Changes in Forms of Uranium in Anoxic Lake Sediments and Porewaters Near an Abandoned Uranium Mine, Bancroft, Ontario

Abstract

Soluble uranium (U) has been observed continuously in the porewaters of Bentley Lake,

a lake with semi-permanent anoxic sediments, despite the fact that reduced U(IV) is known to be

insoluble. To be able to predict the fate and mobility of U that has been deposited in lake

sediments, it is very important to understand the factors that determine soluble uranium in anoxic

environments. Understanding soluble U species is crucial for predicting its behavior in natural

systems as well as for the development of U remediation schemes.

To explore the factors affecting soluble U in natural environments, anoxic lake sediments

and porewaters were tested using two analytic methods, ICP-MS and ESI-HR-MS. Reduced

uranium (U(IV)) can be precipitated as U(IV)-NdF3. Using this method revealed that most of the

uranium in porewater is not able to be co-precipitated with NdF3. In addition, UO2+ was found

using ESI-HR-MS, showing uranyl ions exist in reduced porewater. However, the UO2+ might be

attached to some organic groups rather than present as free ions.

Seasonal variation and air exposure experiments on the mobility of U between sediments

and porewater were observed to test for changes of the redox state of U as a function of sample

collection and storage. The results of this study will contribute to better remediation strategies for

U tailings and will help U mining operations in the future.

    Item Description
    Type
    Contributors
    Creator (cre): Shu, Haoran
    Thesis advisor (ths): Evans, R. D.
    Degree committee member (dgc): Georg, Bastian
    Degree granting institution (dgg): Trent University
    Date Issued
    2018
    Date (Unspecified)
    2018
    Place Published
    Peterborough, ON
    Language
    Extent
    95 pages
    Rights
    Copyright is held by the author, with all rights reserved, unless otherwise noted.
    Subject (Topical)
    Local Identifier
    TC-OPET-10568
    Publisher
    Trent University
    Degree
    Master of Science (M.Sc.): Environmental and Life Sciences