Analytical chemistry
Analysis and reactions of aqueous selenide and other reduced inorganic selenium compounds under anoxic conditions
Selenide is cited as a geochemically important selenium (Se) species, but it is unknown whether selenide is a stable aqueous ion in natural waters. The feasibility of using anoxic anion exchange chromatography (AEC) coupled to dynamic reaction cell-inductively coupled plasma-mass spectrometry to separate aqueous selenide was investigated with the goal of quantifying this anion to determine its importance in reducing waters.
It was possible to qualitatively identify selenide using AEC, but much of the aqueous selenide oxidises to Se0 faster than the separation procedure could be completed. AEC analyses of solutions containing polyselenides produced peaks for unidentified Se compounds, which have been assigned tentative structures Se2O22-, Se2O32-, and Se2O62- based on close matches in retention time to stable S compounds.
The results of this work show that aqueous selenide can be qualitatively observed in synthetic solutions using AEC, but it is unknown whether these conditions are relevant to natural waters.
Author Keywords: anoxic speciation, polyselenides, selenide, selenium geochemistry, selenium speciation, selenoselenate
Speciation of Aluminum and Zinc in Three Streams of a Forested Catchment of the Boreal Zone: Temporal Variations assessed through In situ Monitoring and Geochemical Modeling.
This study presents a detailed assessment of the chemical speciation of aluminum and zinc in three streams of a small, acid-sensitive forested catchment on the southern edge of the Precambrian Shield.
Speciation analysis was achieved using an in-situ analytical technique known as Diffusive Gradient in Thin film (DGT) which measures labile metals, and a predictive computer algorithm (WHAM VI) which calculates metal species concentrations. Three types of DGT with different metal scavenging capabilities were used and a total of 11 deployments performed across four seasons. WHAM VI predictions showed that the organic fraction of aluminum was the main contributor to the dissolved concentrations in the main inflow stream (PC1) (~ 80 %) and the lake's outflow (PCO) (~ 75%); in the upland stream (PC1-08) the inorganic fraction contributed ~ 75%. For zinc the free ion was the single most important contributor to the dissolved concentration (< 90%) in all three streams. A comparative study of the DGT and WHAM methods showed an agreement between their inorganic concentrations during the spring season. Both methods indicate the greatest environmental impact for Al takes place during snow melt period in PCO and PC1-08 and in the summer for PC1. The greatest environmental impact for Zn predicted with WHAM VI, occurs during the spring in all three streams.
Author Keywords: Aluminum, DGT, Metal speciation, WHAM, Zinc
Investigating the sources and fate of monomethylmercury and dimethylmercury in the Arctic marine boundary layer and waters
Monomethylmercury (MMHg), the most bioavailable form of mercury (Hg) and a potent neurotoxin, is present at elevated concentrations in Arctic marine mammals posing serious health threats to the local populations relying on marine food for their subsistence living. The sources of MMHg in the Arctic Ocean surface water and the role of dimethylmercury (DMHg) as a source of MMHg remain unclear. The objective of this research was to determine the sources and fate of methylated Hg species (MMHg and DMHg) in the marine ecosystem by investigating processes controlling the presence of methylated Hg species in the Arctic Ocean marine boundary layer (MBL) and surface waters. A method based on solid phase adsorption on Bond Elut ENV was developed and successfully used for unprecedented measurement of methylated Hg species in the MBL in Hudson Bay (HB) and the Canadian Arctic Archipelago (CAA). MMHg and DMHg concentrations averaged 2.9 ± 3.6 (mean ± SD) and 3.8 ± 3.1 pg m-3, respectively, and varied significantly among sampling sites. MMHg in the MBL is suspected to be the product of marine DMHg degradation in the atmosphere. MMHg summer (June to September) atmospheric wet deposition rates were estimated to be 188 ± 117.5 ng m-2 and 37 ± 21.7 ng m-2 for HB and CAA, respectively, sustaining MMHg concentrations available for bio-magnification in the pelagic food web. The production and loss of methylated Hg species in surface waters was assessed using enriched stable isotope tracers. MMHg production in surface water was observed from methylation of inorganic Hg (Hg(II)) and, for the first time, from DMHg demethylation with experimentally derived rate constants of 0.92 ± 0.82 x 10-3 d-1 and 0.04 ± 0.02 d-1 respectively. DMHg demethyation rate constant (0.98 ± 0.51 d-1) was higher than that of MMHg (0.35 ± 0.25 d-1). Furthermore, relationships with environmental parameters suggest that methylated Hg species transformations in surface water are mainly biologically driven. We propose that in addition to Hg(II) methylation, the main processes controlling MMHg production in the Arctic Ocean surface waters are DMHg demethylation and deposition of atmospheric MMHg. These results are valuable for a better understanding of the cycle of methylated Hg in the Arctic marine environment.
Author Keywords: Arctic Ocean, Atmosphere, Demethylation, Dimethylmercury, Methylation, Monomethylmercury
Characterization of Synthetic and Natural Se8 and Related SenSm Compounds by Gas Chromatography-Mass Spectrometry
Elemental selenium has been extensively quantitatively measured in sediments; however, its physical composition is largely unknown, despite it being the dominant selenium species in some reducing environments. Here, for the first time, it is shown that small, cyclic selenium compounds can account for a quantitatively-relevant fraction of the total elemental selenium present.
