assumptions, high model uncertainty (58% - Schaefer et 

al. 2020), and low spatial resolution are some of the limitations of utilizing the SiBCASA 

mercury model output in this project. Nonetheless, environmental models represent our current 

best state of knowledge for complex systems, and their output is necessary to conduct a spatial 

risk assessment over a large, remote, and relatively under-sampled study area like the Mackenzie 

River Basin.  
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The SiBCASA model (Schaefer et al. 2020) was used to estimate monthly mercury 

(DHg) fluxes (ng/m2) from soil to aquatic ecosystems over the 2004- 2020 study period, which 

were then summed to produce maps of annual Hg flux using ArcGIS (Supplemental Figure 14). 

The model predicted significant seasonal variation but not significant interannual variations. This 

is expected because the model was developed to predict permafrost-thaw Hg emission over a 

300-year period under two climate change scenarios where differences in temperature and 

precipitation trends become significant only when comparing distant time points. While there 

was significant seasonal variation which would be interesting to explore further, this would 

require seasonal fish and water sampling data that was not available in our dataset. Annual flux 

values were used to populate the “Permafrost Hg Release” node of the BN-RRM (Supplemental 

Figure 14). Due to a lack of regulatory policy and thresholds, the discretization of this node was 

based on the range of permafrost thaw values over the study area. Therefore, the node states do 

not represent management goals or toxicological thresholds. The node was discretized into 6 

categories: 0 ng/ m2*yr ; 0- 2 ng/ m2*yr ; 2- 4 ng/ m2*yr ; 4- 6 ng/ m2*yr ; 6- 10 ng/ m2*yr ; and 

>= 10 ng/ m2*yr. The first category of 0 ng/ m2*yr represents the southern regions of the study 

area which are free of permafrost (Supplemental Figure 14).  There is no direct link between the 

“Permafrost Hg Release” node and the “Freshwater THg” and “Freshwater Fish Tissue Hg” 

effect nodes; rather, the Hg release rate of the three non-point Hg sources (atmospheric Hg 

deposition, permafrost thaw Hg release, soil erosion Hg release) were summed to produce a 

“Total Annual Mercury Input” node, which was then connected to the nodes in the Effect BN-

RRM category.  
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2.2.6 Atmospheric Hg deposition 

The Minamata treaty was established in 2017 as a policy to reduce global Hg 

anthropogenic emissions. The highest emissions are believed to originate from industries in East 

and Southeast Asia (ECCC, 2020) with coal combustion and small-scale artisanal gold mining 

(AMAP/ UNEP, 2015) being the major sources. Atmospheric Hg is the sum of three forms: 

Gaseous elemental mercury (GEM), gaseous oxidized mercury (GOM) and particle bound 

mercury (PBM). Of the three, GEM is the least soluble form and persists in the atmosphere for 6-

24 months (Dastoor et al. 2015), allowing for the pollutant to be dispersed throughout the globe 

prior to deposition. GOM and PBM are more prevalent near the industrial sources (Fraser et al. 

2018). Modelling studies have revealed a spatial correlation between regions of high Hg 

deposition and elevated Hg in seawater (AMAP/UNEP, 2015). In Canada, over 95% of the 

deposited anthropogenic Hg originates from other countries (Fraser et al. 2018), and since the 

closure of the last chlor-alkali hg cell plant in 2008, Canada has no domestic industries that 

utilize mercury (Canada Gazette, 2019). Thus, in Canada, and especially in the Canadian North, 

global management initiatives such as the Minamata treaty are necessary to reduce Hg deposition 

levels since domestic industries are not the major input.  

Mercury deposition to the study region was estimated using Environment and Climate 

Change Canada’s primary Hg model, GEM-MACH-Hg (Global Environmental Multi-scale, 

Modelling Air quality and Chemistry model, mercury version) (Dastoor et al. 2015), which was 

then used to populate the “Atmospheric Hg Deposition” node. The key Hg cycling factors in the 

GEM-MACH Hg model include anthropogenic Hg emissions, Hg emissions from wildfire 

events, dry and wet (precipitation driven) deposition rates, the impact of gas phase oxidization on 

deposition rates, and post-Atmospheric Mercury Deposition Event (AMDE) re-emission of Hg 
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from the snowpack (Dastoor et al. 2015). The GEM-MACH model outputs included in the BN-

RRM presented here were spatial predictions of the annual net total mercury (THg) deposition 

(ng/m2/yr). Like the permafrost thaw Hg release node, an average annual flux was calculated in 

ArcGIS and used to generate the distributions for the BN-RRM (Supplemental Figure 14). Note 

that the uncertainty associated with the GEM-MACH-Hg and the SiBCASA model outputs were 

not integrated and propagated in this BN-RRM. Additionally, the discretization of the 

“Atmospheric Hg Deposition” node represents the distribution of atmospheric deposition values 

and not a management goals or experimentally obtained threshold. The Atmospheric Hg 

deposition node is linked to the freshwater and fish tissue effect nodes via the “Total Annual 

Mercury Input” node, which includes the model outputs for permafrost thaw and soil erosion 

mercury release. 

2.2.7 Estimating Hg release due to rainfall-induced soil erosion 

The soil erosion calculation required the K-factor (soil erodibility/ texture), R-factor 

(rainfall intensity), C-factor (vegetation density), and LS-factor (topographic/ slope) variables. 

For details about the calculation of these factors and the soil erosion potential, see the Stressors 

and Habitat sections.  

The erosion potential and soil Hg variables were combined to estimate the release of Hg 

from soils into nearby surface waters. First, the carbon maps developed by Sothe et al. (2022) 

were combined with the methods described by Schuster et al. (2018) to estimate the 

concentration of Hg at soil depths of 0cm and 5cm (Supplemental Figure 16). Briefly, the carbon 

content of soils (measured as g Carbon/ kg soil) is multiplied by a Mercury-Carbon ratio 

(Schuster et al. 2018) to produce a soil mercury map. The Mercury-Carbon ratios are not 

expected to differ with soil type, depth, and age (Schuster et al. 2018) with studies conducted on 
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northern permafrost soils of Alaska and the Yukon River finding Mercury-Carbon ratios of 1.6 ± 

0.9 g Hg/ kg C (Schuster et al. 2018, Schaefer et al. 2020).  

At each of the sampling locations, the freshwater Hg was calculated as the product of the 

soil Hg concentration, the erosion potential (converted to standard units of g m-2 yr-1), the 

resolution of the erosion potential GIS layer (Supplemental Table 3), and the time period over 

which erosion was calculated.  A set time of 1 year was used to determine the annual load of Hg 

into surrounding waterbodies. The soil released during erosion processes travels to nearby 

waterbodies, including the waterbody sample sites for which water or fish Hg measurements are 

available. A polygon was created for each sample site waterbody and the erosion potential values 

within the shape were summed, and then divided by the waterbody area. These ratios were used 

to compare the annual erosion input between sampling sites. This method assumes that the Hg 

released from erosion processes are equally distributed to nearby surface waters. Based on 

modelling work by Schaefer et al. (2020), only about 1.5% (0.015) of Hg released from erosion 

enters surface waters, which is reflected in the equation below. The final units of this calculation 

are the annual mass (ug) of Hg released per square meter, which is identical to the units from the 

SiBCASA (permafrost thaw) and GEM-MACH-Hg (atmospheric deposition) models. 

Concentrations of mercury in waterbodies impacted by soil erosion (g/L) were calculated 

using Hg concentrations in soil (ug Hg/kg soil), the soil erosion potential (kg*m-2*yr-1), and a 

temporal period (year):  

Equation 1:   ሾ𝐻𝑔ሿ௪௔௧௘௥ ൌ ሾ𝐻𝑔ሿ௦௢௜௟ ∗ 𝐸𝑟𝑜𝑠𝑖𝑜𝑛 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 ∗ 𝑇𝑖𝑚𝑒 ∗ 0.015 
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Similar to the other non-point sources, no regulatory policy or management thresholds 

were available to guide the node discretization of the “Soil Erosion Hg Release” node. Instead, 

the discretization represents the distribution of calculated values. The “Soil Erosion Hg Release” 

node was also linked to the effect nodes via the “Total Annual Mercury Input” node. 

2.2.8 Mercury sources not included in the BN-RRM  

Logging and the construction of dams for hydroelectricity production were also 

considered in the initial model (Figure 2) but were not included in the final iteration as detailed 

below.  

The creation of reservoir areas for large dams has numerous undesirable social and 

environmental consequences, including involuntary resettlement of local communities, 

interrupted wildlife migrations, and altered hydrological regimes (Baird et al. 2021). Damming 

creates changes in river and sediment flow, causing decreased inputs of dissolved organic matter, 

oxygen, and nutrients (Maavara et al. 2017). The flooded soils and degradation of submerged 

organic matter results in anoxic environments favourable for mercury-methylating bacteria and 

will accelerate the formation of methylmercury. Methylmercury concentrations tend to spike 1-3 

years following dam construction and return to background concentrations after ~10-20 years 

(Calder et al. 2016). Additionally, the construction of dams, or the act of dam peaking (where 

dams are only run during periods of high electricity demands) resulting in flooding and higher 

water levels and increasing the potential of soil erosion, which is one of the Hg input pathways 

considered in this project.  

There are three hydroelectric facilities in the NWT, located at Yellowknife (Bluefish 

Hydro), Fort Smith (Taltson Hydro) and along the Snare River (Figure 14) which utilize 
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reservoirs. The Taltson Hydro dam constructed in 1966 and the rebuilding of the Duncan Lake 

dam (Bluefish Hydro facility) in 1974 were the most recent activities which would have required 

flooding. Further hydroelectric developments have been proposed for at La Marte River falls and 

at Lutsël K’e on the eastern side of Great Slave Lake, but there is no flooding required for the 

construction of these run-of-the-river facilities (GNWT, 2019; Mackenzie Valley Review Board, 

2010). The proposed developments may have negligible impact on Hg release (Calder et al. 

2016), but they are expected to adversely affect caribou populations and alter flow regimes at 

culturally significant sites for the Lutsël K’e Dene First Nation (Mackenzie Valley Review 

Board, 2010). The hydroelectric system at Fort Smith has the largest capacity at 18 megawatts 

(MW), although there is a recent proposal to expand the facilities to 80 MW (GNWT Industry, 

2019). This will be accomplished by connecting to the North and South Slave electrical systems, 

but this proposal remains in the planning stages and requires more than 1 billion dollars in 

investments (GNWT Industry, 2018). There are currently no reports that indicate additional 

flooding will be necessary, as the Taltson hydroelectric plant has a maximum capacity of 200 

MW.  Because no additional flooding for hydroelectric power generation has been proposed in 

the NWT, this point source variable was not included in this model.  

Like the wildfire node (Chapter 2.3.4), the effect of logging on soil erosion can also be 

used to approximate Hg release from terrestrial sources into surface waters. However, the 

literature search revealed that there are currently no commercial logging companies operating in 

the NWT (GOC, 2022). Any disturbance from logging should be attributed to subsistence wood 

harvesting for use as a heating and fuel source for remote Northern communities. The National 

Forestry Database estimates that annual logging harvested area for the entire NWT varies 

between 80-460 hectares, taking place on provincial land and using a seed tree harvesting 
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method (National Forestry Database, 2020), not a clearcut method. Clearcutting has not been 

practiced on NWT Provincial land since 2011; prior to this approximately 60 hectares were 

clearcut logged annually. Clearcut logging has more significant effects on the soil erosion 

potential because the disturbed bare soil has a higher C-factor. The NWT logging industry 

harvests less wood than all other provinces except for Nunavut and the Yukon. Most of this 

harvested wood (> 95 %) is classified as softwood; softwood tree species that grow in the NWT 

include White/ Black spruce, Jack pine, Subalpine fir, and Tamaracks (Bohning et al. 1997). 

Thus, logging activities in the NWT are sparce and not expected to have a significant impact on 

soil erosion or terrestrial Hg release and the logging variable was removed from the final model 

iteration.  

2.3 BN-RRM Category: Stressors  

The second category in the BN-RRM framework are the stressors which are the ecosystem 

variables which impact the probability distribution of a discretized continuous node. The 

stressors were grouped as abiotic (soil erosion, wildfire, and riverine flow variables) or biotic 

(fish length and dietary intake). The following section is a detailed discussion of the stressor 

variables. 

Abiotic Stressors:  

2.3.1 Soil Erosion Potential 

The Mackenzie River is the largest source of sediment and organic matter to the Arctic 

Ocean (Rachold et al. 2000; Vonk et al. 2015). Erosion, sediment transport, and deposition are 

the three stages of the sedimentation cycle. In the Arctic the common forms of erosion are 

rainfall-induced erosion (Lamoreux, 2000), wind-erosion (Heindel et al. 2015), coastal erosion 
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(Nielsen et al. 2022), streambank erosion (Vonk et al. 2015), and rapid mass-movement events 

such as landslides or thaw slumps (Lumb et al. 2006; Lantz and Kokelj 2008). Communities 

throughout the Mackenzie River Basin have observed increased riverbank erosion, the presence 

of sandbars indicating greater sedimentation, decreased water levels, and altered hydrologic 

connectivity which have impacted water quality and riverine travel (MRBB, 2021; Parlee and 

Maloney, 2016; Parlee et al. 2019).  Regions where sedimentation is of particular concern 

include the tributaries to Great Slave Lake (MRBB 2021), the enlargement of the artificial 

islands at Norman Wells constructed for oil-production (Carson, 1987; Lamberink, 2022), and in 

the Mackenzie Delta upstream of the Beaufort Sea (Parlee and Maloney 2016; Parlee et al. 

2019). Mercury forms strong bonds with organic matter and elevated concentrations of Hg have 

been observed in thermokarst lakes impacted by sedimentation (Lavoie et al. 2019; St. Pierre et 

al. 2018). Therefore, the sedimentation cycle and soil erosion were included as a potential source 

of Hg to the Mackenzie River.  

Many models have been developed for the estimation of soil erosion rates and remote 

GIS-driven methods have been an active area of research for decades (Hrabalíková and Janeĉek, 

2015; Borelli et al. 2016). However, there is currently no Canadian model for soil erosion and no 

measurements of soil-loss over the project study area. Infrastructure and agricultural projects in 

Canada do account for soil erosion potential, which is primarily calculated using the Revised 

Universal Soil Loss Equation (RUSLE) method (Wall et al. 2002, GNWT Department of 

Transportation, 2013). The RUSLE model was developed to predict the rate of rainfall-induced 

soil erosion, and it considers several key habitat variables which were of interest to this project. 

The following paragraphs will include an in-depth discussion of how these stressor and habitat 

variables were quantified, the model assumptions, and sources of uncertainty. 
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Natural erosion resulting from rainfall can be modelled using the RUSLE Revised 

Universal Soil Loss Equation (GNWT Transportation, 2013) using rainfall intensity, soil 

erodibility (also known as soil texture), a topographic factor, and a vegetation density factor:  

 

Equation 2:     𝐴 ൌ 𝑅 ∗ 𝐾 ∗ 𝐿𝑆 ∗ 𝐶 ∗ 𝑃 

A = erosion, measured as annual soil loss (tonnes ha-1 yr-1) 

R = Rainfall factor (MJ mm ha-1 yr-1) which represents rainfall intensity 

K = The soil erodibility factor (tonnes hr MJ-1 mm-1) determined by the soil texture 

LS = The topographic factor (unitless), calculated from slope length and steepness 

C = Vegetation and Management factor (unitless) 

P = Support practice factor (unitless) 

 

  The best-practices P-factor was assumed to be equal to 1 throughout the study area 

because there is insufficient Canadian data available to predict P-factor values. This factor is 

primarily applied when estimating soil erosion for agricultural areas where erosion-control 

measures have been implemented (Wall et al. 2002). The erosion potentials are categorized into 

several risk categories ranging from Very Low to Very High (GNWT Transportation, 2013) and 

these category thresholds were used to discretize the node (Figure 3, Supplemental Figure 16, 

Supplemental Table 4). This calculation of soil erosion potential relied only on GIS datasets and 

represents a theoretical model of erosion. Some erosion factors, such as rainfall intensity, have 

been interpolated over the study area and are not an accurate representation of local conditions. 
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Monitoring studies of soil loss must be developed to quantify the accuracy of this model 

(Schmidt et al. 2019).  

2.3.2 Rainfall Intensity (R-factor) 

Rainfall intensity has been measured for select sites in the NWT, which are reported in 

the NWT Department of Transportation (2013) Appendix. The raw data for precipitation 

intensity was downloaded from the Open Canada Short-duration Rainfall intensity-duration-

frequency dataset (Canada Open Government, 2015). Precipitation monitoring is scarce in the 

NWT; with only 8 climate stations, many of the sampling sites are in locations where rainfall 

intensity data is lacking. Modern precipitation data (temporal range of 2005-2017) from 46 

climate stations across the Canadian North was compiled and the ArcGIS tool “Empirical 

Bayesian Kriging Interpolation” was applied to estimate the R-factor over the study area. A 

separate layer was produced for each year, which were then averaged to produce a map with 

generalized precipitation trends and intensities (Supplemental Figures 15 and 20). The result is a 

map with high precipitation intensity (> 300 MJ mm ha-1 yr-1) in the west and south regions of 

the study area; the lowest intensities were observed in the Great Bear North and Great Bear East 

study regions (Supplemental Figure 15). The resolution of this raster layer was 250 m.  

2.3.3 Vegetation Density (C-factor) 

The C-factor represents the vegetation density and describes the stabilizing effect that 

vegetation has on soil integrity. The C-factor is estimated from the Normalized-Difference 

Vegetation Index (NDVI). The NDVI is calculated using satellite imagery data of visible and 

near-infrared light, by accounting for the fact that healthy vegetation and sparse vegetation have 

different reflection ratios for each wavelength class (NASA Earth Observatory, 2000). C-factor 
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values close to 0 correspond to dense and healthy vegetation, while values of 1 represent bare 

soil. Water features will also be assigned a high value close to, or above, 1. To calculate C factor 

from NDVI, the following equation was used (Oliveira, 2015): 

Equation 3:     𝐶 ൌ  𝑒
షమ∗ಿವೇ಺
ሺభషಿವೇ಺ሻ 

 The expected C-factor value for undisturbed forests was ≤ 0.01 (Borelli et al. 2016), 

while regions recently affected by wildfire are typically assigned values as high as 0.4 

(Depountis et al. 2020) and cities with paved roads are assigned values of 0.05 to account for the 

stabilizing effect of gravel (GNWT Transportation, 2013). The C-factor values calculated were 

higher than these expected ranges, with most of the samples in our study area having a C-factor 

values of 0.4 – 0.6 (Supplemental Figure 15). However, a study in the Himalayan Arctic reported 

similar C-factor values (Mu et al. 2020) calculated by the RUSLE method. The high calculated C 

values for the Arctic region may be due to the use of α and β values which were developed to 

simulate European climate conditions (Oliveira et al. 2015). The Arctic climate is unique, and 

the vegetation is dominated by smaller shrub-like vegetation rather than the dense forests of 

mainland Europe. The C-factor values are likely being overestimated across the study area; if a 

C-factor calculation for Arctic regions is developed in the future, this may provide a more 

accurate estimate of soil erosion.  

2.3.4 Wildfire effect on Soil Erosion 

Beyond being an essential component of the RUSLE soil erosion equation, the C-factor 

has also been applied in wildfire erosion research (Borelli et al. 2016; Depountis et al. 2020). 

Wildfires will reduce the vegetation density, increasing the C-factor and the susceptibility of the 

soil to rainfall-induced erosion. Wildfires are common across the study area, particularly in the 
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southern regions and around Great Slave Lake (Scholten et al. 2021). Wildfires and the burning 

of carbon-rich fuels release GEM that can travel long distances before deposition (Fraser et al. 

2018). The GEM-MACH-Hg model (see previous Atmospheric non-point source discussion) 

includes wildfire-derived Hg in the model output for atmospheric Hg deposition. The model of 

soil erosion therefore also accounts for the effect of wildfires on the C-factor. The location of 

wildfires (from 2001 – 2018) in the Northwest territories was obtained from Scholten et al. 

(2021). This dataset is in the form of a point-layer with only the wildfire year data available. A 

detailed dataset by French et al. (2020) was also used to determine whether wildfire intensity 

influenced the C-factor value; this dataset was temporally and spatially limited to the 2014-2016 

period and the Great Slave Lake region. Supplemental Figure 19 shows the locations of wildfires 

from both datasets. A spatial join was performed in ArcGIS between the C-factor layers and the 

wildfire locations from the former dataset (Scholten et al. 2021) to produce a point-layer dataset 

of wildfire locations which included C-factor values from the 2013- 2021 period. Statistical 

analysis showed that the C-factor does significantly increase [French et al 2020: F(1, 128) = 

67.86, p = 1.77e-13); Scholten et al. 2021:  (F(1, 4420)= 2290, p < 2e-16] following a wildfire year 

in both datasets. Following 3-years of recovery, the C-factor is still elevated but no longer 

drastically different from pre-fire values. Supplemental Figure 23 shows results for the French et 

al. (2020) dataset. For the Scholten et al. (2021) dataset, the mean C-factor value was highest on 

the year of the wildfire (0.65 ± 0.14), followed by three-years post fire (0.59 ± 0.11). The post-

wildfire C-factors were greater than the values from the year prior to the fire (0.50 ± 0.11).  

After confirming that wildfire occurrence will lead to an increase in the C-factor values, 

the Scholten et al. (2018) wildfire point locations (3296) were used to generate count data 

distributions of the C-factor ratio (C-factor post-fire: C-factor pre-fire) for Year 0 (year of 
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wildfire) and Year +3 (3 years post-wildfire). These ratios were input into the Bayesian Network 

model to calculate an “Adjusted C-factor” that predicts how the C-factor would change in an 

area affected by fires. When using the model in the Netica software, the effect of wildfires on 

erosion can be removed by selecting “No” in the “Wildfire Event?” node. 

