Nol, Erica
Bottom-up pathways for arthropods and forest breeding birds in a southern Ontario forest
Long-term avian population declines, particularly for the avian insectivore guild, are a conservation concern. With widespread and continuing population trends, climate change and its negative effects on avian food resources is a plausible cross-species driver. My goal was to evaluate whether bottom-up trophic effects of climate change could be influencing avian populations. I used a space-for-time approach to assess the influence of snowpack and soil moisture variability on arthropods and subsequent effects on nest survival. In the 2010 and 2011 growing seasons, I sampled arthropods, soil moisture (soil volumetric water content; VWC), snowpack (snow water equivalent; SWE), forest floor depth (L, F, H layers) and soil texture in conifer plantations and mixed deciduous forest in Southern Ontario's Ganaraska Forest (~4, 400 ha). I used additive linear mixed effects models to assess the responses of arthropod groups' (e.g., order or class) relative biomass (g/day) and abundance (count/day) to those variables. Influences for each arthropod group's biomass and abundance were typically in the same direction. Maximum annual SWE significantly positively influenced most arthropod groups and annual relative difference in VWC positively influenced one quarter. In mixed directions, forest type influenced half of the groups and soil texture and forest floor depth each affected less than one quarter. I then used structural equation models to evaluate relationships between SWE, VWC, the biomass of three arthropod functional guilds, and logistic-exposure model calculated daily nest survival rates for American Robin (Turdus migratorius), Eastern Wood-Pewee (Contopus virens), Least Flycatcher (Empidonax minimus), Ovenbird (Seiurus aurocapilla), and Red-eyed Vireo (Vireo olivaceus). Arthropod guilds included diet-based food, predaceous arthropods and soil-dwelling bioindicators. SWE significantly positively influenced food biomass in all five models and negatively influenced predaceous arthropods in three models. Soil moisture had a mix of positive, negative, and null effects. Eastern Wood-Pewee and Red-eyed Vireo nest survival positively related to food and negatively related to predaceous arthropod biomass. American Robin, Least Flycatcher and Ovenbird nest survival did not appear to be related to arthropod biomasses. Through bottom-up relationships, predicted climate change-induced reductions in snowpack may cause food resource declines and negatively affect some forest breeding bird populations.
Author Keywords: Arthropod biomass, Bottom-up, Forest birds, Nest survival, Path analysis, Precipitation
Movement patterns, food availability, and fungal diets of sympatric flying squirrels in the Kawartha Highlands
Northern flying squirrels (NFS) are mycophagous specialists (fungi-dominated diet) thatmay be displaced with southern flying squirrel (SFS) range expansion, thereby limiting fungal dispersal in forest communities. To understand the implications of squirrel species turnover on mycophagy, we investigated the home ranges of both flying squirrel species who are living in stable sympatry. We found no significant difference in home range sizes and identified spatial overlap between the two species. Through habitat selection ratios we found SFS were strongly selecting for deciduous-dominated habitats more than NFS. Lastly, we conducted microscopy on flying squirrel scat and found NFS were eating more fungi than SFS. We conclude that the squirrels are sharing the same habitat landscape but are finding ways to partition the habitat accordingly to allow for sympatry. SFS may contribute to the spore-dispersal cycle similarly to their northern counterpart through moderate fungus consumption and large home range sizes.
Author Keywords: diet, flying squirrels, Glaucomys, home range, mycophagy, sympatry
Thirty Years of Local Semipalmated Plover (Charadrius semipalmatus) Population Dynamics in Churchill, Manitoba, Canada: A Long-Term Study on Factors Influencing the Rate of Population Change Over Time
I used 31 years of Semipalmated Plover (Charadrius semipalmatus) population data to assess the effects of vital rates on a local breeding population of plovers in Churchill, Manitoba, Canada. I used three similar Bayesian Integrated Population Models (IPMs), with the last a coupled IPM population viability analysis (PVA) approach to predict the impact of changing spring temperatures on future population size. I estimated adult and juvenile apparent survival, fecundity, immigration rate, and yearly population size estimates, and I found that population growth rate was most highly correlated with immigration and adult apparent survival. Moreover, I found that the population remained relatively stationary with a slight decline in recent years. I also found a significant positive effect of spring average daily minimum temperature on juvenile apparent survival. I used this effect to inform my PVA and to evaluate the risk of quasi-extinction for 20 years after the end of the study. I found a low quasi-extinction risk and a greater probability of the population increasing in the next twenty years when informed by predicted spring temperatures from global climate models. My findings suggest some resilience of this species to one effect of climate change and emphasize the importance of continued monitoring to assess if declines in this species will change as multiple threats to their existence in the sub-arctic progress.
