Frost, Paul C

Effects of biodiversity and lake environment on the decomposition rates of aquatic macrophytes in the Kawartha Lakes, Ontario

Type:
Names:
Creator (cre): Banks, Lauren K., Thesis advisor (ths): Frost, Paul C, Degree committee member (dgc): Dorken, Marcel, Degree committee member (dgc): Sager, Eric, Degree granting institution (dgg): Trent University
Abstract:

Decomposition of aquatic macrophytes has an important role in defining lake carbon (C) storage and nutrient dynamics. To test how diversity impacts decomposition dynamics and site-quality effects, I first examined whether the decomposition rate of aquatic macrophytes varies with species richness. Generally, I found neutral effects of mixing, with initial stoichiometry of component species driving decomposition rates. Additionally, external lake conditions can also influence decomposition dynamics. Therefore, I assessed how the decomposition rate of a submersed macrophyte varies across a nutrient gradient in nine lakes. I found decomposition rates varied among lakes. Across all lakes, I found Myriophyllum decomposition rates and changes in stoichiometry to be related to both nutrients and water chemistry. During the incubation changes in detrital stoichiometry were related to lake P and decomposition rates. Aquatic plant community composition and stoichiometry could alter decomposition dynamics in moderately nutrient enriched lakes.

Author Keywords: Aquatic Plants, Decomposition, Diversity, Littoral, Macrophytes, Nutrients

2016

The effects of parasitism on consumer-driven nutrient recycling

Type:
Names:
Creator (cre): Narr, Charlotte, Thesis advisor (ths): Frost, Paul C, Degree committee member (dgc): Burness, Gary, Degree committee member (dgc): Sutcliffe, Jim, Degree granting institution (dgg): Trent University
Abstract:

Daphnia are keystone consumers in many pelagic ecosystems because of their central role in nutrient cycling. Daphnia are also frequently infected, and the parasites causing these infections may rival their hosts in their ability to regulate ecosystem processes. Therefore, parasitic exploitation of Daphnia may alter nutrient cycling in pelagic systems. This thesis integrates existing knowledge regarding the exploitation of Daphnia magna by 2 endoparasites to predict parasite-induced changes in the nutrient cycling of infected hosts and ecosystems. In chapter 1, I I contextualizing the integration of these themes by reviewing the development of the fields of elemental stoichiometry and parasitology. In chapter 2, we show how the bacterial parasite, Pasteuria ramosa, increased the nitrogen (N) and phosphorus (P) release rates of D. magna fed P-poor diets. We used a mass-balance nutrient release model to show that parasite-induced changes in host nutrient accumulation rates and diet-specific changes in host ingestion rates were responsible for the accelerated nutrient release rates that we observed. In chapter 3, we extended our examination of the nutrient mass balance of infected D. magna to include another parasite, the microsporidian H. tvaerminnensis. We found differences in the effects of these two parasites on host nutrient use as well as support for the hypothesis that parasite-induced changes in Daphnia N release are caused by the effects of infection on Daphnia fecundity. In chapter 4, we examined the relationship between P concentrations and the presence and prevalence of H. tvaerminnensis in rock pools along the Baltic Sea. We found that particulate P concentrations were negatively associated with the prevalence of this parasite, a result that is consistent with the increase in P sequestration of H. tvaerminnensis-infected Daphnia that we observed in chapter 3. I discuss the potential implications of the work presented in chapters 2-4 for other parasite-host systems and ecosystems in chapter 5. Overall, the research presented here suggests that parasite-induced changes in host nutrient use may affect the availability of nutrients in the surrounding environment, and the magnitude of this effect may be linked to parasite-induced reductions in fecundity for many invertebrate hosts.

Author Keywords: consumer, ingestion rates, mass-balance, nutrient-recycling, parasitism, phosphorus

2016