Mixtures of metals occur in surface waters, toxicity of which has drawn world-wide attention due to their crucial role in both ecotoxicology and regulations. The present research was undertaken to study the acute toxicity of binary mixtures of Ni, Cu, Zn, and Cd to the freshwater organism, Daphnia magna. The experimental approach included single and binary metal toxicity tests based on the 48h acute toxicity bioassay of Environment Canada. The acute toxicity of single metals followed the order of Cd > Cu > Zn > Ni. Based on the calculated 48h EC50 value of single metals, a toxic unit (TU) approach was used to combine two metals in a binary mixture, in which 1TU was equal to the 48h EC50 value of a metal in single exposure. The toxicity of binary metal mixtures to D. magna followed the order of Cu-Cd > Cu-Zn > Zn-Cd > Cu-Ni > Zn-Ni > Cd-Ni, which demonstrated three types of toxicity (i.e., less than additive, additive, and greater additive). Predictions from additivity models (including concentration addition (CA) and independent action (IA) models), a generalized linear model (GLM), and a biotic-ligand-like model (BLM-like) were compared to the bioassay results. The CA and the RA models also predicted three types of toxicity of the binary metal mixtures (i.e., less than additive, additive, and greater than additive). However, the CA model mostly overestimated the toxicity of binary mixtures. Predictions from the GLM supported the inclusion of the interaction between two metals in a mixture to predict the toxicity of binary metal mixtures. The binary metal toxicity was also predicted using a BLM-like model based on the calculated concentrations of free ionic forms of the metals, affinity constants, and toxic potency of each metal. In this model, it was hypothesized that the toxicity of metal mixture is the result of competition of metals with Ca2+ at biotic ligands, which can lead to whole-body deficiency of Ca2+ in D. magna. The BLM-like model provided the toxic potency of single metals with the following order, Cu > Cd > Zn > Ni. Although the prediction of the BLM-like model was not in good agreement with the observed toxicity of binary metal mixtures, an overestimation of risk of mixture toxicity was obtained using this model, which could be promising for use in environmental risk assessment.
Author Keywords: biotic ligand model, concentration addition, Daphnia magna, independent action, metal toxicity, modeling