Author Keywords: Bayesian, Climate change, Integrated population model, Population dynamics, Population viability, Semipalmated Plover
Length of stay and habitat use of shorebirds at two migratory stopover sites in British Columbia, Canada
Many species of shorebirds depend on stopover sites to rest and refuel during their long-distance migrations. To determine how shorebirds use migratory stopover sites, we tracked three species of shorebirds at two stopover sites in British Columbia, Canada from 2018-2021 during northward and southward migration using automated telemetry. Western Sandpipers (Calidris mauri) stayed longer at the Fraser River Estuary (4-8 days) compared to Tofino (2-6 days). We assessed habitat use of Sanderlings (Calidris alba), Semipalmated Plovers (Charadrius semipalmatus), and Western Sandpipers between beaches and mudflat at the Tofino stopover site. Time spent at the beach and mudflat habitats varied by species, tidal period, time of day, migration period, and human disturbance. This study shows that different stopover sites, and habitats within stopover sites, offer a unique set of characteristics used by birds exhibiting varying migration strategies, highlighting the importance of conserving a diversity of migration stopover locations and habitats.
Author Keywords: habitat use, human disturbance, length of stay, migration, shorebird, stopover site
Assessing habitat suitability and connectivity for an endangered salamander complex
Habitat loss and fragmentation have significantly contributed to amphibian population declines, globally. Evaluating the state of remaining habitat patches can prove to be beneficial in identifying areas to prioritize in conservation efforts. Pelee Island, Ontario is home to a complex of salamanders including small-mouthed salamanders (Ambystoma texanum), blue-spotted salamanders (A. laterale) and unisexual Ambystoma (small-mouthed salamander dependent population). These populations have declined from intense landscape changes since the late 1800s, particularly from the historical drainage of wetlands. In this thesis, I evaluated the suitability and connectivity of habitat patches occupied by these salamanders to assess the size of, and dispersal capabilities between, remaining habitat patches. I found that there was a low amount of suitable terrestrial habitat available for this complex of salamanders, and existing habitat patches were small and isolated. Forested areas and non-breeding wetlands were considered to be suitable habitat when adjacent to existing breeding locations, suggesting that these habitats should be a focus for conservation efforts. Notably, intervention may be necessary to maintain this amphibian complex as many assemblages are isolated from one another and potential corridors currently consist of primarily unsuitable habitat. Given that much of the salamander complex is reliant on one species for reproduction, the long-term viability of this population of Ambystoma salamanders may rely on the enhancement of suitable habitat near current breeding sites by conservation organizations and local stakeholders. Ultimately, the approach used in this thesis emphasizes the value of evaluating habitat within a fragmented landscape to focus conservation efforts on imperilled species.
Author Keywords: amphibians, connectivity, habitat suitability, landscape fragmentation, landscape resistance, unisexual
Active layer thermal regime in subarctic wetlands at the southern edge of continuous permafrost in Canada
The fine-scale controls of active layer dynamics in the subarctic at the southern edge of continuous permafrost are currently poorly understood. The goal of this thesis was to understand how environmental conditions associated with upland tundra heath, open graminoid fen, and palsas/peat plateaus affected active layer thermal regime in a subarctic peatland in northern Canada. Indices of active layer thermal regime were derived from in-situ measurements of ground temperature and related to local measurements of air temperature, snow depth, and surface soil moisture. Active layer thaw patterns differed among landforms, with palsas and tundra heath having the least and greatest amount of thaw, respectively. Tundra heath thaw patterns were influenced by the presence of gravel and sandy soils, which had higher thermal conductivity than the mineral and organic soils of fens and palsas. Vegetation also influenced thaw patterns; the lichen cover of palsas better protected the landform from incoming solar radiation than the moss, lichen, and low-lying shrub cover of upland tundra heath, thus allowing for cooler ground temperatures. Air temperature was the most significant predictor of active layer thermal regime. Surface soil moisture varied among landforms and greater surface soil moisture reduced the amount of active layer thaw. These findings improved understanding of how landform and climate can interact to affect the active layer.