Using the detailed French et al. (2020) dataset, wildfire intensity was also found to 

influence the C-factor value post-fire (Supplemental Figure 23). Regions of high-intensity fires 

did have significantly higher C-factor values than regions of very low intensity; however, there 

were low-intensity and medium-intensity fires which saw similar C-factor shifts as the high-

intensity locations. Since no clear statistically significant relationship could be derived from the 

one detailed dataset presented in French et al. (2020), the “Wildfire Intensity” node was not 

included in the Bayesian Network model. Any relationships that were found from the French et 

al. (2020) dataset would likely not be applicable to the far north regions of the study area due to 

differences in vegetation type and growth rates. 

2.3.5 Permafrost effect on Soil Erosion 

An adjustment to soil erosion for the stabilizing effect of permafrost was considered. 

Conversely, permafrost thaw can reduce soil stability and is accentuated by the heat-inductive 

effects of infrastructure like roads and buildings (Hjort et al. 2018). The effect of permafrost and 

permafrost thaw on soil erosion is not well characterized, and no soil erosion equation has been 

developed for Arctic permafrost regions. The NWT government recommends that the soil 

erodibility factor be adjusted by a factor of 0.8 in regions without permafrost (GNWT, 2013). 

This adjustment was not utilized in this project because it does not account for rate of permafrost 

thaw, the permafrost continuity, or the active layer depth; these factors vary throughout the study 

area and are expected to influence soil erosion rates. Further fundamental soil erosion modelling 
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studies are needed in Arctic tundra and permafrost-dominant ecosystems to improve soil loss 

estimates. 

2.3.6 Riverine Discharge 

The Mackenzie River is the 4th largest source of freshwater into the Arctic Ocean, 

preceded by the Yenisey, Lena and Ob rivers in Russia. The Mackenzie River is the Arctic 

Ocean’s largest riverine source of organic carbon (Vonk et al. 2015; Emmerton et al. 2013; 

Rachold et al. 2000). Additionally, with an annual Hg flux of approximately 2 tons THg, it is 

also the largest mercury source to the Beaufort Sea (Leitch et al. 2007). Freshwater THg 

concentrations are the sum of the dissolved and particulate phases; dissolved mercury (DHg) is 

bound to dissolved organic carbon (Schuster, 2018), while particulate mercury (PHg) is strongly 

bound to suspended sediment (Dittman et al. 2010). Particulate bound Hg is the dominant phase 

of Hg in the Mackenzie River, corresponding to 78- 87% of the total Hg flux in the basin (Leitch 

et al. 2007; Emmerton et al. 2013). The particulate-bound Hg is mobilized by terrestrial erosion, 

with the majority (88%) originating from the erosion of natural coal deposits (10%) and 

weathering of the sulfide-enriched bedrock (78%) of the Cordillera ecozone mountain ranges 

(Carrie et al. 2012). The ARCRISK project is a circumpolar project that aims to understand how 

rivers contribute to Hg in the Arctic Ocean. The purpose of the riverine discharge nodes was 

two-fold: to support the inclusion of a “Mercury input into the Beaufort Sea” endpoint, and to 

identify another pathway by which climate change may impact Hg release.  

Riverine flow rates were obtained from Canada’s National HYDAT archive for water 

quantity and flow data, and were accessed through the R-studio tidyhydat() and fasstr() 

packages. The daily flow values (m3/day) from the Arctic Red River Station (HYDAT, ID: 

10LA002) during 2005- 2019 were divided into the freshet and non-freshet periods. The freshet 
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season began when the discharge rate was 1.5-fold greater than the average 30-day discharge, 

until 10-days after the peak flow (Leitch et al. 2007). Riverine discharge data was summed for 

the freshet and rest-of-year periods to obtain the annual total flow values. The Netica CPTs were 

populated with count data from the number of years where a flow value within a certain range 

was calculated. The discretization of the Total Flow variables was dependent on the observed 

flow data and not on regulatory or threshold values. Overall, the total riverine flow values 

calculated via this method were lower than the 5.1 km3/year value reported by Leitch et al. 

(2007).  In this project the average annual total flow through the Arctic Red River station was 3.4 

km3, with the freshet season lasting between 9 (in 2017) and 39 (in 2012) days, averaging at 18 

days. The riverine discharge variables are based on data collected from the Great Bear North 

study region, prior to the Mackenzie River outlet to the Beaufort Sea; therefore, riverine 

discharge values are only relevant to the northern-most study region.  

For the Great Slave Lake model, the “Mercury input into the Beaufort Sea” node was 

replaced by a “Mercury input into the Mackenzie River” endpoint. This endpoint is only relevant 

to the GSL Outlet study region, as this is the location where Great Slave Lake drains into the 

Mackenzie River. The Fort Simpson climate station at Strong Point (HYDAT, ID: 10FB006) was 

the nearest station to the GSL outlet but is located approximately 180 km downstream. Riverine 

discharge values from this station were used to populate and discretize the Total Flow variables 

for the freshet and non-freshet season.  
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Biotic Stressors 

2.3.7 Fish Length  

Methylmercury forms strong bonds to the sulfur-containing amino acids in tissue proteins 

and is slow to be eliminated by organisms, which leads to higher Hg body burdens in older 

individuals. Fish exhibit indeterminate growth, with growth rates varying significantly between 

habitats (Kozak et al. 2022). Rapid growth can result in growth dilution effects, where large 

individuals have lower than predicted Hg concentrations due to their young age. Fish age, or age-

at-length, are the preferred explanatory variables across ecosystems but age measurements can 

be costly due to the specialized training and equipment required. In the NWT, fish consumption 

advisories typically include a size restriction, with most predatory fish over 600 mm being 

considered higher-risk food sources (GNWT, 2016). The discretization of the fish length node is 

based on the recommended sizes in fish consumption advisories (GNWT, 2016). For lake trout, 

northern pike and burbot, this was set to 600 mm; for walleye it was 450 mm. Because there are 

no advisories for lake whitefish, fish greater than 500mm in length were classified as large.  

2.3.8 Fish Consumption Rates 

Mercury exposure through diet depends on both the food Hg concentrations and the rate 

at which the food is consumed.  A consumption rate variable was created for the five freshwater 

fish in the model (see Effects category for fish species information). The discretization of the fish 

consumption variable is based on the average weight of a fish portion, which is approximately 

150g for an adult (of body weight at 60 kg) and 75g for a young child (Health Canada, 2007; 

GNWT, 2016). The fish consumption rate nodes are interactive when the models are accessed in 
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the Netica software, allowing the BN-RRM user to visualize how the cumulative consumption of 

a varied freshwater fish diet affects the weekly Hg exposure.  

2.4 BN-RRM Category- Habitat  

The Habitat variables are the third category in the BN-RRM. The purpose of this 

category is to identify where there is a spatial overlap between the sources and the endpoints. For 

example, habitat could be various forms of terrestrial and aquatic ecosystem classifications, such 

as freshwater bodies, seawater, or tundra vs. forested terrain. The models presented in this thesis 

did not have traditional habitat variables. Instead, the “Proximity to” point-source nodes and the 

study region scenario nodes were used to describe the intensity of stressor presence. 

Additionally, the topography (LS-factor) and soil texture (K-factor) variables from the soil 

erosion calculations are included in this category because these are descriptions of the habitat 

which are less likely to be impacted by climate change or the presence of Hg sources.  

2.4.1 Soil Erodibility/ Texture Factor (K-factor) 

The soil erodibility factor (tonnes hr MJ-1 mm-1) or K-factor depends on several soil 

properties such as the organic matter content, the proportion of clay and sand content, and the 

porosity of the soil. The combination of these properties comprises the soil texture 

characteristics. The standard method of calculating the K-factor requires a spatial dataset on the 

clay, sand, and organic matter soil composition (GNWT Transportation, 2013). For the NWT, 

there is currently no detailed dataset for the clay and sand soil content, so a less accurate method 

was used. A polygon of soil texture classes was obtained from a Canada-wide GIS dataset “Soil 

Texture by Eco-district” (Supplemental Figure 15, Canada Open Government, 2013). The 

average K-factor value for the various soil texture classes was obtained from Table B-3 of the 
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GNWT Transportation (2013) Erosion manual. There were 6 major texture classes in the study 

area, listed in order of increasing K-factor: Water (0.000), Sand (0.002), Organic (0.015), Sandy 

Loam (0.017), Clay (0.030), Clay Loam (0.032), and Loam (0.042) (Supplemental Figure 15). In 

the study area, the “Organic” soil texture was the most common classification; unfortunately, 

there isn’t a standard range of K-factor values for this soil classification. The K-factor 

calculation was developed for soils with OC content < 4% (Wall et al. 2002), therefore no 

literature values were available for organic soils. A K-factor value of 0.015 was utilized but it is 

possible that this value is much lower. This is because the organic matter will bind the soil 

particles, making the soil less susceptible to erosion (Wall et al. 2002). The lack of a spatial 

dataset of soil clay and sand content has resulted in several assumptions about the K-factor 

values. Detailed knowledge of local soil characteristics is necessary to improve the estimation of 

soil erosion potential in this study area. When this layer was converted to a raster, the resolution 

was set to 250 m.  

2.4.2 Topographic Factor (LS-factor) 

The calculation of the topographic LS-factor is a major limitation of the GIS-derived soil 

erosion method and is an active area of research (Hrabalíková and Janeĉek, 2017). The LS-factor 

is composed of the slope length (L), which is length between the higher-elevation origin and 

where the slope (S) decreases such that flow accumulation begins (Hrabalíková and Janeĉek, 

2017). Accurate slope length values are best obtained from field measurements (Hickey, 2000), 

and GIS methods have replaced the slope length variable with a Unit Contributing Area (UCA) 

variable (Brychta and Brychtová, 2020). The UCA can be rapidly calculated in ArcGIS Pro using 

the Hydrology toolkit. First, the Digital Elevation Model (DEM) input layer must be pre-

processed to fill in any sinks or depressions that are caused by errors in data collection (Zhang et 
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al. 2013). In this project, the 16m resolution Natural Resources Canada (2013) DEM Version 1.1 

map was used (NRC, 2013). The flow direction was then calculated using either D8 or Multi-

flow direction (MFD) methods (Zhang et al. 2013). The D8 method assumes that the flow will be 

in the direction of the lowest elevation, while the MFD method allows for the flow into several 

downslope neighbors (Zhang et al. 2013). The D8 method was used in this project, as this is the 

method that required the least computational power. The Flow Direction layer is then used to 

calculate Flow Accumulation; no weight raster was used during the calculation but an 

Accumulation threshold of 300 was applied (Brychta and Brychtová, 2020).  

Finally, the slope length can be approximated as the flow accumulation multiplied by the cell 

size, also known as the raster resolution. Although there are several options for calculating the 

LS-factor (Hrabalíková and Janeĉek, 2017), the McCool equation (Equation 3) was ultimately 

used (Moore and Wilson, 1992) (Supplemental Figure 14). 

The LS-factor (unitless) was calculated using values of slope length (meters) and slope angle (β, 

radians) following the recommended equation for the RUSLE Calculation (Moore and Wilson, 

1992): 

Equation 4:     𝐿𝑆 ൌ ሺ ଵ

ଶଶ.ଵଷ
∗ 𝐿𝑒𝑛𝑔𝑡ℎሻ௠ ∗ 𝑆 

Factor S is calculated as: 

            β < 0.09                 S = 10.8* sinβ + 0.03 

            β≥ 0.09                  S = 16.8*sinβ – 0.5 

            Length< 4.5 m      S = 3*(sinβ)^0.8 + 0.56 

And m is: 

             m = F / (1+ F) 
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F is calculated as: 

             Length < 4.5 m      F = 0 

             Length ≥ 4.5 m      F = 
ሺ ೞ೔೙ಊ

బ.బఴవల
ሻ

ଷ∗ሺ௦௜௡ஒሻబ.ఴ ା଴.ହ଺
 

 

2.5 BN-RRM Category- Effects 

In the BN-RRM, the effect category represents the nodes which are expected to respond 

to the influence of pollutant sources and stressors. Effect variables are often essential for 

maintaining ecosystem services or other systems of social, environmental, or economic 

importance, and are therefore coupled to the project endpoints. In these BN-RRMs there are 

three groups of effect variables: freshwater Hg concentrations, freshwater fish tissue 

concentrations, and human daily Hg ingestion via a fish-diet.  

2.5.1 Freshwater Mercury Concentrations 

Mercury exists in several forms in freshwater including dissolved (DHg), particulate 

(PHg), sediment-bound (sHg) and organometallic methylated mercury (MeHg). Analysis of 

dissolved and total Hg was standard in freshwater Hg monitoring programs in the NWT. There 

were 9 freshwater Hg monitoring datasets included in this project, with the majority of 

datapoints (79%) obtained from the “NWT-wide Community-based Monitoring” study 

(Supplemental Table 1). Most monitoring datasets were community-scale, with data being 

collected for local experimental studies or by Indigenous community-led projects. A limitation of 

the NWT-wide Monitoring study was the high detection limit value of 10 ng/L for DHg and 

THg. This is especially problematic for the DHg form, since freshwater DHg concentrations are 
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typically much lower than this limit (Leitch et al. 2007; Campeau et al. 2022). Thus the DHg 

concentration node was removed because the majority of datapoints were below this detection 

limit (99%) and drastically below any regulatory Hg thresholds; comparatively, 83% of THg 

values were below a threshold value. Figure 1 shows the Hg monitoring results included in the 

BN-RRM. 

Only two studies (Supplemental Table 1) analyzed MeHg, so this variable was also 

removed from the model due to a lack of data across all study regions. The removal of the MeHg 

node is a major limitation of the BN-RRM structure presented in this thesis, because it is the 

variable that links freshwater and fish Hg concentrations (Moslemi-Aqdam et al. 2022). 

Freshwater MeHg is rapidly metabolized by aquatic biota and accumulated into the food chain. 

Mercury monitoring of species at various trophic levels in the food chain, including invertebrates 

and small non-food fish, may be necessary to derive accurate causal relationships between 

abiotic and biotic effects. Integration of the abiotic Hg models with food web models is beyond 

the scope of this project, but it is being pursued in other Bayesian Network models (Uusitalo et 

al. 2018). 

The discretization of the Freshwater THg node was based on the highest detection limit 

value (10 ng/L) and the CCME-2003 regulatory threshold value (26 ng/L); there is an additional 

threshold for safe drinking water at 1000 ng/L but this limit was exceeded only once over the 15-

year study period. The CCME-2003 inorganic Hg regulatory threshold of 26 ng/L was based on 

the most sensitive LOAEL for juvenile fathead minnows.  
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2.5.2 Fish Tissue Mercury Concentrations 

High Hg concentrations in humans have been linked to the consumption of fish and 

marine mammals. Indigenous communities in the NWT rely on a subsistence diet of fish, 

caribou, moose, offal, eggs, poultry, and small mammals, with some individuals in the far North 

of the study area also consuming seal and beluga whale. However, the consumption of 

freshwater fish is the major dietary Hg input for communities across all study areas. Data from 

caribou tissue is available for future model iterations (Gamberg et al. 2020) if there is interest by 

stakeholders and land rightsholders. Consultation with Indigenous rightsholders should be 

conducted to select other culturally significant dietary Hg sources. 

There are approximately 42 species of freshwater fish in the lower Mackenzie River 

Basin (Bodaly et al. 1989), although many of these are not a significant component of the 

subsistence diet. There are five freshwater fish species that have been extensively monitored in 

the Mackenzie River basin and were included in the Bayesian model. The species are lake 

whitefish, burbot, walleye, lake trout, and northern pike, and they differ in their trophic levels 

and popularity among the various Indigenous groups in the subbasins. Fish Hg concentrations 

(reported as wet weight) were pooled from 11 sources (Supplemental Table 2) and were limited 

to samples obtained from muscle tissue only.  

Lake whitefish occupies the lowest trophic level of the five and is consumed by 

Indigenous communities throughout the basin. It is generally considered a safe food source and 

there are no consumption advisories for the study area currently. Walleye (pickerel) occupies a 

higher trophic level position (Cott et al. 2011; Zanden et al. 1997) than lake whitefish. Walleye 

are preferred by the Tłı̨chǫ, Chipewyan, and Dehcho Dene communities settled around Great 

Slave Lake (Halseth and the NCCAH 2015). Walleye monitoring data was only available for the 
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Great Bear South and West study regions and for Great Slave Lake. Next in trophic level 

position is burbot (Lota lota) (Cott et al. 2011). Burbot is not widely consumed in Indigenous 

communities but is preferred by elders who particularly enjoy burbot liver as a delicacy (Ratelle 

et al. 2019), which has lower Hg concentrations than muscle tissue (Cott et al.  2016). Finally, 

lake trout and northern pike (jackfish) occupy the highest trophic level of the five species 

(Zanden and Rasmussen, 1996; Cott et al. 2011). Northern pike is a piscivorous fish often 

consumed by individuals in the southern regions of the study area (Ratelle et al. 2019), however 

in the north it is considered an undesirable food fish and is commonly used as dog food (MRBB, 

2021). Lake trout is an important food fish for the Sahtu Dene and Tłı̨chǫ communities, and 

Great Bear Lake is well-known amongst sports fishermen for its trophy lake trout. Additionally, 

lake trout comprise approximately a third of the annual harvest for the Great Slave Lake 

commercial fishery (Fisheries Act). The Gwich’in and Inuvik communities in the Great Bear 

North region do not harvest much lake trout due to preferences for other salmanoid species such 

as arctic char (Schuster et al. 2011; Stephenson, 2004). However, arctic char was not included in 

this project due to a lack of publicly available Hg monitoring data.  

There are two Health Canada guidelines for acceptable Hg levels in fish, and a 

recommended guideline for subsistence consumers. The lowest guideline of 0.2 ppm (200 ng/g 

ww) is set for subsistence fishing practices, applying to individuals that harvest their own fish or 

have a higher fish intake (Lockhart et al. 2005). The two federal guidelines are 0.5 ug/g and 1.0 

ug/g, the latter applying for certain species of fish such as tuna and shark, which are not 

considered in this model (Health Canada, 2007). The consumption advisories for predatory 

species are 150 g per week, equivalent to a single serving (Health Canada, 2019).  
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2.5.3 Human Daily Mercury Ingestion 

The Canadian pTDI (Provisional tolerable daily intake) for total Hg in adults is 0.71 

ug/kg bw/day, where no more than two-thirds is methylmercury (0.47 ug/kg bw/day) (Health 

Canada, 2007). A second Canadian federal guideline was established 30 years later for children 

and women of child-bearing age (0.20 ug/kg bw/day – Legrand et al. 2010). Additionally, the 

USA and the Netherlands have adopted a lower guideline of 0.7 ug Hg/ kg bw/week for children 

and women of child-bearing age (U.S. EPA, 2000). The Canadian pTDI values were based on 10 

ppm maternal hair methylmercury and an adult body weight of 60 kg (Health Canada, 2007). 

The probable daily Hg intake (ug/kg bw/day) can be calculated as the product of the fish muscle 

intake (FMI, g/day), the methylmercury concentration ([MeHg], ug/g ww) divided by the 

average body weight (BW, kg): 

Equation 5:     𝑃𝐷𝐼 ൌ ሺிெூ∗ሾெ௘ு௚ሿሻ

஻ௐ
 

The pTDI value was calculated from toxicological studies conducted by the Swedish Expert 

Group which found that a 200 ug/L concentration is the lowest blood concentration to cause 

adverse effects (Legrand et al. 2010). The recommended guideline adopted was 20 ug/L blood, 

which corresponds to 0.47 ug MeHg/kg bw/day as the daily intake limit (Legrand et al. 2010) 

2.6 BN-RRM Category- Endpoints 

The endpoints are the variables of social, environmental, cultural, or economic value for 

which we are quantifying the probability of a risk caused by mercury exposure. There are four 

endpoint variables in this model. Three of these variables are estimating risk probabilities: the 

probability that commercial fish catch will exceed national guidelines for sale, the probability of 

a subsistence consumer exceeding regulatory guidelines for Hg ingestion, and the probability 
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that fish tissue Hg concentrations are harmful to fish. The fourth endpoint is “Mercury input into 

the Arctic Ocean” which is a prediction of riverine Hg export and not a quantification of a risk 

probability, as there are no regulations on acceptable levels of riverine Hg flux.    

2.6.1 % Fish not Eligible for Commercial Sale  

There are approximately 110 lakes in the NWT which can be fished commercially, with 

lake whitefish and lake trout being the dominant commercial species (Fisheries Act). Great Slave 

Lake (GSL) has the largest fish quotas in the territory and has sustained a commercial fishing 

industry for over 50 years (Supplemental Figure 18). The GNWT has released a strategy to 

expand the Great Slave Lake commercial fishery by building a new local fish processing plant in 

Hay River, increasing fishing efforts, and negotiating with the Freshwater Fish Marketing 

Corporation (FFMC) to access larger markets in southern jurisdictions (GNWT, 2017). In 

Canada, the regulatory threshold for the retail sale of fish is 0.5 ppm (Health Canada, 2007). 

Mercury concentrations in lake whitefish harvested in Great Slave Lake are below this threshold; 

however, this regulatory guideline is commonly exceeded in higher-trophic level species like 

lake trout and northern pike. The endpoint “% Fish not eligible for sale” is a risk probability 

endpoint which was calculated by assigning any fish with concentrations above the threshold as 

being “Not eligible” for commercial sale. Thompson (1981) proposes that a 10% sales margin is 

acceptable for fishing skiffs, although this value has likely changed significantly in the past 40 

years since the document was published. Engaging the commercial fisheries as stakeholders in 

this project can provide guidelines that represent present-day profit margins of fisheries in the 

NWT, to determine what economic loss can be sustained by the modern fishing operations at 

Great Slave Lake (GNWT, 2017). This will be a key step if the model is expanded to estimate 
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the risk to commercial fisheries; other steps include the integration of nodes that consider the 

frequency of Hg testing and any control or mitigation strategies employed by the fisheries. 

