Lake whitefish (Coregonus clupeaformis) recruitment has declined substantially in several regions of the Laurentian Great Lakes since the establishment of non-native dreissenid mussels in the early 1990's. In Lake Huron, the reasons for the observed recruitment declines are currently unknown and there is limited knowledge about larval life stage. In our study, we determined whether larval hatching and growth rates have changed before and after dreissenid mussel invasion, and the role of several key environmental variables in influencing annual variation in larval densities. Larval fish were collected in the Fishing Islands spawning shoal during two time periods: a historical period (1976-1986) and a contemporary period (2017-2019). Larval densities and growth were lower in recent years, suggesting that recruitment is being limited at the larval life stage and that reduced food availability may be further limiting the growth during the larval stage. Annual variation of larval densities were influenced by spawning stock biomass, water levels, and dreissenid mussel presence, with higher water levels and the presence of dreissenid mussels being associated with higher larval densities. The direction of the effect of spawning stock biomass was either negative or positive depending on the model. We also found that larval density was a significant predictor of age 4 recruitment, indicating that year-class strength may be partly established at the larval life stage.
Author Keywords: Coregonus clupeaformis, Great Lakes, Lake Huron, Lake whitefish, Larval, Recruitment