Volatility modelling is an important task in the financial markets. This paper first evaluates the range-based DCC-CARR model of Chou et al. (2009) in modelling larger systems of assets, vis-à-vis the traditional return-based DCC-GARCH. Extending Colacito, Engle and Ghysels (2011), range-based volatility specifications are then employed in the first-stage of DCC-MIDAS conditional covariance estimation, including the CARR model of Chou et al. (2005). A range-based analog to the GARCH-MIDAS model of Engle, Ghysels and Sohn (2013) is also proposed and tested - which decomposes volatility into short- and long-run components and corrects for microstructure biases inherent to high-frequency price-range data. Estimator forecasts are evaluated and compared in a minimum-variance portfolio allocation experiment following the methodology of Engle and Colacito (2006). Some consistent inferences are drawn from the results, supporting the models proposed here as empirically relevant alternatives. Range-based DCC-MIDAS estimates produce efficiency gains over DCC-CARR which increase with portfolio size.
Author Keywords: asset allocation, DCC MIDAS, dynamic correlations, forecasting, portfolio risk management, volatility