2.6.2 Exceedance of Hg Consumption Thresholds 

This endpoint was calculated as the ratio between the modelled “Weekly Hg ingestion 

from freshwater fish” to one of three pTWI regulatory threshold values. The probability of 

exceeding Hg exposure thresholds is quantified by a risk-quotient value, where a value of 1 

indicates that the predicted Hg ingestion is equal to the selected threshold value. The calculation 

of the risk-quotient requires the BN-RRM user to select a diet by specifying the number of 

portions consumed of each of the five freshwater fish species. The user also selects a regulatory 

pTWI value (see “Human Daily Mercury Ingestion” node in the Effects Section). Risk-quotient 

values below 1 suggest that the selected rate of fish consumption is below the regulatory 

threshold, while values above 1 indicate that the threshold value is exceeded.  

This endpoint is relevant for any individuals who consume harvested fish from the 

Mackenzie River and was not developed for a particular Indigenous community in the study 

area. With community-based framework projects, such as the NWT Cumulative Impact 

Monitoring Program (NWT CIMP) projects, the data generated will be subject to OCAP; a First 

Nations principle of “ownership, control, access, and possession” over the information that 

belongs to the First Nations people. OCAP ensures that First Nations peoples are involved and in 

leadership roles in these projects (FNIGC, 2014). For the purposes of the ARCRISK project, 

obtaining access to the data gathered on Hg concentrations in subsistence foods will be a time-

consuming process, and could not be completed within the timeframe of the funding. Multiple 

site-visits and meetings with the communities are necessary if the project wishes to include 
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Indigenous rightsholders as stakeholders and gain access to data necessary for their inclusion in 

the BN-RRM model.  

The Inuvaluit/, Gwich’in, Dehcho Dene, Sahtu Dene, Métis, Tłı̨chǫ, and Chipewyan 

peoples represent the seven Indigenous groups that occupy a large territorial range near the 

Mackenzie River (Halseth and the NCCAH, 2015) The populations of each of the communities 

is listed in descending order: Dehcho (4531), Chipewyan (4450), Tłı̨chǫ (3848), Métis (3385), 

Sahtu (2785), Gwich’in (2569), and Inuit (1690) (Statistics Canada, 2017). Much of the sample 

collection for Hg monitoring in the MRB is completed by Indigenous-lead groups concerned 

about pollution in the water and subsistence foods. Subsistence harvesting is the procurement of 

food or other resources for the direct use by the individual or community. Subsistence fishing is 

a cheap source of nutrients and is essential for meeting the food demands of many communities 

(Laird et al. 2018). There are several collaborative projects between university researchers and 

Indigenous communities that have recently published results for Hg concentrations in 

subsistence foods and in human hair or blood samples (Ratelle et al. 2020a; Ratelle et al. 2020b; 

Ratelle et al. 2019; Curren et al. 2015). While fewer than 5% of the participants had blood or 

hair Hg concentrations exceeding a regulatory threshold, many more community members have 

adjusted their dietary intake of traditional foods due to concerns over fish quality and pollutants 

(Ratelle et al. 2019; Parlee and Maloney, 2016).  

2.6.3 % Injury to Fish  

Tissue-residue toxicology studies are needed to predict at what tissue concentrations 

adverse health effects on freshwater fish become apparent. Dillon et al. (2010) compiled 

published toxicology studies and prepared composite dose-response curves, where the adverse 

effect endpoint was “% injury” and represents the combined impact of mortality, developmental 
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abnormalities, and spawning success endpoints. Dose-response relationships were developed in 

R using the drc package (Ritz et al. 2015) and the Dillon et al. (2010) supplemental data. This 

dataset combines experiments on fish of various life stages and trophic levels, from small 

medaka to predatory fish such as walleye and rainbow trout. Three dose-response models were 

initially prepared using a subset of data. The first model used all data, while the subsequent two 

models use data from the Fathead Minnow Juvenile or Juvenile/Adult life-stages respectively 

(Supplemental Table 6). The drc model LL.3( ) was used to develop the dose-response 

relationships.  

The predicted effective dose (ED) values for the three models are presented in 

Supplemental Table 6. Environmental risk assessments often use ED20 and ED50 values for 

quantifying the impact of an adverse event (Fuschman, 2016). The ED20 value from the 

Juvenile/Adult model were the highest of the three models. However, the dose response equation 

generated with the Juvenile/Adult data converges to a maximum %injury value of 50% because 

the %injury at the highest tissue Hg concentration (7.6 ug/g ww) was relatively low (22%). 

When input into the BN Netica software, this resulted in a dose-response curve with a maximum 

%injury value of 50% even at extreme concentrations (>3 ug/g ww). For this reason, the 

Juvenile/Adult dose-response model was not used to predict the probability of injury in our BN-

RRM. Data from only the Juvenile life stage was instead used to generate the dose-response 

curve and predict the probability of tissue-induced injury in three freshwater species: lake 

whitefish, lake trout, and northern pike.  

A shortcoming of the Juvenile model was that it predicted a low ED20 value (of 0.33 

ug/g ww) that are below modelled natural background fish tissue concentrations (Fuchsman et al. 

2016). Additionally, field-collected fish with low Hg body burdens (below 0.5 ppm in tissue) did 
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not show adverse health effects, further supporting the application of a higher toxicological 

reference value (Fuschman et al. 2016). Field case studies suggest that even the Dillon et al. 

(2010) ED20 value of 0.77 overpredicts the degree of adverse effects on wild fish populations 

(Fuschman et al. 2016). Finally, the “All Fish Data” model was excluded because it compiles 

highly variable data and does not account for the effect of exposure route, species-specific 

sensitivities, trophic levels, or bioaccumulation with age class.  

Only the data from the “Juvenile” life stage experiments was used in the model. The 

LL.3( ) model utilizes a log-logistic equation to describe the dose response curve, using the 

lower limit (c), the upper limit (d), the regression slope (b) and the ED50 (e) values as inputs: 

Equation 6:    𝑓ሺ𝑥ሻ ൌ 𝑐 ൅ ௗି଴ 

ଵାୣ୶୮ ሺ௕ሺ୪୭୥ሺ௫ሻି୪୭୥ሺ௘ሻሻሻ
 

The “Juvenile” dataset is solely comprised of data from fathead minnow fish, so this dose 

response curve is not a reliable estimate of the health impacts on the five freshwater species of 

interest in the BN-RRM. Fathead minnows are a small, low-trophic level fish species and their 

toxicity response does not accurately represent the five freshwater fish species included in this 

model (Supplemental Table 4). The risk of injury to the fish species in the BN-RRMs are likely 

being underestimated, as fathead minnows are believed to be less sensitive to metal toxicity than 

salmonid species like lake trout and whitefish (Teather and Parrott, 2006; Dillon et al. 2010). 

There is a need for future toxicological studies on salmonid species or adult fish of a higher 

trophic level position (such as walleye and northern pike) to predict the probability of injury 

more accurately for the study organisms. 

The average residue concentration that corresponds to an ED20 value across all the 

appropriate models for the “Juvenile” life stage was 0.33 ug Hg/kg tissue, and the ED50 value 
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was 2.43 ug Hg/kg tissue.. The predicted ED50 value was slightly lower than the value of 3.013 

calculated with the Dillon model. Note that the LL.3( ) model equation is different than the 

Dillon et al. (2010) dose-response equation, and uses the Juvenile life stage data rather than the 

“Juvenile/Adult” data. Supplemental Table 6 shows a comparison of the predicted ED50 values 

across the three tested models and the Dillon et al. (2010) results. From these three models, the 

“Juvenile” dataset produced the closest replicate to the Dillon et al. (2010) dose-response curve 

and was the only one to converge to a 100% probability of injury.  

2.6.4 Mercury Input into the Beaufort Sea 

In the lower Mackenzie River, the highest riverine Hg concentrations are observed during 

the spring freshet. Freshet Hg concentrations were 7-fold greater than the comparative mid-

summer samples (Leitch et al. 2007), corresponding to the increased riverine flow. Mercury flux 

is the product of discharge rate and Hg concentrations, and the total annual Hg flux is the sum of 

the freshet and rest-of-year Hg flux values (Leitch et al. 2007). This flux estimate was further 

improved by Emmerton et al. (2013), who concluded that the downstream Mackenzie Delta acts 

as a Hg sink and retains ~19% of the bulk Hg transported. Therefore, the Leitch et al. 2007 

equation was multiplied by 0.81 to account for the Hg sedimentation in the Mackenzie Delta. As 

this project is using Hg monitoring data primarily collected during the summer season (84% 

Summer compared to Winter 1.7%, Spring 5.8%, and Fall 8.5%), the probability distributions 

were also multiplied by 7 to estimate the expected increase in bulk Hg release during the spring 

freshet (Leitch et al. 2007). The following equation was used to populate the CPT for the 

“Mercury input into the Beaufort Sea” endpoint: 

 

 



52 
 

Equation 7: 

Annual Hg Input = 0.81 * [(7* Freshwater THg* Freshet flow) + (Freshwater THg* Rest of 

Year flow)] 

Management strategies looking to reduce the riverine flux of Hg into the Arctic Ocean 

would benefit from considering the impact of climate change stressors. Climate change stressors, 

such as increased temperatures or snowfall, will impact the annual riverine Hg flux through the 

riverine flow and water Hg variables. Riverine flow rates and Hg concentrations have a strong 

positive correlation (Leitch et al. 2007; Emmerton et al. 2013), indicating that most Hg is 

originating from natural flooding and riverbank erosion processes. The Mackenzie and Yukon 

rivers of North America have exhibited a 9% increase in riverine discharge over the past 3 

decades (1975- 2015), and the six largest European rivers have a composite increase of 12% over 

the same period (Chetelat et al. 2022). In North America, riverine discharge is estimated to be 

accelerating at a rate of 3.4 km3/yr/yr (Feng et al. 2021), a significant increase when considering 

that the flux of the Mackenzie River from the 2005- 2007 period was ~5.1 km3/yr (Leitch et al. 

2007). Applying the linear regression developed by Zolkos et al. (2020) which proposes that 

THg concentrations can be adequately predicted from data on riverine discharge (m3/s), TSS, and 

DOC; assuming that the biogeochemistry of Arctic rivers is not significantly altered, this change 

in discharge would result in ~ 1.025-fold increase in riverine THg concentrations in 10-year 

period. However, it is expected that climate change and altered hydrological regimes will also 

impact nutrient flux and the biogeochemical processes governing mercury methylation and 

bioaccumulation. There are currently no estimates of what THg export levels warrant concern, 

and seawater THg concentrations in the Arctic Ocean (0.31 ± 0.11 ng/L) are similar to samples 
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collected from other oceans (north Atlantic 0.48 ± 0.32 ng/L; north Pacific 0.2 3± 0.17 ng/L; 

Southern Ocean 0.27 ± 0.09 ng/L – Kirk et al. 2012).  

 

2.7 Methods Summary 

In summary, I first developed a conceptual model that considers six potential Hg sources 

and their spatial relationship to Hg concentrations in freshwater and five fish species of the 

MRB. The variables included in the model were discretized according to regulatory thresholds or 

toxicological data (Supplemental Table 4) whenever possible, and were parameterized with data 

obtained from monitoring studies, GIS datasets, or environmental models (Supplemental Tables 

1 – 3). The causal relationships between Hg sources and endpoints were quantified using the 

Netica software’s Count Learning algorithms, and a sensitivity analysis was performed to 

identify the sources driving Hg accumulation in the study region. Ultimately, two models were 

prepared for the Great Bear subbasin and Great Slave Lake, respectively. Each of these study 

areas was further divided into four study regions to visualize both how the state of Hg and the 

predicted influential sources vary along the basin. 
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Chapter 3: Manuscript draft  

Title: BAYESIAN NETWORK MODEL OF MERCURY EXPOSURE TO AQUATIC 

ECOSYSTEMS OF THE MACKENZIE WATERSHED  

Abstract 

A Bayesian Network Relative Risk Model (BN-RRM) was developed to assess the recent (2005- 

2020) state of mercury (Hg) in the freshwater ecosystems of Great Slave Lake and the 

Mackenzie River, in the Canadian Northwest Territories. Data from environmental models, Hg 

monitoring projects, and community reports were organized into a single causal model which 

considered six Hg input pathways. Sensitivity analysis was used to predict the sources 

influencing Hg concentrations in freshwater and fish tissue across eight study regions. The 

output of the BN-RRMs differed significantly throughout the study area (800,000 m2), with 

atmospheric Hg deposition and soil erosion Hg release consistently flagged as important 

explanatory variables. However, the low sensitivity values imply that only a fraction of the 

observed Hg concentrations can be attributed to the input pathways. Analysis of the endpoint 

uncertainties revealed gaps in knowledge and in Hg datasets, which should be the focus of study 

for future monitoring programs. 

Introduction 

Effective ecosystem management projects adopt a holistic approach that enables natural 

resilience and preserves valuable ecosystem services while considering the socioeconomic and 

cultural needs of communities (DeFries and Nagendra, 2017). The management of natural 

resources is complicated by the competing interests of rightsholder and stakeholder groups, the 

absence of shared national databases, the temporal and spatial variation in ecosystem 
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components, and a lack of long-term monitoring and understanding of the causal relationships 

within (Cooke et al. 2016; DeFries and Nagendra, 2017). In the past 12 years, the Canadian 

provincial, territorial, and federal governments have cumulatively invested over 330 billion 

dollars on environmental protection projects (Statistics Canada, 2022). However, government 

ecosystem management projects would benefit from the implementation of a framework that can 

integrate many stakeholder endpoints, combine various knowledge types, and encourage 

communication between multidisciplinary departments (Cooke et al. 2016). 

Bayesian Networks (BNs) are probabilistic tools that have been applied in ecological 

management to predict risk to ecosystems (Harris et al. 2017; Ayre and Landis, 2012), to 

develop and compare policy decisions (Johns et al. 2016; Herring et al. 2015; Ayre et al. 2014), 

and to perform retrospective environmental risk assessments (ERAs) of multi-stressor systems 

(Bruen et al. 2022; Peeters et al. 2022). An ERA is the process of studying and predicting the 

probability and consequences of an adverse effect posed to humans or ecosystems (Kaikkonen et 

al. 2020). Bayesian Network Relative Risk Models (BN-RRMs) are the integration of BNs and 

ERAs (Landis, 2020; Harris et al. 2017). The BN-RRM integrates all aspects of an ERA 

including exposure assessments and risk quantification (Kaikkonen et al. 2020; Landis, 2020). 

An additional strength of these models is that they can integrate a variety of knowledge including 

primary data, environmental models, and expert opinion. The capability to integrate expert 

opinion is uniquely relevant for ERAs conducted in Canada. In 2019 Canada passed Bill C-69 

which requires that ERAs involve land-rights-holders throughout the assessment process, 

promoting the application of Traditional Ecological Knowledge (TEK) in parallel with Western 

Science approaches (Bill C-69; Houde et al. 2022). Expert knowledge like TEK can be 

integrated throughout the model, including the conceptualization of the causal models, the 
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selection of study regions and endpoints, and later when parameterizing the variables (Pollino et 

al. 2007).  

The BN-RRM is visualized as a causal diagram linking variables (called nodes) along an 

exposure pathway from sources to endpoints (Landis, 2020). The relationships between 

downstream “parent” nodes and the variables on which they have a perceived effect (“child” 

nodes) are defined in the conditional probability tables (CPTs). Uncertainty is propagated 

throughout the model because variable states and their dependencies are described by probability 

distributions (Uusitalo, 2007; Kaikkonen et al. 2020). Quantifying uncertainty is imperative to 

the selection of a successful management strategy but is also useful for identifying knowledge 

gaps when developing future monitoring programs (Marcot et al. 2006). BN models can also be 

used to perform counterfactual analysis and predict the outcome of events under a novel 

situation, such as an unrealized management decision or climate scenario (Carriger et al. 2021). 

Uncertainty of the causal relationships, where parent variables are necessary and/ or sufficient to 

achieve an impact on the child nodes, will limit the accuracy of this prediction. Finally, the 

graphical nature of BN models facilitates communication with stakeholders and policy makers. 

Purposeful causal diagrams are developed in collaboration between scientists and stakeholders 

such as industry partners, NGOs, politicians, and local communities (Kaikkonen et al. 2020; 

Houde et al. 2022).  

In this research, the BN-RRM framework was used as an assessment of risk probabilities and 

as an organizational tool to integrate mercury (Hg) monitoring data, environmental model 

outputs, and community reports (Parlee and Maloney, 2016; MRBB, 2021), using the lower 

Mackenzie River Basin as a case study. The five objectives of this research were: 
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1) To confirm that the BN-RRM is an appropriate framework for organizing data from 

multiple studies and for identifying knowledge gaps. 

2) To develop a general framework for a Hg risk assessment in a circumpolar watershed. 

3) To identify influential pollutant Hg sources and their spatial variation. 

4) To evaluate the associated risk probabilities for the environment and human health. 

5) To perform a counterfactual analysis predicting the impact of two management strategies: 

The Minamata treaty and fish consumption advisories  

This research is the Canadian contribution to the ARCRISK project, a circumpolar 

collaboration to develop Hg risk assessments for Arctic Rivers in Norway, Canada, and Russia 

(Gundersen et al. 2020). Together these assessments will present a comprehensive study of the 

pathways driving Hg accumulation in Arctic Rivers. Arctic Rivers, like Canada’s Mackenzie 

River (MR), are major sources (15-20%) of Hg for the Arctic Ocean (Soerensen et al. 2016). 

Lockhart et al. (2005) summarized Hg data collected from 1965-2004 in the MR and reported 

elevated (> 0.5 ug/g ww) Hg concentrations in upper-trophic level aquatic species. In this study, 

Hg monitoring data of freshwater and fish tissue collected during the 2005- 2020 period is 

compiled from publicly available databases (Supplemental Tables 1- 3).  Monitoring data and 

Geographic Information Systems (GIS) were used to construct the cause-and-effect relationships, 

in the form of CPTs, between Hg sources and the effect on freshwater and five culturally 

valuable food fish species. Fish health and human dietary Hg exposure were the endpoint 

variables for which risk probabilities was estimated. Two counterfactual queries were 

considered; 1) to predict how a reduction in global atmospheric Hg concentrations (assuming 

successful implementation of Minamata Convention treaty (UNEP, 2021)) will impact water and 

fish Hg, and 2) to assess whether advisories restricting consumption of large fish can reduce 
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human Hg exposure. This model framework can be used to identify local Hg sources, estimate 

the probability of exposure, identify gaps in knowledge to improve monitoring programs, and act 

as support tool for planning risk-reduction initiatives (Gundersen et al. 2020). 

Methods  

The study area 

Draining an area of 1.8 million km2, the Mackenzie River Basin (MRB) is the largest 

watershed in Canada and is collectively managed by the federal government and the five 

provinces which it intersects (GOC, 1997). The MRB encompasses six smaller subbasins: Peace, 

Athabasca, Great Slave, Great Bear, Liard, and Peel (MRBB, 2021). Great Slave Lake is the 

major riverine input into the Mackenzie River (35%), followed by the Liard River (26%), Peel 

River (8%) and Great Bear River (6.5%) (Environment Canada, 2013; Palmer et al. 2008). The 

Mackenzie River begins at the outlet of Great Slave Lake, at the boundary of the Great Bear and 

Great Slave subbasins. There are approximately 40,000 individuals residing in the study area 

(Figure 1); 60- 95% of the communities identify as Indigenous, with slightly lower ratios in 

administrative centers (Statistics Canada, 2017).  
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Figure 1. The study area and Hg monitoring data for the Great Bear Subbasin (GBS) and Great Slave 

Lake (GSL) models. The GBS study area was divided into four study regions, labelled SR1 – SR4, 

spanning from the Alberta-Northwest Territory border to the Mackenzie River (blue line) outlet at the 

Beaufort Sea. The GSL study area was also divided into four regions (North Arm, East Arm, Middle and 

Outlet), spanning a 50 km buffer zone around Great Slave Lake. Mercury monitoring data (ng/L for water 

and ug/g wet weight for fish) was collected during the 2005- 2020 period.  Fish monitoring datapoints 

include data from 5 fish species: lake trout, lake whitefish, northern pike, walleye, and burbot. 
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Warming temperatures are accelerating riverine discharge and the transport of nutrients 

and debris into the Arctic Ocean (Peterson et al. 2002; Campeau et al. 2022; Schuster et al. 

2018; Pierre et al. 2018). Globally, the Mackenzie River is the largest source of sediment and 

organic matter to the Arctic Ocean, in addition to contributing ~10 % of the freshwater flow and 

an average of two tons of Hg, annually (Vonk et al. 2015; Rood et al. 2016; Leitch et al. 2007; 

Rachold et al. 2000). Particulate-bound Hg corresponds to 78-87 % of the total flux in the basin, 

originating mainly from the weathering of natural coal deposits (10%) or sulfide-enriched 

bedrock (78%) of the Liard and Mackenzie mountains (Carrie et al. 2012). Mercury is a 

ubiquitous element and is released by both anthropogenic and natural processes.  

Table 1. Summary of the habitat and source proximity characteristics for the eight study regions across 

the Great Bear Subbasin (GBS) and the Great Slave Lake (GSL) models. 

