Kisiala, Anna

The search for myco-hormones in the metabolome of the model organism Sordaria macrospora via LC-MS/MS.

Type:
Names:
Creator (cre): Molina Bean, Kimberly, Thesis advisor (ths): Emery, Neil, Degree committee member (dgc): Kisiala, Anna, Degree committee member (dgc): Morrison, Erin, Degree granting institution (dgg): Trent University
Abstract:

Fungi are a diverse group of organisms that play crucial roles in various ecological processes and have immense economic importance. Understanding the intricate mechanisms underlying fungal growth and development is fundamental to harnessing their potential and exploring their applications in different fields. Signalling molecules, such as hormones, have been identified as key regulators in fungal physiology, orchestrating intricate processes and modulating biological responses to the environment. Phytohormones, commonly associated with plants, have been proposed as potential myco-hormones due to their production in a wide variety of fungi. Metabolomic analyses were performed via LC-MS/MS to investigate the role of phytohormones, specifically cytokinins (CKs) and indole-3-acetic acid (IAA), along with lipids and energetic metabolites such as organic acids during the growth and development of the model fungus Sordaria macrospora. The results revealed a clear switch between CK ribosides and CK free bases during the ascosporegenesis stage, with increased levels of cZ and iP and decreased levels of iPR and cZR. A similar pattern was observed in the mutant strain smgpi1 but demonstrating higher levels of CK free bases and increased fruiting body formation compared to the wild type. These findings provide insights into the regulation of phytohormones especially during fungal fruiting body development. In terms of IAA, the levels increased during the transition to sexual development in all strains, with the per5 mutant, unable to produce lipids via the cytosol, demonstrating a higher concentration than the wild type. The interplay between energetic metabolites and IAA suggests a potential role in the transition to sexual development. Additionally, the dose-dependent effects of exogenous CK application were investigated, showing the potential of low concentrations, from 1 to 10 μM, of CKs in promoting biomass accumulation or sexual development. Furthermore, gene editing in S. macrospora was proposed as a future direction to explore the functions of CKs and other metabolites during fungal development. Overall, this research contributes to our understanding of phytohormone-mediated processes in fungi and opens avenues for future investigations in fungal biology.

Author Keywords: fungi, LC-MS, metabolomics, myco-hormone, phytohormone, sexual development

2024

Impacts of Cover Crops on Soil Health, Soil Nitrogen Dynamics, and Cytokinin Profiles

Type:
Names:
Creator (cre): Perera, Ushettige Imesha Dimuthuni, Thesis advisor (ths): Thompson, Karen A, Thesis advisor (ths): Emery, Neil, Degree committee member (dgc): Kisiala, Anna, Degree granting institution (dgg): Trent University
Abstract:

In Ontario, the dominant cash crop rotations consist of soybean (SB), which is a leguminous crop grown in rotation with maize (MZ) and winter wheat (WW). In addition to these crops, some farmers integrate cover crops (CC) into crop rotation, especially during the fallow period and winter seasons, to reduce nitrogen (N) losses via nitrate (NO3-) leaching and emission of N2 and the greenhouse gas nitrous oxide (N2O). This thesis focused on understanding the impact of crop phases in a MZ-(SB-WW)-CC rotation on the abundance of N-cycling bacterial communities that mediate nitrification and denitrification pathways. In addition, the influence of CCs on soil cytokinin (CK) profiles, which are plant growth-promoting hormones, were studied in a greenhouse trial to assess their potential impacts when integrating CCs into crop rotations. In particular, the relationship between traditional soil health parameters and the soil CK profiles was studied to understand how CKs might reflect biotic interactions and soil vitality. Results indicate N fertilizer application mono ammonium phosphate (MAP) and starter N:P: K (24:6:24) during WW planting in fall largely supported nitrifying bacterial communities (amoA) and potentially contributed to NO3- leaching. Management of MZ, which included spring-applied MAP resulted in larger denitrifying (nirK) bacterial communities, increasing the potential risk of N-loss via emission of dinitrogen gas (N2) and greenhouse gas N2O. However, CC soils had significantly lower nirK than MZ, reflecting the importance of strong and deep root systems of CCs, which have a higher ability to scavenge the substrates for denitrifying communities (NO3-). This highlights the importance of growing CCs in reducing the potential risk for N-loss via leaching and denitrification. Additionally, in the greenhouse trial, the ability of CCs to affect CK was detected, highlighting the importance of integrating CC in crop rotations. This is particularly noteworthy, given that total CK profiles showed strong associations with traditional soil health parameters such as labile or active carbon and soil microbial community diversity. It was concluded that total soil CK can be used as a novel and dynamic soil health measure. Future research on quantifying N2O fluxes and levels of NO3- in leachates would provide a more precise understanding of the impact of different crop rotation phases on N-dynamics in these fields. Further studies on single or combined measures of soil CKs are warranted to develop its potential as a practical and effective soil health parameter.

