Investigating the regional variation in frequencies of the invasive hybrid cattail, Typha × glauca

Abstract

Interspecific hybridization rates can vary depending on genomic compatibilities between progenitors, while subsequent hybrid spread can vary depending on hybrid performance and habitat availability for hybrid establishment and persistence. As a result, hybridization rates and hybrid frequencies can vary across regions of parental sympatry. In areas around the Laurentian Great Lakes, Typha × glauca is an invasive plant hybrid of native Typha latifolia and introduced Typha angustifolia. In areas of parental sympatry in Atlantic Canada and outside of North America, T. × glauca has been reported as either rare or non-existent. I investigated whether the low frequencies of hybrids documented in Nova Scotia, Atlantic Canada, are influenced by reproductive barriers that prevent hybrid formation or environmental factors (salinity) that reduce hybrid performance. I identified an abundance of hybrids in the Annapolis Valley (inland) and a scarcity of hybrids in coastal wetlands through preliminary site surveys throughout Nova Scotia. In Annapolis Valley populations, flowering times of progenitor species overlapped, indicating that asynchronous flowering times do not limit hybrid formation in this region. Viable progeny were created from interspecific crosses of T. latifolia and T. angustifolia from Nova Scotia, indicating that there are no genomic barriers to fertilization and germination of hybrid seeds. Typha × glauca germination in high salinity was significantly lower than that of T. latifolia, but there was no difference at lower salinities. Therefore, while germination of hybrid seeds may be impeded in the coastal wetlands where salinity is high, inland sites have lower salinity and thus an environment conducive to hybrid germination. However, I found that once established as seedlings, hybrids appear to have greater performance over T. latifolia across all salinities through higher ramet production. Moreover, I found that T. latifolia sourced from Ontario had reduced germination and lower survivorship in high salinities compared to T. latifolia sourced from Nova Scotia, which could indicate local adaptation by T. latifolia to increased salinity. These findings underline that interactions between environment and local progenitor lineages can influence the viability and the consequent distribution and abundance of hybrids. This, in turn, can help explain why hybrids demonstrate invasiveness in some areas of parental sympatry but remain largely absent from other areas.

Author Keywords: flowering phenology, Hybridization, invasive species, physiology, pollen compatibility, salinity tolerance

    Item Description
    Type
    Contributors
    Thesis advisor (ths): Freeland, Joanna R
    Thesis advisor (ths): Dorken, Marcel E
    Degree committee member (dgc): Davy, Christina M
    Degree granting institution (dgg): Trent University
    Date Issued
    2019
    Date (Unspecified)
    2019
    Place Published
    Peterborough, ON
    Language
    Extent
    92 pages
    Rights
    Copyright is held by the author, with all rights reserved, unless otherwise noted.
    Subject (Topical)
    Local Identifier
    TC-OPET-10690
    Publisher
    Trent University
    Degree
    Master of Science (M.Sc.): Environmental and Life Sciences