 

Category Parameter GBS Model GSL Model 
SR1 SR2 SR3 SR4 East Arm North Arm Middle Outlet 

Habitat 
variable 

Ecozone Taiga Plains Taiga 
Cordillera 

Taiga Plains/ 
Taiga Shield

Taiga Plains Taiga Shield Taiga Plains/ 
Taiga Shield 

Taiga Plains Taiga Plains 

Precipitation Low/ 
Moderate 

Moderate Low High High High High High 

Soil Organic 
Carbon 

High, mixture Lowest Highest Moderate, 
mixture

Low  Low High High 

Permafrost Continuous Continuous/ 
Extensive 
discontinuous 

Continuous/ 
Extensive 
discontinuous

Sporadic 
discontinuous 

Extensive 
discontinuous 

Extensive 
discontinuous 

Sporadic 
discontinuous 

Sporadic 
discontinuous 

Total Area 
(km2) 

131879.7 133753.6 160522.0  101865.9 41303.2 25469.7 25131.7 21623.3 

Potential 
Hg 
sources 

Oil/Gas 
exploration 

Yes Yes None Not 
operational

None None None None 

Mining None None No active 
mining. Some 
historic mines

None, but 
near the GSL 
outlet

No active 
mining. Some 
historic mines

Dense mining 
region 

No active 
mining. Some 
historic mines

None 

Wildfire 
frequency 

Low 
frequency 

Moderate 
frequency 

Moderate 
Frequency

High 
frequency

High 
frequency

High 
frequency 

High 
frequency

High 
frequency

Soil Erosion High, based 
on reports 
from 
Indigenous 
locals 

High, based 
on presence of 
Mackenzie 
Mountain 
Range 

Unknown. 
Little 
variation in 
slope suggests 
low erosion 
rates

Unknown. 
Little 
variation in 
slope suggests 
low erosion 
rates

Unknown. 
Little 
variation in 
slope suggests 
low erosion 
rates

Unknown. 
Urban center 
and mining 
developments 
may impact 
erosion. 

Unknown. 
Little 
variation in 
slope suggests 
low erosion 
rates 

Unknown. 
Little 
variation in 
slope suggests 
low erosion 
rates

Permafrost 
thaw slumps 

Present Present Present None None None None None 

Atmospheric 
Hg deposition 

Moderate Low Low High Low Moderate Moderate/ 
High

High 

Permafrost 
thaw Hg 
release 

Moderate Low/ 
Moderate 

Moderate None/ 
Moderate/ 
High

Moderate Moderate/ 
High 

None None 
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The primary route of Hg exposure to humans is through the consumption of foods 

containing methylmercury (MeHg), the organometallic form of Hg which bioaccumulates and 

biomagnifies in the food chain (U.S. EPA, 2000; Health Canada, 2007). The highest 

concentrations of MeHg are found in freshwater fish, marine mammals, and the organs of some 

terrestrial animals, which are staples of the local diet (Ratelle et al. 2019; Ratelle et al. 2020a; 

Ratelle et al. 2020b). Recent human Hg monitoring studies of the Dehcho and Sahtu Dene 

communities, who occupy the southern study area, found that approximately 2% of individuals 

exceeded the strictest regulatory blood Hg guidelines (Ratelle et al. 2019). Consumption 

advisories are pursued as a Hg risk-reduction measure, but can diminish the community’s diet, 

trust, relationship with the land, and overall sense of cultural connection (Laird et al. 2018; 

Hoover, 2013; Halseth and NCCAH, 2015). Because consumption advisories infringe on 

Indigenous rights to utilize their land and water, management strategies should instead prioritize 

reducing Hg release and implementing remediation strategies. 

Six Hg sources were considered over two models for the MRB. Mercury sources include 

atmospheric Hg deposition (Dastoor et al. 2015); permafrost thaw Hg release (Schaeffer et al. 

2020); proximity to point-sources like mines (radius r= 15 km; GNWT Centre for Geomatics), 

oil and natural gas wells (r= 50 km; GNWT Centre for Geomatics), and retrogressive permafrost-

thaw slumps (r = 10 km; Kokelj et al. 2021); and a proposed calculation of Hg release to lakes 

due to rainfall-induced erosion (Wall et al. 2002). Logging, flooding for hydroelectric 

development, and agriculture were also considered as potential Hg sources (Figure 2 for initial 

conceptual model) but were removed following an extensive literature search that indicated these 

are minor sources in the study area.  Note that the model structure and endpoints were selected 

without the consultation of industry or community rightsholders. As such, the model results are 
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based solely on physiochemical considerations. Inclusion of socio-economic factors is highly 

advised before employing any model outcomes for risk management strategies.  

The conceptual model 

The first step of constructing a BN model is preparing the conceptual framework by 

identifying the pathways of influence between contaminant sources and the species or outcomes 

of interest. (Marcot et al. 2006; Pollino and Hart, 2008). Variables which can be included in the 

conceptual model must be observable, measurable, or predictable; all other variables are 

removed and become part of the uncertainty of the model output (Pollino and Hart, 2008). The 

BN-RRM framework utilizes a unidirectional flow of information between the categories of 

Source, Stressor, Habitat, Effect, and Impact (Landis, 2020).  

 

 

Figure 2. The initial conceptual model for estimating Hg exposure in the lower Mackenzie River 

basin. The initial model included terrestrial and marine exposure pathways and freshwater Hg 

speciation with lake-specific factors.  
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The conceptual model for Hg in the MRB (Figure 2) was simplified as the project focus 

was narrowed to freshwater aquatic habitats, thereby eliminating the terrestrial and marine 

processes. As such, the “Habitat” category is replaced by a “Scenario” category in this BN-

RRM, where the Scenario represents a specific study region. The first BN-RRM was developed 

for the Great Bear subbasin (GBS), as this area fully envelops the Mackenzie River (Figure 1). A 

second model was developed for a 50 km buffer around Great Slave Lake (GSL) since some Hg 

contamination associated with gold mining (Thienpont et al. 2016; Houben et al. 2016; Cott et 

al. 2018) has been observed near the lake, making GSL a potential Hg source for the Mackenzie 

River (Cott et al. 2018; Campeau et al. 2018). To assess the spatial variations in Hg-associated 

risk probabilities, each model area was divided into four study regions (Figure 1). An overview 

of the study regions is offered in Table 1, but the probability distributions of the stressor 

variables in the parameterized models (Figure 3, Supplemental Figures 1 - 8) provide the 

comprehensive habitat descriptions.  

Data sources 

A literature search was conducted to identify publicly available Hg monitoring datasets 

that reported non-aggregated data which was collected during the 2005- 2020 period 

(Supplemental Tables 1-3). The initial MRB model (Figure 2) includes three types of freshwater 

Hg (dissolved, particulate, and methylmercury), as well as various lake factors. In the final 

iteration the Hg variables were simplified to include only “Total Hg”, the sum of dissolved 

(DHg) and particulate Hg (PHg), due to a lack of DHg measurements above the analysis 

detection limit. Additionally, the organic matter variables were removed when exploratory 

analysis showed a weak correlation to THg concentrations (Supplemental Figure 22). Similarly, 

the MeHg node was removed due to a lack of monitoring data (Supplemental Table S1) and is a 
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limitation of this model since this is a key variable in establishing a link between freshwater and 

fish Hg concentrations. Mercury monitoring of species at various trophic levels in the food chain, 

including invertebrates and small non-food fish, may be necessary to derive accurate causal 

relationships between abiotic and biotic effects (Moslemi-Aqdam et al. 2022; Rohonczy et al. 

2020). The biotic effect variables are five freshwater fish species which are regularly sampled in 

the MRB due to their value as a subsistence food (Lockhart et al. 2005). These are the lake 

whitefish, lake trout, northern pike (jackfish), walleye (pickerel), and burbot (Lota lota). Lake 

whitefish are a particularly prized food species and are the major catch for the large commercial 

fishing industry at Great Slave Lake (Fisheries Act, 2020; GNWT 2017). Additionally, lake 

whitefish occupy a relatively low trophic position and there are no consumption advisories for 

this fish in the study area, unlike the remaining species (GNWT Health and Social Services, 

2016). 

GIS datasets were used to populate variables that describe habitat characteristics, 

proximity to point sources, and non-point Hg release (Supplemental Table 3). Point sources/ 

stressors include historic mining, active mine claims, active oil or natural gas claims, wildfires, 

lakes impacted by retrogressive permafrost thaw slumps, and the outlet of GSL. Non-point 

sources were the outputs of environmental models. Annual Hg deposition was populated from 

the results of a Canadian atmospheric Hg model, GEM-MACH-Hg, provided upon request by 

the Dastoor research group (Dastoor et al. 2015). A global model of Hg release via permafrost 

thaw was developed by the Schaeffer research group (Schaeffer et al. 2020), who shared monthly 

estimates of Hg release to aquatic ecosystems and advised on the model conditional probability 

table (CPT) construction. Mercury concentrations and deposition rates vary significantly with 

season, but this temporal layer was removed due to the lack of water monitoring data in the fall 
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and winter seasons. Monthly estimates of permafrost thaw Hg release were summed to 

approximate the annual trends.  

Unlike the other two non-point sources, there is currently no Canadian model for soil 

erosion and no measurements of soil-loss over the project study area. The Revised Universal Soil 

Loss Equation (RUSLE) was used to model rainfall-induced soil erosion using the rainfall 

intensity, soil texture, vegetation density, and slope habitat variables (Wall et al. 2002). 

Supplemental Table 4 describes the steps behind the preparation of these layers. However, the 

RUSLE equation was developed for European agricultural areas, and likely needs to be adjusted 

for studies in Arctic and permafrost regions (Schmidt et al. 2019). Frozen soil is less prone to 

erosion, but no studies have modelled how permafrost depth and continuity will impact the 

RUSLE calculation (GNWT Transportation, 2013).  

Discretization of nodes 

Variables in the BN model can be categorical, discrete, or continuous, but continuous 

nodes must be discretized into states (Pollino and Hart 2008; Marcot et al. 2006). The boundary 

values for these states should signify their quality or effects on an endpoint, and regulatory 

thresholds or toxicological values should be applied where possible (Marcot et al. 2006; Landis 

and Wiegers, 2005). Generally, parsimonious models with fewer states are more accurate; 

however, some continuous variables, such as “Atmospheric Hg deposition”, may benefit from a 

higher number of states to avoid reducing the model’s precision (Marcot et al. 2006). Literature 

review was the primary method of discretization and a detailed description of the decisions can 

be found in Supplemental Table 4.  
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Parameterization of nodes 

The alpha models were developed in Netica, a free Bayesian Network software. 

Parameterization is the process of populating the variable states and the CPTs with probabilities. 

Populated nodes display the probability distribution for the variable, while nodes that lack data 

appear as a uniform distribution across all states. Case file learning, equations, linear regression 

models, and expert elicitation can be used to populate CPTs (Marcot et al. 2006). Case-file 

learning was the primary method used to develop the causal relationships between Hg sources 

and effects on freshwater and fish in this project. Equations were used in the calculation of soil 

erosion potential and in the estimation of the risk probabilities to the endpoints, as described in 

Supplemental Table 4.  

Sensitivity analysis 

Following the model parameterization, the influential explanatory variables can be 

identified with an entropy-based sensitivity analysis (Pollino and Hart, 2008; Norsys, 2009). The 

sensitivity analysis quantifies the strength of dependencies, also known as mutual information, 

between two linked variables (Norsys, 2009). The product of a sensitivity analysis is a list of 

nodes ranked on the strength of their correlation to the dependent variable. Management nodes 

can later be inserted into the BN-RRM to target these influential variables, and the optimal 

management strategy can be selected with consideration to uncertainties (Pollino and Hart 2008; 

Kaikonnen et al. 2020; Landis, 2020). 

Uncertainty analysis 

Uncertainty comes in two forms: epistemic uncertainty arising from lack of knowledge, 

and linguistic uncertainty associated with ambiguous and context-dependent language (Regan et 
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al. 2002). Missing data, temporal and spatial variations in the data, sampling methodologies, and 

the environmental model outputs are sources of epistemic uncertainty in these BN models. To 

reduce spatial uncertainty, the study area was divided into study regions (Table 1). Temporal 

uncertainty was not addressed in this study due to the lack of seasonal variation in the monitoring 

datasets. Because BN models are probabilistic, any uncertainty is explicitly communicated, 

propagated to downstream nodes, and integrated into the risk assessment (Kaikkonen et al. 

2020). Nodes with high uncertainty can be identified as those that have a high probability of a 

physically unobserved state in the dataset (see Figure 5 for dataset completeness). Missing data 

appears as a uniform distribution, with the probability of the “high risk” state being higher than 

would be observed in a natural system (Supplemental Table 5). Special attention should be given 

to child node probability distributions when comparing risk probabilities between regions or 

endpoints. 

Linguistic uncertainty arises from miscommunication. This can occur when endpoint 

variable definitions do not reflect standard practices, when the discretization reasoning is not 

explicitly described, and when interpreting and communicating risk probabilities. For example, 

the endpoint of “% Fish not eligible for sale”, which is the probability that fish tissue Hg will 

exceed the guideline for commercial sale (0.5 ppm- Health Canada, 2007), is not appropriate if 

fish catch is not regularly tested for Hg prior to commercial sale. Linguistic uncertainty and 

endpoint definition is best addressed during stakeholder consultations, which were not conducted 

in this study. Uncertainties caused by assumptions made during the discretization and calculation 

of variables are addressed in Supplemental Table 4. Finally, miscommunication can occur when 

end-users do not recognize that uniform probability distributions indicate high epistemic 
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uncertainty and not necessarily a high probability of risk. Failure to consider the probability 

distribution of child nodes can result in incorrect conclusions about risk of Hg exposure. 

Risk analysis 

This BN-RRM incorporates three groups of endpoints for which risk was estimated:  

1. The risk-probability of fish catch exceeding the guidelines for commercial sale 

2. The risk of Hg-induced injury to fish 

3. The risk-probability to subsistence fish consumers of exceeding dietary Hg thresholds  

The equations that define the CPTs for the endpoint nodes are described in Supplemental Table 

4. Probabilities are explicitly communicated by the probability distributions (black bars) of the 

endpoint variables (Figure 3). Risk to an endpoint is overestimated if the child node has a 

uniform probability distribution; therefore, the uncertainty in both the child and parent nodes 

should be considered when analyzing the distribution of the endpoints. The endpoint “Annual Hg 

flux” does not estimate a risk probability because regulatory guidelines for riverine Hg export do 

not exist. In the GSL model this endpoint predicts the annual Hg flux from GSL to the MR; in 

the GBS model it predicts the flux from the MR into the Arctic Ocean. The calculation of Hg 

flux required several assumptions (Supplemental Table 4), and the results are only appropriate 

for the GSL Outlet and GBS North study regions, respectively.  

It is important to note that the endpoints “% Fish not eligible for sale” and “Exceedance 

of pTWI” represent the probability that an adverse event will occur and are not an appropriate 

estimate of risk for a risk-assessment because they do not consider additional factors such as the 

consequence of the event, or potential control and mitigation measures (Fenton and Neil, 2011). 

The purpose of this model was to develop a BN-RRM framework to identify the Hg sources 
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driving Hg concentrations in freshwater and fish in an Arctic River system. This model can be 

improved if future goals are to produce sensible risk estimates. Some examples of factors that 

should be considered include the economic impacts to commercial fisheries from fish catch loss, 

the frequency of Hg testing by commercial fisheries, potential mitigation strategies to prevent the 

catch of fish with elevated Hg (such as fishing in select locations), and the impact that 

knowledge of fish Hg concentrations will have on people’s dietary choices.   

Analysis of counterfactuals 

The Bayes theorem is the mathematical formula for conditional probabilities and is the basis of 

Bayesian Networks. The Bayes theorem states that: 

(P(A= a) |P(B= b)) = (PA = a)* (P (B = b)| P(A = a)) / (P (B= b)) 

The theorem relates an event probability (ie. P (A = a)) to the probabilities of other causally 

linked events via conditional probabilities (P(A = a)| P(B= b) and vice versa), which are 

established by a dataset with observations of the two variables. An intervention can be performed 

by inserting a value for one of the variables. Counterfactual analysis is the process of elucidating 

the impact of an intervention on other variables in the model (Lu et al. 2022; Pearl and 

Mackenzie, 2018). An example of a counterfactual would be the quarry of how the anticipated 

reduction in atmospheric Hg deposition (variable B) following the Minamata treaty may 

influence Hg concentrations in freshwater (variable A). By selecting a value for B (ie. b = 3 ug 

Hg/m2/ yr), the P(B = b) factor becomes 1, and is effectively removed from the equation. Since 

the prior and conditional probabilities have been established with the training dataset, the 

calculation of P (A= a) | P (B = b) is a matter of calculus performed by the BN software. The 

ability to perform counterfactual analysis makes BN uniquely qualified to examine various 
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management scenarios and predict how further stress will impact the downstream variables 

(Pearl and Mackenzie, 2018). 

 

Results and Discussion 

Sensitivity analysis 

The primary objective of the BN-RRMs (Figure 3, Supplemental Figures 1-8) was to 

perform a sensitivity analysis to identify the pollutant sources that are influencing Hg 

concentrations in freshwater and fish. Influential sources varied amongst study regions, 

particularly in the GBS model which covers an area 5 times larger than the GSL (Table 1). The 

sensitivity analysis results (Figure 4) display the mutual information (y-axis) shared between the 

dependent effect variables, listed in the sub-headings, and the explanatory source variables, 

defined by the coloured columns across all model study regions (x-axis). The Hg source with the 

largest relative mutual information value is the influential Hg source for a particular effect 

variable and region. There is no absolute mutual information value that defines when a source is 

influential. Higher mutual information values may be observed between variables that are 

causally linked. For the purposes of these models, this would mean that the non-point sources are 

likely to have lower mutual information, because they are connected to the Effect variables 

through the intermediate “Total Hg deposition” node. Effect variables with no data will have a 

blank result for the sensitivity analysis, while variables with low sample numbers tend to have 

low mutual information values. If the dataset has high variability with inconsistency in the 

conditional probabilities, this will also result in lower mutual information values because the 

causal relationships are unclear. Another reason for a lack of correlation would be that a Hg 
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source has been overlooked. This can be rectified by the integration of rightsholders and 

stakeholders in the conceptual model formation.  

The CPTs were developed using a combination of GIS and monitoring data, but gaps in 

the monitoring dataset can bias the model predictions. Combinations of monitoring locations of 

effect variables (columns) and Hg source node states (rows) are summarized in Figure 5, where 

red squares indicate a lack of monitoring data. Sampling bias is evident when observations of 

effect variables are centered around a single Hg source node state. For example, in the GSL East 

Arm region (Figure 5, column 1 of GSL Model), all lake whitefish and northern pike monitoring 

locations are in proximity to a historic mine, while water monitoring locations are not. 

Consequently, exploratory analysis for a relationship between fish and water Hg was not possible 

because of temporal discrepancies between sample collection dates. Targeted monitoring 

programs are the primary method of correcting sampling biases. This occurs when monitoring 

data is available for all node states which are present in the natural system. These states can be 

identified by considering the probability distributions of the Hg source nodes (Supplemental 

Figures 1-8). The missing Hg source states which are contributing most to model bias were also 

identified by white text (Figure 5), and Supplemental Figures 13- 16 can be used to locate 

regions where a particular node state is present. Sampling of locations with those Hg source node 

states should be prioritized in future monitoring programs.   
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Figure 3. The parameterized GSL model for the GSL North Arm study region. Nodes in the BN-RRM are 

organized into categories, with a unidirectional flow of information between Scenario (yellow), Source 

(blue), Stressor (brown), Effect (green), and Endpoint (pink). The nodes are described by probability 

distributions (black bars) across several states. Scenario nodes are interactive; in this model configuration, 

the endpoint risk probabilities represent an adult male (pTWI = 3.3) consuming a single serving (2.5 g/kg 

bw/wk) of Northern pike per week, in a region of the GSL North Arm which has not experienced recent 

wildfires (Wildfire Event? = No).  

 

A discussion of the sensitivity analysis results is provided only for the variables with non-

negligible mutual information values to indicate reasonable predictive ability. For the GBS 

model this includes the lake trout, lake whitefish, and water THg variables. For the GSL model, 

it is only the lake whitefish, northern pike, and water THg variables that display significant 

trends. Neither model was able to reasonably predict walleye Hg or burbot Hg.  

Soil erosion was identified as an influential variable in freshwater from the GBS study 

region (Figure 4), which supports the observations of Indigenous communities (Parlee and 

Maloney 2016; MRBB 2021) and results of Hg speciation experiments (Carrie et al. 2012; 

Leitch et al. 2007). This is the first Canadian study that has attempted to estimate soil erosion for 

a large region using the RUSLE method. Other studies have considered the effect of slope and 

habitat characteristics on freshwater and fish Hg but did not estimate soil erosion (Moslemi-

Aqdam et al. 2022; Evans et al. 2013; Lockhart et al. 2005). In the GSL regions, atmospheric Hg 

deposition was the major influential Hg source, a pattern which correlates to the model output of 

the GEM-MACH-Hg atmospheric deposition model (Supplemental Figure 14; Dastoor et al. 

2015). Permafrost Hg release had a lower impact on freshwater Hg, appearing to be a major 

source only in the GBS South (Figure 4), and to a lesser extent the GSL North Arm.  
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Figure 4. A bar-graph of the mutual information values produced by a sensitivity analysis on six variables 

in the Effect category: Freshwater THg and tissue Hg in five fish species. The Hg Source variables and 

their relative influence are represented by the coloured columns. Variables with negligible mutual 

information values are not adequately described by any of the Hg pathways considered in the BN-RRM 

framework. The left graph is for the four study regions (SR1 – SR4) of the GBS model, while the right is 

for the study regions of the GSL model: East Arm, North Arm, Middle and Outlet.  