A new method was developed to analyze for cyclooctaselenium (Se8) in both synthetic samples and selenium-impacted sediments. Despite some analytical limitations, this gas chromatography-mass spectrometry (GC-MS) method is the first GC-MS method developed to identify and quantify Se8 in sediments. Once this method was established, it was then applied to more complex systems: first, the identification of compounds in mixed selenium-sulfur melt solutions, and then the determination of SenSm in selenium-impacted sediments. Despite complications arising from pronounced fragmentation in the ion source, assignment of definitive molecular formulae to chromatographically-resolved peaks was possible for five compounds.
Developing a fully quantitative method to obtain elemental ratio information can aid in the assignment of molecular formulae to chromatographically-resolved SeS-containing chromatographic peaks. Coupling the existing gas chromatography method to an inductively coupled plasma-mass spectrometer (ICP-MS) system should accomplish this. However, due to a number of complications, this was not completed successfully during the duration of this thesis project. High detection limits for sulfur, retention time discrepancies, and inconsistent injection results between the GC-MS and GC-ICP-MS system led to difficulties in comparing results between both analytical methods. Despite these limitations, GC-ICP-MS remains the most promising method for the identification and quantification of SenSm compounds in synthetic melt mixtures and selenium impacted sediments.
Author Keywords: gas chromatography-mass spectrometry, sediments, selenium
Molecular Composition of Dissolved Organic Matter Controls Metal Speciation and Microbial Uptake
Aquatic contaminant mobility and biological availability is strongly governed by the complexation of organic and inorganic ligands. Dissolved organic matter (DOM) is a complex, heterogeneous mixture of organic acids, amino acids, lipids, carbohydrates and polyphenols that vary in composition and can complex to dissolved metals thereby altering their fate in aquatic systems. The research conducted in this doctoral dissertation addresses 1) how DOM composition differs between phytoplankton taxa and 2) how DOM composition affects metal speciation and its subsequent microbial bioavailability in laboratory and field conditions. To accomplish this, a series of analytical methods were developed and applied to quantify thiols, sulphur containing DOM moieties, and the molecular composition of DOM. The works presented in this thesis represents one of the first comprehensive and multipronged analyses of the impact of phytoplankton metabolite exudates on microbial metal bioavailability. This dissertation demonstrated the analytical versatility of high-resolution mass spectrometry as a tool for compound specific information, as well as having the capabilities to obtain speciation information of organometallic complexes. The work presented in this PhD strengthens the understanding compositional differences of both autochthonous and allochthonous DOM and their effects on metal biogeochemistry.
Author Keywords: Dissolved Organic Matter, Mercury, Metal Accumulation, Phytoplankton, Spring Melts, Thiol
The effects of Dissolved Organic Matter (DOM) sources on Pb2+, Zn2+ and Cd2+ binding
Metal binding to dissolved organic matter (DOM) determines metal speciation and strongly influences potential toxicity. The understanding of this process, however, is challenged by DOM source variation, which is not always considered by most existing metal speciation models. Source determines the molecular structure of DOM, including metal binding functional groups. This study has experimentally showed that the allochthonous-dominant DOM (i.e. more aromatic and humic) consistently has higher level of Pb binding than the autochthonous-dominant DOM (i.e. more aliphatic and proteinaceous) by more than two orders of magnitude. This source-discrimination, however, is less noticeable for Zn and Cd, although variation still exceeds a factor of four for both metals. The results indicate that metal binding is source-dependent, but the dependency is metal-specific. Accordingly, metal speciation models, such as the Windermere Humic Aqueous Model (WHAM), needs to consider DOM source variations. The WHAM input of active fraction of DOM participating in metal binding (f) is sensitive to DOM source. The commonly-used f = 0.65 substantially overestimated the Pb and Zn binding to autochthonous-dominant DOM, indicating f needs to be adjusted specifically. The optimal f value (fopt) linearly correlates with optical indexes, showing a potential to estimate fopt using simple absorbance and/or fluorescence measurements. Other DOM properties not optically-characterized may be also important to determine fopt, such as thiol, which shows strong affinity to most toxic metals and whose concentrations are appreciably high in natural waters (< 0.1 to 400 nmol L-1). Other analytical techniques rather than Cathodic Stripping Voltammetry (CSV) are required to accurately quantify thiol concentration for DOM with concentration > 1 mg L-1. To better explain the DOM-source effects, the conditional affinity spectrum (CAS) was calculated using a Fully Optimized ContinUous Spectrum (FOCUS) method. This method not only provides satisfactory goodness-of-fit, but also unique CAS solution. The allochthonous-dominant DOM consistently shows higher Pb affinity than autochthonous-dominant DOM. This source-discrimination is not clearly observed for Zn and Cd. Neither the variability of affinity nor capacity can be fully explained by the variability of individual DOM properties, indicating multiple properties may involve simultaneously. Together, the results help improve WHAM prediction of metal speciation, and consequently, benefit geochemical modelling of metal speciation, such as Biotic Ligand Model for predicting metal toxicity.
