Acoustics

The ecological, evolutionary, and behavioural context of ultrasonic vocalizations in flying squirrels

Type:
Names:
Creator (cre): Newar, Sasha Lynn, Thesis advisor (ths): Bowman, Jeff, Degree committee member (dgc): Davy, Christina M, Degree committee member (dgc): Burness, Gary, Degree granting institution (dgg): Trent University
Abstract:

Acoustic communication is vital for mediating interactions between individuals and their environment. From echolocating bats to isolated rodent pups, ultrasonic vocalizations are a useful mechanism for producing localized and cryptic acoustic signals. Flying squirrels have been demonstrated to produce almost exclusively ultrasonic calls which is rare in both squirrels and mammals, though the significance of this acoustic range is unknown. To investigate the context of ultrasonic calls in these gliding mammals, I created phylogenetic comparative analyses to compare ecological and morphological traits against call frequencies. I found that nocturnality, a trait entangled with gliding in squirrels, was related to higher-frequency calls. Furthermore, by comparing all gliding mammals and their non-gliding counterparts, I found that gliding mammals produce significantly higher frequencies than these relatives. This form of cryptic communication is likely used to avoid predation, which was further supported by behavioural experiments wherein flying squirrels used significantly higher frequencies when predation risk increased. While high frequency communication was used by most gliders, I found that ultraviolet-induced photoluminescence, another potential form of crypsis, was strongly associated with nocturnality, with half of the tested gliding mammals showing evidence of this unique colouration. While ultrasonic vocalizations are widespread in echolocating bats and echonavigating mammals, I did not find evidence to support echonavigation in flying squirrels. Instead, I found that ultrasonic vocalizations are used in a variety of social contexts and during solitary foraging and exploration. These combined results demonstrate the unique ecological and evolutionary pressures acting on small-bodied, nocturnal gliding taxa and the resulting cryptic behaviours and communication.

Author Keywords: communication, flying squirrels, gliding mammals, Sciuridae, ultrasound, ultraviolet-induced photoluminescence

2024

Assessment of the impacts of noise and vessel traffic on the distribution, abundance and density of Chinese humpback dolphins (Sousa chinensis chinensis) in the waters of Hong Kong

Type:
Names:
Creator (cre): Klein, Michelle Nicole, Thesis advisor (ths): White, Brad N., Thesis advisor (ths): Wang, John Y., Degree committee member (dgc): Nocera, Joseph J., Degree committee member (dgc): Kerr, Leslie R., Degree granting institution (dgg): Trent University
Abstract:

Marine mammals with near-shore distributions are susceptible to human-related recreational and commercial disturbances, particularly near densely populated and industrialized coastal areas. A population of over 2,500 Chinese humpback dolphins (Sousa chinensis chinensis) occupies the Pearl River Estuary in southern China. A part of this population uses Hong Kong's waters off of Lantau Island, where they are subjected to a number of anthropogenic threats, including vessel disturbance, fisheries interactions, and boat-based tourism. Previous research has shown that the abundance of this subspecies in Hong Kong's waters has declined about 60% since 2003. Using a combination of acoustic recordings, dolphin distribution and abundance data, and vessel traffic information I found that: 1) Four types of vessels common to the waters on Hong Kong generate noise that is audible to Sousa chinensis chinensis; 2) The spatial distribution of underwater noise in Hong Kong's waters does not significantly vary among the six sites sampled; 3) High-speed ferry traffic and passenger volume has increased dramatically during the study period; 4) There has been a significant decline in dolphin density in areas within and near vessel traffic; and 5) Dolphins are most at risk of vessel collisions and being exposed to vessel noise near Fan Lau and within the Urmston Road waterway just northeast of the Sha Chau and Lung Kwu Chau Marine Park . These results can inform future acoustic studies on this species and guide conservation and management efforts in Hong Kong.

Author Keywords: Human impacts, Humpback dolphin, Management, Noise, Sousa chinensis chinensis, Vessel traffic

2015

Regional differences in the whistles of Australasian humpback dolphins (genus Sousa)

Type:
Names:
Creator (cre): Hoffman, Jordan Michael, Thesis advisor (ths): White, Bradley N, Degree committee member (dgc): Nocera, Joe, Degree committee member (dgc): Schaefer, James, Degree granting institution (dgg): Trent University
Abstract:

Most delphinids produce narrowband frequency-modulated whistles with a high level of plasticity to communicate with conspecifics. It is important to understand geographic variation in whistles as signal variation in other taxa has provided insight into the dispersal capabilities, genetic divergence and isolation among groups, and adaptation to ecological conditions. I investigated whistle variation of Indo-Pacific humpback dolphins (Sousa chinensis chinensis), Taiwanese humpback dolphins (S. c. taiwanensis) and Australian humpback dolphins (S. sahulensis) to test whether differences in whistles support the hypotheses of population structure, regional and species differences in the genus Sousa, which were based on morphological and genetic data. I also investigated important factors that may contribute to local distinctiveness in whistles including behavioural state, group size, and the influence of vessel noise. Multivariate analyses of seven acoustic variables supported the hypotheses of population structure, regional and species differences. Acoustic diversification between groups is likely influenced by behaviour and social contexts of whistles, and environmental noise. The use of sound to identify discrete groups of humpback dolphins may be important in future studies where genetic and morphological studies may not reveal recent differentiation or are difficult to conduct.

Author Keywords: Bioacoustics, Cetacean, Geographic variation, Population biology, Sousa, Whistle characteristics

2015