Author Keywords: Cover crops, Crop rotations, Cytokinin hormone, Nitrogen Cycle, qPCR, Soil health

2023

Cytokinins in nematodes: the potential role of cytokinins in soybean (Glycine max) resistance to soybean cyst nematode (Heterodera glycines)

Type:
Names:
Creator (cre): Rahman, Tamzida, Thesis advisor (ths): Emery, Neil, Degree committee member (dgc): Saville, Barry, Degree committee member (dgc): Kisiala, Anna, Degree granting institution (dgg): Trent University
Abstract:

To investigate cytokinins (CKs) in nematodes, CK profiles of a free-living Caenorhabditis elegans and a plant parasitic Heterodera glycines (soybean cyst nematode, SCN) were determined at the egg and larval stages. SCN had higher total CK level than C. elegans; however, CKs in SCN were mostly inactive precursors, whereas C. elegans had more bioactive forms. This is the first study to show that methylthiols are present in nematodes and may affect plant infection. In infectious SCN larvae, methylthiol levels were much higher than in eggs or C. elegans larvae. Furthermore, The CK profiles of SCN-susceptible and resistant Glycine max cultivars at three developmental stages revealed that, regardless of the resistance level, SCN infection caused an increase in root CKs. One resistant cultivar, Pion 93Y05, showed significantly high levels of bioactive N6-isopentenyladenine (iP) in the non-infected roots which indicated a potential role of CKs in soybean resistance to SCN.

Author Keywords: Cytokinins, HPLC-MS/MS, Nematode, SCN resistance, Soybean

2019

Phytohormone-enhanced heavy metal responses in Euglena gracilis: Ni, Pb and Cd uptake and associated hormone and metabolome profiles

Type:
Names:
Creator (cre): Nguyen, Hai, Thesis advisor (ths): Emery, R.J. Neil, Degree committee member (dgc): Saville, Barry, Degree committee member (dgc): Kisiala, Anna, Degree granting institution (dgg): Trent University
Abstract:

Phytohormones, Cytokinin (CK) and Abscisic acid (ABA), are best known for controlling plant growth and stress responses; but they also mediate various developmental perspectives in alga. Yet, their mode of action in algal adaptive strategies to heavy metal responses, their involvement in orchestration of phytohormone crosstalk remain largely unknown and a molecular framework of phytohormone-controlled heavy metal uptake is absent. I found that three metals known globally to contaminate aquatic ecosystems, nickel (Ni), lead (Pb), and cadmium (Cd), cause changes in the levels of endogenous CKs, ABA, auxins, and gibberellins (GAs) in the green alga Euglena gracilis. Exogenous ABA or CK (trans-zeatin) alleviated metal toxicity through improved metal uptake efficiency and the regulation of the endogenous CKs activity profiles and GAs activity. This new evidence suggests that E. gracilis possesses functional phytohormone signals and metabolic pathways that are under metal stress response. Exogenously applied ABA or CK provoked the coordinated activation of metal uptake, likely via enhanced accumulation of metal binding compounds (i.e., proline, glycine, cysteine containing peptides), which are effective for metal sequestration. Using untargeted metabolomics analysis and functional annotation, this thesis further established that, CK and ABA modified pathways and metabolites, which were mainly involved in metal acclimation and resistance. These modified metabolites that were under the influence of phytohormones in algal cells growing under metal stress conditions were associated with: lipid pathways, riboflavin metabolism, biosynthesis of cofactors/vitamin, and carbohydrate metabolism. Bioactive secondary compounds (e.g., terpenoids, alkaloids, flavonoids, carotenoids) were also modified in algal cells treated with phytohormones. The present study highlights that ABA and CKs are important regulators of algal metal accumulation/acclimation strategies based on increased metal uptake, enhanced CK metabolism, regulation of hormonal crosstalk and regulation of some core cellular metabolism pathways, all of which improve metal uptake efficiency. Finally, our results suggest that ABA and CK form a novel strategy for metal bioremediation techniques and for sourcing microalgal value-added metabolites.

Author Keywords: abscisic acid, cadmium, cytokinin, Euglena gracilis, lead, nickel

2021