In Ontario, farmers commonly use a MZ (Maize (Zea mays L.))-SB (Soybean (Glycine max))/WW (Winter wheat (Triticum aestivum)) – CC (mixed cover crop) rotation to maximize economic benefits. This study aimed to investigate the short-term impacts of the crop rotation phases and their associated management practices in this diversified cash crop rotation on soil health and the abundance of nitrogen (N)-cycling soil microbial communities (SMCs). Additionally, the abundance of N-cycling SMCs and plant-available N in both surface (0-5 cm) and rooting zone (5-15 cm) depths were characterized in tile-drained (TD) and non-TD fields. In the present study, soils collected under the CC phase had the highest labile carbon levels (10-17% higher) and water-stable aggregates (35-50% higher) compared to the other two crop phases. Lower nitrifying (amoA) gene abundances and soil NO3--N levels were observed in the CC phase compared to the MZ and SB-WW phases, suggesting a potential for decreased nitrification in the CC phase. The presence of SB potentially influenced the soil N concentration in the subsequent WW phase likely due to the release of symbiotically fixed N in the SB-WW phase. Further, higher amoA abundances and NO3--N in the SB-WW phase imply a potential for increased nitrification in the SB-WW phase. Additionally, higher amoA/nosZI and nirS+nirK/nosZI ratios were observed in the MZ phase than in SB-WW and CC phases, suggesting a potential capacity for increased N2O emissions from the reactions mediated by N-cycling SMCs in soils planted to MZ during fall sampling days. In the TD and NTD field study, higher NO3--N levels were observed in TD-SB-WW fields at 5-15 cm vs. 0-5 cm depths, which was possibly facilitated by tile drainage. The TD-CC fields displayed higher nosZI gene abundances and lower nirS+nirK/nosZI abundance ratios, suggesting a greater potential capacity for decreased N2O emissions in soils planted to CCs during the spring sampling days. When examining changes in plant available N by soil depth, reduced downward movement of NO3- through shallow soil depths (0-15 cm depth) was observed in the CC phase compared to cash crops. This short-term study highlights the potential contribution of the CC phase, particularly within TD agricultural fields, for improving soil health and reducing potential N2O emissions. Together, these results suggest that management-associated differences in crop rotation phases have temporary effects on soil health and the abundance of SMCs. Future studies linking N-cycling SMC's potential activity and field-scale N2O fluxes will provide a better insight into the longer-term sustainability of Ontario's cash crop management systems.
Author Keywords: denitrification, maize-soybean-winter wheat- cover crop rotation, nitrification, soil depth, Sustainable agriculture, tile-drainage