Plant sciences
Carbon Exchange along a Natural Gradient of Deciduous Shrub Coverage in the Low-Arctic
Arctic terrestrial ecosystems have experienced substantial structural and compositional changes in response to warming climate in recent decades, especially the expansion of shrub species in Arctic tundra. Climatic and vegetation changes could feedback to the global climate by changing the carbon balance of Arctic tundra. The objective of this thesis was to investigate the influence of increased shrub coverage on carbon exchange processes between atmosphere and the Arctic tundra ecosystem. In this study a space-for-time substitution was used, referred to as a shrub expansion "chronosequence", with three sites along a natural gradient of deciduous shrub coverage in the Canadian low Arctic. Leaf-level photosynthetic capacity (Amax) of dominating birch shrub Betula glandulosa (Michx.) was significantly higher (P<0.05) at the site where shrubs were more abundant and taller than at the other sites. For all sites, mean Amax in 2014 was significantly lower than in 2013, in part potentially due to differences in precipitation distribution. Bulk soil respiration (RS) rate was significantly higher (P<0.05) at the site with more shrubs compared with the other sites. The differences in RS across sites appeared to be driven by differences in soil physiochemical properties, such as soil nitrogen and soil bulk density rather than soil microclimate factors (e.g. soil temperature, moisture). The three sites were either annual CO2 sources (NEP<0) to the atmosphere or CO2 neutral, with strongest annual CO2 sources (-44.1±7.0 g C m-2) at the site with most shrubs. Overall this study suggests that shrubs tundra carbon balance will change with shrub expansion and that shrub ecosystems in the Arctic currently act as annual carbon sources or neutral to the atmospheric CO2 and further shrub expansion might strengthen the CO2 emissions, causing a positive feedback to the warming climate.
Author Keywords: arctic tundra, carbon exchange, climate change, photosynthetic capacity, shrub expansion, soil respiration
The Effect of Carbon Source and Phytohormones on the in vitro Growth of Euglena Gracilis
Microalgae are a promising source of valuable compounds relevant to biofuels, biomaterials, nutraceuticals as well as animal and human nutriment. Unfortunately, low cell density and slow growth result in reduced economic feasibility. Heterotrophic cell culturing using an organic carbon source in lieu of light has proven to be an effective alternative to photobioreactors; however, further improvement may be possible with the addition of growth promoting phytohormones. In this thesis, growth and endogenous hormone profiles in heterotrophic cultures of Euglena gracilis were evaluated using glucose and ethanol as carbon sources. Cytokinin (CK) and abscisic acid (ABA) were quantified by HPLC-ESI-MS/MS and compared to culture growth dynamics. Exogenous phytohormones treatments were also conducted to determine if they may mitigate nutrient reduction and improve growth. Phytohormones CK and ABA were purified and analyzed at seven points along the growth curve in small scale (250 mL flasks, 100 mL working volume) cultures. Among the key findings was that ethanol cultures undergoing exponential growth, primarily synthesize freebase cytokinins (FBCKs) and methylthiol-cytokinins (MeSCKs), while not producing detectable levels of ABA. In exogenous studies, dry biomass was positively influenced with the addition of exogenous ABA; however, the most notable result revealed the ability of transZ to alleviate nutrient reduction. These findings suggest a communication network in algal culture using FBCKs and MeSCKs, as well as the potential for exogenous hormone supplementation to increase growth rates and overall biomass productivity.
Author Keywords: abscisic acid, cytokinin, Euglena gracilis, heterotrophy, phytohormones