Illes, Mike
A silicon sol-gel approach to the development of forensic blood substitutes: design considerations for research and training
The research and development of synthetic blood substitutes is a reported need within the forensic community. This work contributes to the growing body of knowledge in bloodstain pattern analysis by offering a materials science approach to designing, producing and testing synthetic forensic blood substitutes. A key deliverable from this research is the creation of a robust silicon-based material using the solution-gelation technique that has been validated for controlled passive drip and spatter simulation. The work investigates the physical properties (viscosity, surface tension and density) of forensic blood substitute formulations and describes the similarity in the spreading dynamics of the optimized material to whole human blood. It then explores how blood and other fluids behave in impact simulation using high-speed video analysis and supports the use of the optimized material for spatter simulation. Finally, the work highlights the practical value of the material as an educational tool for both basic and advanced bloodstain experimentation and training.
Author Keywords: bloodstain pattern analysis, forensic blood substitutes, high-speed video analysis, silicon solution-gelation chemistry, thin-film deposition, training and education
Forensic Epistemology: Studying the Crime Scene
Forensic epistemology is the study of knowledge as it relates to forensic science and can be broken into four sources; intuitive, authoritative, logical and empirical. In a four-phase research approach, I explored reasoning skills (logical knowledge) used by crime scene experts and methods (empirical knowledge) for forensic case-specific experimentation. First, the reasoning skills of crime scene investigators (CSI) and bloodstain pattern analysts (BPA) were tested, correlated to demographics and reasoning categories were compared. Practitioner's with graduate level education performed better on the reasoning test, however, significant differences were not found between test scores and years of experience. Similarly, there was no difference between test scores and employment status (specifically, police or civilian employees), for the CSI group nor within the BPA group. This information suggests that level of education plays the most important role in the development and use of reasoning skills, whereas experience and employment status are not as influential. Second, I investigate potential strategies in selecting data types for case-specific experimentation in pattern-interpretation disciplines within forensic science. I also examined the epistemic status of practitioner case experimentation in forensic science. Practitioners were more confident in a mixed-method approach when conducting case-specific experimentation. In addition, there is a knowledge gap in experimental design for some forensic practitioners. Third, is a reprint of the introductory section of my published book entitled The Scientific Method in Forensic Science: A Canadian Handbook that abridges knowledge gained from this dissertation with further evidence-based literature review and experiential examples. This phase summarizes the scientific method in forensic science and provides guidance for forensic science students and practitioners. The final phase merges the findings from the primary studies with a literature review; offering scientific evidence supporting suggested research and pedagogic strategies that can help increase the epistemic status of forensic science.
Author Keywords: case-specific research, epistemology, forensic science, hypothetico-deductive reasoning, logic, research models