The effects of heat dissipation capacity on avian physiology and behaviour

Abstract

In endotherms, physiological functioning is optimized within a narrow range of tissue temperatures, meaning that the capacity to dissipate body heat is an important parameter for thermoregulation and organismal performance. Yet, experimental research has found mixed support for the importance of heat dissipation capacity as a constraint on reproductive performance. To investigate the effects of heat dissipation capacity on organismal performance, I experimentally manipulated heat dissipation capacity in free-living tree swallows, Tachycineta bicolor, by trimming feathers overlying the brood patch, and monitored parental provisioning performance, body temperature, and offspring growth. I found that individuals with an enhanced capacity to dissipate body heat (i.e., trimmed treatment) provisioned their offspring more frequently, and reared larger offspring that fledged more consistently. Although control birds typically reduced their nestling provisioning rate at the highest ambient temperatures to avoid overheating, at times they became hyperthermic. Additionally, I examined inter-individual variation in body temperature within each treatment, and discovered that body temperature is variable among all individuals. This variability is also consistent over time (i.e., is repeatable), irrespective of treatment. Further, I found that individuals consistently differed in how they adjusted their body temperature across ambient temperature, demonstrating that body temperature is a flexible and repeatable physiological trait. Finally, I used a bacterial endotoxin (lipopolysaccharide) to examine the regulation of body temperature of captive zebra finches (Taeniopygia guttata) during an immune challenge. Exposure to lipopolysaccharide induces sickness behaviours, and results in a fever, hypothermia, or a combination of the two, depending on species and dosage. I asked what the relative role of different regions of the body (bill, eye region, and leg) is in heat dissipation/retention during the sickness-induced body temperature response. I found that immune-challenged individuals modulated their subcutaneous temperature primarily through alterations in peripheral blood flow, particularly in the legs and feet, detectable as a drop in surface temperature. These results demonstrate that the importance of regional differences in regulating body temperature in different contexts. Taken together, my thesis demonstrates that heat dissipation capacity can affect performance and reproductive success in birds.

Author Keywords: body temperature, heat dissipation, tree swallow, zebra finch

    Item Description
    Type
    Contributors
    Creator (cre): Tapper, Simon
    Thesis advisor (ths): Burness, Gary
    Thesis advisor (ths): Nocera, Joseph J
    Degree committee member (dgc): Shafer, Aaron
    Degree granting institution (dgg): Trent University
    Date Issued
    2021
    Date (Unspecified)
    2021
    Place Published
    Peterborough, ON
    Language
    Extent
    198 pages
    Rights
    Copyright is held by the author, with all rights reserved, unless otherwise noted.
    Subject (Topical)
    Local Identifier
    TC-OPET-10858
    Publisher
    Trent University
    Degree
    Doctor of Philosophy (Ph.D.): Environmental and Life Sciences