Wildlife conservation
Conservation Genetics of Woodland Caribou in the Central Boreal Forest of Canada
Maintaining functional connectivity among wildlife populations is important to ensure genetic diversity and evolutionary potential of declining populations, particularly when managing species at risk. The Boreal Designatable Unit (DU) of woodland caribou (Rangifer tarandus caribou) in Ontario, Manitoba, and Saskatchewan has declined in southern portions of the range because of increased human activities and has been identified as 'threatened' by the Committee on the Status of Endangered Wildlife in Canada (COSEWIC). In this dissertation, I used ten microsatellite DNA markers primarily from winter-collected fecal samples to delineate genetic structure of boreal caribou in declining portions of the range and increase understanding of the potential influence of the non-threatened Eastern Migratory DU of woodland caribou on genetic differentiation. Eastern migratory caribou are characterized by large home ranges compared to boreal caribou and migrate seasonally into portions of the Boreal DU range. A regional- and local-scale analysis using the spatial Bayesian clustering algorithm in program TESS delineated four regional clusters and 11 local clusters, with the majority of local clusters occurring along the southern periphery of the range. One of those clusters in Ontario corresponded spatially with the seasonal overlap of boreal and eastern migratory caribou and was characterized by substantial admixture, suggesting that the two DUs could be interbreeding. Next, I decoupled the impacts of historical and contemporary processes on genetic structure and found that historical processes were an important factor contributing to genetic differentiation, which may be a result of historical patterns of isolation by distance or different ancestry. Moreover, I found evidence of introgression from a currently unsampled population in northern Ontario, presumably barren-ground caribou (R. t. groenlandicus). Finally, because our analysis suggested recent processes were also responsible for genetic structure, I used a landscape genetics analysis to identify factors affecting contemporary genetic structure. Water bodies, anthropogenic disturbance, and mobility differences between the two DUs were important factors describing caribou genetic differentiation. This study provides insights on where conservation and management of caribou herds should be prioritized in threatened portions of the boreal caribou range and may have implications for future delineation of evolutionarily significant units.
Author Keywords: boreal forest, genetic structure, landscape genetics, microsatellite DNA, Rangifer tarandus, woodland caribou
The Effects of Hydroelectric Corridors on the Distribution of Female Caribou (Rangifer tarandus) on the Island of Newfoundland
A species of concern is caribou (Rangifer tarandus), a species in decline across most of the circumpolar North, including the island of Newfoundland. Resource exploitation across caribou ranges is projected to accelerate in the coming decades as oil extraction, roads, forest harvesting, and mining encroach upon their habitat. Hydroelectric corridors, in particular, are anticipated to expand significantly. The effects of these linear developments on caribou habitat remain unclear. I capitalized on an existing dataset of nearly 700 radio‐tracked female caribou, 1980‐2011, to determine the long‐term effects of hydroelectric corridors on their seasonal distributions. Using an island-wide landcover map, I tested for preference or avoidance hydroelectric corridors in each of 4 seasons using the Euclidean Distance habitat selection technique at the extent of the population ranges (broad scale) for each decade (1980s, 1990s, 2000s). I also examined the distribution of caribou ≤10 km and ≤20 km from corridors (narrow scale) for five herds.
At the broad scale, the response was highly variable. Female caribou were most likely to avoid corridors during the 1980s, but they often exhibited little aversion, even preference for corridors, particularly in the 1990s and 2000s. Hydroelectric corridors, therefore, did not appear to be limiting at this scale. I surmise that these long-term shifts reflect the heightened density-dependent food limitation for Newfoundland caribou. At the narrow scale, avoidance of corridors was common – typically, a 50% reduction in use within 2-5 km of the corridor. Consistent with the broad scale, caribou exhibited the strongest tendency for avoidance in the 1980s compared to subsequent decades.
Understanding space-use remains central to the study of caribou ecology. Hydroelectric lines in Newfoundland tended to coincide with other anthropogenic features. Cumulative effects must be considered to understand the full range of effects by human developments on caribou.
Author Keywords: Caribou, distribution, habitat, hydroelectric, Newfoundland, Rangifer tarandus