Belzile, Nelson

Analysis and reactions of aqueous selenide and other reduced inorganic selenium compounds under anoxic conditions

Type:
Names:
Creator (cre): Smith, Matthew, Thesis advisor (ths): Wallschlaeger, Dirk, Degree committee member (dgc): Dillon, Peter, Degree committee member (dgc): Belzile, Nelson, Degree committee member (dgc): Gueguen, Celine, Degree granting institution (dgg): Trent University
Abstract:

Selenide is cited as a geochemically important selenium (Se) species, but it is unknown whether selenide is a stable aqueous ion in natural waters. The feasibility of using anoxic anion exchange chromatography (AEC) coupled to dynamic reaction cell-inductively coupled plasma-mass spectrometry to separate aqueous selenide was investigated with the goal of quantifying this anion to determine its importance in reducing waters.

It was possible to qualitatively identify selenide using AEC, but much of the aqueous selenide oxidises to Se0 faster than the separation procedure could be completed. AEC analyses of solutions containing polyselenides produced peaks for unidentified Se compounds, which have been assigned tentative structures Se2O22-, Se2O32-, and Se2O62- based on close matches in retention time to stable S compounds.

The results of this work show that aqueous selenide can be qualitatively observed in synthetic solutions using AEC, but it is unknown whether these conditions are relevant to natural waters.

Author Keywords: anoxic speciation, polyselenides, selenide, selenium geochemistry, selenium speciation, selenoselenate

2014

Identification and Quantification of Organic Selenium Species Produced by Microbiological Activity in Freshwater Environments

Type:
Names:
Creator (cre): LeBlanc, Kelly Lynn, Thesis advisor (ths): Wallschlaeger, Dirk, Degree committee member (dgc): Evans, R. Douglas, Degree committee member (dgc): Belzile, Nelson, Degree granting institution (dgg): Trent University
Abstract:

Despite being an essential nutrient at trace levels, selenium can be devastating to aquatic environments when present in excess. There is no apparent correlation between total aqueous selenium concentrations and observed toxic effects because bioaccumulation varies over several orders of magnitude depending on the chemical species of selenium and the biological species present in the lowest trophic level of the aquatic food chain. Despite being used in toxicity models due to its high bioavailability, free selenomethionine had not been found previously in the environment outside of a biological entity. Here, it is confirmed that selenomethionine is produced during the biological treatment of selenium-contaminated wastewater, and released in the effluent along with other discrete organic selenium species, including selenomethionine oxide.

This identification followed the development of a rigorous preconcentration and cleanup procedure, allowing for the analysis of these organic selenium species in high-ionic strength matrices. A newly optimized anion-exchange chromatographic separation was coupled to inductively-coupled plasma mass spectrometry for the simultaneous quantification of these organic selenium species along with the more ubiquitous selenium oxyanions, selenite and selenate. This separation method was also coupled to electrospray tandem mass spectrometry for structural confirmation of selenomethionine and selenomethionine oxide. High resolution orbitrap mass spectrometry was used to identify another oxidation product of selenomethionine – a cyclic species which was tentatively identified, by coelution, in a selenium-contaminated river water sample. The production and release of selenomethionine, selenomethionine oxide, Se-(methyl) selenocysteine, and methyl selenic acid were observed for various laboratory algal cultures.

Once the presence of free selenomethionine in a water system was confirmed, factors affecting its uptake into algal cultures were examined. The uptake of selenomethionine into Scenedesmus obliquus was noted to be significantly higher under low nitrate conditions, where it was incorporated into selenium-containing proteins more readily than at higher nitrate conditions where other metabolites were produced. With the increasing popularity of biological treatment systems for the remediation of selenium-contaminated waters, these observations, combined with existing knowledge, could be used to make predictions regarding the potential toxicity of selenium in various environmental scenarios.

Author Keywords: bioremediation, electrospray mass spectrometry, inductively-coupled plasma mass spectrometry, selenium, selenoamino acids, selenomethionine

2016

Assessing the Potential for Contamination of Lakes from Upwelling of Arsenic-Laden Groundwater Through Sediments

Type:
Names:
Creator (cre): Lock, Alan S., Thesis advisor (ths): Wallschläger, Dirk, Thesis advisor (ths): Belzile, Nelson, Degree committee member (dgc): Belzile, Nelson, Degree committee member (dgc): Gueguen, Celine, Degree granting institution (dgg): Trent University
Abstract:

A bedrock fracture hosting arsenic (As) contaminated groundwater was suspected to be transported to Ramsey Lake, a drinking water resource for more than 50,000 residents of Sudbury, Ontario. A high resolution, spatial, water quality mapping technique using an underwater towed vehicle (UTV) was used to identify sources of upwelling groundwater into lake water and localize the upwelling As contaminated groundwater vent site. The top 7 cm of lake sediments (in-situ) at this vent site were observed to adsorb 93 % of the dissolved As, thus inhibiting lake water quality degradation from this contaminant source. Sediment samples from this location were used in laboratory experiments to assess the potential for this system to become a source of As contamination to Ramsey Lake water quality and elucidate As(III) fractionation, transformation and redistribution rates and processes during aging. Arsenic speciation is important because As(III) has been shown to be more toxic than As(V). To accomplish this a sequential extraction procedure (SEP) that maintains As(III) and As(V) speciation in (sub)oxic sediments and soils was validated for the operationally defined fractions: easily exchangeable, strongly sorbed, amorphous Fe oxide bound, crystalline Fe oxide bound, and the residual fraction for total As because the characteristics of the reagents required to extract the final fraction do not maintain As species.

Batch reaction experiments using sediment spiked with As(III) or As(V) and aged for up to 32 d were sequentially extracted and analysed for As(III) and As(V). Consecutive reaction models illustrate As(III) is first adsorbed to the sediment then oxidized to As(V). Fractionation analyses show As(III) most rapidly adsorbs to the easily exchangeable fraction where it is oxidized and redistributes to the strongly sorbed and amorphous Fe oxide bound fractions. Oxidation of As(III) adsorbed to the amorphous and crystalline Fe oxide bound fractions is less efficient and possibly inhibited. Select samples amended with goethite provide evidence supporting Mn(II) oxidation is catalyzed by the goethite surface, thus increasing As(III) oxidation by Mn(III/IV) complexed with the strongly sorbed fraction. Although As immobilization through groundwater sediment interactions may be inhibited by increased ion activity, particularly phosphate or lake eutrophication, this threat in Ramsey Lake is likely low.

Author Keywords: arsenic, fractionation, modelling, redistribution, speciation, water quality mapping

2017