Energy
Influence of geodemographic factors on electricity consumption and forecasting models
The residential sector is a major consumer of electricity, and its demand will rise by 65 percent by the end of 2050. The electricity consumption of a household is determined by various factors, e.g. house size, socio-economic status of the family, size of the family, etc. Previous studies have only identified a limited number of socio-economic and dwelling factors. In this thesis, we study the significance of 826 geodemographic factors on electricity consumption for 4917 homes in the City of London. Geodemographic factors cover a wide array of categories e.g. social, economic, dwelling, family structure, health, education, finance, occupation, and transport. Using Spearman correlation, we have identified 354 factors that are strongly correlated with electricity consumption. We also examine the impact of using geodemographic factors in designing forecasting models. In particular, we develop an encoder-decoder LSTM model which shows improved accuracy with geodemographic factors. We believe that our study will help energy companies design better energy management strategies.
Author Keywords: Electricity forecasting, Encoder-decoder model, Geodemographic factors, Socio-economic factors
Building wind energy landscapes: exploring the felt experiences of landowners from the cumulative effects of large-scale wind farms in Huron County, Ontario
This thesis project explores landowner experiences of wind energy development through an inductive qualitative case study in Huron County, Ontario. The research included in-depth interviews with landowners focused on landscape and community change, participant observation of Environmental Review Tribunals (ERT), the gathering of participant photos, as well as relevant government and industry documents and media reports. The iterative data gathering and analysis were supported by my observations and reflections while living in affected communities and talking to participants. The study demonstrates how the health debate over wind can inform divisions between neighbours, that local politics have been given a token role as a place for resistance to wind energy development that fails to meaningfully influence projects, and that appeals are legalistic and do not provide an outlet, or place for appellants to be heard. Furthermore, the felt experience of tight knit and fragile communities were disrupted through land leases, as well as changes to the landscape. These disruptions impacted connections to, and associations with place, and are shown to have had negative emotional and physical impacts on some individuals. Supporters of wind development tied their mostly positive views of landscape change to a sense of disruption generally throughout the community. Insights from the research lead to a set of suggested actions that might improve the current situation at the levels of provincial policy, planning, local governance and industry practice.
Keywords: wind energy policy, planning, landscape, Ontario, rural communities
Author Keywords: Affect, landscape, Ontario, planning, Rural communities, Wind energy policy
Novel Functional Materials From Renewable Lipids: Amphiphilic Antimicrobial Polymers and Latent Heat Thermal Energy Storage
Vegetable oils represent an ideal and renewable feedstock for the synthesis of a variety of functional materials. However, without financial incentive or unique applications motivating a switch, commercial products continue to be manufactured from petrochemical resources. Two different families of high value, functional materials synthesized from vegetable oils were studied. These materials demonstrate superior and unique performance to comparable petrochemical analogues currently on the market.
In the first approach, 3 amphiphilic thermoplastic polytriazoles with differing lipophilic segment lengths were synthesized in a polymerization process without solvents or catalysts. Investigation of monomer structure influence on the resultant functional behaviour of these polymers found distinctive odd/even behaviour reliant on the number of carbon atoms in the monomers. Higher concentrations of triazole groups, due to shorter CH2 chains in the monomeric dialkynes, resulted in more brittle polymers, displaying higher tensile strengths but reduced elongation to break characteristics. These polymers had similar properties to commercial petroleum derived thermoplastics. One polymer demonstrated self-assembled surface microstructuring, and displayed hydrophobic properties. Antimicrobial efficacy of the polymers were tested by applying concentrated bacterial solutions to the surfaces, and near complete inhibition was demonstrated after 4 hours. Scanning electron microscope images of killed bacteria showed extensive membrane damage, consistent with the observed impact of other amphiphilic compounds in literature. These polytriazoles are suited for applications in medical devices and implants, where major concerns over antibiotic resistance are prevalent.
In the second approach, a series of symmetric, saturated diester phase change materials (PCMs) were also synthesized with superior latent heat values compared to commercial petrochemical analogues. These diesters exhibit melting temperatures between 39 °C and 77 °C, with latent heats greater than 220 J/g; much greater than paraffin waxes, which are currently the industry standard. Assessment of the trends between differing monomer lengths, in terms of number of CH2 groups of the 24 diesters synthesized exhibited structure/function dependencies in latent heat values and phase change temperatures, providing an understanding of the influence of each monomer on PCM thermal properties. A synthetic procedure was developed to produce these PCMs from a low value biodiesel feedstock. Application of these PCMs in the thermoregulation of hot beverages was demonstrated using a representative diester. This PCM cooled a freshly brewed hot beverage to a desired temperature within 1 minute, compared to 18 minutes required for the control. Furthermore, the PCM kept the beverage within the desired temperature range for 235 minutes, 40 % longer than the control.
Author Keywords: Antimicrobial Surface, Click Chemistry, Green Chemistry, Phase Change Material, Polytriazole, Renewable
Novel Aliphatic Amides from Vegetable Oils as Bio-Based Phase Change Materials
Energy storage efficiency and sustainability require advanced technologies and novel materials. Recently, bio-based phase change materials (PCMs) have received significant attention for thermal energy storage (TES) uses. Vegetable oils are versatile renewable feedstocks that are well suited for the development of sustainable, functional PCMs. PCMs derived from vegetable oil, which compares favorably with paraffin waxes, the industry standard, are currently available. However, their melting points are typically below 80 °C preventing their wider integration in TES applications, particularly those requiring higher temperatures. The present work manipulated the structural building blocks of fatty acids to advantageously affect the intermolecular forces and increase the properties relevant to TES. The polar amide functional group was incorporated into fatty moieties to take advantage of the strong hydrogen bonds that it forms to increase intermolecular attractions and hence increase the phase change temperature and enthalpy as well as to improve thermal stability and thermal conductivity. A series of carefully designed lipid-derived monoamides and four series of lipid-derived diamides were synthesized via benign and simple amidation reactions. The purity of the amides and the intermolecular hydrogen bond strength were assessed using 1H NMR and FTIR. The properties relevant to TES such as thermal transition, crystal structure and polymorphism, thermal stability and thermal conductivity were measured using DSC, XRD, TGA and a thermal conductivity analyzer, respectively. The complex roles of the PCM's constituting molecular building blocks in the phase behavior were elucidated and correlations between structure, processing conditions and macroscopic physicochemical properties, never before elucidated, were assembled in predictive relationships, drawing a unified picture of the rules that generally govern the phase behavior of lipid-derived PCMs. Practically, the prepared amides demonstrated desirable TES properties with substantial performance improvement over current bio-based PCMs. They presented increased phase change temperatures (79 - 159 °C), enthalpies of fusion (155 - 220 J/g) and thermal stability (234 - 353 °C). More importantly, the predictive structure-function relationships established in this work will allow the straightforward engineering of lipid-derived amide PCM architectures with judicious selection of molecular building blocks to extend the range of organic PCMs and deliver thermal properties desirable for TES applications.
Author Keywords: LATENT HEAT THERMAL ENERGY STORAGE, LIPID-DERIVED AMIDES, PHASE CHANGE MATERIALS, RENEWABLE, SOLID LIQUID AMIDE PCMS, THERMAL PROPERTIES