This thesis examines how dissolved organic matter quantity and quality and nutrients influence the flux potential of greenhouse gases (GHG) from sediments collected from streams across southern Ontario as well as Lake Erie. Sediments were collected and incubated in a laboratory setting where headspace gases and interstitial waters were analyzed. Results demonstrated that nutrients (dissolved organic carbon (DOC), total dissolved phosphorous (TDP) and total dissolved nitrogen (TDN)) were commonly significant predictors of CO2, CH4, and N2O fluxes, but spatial discrepancies were observed for the significance of DOM quality and sedimentary characteristics. Land use was not found to be directly related to gas flux potential. Different relationships were observed between the streams and lake, and between the basins of Lake Erie. Overall, results from this study suggest that sediments from freshwater systems have the potential to be sources of GHG, the degree of which depends on nutrient concentrations and DOM structure from watershed inputs.
Author Keywords: dissolved organic matter, greenhouse gases, Lake Erie, nutrients, sediment, streams