Brunetti, Craig

Pathogen vs. Predator: Ranavirus exposure dampens tadpole responses to perceived predation risk

Type:
Names:
Creator (cre): Rae, Jason, Thesis advisor (ths): Murray, Dennis, Degree committee member (dgc): Brunetti, Craig, Degree committee member (dgc): Burness, Gary, Degree granting institution (dgg): Trent University
Abstract:

Stressors are often an inescapable part of an organism's life. While the effects of many stressors have been well studied individually, potential interactions between stressors exist that may result in greater than additive negative effects. Stressors may be linked by conflicting demands on energy budgets, interfering with important physiological pathways, or necessitating incompatible adaptive responses. Using Ranavirus (FV3) and larval dragonfly predators (Anax spp.) in a 2x2 factorial experiment on green frog (Lithobates clamitans) tadpoles, I investigate the interactions in behaviour, morphology, and metabolism when both stressors were applied in concert. I demonstrate that activity and feeding are reduced additively by both stressors, and tadpoles increase distance between conspecifics in FV3-exposed tanks, but only in the absence of predators. I also note decreases in mass, and a non-significant marginal increase in metabolic rate of tadpoles exposed to FV3. Interestingly, I provide evidence that FV3 can compromise morphometric responses through antagonistic interactions with perceived predation risk exposure, which may result in significantly elevated mortality even when either stressor is present in sub-lethal quantities. Thus, I conclude that sub-lethal exposure to stressors can nonetheless have substantial impacts on organisms and a more integrative approach to examining the impacts of stressors on individual physiology and fitness is necessary.

Author Keywords: Behaviour, Interaction, Morphology, Predation Risk, Ranavirus, Tadpoles

2017

Studies of the Giardia intestinalis trophozoite cell cycle

Type:
Names:
Creator (cre): Horlock-Roberts, Kathleen, Thesis advisor (ths): Yee, Janet, Degree committee member (dgc): Brunetti, Craig, Degree committee member (dgc): Saville, Barry, Degree granting institution (dgg): Trent University
Abstract:

To study the Giardia intestinalis cell cycle, counterflow centrifugal elutriation (CCE) was used to separate an asynchronous trophozoite culture into fractions enriched for cells at the different stages of the cell cycle. For my first objective, I characterized the appearance of a third peak (Peak iii) in our flow cytometry analysis of the CCE fractions that initially suggested the presence of 16N cells that are either cysts or the result of endoreplication of Giardia trophozoites. I determined that this third peak consists of doublets of the 8N trophozoites at the G2 stage of the cell cycle that were not removed effectively by gating parameters used in the analysis of the flow cytometry data. In the second objective, I tested the use of a spike with RNA from the GS isolate of Giardia as an external normalizer in RT-qPCR on RNA from CCE fractions and encystation cultures of Giardia from the WB isolate. My results showed that the GS RNA spike is as effective as the use of previously characterized internal normalizer genes for these studies. For the third objective, I prepared two sets of elutriation samples for RNA seq analysis to determine the transcriptome of the Giardia trophozoite cell cycle. I confirmed the results of the cell cycle specific expression of several genes we had previously tested by RT-qPCR. Furthermore, our RNA-seq identified many genes in common with those identified from a microarray analysis of the Giardia cell cycle conducted by a collaborator. Finally, I observed an overall <4 fold change in differentially expressed genes during the G1/S and G2/M phase of the cell cycle. This is a modest change in gene expression compared to 10 - 30 fold changes for orthologous genes in mammalian cell cycles.