Author Keywords: Dissolved organic matter, Metal binding, Source, Windermere Humic Aqueous Model
Size and fluorescence properties of allochthonous dissolved organic matter: characterization, transformations, and reactivity
Dissolved organic matter (DOM) is a mixture of molecules with dynamic structure and composition that are ubiquitous in aquatic systems. DOM has several important functions in both natural and engineered systems, such as supporting microorganisms, governing the toxicity of metals and other pollutants, and controlling the fate of dissolved carbon. The structure and composition of DOM determine its reactivity, and hence its effectiveness in these ecosystem functions.
While the structure, composition, and reactivity of riverine and marine DOM have been previously investigated, those of allochthonous DOM collected prior to exposure to microbes and sunlight have received scant attention. The following dissertation constitutes the first in-depth study of the structure, composition, and reactivity of allochthonous DOM at its point of origin (i.e. leaf leachates, LLDOM), as detected by measuring its size and optical properties. Concomitantly, novel chemometric methods were developed to interpret size-resolved data obtained using asymmetrical flow field-flow fractionation, including spectral deconvolution and the application of machine learning algorithms such as self-organizing maps to fluorescence data using a dataset of more than 1000 fluorescence excitation-emission matrices.
The size and fluorescence properties of LLDOM are highly distinct. Indeed, LLDOM was correctly classified as one of 13 species/sources with 92.5% accuracy based on its fluorescence composition, and LLDOM was distinguished from riverine DOM sampled from eight different rivers with 98.3% accuracy. Additionally, both fluorescence and size properties were effective conservative tracers of DOC contribution in pH-controlled mixtures of leaf leachates and riverine DOM over two weeks. However, the structure of LLDOM responded differently to pH changes for leaves/needles from different tree species, and for older needles. Structural changes were non-reversible.
Copper-binding strength (log K) differed for the different fluorescent components of DOM in a single allochthonous source by more than an order of magnitude (4.73 compared to 6.11). Biotransformation preferentially removed protein/polyphenol-like fluorescence and altered copper-binding parameters: log K increased from 4.7 to 5.5 for one fluorescent component measured by fluorescence quenching, but decreased from 7.2 to 5.8 for the overall DOM, as measured using voltammetry. The complexing capacity of DOM increased in response to biotransformation for both fluorescent and total DOM. The relationship between fluorescence and size properties was consistent for fresh allochthonous DOM, but differed in aged material.
Since the size and fluorescence properties of LLDOM are strikingly different from those of riverine DOM, deeper investigation into transformative pathways and mixing processes is required to elucidate the contribution of riparian plant species to DOM signatures in rivers.
Author Keywords: Analytical chemistry, Chemometrics, Dissolved organic matter (DOM), Field-flow fractionation, Fluorescence spectroscopy, Parallel factor analysis (PARAFAC)
Identification and Quantification of Organic Selenium Species Produced by Microbiological Activity in Freshwater Environments
Despite being an essential nutrient at trace levels, selenium can be devastating to aquatic environments when present in excess. There is no apparent correlation between total aqueous selenium concentrations and observed toxic effects because bioaccumulation varies over several orders of magnitude depending on the chemical species of selenium and the biological species present in the lowest trophic level of the aquatic food chain. Despite being used in toxicity models due to its high bioavailability, free selenomethionine had not been found previously in the environment outside of a biological entity. Here, it is confirmed that selenomethionine is produced during the biological treatment of selenium-contaminated wastewater, and released in the effluent along with other discrete organic selenium species, including selenomethionine oxide.
This identification followed the development of a rigorous preconcentration and cleanup procedure, allowing for the analysis of these organic selenium species in high-ionic strength matrices. A newly optimized anion-exchange chromatographic separation was coupled to inductively-coupled plasma mass spectrometry for the simultaneous quantification of these organic selenium species along with the more ubiquitous selenium oxyanions, selenite and selenate. This separation method was also coupled to electrospray tandem mass spectrometry for structural confirmation of selenomethionine and selenomethionine oxide. High resolution orbitrap mass spectrometry was used to identify another oxidation product of selenomethionine – a cyclic species which was tentatively identified, by coelution, in a selenium-contaminated river water sample. The production and release of selenomethionine, selenomethionine oxide, Se-(methyl) selenocysteine, and methyl selenic acid were observed for various laboratory algal cultures.
Once the presence of free selenomethionine in a water system was confirmed, factors affecting its uptake into algal cultures were examined. The uptake of selenomethionine into Scenedesmus obliquus was noted to be significantly higher under low nitrate conditions, where it was incorporated into selenium-containing proteins more readily than at higher nitrate conditions where other metabolites were produced. With the increasing popularity of biological treatment systems for the remediation of selenium-contaminated waters, these observations, combined with existing knowledge, could be used to make predictions regarding the potential toxicity of selenium in various environmental scenarios.
Author Keywords: bioremediation, electrospray mass spectrometry, inductively-coupled plasma mass spectrometry, selenium, selenoamino acids, selenomethionine