Finance
The Effect of Listing a Stock on the S&P 500 Index on the Stock's Volatility
This paper investigates the effect of listing a stock on the S&P 500 Index on the stock's volatility, using various econometrics models: GARCH and EGARCH. The study mainly addresses three issues; firstly, it analyzes stock volatility in two sub-periods, secondly, it determines whether the announcement can account for the fluctuations in the price of the stock, and finally, it investigates the change in the stock's variance. After isolating the effects of external and industry shock by using the returns on the S&P 500 Index as a proxy, the author finds evidence of structural change in the volatility of stocks after that stock is added to the index. Additionally, the existence of a dominant symmetric effect, which captures the response of volatility to news, indicate that following the onset of including the stock on the index, information flowing into the market increased. However, the rate at which old news is captured in price falls. The empirical evidence also suggests that on average a stocks variance falls and that the announcement to list a stock on the index has little effect on the stock's price.
Author Keywords: EGARCH, GARCH, S&P 500 Index, Symmetric Effect, Volatility
Capital Ratios and Liquidity Creation: Evidence from Canadian Big Six Banks
Using quarterly data from the six largest Canadian banks, we investigate the relationship between regulatory capital ratio and on-balance sheet liquidity created in the Canadian economy by "Big Six". We find a significant positive relationship between Tier 1 capital ratio and on-balance sheet liquidity creation for Canadian big six banks, implying that large banks in Canada favor risks and rely on capital to fund illiquid assets. In contrast, for smaller banks, the relationship is significantly negative. Our results are robust to dynamic panel regression using 2-Step GMM, two exogenous shocks - COVID-19 crisis and the Global Financial Crisis (2007-2009), mergers & acquisitions activities in the banking industry, and core deposits financing. The COVID-19 pandemic and core deposits adversely impact the Tier 1 capital ratio's relationship with on-balance-sheet liquidity creation, while the global financial crisis (2007-2009) effect on the association is insignificant.
Author Keywords: Big Six, COVID -19, Deposits, Liquidity Creation, Tier 1 Capital Ratio,
Range-Based Component Models for Conditional Volatility and Dynamic Correlations
Volatility modelling is an important task in the financial markets. This paper first evaluates the range-based DCC-CARR model of Chou et al. (2009) in modelling larger systems of assets, vis-à-vis the traditional return-based DCC-GARCH. Extending Colacito, Engle and Ghysels (2011), range-based volatility specifications are then employed in the first-stage of DCC-MIDAS conditional covariance estimation, including the CARR model of Chou et al. (2005). A range-based analog to the GARCH-MIDAS model of Engle, Ghysels and Sohn (2013) is also proposed and tested - which decomposes volatility into short- and long-run components and corrects for microstructure biases inherent to high-frequency price-range data. Estimator forecasts are evaluated and compared in a minimum-variance portfolio allocation experiment following the methodology of Engle and Colacito (2006). Some consistent inferences are drawn from the results, supporting the models proposed here as empirically relevant alternatives. Range-based DCC-MIDAS estimates produce efficiency gains over DCC-CARR which increase with portfolio size.
Author Keywords: asset allocation, DCC MIDAS, dynamic correlations, forecasting, portfolio risk management, volatility
The Application of One-factor Models for Prices of Crops and Option Pricing Process
This thesis is intended to support dependent-on-crops farmers to hedge the price risks of their crops. Firstly, we applied one-factor model, which incorporated a deterministic function and a stochastic process, to predict the future prices of crops (soybean). A discrete form was employed for one-month-ahead prediction. For general prediction, de-trending and de-cyclicality were used to remove the deterministic function. Three candidate stochastic differential equations (SDEs) were chosen to simulate the stochastic process; they are mean-reverting Ornstein-Uhlenbeck (OU) process, OU process with zero mean, and Brownian motion with a drift. Least squares methods and maximum likelihood were used to estimate the parameters. Results indicated that one-factor model worked well for soybean prices. Meanwhile, we provided a two-factor model as an alternative model and it also performed well in this case. In the second main part, a zero-cost option package was introduced and we theoretically analyzed the process of hedging. In the last part, option premiums obtained based on one-factor model could be compared to those obtained from Black-Scholes model, thus we could see the differences and similarities which suggested that the deterministic function especially the cyclicality played an essential role for the soybean price, thus the one-factor model in this case was more suitable than Black-Scholes model for the underlying asset.
Author Keywords: Brownian motion, Least Squares Method, Maximum Likelihood Method, One-factor Model, Option Pricing, Ornstein-Uhlenbeck Process