 

In the GBS model, the fossil fuel and natural gas extraction facilities in the North and 

West regions were the primary anthropogenic Hg sources considered. Sensitivity analysis results 

for fish species in this region were unreliable due to the lack of monitoring in proximity to these 

facilities (Figure 5). Lake trout collected from Yaya Lake in the GBS North region (Roux, 2014) 

were the only fish samples within 50 km of a fossil fuel development, which ultimately was not 



75 
 

identified as an influential source (Figure 4). The largest fossil fuel developments in the MRB 

are at Norman Wells; fossil fuel extraction is relatively low but seeing expansion (GNWT Centre 

of Geomatics, Supplemental Figure 12). There is currently a lack of fish data near facilities in 

Norman Wells, representing a knowledge gap that must be rectified. However, the Norman 

Wells Aquatic Monitoring Program (Imperial, 2019) has not yet proposed a plan to conduct Hg 

monitoring of food fish species.  

Sensitivity results for lake trout in the GBS model were inconsistent between study 

regions. Lake trout were the only fish to be sampled in the GBS North study region, where Hg 

concentrations were primarily correlated to permafrost thaw slump proximity. However, all 

sampling sites were in proximity to thaw slumps (Figure 5) which produces a clear sampling bias 

in the model. Similarly, in the GBS South study region all lake trout monitoring locations are in 

proximity to the GSL Outlet. This is not the case for the lake whitefish sampling in GBS South 

region, where the variety of data ultimately resulted in the GSL Outlet not being an influential 

point source. Sensitivity results for the lake trout Hg variable in three GBS regions (SR1, SR2, 

SR4) are inaccurate due to the limited spatial variation in sampling sites.  

In the GSL model, the sensitivity results for northern pike (Figure 4) are in line with 

expectations. This model uses fish length as a proxy variable for fish age, since length is a simple 

measurement that does not require specialty equipment or training. Northern pike are a keystone 

species in NWT lakes and are the largest and hyper-carnivorous of the five species considered in 

the model (Rohonczy et al. 2020). Therefore, it is logical that bioaccumulation and 

biomagnification pathways are of greater importance in this species. In comparison, lake trout 

and lake whitefish consume a varied diet of invertebrates, crustaceans, and small fish, and their 

tissue concentrations are lower than those observed in northern pike. A diet of low-trophic level 
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organisms may explain the higher correlation between lake whitefish tissue Hg and non-point 

sources such as soil erosion and atmospheric deposition.  

 

Figure 5. Summary of the Hg monitoring data (2005 – 2020) used to construct the BN-RRM conditional 

probability tables (CPTs). Columns represent the study regions and the dependent (Effect) variables 

(LW= lake whitefish, LT= lake trout, NP= northern pike, WA= walleye, BU= burbot), while rows 

represent the Hg sources and their respective node states. The colours indicate sampling effort for a 
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unique combination of dependent variable and source state, from no sampling (red) and few samples 

(yellow) to a high (≥ 300) number of samples (green). The missing data which is driving bias in the model 

is identified by white text and sampling at these Hg node states should be prioritized in future monitoring 

programs.  

A surprising result from the GSL model was the identification of historic and active 

mining as important Hg sources in the GSL East Arm. The historic mine in the GSL East arm is 

Beaulieu Gold mine, a minor producer from 1942- 1948 (Silke, 2009). A closer inspection of the 

dataset (Figure 5) revealed that all fish sampling locations in the GSL East Arm were in 

proximity to Beaulieu Gold mine, but not to an active mining claim (Figure 5, Supplemental 

Figure 8). The model is unable to determine whether mining proximity influences tissue Hg in 

the GSL East Arm without a targeted monitoring program to sample areas distant from Beaulieu 

mine. On the other hand, the GSL North Arm is a location with many historic mines and a 

greater number of active mining claims (GNWT Centre of Geomatics; Supplemental Figure 13). 

This region also had the highest concentrations of Hg in both lake whitefish and northern pike in 

the GSL model, but the spread of data was greater than in other GSL regions (Supplemental 

Table 5). Datapoints from lake whitefish and northern pike monitoring were available for all 

combinations of active mining (Figure 5). Despite the large number of samples, the mutual 

information values for the GSL North Arm were low (Figure 4), potentially due to variability in 

the dataset (Table 2). The sensitivity results indicate that historic and active mines in Great Slave 

Lake are impacting Hg levels in fish, but the low mutual information values (< 0.05) imply an 

insignificant effect, in part because of the incomplete dataset. 
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Using the model to predict risk probabilities to endpoints: 

In the parameterized alpha models, the variables are grouped into the BN-RRM 

categories of Scenario, Source, Stressor, Effect, and Impact and are differentiated by colour 

(Figure 3, Supplemental Figures 1-8). Nodes in the Scenario category (yellow) are interactive 

and user determined; for example, the “Study region” variable specifies the spatial extent. The 

probability of observing a particular node state is listed left of the black bars (Figure 3). For 

example, a “Freshwater THg” measurement sampled in the GSL North Arm (Figure 3) has a 

42.1% chance of falling into the 0 – 10.1 ng/L category. When nodes are discretized using 

regulatory thresholds as the boundary values, the probability of observing a particular state is 

equivalent to the probability of exceeding a regulatory guideline. In the same GSL North Arm 

region (Figure 3) there was a 38.4% probability that a “Freshwater THg” measurement will 

surpass the Canadian guideline for protection of aquatic life (26 ng Hg/L- CCME, 2003). 

However, this latter probability is being overestimated by the model due to uncertainties in 

downstream nodes being propagated to child nodes when the BN model is compiled; according 

to the observed data, only 3% of THg measurements in this region surpassed the CCME 

guideline (Table 2).  
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Table 2. A comparison of the probability distributions from the observed data and the modelled 

distributions for the GSL North Arm study region. Four effect variables had non-negligible distributions 

in the BN-RRMs. The most probable node states were underestimated in the model predictions, with 

negative discrepancy values over 40% across the four variables. Similarly, the least probable and 

coincidently the highest risk states, were overestimated and had the largest positive discrepancy values.  

Effect variable Total 

observations (n) 

Node state Observed data: 

Counts 

Observed data: 

probability 

Model 

probability 

prediction 

Discrepancy 

Freshwater THg  

(ng THg/L) 

258 

0 to 10  243 94.2 42.1 -52.1 

10 to 26 7 2.7 19.5 16.8 

26 to 100 7 2.7 19.5 16.8 

>100 1 0.4 18.9 18.5 

Lake whitefish Hg  

(ug Hg/g tissue) 

202 

0 to 0.2 169 83.7 40.6 -43.1 

0.2 to 0.5 32 15.8 23.6 7.8 

0.5 to 0.79 1 0.5 18 17.5 

0.79 to 3 0 0.0 17.8 17.8 

Northern pike Hg 

(ug Hg/g tissue) 

91 

0 to 0.2 14 15.4 19.2 3.8 

0.2 to 0.5 30 33.0 23.9 -9.1 

0.5 to 0.79 18 19.8 19.2 -0.6 

0.79 to 3 28 30.8 21.5 -9.3 

> 3 1 1.1 16.1 15.0 

Lake trout Hg  

(ug Hg/g tissue) 

87 

0 to 0.2 10 11.5 19.4 7.9 

0.2 to 0.5 68 78.2 20.7 -57.5 

0.5 to 0.79 7 8.0 20 12.0 

0.79 to 3 2 2.3 20.6 18.3 

> 3 0 0.0 19.2 19.2 

 

 

If the propagation of uncertainty is causing this discrepancy, the unobserved node state 

probabilities would be overestimated and the most populous state will be underestimated. Table 

2 shows that this is the case for all Effect variables in the GSL North Arm- the node states with 

the fewest observations have the largest positive discrepancies, and vice versa for the most 

probable states. For the fish effect nodes, the model predicts that 59.4% of lake whitefish will 
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exceed the guideline for subsistence consumption (0.2 ppm- Health Canada, 2007), compared to 

16.3% observed in the dataset (n= 202). For lake trout and northern pike, the model prediction is 

80.5% of fish will surpass this guideline (88.5% observed in dataset, n= 87) and 80.7% 

(compared to 84.6% in dataset, n= 91), respectively (Table 2). Both lake trout and northern pike 

concentrations are being overestimated compared to the observed data because the lowest state 

(0 to 0.2 ug Hg/g tissue) is not the most probable, as was the case in the “Lake whitefish Hg” and 

“Freshwater THg” nodes. Supplemental Table 5 compares observed data and model outputs 

across all study regions. The discrepancy is highest when the number of samples is low (< 100) 

and when all observations of a variable are of the lowest state (Supplemental Table 5). Because 

these are relative risk models which are incorporating uncertainty, it is not surprising that the risk 

predictions are incongruous with the observed data. Instead, these models should be used to 

compare which of the study regions are experiencing the highest risk probabilities to endpoints 

and focus on identifying the influential variables driving this exposure. 

Great Slave Lake supports the largest fisheries in the study region (Supplemental Figure 

18), where nearly all commercial catch is attributed to lake trout and lake whitefish (Fisheries 

Act). In the GSL model, the observed Hg values (Supplemental Table 5) suggest that lake 

whitefish caught in the GSL Middle region will have the lowest probability (0%) of surpassing 

the Canadian guideline for subsistence consumers (0.2 ppm- Lockhart et al. 2005) and the GSL 

North Arm will have the highest (16.3%). To the contrary, the model “% Lake Whitefish not 

eligible for sale” endpoint suggests that lake whitefish from the GSL Middle region has the 

highest probability of exceeding the 0.2 ppm threshold (49.4%, Supplemental Figures 5-8). The 

low sample number in the GSL Middle region (n= 10) and high uncertainty mean that the 

resulting risk probabilities of exposure are unsubstantiated. Similarly, the model predicts that 
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lake trout from the GSL Outlet are least likely (45.7% compared to 20% in observations, n= 30) 

to exceed the commercial sale threshold (0.5 ppm- Health Canada, 2007), while trout from the 

GSL North Arm are most probable (59.9% compared to 10% in observations, n= 87; 

Supplemental Table 5).  

Like the previous endpoint, the “% Injury to Fish” endpoint is also only dependent on 

fish tissue Hg concentrations and does not consider other pollutants or lake factors, such as 

temperature. Injury refers to the impact of tissue Hg on mortality, developmental abnormalities, 

and spawning success endpoints (Dillon et al. 2010). Mercury toxicity experiments on juvenile 

fathead minnows (Dillon et al. 2010) were used to develop a dose-response curve (Supplemental 

Figure 21) using the R-studio drc package (Ritz, 2015). According to the model outputs, lake 

trout caught in the GSL North Arm (n= 87) had the highest Hg concentrations, while lake 

whitefish (n= 10) and northern pike (n= 32) caught in the GSL Middle region were most likely to 

have elevated Hg concentrations (Supplemental Figures 5- 8). However, the monitoring data 

(Supplemental Table 5) shows that northern pike from the GSL North Arm exceeded the Dillon 

et al. (2010) ED20 threshold (0.79 ppm Hg) more times (14.3%, n= 91) than in other regions 

(East Arm- 1%; Middle- 6%; Outlet- 6%). There were no instances where lake whitefish 

exceeded the Dillon et al. 2010 ED20 threshold.  

In the GBS model, lake trout and lake whitefish caught in the West (SR2) region had the 

highest likelihood of injury (Supplemental Figures 1-4). The predictions for the GBS model 

correspond to the observed data (Supplemental Table 5), although the sample numbers are small 

(n ≤ 20). Note that fathead minnows are a small, low-trophic level fish species and their toxicity 

response does not accurately represent the five freshwater fish species included in this model 

(Supplemental Table 4). The risk of injury to the model species is likely being underestimated, as 
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fathead minnows are believed to be less sensitive to metal toxicity than salmonid species like 

lake trout and whitefish (Teather and Parrott, 2006; Dillon et al. 2010). 

The “Exceedance of pTWI” endpoint is dependent on a user defined diet and a probable 

tolerable weekly intake (pTWI) guideline which represents the user (Supplemental Table 4). 

Values above 1 indicate the exceedance of the dietary Hg guidelines. For example, an adult male 

(pTWI threshold of 3.3 ug Hg kgbw-1 wk-1) in the GSL North Arm region consuming one portion 

(2.5 g kgbw-1 wk-1) of northern pike over a week will have ~28% chance of exceeding his 

appropriate guideline (Figure 3). As described previously, the predicted risk probability is likely 

being overestimated due to the high uncertainty in the “Northern Pike tissue Hg” node. The 

results of this Impact variable are not valid if no diet or pTWI threshold are selected; this is 

indicated by a flat distribution in the respective “Fish ingested” child nodes. The high uncertainty 

in the parent effect nodes will result in an overestimation of the risk probability to the endpoint 

child nodes. It is crucial to consider the uncertainty in the child nodes when reviewing the 

endpoint probabilities. 

Counterfactual analysis 1: Impact of Minamata treaty 

The Minamata Convention is a multilateral agreement to reduce the anthropogenic inputs 

of Hg into the environment; it was signed in 2013 by 128 countries that pledged to reduce Hg use 

across manufacturing, energy, and gold mining industries by 2030 (UNEP, 2021; UNEP, 2019). 

The BN-RRM for GSL was used for the counterfactual analysis of how a significant reduction in 

atmospheric Hg deposition concentrations will impact Hg concentrations in the lake. Sensitivity 

analysis of the freshwater Hg and lake whitefish tissue Hg nodes identified atmospheric 

deposition to be an influential source in the GSL Outlet study region (Figure 4). In the natural 

system, approximately 83% of the atmospheric deposition values in this region were above 9 ug 
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Hg m-2 yr-1, with 16% falling between 3 and 9 ug Hg m-2 yr-1 (Supplemental Figure 5). An 

observation of an atmospheric deposition value between 3 – 9 ug Hg m-2 yr-1 was input into the 

model, impacting the distribution of downstream nodes (Supplemental Figure 12), including the 

two effect variables of interest. The results of this counterfactual analysis suggested that Hg 

concentrations in freshwater and fish tissue would increase with a decrease in atmospheric 

deposition (Supplemental Figures 5 and 9). This prediction is contrary to the expected results and 

is an example of a limitation in the current model. Since the causal relationships between effect 

and source variables were built with data only, the model uncertainties are high when probing 

low probability physical states. Increased sampling of locations experiencing lower atmospheric 

deposition will reduce the uncertainty associated with this node state and improve the model 

predictions. The sampling efforts over the study period (2005 – 2020) were summarized to aid 

the reader when interpreting the validity of the model outputs (Figure 5).  

Counterfactual analysis 2: Impact of consumption advisories 

In the NWT, fish consumption advisories include a size restriction, with most piscivorous 

fish over 600 mm being considered higher-risk food sources (GNWT Health and Social Services, 

2016). While consumption advisories can reduce Hg exposure to at-risk communities, they also 

have undesirable nutritional, cultural, and food-security impacts (Houde et al. 2022; Hoover, 

2013). The GSL BN-RRM was used to probe whether consuming predatory fish below the size 

restriction significantly reduces Hg exposure. The counterfactual analysis was performed on the 

northern pike variable in the GSL East Arm and GSL Outlet study regions, where fish size was 

an influential variable (Figure 4).   

In the GSL East Arm region, 86% of northern pike samples were below 600 mm in 

length (Supplemental Figure 8). After selecting for the smaller size (< 600 mm), the model 
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suggests a 55.9% probability of tissue concentrations below 0.5 ppm, the Canadian threshold for 

the commercial sale of fish (Supplemental Figure 10a). If an adult male consumes 1 serving 

(2.5g tissue/kg bw/ wk) a week, this corresponds to ~23% probability of exceeding the weekly 

Hg threshold (Supplemental Figure 10a). When the larger size was selected, the model did 

perform as expected, with a ~43% probability of tissue concentrations below 0.5 ppm, 

corresponding to a 27% probability of exceeding the weekly dietary threshold (Supplemental 

Figure 10b).  

In the GSL Outlet study region only 61% of the datapoints (Supplemental Figure 5) were 

northern pike below 600 mm, meaning that uncertainty for large fish is lower in this region. 

Adult males consuming 1 serving of a small northern pike will have a ~ 19% probability of 

exceeding their weekly Hg dietary threshold, while those consuming 1 serving of a large fish will 

have ~23% probability of exceedance (Supplemental Figure 11). The model performs as 

expected and confirms that consuming smaller fish will reduce the probability of Hg exposure. 

Additionally, it indicates that there is lower risk when consuming fish from the GSL Outlet 

region. The risk probabilities and uncertainties associated with consumption advisories can be 

presented to communities to aid their decisions on whether the benefits outweigh the cultural 

impacts.  

Conclusions and Future Work 

The aim of the project was to develop a causal framework to identify the Hg pathways 

that have the greatest influence on Hg concentrations in freshwater and fish of the lower 

Mackenzie River Basin (MRB). Models were prepared for the Great Bear subbasin (GBS) and 

Great Slave Lake (GSL) in Netica, a free Bayesian Network (BN) modelling software. These 

models are the Canadian contribution to the ARCRISK project, which was initiated to resolve an 



85 
 

important gap in our understanding of how major freshwater tributaries are contributing to Hg 

pollution in the Arctic (Gundersen, 2020). 

A sensitivity analysis was used to identify the influential Hg sources. Risk probabilities 

were found to vary between regions and dependent variables, with no single pattern to the 

sensitivity analysis results (Figure 4). In the GSL model, “Atmospheric Hg deposition” was the 

influential source for freshwater and lake whitefish, while northern pike were most sensitive to 

the “Fish length” biological stressor. The GSL North Arm had the highest concentrations of 

freshwater and fish tissue Hg (Supplemental Table 5). This is the location of many historic and 

active mine claims which were flagged as an influential variable across all effect nodes, although 

the low mutual information values suggest that this result is inconclusive. In the GBS model, 

both freshwater Hg and lake whitefish Hg were correlated to Hg release via rainfall-induced soil 

erosion. Only lake trout were sampled across all study regions, with the highest Hg 

concentrations measured in the GBS West (SR2) region (Supplemental Figure 5). However, due 

to low sample numbers (n= 30) and resulting low mutual information values (Figure 4), the 

sensitivity analysis results were inconclusive. Missing data is biasing the sensitivity analysis 

since all fish sampled in the GBS West were classified as “small” size (<600 mm), and distant 

from both permafrost thaw slumps and fossil fuel explorations (Figure 5). Overall, the mutual 

information values across both models were low and only a fraction of the variation in the data 

was explained by the potential Hg sources. Epistemic uncertainty resulting from missing and 

skewed data was the largest source of uncertainty in the model output. Uncertainty can be 

reduced by expanding the monitoring dataset through collaborations with other research groups 

or by the initiation of additional Hg monitoring projects. Finally, the BN-RRMs were used to 

probe counterfactuals and to predict the effect and uncertainty associated with two management 
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strategies: the Minamata Convention and consumption advisories for northern pike. The model 

performed as expected for the consumption advisory counterfactual, but predicted 

counterintuitive trends for the Minamata Convention counterfactual which were driven by the 

low sample numbers from locations with low annual atmospheric Hg deposition rates.  

 

 

Figure 6. Future research recommendations developed from data gaps identified by a Bayesian network 

model of Hg exposure in the Mackenzie watershed. The chart is organized into long-term monitoring and 

shorter-term process-based research. The additional data will allow for revisions to the model and reduce 

the uncertainty from sampling bias and lack of knowledge of causal pathways.  

 

Major gaps in monitoring data (Figure 5) which will need to be addressed include 

increasing freshwater MeHg monitoring, initiating invertebrate Hg programs, and prioritizing of 

fish Hg monitoring near fossil fuel developments in the GBS North and West study regions. To 
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address these gaps, collaborations with industry partners, Indigenous communities, academic 

institutions, and local government officials will be necessary (Figure 6). The primary step to 

validating the BN-RRMs is a workshop with experts from rightsholder and stakeholder groups to 

facilitate the review and revision of the causal models.  Specific research recommendations for 

monitoring and shorter-term process-driven research were also developed to address the data 

gaps identified during the model parameterization. The recommendations include identification 

of specific study regions, causal pathways, and seasonal effects which need to be further 

developed to reduce sampling bias and process-related uncertainties in the model. Fish Hg and 

dietary Hg exposure data was sparce for the Gwitch’in and Inuvialuit groups located in the GBS 

North region, with few human health risk assessments (Curren et al. 2015; Wuttke et al. 2013) 

conducted for Hg exposure since the First Nations Biomonitoring Initiative’s 2009-2013 health 

survey (Wuttke et al. 2013), which did not disclose the identity of the fifteen participating First 

Nations groups. Furthermore, collaborations with university institutions can expand the scope of 

this project. Research groups involved in the modelling of soil erosion, climate change, aquatic 

food webs, and mercury-methylation processes would provide invaluable quantitative estimates 

for the strength of the model’s causal relationships. These relationships can be used as one 

source of evidence for the model and reduce the uncertainty derived from missing data and 

omitted causal pathways.  

The management of Hg in aquatic ecosystems requires a holistic approach that 

consolidates knowledge across projects and scientific disciplines. Our findings were that the BN-

RRM framework is an effective organizational tool for integrating various data sources and 

knowledge types. These models were parameterized with monitoring data from 21 projects, 2 

environmental models, and 24 GIS datasets (Supplemental Tables 1-3). Additionally, the models 



88 
 

can be parameterized by expert judgement such that traditional ecological knowledge (TEK) can 

be granted equal weight to Western Science experiments. Knowledge gaps were identified by the 

high uncertainty values associated with variables that were sparsely monitored. A summary of 

the recent (2005 – 2020) sampling effort across regions and dependent variables (Figure 5) can 

aid in the development of future monitoring studies. 
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Chapter 4: Conclusions and Future Work  

This thesis has presented a BN-RRM developed to assess the Hg sources driving Hg 

concentrations in freshwater and fish in the Mackenzie River region, a spatially grand and 

remote region in Canada. The project used publicly available data sources to identify local 

stakeholders, Hg sources and exposure pathways, and monitoring gaps. Following the literature 

review, the conceptual model (Figure 2) was simplified in accordance with the data available for 

the study area. Several key pathways and explanatory variables were omitted from the models, 

including the impact of season and the causal relationship between fish and freshwater Hg. 