Author Keywords: Cell cycle, Counterflow Centrifugal Elutriation, Flow Cytometry, RNA-sequencing, RT-qPCR

2017

Functional Investigation of A Ustilago maydis Xylose Metabolism Gene and its Antisense Transcripts

Type:
Names:
Creator (cre): Goulet, Kristi Marie, Thesis advisor (ths): Saville, Barry J, Degree committee member (dgc): Yee, Janet, Degree committee member (dgc): Brunetti, Craig, Degree granting institution (dgg): Trent University
Abstract:

Ustilago maydis is a biotrophic fungal plant pathogen that causes 'common smut of corn' disease. During infection, U. maydis develops a metabolic dependency on its host, relying on uptake of the carbon molecules provided within Zea mays tissues. The research presented indicated a requirement for metabolism of the pentose sugar D-xylose through functional investigation of a U. maydis xylitol dehydrogenase (uxm1), an enzyme involved in the bioconversion of D-xylose. This work is the first to outline the importance of pentose metabolism during biotrophic plant pathogenesis, as U. maydis haploid cells lacking this gene were impaired in their ability to cause disease and grow on medium containing only D-xylose. This thesis also explored the possibility that expression of this carbon-related gene is controlled by antisense RNAs (asRNAs), endogenous molecules with complementarity to mRNAs. Previous investigation of U. maydis asRNAs identified some that are exclusively expressed in the dormant teliospore, suggesting they have a functional role within this cell-type. A subset of these asRNAs at the uxm1 locus were investigated, with the purpose of identifying the mechanism(s) by which they influence U. maydis pathogenesis. This investigation involved the creation and functional analysis of a series of U. maydis deletion and expression strains. Together, these findings provided additional knowledge regarding the possible functions of U. maydis asRNAs, and their involvement in controlling important cellular processes, such as carbon metabolism and pathogenesis.

Author Keywords: antisense transcripts, fungal carbon metabolism, non-coding RNAs, pathogenesis, Ustilago maydis, xylitol dehydrogenase

2018

Flavohemoglobin expression in Giardia intestinalis exposed to nitrosative stress

Type:
Names:
Creator (cre): Teghtmeyer, Megan R, Thesis advisor (ths): Rafferty, Steven, Degree committee member (dgc): Brunetti, Craig, Degree committee member (dgc): Yee, Janet, Degree granting institution (dgg): Trent University
Abstract:

The parasitic protist Giardia intestinalis lacks most heme proteins yet encodes a flavohemoglobin (gFlHb) that converts nitric oxide to nitrate and likely protects the cell from nitrosative stress. In this work an antibody raised against gFlHb was used to examine both changes in gFlHb expression levels and intracellular localization in Giardia in response to nitrosative stress. Giardia trophozoites exposed to stressors which either directly release nitric oxide (diethyltriamine NONOate, 1 mM) or are sources of other reactive nitrogen intermediates (sodium nitrite 20 mM or S-nitrosoglutathione, 1 or 5 mM) exhibited a 2 to 9-fold increase of gFlHb after 24 hours. Increased expression levels of gFlHb were detectable by 8 hours in S-nitrosoglutathione and diethyltriamine-NONOate-treated trophozoites, and by 12 hours after sodium nitrite exposure; these differences were likely due to differences in the rates of release of RNS from these compounds. In addition to a band of the expected size for gFlHb (52 kDa), western blots detected a second, higher molecular weight band (72 kDa) with comparable or higher intensity upon treatment with these RNS donors, which is consistent with sumoylation of gFlHb. Immunofluorescence microscopy of Giardia trophozoites detected gFlHb diffused throughout the cytoplasm and more punctuated staining along the cell membrane and between the nuclei. The punctuated staining may be due to the association of gFlHb with either peripheral vacuoles or basal bodies.

