Functional Investigation of A Ustilago maydis Xylose Metabolism Gene and its Antisense Transcripts

Abstract

Ustilago maydis is a biotrophic fungal plant pathogen that causes 'common smut of corn' disease. During infection, U. maydis develops a metabolic dependency on its host, relying on uptake of the carbon molecules provided within Zea mays tissues. The research presented indicated a requirement for metabolism of the pentose sugar D-xylose through functional investigation of a U. maydis xylitol dehydrogenase (uxm1), an enzyme involved in the bioconversion of D-xylose. This work is the first to outline the importance of pentose metabolism during biotrophic plant pathogenesis, as U. maydis haploid cells lacking this gene were impaired in their ability to cause disease and grow on medium containing only D-xylose. This thesis also explored the possibility that expression of this carbon-related gene is controlled by antisense RNAs (asRNAs), endogenous molecules with complementarity to mRNAs. Previous investigation of U. maydis asRNAs identified some that are exclusively expressed in the dormant teliospore, suggesting they have a functional role within this cell-type. A subset of these asRNAs at the uxm1 locus were investigated, with the purpose of identifying the mechanism(s) by which they influence U. maydis pathogenesis. This investigation involved the creation and functional analysis of a series of U. maydis deletion and expression strains. Together, these findings provided additional knowledge regarding the possible functions of U. maydis asRNAs, and their involvement in controlling important cellular processes, such as carbon metabolism and pathogenesis.

Author Keywords: antisense transcripts, fungal carbon metabolism, non-coding RNAs, pathogenesis, Ustilago maydis, xylitol dehydrogenase

    Item Description
    Type
    Contributors
    Creator (cre): Goulet, Kristi Marie
    Thesis advisor (ths): Saville, Barry J
    Degree committee member (dgc): Yee, Janet
    Degree committee member (dgc): Brunetti, Craig
    Degree granting institution (dgg): Trent University
    Date Issued
    2018
    Date (Unspecified)
    2018
    Place Published
    Peterborough, ON
    Language
    Extent
    186 pages
    Rights
    Copyright is held by the author, with all rights reserved, unless otherwise noted.
    Subject (Topical)
    Local Identifier
    TC-OPET-10522
    Publisher
    Trent University
    Degree
    Master of Science (M.Sc.): Environmental and Life Sciences