Sampling bias in the monitoring datasets (Figure 5) resulted in greater uncertainty and 

unfounded sensitivity results.  

The GSL model predicted that the probability of tissue-Hg-driven injury to lake whitefish 

and northern pike is greatest in the GSL Middle region, although this is likely driven by the low 

sample number (n= 10 and 31, respectively). The highest fish Hg concentrations were observed 

in the North Arm region which was extensively sampled (n= 202 for lake whitefish, 91 for 

northern pike) and had the second-highest probability of tissue-Hg-driven injury, while the well-

sampled GSL East Arm region had the lowest fish tissue Hg samples (Supplemental Table 5). 

For the freshwater Hg variable, the highest probability of exceeding the CCME 2003 guideline 

(26 ng/L- CCME, 2003) was in the GSL East Arm (49.4%, n= 13), followed by the North Arm 

(38.4%, n= 258), the Middle (38.1%, n= 174), and the Outlet (29.5%, n= 411; Supplemental 

Table 5). Because freshwater Hg concentrations at the GSL - Mackenzie River outlet were not 

elevated relative to the other study regions, it is unlikely that Hg from point sources along the 

lakeshore are a major source of Hg downstream in the Mackenzie River. However, proximity to 
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mining was an influential Hg source across all effect variables in the GSL North Arm region 

(Figure 4).  

In the GBS model, lake trout were the only fish to be sampled across all study regions 

and therefore the only biotic effect variable for which the tissue Hg concentrations could be 

compared. The Canadian guideline for the retail sale of fish (0.5 ppm- Health Canada, 2007) was 

most likely to be exceeded by lake trout sampled in the GBS West (38.5%, n= 15), followed by 

the GBS South (36%, n= 30), the North (30.6%, n= 84), and East (16.4%, n= 124). Similarly, the 

model predicted that the freshwater Hg guideline (CCME, 2003) was most likely to be exceeded 

in samples from the GBS East (41.1%, n= 38), followed by the West (34.2%, n= 519), the North 

(24.8%, n= 331), and the South (19.5%, n= 701). Trends for Hg exposure for the biotic and 

abiotic variables disagree and no single study region was identified as having higher risk 

probabilities. Discrepancies between the risk probabilities are mostly due to skewed sample sizes 

and the fact that uncertainty in BN-RRMs is presented as flat distributions with unprecedented 

large probabilities of high-risk states. Increased lake trout sampling in the GBS West and South, 

along with freshwater sampling in the GSL East would help reduce the sampling bias and 

improve the model’s predictive capabilities. Sensitivity analysis identified soil erosion as the 

influential variable for freshwater THg across all study regions, and for lake trout in the GBS 

East region only (Figure 4).  

The fish monitoring datasets represented several limitations to the model development. 

First, the locations of fish sampling sites were sparce in comparison to the freshwater monitoring 

(Figure 11) and particularly non-existent (< 1%) in the vicinity of fossil fuel developments. The 

Imperial Norman Wells Operations (INWO) facility was of interest to this project, as it intersects 

the Mackenzie River and is one of the larger industrial developments in the study area. Without 
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fish monitoring data near this facility, it is impossible to predict the impact that fossil fuel 

exploration is having on tissue Hg concentrations. Local communities and researchers have put 

pressure on the Imperial facility to include fish contaminant monitoring in the new Norman 

Wells Aquatic Effects Monitoring Program (Imperial, 2019). If successful, this will be a step 

towards rectifying this knowledge gap and represents an opportunity for collaborative action as 

the monitoring study is developed. Second, primary fish monitoring data for food-fish species 

was difficult to obtain due to the sensitive nature of this data for local Indigenous communities. 

While this data does exist, the ethical requirements for acquiring it make it inaccessible to the 

public. Collaborating with Indigenous communities, as well as established local research groups, 

would be beneficial to this project. Not only would the additional data be a major contribution to 

improving the model accuracy, but these groups would also be invaluable to the assessment and 

improvement of the conceptual model. Finally, most fish (60%) and freshwater (84%) 

monitoring data was collected during the summer sampling period, so seasonal variation in 

dietary exposure was not accounted for. In addition to increased fish sampling effort during off-

summer seasons, the inclusion of season would require knowledge of seasonal impact on 

freshwater Hg speciation and some quantitative knowledge on the effects of permafrost presence 

on soil erosion rates. Inclusion of a season variable will account for some of the temporal 

uncertainty in the model.  

Another limitation of the models is the lack of a causal relationship between the inorganic 

freshwater THg and fish tissue Hg nodes. Bacterial methylation of mercury makes inorganic Hg 

bio-accessible, allowing it to enter the aquatic food chain and accumulate in fish through a diet 

of low-trophic level organisms like invertebrates. Therefore, to develop a link between 

freshwater THg and fish tissue Hg, knowledge is needed on: 1) MeHg concentrations in 
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freshwater; 2) Hg concentrations in aquatic invertebrates and small fish ; 3) general knowledge 

of organism trophic levels and local food web structure. The first two gaps can be resolved by 

the inclusion of freshwater MeHg and invertebrate Hg monitoring into existing monitoring 

programs (Figure 6). In the study area, Hg concentrations in invertebrates were measured in only 

two projects (Chetelat et al. 2020; Moslemi-Aqdam et al. 2022), despite their importance in 

elucidating Hg transfer throughout the food chain. Structural equation models developed by 

Moslemi-Aqdam et al. (2022) identified invertebrate Hg to be the link between freshwater MeHg 

and fish tissue Hg. The third knowledge gap can be resolved by the integration of population 

dynamics and acyclic food web models into the BN-RRM framework (Fahd et al. 2021; Uusitalo 

et al. 2018). Models that integrate aquatic population dynamics would be able to predict Hg 

concentrations at higher trophic levels and more accurately estimate risk or identify influential 

variables. 

Finally, the spatial extent of the models can be expanded to cover the remaining 

subbasins of the Mackenzie River Basin. Bayesian Network models were not prepared for the 

Peace, Athabasca, Liard, or Peel subbasins because these regions did not meet the scope of the 

ARCRISK project. While the Peel subbasin is in the Arctic circle and is a major tributary (8% 

total flow) to the Mackenzie River, it is also a remote and sparsely monitored region. A lack of 

publicly available fish monitoring data prevented the development of a Bayesian Network model 

for the subbasin. This was also the case for the mountainous and uninhabited region of the Liard 

subbasin. However, it is recommended that additional Hg monitoring programs and BN-RRMs 

are developed for the Liard subbasin to gain a holistic assessment of the state of Hg in the 

Mackenzie River. This is because the Liard River is the second largest tributary of the 

Mackenzie River (26%) and a region of unprecedented climate warming (Connon et al. 2014). 
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Additionally, it is the dominant source of particulate-bound Hg for the Mackenzie River and the 

location of a large tungsten mine which may see further expansion as the NWT continues to 

invest in its mining economy (Carrie et al. 2012; Silke, 2009). Finally, the Peace and Athabasca 

subbasins were not included in the model because of their distance from the Arctic Ocean. While 

the Oil Sand regions of the Athabasca watershed are highly industrialized areas in the MRB, this 

subbasin was not included in our models since it contributes only a small fraction of the total 

flow into the Mackenzie River (Erikson, 2020). The industrial point sources in this basin are 

likely elevating Hg concentrations in the local environment, but there is no evidence in the 

literature that effluent from these industries will result in a measurable effect in water at 

distances greater than 50 kilometers from the source. (Kelly et al. 2010) Therefore, it is not 

likely that activities in the Peace and Athabasca subbasins will impact the Hg concentrations in 

the aquatic ecosystems of Northern Canada and the Beaufort Sea. 

Comprehensive BN models will incorporate rightsholder and stakeholder values 

throughout the ERA process, particularly in the development of the conceptual models. The 

construction of the conceptual models should be a collaborative effort between the modelers, 

scientific experts, local industries, and local communities. Due to budget and time constraints, 

rightsholder and stakeholder outreach was not completed in the time frame of this project. 

Therefore, the model structure and the subsequent results remain unvalidated and unreliable 

since they do not necessarily reflect the needs of the end-users. However, these models can still 

be used to showcase the benefits of BNs as organizational and decision-making tools, and to 

educate and garner support from rightsholder and stakeholder groups who may be unfamiliar 

with the probabilistic modelling process. Workshops with rightsholder and stakeholder groups 

should first encourage the participants to summarize their state of knowledge by devising their 
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own conceptual model structures without the input of scientists and modelers. The source and 

endpoints selections by participant groups can be used to inform future model iterations or to 

validate the model structures presented in this thesis. The development of multiple conceptual 

diagrams will ensure that the model structure agrees with available knowledge and that the 

model endpoints illustrate the needs of the end users, creating increased trust in the model output 

(Kaikkonen et al.  2020). Similarly, it is important to engage three industrial stakeholder groups: 

the Great Slave Lake commercial fishery co-operative, Imperial Norman Wells Operations, and 

the Canadian federal and NWT provincial government groups leading the Giant Mine 

Remediation project. These consultations will expand the scope of the models as the conceptual 

model is adapted and additional data becomes available. Support from all rightsholder and 

stakeholder groups will be beneficial to the accuracy and relevance of the BN models.  
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APPENDEX A: SUPPLEMENTAL FIGURES  

 

 

Supplemental Figure 1. The parameterized GBS model for the GBS North (SR1) study region. The 
Scenario nodes (yellow) are interactive; in this model configuration, the endpoint risk probabilities 
represent an adult male (pTWI = 3.3) consuming a single serving (2.5 g tissue kgbw-1wk-1) of lake trout 
per week, in a region of the GBS SR1 which has not experienced recent wildfires (Wildfire Event? = No). 
Probability distributions (black bars) are uniform for variables where no monitoring data was available; 
this includes lake whitefish, northern pike, walleye, and burbot.  
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Supplemental Figure 2. The parameterized GBS model for the GBS West (SR2) study region. The 
Scenario nodes (yellow) are interactive; in this model configuration, the endpoint risk probabilities 
represent an adult male (pTWI = 3.3) consuming one serving (2.5 g tissue kgbw-1wk-1) of lake whitefish 
and half a serving (1.25 g tissue kgbw-1wk-1) of lake trout per week, in a region of the GBS SR1 which 
has not experienced recent wildfires (Wildfire Event? = No). Probability distributions (black bars) are 
uniform for the northern pike variable, for which no monitoring data was available.  
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Supplemental Figure 3. The parameterized GBS model for the GBS East (SR3) study region. The 
Scenario nodes (yellow) are interactive; in this model configuration, the endpoint risk probabilities 
represent an adult male (pTWI = 3.3) consuming one serving (2.5 g tissue kgbw-1wk-1) of lake whitefish 
and half a serving (1.25 g tissue kgbw-1wk-1) of lake trout per week, in a region of the GBS SR3 which 
has not experienced recent wildfires (Wildfire Event? = No). Probability distributions (black bars) are 
uniform when no monitoring data was available, including for the northern pike, walleye, and burbot 
tissue Hg variables.  
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Supplemental Figure 4. The parameterized GBS model for the GBS South (SR4) study region. The 
Scenario nodes (yellow) are interactive; in this model configuration, the endpoint risk probabilities 
represent an adult male (pTWI = 3.3) consuming one serving (2.5 g tissue kgbw-1wk-1) of lake whitefish 
and half a serving (1.25 g tissue kgbw-1wk-1) of lake trout per week, in a region of the GBS SR1 which 
has not experienced recent wildfires (Wildfire Event? = No). Probability distributions (black bars) are 
uniform for the northern pike variable, for which no monitoring data was available. 
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Supplemental Figure 5. The parameterized GSL model for the GSL Outlet study region. The Scenario 
nodes (yellow) are interactive; in this model configuration, the endpoint risk probabilities represent an 
adult male (pTWI = 3.3) consuming one serving (2.5 g tissue kgbw-1wk-1) of lake whitefish and half a 
serving (1.25 g tissue kgbw-1wk-1) of northern pike per week, in a region of the GSL Outlet which has not 
experienced recent wildfires (Wildfire Event? = No). Mercury data was available for all effect variables. 
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Supplemental Figure 6. The parameterized GSL model for the GSL Middle study region. The Scenario 
nodes (yellow) are interactive; in this model configuration, the endpoint risk probabilities represent an 
adult male (pTWI = 3.3) consuming one serving (2.5 g tissue kgbw-1wk-1) of lake whitefish and half a 
serving (1.25 g tissue kgbw-1wk-1) of northern pike per week, in a region of the GSL Middle which has 
not experienced recent wildfires (Wildfire Event? = No). There was no mercury data available for the 
walleye effect variable.  
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Supplemental Figure 7. The parameterized GSL model for the GSL North Arm study region. The 
Scenario nodes (yellow) are interactive; in this model configuration, the endpoint risk probabilities 
represent an adult male (pTWI = 3.3) consuming one serving (2.5 g tissue kgbw-1wk-1) of lake whitefish 
and half a serving (1.25 g tissue kgbw-1wk-1) of northern pike per week, in a region of the GSL North 
Arm which has not experienced recent wildfires (Wildfire Event? = No). Mercury data was available for 
all effect variables. 
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Supplemental Figure 8. The parameterized GSL model for the GSL East Arm study region. The Scenario 
nodes (yellow) are interactive; in this model configuration, the endpoint risk probabilities represent an 
adult male (pTWI = 3.3) consuming one serving (2.5 g tissue kgbw-1wk-1) of lake whitefish and half a 
serving (1.25 g tissue kgbw-1wk-1) of northern pike per week, in a region of the GSL East Arm which has 
not experienced recent wildfires (Wildfire Event? = No). Probability distributions (black bars) are 
uniform for the burbot, walleye, and lake trout variables.  
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Supplemental Figure 9. Results of the Minamata counterfactual quarry for the GSL Outlet study region, 
where a lower value (3 – 9 ug Hg/m2/ yr) was selected for the atmospheric Hg deposition variable. 
Comparing to Supplemental Figure 5, the probability distributions of the Minamata counterfactual model 
indicate a higher probability of risk to effect variables, contrary to causal expectations.  

 

 

 

 

 

 

 

 

 

 



122 
 

 

Supplemental Figure 10. Results of the northern pike consumption advisory counterfactual quarry for the 
GSL East Arm study region. The top figure (A) shows the impact of consuming only small sized (< 600 
mm) pike on the risk probabilities for the “Exceedance of pTWI” endpoint, while the bottom figure (B) 
shows the impact of consuming only large sized (> 600 mm) pike. There is a slightly greater risk of 
exceeding the weekly mercury consumption regulatory threshold when consuming larger northern pike, 
which agrees with our causal understanding of Hg bioaccumulation.  
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Supplemental Figure 11. Results of the northern pike consumption advisory counterfactual quarry for the 
GSL Outlet study region. The top figure (A) shows the impact of consuming only small sized (< 600 mm) 
pike on the risk probabilities for the “Exceedance of pTWI” endpoint, while the bottom figure (B) shows 
the impact of consuming only large sized (> 600 mm) pike. There is a slightly greater risk of exceeding 
the weekly mercury consumption regulatory threshold when consuming larger northern pike, which 
agrees with our causal understanding of Hg bioaccumulation in fish. 
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Supplemental Figure 12. Location and activity of oil and natural gas exploration or extraction facilities in 
the Mackenzie River Basin. (12a) A map of the four fossil fuel development regions in proximity to the 
Mackenzie River: Cameron Hills (south), Fort Liard (southwest), Norman Wells (west), and Ikhil (North). 
The facilities are represented by a grey polygon layer signifying a 250 km buffer around an active fossil 
fuel claim (GNWT Geomatics: Oil and Gas). (12b) Annual crude oil and natural gas production at the 
four fossil fuel development regions over the 2005- 2020 study period. Norman Wells, a town situated on 
the Mackenzie River, is the largest producer of both crude oil and natural gas in the NWT.  
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Supplemental Figure 13. The location of point sources considered in the GSL and GBS model 
frameworks. The polygon layers for the mining (orange circle) and fossil fuel developments (grey circles) 
represent a buffer layer around the facilities of 15 km and 50 km, respectively. Additional point sources 
for the GBS model include the polygons for the GSL outlet (50 km buffer) and the waterbodies impacted 
by retrogressive permafrost thaw slumps (10 km buffer). An additional source for the GSL model is the 
historic mines (red diamonds), displayed as a point-layer.  
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Supplemental Figure 14. The average annual atmospheric Hg deposition and Hg release from permafrost 
thaw for the 2005 – 2020 period. Raster map layers were obtained from predictive model outputs, with 
raster resolutions of approximately 1874 km2. The left figure shows the GEM-MACH-Hg model output 
for THg deposition from anthropogenic sources and wildfires (Fraser et al. 2018; Dastoor et al. 2015), 
while right figure is the SiBCASA- Hg biogeochemical model output predicting the DHg release from 
permafrost thaw into the aquatic ecosystem (Schaefer et al. 2020).  
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Supplemental 15. Maps of the four abiotic factors used to calculate soil erosion potential. The top-left 
figure shows the results of an Empirical Bayesian-Kriging interpolated surface map of the R-factor (MJ 
mm ha-1 yr-1) over the 2005-2017 period. The climate stations with calculated R-factor data are shown as 
snowflake points; see Supplemental Figure 20 all 46 climate station locations. The top-right and bottom-
left figures show the C-factor (unitless; calculated from a Landsat image map of NDVI from September 
2020) and the K-factor (tonnes hr MJ-1 mm-1) which was approximated from a map of soil texture classes 
(Canada Open Government, 2016). The bottom-right figure displays the LS-factor (unitless), which 
represents a combination of the slope length and angle estimates. The layer was calculated using the 
ArcGIS Pro Hydrology toolkit and a Digital Elevation Model (DEM) file with a resolution of 16 meters 
(Supplemental Table 4).  
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Supplemental 16. The calculation of Hg release due to rainfall-induced soil erosion of the surface soil 
layer. On the left are the results of the RUSLE calculation of rainfall-induced soil erosion (tonnes ha-1 yr-

1). Soil erosion input was calculated by creating a polygon layer around a sample site waterbody and the 
soil erosion values within the polygon were summed and divided by the polygon area. The right figure 
represents the model output (Sothe et al. 2022) for soil organic carbon (SOC) concentrations at the 
surface soil layer (depth = 0 cm) which was used to estimate soil mercury concentrations assuming a 
generalized mercury: carbon ratio of 1.6 ug Hg/kg C (Schuster, 2018). These two layers were used to 
approximate the Hg release via rainfall-induced soil erosion shown in the bottom figure. This calculation 
assumes that 1.5% of the released mercury will reach a waterbody (Supplemental Table 4).  
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Supplemental 17. Human settlements and land regions included in modern treaties between the Canadian 
federal government and Indigenous communities. Only three Indigenous groups have been recognized in 
modern treaties: The Inivialuit, Gwch’in, and Sahtu Dene. The Dehcho Dene, Chipaweyan and Tlicho 
First Nations do not have treaty agreements. The largest communities are in the southern study area, with 
half the population residing in Yellowknife. Also shown on the map are the locations of lakes with fish 
consumption advisories from the GNWT (GNWT Department of Health and Social Services, 2021), to 
indicate which locations are likely to contain a greater risk of mercury exposure in humans.  
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Supplemental 18. The location of NWT lakes which allow commercial fishing, visualized by the fish 
catch quotas indicative of the size of the commercial fishing operations that can be supported. The largest 
commercial fishing operations are in Great Slave Lake. The endpoint variable “% Fish not eligible for 
sale” is therefore most relevant for the GSL BN-RRM, and not the GBS model. In the GBS model, the 
largest commercial fisheries are in the Mackenzie Delta region of the GBS North study region.  
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Supplemental 19. Wildfire events in the Northwest Territories. Canopy cover loss over the 2001-2018 
period (Hansen et al. 2013) overlaid onto a map of wildfires (2001-2018; Scholten et al. 2021). The 
location of wildfires was obtained from two datasets: a general dataset with only wildfire locations and 
wildfire year (Scholten et al. 2021), and a detailed dataset with information on burn intensity (French et 
al. 2020). 
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Supplemental Figure 20. Location of the 46 climate stations used to interpolate the rainfall intensity (R-
factor) RUSLE layer. Climate stations were spread across six provinces and territories: British Columbia 
(3), Alberta (8), Saskatchewan (6), Yukon (10), Northwest Territories (9), and Nunavut (10). All climate 
stations reported R-factor values from the 2005- 2018 period and were used in the Empirical Bayesian-
Kriging interpolation (Supplemental Table 4).  
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Supplemental 21. The dose-response curve used to develop the relationship between fish tissue mercury 
concentrations and likelihood of injury, which represents the combined impact of mortality, 
developmental abnormalities, and spawning success endpoints (Dillon et al. 2010). The data for the top 
curve represents results from toxicology experiments on juvenile and adult fathead minnow, which were 
exposed to mercury through both aqueous and dietary routes (Dillon et al. 2010), while the bottom dose-
response curve was generated using data from only juvenile life stage fathead minnows. The top curve 
converged to a %injury value of 50% and when input into Netica it resulted in the faulty prediction that 
even extreme tissue Hg concentrations (>3 ug/g ww) would cause only a 50% probability of injury in 
fish. Therefore the equation generated by the bottom “Juvenile” dataset graph was used to predict the 
%injury endpoint in the BN-RRM. Both dose-response curves were generated using the LL.3() function 
from the Rstudio drc package (Ritz, 2015), and the equation was used to calculate the CPTs for the 
“%Injury to Fish” endpoint.  