Author Keywords: Active layer thermal regime, Active layer thickness, Climate change, Peatland, Permafrost, Subarctic
Determinants of Breeding Bird Diversity in Ontario's Far North
190 species of birds are known to breed in Ontario's far north making the region an important nursery for boreal birds. Digital point count data were collected using two different autonomous recording units (ARUs): one model with two standard microphones to detect birds and anurans, and one model with one standard microphone and one ultrasonic microphone for detecting bats. ARUs were deployed either in short or long-term plots, which were four to six days or approximately 10 weeks, respectively. I assessed differences in breeding bird richness detections between ARU and plot types. I also tested the relative impact of the habitat heterogeneity and species-energy hypotheses in relation to breeding birds and created predictive maps of breeding bird diversity for Ontario's far north. I found no difference in species richness estimates between the two ARU models but found that long-term plots detected about 7 more bird species and 1.5 more anuran species than short-term plots. I found support for both the species-energy and habitat heterogeneity hypotheses, but support for each hypothesis varied with the resolution of the analysis. Species-energy models were better predictors of breeding bird diversity at coarser resolutions and habitat heterogeneity models were better predictors at finer resolutions. Breeding bird diversity was highest in the Ontario Shield Ecozone compared with the Hudson Bay Lowlands Ecozone, but concentrated areas of higher diversity found in the Lowlands were associated with large rivers and the associated coastlines.
Author Keywords: boreal birds, breeding birds, habitat heterogeneity, Hill diversity, Ontario, species-energy hypothesis
Relationships between bird densities and distance to mines in Northern Canada
Increased mining activity in the Canadian Arctic has resulted in significant changes to the environment that may be influencing some tundra-nesting bird populations. In this thesis I examine the direct and indirect effects of mining on birds nesting in the Canadian Arctic. I first perform a literature review of the effects that mining in the Arctic has on northern environments and wildlife and outline several ways in which mines affect Arctic-breeding birds. By using the Program for Regional and International Shorebird Monitoring (PRISM) Arctic plot-based bird survey data from across the Canadian Arctic, collected from 1995 to 2018, I identify the effects of distance to mining operations on the occupancy patterns of Arctic-breeding bird species. Six species' densities were significantly impacted by mine proximity (Canada/Cackling Goose, Long-tailed Duck, Long-tailed Jaeger, Pectoral Sandpiper, Savannah Sparrow, and Rock Ptarmigan) across five major mine sites. Each species has its own unique relationship to distance from mining activity.
Author Keywords: Bird populations, Canadian Arctic, Mining, Mining activities, PRISM, Tundra-nesting birds
Fall Migratory Behaviour and Cross-seasonal Interactions in Semipalmated Plovers (Charadrius semipalmatus) Breeding in the Hudson Bay Lowlands, Canada
I used the Motus Wildlife Tracking System to monitor the fall migration behaviour and assess the underlying drivers of migration strategy in a small shorebird, the Semipalmated Plover (Charadrius semipalmatus), breeding at two subarctic sites: Churchill, Manitoba and Burntpoint Creek, Ontario, Canada. Semipalmated Plovers from both sites departed breeding areas between mid-July and early August, with females preceding males and failed breeders preceding successful breeders. Migrants showed between and within-population variation in migration behaviour, though birds from both sites tended to follow interior or coastal routes and congregated in three major stopover regions along the mid-Atlantic coast of North America. I found that later-departing birds had initial flight tracks oriented more toward the south, faster overall ground speeds, were less likely to stopover in North America, and stopped at lower latitudes, suggesting that later-departing individuals use aspects of a time-minimizing strategy on fall migration. My findings emphasize the importance of the mid-Atlantic coast for Semipalmated Plovers and establish connectivity between sites used during breeding and migration.
Author Keywords: Breeding, Migration, Motus, Semipalmated Plover, Shorebird, Stopover
HABITAT SELECTION AND LIFE-HISTORY TRAITS OF BREEDING BIRDS IN THE BOREAL-TUNDRA ECOTONE, WITH SPECIAL ATTENTION TO THE AMERICAN ROBIN (TURDUS MIGRATORIUS)
I investigated biodiversity of birds and vegetation associations along the boreal-tundra ecotone in Ivvavik National Park, Yukon Territory, and breeding adaptations used by American Robins (Turdus migratorius) at high latitudes. Twenty bird species were detected over three years using point-count surveys. Densities of American Robin, Dark-eyed Juncos (Junco hyemalis), and Yellow-rumped Warbler (Dendroica coronata) had positive relationships with tree and shrub density, whereas density of White-crowned Sparrows (Zonotrichia leucophrys) was negatively related to tree density. American Robins at this latitude raised only one brood, but females laid slightly larger clutches, the young fledged earlier, and pairs experienced higher nest-success than American Robins at more southerly latitudes. American Robins selected nest sites with high vegetation volume, at both the nest-site, and the nest-patch. This study is important for the first description of the bird community at this high latitude location, and describing how a species at the northern limit of the boreal forest has adapted to living with short-breeding seasons.
Author Keywords: American Robin, Ivvavik National Park, Life History, Nest-stie selection, Northern limit