Author Keywords: Flavohemoglobin, Giardia intestinalis, Nitrosative stress

2017

Natural antisense transcripts to nucleus-encoded mitochondrial genes are linked to Ustilago maydis teliospore dormancy

Type:
Names:
Creator (cre): Ostrowski, Lauren Anne, Thesis advisor (ths): Saville, Barry J, Degree committee member (dgc): Brunetti, Craig, Degree committee member (dgc): Rafferty, Steven, Degree granting institution (dgg): Trent University
Abstract:

Ustilago maydis is a basidiomycete smut fungus and the causal agent of common smut of corn. Disease progression and fungal development in this pathogen occur in planta, terminating in the production of dormant teliospores. Dormant spores of many fungi are characterized by reduced metabolic activity, which is restored during spore germination. The transition out of dormancy requires the rapid translation of stored mRNAs, which may be stabilized through natural antisense transcript (NAT)-mediated mechanisms. Transcript analysis revealed that as-ssm1, a NAT to the mitochondrial seryl-tRNA synthetase (ssm1), is detected in the dormant teliospore and absent in haploid cells. Disruption of ssm1 leads to cell lysis, indicating it is essential for cellular viability. Presented data supports the hypothesis that as-ssm1 has a role in facilitating teliospore dormancy through stabilizing ssm1 transcripts, which reduces mitochondrial function. as-ssm1 expression during in planta development begins 10 days post-infection, coinciding with the first appearance of dormant teliospores. To assess the impact of as-ssm1 expression on cell division, virulence and mitochondrial function, as-ssm1 was ectopically expressed in haploid cells, leading to increased ssm1 transcript levels and the formation of double-stranded RNA. These expression mutants are characterized by attenuated growth rate, virulence, mitochondrial membrane potential and oxygen consumption. Together, these findings support a role for NATs in moderating mitochondrial function during the onset of teliospore dormancy.

Author Keywords: Dormant teliospore, Mitochondria, mRNA stability, Natural antisense transcripts, Non-coding RNA, Ustilago maydis

2015

Nutrient Metabolism of an Aquatic Invertebrate and its Importance to Ecology

Type:
Names:
Creator (cre): Wagner, Nicole D., Thesis advisor (ths): Frost, Paul C, Degree committee member (dgc): Kapron, Carolyn, Degree committee member (dgc): Brunetti, Craig, Degree granting institution (dgg): Trent University
Abstract:

Aquatic consumers frequently face nutritional limitation, caused in part, by imbalances between the nutrients supplied by primary producers and the metabolic demands of the consumers. These nutritional imbalances alter many ecological processes including consumer life-history traits, population dynamics, and food web properties. Given the important ecological role of organismal nutrition, there is a need to have precise and specific indicators of nutritional stress in animals. Despite this need, current methods used to study nutrition are unable to distinguish between different types of nutritional limitation. Here I studied nutritional metabolism in the freshwater zooplankter, Daphnia. A greater understanding of nutritional metabolism would allow for the development of dietary bio-indicators that could improve the study of the nutritional ecology of animal consumers. Specifically, I addressed the question: What affects the biochemical composition of a generalist aquatic consumer? My overall hypothesis was that the quantity and quality of the diet affects the biochemical composition in a nutrient specific manner. To test this hypothesis, I examined various response variables involved in nutrient metabolism such as alkaline phosphatase activity, whole metabolome, and free amino acid composition. For each response variable, I grew Daphnia under various nutritional stressors and determined if responses are nutrient specific or are a general stress response. I found the current method of measuring alkaline phosphatase was not a phosphorus specific indicator, as activity increased in all nutrient stressed treatments. Analyzing the whole metabolome resulted in nutritional stressors being separated in multivariate space, with many identified metabolites being significantly different from nutrient rich Daphnia. Upon further examination the daphnids free amino acids profiles are caused by differences between the supply of amino acids from the algae and the demand within the Daphnia. These differences in supply and demand resulted in the ability to classify the nutritional status of Daphnia with the use of discriminant analysis, a classification multivariate model. In addition to a deeper understanding and advanced knowledge of the physiological changes caused by nutrient limitation, this research has provided strong evidence for the application of nutritional biomarkers/profiles to identified the nutritional status of Daphnia.

Author Keywords: Bio-indictor, Ecological stoichiometry, Metabolism, Nutritional limitation, Nutritional status

2015