 

 

 

 

 

 

 

 

 

Supplemental 22. Exploratory data analysis between freshwater organic carbon and mercury 
concentrations collected in lakes and rivers in the study area. Two significant relationship (p < 0.05) were 
found. On the left, the linear relationship between total suspended solids (a measure of particulate matter) 
and total mercury based on 41 datapoints. The dotted line represents the Canadian regulatory inorganic 
mercury guideline (26 ng THg/L) for the protection of aquatic life (CCME, 2003). On the right, the linear 
relationship between dissolved organic carbon and dissolved mercury (432 datapoints).  
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Supplemental Figure 23. Changes in vegetation density (C-factor) following a wildfire event in the Great 
Slave Lake region. A detailed wildfire dataset (French et al. 2020) included a characterization of wildfire 
intensity based on percentage of moss vegetation burnt. The top figure shows the change in C-factor 
relative to the wildfire event year, and the bottom figure considers the effect of wildfire intensity on the 
C-factor shift. In the top figure, negative x-axis values represent years prior to the wildfire event and 
positive values are the years after the wildfire. The C-factor does significantly increase the year of a 
wildfire event ( F(1, 128) = 67.86, p = 1.77e-13). However, the effect of wildfire intensity was statistically 
identical except between the “lowest” and the “high” categories. Wildfire intensity was not included in 
the final iteration of the BN-RRM because the study-area-wide dataset (Scholten et al. 2021) did not 
include information on fire intensity.  
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APPENDEX B: SUPPLEMENTAL TABLES 

 

Supplemental Table 1. Summary of the freshwater mercury monitoring efforts in the NWT MRB. A total 
of 2147 datapoints were used to populate the water THg node.  

Reference Sampling Years (n) THg 
measurements 

Chemical detected Detection limit 
(ng/L) 

Location 

AANDC Water Division: CIMP 
140 (2022) 

2004-2013 30 THg, DHg 10 7; West Arm 

ECCC, Carleton University: CIMP 
177 (2022) 

2016 14 THg 0.2 4, 5, 7 West Arm 

University of Alberta: CIMP 199 
(2022) 

2019 72 Hg 0.2? USEPA Method 
1631 

1, 2, 4, outside (37) 

University of Waterloo: Dehcho 
Region Water Quality Data (2022) 

2013-2019 101 DHg, THg 0.2 USEPA TM0811 4, Mouth 

K’ágee Tú First Nation: 
Community Based Monitoring 
(2022) 

2011-2016 30 DHg, THg 10 ng/L – Taiga labs 4 

GNWT: NWT-wide community- 
based monitoring program (2023) 

2012-2021 1697 THg, DHg 10 ng/L- USEPA 
200.8 

1, 2, 4-7; East Arm, 
Middle, Mouth, West 
Arm, outside (59) 

TAEMP: Tłı̨chǫ Aquatic 
Ecosystem Monitoring Program 
(2010-2018)  

2011-2018 51 THg 10 ng/L- USEPA 
200.8 

3, 7, West Arm, outside 
(12) 

Norman Wells Aquatic Monitoring 
Program (2019) 

2017 - 2020 143 THg, DHg 0.2 ng/L 2  

Ekati Diamond Mine Aquatic 
Effects Monitoring Program (2019) 

2017 9 THg 0.2 EPA 245.7 3  

Campeau et al, 2022 2018-2020 0 TSS, PHg, DHg, 
MeHg 
(No THg measured, 
did not include) 

0.2 – EPA method 
1631E 
 
Cold-Vapor Atomic 
Fluorescence 
Spectroscopy 

3, 7, West Arm 

 

 

 

 

 

 

 

 

 



138 
 

Supplemental Table 2. Summary of the fish tissue mercury monitoring efforts in the NWT MRB. A total 
of 1150 datapoints were used to populate the five freshwater fish nodes: lake whitefish, lake trout, 
northern pike (Jackfish), walleye (Pickerel), and burbot (Lota lota).  

Reference Sampling 
Years 

Season/ 
Month? 

Fish Species 
(n) 

(n) Tissue 
measurements 

Size 
information? 

Age 
information? 

Location 

Fortune Minerals 
Limited (2015): NICO 
Project 

2005, 2006, 
2008, 2009 

No Lake 
whitefish, 
northern 
pike, lake 
trout

86 Yes No 7, West 
Arm, 
Outside (10) 

Cox et al. 2010 2008 - 2010 No Lake 
whitefish, 
northern pike

213 Yes No 5, 7, East 
Arm 

Tendler et al. 2020  2011 No Burbot, lake 
whitefish, 
northern 
pike, walleye 

20   5, Middle 

Rohonczy et al. 2020. 2013- 2015 Yes Burbot, 
northern 
pike, lake 
whitefish, 
lake trout, 
walleye

111 Yes! Yes! 5, West Am 

University of 
Waterloo & Dehcho 
AAROM (2022) 

2012 Yes! 
Winter 
too! 

Burbot, lake 
trout, lake 
whitefish, 
northern pike 

167 Yes No 2, 4, Mouth 

Gantner and Gareis, 
2013  
Roux et al. 2014 

2002 No Lake trout 84 Yes No 1 

Lockhart et al. 2005  2001- 2005 Yes Northern 
pike, walleye, 
lake trout, 
burbot, lake 
whitefish

90 Yes No 4, 5, Mouth, 
Middle 

TAEMP: Tłı̨chǫ 
Aquatic Ecosystem 
Monitoring Program 
(2010-2018) 

2011, 2014, 
2015, 2018 

Yes Lake trout, 
lake 
whitefish, 
walleye, 
northern pike

328 Often Often 3, 7, West 
Arm 

Diavik Diamond Mine 
Ltd. 2009  

2008 No Lake trout 40 Yes No Outside 

Rescan Environmental 
Services Ltd. 2009  

2008 No Lake trout 23 Yes No Outside 

EBA Engineering 
Consultants Ltd. 2006 

2005 No Lake 
whitefish, 
lake trout

40 Yes No Outside 
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Supplemental Table 3. Summary of the GIS datasets and environmental model raster layers utilized in the 
construction and parametrization of the BN-RRMs.  

Reference Measured or 
modelled? 

GIS file 
type? 

Raster 
resolution 

Description Variable? 

GNWT Mineral Claims 
Mineral Tenure Data  

Obtained from extent 
of claim 

Polygon N/A Active (2022) mineral claims Proximity to Mining  

GNWT Oil and Gas 
Mineral and Petroleum 
Resources Data 

Extent of claim Polygon N/A Active (2022) oil and gas licenses Proximity to Oil and Gas 
developments 

Canada Open 
Government 2015 

Calculated Point N/A Rainfall intensity calculations at 52 
monitoring sites in the NWT and 
Northern Canada. 2000 – 2018  

R-factor rainfall intensity map 
created with Empirical-Bayesian 
Kriging transformation in 
ArcGIS Pro.

Hansen et al. 2013 Satellite data Raster 30 m Global tree cover extent, loss, and 
gain, from 2000 to 2019 

Wildfire 

Sothe et al. 2022 Modelled Raster 250 m Canadian model of national carbon 
concentrations in soil at different 
depths. Only 0 cm was used; depths 
up to 30 cm are available.  

Soil Organic Carbon (SOC).  
Necessary factor for the soil 
erosion Hg release calculation. 

Silke, 2009 GPS Coordinates Point NA History of mining in the Northwest 
Territories; includes mine name, GPS 
coordinates, ore extraction, dates of 
operation, mineral mined (1920- 
2008)

Historic Gold Mines. Proximity 
to Historic Mining.  

Canada Open 
Government 2016 

Estimated Polygon NA Fairly low-resolution database of 
national soil texture.  

K-factor soil texture.  
Necessary factor for soil erosion. 

Gorelick et al. 2017 Satellite data Raster 21 m NDVI was downloaded for the study 
area. The timeframe selected was 
Aug – Oct, 2013 – 2021, < 10% 
cloud cover

C-factor vegetation density.  
Necessary factor for soil erosion. 

Natural Resources 
Canada, 2013 

Satellite elevation data Raster 16 m  The DEM was used to calculate Flow 
Accumulation ArcGIS, an essential 
input for the LS factor calculation.  

LS factor slope length and angle.  
Necessary factor for soil erosion. 

Natural Resources 
Canada.: National 
Hydro Network (NHN) 

Modelled Polygon NA National dataset of watershed 
boundaries. Used to set the study area 
extent

Scenario / Study Regions 

Segal et al, 2016 Satellite data (10 m 
resolution) 

Polygon NA Location of active thaw slumps in the 
Peel and Willow River regions of the 
Northern MRB study area

Proximity to thaw slumps 

Kokelj et al. 2021 
 

Satellite data (10 m 
resolution) 

Polygon NA Model results: Lakes/ streams/ 
coastal areas that are predicted to be 
affected by thaw slumps This layer 
was used for the proximity to thaw 
slump (10 km) node.

Proximity to thaw slumps 

Okulitch and Irwin, 
2017 

Approximation from 
survey maps 

Polygon NA Spatial ESRI dataset of bedrock 
geology for the northern Mackenzie 
River

Bedrock geology 
(ultimately not used in model) 

Stubley and Irwin, 
2019 

Approximation from 
survey maps 

Polygon NA Spatial ESRI dataset of bedrock 
geology for the Great Slave Lake 
region

Bedrock geology 
(ultimately not used in model) 

Open Canada: Modern 
Treaties. Government 
of Canada and 
Indigenous Services 
Canada. 

Treaty Boundary Polygon NA Post-1975 treaty boundary dataset NA 

Albers, 2017 R package to access 
the Canadian National 
Hydrology dataset  

Point – 
location of 
sampling

NA Hydrology data was used to estimate 
flux from Mackenzie River into 
Arctic Ocean

Riverine Hg input into Arctic 
Ocean from MR 

Statistics Canada, 2017  
 

Human population 
census results (2016) 

Point NA Downloaded the Community 
Population Estimates by detailed 
ethnicity. Accessed July 1, 2021.  

NA 

Fisheries Act- 
Schedule V (CRC 
c.847) 

Commercial fishing 
lakes 

Point NA Location of lakes where commercial 
fishing is allowed. Includes fish 
species and catch quotas.

NA 
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Northwest Territories 
Power Corporation 
(2009) 

Location of 
hydroelectric facilities 

Point NA Location of NWT hydroelectric 
facilities and their generator capacity 

Did not use in the model since 
all future hydroelectric projects 
are run-of-the-river 

GNWT Department of 
Health and Social 
Services, 2021 

Location of lakes with 
consumption 
advisories 

Point NA Lakes where the GNWT has issued a 
fish consumption advisory that is still 
in place. Includes species and # 
portions allowed.

NA 

French et al. 2020 Detailed dataset of 
2014 – 2015 wildfires 
around Great Slave 
Lake 

Point NA Dataset with fire location and 
intensity. Used to determine that 
wildfire intensity does not have 
significant effect on C-factor 
recovery.

Wildfire effect 

Scholten et al. 2021 Basic dataset that 
shows only the year 
and location of 
wildfire events. 

Point NA This dataset was considered since it 
covered the entire study area. 
However, decided to use the detailed 
French dataset instead for observing 
C-factor shift.

Wildfire effect 

Schaefer et al. 2020 Model  Raster 43291 m NCD files from the SiBCASA model 
were shared by Kevin Schaeffer.  

Permafrost thaw release of Hg 
into aquatic ecosystems 

Fraser, A.; Dastoor, A.; 
and Ryjkov, A., 2018 

Model Raster 43291 m NCD files from GEM-MACH_Hg 
model were shared by Andre Ryjkov 

Atmospheric Hg deposition  
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Supplemental Table 4. A detailed description of the discretization, assumptions, and equations used to 
calculate nodes across all BN-RRM categories, which are represented by colour (Scenario/ interactive 
nodes = yellow; Sources = blue; Stressors = orange; Effect = green; Impact = pink).  

Node  Category  Discretization  Comments and Assumptions  Equations  Reference 

Great Bear 
Subbasin (GBS) 
Model study 
regions 

SR1  Great Bear North  1) The study area was split into regions to 
reduce epistemic uncertainty  
2) See Table 1 for differences between 
study regions 

NA  NA 

SR2  Great Bear West 

SR3  Great Bear East 

SR4  Great Bear South 

Great Slave Lake 
(GSL) Model study 
regions 

North Arm  GSL North Arm  1) The study area was split into regions to 
reduce epistemic uncertainty  
2) See Table 1 for differences between 
study regions 

NA  NA 

East Arm  GSL East Arm 

Middle Basin  GSL Middle Basin 

Outlet  GSL Outlet to 
Mackenzie  

Freshwater fish 
species 

Lake whitefish  NA  1) These 5 freshwater fish species were 
selected because they are important food 
fish species for Indigenous communities in 
the MRB, and are commonly sampled for 
mercury 
2) Preferences and diet vary amongst 
Indigenous communities.  

NA  Ratelle et al. 2019 
 Burbot 

Walleye 

Lake trout 

Northern pike 

Proximity to mine 
(15 km) 

Yes  0 – 15 km  1) Mining is only a potential mercury source 
for the Great Slave Lake (GSL) models.  
2) Mining will have no significant impacts 
on lakes which are over 15 km distant from 
the mining source.  

Count data  Thienpont et al. 2016  

No  > 15 km 

Oil development 
distance (km) 

Yes  0 – 50 km  1) Oil and Gas exploration is a potential 
mercury source for the Great Bear Subbasin 
(GBS) models only.  
2) After 50 km from fossil fuel sources, 
there will be no significant impacts on 
aquatic ecosystems.  

Count data  Kelly, et al. 2010 

No  ≥ 50 km 

Proximity to 
historic mine 

Yes  0 – 15 km  1) Historic mining is only a potential 
mercury source for the Great Slave Lake 
(GSL) models.  
2) Mining will have no significant impacts 
on lakes which are over 15 km distant from 
the mining source. 

Count data  Thienpont et al. 2016 
Kokelj, 2002 No  > 15 km 

Proximity to 
retrogressive 
permafrost thaw 
slump (RPTS) 

Yes  0 – 10 km  1) Lakes impacted by RPTS have elevated 
THg and MeHg concentrations (St. Pierre, 
2018) 
2) RPTS will have an impact on waterbodies 
within a 10 km radius of a thaw slump 
impacted lake 

Count data  St. Pierre et al. 2018 
Lantz et al. 2008 No  > 10 km 

Proximity to GSL 
Outlet 

Yes  0 – 50 km  1) Proximity to Great Slave Lake is only a 
potential source in the GBS models.  
2) If freshwater quality of Great Slave Lake 
is impacted by mining, it may be acting as 
an Hg source for the MR. 

Count data  Cott et al. 2016 
Thienpont et al. 2016 No   > 50 km 

Permafrost Hg 
release 
 
(ug DHg m‐2 yr‐1) 

None  0   1) Model outputs (Schaeffer et al. 2020) 
were provided as monthly estimates of 
permafrost DHg release into aquatic 
ecosystems for the 2005‐ 2020 study period  
2) Seasonal effect was not considered 

Model outputs 
(monthly) were summed 
to produce annual 
estimates, and then 
averaged over the study 
period 

Schaeffer et al. 2018 

Very low  0 – 2 

Low  2 – 4 

Medium  4 – 6  

High  6 – 10  

Very high  > 10  

Soil erosion Hg 
release 
(ug THg m‐2 yr‐1) 

Low   0 – 5  1) Assuming that 1.5% of mercury released 
by soil erosion will enter the freshwater 
ecosystem (Schaeffer, 2020) 
2) This equation was theorized for this 
project and does not reflect information 
found in a literature search 

[Hg]water = [Hg]soil * 
Erosion Potential * 
0.015 * Time (1 year) 

Schaeffer et al. 2020 

Medium  5 – 10 

High  10 – 20 
  

Very High  > 20 

Atmospheric Hg 
deposition 
(ug THg m‐2 yr‐1) 

Very low  0 – 3  1) Model outputs (Dastoor et al. 2015) were 
provided as annual estimates of THg 
deposition for the 2005 – 2020 period Maps 
of annual atmospheric THg deposition 
values are from the GEM‐MACH‐Hg model 
output. These were summed for the 
duration of the study period (2005 – 2020)  

Model output (annual 
estimates of emission) 
were averaged over the 
study period 

Dastoor et al. 2015 

Low  3 – 9 

Medium  9 – 12 

High  12 – 15 

Very high  > 15 

Total Hg 
deposition 

Low  0 – 10  1) The total Hg deposition is likely 
underestimated because the Permafrost 
SiBCASA model output is for dissolved Hg 
(DHg). Other models are estimating total Hg 

Sum of permafrost thaw 
Hg release, atmospheric 
Hg deposition, and 

NA 

Moderate  10 – 15 

15 – 20  

High  20 – 50 



142 
 

Very high  > 50   (THg). Since the major form of mercury in 
the MR is particulate (PHg), the results of 
the permafrost model are underestimated 
compared to the other two.  

RUSLE soil erosion Hg 
release 

Time since wildfire 
(yrs) 

Short – recent 
fire 

0 years  Immediately following a wildfire event, the 
C‐factor will increase. With time the 
vegetation recovers, and the C‐factor will 
continue to decrease. This variable allows 
you to visualize the impact on the C‐factor 
at two points in the recovery process.  

NA  Scholten et al. 2021 

Following 
moderate 
recovery period 

3 years 

Wildfire event  Yes  Select to see effect 
of fire on C‐factor 

If the default “No” is selected, the soil 
erosion calculation does not account for 
expected change in C‐factor following a 
wildfire.  

NA  Scholten et al. 2021 

No  Default selection 

Ratio of  
C‐factor post‐fire/ 
C‐factor pre‐fire  

NA  0 – 0.5  1) The C‐factor values were calculated from 
an NDVI layer (Fall 2013 – 2021).  
2) Wildfire locations (~3300 final) were 
obtained from the Scholten (2021) dataset 
which was filtered to select fires post‐2014 
and in the GBS risk regions 1‐ 4.  
3) Distributions of the C‐factor ratio were 
used to populate the CPTs for either 1‐year 
or 3‐years post‐fire.  

Data was discretized 
and the counts were 
input into Netica. Did 
not use any equations 
or assume a normal 
distribution 

 Scholten et al. 2021 

0.5 – 1 

1 – 1.5  

1.5 – 2.5  

2.5 – 10  

≥ 10  

Adjusted C‐factor   Dense forest  0 – 0.1   1) The distribution is bound by the limits of 
0 (min) and 1 (max).  

If Wildfire event is  
“Yes” : 
Adjusted C‐factor = 
Ratio of C‐factor * C‐
factor 
 
If Wildfire event is “No” 
Adjusted C‐factor =  
C‐factor 

Borelli et al. 2016 

Dense 
vegetation 

0.1 – 0.2 

Moderate 
vegetation 

0.2 – 0.4 

Little vegetation  0.4 – 0.6 

Sparce 
vegetation 

0.6 – 0.8 

Very sparce 
vegetation or 
Water (1.0)   

0.8 – 1   

Rainfall Intensity 
Index  
(R‐factor) 
  
(MJ mm ha‐1 hr‐1 
yr‐1) 

Zero  0 – 50   1) Data from 52 climate stations with 
calculated R‐factors were used to 
interpolate rainfall intensity throughout the 
study area 
2) Only data from the 2005‐ 2018 period 
was considered. R‐factor values were not 
available post‐2018.  
3) The interpolated rainfall‐intensity factors 
were averaged for the 2005‐ 2018 period 
prior to the calculation of soil erosion 
potential  

Interpolated for the 
study area using ArcGIS 
Pro ‐ Bayesian Empirical 
Kriging geoprocessing 
tool  

Canada Open 
Government, 2015 
  
Wall et al. 2002 

Very low  50 – 100 

Low  100 – 200  

Low‐ medium  200 – 300  

Medium  300 – 400  

Medium‐high  400 – 500  

High  > 500 

Crop/ Vegetation 
and management 
factor  
(C‐factor) 
 
(unitless) 

Dense forest  0 – 0.1  1) Landsat images of the NDVI were 
selected for the fall post‐fire season 
(August 31‐ Oct 1) with<10% cloud cover. 
Cloud cover was present but mostly limited 
to the two great lakes.   
2) C‐factor values were obtained for the 
2013‐ 2021 period only 
3) For the year 2021, images were obtained 
from Spring and Summer seasons, and the 
values were found to be comparable to the 
2021 Fall C‐factors. 
4) The C‐factor calculation from NDVI was 
developed for European soils and may not 
be accurate for the Arctic tundra regions. 
 
 

C‐factor = exp((‐
2*NDVI)/((1‐NDVI))) 

Gorelick et al. 2017 

Dense 
vegetation 

0.1 – 0.2 

Moderate 
vegetation 

0.2 – 0.4 

Little vegetation  0.4 – 0.6 

Sparce 
vegetation 

0.6 – 0.8  

Very sparce 
vegetation or 
Water (1.0)   

0.8 – 1.0  

Soil Erodibility 
Index  
(K‐factor) 
 
(tonnes hr MJ‐1 
mm‐1) 

Water   0   1) K‐factor can be calculated if soil maps of 
%silt, %clay, and %organic carbon are 
available. If they are not, it can be 
estimated from a map of soil texture class. 
The latter method was used in this project.  
2) K‐factor values for all texture classes 
except for “Organic” were obtained from 
the GNWT Erosion manual. 
3) The eco‐district soil texture map (Canada 
Open Government, 2013) is a polygon file 
of limited resolution. 
4) The RUSLE Equation was not developed 
for soils with high Carbon content (> 4%) 
since organic matter can have a stabilizing 

K‐factor values were 
obtained from GNWT 
Transportation (2013), 
no calculations 
necessary.  

GNWT 
Transportation, 2013  
Canada Open 
Government, 2013 
  

Sand  0.02 

Organic  0.015 

Sandy Loam  0.017  

Clay   0.03 

Clay Loam  0.032 

Loam  0.042 
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effect. A value of 0.015 was assigned for 
the purpose of this project 

Slope length and 
angle factor  
(LS‐factor)  
 
(Unitless)  

Very low  0 – 1  1) The LS‐factor was calculated remotely 
using a 16m‐ resolution DEM layer and the 
ArcGIS Hydrology tools to calculate the 
Flow Accumulation (As) factor.  

Calculated using the 
McCool equation: 
LS= ((As/22.13 )^m)*S 
Where S is conditional 
on the slope angle, and 
m is conditional on the 
slope length 
(approximated by As) 
 

Hrabalíková, M. and 
Janeĉek, M., 2015  
 

Low  1 – 10  

Medium  10 – 50  

High   > 50  

Soil erosion Hg 
release 

Low   0 – 5  1) Calculation of soil erosion uses RUSLE 
method, developed for European 
agricultural soils not Arctic regions 
underlain by permafrost 
2) Soil erosion calculation is the average 
over the 2013‐ 2018 period (see 
precipitation intensity and vegetation 
density definitions) 
3) Erosion into waterbody was calculated 
by summing all erosion values within 500 
meters of the waterbody shore and then 
dividing by the polygon area. 

Soil erosion = 
Precipitation intensity * 
Soil erodibility factor * 
Slope‐angle factor * 
Vegetation density 
 

Wall et al. 2002 

Medium  5 – 10 

High  10 – 20 
  

Very High  > 20 

Soil organic 
carbon (OC)  
 
(g C/ kg soil) 

Inorganic soil  0 ‐ 100  1) Soil OC is for depths of 0cm and 5cm, 
based on terrestrial model output (Sothe et 
al. 2022) 
2) Making assumption that the Hg/ C ratio 
for the NWT is 1.6 ug Hg/ g C (Schuster et 
al. 2018), the average in North American 
soils  
2) Interim sediment quality guideline for Hg 
is 170 ug Hg/ kg sediment, corresponding to 
~ 100 g C/ kg sediment  
3) Probable Effects Level (PEL) for mercury 
(486 ug/ kg sediment) corresponds to ~ 300 
g C/ kg sediment 

Count data  Sothe et al, 2022 
Schuster et al. 2018 
Canadian 
Environmental 
Quality Guidelines, 
1999 

Moderate 
organic 

100 – 200 

200 – 300  

Highly organic 
soil 

300 – 400  

> 400  

Soil Depth (cm)  Surface layer  0 cm  1) Interactive node controlling the 
probability distribution of the Soil OC node 
2) The recommended selection is 0cm since 
this is the top layer of soil and will be the 
first to erode during a rainfall event.  

Count data  Sothe et al. 2022 

Near‐surface  5 cm 

Hg: C soil ratio  Low  0 – 3  1) This node was populated by assuming 
that the distribution reported by Schuster 
et al. (2018) for North American soils is 
normally distributed and accurate for Arctic 
soils 

Assume that Hg:C ratio 
follows a normal 
distribution: 
1.6 ± 0.9 ug Hg/ g C 

Schuster et al. 2018 

Medium  3 – 5 

High  5 ‐8 

Soil THg  
(ug Hg/ kg soil) 

Low  0 – 170  1) CCME ISQG guideline is 170 ug Hg/kg soil 
2) CCME PEL guideline is 486 ug Hg/kg soil 

Soil THg = Soil OC * 
 Hg:C soil ratio  

Canadian 
Environmental 
Quality Guidelines, 
1999 

Medium  170 – 486 

High  >= 486 

Freshet total flow 
(km3/yr) 
 

Q1  0 – 0.2  1) GBS Model: Flow data obtained from 
Arctic Red River station (HYDAT, ID: 
10LA002)  
2) GSL Model: Flow data obtained from Fort 
Simpson station at Strong Point (HYDAT, ID: 
10FB006) 
3) In the GBS model, this node is only 
relevant for the GBS North (SR1) study 
region; in GSL model, only for the North 
Arm study region 

The freshet season 
began when the 
discharge rate was 1.5‐
fold greater than the 
average 30‐day 
discharge, until 10‐days 
after the peak flow 
(Leitch, 2007). 

Environment 
Canada, 2013 
Leitch et al. (2007). 

Q2  0.2 – 0.4 

Q3  0.4 – 0.6  

Q4  0.6 – 0.8   

> Q4  0.8 – 1.0  

Rest of year total 
flow (km3/yr) 
 

Q1  0 – 2. 6  See “Freshet total flow” node for details  The sum of flow for all 
days outside of the 
freshet season 

Environment 
Canada, 2013 
Leitch et al. 2007 
 

Q2  2.6 – 3.0  

Q3  3.0 – 3.4  

Q4  3.4 – 3.6  

Fish length 
(cm) 

Small  <600 mm for 
burbot, N.pike, and 
L.trout;  
<500 mm for 
L.whitefish ;  
<45cm for walleye 

1) Sizes were selected based on size‐
restrictions to the consumption advisories 
posted by GNWT (2016) 
2) No consumption advisories exist for lake 
whitefish since this is a lower trophic level 
fish species with lower Hg concentrations. 
Older individuals can reach sizes up to 
70cm.  

Count data  GNWT Health and 
Social Services 2016 

Large  >600 mm for 
burbot, N.pike, and 
L.trout; 
>500 mm for L. 
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whitefish ;  
>450 mm for 
walleye 

Weekly Fish 
consumption  
(g kgbw‐1 wk‐1) 
 

None  0  1) This is an interactive node for a user‐
specified diet 
2) Five of these variables total, one for each 
fish species 
3) A child portion size is 75g, and 150g for 
an adult (Health Canada, 2007). Note that 
the NWT consumption advisories assume 
that a portion size is 75 g (GNWT, 2016)  

NA  Health Canada, 2007 
GNWT Health and 
Social Services 2016 
 

½ serving  
(75 g) 

0 – 1.25 

1 serving 
(150 g) 

1.25 – 2.5 

2 servings 
(300 g) 

2.5 – 5.0 

3.2 servings 
(480 g) 

5.0 – 8.0 

pTWI  
(ug Hg kgbw‐1 wk‐
1) 
 

US EPA 
reference dose 

0.7   1) This is an interactive node that allows the 
user to select a threshold that is most 
relevant for their age and lifestyle.  
2) The US EPA reference dose is the 
strictest and should be applied for younger, 
rapidly developing individuals  
3) The Health Canada dose is most relevant 
for adult males or menopausal (> 49 years) 
women 

NA  Health Canada, 2007  
WHO, 1990 
U.S.EPA, 2002 WHO, 1990 

threshold for 
women and 
children 

1.4 

Health Canada  3.3  

Freshwater THg 
(ng/L) 

Low (below DL)  0 – 10   1) The highest acceptable detection limit in 
the THg monitoring datasets was 10 ng/ L  
2) The CCME 2003 guidelines for the 
protection of aquatic life from inorganic Hg 
is 26 ng/L.  
3) CCME guideline is based on most 
sensitive LOAEL for juvenile fathead 
minnows, which was not a species included 
in this study.  

Count data  Canadian 
Environmental 
Quality Guidelines, 
2003 

Medium   10 ‐ 26 

High   >26  
 

Freshwater fish 
tissue Hg (ug/g 
ww) 

Low   0‐0.2  1) Subsistence threshold is 0.2 ug Hg/g 
tissue (Lockhart et al. 2005). Canada 
guideline for retail sale of fish is 0.5 ug Hg/ 
g tissue (Health Canada, 2007). The EC20 
and EC50 values are based on the dose‐
response model developed for adult and 
juvenile fathead minnows (Dillon et al. 
2010; Fuchsman et al. 2016) 
2) Used the Dillon et al. (2010) dose‐
response curve for discretizing this node, 
but a different curve equation for the 
“%Injury to Fish” endpoint. 
3) Only data from fish muscle tissue was 
included in the dataset 

Count data  Lockhart et al. 2005 
Health Canada, 2007 
Dillon et al. 2010 
Fucshman et al. 2016 

Subsistence   0.2‐0.5 

EC20  0.5‐0.77 

EC50  0.77‐3 

Above EC50  >3 

MeHg ingested 
from Freshwater 
Fish consumption  
(ug Hg kgbw‐1 wk‐
1) 

None  0   1) Discretization based on pTWI guidelines 
2) Total of 6 “Weekly MeHg ingestion” 
nodes: 1 for each freshwater fish species (5) 
and another for the total ingestion (1) 
3) Total ingestion was the sum of all 
species‐specific ingestion nodes 

Weekly MeHg ingestion 
was calculated as:  
Weekly fish 
consumption * 
Freshwater fish tissue 
Hg 

Health Canada, 2007  
WHO, 1990 
U.S.EPA, 2002 

Low mercury 
consumption 

0 – 1 

Moderate 
mercury 
consumption 

1 – 1.4 

1.4 – 2.5  

2.5 – 3.3  

High mercury 
consumption 

>= 3.3 

% Injury to fish  Low risk  0‐25  1) The %Injury calculation is based on the 
LL.3 dose‐response model prepared with 
the Dillon et al. (2010) dataset.  
2) The study organism in the Dillon et al. 
(2010) dataset were juvenile fathead 
Minnow, a species not included in this 
project 
3) The EC20 and EC50 values predicted by 
this model were lower than those reported 
in the original publication, because the 
dose‐response equations were different 
(Supplemental Figure 21). Additionally the 
dose‐response curve in the Dillon et al. 
(2010) publication was from both juvenile 
and adult fish, while the dose‐response 
curve used in this project is from juvenile 
fish. 
4) This node was not prepared for the 
burbot and walleye nodes because the 
monitoring data was more limited for these 
2 species 

% Injury =  
133.99106/(1+ exp(‐
0.69873*(log(FishHg)‐ 
log(2.43453)))) 

Dillon et al. 2010 

Moderate risk  25 – 50 

High risk  50 – 75 

Very high risk of 
injury 

75 ‐ 100 



145 
 

% Fish not eligible 
for sale 

Eligible   Tissue Hg < 0.5 ug 
Hg/g tissue 

1) This node is a proxy for the risk 
probability of commercial fish catch 
exceeding Canadian guidelines for sale. If 
commercial fisheries or distribution centers 
are required to monitor Hg, fish with 
elevated Hg concentrations (> 0.5 ug Hg/g) 
would represent catch‐losses to the 
commercial fisheries, assuming that there 
are no control or mitigation strategies 
employed. 

Netica equation:  
%FishNotEligible =  
if(Fish_Hg >= 
Fish_sale_threshold, 1, 
0) 
 
Where 
Fish_sale_threshold is 
0.5 ug Hg/g tissue 

Health Canada, 2007 

Not eligible   Tissue Hg > 0.5 ug 
Hg/g tissue 

Exceedance of 
pTWI (ingested 
Hg/ pTWI)  

Expected weekly 
MeHg intake is 
lower than the 
selected 
threshold 

0 – 0.01  1) The results of this node are dependent 
on the user‐selected “Weekly Fish 
Consumption” node and the “pTWI” node 
2) Values below 1 indicate no/ low risk, 
values above 1 indicate a risk of exceedance
 

The risk quotient was 
calculated as: 
MeHg ingested / pTWI 

Health Canada, 2007  
WHO, 1990 
U.S.EPA, 2002 

0.01 – 0.1 

0.1 – 0.5 

0.5 ‐ 1 

Weekly MeHg 
intake is higher 
than the 
threshold 

1 ‐ 2 

2 – 10 

>= 10  

Annual THg flux to 
Beaufort Sea  
 
(tonnes) 

These values fall 
within the range 
reported in 
Leitch et al. 2007  

0 ‐ 1  1) Discharge was calculated as km3/yr, but 
converted to tonnes when calculating the 
annual flux 
2) A correction of 0.81 was applied based 
on the findings of Emmerton et al. (2013) 
that ~19% of the THg is deposited in the 
Mackenzie Delta prior to reaching the 
Beaufort Sea 

Flux = ([Hg]freshet* 
Freshet discharge  + 
[Hg]rest‐of‐year *Non‐
freshet discharge) * 0.81  
 

Emmerton et al. 
2013 
Leitch et al. 2007 

1 – 2 

2 ‐ 4 

These values are 
above the range  

4 ‐ 6 

6 ‐ 8 

8 ‐ 10 

>= 10 
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Supplemental Table 5. A comparison of the probability distributions from the raw data (“Observed data: 
probability” column) and the BN-RRM outputs (“Model probability prediction” column). The effect 
variables include freshwater THg, lake whitefish Hg, lake trout Hg, and northern pike Hg; however, they 
do vary between the study regions based on data availability. Node states which are highly probable in the 
raw dataset are being underestimated by the model (negative discrepancy values). Unlikely node states, 
which are coincidentally the states that coincide with higher Hg exposure, are being overestimated by the 
model (positive discrepancy values). Discrepancy values are highest when the number of observations is 
low and when all observations are of a single node state.   

 

Location Effect variable Total 
observations (n) 

Node state Observed 
data: 

Counts 

Observed 
data: 

probability 

Model 
probability 
prediction 

Discrepancy 

GBS North (SR1) 

Freshwater THg  
(ng THg/L) 

331 

0 to 10 230 69.5 55.7 -13.8

10 to 26 58 17.5 19.5 2.0

26 to 100 36 10.9 15.3 4.4

>100 7 2.1 9.5 7.4

Lake trout Hg  
(ug Hg/g tissue) 

84 

0 to 0.2 49 58.3 27.5 -30.8

0.2 to 0.5 35 41.7 26.5 -15.2

0.5 to 0.79 0 0.0 15.3 15.3

0.79 to 3 0 0.0 15.3 15.3

> 3 0 0.0 15.3 15.3

GBS West (SR2) 

Freshwater THg  
(ng THg/L) 

519 

0 to 10 405 78.0 46.6 -31.4

10 to 26 60 11.6 19.2 7.6

26 to 100 48 9.2 18.9 9.7

>100 6 1.2 15.3 14.1

Lake whitefish Hg  
(ug Hg/g tissue) 

20 

0 to 0.2 9 45.0 25.5 -19.5

0.2 to 0.5 11 55.0 26.8 -28.2

0.5 to 0.79 0 0.0 23.9 23.9

0.79 to 3 0 0.0 23.9 23.9

Lake trout Hg  
(ug Hg/g tissue) 

15 

0 to 0.2 3 20.0 20.0 0.0

0.2 to 0.5 7 46.7 21.2 -25.5

0.5 to 0.79 4 26.7 20.3 -6.4

0.79 to 3 1 6.7 19.4 12.7

> 3 0 0.0 19.1 19.1

GBS East (SR3) 

Freshwater THg  
(ng THg/L) 

38 

0 to 10 32 84.2 45.0 -39.2

10 to 26 1 2.6 13.8 11.2

26 to 100 3 7.9 22.1 14.2

>100 2 5.3 19.0 13.7

Lake whitefish Hg  
(ug Hg/g tissue) 

126 

0 to 0.2 125 99.2 64.4 -34.8

0.2 to 0.5 1 0.8 11.9 11.1

0.5 to 0.79 0 0.0 11.9 11.9

0.79 to 3 0 0.0 11.9 11.9

Lake trout Hg  
(ug Hg/g tissue) 

124 

0 to 0.2 10 8.1 13.1 5.0

0.2 to 0.5 99 79.8 58.4 -21.4

0.5 to 0.79 13 10.5 12.1 1.6

0.79 to 3 2 1.6 8.2 6.6

> 3 0 0.0 8.2 8.2

GBS South (SR4) 

Freshwater THg  
(ng THg/L) 

701 

0 to 10 678 96.7 69.2 -27.5

10 to 26 12 1.7 11.3 9.6

26 to 100 8 1.1 9.8 8.7

>100 3 0.4 9.7 9.3

Lake whitefish Hg  
(ug Hg/g tissue) 

53 
0 to 0.2 51 96.2 41.8 -54.4

0.2 to 0.5 2 3.8 19.6 15.8
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0.5 to 0.79 0 0.0 19.3 19.3

0.79 to 3 0 0.0 19.3 19.3

Lake trout Hg  
(ug Hg/g tissue) 

30 

0 to 0.2 0 0.0 18.0 18.0

0.2 to 0.5 24 80.0 26.4 -53.6

0.5 to 0.79 6 20.0 19.7 -0.3

0.79 to 3 0 0.0 18.0 18.0

> 3 0 0.0 18.0 18.0

Northern pike Hg (ug 
Hg/g tissue) 

50 

0 to 0.2 4 8.0 17.3 9.3

0.2 to 0.5 26 52.0 21.5 -30.5

0.5 to 0.79 13 26.0 24.1 -1.9

0.79 to 3 7 14.0 20.4 6.4

> 3 0 0.0 16.6 16.6

GSL North Arm 

Freshwater THg  
(ng THg/L) 

258 

0 to 10 243 94.2 42.1 -52.1

10 to 26 7 2.7 19.5 16.8

26 to 100 7 2.7 19.5 16.8

>100 1 0.4 18.9 18.5

Lake whitefish Hg  
(ug Hg/g tissue) 

202 

0 to 0.2 169 83.7 40.6 -43.1

0.2 to 0.5 32 15.8 23.6 7.8

0.5 to 0.79 1 0.5 18.0 17.5

0.79 to 3 0 0.0 17.8 17.8

Lake trout Hg  
(ug Hg/g tissue) 

87 

0 to 0.2 10 11.5 19.4 7.9

0.2 to 0.5 68 78.2 20.7 -57.5

0.5 to 0.79 7 8.0 20.0 12.0

0.79 to 3 2 2.3 20.6 18.3

> 3 0 0.0 19.2 19.2

Northern pike Hg (ug 
Hg/g tissue) 

91 

0 to 0.2 14 15.4 19.2 3.8

0.2 to 0.5 30 33.0 23.9 -9.1

0.5 to 0.79 18 19.8 19.2 -0.6

0.79 to 3 28 30.8 21.5 -9.3

> 3 1 1.1 16.1 15.0

GSL East Arm 

Freshwater THg  
(ng THg/L) 

13 

0 to 10 13 100.0 26.2 -73.8

10 to 26 0 0.0 24.6 24.6

26 to 100 0 0.0 24.6 24.6

>100 0 0.0 24.6 24.6

Lake whitefish Hg  
(ug Hg/g tissue) 

121 

0 to 0.2 111 91.7 67.0 -24.7

0.2 to 0.5 9 7.4 13.4 6.0

0.5 to 0.79 1 0.8 10.1 9.3

0.79 to 3 0 0.0 9.5 9.5

Northern pike Hg (ug 
Hg/g tissue) 

91 

0 to 0.2 66 72.5 52.1 -20.4

0.2 to 0.5 19 20.9 19.9 -1.0

0.5 to 0.79 5 5.5 10.7 5.2

0.79 to 3 1 1.1 8.9 7.8

> 3 0 0.0 8.4 8.4

GSL Middle 

Freshwater THg  
(ng THg/L) 

174 

0 to 10 157 90.2 42.9 -47.3

10 to 26 8 4.6 19.0 14.4

26 to 100 7 4.0 19.3 15.3

>100 2 1.1 18.8 17.7

Lake whitefish Hg  
(ug Hg/g tissue) 

10 

0 to 0.2 10 100.0 25.9 -74.1

0.2 to 0.5 0 0.0 24.7 24.7

0.5 to 0.79 0 0.0 24.7 24.7

0.79 to 3 0 0.0 24.7 24.7

Lake trout Hg  
(ug Hg/g tissue) 

29 

0 to 0.2 22 75.9 21.2 -54.7

0.2 to 0.5 7 24.1 20.3 -3.8

0.5 to 0.79 0 0.0 19.5 19.5

0.79 to 3 0 0.0 19.5 19.5

> 3 0 0.0 19.5 19.5
32 0 to 0.2 10 31.3 20.3 -11.0
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Northern pike Hg (ug 
Hg/g tissue) 

0.2 to 0.5 20 62.5 21.5 -41.0

0.5 to 0.79 0 0.0 19.4 19.4

0.79 to 3 2 6.3 19.4 13.2

> 3 0 0.0 19.4 19.4

GSL Outlet 

Freshwater THg  
(ng THg/L) 

411 

0 to 10 395 96.1 53.4 -42.7

10 to 26 12 2.9 17.0 14.1

26 to 100 3 0.7 15.1 14.4

>100 1 0.2 14.4 14.2

Lake whitefish Hg  
(ug Hg/g tissue) 

36 

0 to 0.2 34 94.4 47.6 -46.8

0.2 to 0.5 2 5.6 18.7 13.1

0.5 to 0.79 0 0.0 16.9 16.9

0.79 to 3 0 0.0 16.9 16.9

Lake trout Hg  
(ug Hg/g tissue) 

30 

0 to 0.2 0 0.0 14.5 14.5

0.2 to 0.5 24 80.0 39.8 -40.2

0.5 to 0.79 6 20.0 17.9 -2.1

0.79 to 3 0 0.0 13.9 13.9

> 3 0 0.0 13.9 13.9

Northern pike Hg (ug 
Hg/g tissue) 

32 

0 to 0.2 4 12.5 18.8 6.3

0.2 to 0.5 22 68.8 31.4 -37.4

0.5 to 0.79 4 12.5 18.1 5.6

0.79 to 3 2 6.3 16.6 10.4

> 3 0 0.0 15.1 15.1

 

 

 

 

 

Supplemental Table 6. The three dose-response models developed for the %Injury to fish endpoint using 
the R-studio drc package. The toxicological endpoints were compared between these models and to the 
Dillon et al. (2010) model results, which used the same primary data for the dose-response curve plots. 

Model Name Model used ED10 ED20 ED50 Datapoints (n)
Using all data LL.3(fixed=c(NA, 

100, NA)) 
0.133 0.386 2.410 76 

Juvenile data LL.3(fixed=c(NA, 
100, NA)) 

0.105 0.335 2.435 18 

Juvenile adult 
data 

LL.3(fixed=c(NA, 
100, NA)) 

0.229 0.627 5.472 30 

Dillon et al. 
(2010) 

See equation 3 in 
publication 

~ 0.406 ~ 0.77 ~ 3.013 ~ 49 

 

 

  


